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Abstract: We study the combination of the following already known igléa@ showing confluence of unconditional
or conditional term rewriting systems into practically marseful confluence criteria for conditional systems: Our
syntactic separation into constructor and non-constrisgimbols, Huet’s introduction and Toyama'’s generalizatio
of parallel closedness for non-terminating unconditigyatems, the use of shallow confluence for proving conflu-
ence of terminating and non-terminating conditional systethe idea that certain kinds of limited confluence can be
assumed for checking the fulfilledness or infeasibilitylad tonditions of conditional critical pairs, and the ideatth
(when termination is given) only prime superpositions hivbe considered and certain normalization restrictions
can be applied for the substitutions fulfilling the conditoof conditional critical pairs. Besides combining and
improving already known methods, we present the followiag/ideas and results: We strengthen the criterion for
overlay joinable terminating systems, and, by using theesgiveness of our syntactic separation into constructor
and non-constructor symbols, we are able to present eriferilevel confluence that are not criteria for shallow
confluence actually and also able to weaken the severe eeagmt of normality (stiffened with left-linearity) in the
criteria for shallow confluence of terminating and non-teting conditional systems to the easily satisfied require

ment of quasi-normality. Finally, the whole paper also giagractically useful overview of the syntactic means for
showing confluence of conditional term rewriting systems.
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1 Introduction and Overview

While! powerful confluence criteria for conditional term rewrigjisystem$are in great demand
and while there are interesting new results fioconditionalsystem$, hardly any new results
on confluence otonditionalterm rewriting systems (besides some on moduthugtyd on the
treatment of extra-variables in conditiGh$ave been published since Dershowitz &al. (1988),
Toyama (1988), and Bergstra & Klop (1986), and not even a comgeneralization (as given
by our theorems 13.6 and 15.1) of the main confluence theooérire latter two papers (i.e.
something like confluence of parallel closed conditionatsgs) has to our knowledge been
published. We guess that this is due to the following prolstem

1. A proper treatment is very tedious and technically mostplccated, especially in the case
of non-terminating reduction relatiofis.

2. There is a big gap between the known criteria and thoserierithat are supposed to be
true, even for unconditional systerhs.

3. The usual framework for conditional term rewriting systedoes not allow us to model
some simple and straightforward applications naturallguch a way that the resulting
reduction relation is known to be confluent, unless someisbpated semantic or termi-
nation knowledge is postulated a priori.

Iplease do try not to read the footnotes for a first reading!
2For an introduction to the subject cf. Avenhaus & Madlen&8@) or Klop (1992).

3Cf. Oostrom (1994a) and Oostrom (1994b). Note that the lesrrtaand 5.3 of Oostrom (1994b) do not apply
for conditional systems because they are not subsumed hyotiien of “patterm rewriting systems” of Oostrom
(1994b).

4Cf. Middeldorp (1993), Gramlich (1994).

5Cf. Avenhaus & Lota-Saenz (1994) for the case of decreasing systems and Suzuk{1®85) for the case of
orthogonal systems.

6The technique we apply for proving our confluence criterianfan-terminating reduction relations is in essence
to show strong confluence of relations whose reflexive & itmesclosures are equal to that of the reduction relation.

In Bergstra & Klop (1986) another technique is used. Instdaah actual presentation of the proof there is only a
pointer to Klop (1980). It would be worthwhile to reformugathis proof in modern notions (including path orderings)
and notations. While we did not do this, we just try to desehire the abstract global idea of this proof:

The field of the reduction relation is changed from terms tmgewith licenses in such a way that the projection to
terms just yields the original reduction relation againe Tfansformed reduction relation becomes terminatingesinc
it consumes and inherits licenses in a wellfounded manhes, its confluence is implied by its local confluence that
is to be shown. Finally, each diverging peak of the origimauction relation is a projection of a diverging peak in
the transformed reduction relation when one only providesigh licenses.

We did not apply this global proof idea since (while we weréeab generalize it for allowing parallel closed
critical pairs as in the corollary on page 815 in Huet (198@)were not able to generalize it for proving Corollary 3.2
of Toyama (1988) (which generalizes this corollary of HU&Xg0)).

Cf. e.g. Problem 13 of Dershowitz &al. (1991).



4. For conditional rule systems there is another big gap &etvthe known criteria and those
criteria that are required for practical purposes. Thisltedrom the difficulty to capture
(with effective means) the infinite number of substitutitimst must be tested for fulfilling
the conditions of critical pairs.

While we are not able to contribute too much regarding the fiive problems, we are able to
present some progress with the latter two.

Our positive/negative-conditional rule systems inclgdirsyntactic separation between construc-
tor and non-constructor symbols as presented in Wirth & Bciingl994a) offer more expressive
power than the standard positive conditional rule systemistlaerefore allow us to model more
applications naturally in such a way that their confluenagivien by the new confluence criteria
presented in this paper. Using the separation into cortstrand non-constructor rules (generated
by the syntactic separation into constructor and non-coatstr function symbols) it is possible
to divide the problem of showing confluence of the whole rylstem into three smaller sub-
problems, namely confluence of the constructor rules, cenfle of the non-constructor rules,
and their commutation. The important advantage of this ravtaation is not only the division
into smaller problems, but is due to the possibility to tadkle sub-problems with different con-
fluence criteria. E.g., when confluence of the constructlasris not trivial then its confluence
often can only be shown by sophisticated semantical coratidas or by criteria that are applica-
ble to terminating systems only. For the whole rule systemwdver, neither semantic confluence
criteria nor confluence criteria requiring termination leé reduction relation are practically fea-
sible in general. This is because, on the one hand, an efegpplication of semantic confluence
criteria requires that the specification given by the whale system has actually been modeled
before in some formalism. On the other hand, terminatiornefwhole rule system may not be
given or difficult to be shown without some confluence assionpf Fortunately, without re-
quiring termination of the whole rule system the syntactioftuence criterid presented in this
paper guarantee confluence of the non-constructor ruleslaga of rule systems that is sufficient
for practical specification. This class of rule systems galizes the function specification style
used in the framework of classic inductive theorem protfirioy allowing of partial functions re-
sulting from incomplete specification as well as from nomvi@ation. Together with the notions
of inductive validity presented in Wirth & Gramlich (1994thjs extends the area of semantically
clearly understood inductive specification considerably.

Regarding the last problem of the above problem list (ooguim case of conditional rule sys-

tems), by carefully including the invariants of the proafsthe confluence criteria into the condi-
tions of the joinability tests for the conditional critigadirs we allow of more reasoning on those
substitutions that fulfill the condition of a critical pak.g. consider the following example:

8When termination is assumed, there are approaches to pomfence automatically, cf. Becker (1993) and
Becker (1994).

9Cf. our theorems 13.3, 13.4, and 15.3.

10ct, Walther (1994). Note that we can even keep the notatige stmilar to this function specification style, cf.
Wirth & Lunde (1994).



Example 1.1 LetR: f(s(s(x))) = s(0) «— f(x)=0
f(s(s(¥)) = 0« f(x)=s(0)
f(s(0) = s(0)
£(0) =0

Assume0 ands(0) to be irreducible.

The experts may notice that the part of R we are given in thégngte is rather well-behaved:
It is left-linear and normal; it may be decreasing; and thiy entical pair is an overlay. Now,
for showing the critical pair between the first two rules toj@able, one has to show that it
is impossible that both conditions hold simultaneously dosubstitution{x+—t}. One could
argue the following way: If both conditions were fulfilledyenf(t) would reduce td as well
as tos(0), which contradicts confluence beldift). But, as our aim is to establish confluence,
it is not all clear that we are allowed to assume confluencehferjoinability test here. None
of the theorems in Dershowitz &al. (1988) or Bergstra & KId@®86) provides us with such a
confluence assumption, even if their proofs could do so ik bdditional effort. For practical
purposes, however, it is important that the joinabilityt sdkows us to assume a sufficient kind of
confluence for the condition terms. Therefore, all our jbifity notions provide us with sufficient
assumptions that allow us to easily establish the infeiégilmf the condition of a critical pair,
without knowing the proofs for the confluence criteria by thedhis applies for example, when
two rules with same left-hand side are meant to express adistgection that is established by
the condition of the one containing a condition literpEtrue” or “u=v” and the condition of the
other containing the condition literap*=false” or “u£v’. 11

For terminating reduction relations we carefully inveateywhether the joinability test can
be restricted by certain irreducibility requirements,. evgether the substitutions which must be
tested for fulfilling the conditions of critical pairs can teguired to be normalized, ¢f.14, esp.
Example 14.3. The restrictions on the infinite number of stigns for which the condition of
a critical pair must be tested for fulfiledness may be a ghed in practice. However, they do
not solve the principle problem that the number of subsbing is still infinite.

Another important point is that we weaken the severe régtnémposed on terminating systems
by Theorem 2 of Dershowitz &al. (1988) and on non-termimataystems by Theorem 3.5 of
Bergstra & Klop (1986), namely normality, which in our frawak can be considerably weak-
ened to the so-calleguasi-normality cf. our theorems 13.6 and 14.5.

Moreover, besides these two criteria for shallow confluemeepresent to our knowledge the
first criteria for level confluence that are not criteria fivaow confluence actuafly, cf. our
theorems 13.9 and 14.6.

Finally, we considerably improve the notion of “quasi oegrjoinability” of Wirth & Gram-
lich (1994a), generalizing the notion of “overlay joinatyll of Dershowitz &al. (1988). This
results in a stronger criterion with a simpler proof, &€ and Theorem 14.7.

Hn Definition 4.4 of Avenhaus & Ldr-Saenz (1994) the critical pair resulting from such two rulesalled
“infeasible” (in the case with p=true” and “p=false”). We will call it “complementary” instead (in both casesj,
Theorem 13.3.

1235 is the case with Suzuki &al. (1995).



Since our main interest is in positive/negative-condaiorule systems with two kinds of vari-
ables and two kinds of function symbols as presented in Viaih (1993) and Wirth & Gramlich
(19944a), the whole paper is based on this framework. We khaivthis is problematic because
the paper may also be of interest for readers interestedsiiygconditional rule systems with
one kind of variables and function symbols only: With theeptton of our generalization of nor-
mality to quasi-normality and our criteria for level confhoe, our results also have interesting
implications for this special case (which is subsumed byapgroach). Nevertheless we prefer
our more expressive framework for this presentation bex@ysovides us with more power for
most of our confluence criteria which is lost when restrgtihem to the standard framework.
Therefore in the following section we are going to repeaséhcesults of Wirth & Gramlich
(1994a) which are essential for this paper. Those readepsanéhonly interested in the implica-
tions of this paper for standard positive conditional rytetems with one kind of variables and
function symbols should try to read only the theorems priegskor pointed at if§ 15, which have
been supplied with independent proofs for allowing a diteaderstanding. The contents of the
other sections are explained by their titles. For a firstireadections 7 and 8 should only be
skimmed and its definitions looked up by need. Due to theirmapoas length, most of the proofs
have been put into D.

We conclude this section with a list on where in this paper nd fjeneralizations of known
theorems:

Parallel Closed + Left-Linear + Unconditional:
The corollary on page 815 in Huet (1980) as well as Corollagyi8 Toyama (1988) are
generalized by our theorems 13.6(1), 13.6(111), 13.6(1¥3.9(1), 13.9(lll), 13.9(1V), and
15.1(1).

No Critical Pairs + Left-Linear + Normal:
Theorem 3.5 in Bergstra & Klop (1986) as well as Theorem 1 insBewitz &al. (1988)
are generalized by our theorems 13.3, 13.4, 13.6, 15.1,%3d 1

Strongly Joinable + Strong Variable Restriction:
Lemma 3.2 of Huet (1980) as well as the translation of Thed@ehin Avenhaus & Becker
(1994) into our framework is generalized by our theorem§(@13.and 13.9(l1).

Shallow Joinable + Left-Linear + Normal + Terminating:
Theorem 2 in Dershowitz &al. (1988) is generalized by oupteens 14.5 and 15.4.

Overlay Joinable + Terminating:
Theorem 4 in Dershowitz &al. (1988) as well as Theorem 6.3 intV& Gramlich (1994a)
are generalized by our theorem 14.7.

Joinable + Variable Restriction + Terminating:
Theorem 7.18 in Wirth & Gramlich (1994a) is generalized by theorem 14.4.

Joinable + Decreasing:
Theorem 3.3 in Kaplan (1987), Theorem 4.2 in Kaplan (1988gcofem 3 in Dershowitz
&al. (1988), as well as Theorem 7.17 in Wirth & Gramlich (1894re generalized by our
theorems 14.2 and 14.4.



2 Positive/Negative-Conditional Rule Systems

We use &’ for the union of disjoint classes and ‘id’ for the identityriction. N’ denotes the set
of natural numbers and we defidé, :={ neN | 0#n }. For classe#, Bwe define: dorfA) :=

{a| 3b. (a,b)eA}; ran(A):={b| Ja. (a,b)cA}; B[A]:={b]| JacA. (a,b)eB}. Thisuse

of “[...]” should not be confused with our habit of statingdwlefinitions, lemmas, or theorems
(and their proofs &c.) in one, where the parts between ‘[' §rare optional and are meant to be
all included or all omitted. Furthermore, we ugeto denote the empty set as well as the empty
function or empty word.

2.1 Terms and Substitutions

Since our approach is based on the consequent syntactirctdmt of constructors, we have to
be quite explicit about terms and substitutions.

We will consider terms of fixed arity over many-sorted sigmes. Asignature sig= (F,S,a)
consists of an enumerable set of function symiipla finite set of sort§ (disjoint from[F), and a
computable arity-functiorn : F — S*™. For f € F. a(f) is the list of argument sorts augmented
by the sort of the result of; to ease reading we will sometimes inserta ‘between a nonempty
list of argument sorts and the result sort.cénstructor sub-signature of the signatui@ S, o)

is a signature cons (C,S,c1a) such that the sef is a decidable subset . C is called
the set ofconstructor symbojghe complementN = F\ C is called the set ofion-constructor
symbols

Example 2.1 (Signature with Constructor Sub-Signature)

C = {0,s,false,true,nil,cons} O(false) = bool
N = {—,mbp} a(true) bool

S = {nat,bool,list} a(nil) = list

O(cons) = natlist — list

a(0) = nat a(—) = natnat — nat
a(s) = nat — nat Oo(mbp) = natlist — bool

To reduce declaration effort, in all examples (unless dtatberwise) in this and the following
sections we will have only one sort’; *b’, ‘ c’, *d’, “¢’, and ‘0’ will always be constantss’, * p’,
‘f’, *g’, and ‘h” will always denote functions with one argument;*and ‘—’ take two arguments

in infix notation; W’, * X’, *Y’, * Z" are variables from ¥ (cf. below).

A variable-system for a signaturé,S,a) is anS-sorted family of decidable sets of variable
symbols which are mutually disjoint and disjoint frdfin By abuse of notation we will use the
symbol X’ for an S-sorted family to denote not only the famil{ = (Xs)scs itself, but also the
union of itsranges Uscs Xs. As the basis for our terms throughout the whole paper we assum
two fixed disjoint variable-systemss); of general variablesand \/- of constructor variables
such that ¥ s as well as ¥ s contain infinitely many elements for eask S.



7 (sig,VsicWV,) denotes théS-sorted family of all well-sortedvariable-mixed) termsver
‘sig/VsicwV,-', while g7 (sig) denotes théS-sorted family of all well-sortedground terms
over ‘sig’. Similarly, 7 (consVsicwV,-) denotes the&-sorted family of all(variable-mixed)
constructor terms 7 (consV.) denotes th&-sorted family of allpure constructor termsvhile
G 7 (cong denotes th&-sorted family of allconstructor ground termsTo avoid problems with
empty sorts, we assungeT (cong to have nonempty ranges only.

We define V= (Ves)(s)efsiceyxs and call it avariable-system for a signaturé, S, o) with
constructor sub-signatureWe use? (A) to denote theg[SIG, ¢ } xS-sorted family of variables
occurring in a structur@ (e.g. aterm or a set or list of terms). LetXXV be a variable-system. We
define 7 (X) = (T (X)¢ o) cs)c(siGe}xs BY GES): T (X)gigs =T (SigX)s and 7 (X) . 4=

7 (cons X, )s. To avoid confusion: Note thatr (X). € 7 (X)ggs for s€ S, whereas ¥ s
Vsigs = 0. Furthermore we write; 7 for 7 (0) as well asz for 7 (V). Our custom of reusing
the symbol of a family for the union of its ranges now allowsasvrite 7 as a shorthand for
7 (sig, VsigtV ).

For a ternmt € 7 we denote byros (t) theset of its positiongwhich are lists of positive natural
numbers), by /p the subterm of at positionp, and byt[ p < t’] the result of replacing/p with

t’ at positionp in t. We write p||q to express that neither p is a prefix of g, nor q a prefix of
p. For M C eos(t) with Vp,qeN. (p=qV p|/q) we denote by[p « t; | pcM] the result of
replacing, for eaclp € I, the subterm at positiop in the termt with the termt{o. tislinear if

Vp,geros(t). (t/p=t/qeV = p=q) .

The set ofsubstitutionsrom V to a{SIG, ¢ } xS-sorted family of setsT = (T¢s)(c,5c{siG 1 xS
is defined to be

SUBV,T):={0:V—=T|V(9s) €{SIG,C}xS.¥XxeVcs 0(X)€Tcs }.
Note thatVoesus(V,7).V(¢,8) €{SIG,C}xS.VteT¢s. tOET¢s.

Let E be a finite set of equations and X a finite subset of V. A suligituc
€ sus(V,7) is calleda unifier for E if Eo Cid. Such a unifier is callednost general
onX if for each unifierp for E there is some € s u3(V,7 ) such thatx](ot) = x| If E has
a unifier, then it also has a most general unifien X, denoted by mgiE, X).

3For this most general unifier we could, as usual, even requites = ¢ but not ¥ (o[v (E)]) € ¥ (E).



2.2 Relations

Let XCV. Let TC 7. ArelationRon 7 is called:

sort-invariant if V(t,t’)eR 3seS.t,t' € Tsigs

X-stable (w.r.t. substitution)f V(to,...,th_1) eR Voesus(V,7 (X)).
(too,...,th—10) €R

T-monotonicif V(t',t")eR Vte7.Vpe2ros(t).

JseS.t/p,t',t"€Tsics N t[p—t']t[p—t"]) eR
N tp—t]eT A tpe—t'eT

The subterm orderingds; on 7 is the V-stable and wellfounded ordering defined byt if
dpeeos(t’). t=t'/p. A termination-pairover sig/V is a paif>,r>) of V-stable, wellfounded
orderings on7 such that> is 7-monotonic, > C >, and > C >. Cf. Wirth & Gram-
lich (1994a) for further theoretical aspects of terminatpairs, and Geser (1994) for interesting
practical examples. For further details on orderings cfsbBewitz (1987).

