
Proposing a Task Interface for Proof Assistants

Serge Autexier and Christoph Benzmüller and Malte Hübner

and Andreas Meier and Martin Pollet and Claus-Peter Wirth 1

Abstract. Proof assistants are usually developed bottom-
up. A predominant choice thereby is that of the logical base
calculus and typically this choice imposes frame constraints
on the system. In many proof assistants the logic layer is
enriched by more abstract level reasoning tools and ideally
these tools are sufficient for abstract level proof development.
A drawback of the bottom-up approach, however, is that it
usually causes an unnecessarily strong dependence of the ab-
stract layer upon the logic layer.

In this paper we argue for a top-down development of proof
assistants where the abstract layer is kept as independent as
possible from the logic layer. However, we do not propose
proof assistants lacking a sound logical basis. Instead, our
aim is to distinguish better between abstract level reasoning
and expansion into verifiable proofs at the logic layer.

1 Introduction

Proof assistants (PAs) are usually developed bottom-up. A
predominant choice thereby is that of the logical base calculus
and typically this choice imposes some frame constraints on
the possible functionalities, strengths and weaknesses, and the
proof-theoretic flavor of the PA.

Natural deduction or sequent calculus are widely believed
to be the most natural and intuitive option for interactive
proof. Hence, they are employed in many PAs as the logical
base layer (BL). In many PAs the BL is then enriched by
more abstract level reasoning support tools, e.g., by so called
proof tactics [9], proof methods [6, 14], or by integrated exter-
nal specialist reasoners [15, 17, 2, 18, 12]. Ideally interactive
proof and abstract level automation, for instance, as proposed
in proof planning [6, 14], only employs the reasoning tools
provided at the abstract layer (AL), so that non-interesting
logic layer details can be hidden first and later independently
filled-up when “expanding” from the AL to the BL.

A drawback of the bottom-up approach is that it usually
causes a strong interweavement of the two layers, in partic-
ular, a unnecessarily strong dependence of the AL upon the
BL. Problems imposed by this are discussed, for instance, in
[7] and [4]. Here we point to the following arguments:

• Modifications of the BL typically cause major adaptations
of the tools and control mechanisms provided at the AL.

• The BL typically heavily influences the flavor and appeal of
the PAs user interface, which is often designed to support

1 Fachrichtung Informatik, Universität des Saarlandes,
Saarbrücken, Germany and Max-Planck-Institut für Infor-
matik, Stuhlsatzenhausweg, Saarbrücken, Germany and DFKI,
Stuhlsatzenhausweg, Saarbrücken, Germany

the particular “proof style” of the BL.
• PAs supporting white-box integrations of external systems

typically provide mechanism to translate the proof repre-
sentation formats of the external reasoners into their base
calculus. Modifications of the BL usually require non-trivial
adaptations of these transformation mechanisms.

• PA users have to learn and adopt the peculiarities and the
proof style of the system’s BL.

In this paper we argue for a top-down development of PAs.
We particularly argue for the design of an AL that is as far as
possible independent of a PA’s BL. Our AL proposal for the
new Ωmega

CORE system is called the task interface (TI).
Relevant TI design issues are: What notion of proof is re-

flected? Is this notion mathematically and/or cognitively ad-
equate? What level of granularity in the argumentative steps
is supported? Can the TI simultaneously support interaction
and automation (and an interleaving of both)? Does the TI
sufficiently hide non-interesting logic level details while it re-
veals some crucial constraints for proof construction at the
AL? How complicated is it to provide a suitable expansion
mechanism capable of transforming AL proofs in the TI into
verifiable BL proofs? What are the options for a concrete BL
that can fruitfully support our TI?

While we propose to keep the AL as independent as pos-
sible from the BL, the latter two questions are nevertheless
important: We do not propose PAs lacking a sound logical ba-
sis. Instead, we propose to distinguish in PAs better between
AL reasoning and expansion into verifiable BL proofs. Lean
and elegant proof expansion/contraction mechanisms that can
mediate between the two layers are hence important. They in
turn may gain from the “right” choice of a BL for a previously
chosen AL.

