
Proposing a Task Interface

Claus-Peter Wirth,
Serge Autexier, Christoph Benzmüller, Andreas Meier, &al.

Dept. of Computer Sci., Universität des Saarlandes, D–66123 Saarbrücken, Germany

cp@ags.uni-sb.de

June 13, 2004

Abstract

This draft is for internal communication and not completely self-contained.

1

1 Motivation

A careful and objective inspector of the history of automated theorem proving in the last fifty
years would come to the following hypothesis, which is also the private opinion of the leading
developers and scientists in the field of automated theorem provers today:

Stand-alone automated theorem provers will never develop into practically useful
mathematical assistant systems.

To achieve the original design goal of a practically useful mathematical assistant system never-
theless, we aim at interactive systems with a high degree of automated support. To combine
interaction and automation into a synergetic interplay is an enormous task. It requires sophis-
ticated achievements from logic, tactics programming, proof planning, agent-based approaches
from artificial intelligence, graphical user interfaces, and bus connection to other reasoning tools
on the one hand, and a deeper experience in informal and formal human proof construction on
the other hand. Obviously, the development of a state-of-the-art mathematical assistant system is
a huge enterprise, requiring expertise from many different fields.

In this paper we suggest to cut this huge enterprise in twain. The resulting interface is
called the task interface. Roughly speaking, it is to separate the heuristic part of a theorem
prover from its logic engine. The heuristic part may consist of user interaction, tactics, and proof
planning. The logic engine is the part that executes proof steps and reports and keeps track of the
soundness conditions of these steps. Thus, tacticals, proof planning, and human interaction are to
communicate with the proof construction only via this interface.

Such an interface comes with all the typical pros and cons regarding information hiding,
reusability, &c., which do not have to be mentioned here in more detail.

The crucial consequence, however, is that the heuristic part cannot be used to compensate
for the insufficiencies of the logic engine, which is the status quo especially of the more useful
theorem provers. Indeed, the concepts of the task interface must be free from the peculiarities
that occur only in inference systems but not in the minds of Bourbakian mathematicians.

Instead of what is captured by buzzwords like bottom-up or top-down reasoning, a primarily
semantical point of view has to be taken. With a clear understanding of the semantics of the logic
as well as the data structures and operations of the task interface, it should be possible to design
and implement the heuristic part of a theorem prover without any deeper knowledge of the calculi
of the logic engine. This heuristic part operates on the primitives that are provided by the task
interface and not on the logic level.

The task interface as proposed in this paper consists of a data structure called task forests and
a set of actions modifying a task forest. In principle, a set of modifying operations and look-up
functions would be sufficient, but as the orientation in the task forest would require many look-up
functions and as the heuristic programs must be able to hash new attributes to the nodes of the
task forest, on the abstract level of design chosen for this paper it is more natural to describe the
structure of a task forest explicitly and then explain how the actions modify it.

2

2 Task Forests and Closedness

2.1 Tasks

A task can be seen as a proof obligation, a proof line with logical context, a sequent. For an
example, consider a lemma we want to prove from a set of assumptions. A task may contain free
variables to be instantiated (or holes to be filled) during the proof construction appropriately. It
is only via these free variables that a task is related to or interacts with other parallel tasks. Thus,
a task can be seen as a somewhat independent proof goal. Without loss of generality, we can
become more concrete here:

Definition 2.1 (Task)
A task is a list of (

�����
) signed formulas, possibly augmented with some further syntactical

structure.

For example, a typical augmentation is a weight term guaranteeing wellfoundedness of the appli-
cation of tasks as induction hypotheses. The positive sign (

�
) may be dropped in examples. Note

that we leave open what a “formula” is. Notice that a task consists of a list and not a set of signed
formulas. The order of the signed formulas is relevant for the operational behavior of the task. Es-
pecially the first signed formula A0 in a non-empty task A0 � A1 ��������� An is emphasized. In Hübner
&al. (2003) it is called the goal window of the task and the task is written as A1 �������	� An
 A0.

The semantics of a task is given by the semantics of the formula of the task:

Definition 2.2 (Formula of a Task)
The formula of the task A1 ��������� An is � Unsign � A1 �� ����� Unsign � An ��� , where Unsign returns
the (unsigned) formula of a signed formula and prefixes it with � in case of negative sign.

Obviously, this definition is only appropriate for two-valued logics, to which we restrict ourselves
here.

3

2.2 Actions, Reductions, Closedness, and Proofs

To achieve a task, we have to do something, i.e. we have to perform actions. Such an action
reduces the original task to a new set T of other tasks. If T is empty, then we have achieved the
task, and we say that the task is closed.

Just as tasks are structured into proof attempts by recursive application of reduction to sub-
tasks, multiple proof attempts result from multiple reduction of the same task. Multiple proof
attempts, reductions, and tasks can be considered as a hierarchy:

level subject subunits
connection
of subunits

reason for the modus of
the logical connection

1st Multiple Proof parallel reductions disjunctive area of application

2nd Reduction subtasks conjunctive
disjunctive normal form

together with level 1

3rd Task signed formulas disjunctive
conjunctive normal form

together with level 2

Contrary to forms of political or juristic argumentation where total evidence is the sum of the
evidences of alternative “proofs”, in our area of application it typically suffices to establish a
task only once, simply because a second proof does not give more evidence than a single one.
Although alternative ways to achieve a task are useful during proof construction and interesting
when considering alternative axiomatizations, most of the time we would be lucky if we found
a single way to achieve a task. As multiple mathematical proofs (1st level) are thus connected
disjunctively, it is advantageous to connect the subtasks resulting from a reduction (2nd level)
conjunctively, because the two levels together further the normalization of proof constructions to
disjunctive normal form.