The reflexive, symmetric, transitive, and reflexive & trainsi closure of a relation— will be
denoted by—, «——, -, and——, resp.14 Two termsv, w are calledjoinable w.r.t.— if v|w,
i.e. if v— o«——w. They arestrongly joinable w.rt— if v||w,i.e. if v—s0——wW—so0«—V.
— is called terminating below uif there is nos: N — dom(—) such thatu=sp A VieN.
S—S+1-

Note that this is actually an abuse of notation siA¢enow denotes the transitive closure dfs well as the
set of nonempty words ovér and sinceA* now denotes the reflexive & transitive closurefoés well as the set of
words overA. In our former papers we prefered to denote different thafifferent but now we have found back to
this standard abuse of notion for the sake of convenientatabiy, because the reader will easily find out what is
meant with any application with the exception of those inghaof of Lemma B.7.



2.3 The Reduction Relation

In the definition below we restrict our constructor rules émtain no non-constructor function
symbols, to be extra-variable free, and to contain no negéterals. This is important for our
approach (cf. Lemma 2.10, Lemma 2.11, and Lemma 2.12) anddshéways be kept in mind
when reading the following sections.

Definition 2.2 (Syntax of CRS)
coNDLIT (sig,V) is the set otondition literalsover the following predicate symbols on terms
from 7 (sig,VsicWV,): ‘=", * #’ (binary, symmetric, sort-invariant), and ‘Def’ (singmg. The
terms® of a list C of condition literals are calledondition termsand their set is denoted by
TERM S (C). A (positive/negative-fonditional rule systelilCRS R over sig/cons/V is a finite
subset of theset of rulesover sig/cons/V, which is defined By ( (I,r), C ) |
JseS. |,re 7 (sig, VsigWVe ) )
N Ce(conDLiT(sigV))*
| € 7(consVsigwV,) =
{r}UTERM S(C) C 7 (consVsigwV,)

A V({{rtuTegams(C)) € V(1)

A VLinC.Vu,Vv. L# (u#£v)
Arule ((I,r),0) with an empty condition will be writteh=r. Note thatl=r differs fromr=lI
whenever the equation is used as a reduction rule. A (lle),C) with conditionC will be
written |=r<——C. We calll theleft-hand sideandr theright-hand sideof the rulel=r——C. A
rule is said to béeft-linear (or elseright-linear) if its left-hand (or else right-hand) side is a linear
term. A rulel=r——C is said to beextra-variable freeif ¥ ({r}UTexMms(C)) C v (I). The
whole CRS R is said to have one of these properties if eacls ofiliés has it. A rulé=r—C
is called aconstructor ruleif its left-hand side is a constructor term, i.ec 7 (consVsicWV, ).

In the following example we define the subtraction operatiorpartially (due to a non-complete
defining case distinction), whereas we define a memberqatdinbp’ totally on the constructor
ground terms.

Example 2.3 (continuing Example 2.1)
LetX,y € V¢ nat @andl € Vi jist.
Ros: x—0 = X mbp(X, nil) = false
s(X)—s(y) = x—y | mbp(x,cons(y,l)) = true — x=y
mbp(X,cons(y,l)) = mbp(X,l) «— XAy

15To avoid misunderstanding: For a condition list, sag=t, u#v, Defw ”, we mean the top level terms
s,t,u,v,w € 7 (sig,VsicWV, ), but neither their proper subterms nor the literadst”, “ uv’, “Def w” themselves.



Definition 2.4 (Fulfilledness)
Alist D € con £ 17 (sig,X)" of condition literals is said to bilfilled w.r.t. some relation—
if
(((u=v)inD) = ulv )
vuveT.| A (((Defu)inD) = 3degT(cony. u——Q)
A (((uAv)inD) = 30,0€ g7 (cony. u——0G{0—Vv)

To avoid a non-monotonic behaviour of our negative condgjave define our reduction relation
—rx Via adouble closure: First we defire-, , by using the constructor rules only. Then we

defihe—hxww via a second closure including all rules.

Definition 2.5 (—g )
Let R be a CRS over sig/cons/V. LetX/. Let < denote the ordering on the ordinal numbers. For
B < wt+wandp € N7 the reduction relations,—>m(_B and— on 7 (sig, X) are inductively
defined as follows: Fas,t € 7 (sig, X):
S—rxpt If FPEPOS(S). Syt
ForpeNi: —qy,,:=0. ForieN;ste 7(sigX):
| € 7 (consVsigWV,)
. l,r),C)eR AN s/p=Ilo
S—rxisipl 3< (()'(ES)ZIB)(V,T(X)) > 1A t/: g p«ro]
A Cois fulfilled w.rt. —p

t if

RX.B.p

—rxwep = UieN — R xip Fori € N; st € 7(sig X): s—

((1,r),C)eR > s/p=Ilo

ot v 3 A (= sp—ro]
g gesus(V,7 (X)) A Cais fulfilled w.rt. —

R, X,w+i+1,p

R, X, i

—_—, = —

R X,0+w,p = UieN R, X,0+i,p? RX * RX,00+w *

We will drop “R, X" in —, and—, , &c. when referring to some fixed,X.

Corollary 2.6

—rxe IS the minimum (w.rt. set-inclusion) of all relations- on 7 satisfying for all st €
0 205(S) | € 7 (consVsigWV,)

T (sigX): s~ t if 3< ((1,r),C) eR > A f/—ps[ZIiro]
gesus(V, 7 (X)) _oP

A Cais fulfilled w.r.t. ~

Lemma 2.7 Let §,, be the setof all relations~ on7T satisfying
1. (~ N(g7(congx7)) C —,, aswellas

2. forall sit € 7 (sig, X):
pePOS(S) s/p=Ilo
S~ if 3< ((I,r),C)eR > N t=s[p«ro]
oesus(V,7 (X)) A Cois fulfilled w.r.t. ~~

Now — is the minimum (w.r.t. set-inclusion) in § and § , is closed under nonempty inter-
section. ' '
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Corollary 2.8 (Monotonicity of — w.r.t. Replacement)
—rxp (for B = w+w) and —, are 7 (sig,X)-monotonic as well as*—>R’X [T]-monotonic for
eachT C 7 (sig, X).

Corollary 2.9 (Stability of —)
—rxg (for B = w+w), —x, and their respective fulfilledness-predicates Arstable.

Lemma2.10 For X CY CV:
vneN. Vse 7 (cons X). Vt. (sLR’Yt = (Sryal € T(consX))>

Lemma2.11 | N (7 (consVsigwV,) x T (consVsigwVe)) C |,

Lemma 2.12 (Monotonicity of —, and of Fulfilledness w.r.t. —; in [3)
ForB<y=<wtw —, C —, C —; andif Cis fulfilled w.rt.—, and
W= PV VUV ((u#v)isnotin C) , then Cis fulfilled w.rt— and w.rt.—.

Note that monotonicity of fulfiledness is not given in gealdior 3<w and a negative literal
which may become invalid during the growth of the reductielation on constructor terms.

For the proofs cf. Wirth & Gramlich (1994a).

2.4 The Parallel Reduction Relation

The following relation is essential for sophisticated gility notions as well as for most of our
proofs:

Definition 2.13 (Parallel Reduction)
For 3 < w+w we define thgarallel reduction relation-+—rx s 0N 7 (sig, X):

S—-rxpt if 3N CP0O5(S). S+-rxpnt, Where
vp,qeM. ( p=q Vv pllq)

S—t-rxpnt if A t=gp—t/p|pen]
A VPETL S/p—pyot/P

*
Corollary 2.14  VB= W+ —y, o C ~rxp C ——pyp-
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3 Confluence

The following notions and lemmas have become folklore, .cf. Klop (1980) or Huet (1980) for
more information.

Definition 3.1 (Commutation and Confluence)
Two relations—, and—, are commutingif

Vs, to, t1. ( to—oS—t1 = to—— 0t >
—, and—, are locally commutingif

Vs, to, 1. ( toe—S—t1 = to——, 0ty )
—, strongly commutes over—, if

WS to 1 (to—pS—ytt = to— 0t ).

k
_— _— _—
S 1 t1 S n t1 S : tg
*lo *lo lo *J/o lo *lo
* * -
o ——F——>o° o ————>o° o —F>o
—, and—, are —, and—, are —, strongly com-
commuting locally commuting mutes over—,

A single relation— is called[locally] confluent if — and— are [locally] commuting. It is
calledstrongly confluentif — strongly commutes over—. It is calledconfluent below uif
YW, W ((Vee—U——wW = V|w).

Lemma 3.2 (Generalized Newman Lemma)

If —, and—, are commuting, then they are locally commuting, too.

Furthermore, if —, U —, is terminating or if—, or —, is transitive, then also the converse
is true, i.e.—, and —, are commuting iff they are locally commuting.

Lemma 3.3
The following three properties are logically equivalent:

1. —, strongly commutes over—s,.
2. —, strongly commutes over—,.

3. —, strongly commutes over—,.
Moreover, each of them implies that-, and —, are commuting.

Lemma 3.4 (Church-Rosser)
Assume that— is confluent. Now:—— C |.
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Besides strong confluence there are two other importanioversf strengthened confluence for
conditional rule systems. They are based on the depth ofeithection steps, i.e. on tH of
— X" Therefore they actually are properties abRinstead of—, unless one considers
—rx 0 be the family (—, ;)p=<wrw- These two strengthened versions of confluence are
shallow confluencand level confluence Their generalizations to our generalized framework
here are called Bhallow confluencéor the closure w.r.t. our constructor rules, as welluas
shallow confluencandw-level confluencéor our second closure. Shallow and level confluence
are interesting: On the on hand, they provide us with stroimgieiction hypotheses for the proofs
of our confluence criteria. On the other hand, the strongefiwence properties may be essential
for certain kinds of reasoning with the specification of aeralystem; for level joinability cf.
Middeldorp & Hamoen (1994).

Before we define our notions of shallow and level confluencepresent some operations on
ordinal numbers:

Definition 3.5 (4, +,, ~)
Leta € {0,w}. Let ‘+’ be the addition of ordinal numbers.
Define 4, * +,’, and ‘=’ for ng,ny < o

0+,n1 = m

no+a0 = Ng

(No+1)+, (Mm+1) = a+not+l4+n+1
(no+ng)=ng ‘= g

No—(Np+ny) =0

Note that the subscript of the operatey,’ is chosen to remind that it adds an extodo the left
if both arguments are different from 0. Moreover, note tRak |+, =nxn1+. ‘=’ iS sometimes
calledmonus

Since we want to use shallow and level confluence also foritating reduction relations we
have to parameterize them w.r.t. wellfounded orderings. kéas before be the wellordering of
the ordinal numbers. Let*’ be some wellfounded ordering an. We denote the lexicographic
combination of- andr> by * >, its reverse by ‘<<, and the reflexive closure of the latter by

<<,
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Definition 3.6 (0-Shallow Confluent /w-Shallow Confluent )
Leta € {0,w}. LetB < w+tw. Letse 7.
R, X is said to bex-shallow confluent up t8 and s in< if

(no+anlaU)<_<(BaS))

* 5
Vo, Ny < . VU, V, W. ( N Ve —gxarng U Rxasn W
*

*
= V""Rrxatn © RX,a+ng

W

R, X is said to bex-shallow confluent up tg if
R, X is a-shallow confluent up t@ and® sfor allse 7.
R, X is said to bexa-shallow confluentf R, X is a-shallow confluent up to+a.

Definition 3.7 (w-Level Confluent)

LetB < w. Letse 7. R, X is said to baw-level confluent up t@ and s in< if
( max{ng,n1}, u ) <<1( B, s)

Vo, Ny < . YU, V, W. AV i YR x orm W

= V*L R, X,c+max{ng,nq } w

R, X is said to bew-level confluent up t@ if
R, X is w-level confluent up t@ and® sforallse 7.
R, X is said to bew-level confluentif R, X is w-level confluent up ta.

Note thatw-level andw-shallow confluence specialize to the standard definitiblevel and shal-

low confluence, resp., for the case that all symbols are dersil to be non-constructor symbols

(wheren becomes the standard depth-eby, .,
the standard definition of shallow confluence for the castathaymbols are considered to be
constructor symbols.

Corollary 3.8 ( w-Shallow Confluent = w-Level Confluent = Confluent)
If R,X is w-shallow confluent, theR, X is w-level confluent.
If R,X is w-level confluent, ther—, is confluent.

Corollary 3.9

R, X is w-shallow confluent up to iff
R, X is w-level confluent up tO iff
—rx IS CONfluent.

16Note that reference to a specialbecomes irrelevant here

); and that 0-shallow confluence specializes to
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4 Critical Peaks

Critical peaks describe those possible sources of nonweamde that directly arise from the syn-
tax of the given rule system. While the so-calletiable overlapsan hardly be approached via
syntactic means, the critical peaks describe the nonhblariaverlaps resulting from an instan-
tiated left-hand side being subterm of an instantiatedHaftd side at a non-variable position.
Our critical peaks capture more information than the stechddtical pairs: Besides the pair,

they contain the peak term and its overlap position. Funtioee, each element of the pair is
augmented with the condition that must be fulfilled for enapthe reduction step down from the
peak term, and with a bit indicating whether the rule applied a non-constructor rule or not.

Definition 4.1 (Critical Peak)

If the left-hand side of a rulég=rqo«—Cy and

the subterm at non-variable (ile/p ¢ V) positionp € 205 (I1)

of the left-hand side of a rulé;=r1«+—C;

(assuming® (Ip=ro«—Co) N ¥ (l3=r1+—C1) = 0 w.l.o.g1’) are unifiable by

0 =mgu {(lo,l1/p)}, ¥ (lo=ro=—Co,l1=r1—Cy)),

0 iflj € 7(consVsigwV,)
1 otherwise ’
and if the resulting critical pair is non-trivial (i.&.[ p < ro|o # r10), then

( (I1[p<ro], Co, No), (r1, C1, A1), 11, 0, p)
is a (non-trivial)critical peak (of the forn{/Ag,/A1)) consisting of the conditional critical pair, its
peak termy, the most general unifier, and the overlap positiop.

if (fori<2) A=

For convenience we usually identify this critical peak withinstantiated version

( (I[p+rolo, Coo, No), (r10, C10, A1), 110, p)
which should not lead to confusion because the tuple isshort

The set of all critical peaks of a CRS R is denoted byRP

Example 4.2 (continuing Example 2.3)

CP(R2.3) contains two critical peaks, namely (in the instantiatedios)
((true,(x=y),1), (mbp(x1), (x#Y),1), mbp(x,cons(y,l)), 0 ) and

( (mbp(x,1),(xy),1), (true,(x=Yy),1), mbp(x,cons(y,l)), 0 )

which we would (partially) display as

mbp (X, cons(y,l)) ——= mbp(X,I) mbp(X, cons(y,l)) ———— true
y@ |0
true mbp (X, )

Note that we omit the position at the arrow to the right beeaitiss always0. Furthermore,
note that the two critical peaks are different although tlo@k similar. Namely, the one is the
symmetric overlay (cf. below) of the other.

"To achieve this, le€ € sus(V,V) be a bijection with &[4 (Ilp=rg«—Co)] N ¥ (I3=r1+—C;) = ®0 and then
replacelg=ro——Cp with (lo=ro<—Cp)§.
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5 Basic Forms of Joinability of Critical Peaks

A critical peak

((to,Do,No), (t1,D1,A1), £, 0, p)

is joinable w.r.t.R, X (for XCV) if Véesus(V,7 (X)).
( ((DoD1)o¢ fulfilled w.rt. —, ) = 1000 | 5,100 ).

Itis anoverlay if p=0. Itis anon-overlayif p+#0.
It is overlay joinable w.r.tR, X if itis joinable w.r.t. R X and is an overlay.

In the following two definitionstrue’ and ‘false’ denote two arbitrary irreducible ground terms.
Their special names have only been chosen to make cleartthiggan behind.

The above critical peak isomplementary w.r.R, X if
. (u=v) occurs inD;o
Ju,veT. di<2 ( A (u#£v) occurs inD1_j0 )
(p=true) occurs inDjo
vV 3peT. Jtrue,false€ g 7\dom(—r, ). Ji < 2. ( A (p=false) occurs inDlio)
A true#false
It is weakly complementary w.rRR, X if
(u=v) and
AUVET. < (u#£v) occur in(DgD1)o >
(p=true) and
vV  dpeT. 3true,falsec g 7\dom(—, ). (p=false) occur in(DgD1)0
' A true+#false

It is strongly joinable w.rtR, X if Voéecsus(V,7 (X)).
( ((DoD1)o¢ fulfilled w.r.t. — ) = too ], t100 ).

In the following definition A’ is an arbitrary function from positions to sets of terms.

The above critical peak is-weakly joinable w.r.tR, X [besides A]if Véesus(V,7 (X)).
(DoD1)0o¢ fulfilled w.r.t. —

vu. ( uatod = —, is confluent below )

VxeV. x gZdom(—mﬁx) = toO'(I)\LR.xth'(I)

( p#0 = vxev (f). xap ¢dom(—,) ) '

fod ZA(p) |

> > >

>

[

Note that>>-weak joinability adds several useful features to the sirggindition of joinability,
forming a conjunctive condition list. The first new featutwas to assume confluence below
all terms that are strictly smaller than the peak term. Tlieweng features allow us to assume
some irreducibilities for the joinability test, where thptional one is an interface that is to be
specified by the confluence criteria using it, cf. our the@dwh.2 and 14.4. For a demonstration
of the usefulness of these additional features cf. Examplg. 1

Lemma 5.1 (Joinability of Critical Peaks is Necessary for Cafluence)
If —p is confluent, then all critical peaks i@P(R) are joinable w.r.tR, X.
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6 Basic Forms of Shallow and Level Joinability

Just like confluence and strong confluence, also level antbgheonfluence have their corre-
sponding joinability notion. Sorry to say, they are prettynplicated, however.