Our top-down viewpoint is motivated not least by the cor-
pus [20] of human constructed proofs gained in the DIALOG
project (on Tutorial Natural Language Dialog in Mathemat-
ics) at Saarland University [3]. These proofs were collected
in a Wizard-of-Oz study where 25 students were asked to
interactively develop proofs in naive set theory (employing
typed natural language / formula input). Thereby no pre-
conditions on a particular proof style or a formal reasoning
framework were assumed and in fact the corpus shows that
logical peculiarities do not play a role (or only a minor role) in
these human constructed proofs. Further motivation is given
by the idea of interactive island proofs as described in [16].
A TI has already been proposed and employed in automated
proof planning in the old Ωmega system [12]. However, this
work still suffers from a too strong dependency of its TI upon
the old Ωmega’s BL (a higher-order natural deduction cal-

culus); it is also not sufficiently integrated with interactive
proof development. The TI presented in this paper improves
and extends our work in [10]; the new aspects include: and/or
trees supporting conjunctive and disjunctive proof branches,
variable conditions, and a formal grammar for our TI.

The structure of this paper is as follows: First we illustrate
“natural” reasoning at the AL with an example. Next, we
present our TI for the new Ωmega

CORE PA. TI proof devel-
opment is then illustrated employing our previous example.
Finally, we briefly discuss the role of CORE, which is our con-
crete BL choice in Ωmega

CORE, and sketch how mediation
between the two layers is realized.

2 Motivating Example

To motivate our notion of AL reasoning we look at the sam-
ple problem of showing that the two residue class structures
S1 = (ZZ4, x+̄y) and S2 = (ZZ4, (x+̄y)+̄1̄4) are isomorphic,
where ZZ4 is the set of the four residue classes modulo 4, +̄
denotes the addition on residue classes, and 1̄4 denotes the
residue class modulo 4 with residue 1 (see [13] for details on
formalizing and proof planning residue class problems). Our
initial goal is:

(Thm) isomorphic(S1, S2)

A straightforward proof for this conjecture consists of find-
ing a mapping h : S1 → S2 and showing that h is (i) a ho-
momorphism and (ii) bijective. However, a closer look reveals
that there are multiple alternatives for carrying out each step.
In the first step we have to choose a h. For this we can em-
ploy, for instance, a model generator. Actually there are two
suitable candidates for h:
h1(0̄4) = 3̄4, h1(1̄4) = 0̄4, h1(2̄4) = 1̄4, h1(3̄4) = 2̄4

h2(0̄4) = 3̄4, h2(1̄4) = 2̄4, h2(2̄4) = 1̄4, h2(3̄4) = 0̄4.
Further alternatives concern the representation of h1 and

h2. We can represent h1 as polynomial h1(x) = x+̄3̄4, whereas
for h2 no polynomial representation is obvious such that a
pointwise representation is more appropriate. Depending on
the alternative representations of h1 and h2 we can also per-
form different subproofs to show that the candidates are ho-
momorphisms and bijective. For instance, to prove that h1 is
a homomorphism, we can reduce the homomorphism goal

∀x:ZZ4, y:ZZ4 h(x+̄y) = (h(x)+̄h(y))+̄1̄4 (1)

to the equation

(x+̄y)+̄3̄4 = ((x+̄3̄4)+̄(y+̄3̄4))+̄1̄4 (2)

which holds since we can reduce the right hand side with
modulo arithmetic to x+̄y+̄3̄4, i.e., to the left hand side.

For the point-wise given function h2 we can perform a case
split where we reduce the quantified formula in (1) in 4∗4 = 16
cases for each of the instantiations for x and y. This tedious
approach is, of course, also possible for h1. Similarly, there
are also alternatives to prove the remaining part that the
functions are bijective for h1 and h2.