This normal form of proof construction is not obligatory, but it furthers a certain form or
style. On the one hand, this style helps human beings to understand foreign proofs and maintain
own ones, and, on the other hand, makes it easier for automatic proof heuristics to recognize the
triggering structures and applicable lemmas.

The conclusion is that a set T of subtasks resulting from a reduction should be considered
to be conjunctive by default, in the sense that we have to achieve all of its tasks to achieve the
original task.

Note that, due to the (default of a) conjunctive connection of the subtasks resulting from a
reduction step (2nd level), it is advantageous to connect formulas inside a task (3 rd level) disjunc-
tively, because this furthers normalization of proof constructions to conjunctive normal form.

We do not know of the dual (and thus isomorphic) choice of a conjunctive instead of a
disjunctive connection of the formulas of a task in the literature. By tradition, both in informal
human mathematical practice (starting form Aristotle’s syllogisms and ending with lemmas in
a modern textbook) and in formal logic calculi (Hilbert, resolution, natural deduction, tableau,
sequent, and matrix calculi), tasks have a disjunctive structure.

4

2.3 Task Forests

Think tasks in a proof to be nodes in a graph. When we want to consider an alternative proof for
a task, we must be able to do this without changing or affecting our previous constructions. Thus,
the tasks themselves have to reign the reduction steps disjunctively, i.e. the task nodes have to
be OR nodes w.r.t. the actions reducing them. Due to the conjunctive connection of the subtasks
generated by an action application, it is appropriate to take the actions as AND nodes in a bipartite
AND-OR graph.

Nevertheless, to be more flexible, besides such AND actions, we admit OR actions, i.e. ac-
tions whose set of subtasks is connected disjunctively. They do not complicate the matter and
the resulting structural flexibility may admit a more straightforward representation of translations
from other formalisms.

Below, we list several reasons to consider this graph as a task forest of trees. For technical
reasons (lemma applications global to a tree), the root of such a task tree is the AND node of the
action that started this tree. This AND action node has exactly one task node among its children.
It is called the root task node and the task labeling it is called the root task of the tree. Vice versa,
the tree is called a tree for this task.

Distinction of Tasks: Some tasks are more important than others for one of the following rea-
sons: Some belong to the input set describing our problem, others are the result of a cre-
ative generalization, others are just in the center of our interest. Human users, planners,
&c. should have the possibility to distinguish a task by starting a new task tree for it.

Restriction of the Applicability of Tasks: For the sake of human-oriented lucidity and com-
putational efficiency, only the root tasks should be applicable as lemmas and induction
hypotheses. The sometimes occurring practical necessity of applying a task of an inner
task node of a tree as a lemma can still be satisfied as follows: We first split the tree in
twain above this task node—thereby turning it into a root node—and then connect the two
trees with a reference for lemma application (LEM).

Safeness: On the one hand, all reduction steps must be sound in the sense that we expect the
original task to be solvable when we are able to close the tasks it is reduced to. On the other
hand, it is not always the case that reduction steps are safe in the sense that the original task
is unsolvable when one of the tasks it is reduced to is unsolvable.

For example, if we reduce the task of xδ
0 � yγ � xδ

1 � xδ
1
�

xδ
0 ��� � xδ

0 ��� xδ
1 to the task xδ

0 � yγ � xδ
1 � xδ

1
�

xδ
0 ,

which asks us to find a natural number yγ in between the natural numbers xδ
0 and xδ

1 un-
less xδ

1
�

xδ
0 , then the reduction is sound but unsafe, because the solution � yδ �� � � xδ

0 �
	
gets lost in case of � � xδ

0 ��� xδ
1 . Note that the free δ � -variables are parameters and the free

γ-variables are meta or query variables.

The property of safeness is useful for backtracking after failure detection. A good way to
distinguish unsafe reductions from safe reduction steps is to require all reductions within a
tree to be safe. Thus, if we want to strengthen a task, we start a new tree and connect it to
the tree of the previous task with a reference for lemma application.

5

Breaking Cycles: If we reduce the task of showing the Wellordering Theorem to Zorn’s Lemma
and the task of showing Zorn’s Lemma to the Wellordering Theorem, we know that the two
are logically equivalent, but we have not closed any of our tasks. It seems that these cycles
in our graph do not really have to bother us. Indeed, when we define closedness induc-
tively, it never enters the cycles of our proof graph and soundness is maintained. Besides
deduction, we also want to model mathematical induction in the form of Fermat’s descente
infinie, and this, however, is a form of cyclic reasoning, cf. Wirth (2004a). For example, if
we reduce the task of showing a property P on the natural numbers to properties P and Q on
smaller numbers and do the same for Q, then we have closed the tasks of showing P and Q
on the natural numbers. To compute closedness in the presence of applications of induction
hypotheses (HYP) in addition to lemmas (LEM), we have to find a small set of task nodes
such that any cycle in the graph contains a node of this set. Picking the root task node from
each tree we get such a set of cycle breaking nodes.

Definition 2.3 (Task Tree)
A task tree is a labeled rooted directed tree.
Its nodes are partitioned into task, action, and reference nodes. The action nodes are again parti-
tioned into AND and OR nodes. The reference nodes into LEM and HYP nodes.
Each node has exactly one label. A task node is labeled with a task, an action node with an action,
and a reference node with a positive natural number (referring to the tree with that number, cf.
Definition 2.4).
All child nodes of task nodes are action nodes. All child nodes of action nodes are task or refer-
ence nodes. All reference nodes are leaf nodes.
The root of a task tree t is an AND action node, which has among its children exactly one task
node. This task node is called the root task node of t and its label Φ is called the task of t. Vice
versa, the tree t is then called a tree for Φ.