Definition 6.1 (0-Shallow Joinable /w-Shallow Joinable )
Leta € {O,w}. LetB < w+a. Letse 7. A critical peak((tp,Do,Ao), (t1,D1,A1), f, 0, p)
is a-shallow joinable up t@ and s w.r.tR, X and < [besides A] if
Voesus(V,7(X)). Vng,ny < w.
( no+,n1, fod ) << (B, s)

( a=0 = Aj=0<n; )
AVi<2 | A (a=w= Ai=n)
A Dio¢ fulfilled wort. — o o)

V(8 8 )<<( nokny, 00 ). (
vxeV. X¢ g don‘(—)R,X,qumin{nO.nl})
( p#@ = \V/XG’V(t).XO'(I) gdon(—>R,X,a+min{no,nl}) )

(A fod ZA(p,min{ng,n1}) |
= ( too-q)L)R,X,(Hnl O(LR,X.O(JrnOth-(I)

R, X is a-shallow confluent
up tod ands' in <

> > >

It is calleda-shallow joinable up t@ w.r.t. R, X and < [besides A] if
it is a-shallow joinable up t@® andsw.r.t. R, X and <1 [besidesA] for all s€ 7.
It is calleda-shallow joinable w.r.tR, X and < [besides A] if
it is a-shallow joinable up t@o+-a w.r.t. R X and < [besidesA].
When< is not specified, we tacitly assume it to fig,.

Definition 6.2 (w-Level Joinable)
LetB < w. Letse 7. A critical peak((tp,Do,No), (t1,D1,A1), f, 0, p)
is w-level joinable up td3 and s w.r.tR, X and < [besides A]if
Voesus(V,7(X)). Vng,n1 < w.

( max{no,n}, fod ) << (B, s)

Vi <2 N =n
AIES A Diog tulfilled wrt. —
- R, X is w-level confluent

v( 6,5’)<<1(max{no,n1},to¢).<upt06ands,in<] >
YxeV. xb ¢ dom( —:R’X,Mmax{noml} )
((P#0 = VxeV (). X0 ZdOM i iy )
(A fod ZA(p,max{no,ni}) |
= ( tOo-q)*LR,X,co—»—max{nOA,n]_}tlo-q)
It is calledw-level joinable up td3 w.r.t. R, X and < [besides A]if

it is w-level joinable up td3 andsw.r.t. R, X and < [besidesA] for all s€ 7.
It is calledw-level joinable w.r.tR, X and < [besides A] if

it is w-level joinable up tavw.r.t. R X and < [besidesA].

When< is not specified, we tacitly assume it to kig;.

> > >

>
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Please notice the generic structure of these and the faoifpwefinitions that makes them ac-
tually less complicated than they look like. While the carsabns of their implications should
be clear, the elements of their conjunctive condition listse the following purposes: The first
just parameterizes the notion hands. The second requires the appropriate fulfilledness of
the conditions of the critical peak, wher&; <n; allows us to assume 4n; when the term

tj is generated by a non-constructor rule which is importamtesiotherwise the conclusion is
very unlikely to be fulfilled, cf. also below. The third allews to assume a certain confluence
property which can be applied when checking the fulfillednafsthe conditions. E.g., this con-
dition sometimes implies that the fulfilledness assumgtinithe second element for= 0" and
“i=1" are contradictory. An example for this are the criticabke of Example 4.2 which are
both w-level andw-shallow confluent since the condition list can never belfetfi But how

do we know that? Suppose thdk=y)¢ is fulfilled w.r.t. Rt (-1 and that (x£y)¢ is

fulfilled w.rt. —, . ,.,)- Then there are,V € g7 (cong such thatx¢|., .. .,y and

*

X¢—

Rsxs(*”(“l'*l)OiR.X.wr(nl'fl)OLR-X-W(nl*l)yq)' By x,yeV. we get x¢,yp €7 (consV,-) and
thus by Lemma 2.10 we gekdlqy Yo and xp——, 0, Ve, Yb. This contradicts
confluence of—, . and then by Corollary 3.9 it also contradictslevel andw-shallow con-
fluence up to 0. However, we are allowed to assume this sindenaw 0~ max{ng,n;} and

0 < no+,n1 duetoNg=A1=1 (andA; <n;). A more general argumentation of this kind proves
theorems 13.3, 13.4, and 15.3, which are confluence crftarrale systems with complementary
critical peaks. Finally, the following items in the conjuive condition lists allow us to assume
some irreducibilities similar to those for-weak joinability but less powerful.

Lemma 6.3 (@-Shallow Joinability is Necessary fora-Shallow Confluence)
Leta € {O,w}. If R, X is a-shallow confluent [up t@ [and s in<]], then
all critical peaks inCP(R) are a-shallow joinable [up td3 [and s]] w.r.t. R, X [[and <]].

Lemma 6.4 (-Level Joinability is Necessary forw-Level Confluence)
If R,X is w-level confluent [up t@ [and s in<]], then
all critical peaks inCP(R) are w-level joinable [up tof [and s]] w.r.t. R, X [[and <]].



18

7 Sophisticated Forms of Shallow Joinability

For a first reading this section should only be skimmed andefmitions looked up by need. At
least§ 12 should be read befofé.

The w-shallow joinability notions of this section are only nesay for understanding the
sophisticated Theorem 13.6 and its interrelation with ttengples in the following sections, but
not for the important practical consequence of this theoreamely Theorem 13.3, which is easy
to understand and sufficient for many practical applicatidrhe 0-shallow joinability notions are
needed for Theorem 15.1 only.

The following notion will be applied for non-overlays of tifierms (1,0) and(1,1) for “a=w’
and of the form(0,0) for “a =0

Definition 7.1 ( 0-Shallow Parallel Closed /w-Shallow Parallel Closed )
Leta € {O,w}. LetB < w+a. A critical peak ((to,Do,No), (t1,D1,A1), f, p) is a-shallow
parallel closed up t w.rt. R, X if Vpesus(V,7(X)).Vno,n < w.

O<ngp>=m
A Mo+, <P

(a=0 = Aj=0<n;)
AVi<2 | A (a=w= Ai=n)
A Di¢ fulfilled wrt. —p Loy

A Vd<no+,n1. R, X is a-shallow confluent up td

< ( n=0 = t0¢—H—>Rﬁx,at1¢ ) )
=~ | A

* *
tod RX.a+n1 O 7R X ot (ng <) © R,X,ath)
It is calleda-shallow parallel closed w.r.R, X if
it is a-shallow parallel closed up +a w.r.t. R X.

The following notion will be applied for critical peaks ofélorms(0,1) and(1,1) for “a =w’
and of the form(0,0) for “a=0":

Definition 7.2 (0-Shallow / w-Shallow [Noisy] Parallel Joinable)
Leta € {O,w}. LetB < w+a. A critical peak ((to,Do,No), (t1,D1,A1), f, p) is a-shallow
[noisy] parallel joinable up toB w.r.t. R, X if Vpesus(V,7(X)).Vng,ny < w.

no=<n;>=0
A ot 2B

(a=0 = Aj=0<n;)
AN VIi<2 | A (a:w:>/\ijni)
A Di¢ fulfilled wort. —p ooy

A Yd<np+,ni. R, Xis a-shallow confluent up td

* *
= t0¢ R X a0 © —>R,X,a[+(nl'fl)] © <—R,)(,ownot]-q)

It is calleda-shallow[noisy] parallel joinable w.rt.R, X if
it is a-shallow [noisy] parallel joinable up t@+a w.r.t. R X.

18We put this section here because we do not want to scatteatmurdiscussion with a big definition section and
because we do not want to use the (for a first reading not eaBgaoinability labels in the boxes of the examples in
the following sections before defining them.
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Note thata-shallow parallel closedness specializes to the standzfiditibn of parallel closed-
ness of Huet (1980) for the case that all symbols are coresiderbe non-constructor symbols in
case ofa=w (or else constructor symbols in casencf 0) and the rule system is unconditional
(since then—, , =0and—, .., =—). Similarly, a-shallow parallel joinability special-
izes for these cases to the joinability required for oveslay Toyama (1988). Moreover, note
that the notions whose names end with “closed” are alwaysctesl to “0<ng > n;”, whereas
those whose names end with “joinable” are always restriti€tio < n; > 0”. Finally, note that
some notions have “noisy” variants which are weaker sineg #llow some “noise”, i.e. some
reduction on a smaller depth than the preceding reductep'3t

The following notion will be applied for non-overlays of tfierms (1,0) and(1,1) for “a=w"
and of the form(0,0) for “a =0

Definition 7.3 (0-Shallow / w-Shallow [Noisy] Anti-Closed )
Leta € {O,w}. LetB =< w+a. A critical peak ((to,Do,No), (t1,D1,A1), f, p) is a-shallow
[noisy] anti-closed up t@ w.r.t. R, X if Vpesus(V,7(X)).Vno,ny < w.

O<ngp>=m
A o+, <P

( a=0 = Ai=0<n; )
AVi<2 | A (a=w = A=Zn)
A Di¢ fulfilled wort. — o ooy

A Vd<no+,n1. R, X is a-shallow confluent up td

* * =

( n =0 = tod RX.a © RX.a[+(ng=1)] ° R,X,o(+not1¢ )
* * = *

N t0¢ R,X,u+nlo R,X,a[+(n0'—1)]o R.X,cx+noo R,X,uth)

=

It is calleda-shallow[noisy] anti-closed w.r.tR, X if
it is a-shallow [noisy] anti-closed up t@+a w.r.t. R X.

The following notion will be applied for critical peaks ofdtform (0,1) and(1,1) for “a=w"
and of the form(0,0) for “a =0

Definition 7.4 (0-Shallow / w-Shallow [Noisy] Strongly Joinable )
Leta € {0,w}. LetB < w+a. A critical peak ((tp,Do,/No), (t1,D1,A1), f, p) is a-shallow
[noisy] strongly joinable up t w.rt. R, X if Véesus(V,7 (X)). Vho,n1 < w.

no=<n;>=0
A Moty =P

(a=0 = Aj=0<n;)
AYi<2 | A (a=w= A=n)
A Di¢ fulfilled w.r.t. X1

A Vd=<no+,n1. R, X is a-shallow confluent up td

= * *
N ( =0 = t0¢—>R,X,cx+nl © T RXalH(ng 1)) © <—R,X,ort]-q) ) )

At * = * * t
0¢ R.X,a © RX,a+nq o R, X,a[+(np~1)] © R,X,a+ng 1¢

It is calleda-shallow[noisy] strongly joinable w.r.tR, X if
it is a-shallow [noisy] strongly joinable up t@+a w.r.t. R X.

19The name for the notion was inspired by Oostrom (1994a).
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The following notion will be applied for non-overlays of therms (1,0) and(1,1):

Definition 7.5 (w-Shallow Closed)

Let B < w+w. A critical peak ((to,Do,No), (t1,D1,A1), {, p) is w-shallow closed up t@ w.r.t.

RX if Voéesus(V,7(X)).Vng,ny < w.
O<np>=n

A Not,n1 =B

A Vi< 2 A = nj
A A Dig fulfilled Wt — i e
A Vd<no+,N. R, Xis w-shallow confluent up td

- ( n=0 = t0¢;R,x,mOLR.X,wt1¢ ) >

= * *
A tod RX.wtm © T RXwng o) ©° rRxo!l10

It is calledw-shallow closed w.r.iR, X if
it is w-shallow closed up to+ww.r.t. R X.

The following notion will be applied for critical peaks ofaliorms(0,1) and(1,1):

Definition 7.6 (w-Shallow [Noisy] Weak Parallel Joinable)

Let B < w+w. A critical peak ((to, Do, No), (t1,D1,A1), £, p) is w-shallow[noisy weak parallel

joinable up toBw.rt. R, X if Voesus(V,7 (X)).Vnp,n1 < w.
no=ni>=0

A Not,m =B

Vi <2 N =<n
NS UA Dig fulfilled Wrt — oo
A Vd<np+, N1 R,Xis w-shallow confluent up td

*
= t0¢ "RX,w © RX.wtng © RX,w[+(ny~1)] © R.X.w+n0t1¢

It is calledw-shallow[noisy] weak parallel joinable w.r.tR, X if
it is w-shallow [noisy] weak parallel joinable up to+ww.r.t. R X.

The following are corollaries of Corollary 2.14:

Corollary 7.7 Leta € {0,w}. Now w.r.t.R, X the following holds:

If a critical peak isw-shallow[noisy] parallel joinable up to < w+w,
then it isw-shallow[noisy| weak parallel joinable up tf.

If a critical peak isw-shallow[noisy] strongly joinable up t@ < w+w,
then it isw-shallow[noisy| weak parallel joinable up tf.

If a critical peak isa-shallow[noisy] strongly joinable up t@ < w,
then it isa-shallow[noisy] parallel joinable up toB.

Corollary 7.8 Leta € {0,w}. Letp < w+a. Now w.r.t.R, X the following holds:
If a critical peak isa-shallow parallel closed or (foo = w) a-shallow closed up t@, then it is
a-shallow[noisy] anti-closed up tg.



Overview over sophisticated forms ofo-Shallow . .. of ((tg,Do,Ao), (t1,D1,A1), {, p)
“Property 1” A no+,n1 < B

Generally assumed condition fbre s u 3 (V, 7 (X)); np,N1 < w:

A Vi<2.

(A =m A Dig fulfiled wrt. — 0 )

A Vd<np+, Ni. R,Xis w-shallow confluent up td
Required conclusion (P := Parallel; C := Closed; N := Noisy; Joinable; W := Weak; A := Anti-; S := Strongly):

Property 1 :=.. O<ng>=ng n=<n >0
Incase of ... n=0 ng >0
t1¢ t1¢ t1¢
PC PC *J/oo [N]PJ *J/mno
* *
t t 1l t 1l
ob —i—>° A N e T A N ]
t19 t1 t1¢
C *lw C *J/w [N]WPJ *J/C\H—no
= = * * I *
top ——>° W — = o ° | W= o ° o1l
t1¢
t1¢ *|0
=|W+nNo © t1¢
[NJAC o [NJAC =|w+no [N]SJ *J/ﬁo—kno
) t * = *
* e | of (No#0)w ° w-+ng ° w[+(nm=1)] °
tod — > O *|0[+(np=-1)]

T
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8 Sophisticated Forms of Level Joinability

For a first reading this section should only be skimmed andefmitions looked up by need. At
least§ 7 should be read before.

This section is only necessary for understanding the sbgdiied Theorem 13.9 and its interrela-
tion with the examples in the following sections, but nottloe easy to understand consequence
of this theorem, namely Theorem 13.4.

Having completed our special notions for shallow conflugwee now present some for level
confluence.

The following notion will be applied for non-overlays of therm (1,1):

Definition 8.1 (w-Level Parallel Closed)
Let B < w. A critical peak ((to, Do,No), (t1,D1,A1), f, p) is
w-level parallel closed up t@ w.rt. R, X if
Voéesus(V,7(X)).Vn< w.

0<n
A n=xp

A Vi< Ai =<n
'S UA Dig fulfilled wort. — gy oy

A Vd=<n.R,Xis w-level confluent up t@
A R, Xis w-shallow confluent up to

= t0¢_H_>RXC0+nOHRXwO%Rth1¢

It is calledw-level parallel closed w.r.tR, X if
it is w-level parallel closed up t@ w.r.t. R X.

The following notion will be applied for critical peaks ofélorm(1,1):

Definition 8.2 (w-Level Parallel Joinable)

Let B < w. A critical peak ((to, Do,Ao), (t1,D1,A1), {, p) is
w-level parallel joinable up t@ w.rt. R, X if
Véesus(V,7(X)).Vn< w.

n>-0

n=<p

. Ai =<n
=<2 ( A Did fulfilled Wrt. — ooy )
vd<n. R, X is w-level confluent up t&
R, X is w-shallow confluent up to

* *
= tod—+-Rrxwmn© "RX,0 © ¥ R,x,w+ntl¢

> > > >

It is calledw-level parallel joinable w.r.tR, X if
it is w-level parallel joinable up toow.r.t. R X.
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The following notion will be applied for non-overlays of therm (1,1):

Definition 8.3 (w-Level Anti-Closed)

Let B < w. A critical peak ((to, Do, Ao), (t1,D1,A1), £, p)
Is w-level anti-closed up t@ w.r.t. R, X if
Voesus(V,7(X)).Vn< w.

0<n

n=<p

>

>

. Ai=n
=<2 < A Dit fulfiled Wt — oo )
A V¥3=<n. R, X is wlevel confluent up t&®
R, X is w-shallow confluent up to

t * * * t
= tod RX.0tn © T RX 0T RX, 0T RX 1$

It is calledw-level anti-closed w.r.iR, X if
it is w-level anti-closed up toow.r.t. R X.

The following notion will be applied for critical peaks ofélorm(1,1):

Definition 8.4 (w-Level Strongly Joinable)
Let B < w. A critical peak ((to, Do, o), (t1,D1,A1), £, p)
Is w-level strongly joinable up t@ w.r.t. R, X if
Voesus(V,7(X)).Vn<w.

n>0
A n=p

. Ai=n
Avi=2 ( A Dig fulfiled wirt. — o )
A Vd=<n.R,Xis w-level confluent up t@
A R, Xis w-shallow confluent up to

*
= tod RX,0° RX,wnC T RX,w © R.X.w+nt1¢

It is calledw-level strongly joinable w.r.iR, X if
it is w-level strongly joinable up toow.r.t. R X.
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The following notion will be applied for non-overlays of therm (1,1):

Definition 8.5 (w-Level Closed)
Let B < w. A critical peak ((to, Do,Ao), (t1,D1,A1), f, p)
is w-level closed up t@ w.r.t. R, X if
Voesus(V,7(X)).Vn< w.

0<n
A n=xp

. Ai=n
A=z ( A Dig fulfiled wir.t. —s .y >
A Vd=<n.R,Xis w-level confluent up t@
A R, Xis w-shallow confluent up to

= toq);

*
RX,wn© T RX,0 © ¢ R,Xﬁmth)

It is calledw-level closed w.r.tR, X if
it is w-level closed up t@ow.r.t. R X.

The following notion will be applied for critical peaks ofélorm(1,1):

Definition 8.6 (w-Level Weak Parallel Joinable)

Let B < w. A critical peak ((to, Do,Ao), (t1,D1,A1), {, p)
is w-level weak parallel joinable up t w.r.t. R, X if
Voesus(V,7(X)).Vn< w.

n>0

n=p

. Ai=n
=2 ( A Dig fulfiled wir.t. —s >
V8<n. R, X is w-level confluent up t@
R, X is w-shallow confluent up to

* * *
= tod RXw © T RX0+n © TRy O ¢ R,X,u)+nt1¢

> > > >

It is calledw-level weak parallel joinable w.r.R, X if
it is w-level weak parallel joinable up @ w.r.t. R X.




