Writing
Positive/Negative-Conditional Equations
Conveniently

Claus-Peter Wirth, Rdiger Lunde

Searchable Online Edition
December 22, 1994

SEKI-WORKING-PAPER SWP-94-04 (SFB)

Fachbereich Informatik,
Universitat Kaiserslautern,
D-67653 Kaiserslautern

Abstract: We present a convenient notation for positive/negativeditmnal equations. The idea is to
merge rules specifying the same function by using caseméich-, and let-expressions. Based on the pre-
sentedmacr o- r ul e-construct, positive/negative-conditional equatior@gdfications can be written on
a higher level. A rewrite system translates thecr o- r ul e-constructs into positive/negative-conditional

equations.
Contents
1 Introduction 1
2 Examples 8
3 Syntax 11
4 Semantics 13
References 21

This research was supported by the Deutsche Forschungsgemaft, SFB 314 (D4-Projekt)

1 Introduction

We present amacr o- r ul e-construct for convenient specification with positive/atage-condi-
tional equations as presented in Wirth & Gramlich (1993)od¢gh separate equations building
up the definition of one single function are advantageoususeveral theoretical and practical
aspects, this separation does not correspond to the “latway of defining functions. As equa-
tional specification requires every reduction rule to berdefiexplicitly, various repetitions of
common sub-expressions occur. In specifications with pesitegative-conditional equations,
moreover, case distinctions lead to frequent numerouditiepes of only slightly changed left-
hand sides and condition lists. This is rather tedious fergpecifier and a source of errors. It
also hides the actual structure of the specification.

To overcome these problems we introduceaar o- r ul e-construct for achieving the following
aims:

e Concise notation: The specifier should be able to expresshitueng of expressions in the
specification language instead of having to spread copiascommon sub-expression all
over a function’s definition.

e Logical modularization: Reduction rules for the same fiorcshould be combined and
structured hierarchically.

e Explicit representation of case distinctive structurebe knowledge the specifier has in
mind should be made explicit.

e Free choice of specification level: The language shouldallsa equational specification
without using the structural features.

To explain some ideas of our approach we will use the follgwirles:

delete x nil = nil

delete x cons y k = delete x k — X =Y

delete x cons y k = cons y delete x kK «— Xx # vy

delete x | = | «—— nmenberp x | # true

The main features of ouracr o- r ul e-construct are:

e Conditions of equations are written as lists and charastterfunctions as predicates.
For example the lastel et e-rule above may be written
(delete x 1) =1 «— ((not (nmenberp x |)))

e Contraction of right-hand sides and conditions into a newtarterm”, changing the order
of appearance:

Instead of

delete x cons y k = delete x k «— x =y

we write

(delete x (cons y k)) = (case ((=xvy)) (delete x k))

e Introduction of match-condition6@ VAR TERM , which bind the variables in the term
TERMby a required match frorfERMto the value of the variabl¢AR. This has the ad-
vantage that all left-hand sides of equations specifyiegstime function can be written in
the same way.

The rules of oudel et e-specification can now be written like this:

(delete x 1) = (case ((@!I nil)) nil)
(delete x 1) = (case ((@! (cons vy k))

(= xvy)) (del ete x k))
(delete x 1) = (case ((@!| (cons y k))

(# xvy)) (cons y (delete x k)))
(delete x 1) = (case ((not (menberp x 1))) |)

The match-atonf @ VAR TERM connects the rule’s variabMAR with those variables
that are introduced byERMand may occur to the right of the match-atom. For avoiding
reference problems, the variablesTIERMmust not occur to the left df @ VAR TERM)

in the rule.

This restriction can be weakened to apply only to those kgathat are not properly
influenced by some let- or match-atom. Especigy\R may occur inTERMand to the left
of (@ VAR TERM . E.g. inthe above rules, we could replacekheith | . In this case, the
occurrences oYAR in the second argument ¢i@ VAR TERM have the same meaning
as the occurrences AR to the right of(@ VAR TERM , which is different from the
meaning ofVARIn the first argument of @ VAR TERM having the same meaning as the
occurrences oVAR to the left of (@ VAR TERM . Thus (in case oWVAR occurring in
TERM the borderline of the meaning ¥AR in the rule goes right through the match-atom.