Definition 2.4 (Task Forest)
A task forest is a partial function F from the set of positive natural numbers N� into the set of
those task trees whose LEM and HYP nodes are labeled with natural numbers that are in the
domain of F .
For n in the domain of F , we call F � n � the task tree n of F , or simply tree n.

Example 2.5 (Lemma Application: Wellordering-Theorem and Zorn’s Lemma) Consider the
following task forest consisting of tree 1 and 2:

1: Start

Every set can be wellordered.

ΩMEGA

LEM 2

6

2: Start

If every chain in a set M has an upper bound in M,
then M has a maximal element.

ΩMEGA

LEM 1

Besides the technical AND action “Start” (which has the function to accumulate lemma appli-
cations that are global to the task tree), for simplicity we have only one single AND action
“ΩMEGA” which means to call the ΩMEGA theorem prover, cf. Siekmann &al. (2002). Note
that the lemma application relation is cyclic and none of the tasks is closed.

Example 2.6 (Associativity of Multiplication on the Natural Numbers)
Consider the following task forest consisting of tree 3, 4, and 5:

3: Start

� xδ
3

� yδ
3 � � zδ

3 � xδ
3

� � yδ
3

� zδ
3 �

QUODLIBET nat

jjjjjjjjjjjjjjjj

TTTTTTTTTTTTTTTT

LEM 4 HYP 3

4: Start

xδ
4

� � yδ
4
�

zδ
4 � � � xδ

4
� yδ

4 � � � xδ
4

� zδ
4 �

QUODLIBET nat

hhhhhhhhhhhhhhhhhhh

VVVVVVVVVVVVVVVVVVV

LEM 5 HYP 4

7

5: Start

� xδ
5
�

yδ
5 � � zδ

5 � xδ
5
� � yδ

5
�

zδ
5 �

QUODLIBET nat

HYP 5

The AND action “QUODLIBET nat” means to call the QUODLIBET theorem prover in the theory
of the natural numbers with the lemmas and induction hypotheses given below, cf. Avenhaus &al.
(2003). Thus, tree 3 says that we can prove the associativity of multiplication inductively (with
itself (HYP 3) as induction hypothesis) using the distributivity of multiplication over addition as a
lemma (LEM 4). Again we can prove this distributivity inductively (HYP 4) with the associativity
of addition as a lemma (LEM 5), which can be proved by a simple induction (HYP 5). This is of
course a very abstract view, showing no subtasks at all. The task tree presented by QUODLIBET

for the associativity of multiplication instead of our task tree 3 has more details, but does not
display the “Start” action:

Note that the tree to the left only shows the task and action nodes. The reference nodes are
displayed to the right where we see the whole dependency graph starting with this tree in a differ-
ent representation. More precisely, the “lma-rewrite” and “ind-rewrite” actions in the rightmost
branch of left tree correspond to the application of LEM 4 and HYP 3 in the more abstract tree 3;
the three “lma-subs” actions use subsumption with the lemmas “times-def-auto” and “plus-def-
auto”, which are automatically generated and proved and which state the total definedness of
multiplication and addition on the natural numbers. This is necessary because QUODLIBET ad-
mits the specification of partial recursive functions.

8

For capturing the maximal set of trees that may influence tree n in a task forest in a single in-
duction loop (i.e. a sequence of possibly mutual applications of induction hypotheses that is not
interrupted by a lemma application) we define:

Definition 2.7 (HYP Grove)
The nth HYP grove of a given task forest is inductively defined as a set of task trees as follows: It
includes the tree n. If a tree in it has a HYP node labeled with m, it includes the tree m, too.

In Example 2.6, for i � � 3 � 4 � 5 	 , the i th HYP groove consists only the tree i. This is not generally
the case:

Example 2.8 (P and Q)
The abstract proof trees for the universal validity of the predicates P and Q (for details, cf. Wirth
(2004a), Section 3.2.2) look as follows:

6: Start

� � xδ
6 �

QUODLIBET nat

mmmmmmmmmmmm

QQQQQQQQQQQQ

HYP 6 HYP 7

7: Start

� � xδ
7 � yδ

7 �

QUODLIBET nat

mmmmmmmmmmmm

QQQQQQQQQQQQ

HYP 7 HYP 6

This is obviously an example of a mutual induction and the 6 th HYP grove is equal to the 7 th HYP
grove and consists of trees 6 and 7.

9

2.4 Closedness

The closedness of task tree n � N� of a task forest F satisfies the following axioms:

Task tree n is closed if and only if the root node of F � n � is closed.
A task node is closed if some of its child nodes are closed. An AND action node is
closed if all of its child nodes are closed. An OR action node is closed if some of its
child nodes are closed. A reference node with label n is closed if task tree n is closed.

If no HYP nodes occur in the forest, closedness is the property inductively defined by these
axioms.

(Beware: We get the property of deductive closedness when we read the axioms inductively,
taking the smallest fixed point. For the property of inductive closedness we have to look for
another fixed point of the axioms, but not for the greatest. This should become clear from Ex-
ample 2.5, where Zorn’s Lemma and the Wellfoundedness-Theorem must not become closed as
valid theorems just because they are equivalent to each other.)

For the general case that admits HYP nodes, there are different and quite complex ways to
define closedness. The following algorithm will do.