Overview over sophisticated forms ofo-Level ... of ((tg, Do, Ao), (t1,D1,A1), , p)

O<n A Nn=<p
A Vi<2 (Ai=xn A Di¢ fulfilled w.rt. —
A Vd=<n.R,Xis wlevel confluent up t@
A R, Xis w-shallow confluent up to

Generally assumed condition fpre s u3 (V, 7 (X)); n< w: RxornD )

Required conclusion (P := Parallel; C := Closed; J := Joimal := Weak; A := Anti-; S := Strongly):

t1¢p t1¢p
PC *l/m PJ *J/Mn
* *
toh ——> o : tob ———> o °
w+n @ w+n @
t1¢p t1¢p
C *l/w WPJ *J/ﬁH—n
- * * ' *
tot win ® ° ot ® ° mlJlrn ° ® °
t1¢
*|w
O th)
AC  =|w+n SJ *J/C\H—n
* = *
o tod ” o o o 5 )
*| 0
¢ *
o o °

T4
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9 Quasi Overlay Joinability

According to Theorem 4 of Dershowitz &al. (1988), a termingtpositive conditional rule sys-
tem is confluent if it is overlay joinable. The remainder agtbection is only relevant for Theo-
rem 14.7 and even this can be applied without knowing abequasi overlay joinability when
one just knows:

Lemma 9.1 ( Overlay Joinable = t>-Quasi Overlay Joinable )
W.r.t.R, X the following holds for each critical peak:
If it is overlay joinable, then it is>-quasi overlay joinable.

In Wirth & Gramlich (1994a) we introduced the following defian:
A critical peak((tg, Do, Ao), (t1,D1,A1), f, 0, p) is quasi overlay joinable w.r.R, X if

( (DoD1)a¢ fulfilled w.rt. — ., )

Voesus(V,7(X)). ( N < t100 =to0d[p — t100/p] > )
A (to/P)TP Ly 100/p («—rx U<sr)” (t/P)0d
This notion of quasi overlay joinability, however, has tedrout to produce a wondrous effect in
case that for some critical peak, w.l.0.g. say
((I2[p<r0],Co,N0), (r1,C1,A1), 1, 0, p)
generated by two rule§lo,ro),Co), ((I1,r1),C1) (with w.l.0.g. no variables in common) due to
o=mgu{(lo,11/p)},Y) for Y:=v(((lo,r0),Co), ((I1,r1),C1)), and forsome& € s us (V,7 (X))
with (CoCq)a¢ fulfilled w.rt. —,, there is some’ € 2os(I1)\{p} with 11/p'¢V and
lood=(11/p')od; i.e. the left-hand side of the rullo,ro),Co) occurs a second time in the
instantiated peak term (or superposition term) at a norabr positionp’. In this case due to
loap=(I1/p')a¢ there ared’ =mgu({(lo,l1/p")},Y) andd’ € sus(V,7 (X)) with y](c’'¢')=
v1(o¢) and then (unleslg[p’ «+ ro]o’ =r10’) we get another critical peak
((I[P < r0},Co, o), (r1,C1,A\1), 11, 0, ).

Now (since (CoC1)a’d’ = (CoC1)a¢ s fulfilled w.r.t. — ), if both critical peaks are quasi
overlay joinable, then we get by the first conclusion in thevatdefinition:

ro¢ = lfp—rolo¢ [p—ricd/p] ;
o'y’ = hfp' —rolo'¢[p’ —ri0'¢’/p']
(unlesd[p' < ro]o’d’=r10’¢’). Simplified, this means:
r1o¢ = l10¢[p—riop/p] ;
rop = Lop[p —rio0/p]
(unlessr100 =110¢[p' < rood]). Thus, in any case, we get
I10¢[p<—...]:r10¢:llo¢[p’H...].

Since (due top#p’ and(l1/p')od=lpod = (I1/p)od) we have p' || p, this has the wondrous
result
1100 =r10¢. )

Using the second conclusion of the quasi overlay joingbilie get
l10¢/p=r100/p («— U<g)" (I1/p)od which implies

lood («— U<igr)" load. ()
Since both results (!) and (!!) are absurd for a property Wheconly to be used for a noethe-
rian reduction relation—: ,, we now generalize our notion of quasi overlay joinability.
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Definition 9.2 (>-Quasi Overlay Joinability)
A critical peak((to, Do, o), (t1,D1,/A1), , 0, p) is >-quasi overlay joinable w.r.R, X if
Voesus(V,7(X)). VA,

(DoD1)o¢ fulfilled w.r.t. —,
N D={peros®)\{p}|t/p'gV A (t/p)odp=(t/p)o¢ }
A YW (¢, U<)" (t/p)ad. —, is confluent belowv
A Vp'e2os((t/p)od)\{0}. (t/p)od/p" Zdom(—r,)
p:{0,...,n—1} — N*
u:{0,....n} -7
to[p' —to/p | P €A]0O——p Un

- Uir1=Ui[ i < Uit1/Pi] )
vVi<n. T k . -
( N Ui+1/pi%R7XUi/pi (&R,XUQ)JF (t/p)od

Up=1t100

A
_ ___ | A
= dneN.dp. Ju.
A
A

For¢ € sus(V,7 (X)) anda C 205 (f)\{0} with (DoD1)a¢ fulfilled w.rt. —, and Vp' €A.
(t/pgVv A (/p)od=(f/p)od ) the critical peak, the further reduction of its left partdahe
required joinability after this reduction can be depictedalows?°

fod t100
W+, p Uo Uo/ Po («—uU<)"  (f/p)od
tood Uo[ Po < U1/ Po] U1/ Po
tolp' —t/p| p'eh]od U u/pr («—uU<)"  (f/p)od
Un—1 Ur1/P1 («—U<)"  (t/p)ad
==+, A *J/ *\L
Un—1[ PA—1 < Un/ Pr—1] Un/ Pr-1

to[p —to/p| P €AJOd ——> Uy

201t should be noted that the fact that the parallel reductiam loe restricted not only to non-variable positions
of t but also to the same identical redéX p)od (and the necessity of the analogous restriction in the proas
especially brought to our attention by Bernhard Gramlidh Gramlich (1995b)) who already had similar but less
general ideas on the weakening of overlay joinability.
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It is rather easy to see that,,-quasi overlay joinability of a critical peak generalizée told
notion of quasi overlay joinability:

In case thatA=0: For quasi overlay joinability of(to, Do,No), (t1,D1,A1), {, o, p), i.e. for
1100 =to0¢[p — 1109 /p]; (to/p)od Lﬂ:z,xVV(LR.thO-q)/p<<_|:z,x U <]S.T)+ (f/ p)od; we simply
choosen:=1; up:=t10¢; ug:=Up[p < w]; and get

to0) =t10¢[ P — to0d/p]—pxt10¢[ p — W] =
and uz/p:W‘LR,xtlo'q)/p:lJ—C)/p:t10¢/p(<—R,x U <]ST)+ (f/ P)aod.

In case thatn\ # 0 : >.,-quasi overlay joinability of some critical peak, w.l.osgy ((I1[p < ro],Co,No), (r1,C1
generated by two rule§lo,ro),Co), ((I1,r1),C1) (with w.l.0.g. no variables in common) due to
o=mgu{(lo,11/p)},Y) for Y:=v(((lo,r0),Co), ((I1,r1),C1)), generalizes quasi overlay join-
ability of the critical peaks resulting from overlappif@o,ro),Co) into ((l1,r1),C1). While we
are not going to discuss the (then obvious) general casetail éere, the case ofA={p'}
was just discussed before the definition above and we coentilit discussion now as follows:
Defining t:=11; to:=li[p«ro]; ti:=r1, N:=2; Up:=1t100; Uy := Ug[p« rood];
Uz := [P < rood]; due to () we have

to[p' to/p| P €AJoO=I1[p < ro][p' < ro]op =r100[p « rood][p « roo] =1
and due to (1) we haveuy/p'=uy/p=ro0¢p«z o0 («— U <g;) " loodp = (f/p)odp where
by (1) 100 = (11/p)od =110¢/p=t100/p=Uo/ P
and loop = (I1/p)od = (11/p)od =l10¢/p' =t10¢/p' =Uo/p' =U1/P.

In the case of an arbitrark # 0, quasi overlay joinability of any two of the critical peaksaived
implies that the diagram from above then looks the followivay (wheren:= |{p}UA|):

tod t10¢

j/lzwﬂo, {p}up j/l:a»m, {p}ul

to[p' —to/p| P'eB]od U
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That the wondrous results of quasi overlay joinability ia #bove reported case can be overcome
with the new notion of>-quasi overlay joinability can be seen from the followingmple:

Example 9.3 C = {f,g,a,c}
N = {+}
Ro3 f(X)=g(X)
f(X)—l—f(X);a

g(X)+g(X)=c — f(X)+f(X)=c
Now the unconditional version of §3 is compatible with the lexicographic path ordering
resulting from the following precedence on function synstiot decreasing ordery; g, a, c. The
critical peak ((g(X)+f(X),0,0), (a,0,1), f(X)+f(X), 0, 1) cannot be quasi overlay joinable
becausea/1 is undefined. It is, however;-quasi overlay joinable:

f(X)+£(X) orio a a (—u<)’ f(X)
1,1

g(X)+f(X) 1,0
1,2

B0 +8(X) ————5——> ¢ c

That theA in the notion oft>¢.-quasi overlay joinability cannot be restricted to be engaty be
seen from Example 12.2.
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10 Some Unconditional Examples

Our main goal in this and the following sections is to find coefice criteria that do not depend
on termination arguments but on the structure of the joiitglof critical peaks only. Finally
in § 14 we will investigate how termination can strengthen outeda. Up to then, however,
we are not going to use termination arguments. Instead, evéoaking for confluence criteria
of the form “If all critical peaks of a ... (e.g. normal, ldittear, &c.) rule system are joinable
according to the pattern ... (e.g. shallow joinable, patalbsed, &c.) then the reduction relation
is confluent.”

First we want to make clear that this approach has its lini&s do this by giving some exam-
ples. To distinguish confluent from non-confluent exampgiestile systems of the latter ones are
displayed in a box at the right margin while in a connected toothe left we list the example’s
crucial properties, concerning joinability structure béir critical peaks, variable occurrence,
condition properties, &c.. The reader should not try to usténd the sophisticated joinability
labels in the boxes at a first reading. This is not necessamyriderstanding the examples. The
sophisticated joinability labels are only needed§d:3.

In this section we start with some unconditional examplege first one shows that left-
linearity is essentik:

Example 10.1 (Huet (1980))

No Critical Peaks C = {0,s,c,d} |R101 0=s(0)
Not Left-Linear N = {+} X+X=c
Unconditional X+s(X)=d
Not Terminating

There are no critical peaks. Neverthelessy, , is not confluent:

o o 0+0
1
0-+5(0) — d
1
C pvE] s(0)+s(0)
1

21Since this counterexample for confluence is unconditidrralist be non-terminating of course. For conditional
systems, however, left-linearity is essential also fomiaating systems for joinability of critical peaks to imply
confluence, cf. the transformation described il applied to Example 11.3 as described .



Example 10.2

o%lo
Wt J/ml

1 e}

J/l

o

O

w-Level [[Weak] Parallel] Joinable
w-Level Strongly Joinable
Not w-Shallow [[Noisy] Parallel] Joinable up to w

Ground

Unconditional

Not Terminating
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The critical peaks are all of the for(®,1) and can be closed as follows:

C = {a,b,c,d}
N = {f}
Ri02 a=c
b=d
f(a)=f(b)
f(b)=f(a)
o f(a)
wi1,0
f(b)
1,1
£(d)
f(d)

f(a) v f(b) f(b)
w+1,0
1,1 f(a) 1,1
1,1
f(c) f(c) f(d)
However,—__, is not confluent:
(o) — f(a) L0

1,1



32

Example 10.3 C := {0,s,p} |R103 : s(p(X))=X
N = {+} p(s(X)) =X
0+Y=Y

s(X)+Y=s(X+Y)
P(X)+Y=p(X+Y)
The critical peaks are all of the forf@, 1) and can be closed as follows:

s(p(X))+Y o s(p(X)+Y) p(s(X)) +Y v p(s(X) +Y)
w11 w+1,1
11 s(P(X+Y)) 11 p(s(X+Y))

1,0 1,0

X+Y X+Y X+Y X+Y

Since the reduction relation is terminating, we have confteehere. However, note that the
structure of the joinability of the critical peaks is iderai to that of Example 10.2 (with the
exception of the positions). Thus, argumentation on theajoility structure of critical peaks
must fail to infer confluence for this example (at least if veerabt take positions into account).
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The following example results from Example 10.2 just by afiag ‘a’ and ‘b’ into non-constructors.
While Example 10.2 was able to discourage generalizatidriBheorem 13.9, by the slight
change the following example is able to discourage genratadns of Theorem 13.6 regarding
the requiredw-shallow parallel closedness (for part (1) of Theorem L3ué¥shallow noisy anti-

closedness (for part (1)), ao-shallow closedness (for parts (l1l) and (1V)) of the noredays of
the form(1,1).

Example 10.4
o—>o0 C = {c,d}
ot wl N = {abf}
R Ri04 a=c
ol b=d
J/ f(a)=f(b)
) o f(b)=f(a)
w-Shallow [[Noisy] [Weak] Parallel] Joinable
w-Shallow [Noisy] Strongly Joinable
Non-Overlay is Not w-Shallow [Parallel] Closed
Non-Overlay is Not w-Shallow [Noisy] Anti-Closed
Ground
Unconditional
Not Terminating
The critical peaks are all of the forfi, 1) now and can be closed as follows:
f(a) — f(b) f(b) — f(a)
w+1,0 w+1,0
wt1,1 f(a) wt1,1 f(b)
w11 w+l1
f(c) f(c) f(d) f(d)
However,—_ , is not confluent:
f(c) R f(a) w+1,0 f(b) f(d)

w11
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Example 10.5
0o — ——>o C = {a,b,c,d}
\Ll,l N = {f}

R10.5 . a=b
e} ? o ﬁ e} b— 1

f(a)=c

I>4;-Quasi Overlay Joinable f(b)=d
w-Shallow [[Noisy] Weak Parallel] Joinable

Not w-Shallow [Noisy] Parallel Joinable up to w
Not w-Shallow [Noisy] Strongly Joinable up to w
Ground

Unconditional
Not Terminating

The critical peaks are all of the forf@, 1) and can be closed as follows:

f(a) o c f(b) o1 d
1,1 1,1
fb) —7=>Fla) — 75> f@) — 7> fb) — > d

However,—, _, is not confluent:
105

¢ w+1,0 fa) e f(b) w+1,0 d
11
Example 10.6 C := {0,s,p}| Rios : Rioz + X=s(p(X))
N = {+} X=p(s(X))

Note that we have added two rules to the system from Examp& The critical peaks of the

form (0,1) of Example 10.3 still exist but can now be closed in differesaly; e.g., the first one
can be closed as follows:

s(p(X)) +Y o1 s(p(X)+Y)
1,1
X+Y i1 s(P(X) +Y —— 35> s(P(X) +Y)
Since—y, o isconfluentand—, ., C—y ,C s , k0 IS CONfluent, too (cf.

106
Lemma 3.4). However, note that the structure of the jomtatnf the crltlcal peaks is identical to

that of Example 10.5. Thus, argumentation on the joinghslitucture of critical peaks must fail
to infer confluence for this example.
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According to Lemma 3.2 of Huet (1980), unconditional leftdaight-linear rule systems with
strongly joinable critical peaks are [strongly] confluenthat the severe restriction of right-

linearity is essential here can be seen from the followirengxe:

Example 10.7 (Jean-Jacques &vy as cited in Huet (1980))

o

1 (@]
f ot J/mﬂ
o]

o

w+1

w-Level [Parallel] Joinable

[w-Level] [Strongly] Joinable

Not w-Shallow [Noisy] Parallel Joinable up to w
Not w-Shallow [Noisy] Strongly Joinable up to w

Left-Linear
Right-Linear Constructor Rules
Not Right-Linear

Unconditional

Not Terminating

° 1
\Ll W+
o)

(o] O
w+1,0 w+1,0

[w-Shallow] Joinable
Not w-Shallow [Noisy] Parallel Joinable up to w
Not w-Shallow [Noisy] Strongly Joinable up to w

Left-Linear
Right-Linear Constructor Rules
Not Right-Linear

Unconditional

Not Terminating

= {a,b,c,d}
= {+7_}

Ri07 : a=c

b=d
at+a=b-b
CHX=X+X
X4+c=X+X
b—b=a+a
d—X=X-X
X—d=X-X

There are only four critical peaks and they are all of the fgbni). Using the symmetry of- in
its arguments as well the symmetryafc, 4+ with b, d, —, all other critical peaks are symmetric
to the following one, which can be closed in the following tdiferent ways:

a-a w+1l
J/l,l
c+a
T w+1,0
a+a
+ w+1
J/l,l
c+a a+a

wt+1,0

w+1,0

b—b

Jorse

a+a

b—b

b—b
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Nevertheless;—, _, is not confluent:

ata w+1,0 b—b

wt+1,0
1,1 |w+1,0

c+c c+a
+ 12 +

1,2

We now use the same Rz to show that even another structure of joinability is insunt for
confluence. We do this by changing the separation into asctsits and non-constructors:

(@] 1 O
\L&)Jrl, 1 @f $w+1
(@]

o
1

w-Shallow [[Noisy] [Weak] Parallel] Joinable
Non-Overlay is Not w-Shallow [Parallel] Closed
[w-Shallow] Strongly Joinable

w-Shallow Anti-Closed

Left-Linear
[Constructor Rules] Not Right-Linear

C
N

R107

{C7d7+7 _}
{a,b}
c+X=X+X
X+c=X+X
d—X=X-X
X—d=X-X

+ |
L o

o o

oo T o
|

v oo o0

Unconditional

Not Terminating

w1

o o
w+1,0

(@]
\Lerl,l
(e}

1,0
w-Shallow [[Noisy] Weak Parallel] Joinable
Non-Overlay is Not w-Shallow [Parallel] Closed
w-Shallow Strongly Joinable
w-Shallow Anti-Closed

Left-Linear
[Constructor Rules] Not Right-Linear

Unconditional

Not Terminating
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Note that the rule system is not changed, but only reorderbdve the constructor rules precede
the non-constructor rules. The rewrite relatien-; _, is not changed by this constructor re-
declaration. (Not&X € Vss.) The critical peaks only have changed their form fr@hi) to (1,1)
and are still all symmetric to the following one that closeshie two following ways:

ata b—b
w+1
\Lw-i-l,l \L&H—l,@
c+a 10 a+a
ata b—b
w+1
lwﬂ,l H
c+a ata b—b

1,0

Finally, the divergence looks the following way now (Pleaete that NOW—p. "~ 0 and—

w+1,0

R107:0

are commuting, which was not the case before.):

ata w+1,0 b—b
T l w+1,0
1,0 |wtl,1 1,0 |w+1,1
c+c c+a d—b d—d

w+1,2

w+1,2



38

The following example is a slight variation of Example 10.Righ is interesting w.r.t. Exam-
ple 10.9.