This discussion illustrates that at AL we are typically
confronted with different conceptually motivated alternatives
which have a different appeal from typical logic-level alter-
natives. In the example above these alternatives boil down
to: different possibilities to instantiate and represent h. Fur-
ther alternatives concern mathematical proof techniques, e.g.,

to introduce a case split or not. Each alternative leads to a
different proof attempt. A reasoning layer that is cognitively
and mathematically adequate should allow the user to directly
carry out the proof steps described above and to carry out dif-
ferent proof attempts in parallel, comprising also failing proof
attempts. If, for instance, no suitable h can be found, it might
be useful to experiment and learn from failing candidates. The
AL therefore should

1. provide a proof data structure that can maintain different
proof attempts simultaneously,

2. be able to handle different instantiation of variables,
3. support one-to-one representation of the essential proof

steps as they occur in textbook proofs or in tutorial dialogs
on mathematics, and render further steps unnecessary, and

4. support the integration of reasoning specialists.

3 Tasks, Task Trees and Forests

We now present a declarative language to encode as ade-
quately as possible the style of reasoning sketched above. The
language is based on the notion of a task, which represents one
subproblem that has to be solved as part of the overall proof
problem. A task is denoted by ϕ

p1

1 , . . . , ϕpn

n B ϕ
p0

0 , where for
all i ϕi is a formula and pi ∈ {+,−} are polarities. The polar-
ity pi of each signed formula ϕ

pi

i thereby indicates whether ϕi

is an assumption or a goal. In order to explicitly represent the
focus of attention in such a task, it allows to distinguish one
signed formula, i.e. ϕ

p0

0 in the example. Assuming formulas
are defined by the non-terminal grammar symbol FORMULA,
the grammar rule for tasks is

TASK ::= (FORMULA{+|−})∗ B FORMULA{+|−}

Based on tasks we define the notion of a task tree (TT)
and task forest (TF) as a collection of task trees with unique
identifiers (ID).

A task tree is an inductively defined structure that consists
of leaf nodes denoted as open tasks

Open(ϕp1

1 , . . . , ϕ
pn

n B ϕ
p0

0)

and tasks that have been refined by some action:

Node(ϕp1

1 , . . . , ϕ
pn

n B ϕ
p0

0 , action).

For task refinement we distinguish between (1) tasks that
have been refined by some action A into conjunctively related
subtasks (including the cases of one and zero subtasks), (2)
tasks for which alternatives of such actions Ai have been in-
troduced. For the latter we introduce the notion of OrActions

OrAction(description, 〈action1 ‖ . . . ‖ actionn〉)

which describe the different possible alternative refinements
of some goal. This allows us to represent alternative proof
attempts (such as application of different possible facts), as
well as complex actions which generate different possible proof
attempts, for instance, with the help of a model generator as
illustrated in the previous section.

Finally, an action can be of three types: (1) Either it is a
simple action which refines the task to a list of subtasks

Action(description, 〈TT1, . . . , TTn; σ; ρ〉),

TF ::= (ID; TT); TF∗

TT ::= Open(TASK) | Node(Task, ALTACTION)
ALTACTION ::= ACTION

| OrAction(DESC, 〈ACTION(‖ ACTION)+〉)
ACTION ::= Action(DESC, 〈TT∗; SUBST; SUBST〉)

| Hyp(Id; SUBST; SUBST)
| Lem(Id; SUBST; SUBST)

Figure 1. Grammar for the task interface TI.

or it discharges the task either (2) by simple lemma applica-
tion

Lem(n; σ; ρ),

where n refers to some task tree in the task forest and different
from the actual task tree, or (3) by some inductive argument
as presented in [19]

Hyp(n; σ; ρ),

where n now denotes any task tree in the task forest. Note
that we do not make any assumption about how the action
was applied. More specifically, we do not enforce the applica-
tion of substitutions for free variables, and only require that
each action indicates

• the substitution σ of free variables it introduced, and
• which part ρ of the overall substitution that governs the

task, but were not yet applied, were necessary in order to
apply the action.