Definition 2.9 (Closedness)
A node of a task forest is closed if it is labeled with ������� by the following algorithm, assuming
that the nodes of the task forest have no labels ������� or �
	�� � � initially:

Deductive Closedness
This is a simple bottom-up inductive AND-OR graph ������� � �
	�� � � -labeling: Label the trees
with ������� and �
	� � � such that all leaf nodes that are task or OR action nodes are labeled
with �
	�� � � , all leaf nodes that are AND action nodes are labeled with ������� , all task and OR
action nodes that have a child node labeled with ������� are labeled with ������� , and all AND
action nodes that have a child node labeled with �
	�� � � are labeled with �
	�� � � . This can be
performed in a bottom-up way, where we have to stop when

Too Late: a parent has already a label ������� or �
	� � � (in this case we came up an irrelevant
branch) or when

Too Early: a relevant sibling has no label.

Anytime a root node of tree say n is labeled with b, label all HYP and LEM nodes referring
to n with b.

If all HYP reference nodes are labeled with ������� , stop.

10

Inductive Closedness
� Label all unlabeled LEM nodes with �
	�� � �

�

. Taking �
	� � �
�

temporarily for �
	� � � , label
the trees with �
	� � �

�

bottom-up, stopping when

Too Late: a parent has already a label ������� , �
	� � � or �
	� � �
�

(in this case we came up an
irrelevant branch) or when

Too Early: a relevant sibling has no label.

Anytime a root node of tree say n is labeled with b, label all HYP nodes referring to n
with b. Note that this label b can only be �
	�� � �

�

.
� Label all root nodes that have no label with ������� . Do the same with the LEM and

HYP nodes of the same number. If there are no such root nodes, stop; otherwise go to
Deductive Closedness.

The root nodes labeled in the last step form a set of induction hypotheses for each other, simply
because any of their trees contains an unlabeled HYP node that is relevant for labeling the tree’s
root to ������� . Thus if we take all of them, the induction will definitely go through.

The Deductive plus Inductive Closedness can be computed in linear time. The bad news
is that we have to repeat this closedness procedure until no new root nodes are labeled with
������� in the last step. This is because these nodes may have LEM nodes of the same number,
which close other trees deductively, which close other trees inductively, and so on. So we end up
with quadratic time complexity. Finally, since the �
	� � �

�

-labeling of a proof tree by the Inductive
Closedness procedure can only be triggered by the original �
	� � �

�

-labeling of the LEM nodes in
the HYP grove of that tree, there are several ways to improve the average time. More importantly,
roughly speaking, we can start this algorithm locally when adding new child nodes with costs
being low unless the proof construction step is crucial. Precisely speaking, this locality refers to
the single new child node and its bottom-up consequences, unless this child node happens to be a
HYP node that is relevant to its root node. In this case we have to start the Inductive Closedness
procedure on the HYP groove of that tree.

Example 2.10 (continuing Example 2.6)
When we compute the closedness of the nodes of the task forest of Example 2.6, Deductive
Closedness first labels no nodes. Then Inductive Closedness labels all nodes of the trees 3 and 4
with �
	� � �

�

, with the exception of the HYP nodes. Consequently the root of tree 5 is labeled with
������� , and the same is the case for the HYP node of tree 5 and the LEM node of tree 4.
In the next round Deductive Closedness labels the remaining nodes of tree 5 with ������� . Then
Inductive Closedness labels the LEM node of tree 3 with �
	� � �

�

, and consequently does the same
with all nodes of that tree except the HYP node. Then the root of tree 4 is labeled with ������� , just
like the LEM node of tree 3 and the HYP node of tree 4.
In the next round Deductive Closedness labels the remaining nodes of tree 4 with ������� . Then
Inductive Closedness labels no nodes with �
	�� � �

�

. Then the root of tree 3 is labeled with ������� , just
like the HYP node of tree 3.
In the next round Deductive Closedness labels the remaining nodes of tree 3 with ������� and then
the algorithm stops because all HYP nodes are labeled with ������� .

11

Example 2.11 (continuing Example 2.8)
When we compute the closedness of the nodes of the task forest of Example 2.8, Deductive
Closedness and Inductive Closedness are idle in the first round. Thus, all root and HYP nodes are
labeled with ������� . Finally Deductive Closedness labels the remaining nodes with ������� .

In Kühler (2000) we can find an alternative definition of closedness. It proceeds local to HYP
groves by fixing a single alternative for each OR node, resulting in “partial proof attempts”, cf.
Kühler (2000), Definition 6.1.4. When we always take the alternative that results in the labeling
of an OR node with ������� in the above algorithm, we easily see that both definitions of closedness
are equivalent.

12

3 Free Variable Administration

3.1 Introduction

As already indicated in Section 2.1, tasks are not completely independent because they share
common free variables. Since the actions that will be described in Section 4 depend on these
free variables, we have to introduce them here briefly; cf. Wirth (2004a), Wirth (2002) for a more
detailed treatment of free variables.

To avoid the problem of binders capturing free variables and in the tradition of Gentzen
(1935), Hilbert & Bernays (1968/70), and Snyder & Gallier (1989), we assume the following four
sets of symbols to be mutually disjoint:

Vγ free γ-variables, i.e. the free variables of Fitting (1996)
Vδ free δ-variables, i.e. nullary parameters, instead of Skolem functions
Vbound bound variables, i.e. variables occurring only bound
Σ constants, i.e. the function (and predicate) symbols from the signature

Note that the ‘γ’ and ‘δ’ are the symbols of the classification of inference rules into α-, β-, γ-, and
δ-rules of Smullyan (1968). We partition the free δ-variables Vδ into free δ � -variables Vδ that are
introduced by the (non-liberalized) δ-rules; and free δ

�
-variables Vδ� that are introduced by the

liberalized δ-rules (δ
�

-rules):

Vδ � Vδ
�

Vδ�

We define the free variables by
Vfree : � Vγ

�
Vδ

and the variables by
V : � Vbound

�
Vfree

Finally:
Vγδ� : � Vγ

�
Vδ�

We use ‘Vk � Γ � ’ to denote the set of variables from Vk occurring in Γ.