If, however,VAR does not occur iTERM then the meaning ofAR to the left and to the
right of the match-atom is the same. This persistence of gening ofVAR can be useful.
As an (not really convincing) example the fide| et e-rule could be written:

(delete x 1) = (case ((@! nil)) 1)

e Al et -expressiorn(| et TERM VAR) may occur in condition lists and introduc¥saR
as a macro fofERM

Each of the expressiofig@ VAR, TERM) and(| et TERM, VAR;) binds the variables
occurring in its second argumentERM,, VAR,, resp.) with the scope being the rest of
the rule. If one of these variables is already bound in thdexarof the expression, then
its old binding is lost in the scope of the expression. Simig is a common source for
bugs in specifications, the specifier shdubg warned if such a re-binding occurs. E.g.
(let (cons x |) 1) re-bindsl totheterm(cons x 1) wherel refers to the old
binding ofl , which is lost for the rest of the rule. Similarly, cfons is the top symbol
ofl ,then(@! (cons x |)) bindsx to the first argument df and re-bind$ to the
second argument of the old bindinglofwhich again is lost for the rest of the rule.

The translation into rules removes an atohret TERM, VAR,;) by substitutingTERM,
for all occurrences 0¥AR; to the right of the atom. Similarly, an atofi@ VAR, TERM)
Is removed by substitutinGERM for all occurrences o¥AR; to the left and (unles¥AR,
occurs inTERM) to the right of the atom.

e Equations with the same left-hand side are merged:

(macro-rule (delete x 1)
(case

((@1 nil))

nil

((@1 (cons y k))
(=xy))
(delete x k)

((@1 (cons y k))

(# xy))
(cons y (delete x k))))

For the specifier who really wants to writg® | (cons x 1)) and does not want to be warned all the time,
there is another match-atom having the fori@@ VAR, TERM,) . It behaves similar t§ @ VAR, TERM) but
does not warn iF/AR, occurs inTERM,, since it un-bind&/AR; before it binds the variables IFERM, via matching
TERM, to the old binding oVAR;.

2Similarly, an aton(@@ VAR, TERM) is removed by substitutin§ERM for all VAR, to the left the atom.

e Negatible conditions may be used in the (conjunctive) coordiists ofcase-with-el se-
andi f -expressions. The two latter cases of the above macroexgezssion can be com-
bined into:

'((@I (cons y k)))
(if ((=xy))
(delete x k)
(cons y (delete x k)))

For a condition list of lengthn + 1 an “i f "-expression saves + 1 condition literals and
n repetitions of the meta-term of the else-case in the spatidit.

(macro-rul e |
(if (Lo ... Ly
Mo

rv)

written in form of unstructured conditional equations isandonger:

[= rg «— Lo ... L,

|l = r; «—— (not Ly

|l = r; «—— (not L,)
For acase-with-el se-expression the saving has the complexity of the produchef t
lengths of the condition lists.

e The possibility of nestlingcase- andi f -expressions allows a quadratic saving in the
number of condition literals:

(macro-rul e |

(if (Lo ro
Gf (L) 1
(f (L) .

foi))

written in form of unstructured conditional equations isandonger:

[= Ty «— Lo
Il = r, «— (not Ly L,

Il = r, «— (not Lyg) ... (not L,4) L,
l = r,yq «— (not Lyg) ... (not L,;) (not L,)

e Propositional logic expressions usingdt ”, “and”, and “or ” may occur in condition
lists. For example

(macro-rul e |

(macro-rule | (Ca?ﬁ L)
(irf (Lo ... L) . . . 0 rrr m
" is equivalent to: ro
0 ((or (not Ly) ... (not L,)))

rl)) rl))

Note that the positive/negative-conditional rule systdeamoted by alor -conditioned case
contains in general more than one conditional equatioewiff only in the condition part.
As we do not provide a certain order between positive/negratonditional equations it is
of no importance in which order the arguments are suppligtieror -expression unless
its negation becomes relevant due to an outest™ or a following el se-case. In the

denoted rule system ttend-expression behaves rather different: As it refers to omly o
conditional equation, the order of appearance of argumergseserved in the condition
list.

e A“sequential’(or* L; ... L,) isalso placed to the specifiers disposal. This expres-
sion guarantees, that all arguments fromta L,_; are not fulfilled when the validity of
L, is checked. To illustrate the difference betwegnandor * a characteristic function is
specified. It tests, whether all elements in a list are eddefe we assumgcar (cons
x 1)) =x, (cdr nil) =nil (1) and(cdr (cons x |I)) = 1. The
specification otar need not necessarily be complete.