Intuitively the σs determine for each subtree the maximal
instantiation computed by actions to that subtree, while the
ρs represent the minimal instantiations that are actually nec-
essary to reach that subtree. For instance, given some max-
imal and minimal substitutions σ′ and ρ′, the maximal and
minimal substitutions for the subtrees of the action

Action(description, 〈TT1, . . . , TTn; σ; ρ〉),

are σ′ ◦ σ and ρ′ ◦ ρ, where ◦ denotes the composition of
substitutions. Note that these substitutions are always unique
and that it must always hold that the minimal substitution of
each subtree is more general than the maximal substitution
of that subtree.

The whole grammar for our TI is given in Fig. 1. Based
on that grammar we now discuss the invariants we enforce
for task trees. The first invariant is that we want to enforce
a global substitution which is common to all task trees con-
tained in a task forest. This requires the notion of a global
substitution for some single task tree, which, in turn, can be
roughly characterized by requiring that all leaf nodes in the
task tree share the same substitution.

However, trying to define that notion formally is hampered
by the presence of alternative branches inside a task tree,
which may result in different substitutions of the leaf nodes.

Pure Task Trees and Forests. In order to solve that
problem we first define the notion of pure task trees which do
not contain alternatives by restricting the grammar rule for
ALTACTION to ALTACTION ::= ACTION.

For pure task trees we now define the notion well-formed
pure task trees by requiring that all leaf nodes share the same
substitutions. Based on that notion we can define a function

µ that maps each (named) task tree into a forest of (named)
pure task trees. Thereby the self-references contained in hyp-
actions need to be adapted accordingly. Exploiting that func-
tion enables us to formally define well-formedness and other
notions, such as open (non-finished proof attempt) and closed
(finished proof), for arbitrary task trees.

The TI grammar and the substitution invariants provide
frame constraints for the structuring of proofs at the AL.
Concrete proof refinement operators have to be acquired and
designed in a knowledge engineering process as known from
tactical theorem proving and proof planning. Alternatively,
the human may embody the role of an action by declara-
tively describing the refinement of a task into successor tasks;
such oracle steps adapt the idea of interactive island proofs
as introduced in [16]. Thus, the concretely available actions
in a PA may vary from rather “safe” ones (those who directly
guarantee logical soundness at the BL, e.g., traditional tac-
tics constructed on top of the PA’s BL) to highly “unsafe”
ones (those with non-sharp application constraints causing
frequent failing BL expansions, e.g., human constructed ora-
cle steps).

4 Example Proof Development

In this section, we develop the example from Sec. 2 in the
TI introduced in the previous section. We do not address
how task trees and tasks can be suitably presented to a user
(see [10]) but focus on the development of a proof in the TI.

Although we do not distinguish between different types of
actions in the TI (in particular, not with respect to their “log-
ical meaning”, i.e., their expansion to the BL) we can classify
the following types of actions that we use in the example:

1. Application of assumptions and definitions. Steps such as
the expansion of a definition or the application of an as-
sumption are typically carried out rather directly in inter-
active theorem proving formalisms such as Ωmega

CORE or
the proof by pointing approach (see [5]). Since these proof
steps are realized by rewriting steps in the Ωmega

CORE

system we refer to them uniquely as ContRew. When pre-
senting a ContRew action in a task tree we will ignore de-
tails such as which assumption or definition has been ap-
plied and at which position in a goal formula of a task.

2. Application of decomposition steps, i.e., steps that decom-
pose logical connectives and quantifiers. These actions will
be uniquely described as Decomp.

3. Application of abstract proof steps or proof steps that re-
quire to carry out computations. Such proof steps are en-
coded as methods or tactics in classical interactive theorem
proving systems and can comprise calls of external systems
such Computer Algebra Systems or constraint solvers. We
use in the example two methods from the residue class do-
main (see [13]). The method SimpRes simplifies equations
on residue classes. The method FindIso(S1, S2) invokes a
model generator to find isomorphisms from structure S1

into S2. If possible, FindIso(S1, S2) returns candidate iso-
morphisms as polynoms. However, if it fails to create poly-
nom representations it returns a candidate isomorphism as
a pointwise function.