Example 10.8
o o C = {c,d,+,—.f,
\L(»H—Ll @il $w+170 N - }a, b} &l
v o M R1os c+X=X+f(X)
1,0 1,2 X+c=X+f(X)
f(X)=X
w-Shallow [[Noisy] Parallel] Joinable d—X=X—g(X)
Non-Overlay is Not w-Shallow [Parallel] Closed X—d=X—g(X)
w-Shallow Strongly Joinable g(X)=X
w-Shallow Anti-Closed a—c
Left-Linear b=d
[Constructor Rules] Not Right-Linear ata=b—b
Unconditional b—b=a-+a
Not Terminating

o}

© 1
\L(AH-]., 1 @O

Y

(@] O (o]
1,0 1.7 w10

w-Shallow [[Noisy] Weak Parallel] Joinable
Non-Overlay is Not w-Shallow [Parallel] Closed
w-Shallow Strongly Joinable

w-Shallow Anti-Closed

Left-Linear

[Constructor Rules] Not Right-Linear
Unconditional

Not Terminating

There are only four critical peaks and they are all of the fotri). Using the symmetry of- in
its relevant arguments as well the symmetnapg, +, f with b, d, —, g, all other critical peaks
are symmetric to the following one, which can be closed infétlewing two different ways:

ata b—b

w+1
\Lwrl,l \L&)Jrl,(b
— —_—
c+a 1o a+f(a) 12 a+a
a+a b—b
w+1
lwﬂ,l H
c—f—a?a#—f(a) 12 a+a NENS b—b
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Finally, the divergence looks the following way now:

ata ata w+1,0 b—b b—b
\L T wt1,0 T l
w11 1,2 1,2 w+1,1
c+c 12 c+a o a+f(a) b—g(b) o d—b iz d—d
Example 109 C = {0}
N = {4}
Ri09 (X+Y)+Z=X+(Y+2)
There is only one critical peak. It is of the forfth, 1) and can be closed as follows:
(W+X)+Y)+Z o (W+X)+(Y+2)
J/owl,l iwﬂ,o
W+ (X+Y))+Z W+ ((X+Y)+2) W+ (X+(Y+2))

w+1,0 w+1,2

However, note that the structure of the joinability of théical peak is weaker than the first
alternative of Example 10.8. Thus, argumentation on theajaility structure of critical peaks
must fail to infer confluence for this example.
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11 Normality

When we now start to consider conditional besides uncaditirule systems, the first to notice
is that we have to impose some normality restriction, as esselen from Example 11.2 below.

A rule system is calledormal if for all equations tip=u;” in the condition lists of the rules,
at least one oflp, up is an irreducible ground term.

Normality is no serious restriction unless left-lineaigyrequired, too. This is because each
non-normal system can be transformed into a normal but tleéreft-linear system without
changing the reduction relation on the old sorts:

One just adds for each old sosta new constructor function symbels with arity
SS— Sew (Wheresyew is @ new sort) and a new constructor constant symbaif the sort
Shew- Then in each condition of each rule one transforms eachtiequaf the form ‘U=v" with
u,ve 7 (sig,VsicwV, ) into “eqg(u,v)=_L" and adds for each old sostthe rule eqg(Xs,Xs) =
1 (whereXseVsigs). Furthermore one adds the conditiag(a,a)=_1" to each unconditional
rule for some arbitrary constaatof an arbitrary old sors.

The only change this transformation brings for the old s@rthat exactly those reductions
which were possible with—, . (for n < w) become exactly those reductions which are possible
with —, ., after the transformation—, ., however, is not changed by the transformation.
E.g. for the rule system of Example 11.3 the transformatietuy aw-shallow [parallel] joinable,
terminating system that is normal now but not left-lineayraore.

Now we return to the question whether joinability impliestnence. While Lemma 5.1 states
the converse, actually little is known about the other diogcunless the rule system is decreasing.
Theorems 1 (which is taken from Bergstra & Klop (1986)) and RPershowitz &al. (1988) state
that left-linear and normal rule systems are confluent if thave no critical pairs or are both
shallow joinable and terminating. That normality is esgérb imply confluence of systems
with no critical pairs can be seen from Example 11.2. Thabtadity is also essential to imply
confluence of shallow joinable and terminating systems @sden from Example 11.3. That
left-linearity too is essential in both cases follows frdme transformation described above.
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In our framework, normality can be generalized and weakdoeglasi-normality, which is a
major result of this paper.

Definition 11.1 (Quasi-Normal)
Leta € {0, w}.

A rule |=r<——C is said to bex-quasi-normal w.r.tR, X if
Viesus(V,T (X)).

( Crt fulfilled w.r.t. —>RX‘M

a=w
A ¥ (Up,U1) C V¢
. V rV u07 )g
(Up=U1) Ungdon‘(_>R,X,w+a)
Vvodi<2. y a=0w
A (Defuit) occurs inCt

R, X is said to bew-quasi-normalif
all rules in R arao-quasi-normal w.r.t. RX.
R, X is said to be equasi-normalif
all constructor rules in R are 0-quasi-normal w.rixXR

Since the case ofd'=w” is more important than the case ad =0”, we use uasi-normal as
an abbreviation for&®-quasi-normal’”.

First note that we have added a condition that may reducentharitiations of a rule we have to
consider. While this may be useless in practice most of the,tit may allow of further theoretical
treatment.

Also the fact that we have given up the requirement that tieeircible term has to be ground
may be of minor importance: In practice this usually allowdydor constructor variables or
variables of sorts having only irreducible terms.

Important, however, is the fact that equations containinly constructor variables are not
restricted by quasi-normality anymore. E.g., the ruleaysbtf Example 2.3 is quasi-normal but
not normal.

Besides this, it is important that quasi-normality alsowl to make any system quasi-normal
simply by replacing any equatio=v” in a condition with ‘u=v, DefV".

Furthermore, note that no restrictions are imposed on Def-Aaliterals.
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Example 11.2 (Bergstra & Klop (1986))

No Critical Peaks

Left- & Right-Linear
Not [Quasi-] Normal
Not Terminating

Ri12

C =
N =

{d}
{b,g}
b=g(b)

gX)=d —g(X)=

There are no critical peaks. Neverthelessy; _, is not confluent:

wt2,1

The following example shows that normality is also requif@dterminating systems. Note that
this was already shown by Example C of Dershowitz &al. (198Bich, however, is more com-

g(g(b))

b

w+1,0

w11

w+2,0

w+l11

plicated because it has there additional critical peaks.

Example 11.3

o ﬁ o o ﬁ o
\Lerl, 19t SJ/(DH J/&Hl, 0@t

O ————>0 O———>0
w+1l w2

w-Shallow [[Noisy] Parallel] Joinable
w-Shallow [Noisy] Strongly Joinable
Non-Overlay is
Neither w-Shallow [Parallel] Closed
Nor w-Shallow [Noisy] Anti-Closed
Not [>,-Quasi] Overlay Joinable

w+2,0

Left- & Right-Linear

Not [Quasi-] Normal

Terminating

Z
I

{c.d,e}
{a7b7f7g’h}

a=c

b=d

f(a)=g(b)
f(c)=h(c)
g(d)=h(a)
g(X)—e — X—b
h(X)=e  — f(X)=e
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There are three critical peaks and they are all of the ftkrt). Since the third is the symmetric
overlay of the second, we do not depict it. The first and thesgare joinable as follows:

f(a) — g(b)
w11
g(d) g(d) — e
w+1,1 w+1,0 J/wrl,(b
h(a) h(a) P EY) e
wt1,1
f(c) ] h(c)
Nevertheless;—y, _, is not confluent:
f(a) ©+1,0 g(b) w+1,0 .
w+1,1
g(d) Y, e
w11 w+1,0
h(a) 20 e
wt1,1
f(c) ST h(c)

Note that the overlay would lose its shallow joinability iewnade the system normal (or else
quasi-normal) by writing the condition of the one but laderm the form “X=d” (or else in the
form “X=b, Defb” and declaring to be a constructor), since then we would ha(e)—,, ,e.
Similarly, the overlay would lose its shallow joinabilitfwe made the system quasi-normal by
writing the condition of the one but last rule in the fordd=b, Defb” or by substitutingX with

a variable from ¥, since then we would have(a)—, ;e only (sinceg(b) /=, ,e).
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12 Counterexamples for Closed Systems

From the examples of the previous sections we can draw tleioly conclusions:

1. For being able to apply syntactic confluence criteria to-tesminating conditional rule
systems, some kind of [quasi-] normality must be required.

2. Syntactic confluence criteria based solely on the jolitglsitructure of the critical peaks
must fail on some rather simple and common joinability Strees.

Therefore, itis now the time to have a look at the two most &mpn-trivial joinability structures
under the requirement of normality.

These two most simple joinability structures of criticabge areclosednesandanti-closedness
cf. below. Regarding the names of notions below, “paralleted” is taken from Huet (1980),
“closed” and “anti-closed” have been derived from “paratik®sed” in an obvious manner, and
“parallel joinable” was the simplest nakfave found for the last important variant.

|

Closed: o— >0 Anti-Closed:

l

O —>0

—

O<— O

Parallel Closed: o ——>o0 Parallel Joinable: —

o
l :
o

R

o<~ —o0

It may seem to be surprising that the question whether #&wgedness of critical peaks implies
confluence for left-linear, non-right-linear, uncondita systems was listed as Problem 13 in the
list of open problems of Dershowitz &al. (1991) and still sexto be open.

For the question whether closedness of critical peaks, @iymwsanswer follows from the
corollary on page 815 in Huet (1980) which says that a leftdr and unconditional system is
confluent if all its critical pairs are parallel closed. Thendition of parallel closedness was
weakened in Corollary 3.2 of Toyama (1988) for the overlaysclv are required to be only
parallel joinable instead of parallel closed.

For conditional systems, however, neither closedness micsedness implies confluence.
And this situation does not change when we additionally iregihe rule systems to be termi-
nating and normal, as can be seen from the following examples

22The only obvious wrong intuitions it could rise are eitheramimgless (since the transitive closures of reduction
and parallel reduction are always identical) or an unnesgsharpening of our notion.
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Example 12.1 (Aart Middeldorp, modified by Bernhard Gramlich)

o—>o C = {a,c}
J/l,l wil \Lw+2 N = {f,g}
M v Ri21 a=c
f(a)=g(a)
Anti-Closed g(X)=f(c) «— f(X)=g(c)

Strongly Joinable

Not w-Level Joinable

Not w-Shallow Joinable

Not [>¢,-Quasi] Overlay Joinable
Left-Linear & Right-Linear
[Quasi-] Normal

Terminating

Not Decreasing

There is only the following critical peak and is of the foft 1):

f(a) — g(a)
J/l,l J/mz,o
fc) f(c)
Nevertheless;—, _ , is not confluent:
121
f(a) X f(c)
010 |
g(c) o 8(a) X (o)

Since all critical peaks are joinablef is necessarily non-decreasing and not compatible with a
termination-paif Nevertheless, it is obviously terminating, sin€X — a} is the only solution

for the condition of the last equation. Furthermore; Ris left-linear, right-linear, and norn4l
Thus (since it is not confluent), it can be neither overlapabie norw-shallow joinable® It is,
however, noto-level joinable and we did not find@-level anti-closed but non-confluent system,
though we spent some time searching for such an example.

23Cf, Definition 14.1 and Theorem 14.2

24even if some authors would not call it “normal” since the-efind side of the last rule matches the right-hand
side of the equation of its condition

25Cf. theorems 14.7 and 14.5
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Example 12.2
o —>o0 C = {c,d}
$w+2 1" $w+2 2" N = {a,b,+}
Ri22 a=c«— b=d
@) % @) @) H @) b:d
ata=d

[w-Level [Parallel]] Closed
w-Level Anti-Closed

[w-Level] [Strongly] Joinable
w-Level [Weak] Parallel Joinable
Not w-Shallow Joinable

Not [>,-Quasi] Overlay Joinable
Left-Linear & Right-Linear
Conditions contain General variables
[Quasi-] Normal

Terminating

Not Decreasing

c+X=d«— X4+X=d
X+c=d+«— X+X=d

There are only two critical peaks and they are of the foiri). Using the symmetry of- in its
arguments, the other critical peak is symmetric to the Valhg one.

ata il d
c+a 2.0 d

Nevertheless;—y, ., is not confluent:

c+c c+c

wt2,1

w+2,0

w+1,0
wt2,1

c+a 2.0 d

wt2,2

c+c c+c

Since all critical peaks are joinable, our system is necégsen-decreasing, cf. Theorem 14.2.
Nevertheless, it is obviously terminating, left-lineaght-linear, and normal. Thus (since it is not
confluent), it can be neither overlay joinable neshallow joinable, cf. theorems 14.7 and 14.5.
Due to the given forms ab-level joinability, the occurrence of general variableghia conditions

is essential for this example, cf. theorems 13.9 and 14.6.
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13 Ciriteria for Confluence

Most of the theorems we present in this and the followingisecissume the constructor sub-
system—:;, ,, to be confluent and then suggest how to find out that the whaelesy—,, is
confluent, too. How to find out that—,, , is confluent will be discussed §15.

In this section we present confluence criteria that do ngtarltermination. They are, of course,
also applicable to terminating systems, which might be \adtgactive if one does not know
how to show termination or if the correctness of the techaifur proving termination requires
confluence.

Before we state our main theorems it is convenient to inttediome further syntactic restriction.
By disallowing non-constructor variables in conditionscohstructor equations we disentangle
the fulfilledness of conditions of constructor equationmrirthe influence of non-constructor
rules.

Definition 13.1 (Conservative Constructors)
R is said to haveonservative constructord
v((1,r),C)eR. ( leT (consVsigwV,) = ¥(C) C Ve ).

Let us consider a rule system with conservative constracimgether with our global restrictions
on constructor rules (cf. Definition 2.2) this means thatdbedition terms of constructor rules
arepureconstructor terms. This has the advantage that (contraingtgeneral case) the condition
terms of constructor rules still are constructor termsrdftey have been instantiated with some
substitution. By Lemma 2.10 this means that the redugjbiliith constructor rules does not
depend on the new possibilities which could be added by tinecoastructor rules later on, i.e.
that the constructor rules are conservative w.r.t. thagrsilen not to reduce a given term because
non-constructor rules cannot generate additional saistior their conditiong®

The condition of conservative constructors is very nataral not very restrictive. (Note that
even now constructor rules may have general variables inlgfe and right-hand sides.) That
conservative constructors make the construction of confleieriteria much easier can be seen
from the following lemma which can treat a special case ofjids divergence, namely a sub-
case of the “variable overlap case”. In this case it is imgodrthat a reduction with a certain rule
can still be done after the instantiating substitution hesntreduced.

26since “conservative constructors” is actually a propexy of the constructors (i.e. constructor function sym-
bols) but of the constructaules the notion should actually be called “conservative cartgor rules”. But the
commonplace notion of “free constructors” is just the same.
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Lemma 13.2
Letpv e sus(V,7 (X)). Let((I,r),C) € Rwith 1€ 7 (consVsigwV,).
R has conservative constructors
Assumethal v % (C)CV,
V. TERMS(CWCT (consVsigHVe)
Assume—,, ,, to be confluent.

Now, if Ctis fulfilled w.r.t—s and ¥xe V. xp— X,

then Q is fulfilled w.r.t. —, ;and N—-¢g, rv.

While the conditions of our main theorems of this sectionediem 13.6 and Theorem 13.9,
are rather complicated and difficult to check, they are asasatisfied for a certain class of rule
systems captured by Theorem 13.3 (being a consequence oferhd 3.6) and Theorem 13.4
(being a consequence of Theorem 13.9) below.

This class consists of left-linear rule systems with covesare constructors that achieve
guasi-normality just by requiring the presence of a Defrdit for each equation not containing
an irreducible ground term in a condition of a rule, and $atise joinability requirements due
to the critical peaks being complementary, i.e. having dempntary literals in their condition
lists, cf.§ 5. Furthermore, rule systems of this class are quite usefuidctice. It generalizes the
function specification style that is usually required in tf@@nework of classic inductive theorem
proving (cf. e.g. Walther (1994)) by allowing for partialifctions resulting from non-complete
defining case distinctions as well as resulting from nomieation.

Theorem 13.3 (Syntactic Confluence Criterion)
LetR be a left-linear CRS ovesig/congV with conservative constructors.

o : (Defu;) occursinC
AssumeY((l,r),C) €R. V(up=uy) in C. 3i < 2. ( V U€ gT\dom(—gy) )
Assume that—

If each critical peak iICP(R) of the form(0, 1), (1,0), or (1,1) is complementary, thea— is
confluent.

rx. IS cOnfluent. Now:

Theorem 13.4 (Syntactic Confluence Criterion)
LetR be a left-linear CRS ovesig/congV with V((I,r),C)eR. ¥ (C)CV,.

N : (Defu;) occursinC
AssumeY((l,r),C)eR. V(up=uz) in C. 3i < 2. ( vV ouegT\dom(—py) )
Assume that—,

If each critical peak ilCP(R) of the form(0, 1) or (1,0) is complementary and each critical peak
in CA(R) of the form(1, 1) is weakly complementary, thea-, is confluent.

is confluent. Now:
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Note that both theorems are applical® the rule system of Example 2.3 where the subtraction
on natural numbers is defined via a non-complete syntactie datinction that does not yield
critical peaks at all and where the member-predicate is eléfby a syntactic case distinction
followed (for the case of a nonempty list) by a semantic casendtion via condition literals
which yields only critical peaks with complementary eqoas. To illustrate the possibility of
partiality due to non-termination as well as the possipitit critical peaks with complementary
predicate literals, here is another toy example to which ame &pply Theorem 13.3 (but not
Theorem 13.4).

Example 13.5 (continuing Example 2.3)

C := {0,s,true,false, nil,cons}
N := {—, mbp,while}
S = {nat,bool,list}

Rizs | Ros

while(X,Y)=Y «— X=false
while(X,Y)=while(...,...) «— X=true, ...

We have added two rules to the system from Example 2.3 for atibm ‘while’ with arity

“ bool nat — nat ” where X is meant to be a variable fromg) pooi andY from Vsig nat. The
two resulting critical peaks are of the forft, 1) and complementary. Furthermore, we assume
that there are no rules wittue, false, or a variable of the sotiool as left-hand sides, such that

we havetrue, false € g 7\dom(—sy ).