(macro-rule (equal -1 1)
(if ((or* (= (cdr 1) nil)
(and (equal -1 (cdr 1))
(= (car 1)
(car (cdr 1))))))
true
fal se))

The corresponding conditional equations for thieie-case are:
(equal-1 |) = true «—— (cdr |I) = nil
(equal -1 1) true «—— (cdr 1) # nil,
(equal -1 (cdr |)) = true,
(car I') = (car (cdr 1))

The condition list of the second equation contains the mebfaist argument abr = besides
the second one. If aor -expression were used in spite of thiex a termination problem
would occur because this first negated condition would bevek

(equal -1 I') = true «— (equal-Il (cdr 1)) = true,
(car 1) = (car (cdr 1))

As the dual ofor *, an and*-expression is also included. Tland- and theandx*-
expression are equivalent with respect to the positivafegrconditional rules they de-
note unless its negation becomes relevant due to an aui¢r’‘or a following el se-case.
Theand+ -expression should be used whenever the order of appeavéitioe arguments
is relevant.

For anand+ -condition with n + 1 arguments thef -expression savegu+1) « (n+2) /2
condition literals andh repetitions of the meta-term of the else-case in the spatidit.

(macro-rule |
(if ((and* Ly ... L,))

Mo

ry))

written in form of unstructured conditional equations isandonger:

| = Iy «— Lo ... L,
Il = r; «—— (not Ly
| = r; «— Ly (not L))

I = I, — LO e Ln,1 (nOt Ln)

For acase-with-el se-expression the saving has the complexity of the produchef t
squares of the numbers of arguments ofdhe* -expressions.

We now give a final version of our introducinel et e-specification:

(macro-rule (delete x 1)
(case

((@1 nil))

ni |

((@!1 (cons y k))
(let (delete x k) h))

(ifh((= Xy))
(cons y h))

((not (nmenberp x 1)))
1))

The last case really should be omitted. It is only preseneiimd the cursory reader that the
cases must be neither complementary nor complete and gwabttering is (in contrast to LISP’s
COND) relevant only for the order of the tests of an optioabk e-case of thease-expression.

All'in all, this macr o- r ul e-construct was designed as a tool for the specifier. Besldgsit
Is also useful for explicitly structuring an equational sifieation. This structuring must be done
anyway:

¢ It reduces the number of matching and condition tests andfttre enhances efficiency of
rewriting.

e More important for us is that it may exhibit the recursive staction of a function and
therefore may help to find suitable structures for inducgix@ofs by giving hints for case
distinctions and for the choice of covering sets of subistitis:

For example, the “natural” way of proving inductive propest of the del et e-
function is to start with a covering set of substitutions egivby “{l —ni | }” and
“{I —(cons y k) }"”, and then to make a case distinction for the second case etheh
“x=y” holds or not.

2 Examples

In this section we give some more examples.

Two specifications of the characteristic function of the rbenpredicate:

(macro-rule (nenberp x I|)
(case
((@1 nil))
fal se
((@1 (cons y m))
(if ((=xY))
true
(menmberp x m)))

denotes
menberp x nil = false
menberp x cons y m = true — X =Y
menberp x cons y m = nenberp x m «— X # Yy
while

(macro-rule (nenberp x I)
(case
((@! nil))
fal se
((@1 (cons y m))
(if ((or (=xy) (menmberp x m))

true
fal se)))
denotes
menberp x nil = false
menberp x cons y m = true +«— X =Y
menberp x cons y m = true +«— nenberp x m= true
menberp x cons y m = false «—— x # vy, nenberp x m=# true .

Functions on natural numbers:

(macro-rule (p x)

(case
((@x (s u)))
u))
denotes
psu = u

which is syntactically more restrictive and operationafigre useful than

(macro-rule (p x)
(case
((=x (s u)))
u))

which denotes
pX = U «— X =8 U.

(macro-rule (max x y)
(case

((@x 0))
y
((@y 0))
X

((@x (s u))
(@y (s v)))

(s (max u v))))

(macro-rule (+ x vy)
(case

((@x 0))

y
((@x (s u)))
(s (+uy))))

(macro-rule (* x vy)
(case
((@x 0))
0

((@x (s u)))
(+y (xuy))))

(macro-rule (pot w x) ; conputes wX
(case
((@x 0))
(s 0)
((@x (s u)))
(x w

(pot wu))))

10

Functions on binary trees:

(macro-rule (hight t)
(case

((@t nil))
0

((@t (nmk-tree | node r)))
(s (max (hight 1)
(hight r)))))

(macro-rul e (count-nodes t)
(case

((@t nil))
0
((@t (mk-tree | node r)))