Action types 1 and 2 are relatively safe, i.e., usually easy to
expand to the BL, while action types such as 3 involving calls

to external reasoners are often far less safe. As an alternative
to the use of these actions as illustrated below, the user could
also structure the proof in the TI as a network of absolutely
unsafe oracle steps similar to the island proofs in [16].

The conjecture is formally described by the initial task
Σ B isomorphic(S1, S2), where Σ contains the following defi-
nitions:2

isomorphic(S, T) ⇔ ∃h.iso(h, S, T) (3)

iso(h, S, T) ⇔ hom(h, S, T) ∧ bij(h, S, T) (4)

hom(f, S, T) ⇔
∀x:DS , y:DT f(x ◦S y) = (f(x) ◦T f(y))

(5)

TI proof development starts with the initial task tree

TT

Open(Σ B isomorphic(S1, S2))

In the following, we will successively refine this task tree to
develop a TI proof. The complete resulting TI proof tree is
illustrated in Fig. 2 in the Appendix. To ease the presentation
we show in this section only the changes of the fringe of the
task tree that result from the refinements.
Step 1: The first step applies the definition (3), which results
in a ContRew action. The new task tree is then

TT

Node(Σ B isomorphic(S1, S2), ContRew(∅, ∅))
Open(Σ B ∃h.iso(h, S, T))

where ContRew(∅, ∅) states that the action neither introduces
nor depends on substitutions.
Step 2: In the second step we apply the method
FindIso(S1, S2) to generate two candidate isomorphisms. The
method finds the isomorphisms we described in Sec. 2 and
returns a polynomial representation for the first candidate
h1(x) = λx x+̄3̄4, whereas it presents the second isomorphism
pointwise h2(0̄4) = 3̄4, h2(1̄4) = 2̄4, h2(2̄4) = 1̄4, h2(3̄4) = 0̄4.
Both solutions give rise to introduce an or-branch in our task
tree ...

Node

„

Σ B ∃h.iso(h, S, T),
(FindIsoh 7→ λx x+̄3̄4, ∅)||(FindIsoh 7→ h2, ∅)

«

‖
A B

where

A = Open(Σ B iso(h, S1, S2))

B = Open(Σ, h2(0̄4) = 3̄4, . . . , h2(3̄4) = 0̄4 B iso(h, S1, S2))

FindIso is an OrAction that introduces two different substi-
tutions for h. Thus, the resulting two tasks are disjunctively
related. This step corresponds to a human proof attempt,
where a mathematician conjectures mappings h and subse-
quently tests whether they are bijective homomorphisms. In
case the first tests fails he would switch to the next possible
candidate for h. Since FindIso provides two promising candi-
dates for h both are introduced as alternatives.

We only follow the right branch (A) to show that the first
candidate is an isomorphism.

2
DS and DS are the domains of structure S and T , respectively,
◦S and ◦T are the binary operations of S and T , respectively.

Step 3: We expand the definition of iso by a contextual
rewriting step.

Node(Σ B iso(h, S1, S2), ContRew(∅, ∅))
Open(Σ B hom(h, S1, S2) ∧ bij(h, S1, S2))

Step 4: A decomposition of the open node yields two new
nodes at the fringe:

...

Node(Σ B hom(h, S1, S2) ∧ bij(h, S1, S2), Decomp(∅, ∅))

Open(Σ B hom(h, S1, S2)) Open(Σ B bij(h, S1, S2))

Next, we focus on the left task.
Step 5: The expansion of the definition of hom results in the
following new node at the fringe of the task tree:

Node(Σ B hom(h, S1, S2), ContRew(∅, ∅))

Open(Σ B h(x+̄y) = (h(x)+̄h(y))+̄1̄4)

Step 6: To show that the equation holds, we apply the simpli-
fication method SimplifyRes for residue class expressions. This
method takes all substitutions on the path to the task node
into account, in our case the mapping for the isomorphism
h 7→ λx x+̄3̄4 introduced in step 2. With this instantiation
the method can perform simplifications of the resulting equa-
tion with respect to modulo arithmetic (see also Sec. 2). This
results in the following task at the fringe of the tree:

Node

„

ΣBh(x+̄y) = (h(x)+̄h(y))+̄1̄4,
SimplifyRes(∅, h 7→ λx x+̄3̄4)

«

Open(Σ B (x+̄y)+̄3̄4 = (x+̄y)+̄3̄4)

Since the application of SimplifyRes depends on the substi-
tution h 7→ λx x+̄3̄4 this dependency is explictly recorded at
the action.
Step 7: The final task holds because equality is reflexive.
This step does not produce new subtasks.