The functionality of variables is that the can be replaced with terms. On the one hand, free
γ- and δ

�
-variables must be replaced globally. This rigidity introduces goal conflicts between the

tasks and thereby complicates matters considerably, but there is no practical way to proceed with-
out them because this would make a natural flow of information impossible, cf. Wirth (2004a),
Section 1.2.1, II.1. On the other hand, free δ � -variables are replaced locally when a lemma or an
induction hypothesis is applied. While—in these applicative steps—free δ � -variables function
just as the free variables in a Hilbert calculus, they behave as constant unknowns in reductive
proof steps: When a task is reduced to a set of subtasks, the free δ � -variables cannot be replaced
with anything because they have to work as parameters, eigenvariables, or Skolem symbols in a
sequent, tableau, or matrix calculus.

13

3.2 Variable-Conditions and Choice-Conditions

When we look at the possible terms that can be substituted for a free variable in more detail,
we find that they are not only restricted by the signature and the type of the variable, but also
by certain conditions capturing the dependency of the free variables among each other, just as
the order in a sequence of existential and universal quantifiers introduces a dependency between
bound γ- and δ-variables. We capture this dependency in a directed graph which is global to
the task forest and whose nodes are the free variables themselves. The overall idea is that an
edge � x � y � occurring in this graph means something like “x is necessarily older than y” or “the
value of y depends on or is described in terms of x”. The set of edges of such a graph is called a
“variable-condition”:

Definition 3.1 (Variable-Condition)
A variable-condition is a subset of Vfree � Vfree �

The restriction on the substitution of free δ � -variables will be treated in the applicative rules in
Section 4.

The restriction on the replacements of free γ- and δ
�

-variables is that they have to be con-
sistent with the global variable-condition R of the task forest. And the replacements for the
δ

�
-variables additionally have to be compatible with a choice-condition C, which is also global

to the task forest and whose semantics is given by QC as defined below.

Definition 3.2 (Choice-Condition)
C is an R-choice-condition if R is a wellfounded variable-condition, C is a partial function from
Vδ� into the set of formulas, and z R

�
yδ� for all yδ� � dom � C � and z � V free � C � yδ� ��� .

More generally, the values of C can be formula-valued λ-terms (instead of formulas)
where, for yδ� � dom � C � and C � yδ� � � λv0 � ����� λvl � 1 � B,

B is a formula whose free occurring variables from Vbound

are among � v0 ��������� vl � 1 	 � Vbound

and where, for v0 : α0, . . . , vl � 1 : αl � 1, we have

yδ� : α0
� ����� � αl � 1

� αl for some type αl ,

and any occurrence of yδ� in B must be of the form yδ� � v0 ������� � vl � 1 � .

Definition 3.3 (QC)
For an R-choice-condition C, we let QC be a total function from dom � C � into the set of single-
formula sequents such that for each yδ� � dom � C � with C � yδ� � � λv0 � ����� λvl � 1 � B for a formula
B, we have QC � yδ� � ��

v0 � ����� � vl � 1 � �
	 y � � B � yδ� � v0 ������� � vl � 1 � �� y 	 ��� B
for an arbitrary y � Vbound � V � C � yδ� ��� .

14

The semantics of a choice-condition C is to restrict the value of yδ� to satisfy the formula QC � yδ� � ,
which is nothing but the axiom (ε0) for Hilbert’s ε-term

yδ� � v0 ������� � vl � 1 � � εy � � B � yδ� � v0 ������� � vl � 1 � �� y 	 ,
cf. Wirth (2002). Thus, if there is any y such that B � yδ� � v0 ������� � vl � 1 � �� y 	 holds, then yδ� � v0 ������� � vl � 1 �
is one of them. Note that we need the bound variables v0 �������	� vl � 1 to model “subordinate” ε-terms
without nesting.

What makes our special existential (i.e. γ-like) treatment of Hilbert’s ε practically important is that
it admits the global replacement of a free δ

�
-variable yδ� with any term t satisfying QC � yδ� � � yδ� �� t 	 .

Thus, we can model any set of constraints on a variable yδ� by simply setting C � yδ� � to a formula
expressing it. Above that, in combination with the variable-condition R the concrete representa-
tion of this set of constraints may provide some information on how to solve it operationally:

Example 3.4
Suppose that we have the set of ordering constraints xδ� � yδ� and yδ� � zδ� .
We can model this in several different ways.

If the problem is to find an intermediate value yδ� , then we take

C � yδ� � : �
�

xδ� � yδ��� yδ� � zδ� �
with the variable-condition R : � � � xδ� � yδ� � � � zδ� � yδ� � 	 , saying:

Pick yδ� depending on xδ� and zδ� such that C � yδ� � holds, if possible.

If the problem is to find an upper and lower bound for yδ� , then we take

C � xδ� � : � � xδ� � yδ� � �
C � zδ� � : � � yδ� � zδ� � �

with R : � � � yδ� � xδ� � � � yδ� � zδ� � 	 , instead, saying:

Pick xδ� depending on yδ� such that C � xδ� � holds, if possible.
Pick zδ� depending on yδ� such that C � zδ� � holds, if possible.