(s (+ (count-nodes |)
(count-nodes r)))))

(macro-rule (conpletep t)

(case

((@t nil))

true

((@t (nk-tree r node 1)))

(if ((= (hight 1) (hight r)); | this is a conjunctive condition
(conpletep |) | list, just like with equationa
(conpletep r)) ;| rules

true

fal se)))

11

3 Syntax

The syntax of theracr o- r ul e-construct is defined by the following context-free grammar
with starting symbokmacro-rule-. Note that the sets of variable, constant, and function same
must be mutually disjoint. Furthermore, function names tniesdifferent from tase”, and

“i f” and should also be different from£”, “#”, “def », “@, “@@, “l et”, “or”, “or =",

and”, “and+”, and “not ”.

<variable-namg
<constant-name
(<function-name- <ternt>")

<tern>

<(in-)equality-atom-

<predicate-atom

<negatible-atony

<def-atom>

(= <term> <ternt>)
(# <term> <ternr>)

<term>

<(in-)equality-atom-
<predicate-atom

(def <term>)

<basic-atom := <negatible-aton:
| <def-atom>

<match-atom = (@ <variable-name <term>)
| (@@ <variable-name <term>)

<let-atom> := (| et <term> <variable-namg)

<negatible-conditiorx <negatible-atony

| (and <negatible-condition*)
| (or <negatible-condition*)
| (and* <negatible-condition*)
| (or* <negatible-condition*)
| (not <negatible-conditior)

3Here, “...* " denotes zero or more repetitions, “.”.denotes one or more repetitions, ... denotes different
possibilities, <...>" denotes non-terminals, and typewriter font indicatesmgrer terminals.
4This is necessary if the function is specified as charatiefisiction and used in a predicate-atom.

12

<general-condition

<negatible-condition-list
<general-condition-list

<negatible-case

<else>

<case>

<if-term>

<case-term-with-else

<case-tern

<meta-term-

<macro-rule-

<negatible-conditiox

<basic-atom-

<match-atoro-

<let-atom>

(and <general-condition*)

(or <general-condition*)

(and* <negatible-condition* <general-conditior)
(or* <negatible-condition* <general-condition)

(<negatible-condition*)
(<general-condition*)

<negatible-condition-list
<meta-term-

el se
<meta-term-

<general-condition-list
<meta-term-

(i f <negatible-condition-list
<meta-term-
<meta-term-)

(case
<negatible-case*
<else>)

(case
<case-")

<tern>

<if-term>
<case-term-with-else
<case-tern»

(macr o- rul e <term> <meta-term-)

13

4 Semantics

The semantics of a sequenceafcr o- r ul e-expressions is a positive/negative-conditional rule
system.

Let:

VAR, € Lg(xvariable-name)®
TERM, € Lg(<tern)
PRED-ATOM € Lg(<predicate-atom)
N-C; € Lg(<negatible-conditior)
N-C-LIST; € Lg(<negatible-condition-list)
BASIC-ATOM; € Lg(<basic-atorm)
MATCH; € Lg(<match-atorm)

LET, € Lg(<let-atom>)
GEN-COND, G-C; € Lg(<general-condition)
CASE € Lg(<case>)
META-TERM,; € Lg(<meta-term)

The denotation of the followingélementary macr o- r ul e-expressions is defined as follows:
(macro-rul e TERM TERM)

denotes the unconditional rewrite rule

TERM; = TERM,

and

(macro-rul e TERM
(case
(BASI G- ATOVM, --- BASI C- ATOM,)
TERM))

denotes the following rewrite rule with nonempty condition
TERM, = TERM, «— BASIC-ATOMy, ..., BASIC-ATOM,

A macr o- r ul e-expression is non-erroneous iff it can be transformed ilEmentary
macr o- r ul e-expressions with the rewrite rules we will introduce instisection. Note that
the semantics is declarative in so far as no precedence i3sgdpon the application of these
rules. The resulting rewriting relation is confluent and teeian. Since all elementary
macr o- r ul e-expressions are irreducible, eathcr o- r ul e-expression denotes at most one
positive/negative-conditional rule system.

SLe(<sym>) denotes the set of words generated by productions of ounrgea starting from the symbol
<sym>.