...
Node(Σ B (x+̄y)+̄3̄4 = (x+̄y)+̄3̄4, Reflexive(∅, ∅))

5 Validation of Abstract Level Proofs

A key objective of our work is to distinguish better between
BL validation of mathematical proofs and their structural,
human-oriented development at the AL. However, strong me-
diation support between the AL and the BL is crucial for our
approach. At the AL we can work with actions in the range
from completely safe ones to very unsafe ones. Our approach
particularly supports the flexible combination of such actions
— including free oracle proof sketches and faulty proof at-
tempts resulting from the use of unsafe actions. However, in
order to classify the AL proof as sound, all proof steps at the
AL have to be successfully expandable and verifiable at the
BL. The expansion distance of an AL proof from a verifiable
BL proof (i.e., how “far away” an AL proof from a verifiable
BL proof is) depends on (1) the actions used at the AL as
well as (2) on the chosen BL.

(1): For instance, the ContRew and Decomp steps used in
our example are rather safe and easy to expand to (almost
any) BL. When complex AL actions are based on complex al-
gorithms, e.g., when they use Computer Algebra Systems to
perform numerical simplifications such as in the SimplifyRes
steps of the example, then the expansion mappings can be-
come quite complex (Ωmega uses special expansion tools such
as TRAMP [11] and SAPPER [18]). Human constructed ora-
cle proof steps at the AL are often hard to expand since they
become itself again new proof problems (which, however, can
be automatically supported as discussed in [16]).

(2): In Ωmega the BL consists of a higher-order natural de-
duction calculus and the distance from abstract proof plans
via expansion to this particular BL is in many of our case stud-
ies very huge; e.g., as reported in [16] the expansion of the AL
island proof plan for the Irrationality of

√
2 consists of only

24 proof nodes, while its fully expanded counterpart contains
282 proof nodes. Such an complexity at the BL overwhelms
the cognitive resources of a human and sometimes even the
technical resources of Ωmega. In Ωmega

CORE we employ Au-
texier’s CORE system [1] at BL as a sound and complete logic
engine for classical higher-order logic. Due to this move from
higher-order natural deduction calculus to CORE we are able
to drastically reduce the expansion distance from the AL to
the BL in Ωmega

CORE . For instance, expansion of the AL
reasoning step 3 maps one-to-one to a CORE proof manip-
ulation step in Ωmega

CORE . In contrast, it expands in long
derivations employing Leibniz equality in the old Ωmega’s
natural deduction BL.

Exchanging the BL by a “better one” should ideally not af-
fect the tools provided at the AL. In our approach we therefore
consider the BL and BL expansion tools as parameters. Ide-
ally user interfaces, external reasoning specialists, and other
support tools mainly operate on the AL such that they are
only weakly affected by modifications of these parameters.3

Such a separation is achieved in Ωmega
CORE due to the TI

presented in this paper.

6 Conclusion

In this paper we have (i) at a conceptual level argued for a top-
down approach in PAs and (ii) at a concrete level introduced
and illustrated the TI as an AL proof development frame-
work applied in the new Ωmega

CORE system. We further-
more briefly discussed expansion and validation of TI proofs
in CORE, which is our new soundness-guaranteeing BL of
choice. Our TI supports a conceptually cleaner integration of
support tools (such as external specialist reasoners, graphical
user interfaces, proof explanation tools, etc.) at an appropri-
ate level in our hierarchical approach; improved re-usability is
just one benefit we gain. We have also introduced or-branches
in or TI proof language as, for instance, required in agent-
oriented approaches to theorem proving where different alter-
natives may be tackled simultaneously [18].