If we do not exactly know what the problem is, then we take

C � xδ� � : � � xδ� � 1st � wδ� ��� �
C � yδ� � : � � yδ� � 2nd � wδ� ��� �
C � zδ� � : � � zδ� � 3rd � wδ� ��� �
C � wδ� � : �

�
1st � wδ� � � 2nd � wδ� � � 2nd � wδ� � � 3rd � wδ� � �

with R : � � wδ� 	 � � xδ� � yδ� � zδ� 	 , instead.

15

3.3 The global variables R and C

For each task forest we need two global variables R and C for the variable-condition and the R-
choice-condition, respectively. Initially both global variables R and C are set to the empty set.
They are extended by actions performing inference step, especially δ-steps. Moreover, when a
substitution σ on Vγδ� is globally applied, R and C are updated as follows:

Definition 3.5 (σ-Update)
Let R be a variable-condition and σ be a substitution.
The σ-update of R is R � ��� z � x � �

x � dom � σ � � z � V free � σ � x ��� 	 .
Definition 3.6 (Extended σ-Update)
Let C be an R-choice-condition and let σ be a substitution.
The extended σ-update � C � � R � � of � C � R � is given by:

C
�

: � � � x � Bσ � � � x � B � � C � x �� dom � σ � 	 �
R

�

is the σ-update of R, cf. Definition 3.5.

The variable-condition R checks whether it is admitted to apply a substitution globally to the
proof forest. If so, it is called an R-substitution:

Definition 3.7 (R-Substitution)
Let R be a variable-condition.
σ is an R-substitution if σ is a substitution and the σ-update of R is wellfounded.

Note that wellfoundedness in a finite graph is the same as acyclicity and can be checked in linear
time.

An R-substitution σ replacing a free δ
�

-variable yδ� has to satisfy QC � yδ� � σ in the sense that
QC � yδ� � σ becomes a global lemma of the task trees depending on yδ� . This means that an R-
substitution may instantiate a free δ

�
-variable yδ� only if there is a task tree whose root task is

QC � yδ� � σ.

3.4 Semantics?

Finally, we should remark that our three different kinds of free γ-, δ
�

-, and δ � -variables together
with a variable-condition R and an R-choice-condition C enjoy a modular semantics which can
be added to practically any two-valued semantics for formulas and with respect to which the
described syntactical operations are sound, cf. Wirth (2004a), Wirth (2002).

16

4 Actions

The actions defined in this section all refer to an implicitly assumed task forest.

We need some global variable “current task node” which points to a task node in this forest
unless the forest is empty, which we assume to be the initial state. There are to be some operations
for setting this variable to any task node in the task forest. Moreover, as described in Section 3,
we need two global variables R and C for the variable-condition and the R-choice-condition,
respectively.

As in the abstract calculi of Wirth (2004a), Section 2.4, we partition our actions into Hypo-
thesizing, Instantiation, and Expansion actions.

4.1 Hypothesizing

Parameters: A task t.
Effect: A new task tree with a new number is added to the task forest. This new tree consists
only of a root, which is an AND action node labeled with “Start”, and its single child, which is a
task node labeled with t and becomes the new current task node.

4.2 Instantiation

4.2.1 Instantiation of Free γ-Variables

Parameters: An R-substitution σ on Vγ.

Effect: σ is applied globally to the whole task forest. The global variable-condition R and
the choice-condition C are updated such that � C � R � is set to the extended σ-update of � C � R � , cf.
Definition 3.6.

4.2.2 Instantiation of Free γ- and δ
�

-Variables

Parameters: An R-substitution σ on Vγ � Vδ� and a function j.

Condition: The domain of j is the intersection of the domains of C and σ and its range is among
the numbers of proof trees. For each free δ

�
-variable yδ� in the domain of j, the task of proof tree

number j � yδ� � must be QC � yδ� � σ, cf. Definition 3.3.

Effect: σ is applied globally to the whole task forest. Moreover, for each yδ� in the domain of j,
we add (unless already present) a LEM node labeled with j � yδ� � as child of the root of each task
tree with number i, provided that the following property holds:

yδ� is related in the reflexive transitive closure of R to some free δ
�

-variable xδ�

(i.e. yδ� R
�
xδ�) and xδ� occurs in a task labeling a task node in the i th HYP grove or

in a root task of a tree whose number labels a LEM node in the i th HYP grove.

Finally, the global variable-condition R and the choice-condition C are updated such that � C � R �
is set to the extended σ-update of � C � R � .

17

4.3 Expansion

Expansion actions are local to a task node: They pick a task node from a tree and add a new action
node as its child, which again may have a subtree below it, typically only a set of children again.
In case of an action that recognizes a tautology, this set is empty.

Note that all the following actions are sound and safe.

4.3.1 Tautologies

Condition: The task labeling the current task node is among the set of tautologies of the logic,
i.e. the formula of this task (cf. Definition 2.2) is tautological. These tautologies typically include
those tasks that have two signed formulas differing only in the sign or that have a formula that is
a positively signed reflexivity � t � t � �

.

Effect: The current task node gets a new child labeled with the AND action “Taut”, which has
no children.

Remark: A meaningful update of the current task node would be nice here.

4.3.2 Rewriting

Parameters: Two different natural numbers m and n, and a position p.

Condition: In the task of the current task node there are signed formulas A and B at positions m
and n, respectively, where Unsign � A � is of the form � � s � t � or � � t � s � and B

�
p is the term s.

Effects: The current task node gets a new child labeled with the AND action
“Rewrite � m � n � p � ”, which again gets a single child, which is a new task node (which finally is
to become the current task node) whose task results from the one of the current task node by
replacing the n th signed formula with B � p � t � .
Remark: Although our rewrite actions are sufficient for first-order completeness, we would
actually like to have stronger rewrite actions, such as the ones in CORE, cf. Autexier (2004).