14

“Predicate”-Removal
Predicates may be used as conditions. All these predicatgsiaiinto equations:

In the context of a general or negatible condition:
PRED- ATOM — (= PRED- ATOM t r ue)

“i f "-Removal
i f -expressions are replaced hyd's e-with-el se”-expressions:
(if NNCLIST (case
META- TERM — N-C LI ST
VETA- TERM,) META- TERM
el se
VETA- TERM)

“el se”-Removal

As el se-statements may cause trouble when replacoese in case” (cf. below), they must
be eliminated before:

(case
(NCiy - NCpyp,) NVETA- TERM
(NCL1-- NCoin) VETA- TERM,,
el se VETA- TERM,,.1)

!

(case
(NCy - NGy,) NVETA- TERM,
(NCpy--- NCp) NVETA- TERM,,
((or (not N-C,)

(not N- CLQ)
(not N-Cp,)))

.(or (not N-C,1)
(not N-C,»)

(not N-Cy.))) META- TERM,)

If none of the preceding rewrite rules applies anymore, tilknegatible atoms are (in-)equality
atoms and nof - or el se-expressions occur in the specification.

“not "-Removal

(not (not N-Q)) —
(not (and NC; --- NC)) —
(not (and* N-C, --- NC))) —
(not (or NC --- NC)) —
(not (or* NC, --- NC)) —
(not (= TERM TERM)) —
(not (# TERM TERM)) —
“or ”-Removal
(case

CASE,

CASE,

(GC .. GG,

(or GEN-COND; --- GEN- COND,)

GGCu - GGy

VETA- TERM

CASE, 1

.CASEn-i-m)
!
(case

CASE,

CASE,

(GC --- GC, GENNCOND;, GCyq ---

.(GC1 .-+ GC, GENNCOND, GCyyy ---

CASE, .+,

CASE,)

Note that for application of this rule nel se’ may occur in thecase-expression.

N-C

(or (not N-C)
(or+ (not N-C)
(and (not N-C)

(and* (not N-C)

(# TERM TERW)

(= TERM TERMW)

GC,,) META- TERM

G C,,) META- TERM

- (not
- (not
- (not

- (not

N-C.))
N-C.))
N-C.))
N-C.))

15

16

or *»"-Removal

(case
CASE,

CASE,

(G C .+ GC,
(orx NNC, --- NC)
GG -+ GGy
META- TERM

CASE,. 1

CASE,)
!

(case
CASE,

CASE,

(G C .- GC,

N- C

GCu GGy
VETA- TERM

(G C .- GC,

(not N-C) NG

GG - GGy
META- TERM

.(C-}Cl ... GC,
(not NNC) --- (not NC._;) NC.

GG - GGy
META- TERM

CASE, 1

Note that for application of this rule nef se’ may occur in thecase-expression.

17

“and[*]"-Removal

(case (case
CASE1 CASEl
CASE, CASE,
(G C .- GC, (G C .- GC,
(and[*] GEN-COND; --- GEN-COND,) — GEN- COND,; --- GEN- COND.
GGCu - GG GCu GGy
VETA- TERM VETA- TERM
CASE, 1. CASE, .,
CASEn+m) CASEn-i—m)

Note that for application of this rule nef se’ may occur in thecase-expression.

“case-in-case”-Removal

(case
CASE,

CASEm
(GC - GGC)
(case
(GEN- COND, ; --- GEN- COND,,,) META- TERM

(GEN- COND,; --- GEN- COND,,,) META- TERM)
CASE,. 1

CASE,.1)
!

(case
CASE,

CASE,,
(GC - GC, GEN-COND,; --- GEN-CONDy,,) META- TERM

(GC - GC, GEN-COND,, --- GEN- COND,,,) META- TERM

Note that for application of this rule nel se’ may occur in any of the twa ase-expressions.

18

“ @-Removal

As we do not want match-atoms in our final rule-system we tepédl occurrences of a match-
variable VAR preceding a match-atorh@ VAR TERM with the match-termlfERM If the
match-variable does not occur in the match-term, we alse taveplace all occurrences of the
match-variable in the scope of the match-atom with the mtgoh. Let)(TERM denote the set
of variables occurring iTERM

If VAR € V(TERM) , then the specifier should be warned like:
“WARNING: (@ VAR TERM re-bindsVAR’
and we reduce:

(@VAR TERM) —— (@@ VAR TERV

Otherwise we reduce:

(@VAR TERM) —— (@@ VAR TERW
(I et TERM VAR)

“ @@-Shift-Left

In case of V(BASI C- ATOM N (V(TERM\{VAR}) # () the condition list below is erroneous.
Otherwise we reduce:

: G- C.
GC,
BASI C- ATOM (@ VAR TERM
(@ VAR TERM — BASI C- ATOM{VAR—TERM
- G Cosi
.G" Cm—i—n) G Cm+n)
“| et "-Shift-Right

If VAR € V(TERM , then the specifier should be warned like:
“WARNING: (1 et TERM VAR) re-bindsVAR’

The following inference rule is the dual o@@-shift-left.