The main part of the following theorem is part (I). Parts)(Hhd (IV) only weaken the required
w-shallow noisy parallel joinability for critical peaks die form(1,1) to w-shallow noisyweak
parallel joinability but have to pay a considerable priceifolt would be of practical importance
(cf. Example 10.6) to achieve this weakening for criticahl®of the form(0, 1), but this is not
possible, cf. Example 10.5. Furthermore, the differende/éen (111) and (IV) is marginal since
non-overlays of the fornil,0) are pathologicaf anyway. (1) is rather interesting for the cases
where it is possible to restrict the right-hand sides to bedr w.r.t. general variables; this severe
restriction is necessary, however; cf. the second versidixample 10.7 or cf. Example 10.8.
Besides these examples, also Example 10.4 may be able udhge the search for a further
generalization of the theorem. Finally note that thand ‘j’ in the theorem range ovei0,1}.

2IThe careful reader may have noticed that the last two rul& gfactually are lacking the required Def-literals.
For practical specification, however, this Def-literal dag omitted here because it is tautological fer, if
XCVsic . Note that in practice of specification one is only interdste—, , and —Rves cf. Wirth & Gramlich
(1994a) and Wirth & Gramlich (1994b). (This, however, doesmean that we do not need formulas containing V
for inductive theorem proving.)

28 critical peak of the form(1,0) requires a non-constructor rule whose left-hand side hasstctor function

symbol as top symbol, and also requires a constructor ruteawgeneral variable in its left-hand side.
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Theorem 13.6 (Syntactic Criterion for w-Shallow Confluence)

LetR be a CRS ovesig/lcongV. Let XCV.
AssumeR to have conservative constructoR,X to be quasi-normal, and the following weak
kind of left-linearity:
V((l,r),C)eR.Vp,geros(l). VxeV.
| /p=x=I/q > N < | € 7 (cons VsV, ) > )
A P#(Q AN XeV, ’
Furthermore, assume that—,  is confluent.

(I) Now if each critical peak ifCP(R) of the form(i, 1) is w-shallow noisy parallel joinable
up to w+ixw w.rt. R, X, and each non-overlay i€P(R) of the form(1, j) is w-shallow
parallel closed up tav+ jxww.rt. R, X, thenR, X is w-shallow confluent.

(I1) If we have the following kind of right-linearity w.r.t. gela¢variables
V((1,r),C) eR. VxeVsic. Vp,qe 205 (r). ( r/p=x=r/q = p=q ),
and if each critical peak it€P(R) of the form(i, 1) is w-shallow noisy strongly joinable up
to w+ixw w.r.t. R, X, and each non-overlay i@P(R) of the form(1, j) is w-shallow noisy
anti-closed up tav+ jxww.r.t. R, X, thenR, X is w-shallow confluent.

Now additionally assume the following very weak kind of tiliiearity of constructor rules:
>

v((I,r),C) eR. Vxe VgiG. Vp,qespos(r).( < R lip:[:(ifrs/\és'euvd ) = p=q > .

Furthermore, additionally assume that each critical pealcP(R) of the form(0, 1) is w-shallow

noisy strongly joinable up t, that each critical peak I€CP(R) of the form(1,1) is w-shallow

noisy weak parallel joinable w.r.R, X, and that each non-overlay i@BP(R) of the form(1,1) is

w-shallow closed w.r.iR, X.

(1) Now if each non-overlay i€P(R) of the form(1,0) is w-shallow parallel closed up tw
w.r.t. R, X, thenR, X is w-shallow confluent.

Now additionally assume that—, . is strongly confluent.

(IV) Now if each non-overlay i€P(R) of the form(1,0) is w-shallow closed up toow.r.t. R, X,
thenR, X is w-shallow confluent.

If we consider all symbols to be non-constructor symbolenteach of the parts (1), (lll), and
(IV) of Theorem 13.6 is strong enough to imply Theorem 1 ofébewitz &al. (1988) (which is
taken from Bergstra & Klop (1986)). If we, moreover, redttecunconditional rule systems, then
Theorem 13.6(l) specializes to Corollary 3.2 of Toyama @)9&hich is stronger than the more
restrictive corollary on page 815 in Huet (1980) which sdat & left-linear and unconditional
system is confluent if all its critical pairs are parallelsgd). Moreover, Theorem 13.6(ll) is a
generalization of Theorem 5.2 of Avenhaus & Becker (19%h)dtated into our framework.
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The proof of Theorem 13.6 is similar to that of Corollary 3fZoyama (1988) for unconditional
systems, but with a global induction loop on the depth of ctida for using the shallow joinabil-
ity to get along with the conditions of the rules, and this Vehgroof twice due to our separation
into constructors and non-constructors, and this agairdch part of the theorem. Since it is
very long, tedious, and uninteresting we have put most itsrlas into A and the proofs into
D. The only lemmas we consider to be interesting are thosehwiniake clear why it is possi-
ble to generalize from normal to quasi-normal rule systehi® problematic case is always the
variable-overlap case since it is not covered by criticaljse The hard step in this case is to show
that an equationtp=u;” which had been joinable when instantiated with substitufi is still
joinable after the instantiations for its variables haverbeeduced, yielding a new substitution
Thus one has to show that for two natural numbgrandn; with UOUlR,anl ui and vxeV.

xpLR_xmnoxv we always haveuoVv|gy ., U1V . This means that the fulfilledness of the in-
stantiated equatiornuy=u;” is not changed by the reduction of its instantiating substn. For
showing this we may use the global induction hypothesisyimpglthat R X is w-shallow conflu-
ent up tonp+,n1. The reader may verify that we do not seem to have a chanceifog Buccessful
here unless we require some kind of normality. Lemma 13.dépjcts the situation we are in
(matching itss to uijp and itss to uiv) and shows that irreducibility afyv (roughly speaking
i.e. normality) is just as helpful as some literal “f" in the condition list (i.e. an alternative
allowed by quasi-normality) (because the latter impliesdkistence of sontg € g 7 (cons with

uluLR.X,mnltl ). Finally, Lemma 13.8 states that the other alternativemyivy quasi-normality
(i.e. that the equation contains no non-constructor veghs no problem either, and that Def-
and#-literals do not make any problems and therefore need ndt la¢ aestricted by normality
requirements.

Since we consider the proofs of the following two lemmas torberesting, we did not put
them into the appendix but included them here. The form ofgameation is very general. This
enables the proof to present the idea of quasi-normalitysies$sential form and also enables
more than a dozen of applications of Lemma 13.8 in the probthe theorems in this and
the following sections. When reading the lemmas please thatiethe optional parts are only
necessary for reusing the lemmas in the proofs of the theoodrthe following sections where
termination arguments will be included into the confluengga. Moreover for a first reading
only the second cases of their initial disjunctive assuamgishould be considered. The others
are uninteresting special cases.
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Lemma 13.7
[Let > be a wellfounded ordering.] Letyhn; < w. Leta € {0, w}. Assume that

: S=¢ .
Vi<2. ( VR, X is a-shallow confluent up togt, n1 [and § in <] ) Now:

* * . .
1' rbjnl and % R,X,a+nOSO —>R,X,a+n1t0 ImpIIeS %lR7X7a+n1t0'

* *

* * . .
2. nn=m and %&R,X,a-«—noSO_>R,X,a+n1t0<—R,X,a+n1Sl—)RﬁXﬁa+nOSI’J. implies

SolrxaimSt-

* * . .
3. %<_R,X,or+no SO—>R,X,a+n1t2 €g T (Cons |mp||eS
*

*
Hts 6 g T (C0n3 * %—)R,X,u+nlt3(_R,X,w+nlt2'

*

4. %LR-X-GMOS)L)R,X,U+n1to<—R,X,u+nlSli)R,x,mrnOg_L together with either
S1 Qdorr(—’R,x,wJ or
a=w
N S1=gx i 1€ G T (CONY implies
A Vd=<no+ . R, X is w-shallow confluent up td [and 51 in <]

SIOlRﬁx,aJFnlsl*.L'

Proof of Lemma 13.71: Consider the peale,«— SOLR’X’G%IT(). If ss=sg,, thenwe are

R,X,a+ng
finished due to&{):soL>R3X3a+n1to. Otherwise: We have assumed thaRs a-shallow conflu-

ent up tong+, N1 [andso in <1]. Thus we gets)—— ,to and then due tap<m
and Lemma 2.12 we gedy| .y o, o -

2: By (1) we get Sy——pyqint1e—rxamto fOr somet;. Finally, consider the peak

*
R,X,a+nq © R, X,a+n,

*

tl(_R,X,qunlSll)R.X.aJrnOdl' By (1) again we getsi)L)R,x,wnltllR,x.aJrnldl as desired.

3: Consider the peaks’OLR_x‘MoSOLRXMnltZ. If sp=s, then we are finished due to
%:SOL’RA,XA,MJZ Otherwise: Bya-shallow confluence up tmp+,n; [and s in <] we
get %LR,X,amltSLR,X,amotz for somet;. By toeg7(cong and Lemma 2.10 we get
G T (CONg Stz—p, 2. Thus we havesy——p ;.n t3—px won t2 @S desired.
4:s1¢dom(—y . o)- If So=9), thenwe are finished due Q):SOL to=s1=s;. Oth-
erwise: Consider the peak——y ., S0—rxqn t0- BY a-shallow confluence up too+,

[and s in <] We get §y——gy o.n 2 —rxainolo fOr SOMety. Since s; ¢dom(— ) this
finishes the proof in this case duetp=to=51=s5,.

R,X,u+nl

R.X,0+a
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s1€dom(—y .o ) Then we havea = w, slim,wltle G 7T (cong, and

Vd<np+,n1. R, X is w-shallow confluent up td [ands; in <], cf. the diagram below. Consider
the peaktoLR.XMnl51L>va@+nltl. We may assumen; <ng because in case ofip<n; the
proof is finished due to (2). Then we have+, n; < no+,n1. Thus byw-shallow confluence

up tom+,m [ands; in <] we get toLR’XM“ltzLR’anltl for somety. By t;€ 67 (cong
. * *

and Lemma 2.10 we get; 7 (cong >tp. Consider the peaksye—qy 1m0 rxoin, 2. DUE

to tz€ 67 (cong and (3) there is sontg € G 7 (CONY With 5~y 4.0, 13 x o, 2= BY (3)

R‘anlleR_wiogl implies t3]xy ., S as desired.

again, the peakz——

* * ES *
A S to S1 s

w+Ng w+ng w+ng wW+Ng
*| Ny *\L(D"Fnl *\L&)‘Fnl
* *
3 wHny t2 wHny ! ¥t
*|W+Ny
O O

Q.e.d. (Lemma 13.7)

Lemma 13.8
[Let > be a wellfounded ordering.]
Leta € {0, w}. Letp,ny < w. Letpv e sus(V,7 (X)).
Let((l,r),C) €e Rwith a=0= 1€ 7 (consVsigwV,).
Assume that g=<n; orthat((l,r),C) is a-quasi-normal w.r.tR, X. Assume that
VLinC.Yue TERM S (L).
upe dom(—rx 1)
VR, X is a-shallow confluent up togt, n1 [and up in <]
VXE ¥ (U). XH=XxV
a=0
VW Lg{(u=v),(v=u)}
A Vo Vxe v (L). Xp=xv
Vo Vd<no+, 1.
R, X is a-shallow confluent up td [and up in <]

V

Now, if Cp is fulfilled w.r.t—
then Qv is fulfilled w.r.t.—

_and YxeV. xp— XV

R,X,0+n R,X,a+ng )

) and v—; rv

RX,a+n RX,a+ng+1" V-
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Proof of Lemma 13.8Since a=0 =- | € 7 (consVsicWV,), it suffices to show that for each
literal L in C: Lv is fulfilled w.rt. — Note that we already know thay is fulfilled

RX,a+nq "
%
W.IL —py ain, - 1N Case of upgdom(—y, ,..) We get up=uwv due to Up—r, 4, WV. IN

case of Yxe 7 (u). xuy=xv we get up=uv again. Thus we may assumeuc 7ERM S (L).
(up=uv Vv R, Xis a-shallow confluent up top+, N1 [anduuin q] ).

L = (so=s1): We havesov<—RXa+nosou Rx.a+ny 0 Rxaing SIH Ry a1n,SIV fOr SOMeto. In
case ofng<n; we getthe desiredov | any SIV by Lemma 13. 7(2). OtherW|se by assumption
of the lemmay(l,r),C) must bea-quasi- “normal. Sinc€pis fulfilled w.r.t. —, .., according
to the definition ofa-quasi-normality and the disjunctive assumption of thertenwe have two
distinguish several cases here. First we treat the case ichwhi <2. spug dom(—-g, .. )-
W.l.o0.9. say sipgdom(—r,,.,). By Lemma 13.7(4) we get the desiregpv |, ., S1V-
Second, in case ofxe 7/ (L). xu=xv we know thatLv=Lp which is fulfilled w.r.t.—, ., .
Note that now we may assume that=w because the second case includes the only case left
for 0-quasi-normality, namely v (sp,s1)C0. Third, in case of 7 (sp,s1)CV, we have for
all xe v (sp,s1): XHeT (consV,); and then xpLR’X’wxv by Lemma 2.10. This means
SH——qx,SV. By Lemma 13.7(2) (matching itso to 0) due to 6, < no+,n; we get the
desired sov |y ., S1V- Finally we come to the fourth case where w.l.ol@efsi) occurs in
CW Then there is somi € g7 (cong with Sll"lL)R,x,u)Jrnltl' Since we may assume that we
are not in any of the previous cases, the disjunctive assampft the lemma now states that
Vd<no+,n1. R, X is w-shallow confluent up té [andupin <]. By Lemma 13.7(4) we get the
desiredsoV [y ¢, SIV-

L = (Defs): We know the existence df € g7 (cong with sve—g, .\ Shk—ry o, t. BY

. . * *

Lemma 13.7(3) there is sontlee G 7 (cong with sv— .ty 0 T

L = (So#S1): There exist soméy,t; € G 7 (cong with Vi<2.§Ve—g, .\ SH—py,,,,ti and
toiR_x_mltl. Just like above we géf, t; € g 7 (cong with Vi<2. SVL}R,X,QJrnlti/; t;.
Finally t(/)‘_R,x,mnltOiR,anltl—>R,x,w+n1ti implies t{)iRTX_Mlti since we havea =w due to
| €7 (consVsicWV,) in this case of a negative literal. Q.e.d. (Lemma 13.8)

R,X,(A)Jﬁnl
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We do not have to discuss the following theorem in detail hbezause it is very similar to
Theorem 13.6, but weakens the requiceghallow joinabilities taw-level joinabilities wherever
possible. Note that from Example 10.2 we can conclude tleabtbhallow joinabilities required
for critical peaks of the form0,1) cannot be weakened to-level joinabilities in any of the
four parts of the theore®? However, the price we have to pay for weakening shallow tellev
joinability is to extend our requirement that the condiSarontain constructor variables only,
from constructor rules (“conservative constructors”) towaes! That this restriction is necessary
indeed can be seen from Example 12.2. On the other handge#gtr&ction givegjuasinormality
for free.

We prefer to discuss and apply Theorem 13.6 wherever pessdidause contrary to Theo-
rem 13.9 it has interesting implications for the standaasinework without the separation into
constructor and non-constructor symbols where “only qoiegdr variables in conditions” means
“no variables in conditions” which again can (in general efféctively) be reduced to “no con-
ditions” by removing the fulfilled conditions and the rulegwnon-fulfilled conditions.

The main part of the following theorem is part (I). Parts)(Ahd (IV) only weaken the re-
quired w-level parallel joinability for critical peaks of the forrfl, 1) to w-level weak parallel
joinability but have to pay a considerable price for it. Fermore, the difference between (ll1)
and (V) is marginal since non-overlays of the fo(f)0) are pathological anyway. (ll) is rather
interesting for the cases where it is possible to restrietripht-hand sides to be linear w.r.t.
general variables; this severe restriction is necessavyever; cf. the second version of Exam-
ple 10.7 or cf. Example 10.8.

29Note that with the exception of part (I1) of the theorem weldaaiso use the first version of Example 10.7 for
this conclusion.
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Theorem 13.9 (Syntactic Criterion for w-Level Confluence)

LetR be a CRS ovesig/lcongV. Let XCV.
Assume the following important restriction on variablesanditions to hold:
V((1,r),C)eR. v (C)CV,.

Moreover, assume the following weak kind of left-linearity
V((l,r),C)eR.Vp,geros(l). VxeV.

| /p=x=I/q > N < | € 7 (cons VsV, ) > )

A P#(Q AN XeV, '

Furthermore, assume that—,,  is confluent.

(I) Now if each critical peak iIlCP(R) of the form(0, 1) is w-shallow parallel joinable up to
ww.rt. R, X, each non-overlay i€P(R) of the form(1,0) is w-shallow parallel closed up
to ww.r.t. R, X, each critical peak irfCP(R) of the form(1,1) is w-level parallel joinable
w.r.t.R, X, and each non-overlay iBP(R) of the form(1,1) is w-level parallel closed w.r.t.
R, X, thenR, X is w-level confluent.

(1) If we have the following kind of right-linearity w.r.t. gena¢variables
V((1,r),C) ER. VXeVsic. Vp,qe 205 (r). ( r/p=x=r/q = p=q ),
and if each critical peak ifCP(R) of the form(0, 1) is w-shallow strongly joinable up tw
w.r.t. R, X, each non-overlay i€P(R) of the form(1,0) is w-shallow anti-closed up t
w.r.t. R, X, each critical peak irCP(R) of the form(1,1) is w-level strongly joinable w.r.t.
R, X, and each non-overlay i€P(R) of the form(1,1) is w-level anti-closed w.r.tR, X,
thenR, X is w-level confluent.

Now additionally assume the following very weak kind of tdlgiearity of constructor rules:
H

v((I,r),C)eR. VX6V5|G.Vp,qezP05(r).( ( N lr/epTz(ioznrs/\é&GUVC)) —~ p=q >

Furthermore, additionally assume that each critical pealCP(R) of the form(0, 1) is w-shallow

strongly joinable up taw, that each critical peak irCP(R) of the form(1,1) is w-level weak

parallel joinable w.rt.R, X, and that each non-overlay i@P(R) of the form(1,1) is w-level

closed w.r.tR, X.

(1) Now if each non-overlay iI€P(R) of the form(1,0) is w-shallow parallel closed up tw
w.r.t. R, X, thenR, X is w-level confluent.