The evaluation of our approach is ongoing work: (i) the em-
pirical data we obtain from the DIALOG project is used to
evaluate our TI with respect to its suitability to support tuto-
rial natural language proof developments and the first corpus

3 External reasoners, for instance, may also be employed as support
tools for the expansion task as reported in [2]. This kind of usage
would then be highly affected by changes in the BL.

gained in DIALOG [20] is successfully supported by our TI,
(ii) the replay of proofs from the mathematical textbook [8]
has just started but is already very promising, (iii) a case
study on mixed initiative reasoning is future work to evaluate
our TI with respect to its capability to interleave interactive
and automated proof development.

REFERENCES

[1] S. Autexier, Hierarchical Contextual Reasoning, Ph.D. dis-
sertation, Department of Computer Science, Saarland Uni-
versity, Saarbrücken, Germany, 2003.

[2] C. Benzmüller, M. Bishop, and V. Sorge, ‘Integrating TPS
and OMEGA’, Journal of Universal Computer Science, 5,
188–207, (1999).

[3] C. Benzmüller et al, ‘Tutorial dialogs on mathematical
proofs’, in Proc. of IJCAI-03 Workshop on Knowledge Repre-
sentation and Automated Reasoning for E-Learning Systems,
Acapulco, Mexico, (2003).

[4] C. Benzmüller et al, ‘Proof planning: A fresh start?’, in Work-
shop on Future Directions in Automated Reasoning (W1) on
IJCAR 2001, ed., M. Kerber, (2001).

[5] Y. Bertot, G. Kahn, and L. Thery, ‘Proof by pointing’, in
Theoretical Aspects of Computer Science (TACS), (1994).

[6] A. Bundy, ‘The use of explicit plans to guide inductive proofs’,
in Proc. of CADE–9, eds., E. Lusk and R. Overbeek, number
310 in LNCS, pp. 111–120, Argonne, Illinois, USA, (1988).
Springer.

[7] A. Bundy, ‘A critique of proof planning’, in Computational
Logic: Logic Programming and Beyond, number 2408 in
LNCS, 160–177, Springer, (2002).

[8] J. A. Dieudonné, Foundations of Modern Analysis, volume
10-I of Pure and Applied Mathematics, Academic Press, New
York and London, 1969.

[9] M. Gordon, R. Milner, and C. Wadsworth, Edinburgh LCF:
A Mechanized Logic of Computation, number 78 in LNCS,
Springer, 1979.

[10] M. Hübner et al, ‘Interactive proof construction at the task
level’, in Proc. of the Workshop User Interfaces for Theorem
Provers (UITP 2003), Rome, Italy, (2003).

[11] A Meier, ‘TRAMP: Transformation of Machine-Found Proofs
into Natural Deduction Proofs at the Assertion Level’, in
Proc. of CADE–17, ed., D. McAllester, volume 1831 of LNAI,
pp. 460–464, Pittsburgh, USA, (2000). Springer.

[12] A. Meier, Proof Planning with Multiple Strategies, Ph.D. dis-
sertation, Department of Computer Science, Saarland Univer-
sity, Saarbrücken, Germany, 2003.

[13] A. Meier, M. Pollet, and V. Sorge, ‘Comparing Approaches
to the Exploration of the Domain of Residue Classes’, JSC
Special Issue on the Integration of Automated Reasoning and
Computer Algebra Systems, 34(4), 287–306, (2002).

[14] E. Melis and J. Siekmann, ‘Knowledge-based proof planning’,
Artificial Intelligence, 115(1), 65–105, (1999).

[15] S. Owre et al, ‘PVS: Combining specification, proof checking,
and model checking’, in Computer-Aided Verification, CAV
’96, eds., R. Alur and T. Henzinger, number 1102 in LNCS,
pp. 411–414, New Brunswick, NJ, (1996). Springer.

[16] J. Siekmann et al, Proof Development in OMEGA: The Irra-
tionality of Square Root of 2, 271–314, Kluwer Applied Logic
series (28), Kluwer Academic Publishers, 2003.