(GG (GG
G C, G C,
(I et TERM VAR) BASI C- ATOM{VAR—TERM}
BASI G- ATOM — (I et TERM VAR)

GCun G Chn

.(3' Crn+n) G' Cm—HL)

19

“| et " @@-Swap

This is the only non-trivial rewrite rule.

(&G (Gc
G, :
(l et TERM VAR)) fxfm
(@@ VAR, TERM) — N
G Crn+1 . C:'m-l-l
:G" QnJrn) G Cm-i—n)

with <X> defined as follows:

VAR, = VAR,: ERROR.
There is no reasonable semantics for this unlf€ERM o = TERM o for some replac-
ing the variables of V(TERM) N V(TERM,) with new distinct variables and being a
most general unifier fof ERM, andTERM.® This case, however, is too unlikely and not
important enough to give semantics for, since this wouldergkgle pass error checking
more difficult.

VAR, € V(TERM) \ {VAR}:
<X>=(@ VAR, TERM)
Thel et -term is removed sinc¥AR; is re-bound by the match-atom. Often, this will not
be the intention of the specifier. Therefore a warning shbeldiven.

VAR, ¢ {VAR,} U V(TERM):
<X>=(@ VAR, TERMW)
(I et TERM{VAR,—TERM} VAR))
This should be the normal case.

Note that errors and warnings (case one and two) can be ééteasily by one single pass over
the specification before starting the rewriting. This alosrror and warning messages to refer
to the originalmacr o- r ul e-constructs, which is necessary for being understandaioléhé
specifier.

b<X> = (@@ v(remw)10) (let* (vrerw)1(€0))™') would correspond to our intention. E.g. for
(let (mt I y 1) k)
(@k (nt h; (cons y m hy))
we would choosef := {y — z }; o0:= {y — (cons z M), hy — |, hy — | } andget
<X>=(@y (cons z m) (let I hy) (let I hy) (let zvy) .
However, this definition would destroy the confluence-efs’. E.g. consider the following condition-list where
yisanaliasfou: ((@x (s u)) (@x (s vy))) —
((@x (s u)) (let (s u) x) (@x (sy)) (let (sy) x)).
The latter condition-list reduces in two ways. Firstwigh= {}, o:= {u — y }:
— ((@x (s u)) (@uy) (let (sy) x)).
Secondwith := {}, o:= {y — u}:
— ((@x (s u)) (let uy) (let (sy) x)).
Now the first version reports an erronjifoccurs to the left while the second does not. Furthermoesfitt version
will use the variablg in its scope while the second will useinstead.

20

Splitting
(rmacro-rul e TERM (rmacro-rul e TERM
(case (case CASE)))
CASE, —
: (macro-rul e TERM
CASE,)) (case CASE)))

By application of the inference rules introduced abovenati-erroneousacr o- r ul e-expressions
can be transformed into the following form:

(rmacro-rul e TERM
(case (MATCH, --- MATCH,,
BASI C- ATOM, --- BASI C- ATOQV,
LET, --- LET,)

TERM))

or
(macro-rul e TERM TERM) .

The transformation into an elementamacr o- r ul e-expression is attained by the last three
rules.

“ @@-removal

In case of V(TERM) n (V(TERM)\{VAR}) # (the specification is erroneous.
Otherwise we reduce:

(macro-rul e TERM
(case

((@VAR TERM) G C -+ GGC,)
META- TERM))

l

(macro-rul e TERM{VAR-TERM}
(case
(GG -+ GG,
META- TERM))

21

“l et "-removal
(case
CASE,

CASE,,
(GC --- GC, (let TERM VAR)) TERM

(GC - GGy TERW,{VAR—TERM }

“case-with-empty-condition”-Removal

(macro-rule TERM (case () TERM)) — (macro-rule TERM TERM)

References

Claus-Peter Wirth, Bernhard Gramlich (1993A Constructor-Based Approach for
Positive/Negative-Conditional Equational Specificaion3<CTRS 1992, LNCS 656,
pp. 198-212, Springer. Revised and extended version inndb&yc Computation (1994)7,
pp.51-90, Academic Press (Elsevier).