Now additionally assume that—, , is strongly confluent.

(IV) Now if each non-overlay i€@P(R) of the form(1,0) is w-shallow closed up tow.r.t. R, X,
thenR, X is w-level confluent.
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14 Criteria for Confluence of Terminating Systems

In this section we examine how we can relax our joinabilityuieements when we additionally
require termination for our reduction relation. Note thtonfluence criteria whose proof is by
induction on an extension of the reduction relation thegbihty requirement can be weakened
to asub-connectednessquirement, cf. Kichlin (1985). We here, however, present the simpler
versions only, where the connectedness is required to havetm of a single “valley”.

Due to its fundamental importance, we first repeat Theoreim @f Wirth & Gramlich (1994a)
here, which generalizes Theorem 3 of Dershowitz &al. (1988)veakening decreasingness to
compatibility with a termination-pair (defined §2.2) as well as joinability ta>-weak join-
ability (defined in§ 5) which provides us with some confluence assumption wheokaig the
fulfilledness of the condition of a critical peak.

Definition 14.1 (Compatibility with a Termination-Pair)
Arule ((I,r),C) isis R X-compatiblewith a termination-paif>, ) over sig/V if
Viesus(V,7 (X)).

, lT>rt 30
Cr fulfilled w.r.t. —p, = ( A WueTERMS(C). 1T Ut ) )
A CRS R over sig/cons/V is Xompatiblewith a termination-paif>, ) over sig/V if V((l,r),C) eR.

((1,r),C) is R, X-compatible with(>,>).

Theorem 14.2 (Syntactic Test for Confluence)

LetR be a CRS ovesig/congV and XCV.

Assume thaR is X-compatible with a termination-paif>, ) oversig/V.

[For each t< 7 (sig, X) assume; to be a wellfounded ordering onos (t). Define (pe N%)

A(p) i= {tedom(—py ;. 0q) | 07Q <t P -]
The following two are logically equivalent:

1. Each critical peak irCP(R) is >-weakly joinable w.r.tR, X [besides A].
2. — gy Is confluent.

utZdom(— )
Voot urt
IT>ut here. Theorem 14.2 would still be true since its proof needoeomodified. We did not do this because
we did not see an interesting application that would justiy change of the notion already introduced in Wirth &
Gramlich (1993), Wirth &al. (1993), and Wirth & Gramlich (29a).

30We could require the weakekue 7£g M s (C). instead of Yue TER 5 (C).
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Due to a weakening of the notion of-weak joinability, Theorem 14.2 actually differs from
Theorem 7.17 of Wirth & Gramlich (1994a) in that it providevsral irreducibility assumptions
intended to restrict the number of substitutignfor which for a critical peak

( (|1[p<— I’o],Co, .. .), (I’]_,Cl, .. .), l1, O, P )
resulting from two rule$g=rqo«—Cy andl;=r;+—C; (with no variables in common) we have to
showl1[p < rolod|,,r10¢ incase of(CoCi)od being fulfilled. This means that Theorem 14.2
provides further means to tackle problem 4 of §ur.

The first assumption allowed is that the substitujatself is normalized:vx e V. x¢ ¢ dom(—, ).

The second allows to assume that for non-overlays (i.epf6f) evenc¢ is normalized on
all variables occurring in the left-hand sitle

Moreover, by weakening:*-weak joinability” to “o>-weak joinability beside#&\” with A de-
fined as in the theorem via some family> = (3>t )i (sigx) Of arbitrary wellfounded orderings
>t onPos (t), we have added a new feature which allows to assume the fisséghpeak term
(or superposition term)a¢ to be irreducible at all nonempty positions which &g, q4-smaller
than the overlap positiop. Generally, beyond our first two assumptions, we may €&€o0
further reduce the number of instantiations for which thegbility test must succeed in the fol-
lowing way: If we can choosex,q¢ such that

X0 # X
( p=0 = vxe v (l1). ( = 3Jgeros(ly). ( A Ivlé’qe:fxw(xoq)).qd K09 IO) ) )

X0 # X
lo/q=X ) :

"\ A Vg e2ros(xad). pad <<j,04 P
then we may assumep to be normalized: ¥xe V. xo¢ ¢ dom(—, ). This can be a consid-
erable help for showing thd€CyC)o¢ is not fulfilled when we have a certain knowledge on the
normal forms of the terms of the sorts of the variables oaegin CoC;. E.g., when we define the
depth of a ternt € 7 by deptht) :=max{ |p’| | pe?os(t) } and then defineg,qe 205 (t))
g<t p if depth(t)— |g < deptht) — |p|, then we can forget about all critical peaks which
are called “composite” i3 2.3 of Kapur &al. (1988) — and even some more, namely all those
whose peak term is reducible at some position that is lorggen the overlap position of the
critical peak. Kapur &al. (1988) already states in Corgllarthat (unlesdp <V, which some
authors generally disallow) the irreducibility of thesesfimns implies the irreducibility of all
terms introduced by the unifying substitutionmore precisely, the joinability test may assume:
vxeV. ( XO#X = Xo¢ gdom(—ry) ), which, by our first irreducibility assumption can be
simplified to VxeV.xo$p Zdom(—,). If we, however, revert by defining q <« p if
lal < |p|, then we can forget about all critical peaks which are calleshiposite” in§ 4.1 of
Kapur &al. (1988) — and even some more, namely all those wipesd term is reducible at
some nonempty position that is shorter than the overlagipngf the critical peak.

aswellas  vxe (lo). | _ 3ge 205 (lo)
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The power of the combination of the two weakenings of thegbility requirement, i.e. the
confluence and the irreducibility assumptions, is dematetr by the following simple but non-
trivial example whose predicatecnnegp’ checks whether an integer number is non-negative:

Example 14.3 C = {0,s,p,true,false}

N := {nonnegp}

Riuaz @ s(p(y)) =Y
p(s(y)) —y
nonnegp(0) = true
nonnegp(s(X)) = true «— nonnegp(X) = true
nonnegp(p(0)) = false
nonnegp(p(X)) = false <«— nonnegp(x) = false

Let 0, s, p be constructor symbols of the safit andtrue, false constructor symbols of the sort
bool. Letnonnegp be a non-constructor predicate with aritint — bool ”. Let x, y be constructor
variables of the soiitit.

Obviously, Ri43,V is V-compatible with the termination-pajt>, ) wherer> is the lexico-
graphic path ordering generated txyhnegp being bigger thamrue andfalse.

There are only the following two critical peaks which aretbot the form(0, 1):

/

nonnegp(s(X))o true nonnegp(p(X))o false
$1,1 J/l,l
nonnegp(y) nonnegp(y)

whereo := {x+— p(y)} andd’ := {x— s(y)}. Their respective condition lists are the following
two lists containing each one literal only:

nonnegp(X)0=true nonnegp(X)o’ =false

Now the following is easy to show: The irreducible conston¢erms of the sorint are exactly
the terms of the forna"(z) or p"*(z) with ne N andze V. ;,;U{0}. The irreducible constructor
terms of the sorbool are \: pooU{true, false} . Furthermore, by induction ome N one easily

shows nonnegp(s”(O))LRmsjotrue and nonnegp(p”*l(O))LR143,@fa|Se- Finally by induction

onneN one easily shows thatonnegp(t)LRM’&antrue Y nonnegp(t)LRM&V’wnfalse im-
plies v (t)=0, which we only need to show confluence besides ground con#uenc
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Define< via (p,qeros(t)): g« p if depth(t) — |g| < deptht) — |p|. Now the new
combined weakening of joinability to-weak joinability w.r.t. R43,V besidesA (with A defined
as in the theorem) allows us to show joinability of the abawical peaks very easily. Since the
second critical peak can be treated analogous to the firsgtxplain how to treat the first only: By
the new additional feature for assuming irreducibilityr aeakened joinability allows to assume
that xa¢ is irreducible for the first critical peak, which can be seetwo different ways: First,
since the critical peak is a non-overlay anakccurs in the peak ternonnegp(s(X)). Second, since
the overlap position is ,1 nonnegp(s(x)) /1 1=x and Vg € 205 (xa9). 1 10" <nonnegp(s(x))od
1. Furthermore, we are allowed to assume that the conditioheo€titical peak is fulfilled, i.e.
that nonnegp(x)oq)LRm,vtrue. Together with the irreducibility okod =p(y)¢ this implies

thatyd is of the formp™(0). This again impliesnonnegp(x)ad—— ry,qvialse. Butsince we may
assume confluence below the condition tenennegp(x)o¢ we get truelR yfalse, which is
impossible. Thus the properties that weak joinability\alais to assume for the joinability test
are inconsistent and the critical pair need not be joinedl.at a

All in all, Theorem 14.2 implies confluence of— _, without solving the task
of showing that for each arbitrary (not necessarlly nomwl) substitution¢ either
nonnegp(p(y ))¢—>Rl4‘37\,true does not hold omonnegp(y )¢—>Rl4‘3_yvtrue holds, which is more
difficult to show than our simple properties above.
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The following theorem is a generalization of Theorem 7.18/irth & Gramlich (1994a). In com-
parison with Theorem 14.2 it offers for each condition terof a rulel=r——C the possibility to
replace the requirement > ut (roughly speaking i.e. decreasingness) withu)CV, (i.e. the
absence of general variables). The basic idea of its prdw§tdo showw-shallow confluence up
to w (i.e. commutation of—, , and— ) with the usual argumentation on quasi-normality,
left-linearity, termination ando-shallow joinability (cf. Theorem 14.5), and then to userdas-
ingness argumentation for the confluence-ef, , .

Theorem 14.4 (Syntactic Test for Confluence)

LetR be a CRS ovesig/lcongV. Let XCV.
Assume the following very weak kind of left-linearity ofstomctor rules w.r.t. general variables:
v((l,r),C) eR. ¥XeVsie. Vp,qe 205 (1).
| € 7 (consVsigwV,) _
( (A l/p=x=1/q - p=aq )

Furthermore, assume that constructor rules are quasi-ramur.t. R, X:
Y((I,r),C)eR Viesus(V,T (X)).

( | €7 (consVsigWV,)

A Crfulfilled wrt — ) = ((I,r),C) is quasi-normal w.r.tR, X )

R, X,w
Moreover, assume the following compatibility propertyddermination-pair(>, ) oversig/ V:
v((l,r),C)eR. Vtiesus(V,7 (X)).

lT>rt

Crt fulfilled w.r.t. —,, = Tt
RX AN YueTERMS(C). [ vV utgdom(—r,)
Vo (u) SV,
Assume—y,  to be confluent.

Assume that each critical pealto, Do, \o), (t1,D1,A1), f, 0, p) € CAR)
(with (Ao,A1)#(1,1) and( (Ao,A1)#(0,0) V TERM 5 (DooD10)Z T (consV,) ))
is w-shallow joinable up tav w.r.t. R, X and <.

[For each te 7 (sig, X) assume; to be a wellfounded ordering oros (t). Define (pe N%)
A(p) == {tedom(—py hiwg) | 09 < P} UdOM(—p, ). ]

Now the following two are logically equivalent:

1. Each critical peak((to, Do, o), (t1,D1,A1), , 0, p) € CA(R)
(withvk<2. (Ak=1 vV TERM S (DxO)Z T (consV,) ))
is >>-weakly joinable w.r.tR, X [besides A].

2. — gy Is confluent.
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The following theorem generalizes Theorem 2 in Dershowik £988) by weakening normality
to quasi-normality.

Theorem 14.5 (Syntactic Test foro-Shallow Confluence)

LetR be a CRS ovesig/lcongV. Let XCV.
Assume the following weak kind of left-linearity w.r.t. geal variables:
V((1,r),C) eR. VxeVsie. Vp,geros(l). ( 1/p=x=1/q = p=q).

Furthermore, assumi, X to be quasi-normal.

Let (>,r>) be a termination-pair ovesig/V such that the following compatibility property for
constructor rules holds (which is always satisfied wRemas conservative constructors):
v((I,r),C)eR Viesus(V,7 (X)).

IT>ut
( A leles‘i(I:Inglsv\ﬁtG%) ) = YueTERM S (C). ( vV utZdom(—ry ) .
st R,X,0 V ’V(u) C VC

Furthermore, assume that the system is terminating:
v((I,r),C)eR.Vresus(V,7 (X)). ( ( Crfulfilledw.rt.—, ) = lIT>r1).

[For each te 7 (sig,X) assume; to be a wellfounded ordering onos (t). Define (pe N*,
n=<w) A(p,n) = {tedom—, g | 040 < P} ]

Now the following two are logically equivalent:

1. —gx, IS confluentand
each critical peak((tg, Do, o), (t1,D1,A1), f, o, p) € CAR)
(with ( (Ao,A1)#(0,0) V TERM S (DooD10)Z T (consV) ))
is w-shallow joinable w.r.tR, X and < [besides A].

2. R, X is w-shallow confluent.
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The following theorem weakens tlheshallow joinability requirement to that os-level joinabil-
ity, but disallows general variables in conditions of rul€bat this restriction is necessary indeed
can be seen from Example 12.2.

Theorem 14.6 (Syntactic Test foro-Level Confluence)
LetR be a CRS ovesig/lcongV. Let XCV.
AssumeY((l,r),C)eR. ¥ (C)CV,.

Let (>,>) be a termination-pair ovesig/ V. Assume that the system is terminating:
v((I,r),C)eR.Viesus(V,7 (X)). ( ( Criulfiledw.rt.—, )= lT>r1).

[For each te 7 (sig,X) assume; to be a wellfounded ordering onos (t). Define (pe N%,
n<w) A(p,n) :={tedom(—pgy ,ng) | 09K P} ]

Now the following two are logically equivalent:

1. —xx., IS confluent and each critical peak ©P(R)
of the formg(0, 1), (1,0), or (1,1)
is w-level joinable w.r.tR, X andr> [besides A].

2. R, X is w-level confluent.
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The following theorem generalizes Theorem 4 in Dershowitt. £988) and Theorem 6.3 in
Wirth & Gramlich (1994a) by weakening overlay joinability t--quasi overlay joinability. For a
discussion of the notion af-quasi overlay joinability cf§ 9. The proof is discussed above the
key lemma B.8.

Theorem 14.7 (Syntactic Confluence Criterion)
LetR be a CRS ovesig/lcongV and XCV.

Assume either that—,, is terminating® and >=1>; orthat —, C >, >, C >, andr>
is a wellfounded ordering o .

Now, if all critical peaks inCP(R) are >-quasi overlay joinable w.r.R, X,
then—:, is confluent.

Example 14.8

Let XCV. The following system is neither decreasing, nor lefelin, nor overlay joinable; but

it is terminating and>¢,-quasi overlay joinable w.r.t. Bg,X. Thus Theorem 14.7 is the only
one that implies confluence of—, RisaX" Note that Theorem 14.4 becomes applicable when
we replace the non-constructor variable iri) with a constructor variable. Moreover, if we
additionally do the same witlp®), then Theorem 14.6 becomes applicable, too.

Eventhoughitisirrelevant for Theorem 14.7 XetY € Vg, 0,s, a, true, false € C, andless, p,f,g €
F. Note that), s, a,less model the ordinal numbep-+1.

Riasg:
(s1) s(a =a
(lessl) less(s(X),s(Y)) = less(X,Y)
(less2) less(X, X) = false
(less3) less(0,s(Y)) = true
(less4) less(X,0) = false
(lessb) less(0,a) = true
(less6) less(a,s(Y))  =less(a,Y)
(less7) less(s(X),a) = less(X,a)
(p1) p(X) = true — p(s(X))=true
(p2) p(X) = true — less(f(X),g(X))=true
(fi) f(X) =...
(gi) g(X) =

31Actually innermost termination is enough here when we nexaverlay joinability instead of--quasi overlay
joinability, cf. Gramlich (1995a).



The critical peaks are the following:
From (1) into (less1) we get:

ess(s(@).(Y)) 5> less(a.)
s l
less(a.5(Y)) ——rg—> less(a.Y)
less(s(X),s(a)) o1 less(X,a)
8 u
less(5(X), ) ——rr5—> less(X.2)
less(s(a),s(a)) o1 less(a, a)
%1,{172} '
less(a, a) less(a, a)
From (1) into (less3) we get:
less(0,s(a)) o true
$1,2
less(0,a) o710 true

The criticial peaks resulting fronsX) into (less6) and (ess7) are trivial.

From (essl) into (ess2) we get:

less(s(X),s(X)) o1 false
b |
less(X, X) oio false

From (ess2) into (less1) we get:

less(s(X),s(X)) — o1 less(X, X)
J/ml,@ J/&Hl,@
false false

65

The criticial peaks resulting fromes2) into (ess4), (less4) into (less2), (pl) into (p2), and 62)

into (p1) are trivial.
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15 Ciriteria for Confluence of the Constructor Sub-System

Define theconstructor sub-systeof a rule system R to be

Re:={((1,r),C)eR| l €T (consVsicwV,) },
i.e. the system of the constructor rules of R. In this sectwerdiscuss the problem how to find
outthat —, , = —&_x,, IS confluent. Note that this is a necessary ingredient foreaaiy
confluence via any of the theorems 13. 3,13.4,13.6, 13.9,14.5, and 14.6.

The easiest way to achieve confluence-ef,,  is to have no constructor rules at all, i.e.
R-=0. While it is rather restrictive, this case i€e constructorss very important in practice
since a lot of data structures can be specified this way. Merei is economic to restrict to this
case because non-free constructors make a lot of troubla wheking with the specification,
e.g., most techniques for proving inductive validity gabitremendous trouble with non-free
constructors — if they are able to handle them at all.

The second case where confluence-ef,, . is immediate is when for each ruler<—C in
R, also r=l——C is an instance of a rule of R, and then also gf@Rie to the restriction on the
constructor rulé=r<—C given by Definition 2.2. An example for this is the commutggivule
which is equal to a renamed version of the reverse of itselthis case it may be worthwhile to
consider reduction modulo a constructor congruence asibdeddn Avenhaus & Becker (1992)
and Avenhaus & Becker (1994).

A third way to achieve confluence ef—, , is to use semantic confluence criteria in the
style of Plaisted (1985), cf. also Theorem 6.5 in Wirth & Gham(1994a). While this semantic
argumentation is very powerful when one has sufficient kedgé about the constructor domain,
itis, however, not at all obvious how to formalize or evenoauiate such semantic considerations.
Above that, these semantic confluence criteria are basedeoexistence of normal forms and
therefore require termination of the constructor subesydiat least in some weak form).