[17] K. Slind, M. Gordon, R. Boulton, and A. Bundy, ‘System
description: An interface between CLAM and HOL’, LNCS,
1421, (1998).

[18] V. Sorge, OANTS — A Blackboard Architecture for the Inte-
gration of Reasoning Techniques into Proof Planning, Ph.D.
dissertation, Department of Computer Science, Saarland Uni-
versity, Saarbrücken, Germany, 2001.

[19] C.-P. Wirth, ‘Descente infinie + Deduction’, 96 pp., accepted
by Logic Journal of the IGPL, (2004).

[20] M. Wolska et al, ‘An annotated corpus of tutorial dialogs
on mathematical theorem proving’, in Proc. of International
Conference on Language Resources and Evaluation (LREC
2004), Lisbon, Potugal, (2004). To appear.

TT

Node(Σ B isomorphic(S1, S2), ContRew(∅, ∅))

Node

„

Σ B ∃h.iso(h, S, T),
(FindIso(h 7→ λx x+̄3̄4, ∅)||FindIso(h 7→ h2, ∅))

«

‖

Node(Σ B iso(hS1, S2), ContRew(∅, ∅))

Node(Σ B hom(h, S1, S2) ∧ bij(h, S1, S2), Decomp(∅, ∅))

Node(Σ B hom(h, S1, S2), ContRew(∅, ∅))

Node

„

ΣBh(x+̄y) = (h(x)+̄h(y))+̄1̄4,
SimplifyRes(∅, h 7→ λx x+̄3̄4)

«

Node(Σ B (x+̄y)+̄3̄4 = (x+̄y)+̄3̄4, Reflexive(∅, ∅))

Open(Σ B bij(h, S1, S2))

(See Fig. 3)

Figure 2. The complete task tree for the example from Section 4 the right hand side of the or-branch is continued on the next figure.

(Continuation from Fig. 2)

Node(Σ, H(h2, 3̄4, 2̄4, 1̄4, 0̄4) B iso(h, S1, S2), ContRew(∅, ∅))

Node(Σ, H(h2, 3̄4, 2̄4, 1̄4, 0̄4) B hom(h, S1, S2) ∧ bij(h, S1, S2), Decomp(∅, ∅))

Node(Σ, H(h2, 3̄4, 2̄4, 1̄4, 0̄4) B hom(h, S1, S2), ContRew(∅, ∅))

Node

„

Σ, H(h2, 3̄4, 2̄4, 1̄4, 0̄4)Bh(x+̄y) = (h(x)+̄h(y))+̄1̄4,
DomainCaseSplit(∅, ∅)

«

· · · Node(Σ, H(h2, 3̄4, 2̄4, 1̄4, 0̄4) B h(2̄4 + 1̄4) = (h(1̄4)+̄h(2̄4))+̄1̄4, SimplifyRes(∅, ∅))

Node(Σ, H(h2, 3̄4, 2̄4, 1̄4, 0̄4) B h(3̄4) = (h(1̄4)+̄h(2̄4))+̄1̄4, ContRew(∅, h 7→ h2))

Node(Σ, H(h2, 3̄4, 2̄4, 1̄4, 0̄4) B 2̄4 = (0̄4+̄1̄4)+̄1̄4, SimplifyRes(∅, ∅))

Node(Σ, H(h2, 3̄4, 2̄4, 1̄4, 0̄4) B 2̄4 = 2̄4, Reflexive(∅, ∅))

Open(Σ, H(h2, 3̄4, 2̄4, 1̄4, 0̄4) B bij(h, S1, S2))

Figure 3. An alternative proof. H(h2, 3̄4, 2̄4, 1̄4, 0̄4) is an abbreviation for h2(0̄4) = 3̄4, h2(1̄4) = 2̄4, h2(2̄4) = 1̄4, h2(3̄4) = 0̄4, this
representation of the pointwise defined function is introduces as hypothesis by FindIso. The method DomainCaseSplit introduces a case

split over the 4 × 4 = 16 possible instantiations for x and y, which have to be checked. The other 15 cases are omitted.