18

4.3.3 Decomposition

Parameters: A natural number n and a position p.

Condition: The task labeling the current task node lists at least n formulas, the n th formula has
a position p, and the calculus admits the decomposition of the n th formula up to position p.

Effect: The current task node gets a new child labeled with the AND action “Decomp � n � p � ”,
which again gets as children some new task nodes whose labels form a non-empty set T . T results
from a decomposition that turns the formula at position p in the n th formula of the original task
into a top formula of one of the tasks in T , and a task node labeled with this task becomes the
new current task node. T must be logically equivalent to the original task.

Remark: The exact way in which the decomposition takes place is to be programmed by the
logic programmer at another interface of the logic engine that is not available to the user. This
programming of the decomposition may add optional parameters to the Decomposition action,
such as a tag for β-downfolding taking values from � fold-left � fold-right � do-not-fold 	 , cf. Wirth
(2004b) for details.

4.3.4 Lemma and Hypothesis Application

Parameters: A non-empty list l of triples � n � r� σ � , where n is a number of an existing task tree,
r � � LEM � HYP 	 , and σ is a substitution on � yδ � Vδ � Φ � V γδ� � Φ � � � yδ 	 �

R � , where
Φ is the task of task tree n, V γδ� � Φ � is the set of free γ- and free δ

�
-variables in Φ, and R is the

current variable-condition.

Effect: The current task node gets a new child labeled with the AND action “Apply � l � ”, which
again gets the following children: A new task node (which finally is to become the current task
node) whose task results from the one of the current task node by prepending, for each � n � r� σ �
in l, the negatively signed formula of the task of tree n instantiated with σ. Moreover, for each
� n � LEM � σ � in l, a LEM node labeled with n. Finally, for each � n � HYP � σ � in l, a HYP node la-
beled with n and a task node whose task results from the one of the current task node by prepend-
ing a signed formula taking care of wellfoundedness of induction, cf. Wirth (2004a) for details.

Remark: For practical usefulness, this has to be improved a little: We should not add the formula
of the whole instantiated task but only the formula of the subtask that results from deleting all
signed formulas of the instantiated task that occur already in the current task.

4.3.5 Cut

Parameters: A formula A.

Effect: The current task node gets as a new child an AND action node labeled with “Cut � A � ”,
which again gets two task nodes as children whose tasks results from the one of the current task
node by prepending A � (i.e. A with a negative sign) (whose task node finally is to become the
current task node) and A

�
, respectively.

19

4.3.6 Safe Method Application

Parameters: A method call M and a set of tasks T .

Condition: T is the result of a safe call to the method M for the current task node.

Effect: The current task node gets as a new child an AND action node labeled with “Method � M � ”,
whose children are a set of task nodes labeled with T plus a new task for guaranteeing soundness.
The new current task node is set to one of those new task nodes that has a label from T .

4.3.7 General Method Application

Parameters: A method call M and a set of tasks T .

Condition: T is the result of a call to the method M for the current task node.

Effect: The tasks in T are partitioned by a semi-decision procedure for safeness relative to the
current task node with timeout into a set of safe tasks T1 and a set of possibly unsafe tasks T2.
The Hypothesizing action is executed for all tasks in T2, resulting in new task trees whose num-
bers form the set N. The current task node gets as a new child an AND action node labeled with
“Method � M � ”. This action node gets a set of LEM nodes as children whose set of labels is N.
Moreover, we add to this action node a set of children labeled with T1 plus a new task for guaran-
teeing soundness. The new current task node is set to one of those new task nodes that has a label
from T .

20

5 Backtracking

5.1 Introduction

Mathematicians often make different proof attempts, switching from one attempt to another if
they get stuck, until they succeed. They introduce lemmas which they only prove if they turn out
to be useful. If they find out that a lemma was wrong, they remove all its applications. The task
interface is to support this (tentative) style of proof engineering.

As explained in Section 2, it is already possible to start several proof attempts in parallel,
which is already implemented in the systems TECTON and QUODLIBET, cf. Kapur &al. (1994)
and Avenhaus &al. (2003). To do so, a task node may have several action nodes as children. Any
of the subtrees rooted in these children represents a proof attempt. Hence in general one can
construct an AND-OR tree to represent the proof construction. One can work on the different
proof attempts independently, just as it seems most promising to achieve a complete proof. So
neither replay nor backtracking is needed so far. All the proof attempts are at the disposal of the
user.

Although backtracking to choice-points that freeze states at a certain point of time in the past
of our proof search process is not needed, sometimes there is a need to clear up the task forest
from useless branches. This is especially the case after a failure has been detected, i.e. a task has
been disproved, i.e. shown to be invalid for all possible instantiations of the free variables. Since
this removal of useless steps has to take care of the depending steps, the clearance process can be
seen as a dependency-directed backtracking.

Suppose we have disproved a task t
�

of a tree n. In this case we should backtrack to a possibly
unsafe step that may have caused this invalidity. If, however, all steps in tree n are safe, then the
root task t is invalid. This may have two reasons: Either a Hypothesizing step introduced an
invalid root task, or the root task was modified later by an invalidating Instantiation step:

� If there have been no Instantiation steps affecting the task t, then we should either patch the
task t or otherwise remove tree n from the task forest and undo all the applications of t as a
lemma (LEM) or as an induction hypothesis (HYP).

� Otherwise, we should undo an Instantiation step affecting the task t and then see whether
we can still detect a failure by disproving the disinstantiated task t

�

.

In practical theorem proving, many hypothesized root tasks turn out to be invalid. Thus, fail-
ure detection is of major practical importance. As a very rudimentary but already quite useful
example on how failure detection may work, the simplification tactics in QUODLIBET remove
redundant signed formulas in the tasks. This often ends up with the empty task, which is the only
task that is recognized to be invalid by QUODLIBET in the current version.

21

5.2 Requirements for the Task Interface

Apart from why we want to have a dependency-directed backtracking, what we have to specify
here are the undoing facilities that the task interface has to provide. Again categorizing into
Hypothesizing, Instantiation, and Expansion, these facilities are the following.

5.2.1 Undoing Hypothesizing

There must be means for undoing a Hypothesizing step. When we delete tree n once started for
an in the meanwhile refuted root task, we have to correct all Expansion actions that introduced
reference nodes labeled with n. There are two ways to do this; either we delete the Expansion ac-
tion (cf. Section 5.2.3) and possibly lose the whole subtree; or else—if we have reason to believe
that we only missed some premise of the hypothesized root task—we can add a new negatively
signed free γ-variable of Boolean type to the task and generate the new branches resulting from
this new signed formula to all Expansion actions that introduced reference nodes labeled with n.
In the latter case we should give the tree n a new number and replay its construction with the
extended root task. A similar replay mechanism after deletion of a signed formula of a root task
will be useful for the repair mechanism when undoing Expansion actions.

5.2.2 Undoing Instantiation

It must be possible to undo each variable instantiation independently. Even if several variables are
instantiated by a single substitution, there must be a way to disinstantiate each variable separately.
As our treatment of variable-conditions does not provide means to reuse variables anyway, it
is reasonable to require that each free variable symbol is used only for one purpose and not
reintroduced after it has been removed by global substitution. When instantiation is realized lazily
in the sense that we connect a variable symbol to a term but do not replace the occurrences of the
variable symbol in the tasks, this can be easily achieved. The price of such a disinstantiation can
nevertheless be high because we have to check for all the Expansion actions connected to tasks
containing the disinstantiated variable, whether the actions are still executable. If not, we have to
undo these Expansion actions, too.

5.2.3 Undoing Expansion

Undoing an Expansion action in QUODLIBET has the consequence that the whole subtree rooted
in this step is lost. This is a simple but not always convenient solution, because the construction
of this subtree may have taken some efforts. Preferable would be a repair mechanism. Deleting an
action node cuts a tree into several proof trees when we add a “Start” action as a new root to each
former child of the deleted action node. Note that we have to copy all reference nodes that are
children of the “Start” action root node of the original tree as children to the new “Start” action
root nodes. Finally, the user may be asked for further help; either to delete the new proof trees,
to keep them, or to modify the root task and trying to replay as much of the tree construction as
possible.

22

6 Example

7 Conclusion

References

Serge Autexier (2004). Theory and Architecture of an Hierarchical Contextual Reasoning Framework.
Ph.D. thesis. FR Informatik, Saarland Univ..

Jürgen Avenhaus, Ulrich Kühler, Tobias Schmidt-Samoa, Claus-Peter Wirth (2003). How to Prove Induc-
tive Theorems? QUODLIBET!. 19 th CADE 2003, LNAI 2741, pp. 328–333, Springer.

Melvin C. Fitting (1996). First-Order Logic and Automated Theorem Proving. 2 nd extd. ed., Springer.

Gerhard Gentzen (1935). Untersuchungen über das logische Schließen. Mathematische Zeitschrift 39,
pp. 176-210, 405–431.

David Hilbert, Paul Bernays (1968/70). Grundlagen der Mathematik. 2 nd ed., Springer.

Malte Hübner, Christoph Benzmüller, Serge Autexier, Andreas Meier (2003). Interactive Proof Construc-
tion at the Task Level. Proceedings of the Workshop User Interfaces for Theorem Provers (UITP 2003),
pp. 81–100.

Deepak Kapur, David R. Musser, and X. Nie (1994). An Overview of the Tecton Proof System. Theoretical
Computer Sci. 133, pp. 307–339, Elsevier.

Ulrich Kühler (2000). A Tactic-Based Inductive Theorem Prover for Data Types with Partial Operations.
Ph.D. thesis, Infix, Sankt Augustin.

Jörg H. Siekmann, Christoph Benzmüller, Vladimir Brezhnev, Lassaad Cheikhrouhou, Armin Fiedler, An-
dreas Franke, Helmut Horacek, Michaël Kohlhase, Andreas Meier, Erica Melis, Markus Moschner,
Immanuël Normann, Martin Pollet, Volker Sorge, Carsten Ullrich, Claus-Peter Wirth, Jürgen Zimmer
(2002). Proof Development with ΩMEGA. 18 th CADE 2002, LNAI 2392, pp. 144–149, Springer.

Raymond M. Smullyan (1968). First-Order Logic. Springer.

Wayne Snyder, Jean Gallier (1989). Higher-Order Unification Revisited: Complete Sets of Transforma-
tions. J. Symbolic Computation 8, pp. 101–140, Academic Press.

Claus-Peter Wirth (2002). A New Indefinite Semantics for Hilbert’s epsilon. 11 th TABLEAU 2002,
LNAI 2381, pp. 298–314, Springer. http://www.ags.uni-sb.de/˜cp/p/epsi/
welcome.html (Feb.04,2002).

Claus-Peter Wirth (2004a). Descente Infinie + Deduction. Logic J. of the IGPL 12, pp. 1–96, Oxford Univ.
Press. http://www.ags.uni-sb.de/˜cp/p/d/welcome.html (Sept.12,2003).

Claus-Peter Wirth (2004b). Proof Trees as Formulas. Draft. http://www.ags.uni-sb.de/˜cp/
p/formulas/all.ps.gz (Oct.09,2003).

23