Termination of the constructor sub-system, of course, doemean termination of the whole
rule system. We may, e.g., apply Theorem 14.2 to infer confleef a terminating constructor
sub-system containing the associativity rule of Examplsé8 Y&hose confluence can hardly be
inferred without termination) and then infer the confluenég¢he whole non-terminating rule
system by some of the theorems§of3. This case where a terminating constructor sub-system
is part of a non-terminating rule system seems to be impbitapractice since confluence of
non-free constructors often can hardly be inferred withteamination whereas termination is
usually not needed for then inferring confluence of the wgktem because the non-constructor
rules can be chosen in such a way that their critical peaksamplementary, cf. Theorem 13.3.
Moreover note that the reverse case, i.e. that of a non+ating constructor sub-system of a
terminating rule system, is impossible in our framework ot in the abovementioned one of
Avenhaus & Becker (1992) and Avenhaus & Becker (1994) whieeentotion of reduction is
different, namely reduction via R modulo R-.

In the rest of this section we will present syntactic cragor confluence of—;, ..
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First note that the theorems 14.2 and 14.7 can directly bkeaijo infer confluence of—,
simply by instantiating the ‘R’ of these theorems with.R

The other theorems we will present in the following are naghlbut informal corollaries of
other theorems of the sections 13 and 14. To apply the l&g@réms to our special case here, it
is not sufficient only to throw away the non-constructor sylleut we also have to transform the
constructor function symbols of the constructor rules mda-constructor function symbols. For
consistency we then also have to rename their construatiadl@s with general variables. Then
the constructor sub-system of the transformed system isyeamgl therefore trivially confluent,
such that these theorems can be applied. If the construdés contain general variables or Def-
literals, then, however, this transformation brings usdmelthe two layered framework presented
in this paper: As we translate constructor variables (I8y@hto general variables (level 1), then,
for consistency, since—,, . is a relation on the terms of the whole signature, we also lave
translate general variables (level 1) into some kind ofalaés of level 2, and non-constructor
function symbols (level 1) into some kind of function symbof level 2. Symbols of level 2,
however, are not present in the framework presented in #psip Moreover we have to translate
our Def-literals (which test for reducibility to a groundte of level 0) into predicate literals that
test for reducibility to a ground term of level 1, which ars@hot present in our framework.
While it would be possible and beautiful to present our cafte criteria of the sections 13
and 14 in a framework with a special signature and variajpitesn for the level of each natural
number, we have decided not to do so for the following reasbirst, it would make the paper
even more technically and conceptually difficult as it isc@el, the infinitely layered framework
may be of little importance (since its only useful applioatiso far is this section). Third, the
step of level 0 we want to treat here may in principle allow afrenpowerful criteria than an
arbitrary leveli and therefore it does not seem to be a good idea to achievenitisience criteria
as corollaries of the theorems for an arbitrary level. Hgubly proving the theorems of this
section separately, we provide the reader interested orihyei standard positive conditional rule
systems without constructor sub-signature and constrgate-system with a direct approach to
this special case. This can clearly be seen when one trasglatystem of the standard positive
conditional framework into our framework by simply sayifat all its symbols are constructor
symbols.

For all the following theorems let Rbe the constructor sub-system of a CRS R over sig/cons/V
as defined above, and letQX/. Note that the critical peaks in CR.) are exactly the critical
peaks of the fornt0,0) in CP(R).
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The following is the analogue of parts (1) and (ll) of Theor&®6. Note that we do not present
the analogues of parts (l1l) and (IV) because they are subdifrby the analogue of part (1).

Theorem 15.1 (Syntactic Criterion for 0O-Shallow Confluence)
AssumdR; X to be0O-quasi-normal andR - to be left-linear.

() Now if each critical peak irCP(R) of the form(0,0) is O-shallow noisy parallel joinable
w.r.t. R, X, and each non-overlay i€P(R) of the form(0,0) is O-shallow parallel closed
w.r.t. R, X, thenR, X is O-shallow confluent.

(lla) If R- isright-linear and if each critical peak i€P(R) of the form(0, 0) is 0-shallow noisy
strongly joinable w.r.tR, X, and each non-overlay i@6P(R) of the form(0,0) is O-shallow
noisy anti-closed w.r.R, X, thenR, X is O-shallow confluent.

(Ilb) If R, is right-linear and if each critical peak ICP(R) of the form(0,0) is 0-shallow
strongly joinable w.r.tR, X, and each non-overlay i@6P(R) of the form(0,0) is O-shallow
anti-closed w.r.tR, X, then—  is strongly confluent.

Corollary 15.2 If R,X is 0-shallow confluent, thea— is confluent.

RX,w

We omit the analogue of Theorem 13.9 here because it reqhiatshe conditions of the con-
structor rules do not contain any variables. In this casec& (in general not effectively) be
transformed into an unconditional system with identicaluaion relation (with possibly differ-
ent depths) to which we can then apply Theorem 15.1 instead.

The following is the analogue of Theorem 13.3.

Theorem 15.3 (Syntactic Confluence Criterion)
If R, is left-linear and normal and all critical peaks d® - are complementary, ther—,
confluent.

R.X,w IS

The analogue of theorems 14.2 and 14.4 is just Theorem 1#h2ZRiinstantiated with R.

32This is because the notion of 0-shallow [noisy@akparallel joinability (when defined analogous to the notion
of w-shallow [noisy]weakparallel joinability) is identical to the notion of 0-shalV [noisy] parallel joinability.
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The following is the analogue of Theorem 14.5.

Theorem 15.4 (Syntactic Test fol0-Shallow Confluence)
Let (>,>>) be a termination-pair ovesig/ V.

Assumdr, X to beO-quasi-normal andr- to be left-linear.
Furthermore, assume that—,  is terminating:

V((I,r),C)eR.Vresuaz(V,T(X)).( <A gﬁﬁﬁgj?ﬁ?%) > = lt>r1 )

R,X,w
[For each te 7 (sig,X) assume; to be a wellfounded ordering onos (t). Define (pe N%,
n<w) A(p,n) = {tedom—,,,) | 0£0< p}.]

Now the following two are logically equivalent:

1. Each critical peak irCP(R) of the form(0,0)
is O-shallow joinable w.r.tR, X and < [besides A].

2. R, X is O-shallow confluent.

We omit the analogue of Theorem 14.6 here because it recihiaéshe conditions of the con-
structor rules do not contain any variables. In this case&h be transformed into an uncondi-

tional system with identical reduction relation to which @an then apply Theorem 14.2 with ‘R’
instantiated with R.

The analogue of Theorem 14.7 is just Theorem 14.7 with ‘Ransated with R.
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A Further Lemmas for Section 13

Lemma A.1 LetRbe a CRS ovesigicongV. Let XCV.
AssumeR to have conservative constructoi®,X to be quasi-normal, and the following weak
kind of left-linearity:
V((l,r),C)eR.Vp,geros(l). VxeV.
I/p:x:I/q) N ( | €7 (cons VsV, )

A P#(Q N XeEV,
Furthermore, assume that—,  is confluent, that each critical peak fro@P(R) of the form
(0,1) is w-shallow[noisy parallel joinable up tow w.r.t. R, X, and that each non-overlay from
CP(R) of the form(1,0) is w-shallow parallel closed up tmw.r.t. R, X.

Ol * *
Now for each n< w: —HRX @O R X 4 (n-1)] strongly commutes OVeF—py o

A fortiori R, X is w-shallow confluent up ta.

LemmaA.2 LetR be a CRS ovesig/congV. Let XCV.
AssumeR to have conservative constructoiR, X to be quasi-normal, and the following very
weak kind of left-linearity:
v((I,r),C)eR.Vp,qeros(l). Vxe V.
| /p=x=I/q ) N ( | €7 (cons VsV, ) ) )

A P#(Q V. XeV, '

Furthermore, assume that for each<w:
R X 0O gy erney STONGlY COMMUtes over—g, .

Moreover, assume that each critical peak fr@R(R) of the form(1,1) is w-shallow noisy par-
allel joinable w.r.t.R, X, and that each non-overlay fro@P(R) of the form(1,1) is w-shallow
parallel closed w.r.tR, X.

Now for all g < ny < w:

* * *
—>R,X,wo _H_>R~Xvw+”lo—>R,X,w+(nl;1) strongly commutes OVG"—>RA’X’®+”O .

A fortiori R, X is w-shallow confluent.

Lemma A.3 LetR be a CRS ovesigicongV. Let XCV.

AssumeR to have conservative constructoRR, X to be quasi-normal, and the following very
weak kind of left-linearity:

V((l,r),C)eR.Vp,geros(l). VxeV.

| € 7 (consVsigwV,)
A 1/p=x=I/q = XeV,
A P#Q

Furthermore, assume that—,  is strongly confluent, that each critical peak frd@#®(R) of
the form(0,1) is w-shallow[noisy] weak parallel joinable up taw w.rt. R,X, and that each
non-overlay fromCP(R) of the form(1,0) is w-shallow closed up toow.r.t. R, X.

Now for each n< w:
* * *
i 00 TPRX 0O R X s (n-1)] strongly commutes over—g, .

A fortiori R, X is w-shallow confluent up to.
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Lemma A.4 LetR be a CRS ovesigicongV. Let XCV.

AssumeR to have conservative constructoR,X to be quasi-normal, and the following weak
kinds of left- and right-linearity:

v((I,r),C)eR. VxeV.

l/p=x=I/q | €7 (consVsigwV,)
Vp,qe?05(l).( </\ D£q = A XEV,
| € 7 (consVsigWV,)
A Vp,qeros(r). A r/p=x=r/q = XEV,
A P#Q

Furthermore, assume that—, , is confluent, that each critical peak fro@P(R) of the form
(0,1) is w-shallow[noisy] strongly joinable up tav w.r.t. R, X, and that each non-overlay from
CP(R) of the form(1,0) is mshallow[nmsg anti-closed up ta w.r.t. R, X.

Now for each n< w: —>RXw+n°—>RXw[ ey Strongly commutes OVeF gy -

A fortiori R, X is w-shallow confluent up to.

LemmaA.5 LetRbe a CRS ovesigicongV. Let XCV.

AssumeR to have conservative constructoiR, X to be quasi-normal, and the following very
weak kind of left-linearity

V((I,r),C)eR.Vp,qeros(l). Vxe V.

I/p=x:l/q) N ( | €7 (cons VsV, ) ) )

AN P#(Q VvV xeVe
Furthermore, assume that for each<nw:
X 0in®rxwrng STONGly cOmMMutes over—, .

* * * * *
TRxw © TTRX0+nC TRy i (n=1) c "Rx,0° TTRX0+C 7R x o (n=1) © RX.0°

Moreover, assume that that each critical peak fref(R) of the form(1, 1) is w-shallow noisy
weak parallel joinable w.r.tR, X, and that each non-overlay fro@P(R) of the form(1,1) is
w-shallow closed w.r.iR, X.
Now for all rb <N < W

—rxwC R X wing © = —axwinen StrONgly commutes over—
Afortiori R, X is w-shallow confluent.

RX,+ng "

Lemma A.6 LetR be a CRS ovesigicongV. Let XCV.

AssumeR to have conservative constructoiR, X to be quasi-normal, and the following very
weak kind of left- and right-linearity:

v((I,r),C)eR. Vp,q. VxeV.

NV p=d
( l/p=x=l/q ) = | VvV leT(consVsicwV,)

Vor/p=x=r/q vV xeV,
Furthermore, assume that for each<nw:

*

X rxeny STONGly commutes OVeF gy -
Moreover, assume that each critical peak fr@®R) of the form(1,1) is w-shallow noisy
strongly joinable w.r.tR, X, and that each non-overlay fro@P(R) of the form(1, 1) is w-shallow
noisy anti-closed w.r.RR, X.
Now for all rb <N < W

xR O rxwin -1 StTONGly commutes over—
A fortiori R, X is w-shallow confluent.

RX,w+ng *
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LemmaA.7

Let p,n1 < w. Letpv e sus(V,7 (X)). Let((l,r),C) € R.
Assume that g=<ny or that 7 (C)CV,.. Assume that
R, X is w-level confluent up tomn

Now, if Cu is fulfilled w.r.t—
then Qv is fulfilled w.r.t. —

_and VXeV. Xp— XV

RX,w+n RX,w+ng "V

) and v—; rv

RX,0+n RX,wng+1" v+

Lemma A.8 LetR be a CRS ovesig/congV. Let XCV.
AssumeY((l,r),C)eR. ¥ (C)CV, and the following very weak kind of left-linearity:
V((l,r),C)eR.Vp,geros(l). VxeV.
| /p=x=I/q ) N ( | €7 (cons VsV, ) ) )

A P#(Q VvV XxeV, '
Furthermore, assunié that for each n< w:

“HRxwinO— gy, STONgly commutes over—,, ..
Moreover, assume that each critical peak fr@®(R) of the form(1, 1) is w-level parallel joinable
w.r.t. R, X, and that each non-overlay fro@P(R) of the form(1,1) is w-level parallel closed w.r.t.
R, X.
Now for all n< o

*

X O R X 00— rxe Strongly commutes over— RXn-

A fortiori R, X is w-level confluent.

LemmaA.9 LetRbe a CRS ovesigicongV. Let XCV.
AssumeY((l,r),C)eR. ¥ (C)CV,, and the following very weak kind of left-linearity
V((l,r),C)eR.Vp,geros(l). VxeV.

( (/\ |F)/£:X:|/Q) N (v LGE?/(COHSVSB&JVJ) >

Furthermore, assume that for each<w:

* x
—rxwm®rxe StroNgly commutes over—g, ..

* * * * *
—Rxw® T RX0NC ™ rxe & RX.0° T RX0+nC T 7Rx 0 ° T RXw

at) 37\ 9

33Contrary to analogous lemma for shallow joinability (i.eerhma A.2), this strong commutation assump-

tion is not really essential for this lemma if we are confideuth the result that _HﬁRﬁXaM”oL)R.X.w (in-

stead Ofl}R.X.wO_H_)R,X,OHHOLR.X.w) strongly commutes ove-rL>Rﬁx.m+n (which directly allows to get rid
of the application of the strong commutation assumptionhia proof of Claim 2). Then it is sufficient to as-
sume that RX is w-shallow confluent up tav (which means that Claim O of the proof holds directly), that
“H O M © —HﬁwnoL@ o ;Mn (which replaces the application of the strong commutatien a
sumption in the proof of Claim 5), and that the non-overlaiythe form(1,1) satisfy

t1
PC’

top —f—=> o I o
w+n w

instead otw-level parallel closedness (which allows to replace thdiegion of the strong commutation assumption
at the end of “The critical peak case”).
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Moreover, assume that that each
critical peak fromCP(R) of the form(1,1) is w-level weak parallel joinable w.r.R, X,
and that each non-overlay fro@P(R) of the form(1,1) is w-level closed w.r.tR, X.

Now for all n< w:
*

—>R’x’wO—H—>R’X’w+nO—>* axe Strongly commutes over—, . .

A fortiori R, X is w-level confluent.

Lemma A.10 LetR be a CRS ovesig/lcongV. Let XCV.
AssumeY((l,r),C)eR. ¥ (C)CV, and the following very weak kind of left- and right- linegrit
v((1,r),C)eR. Vp,q. Vxe V.

( I/p=x=1/q ):> vV leT (consVsigWV,)

r/p=x=r
vor/p /9 v XEV,
Furthermore, assuniéthat for each n< w:
—rxen®——rxe StONgly commutes over—,, .

Moreover, assume that each critical peak fr@R(R) of the form(1,1) is w-level strongly join-
able w.r.t.R, X, and that each non-overlay fro@P(R) of the form(1,1) is w-level anti-closed
W.r.t. R, X.

Now for all n< o

*

kO Rxem®—rxe StrONgly commutes over—

o TRX0® T RX @
A fortiori R, X is w-level confluent.

RX,w+4n"

34Contrary to analogous lemma for shallow joinability (i.eerhma A.6), this strong commutation assump-

tion is not really essential for this lemma if we are confidesth the result that Rxwn® T RX 0 (in-

stead ofLRXwo—>R‘X_w+noi>RXw) strongly commutes ove+’>'<—>m<_(k,+n (which directly allows to get rid
of the application of the strong commutation assumptionhia proof of Claim 2). Then it is sufficient to as-
sume that RX is w-shallow confluent up tao (which means that Claim O of the proof holds directly), that
0 g & ;Mnoi% o Lmn (which replaces the application of the strong commutatien a
sumption in the proof of Claim 5), that the critical peakstof form(1,1) satisfy

t1
Sy *$w+n
tod — o * o

w+n w

instead okw-level strong joinability (which allows to complete “Thecgnd critical peak case” for the new induction
hypothesis), that the non-overlays of the fofinl) satisfy

t10
:$w+n
AC o
L[]
t k
00— °

instead ofw-level anti-closedness (which allows to complete “Theicaitpeak case” for the new induction hypo-
thesis).
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B Further Lemmas for Section 14

Lemma B.1 LetR be a CRS ovesigicongV. LetXCV. Leta € {0, w}.
Let (>,>) be a termination-pair ovesig/V.
If V((I,r),C)eR Viesus(V,7 (X)).
( ( Cr fulfilled W.r.t. —gy 4,4 ) =t )
A (a=0 =le7(consVsigV,) ) ’

then — Cp.

R,X,0-+0

Lemma B.2
Letpv e sus(V,7 (X)). Let((I,r),C) € R.
Let (>,>) be a termination-pair ovesig/V such that:
Viesus(V,7 (X)).
lT>rt

Ct fulfilled w.rt. —, = ITb Ut
RX AN YueTERMS(C). [ V utgdom(—y)
[V v (u) SV, |
Assume thatvu<ily. —, is confluent below.u

* *
[Assume that—_, , 0 —xx C lrx-]

R.X,w

Now, if Cptis fulfilled w.rt—-, and VYXe V. Xp— XV,

then Qs is fulfilled w.rt. —,, and b—_, rv.

Lemma B.3
LetR be a CRS ovesig/lcongV. Let XCV.
Let (>,r>) be a termination-pair ovesig/V such that:
v((l,r),C)eR. Vtiesus(V,7 (X)).
lT>rt

. [T ut
Cr fulfilled w.r.t. —,, = A VueTERMS(C). | VT Zdom(— )
[V ¥ (u)C V]
For each te 7 (sig, X) assume; to be a wellfounded ordering onos (t). Define (peN%)
Alp) ={t Edorn(_>R,x,w+co,q) | 0#q<ip}[U don(_>R,x,w)] .
[Assume that——, o —, C |ny-]
Assume that each critical peato, Do,\o), (t1,D1,A1), f, 0, p) € CP(R)
[with Vk<2. ( Ak=1 V TERM S (Dx0)ZT (consV,) ) ]
is >-weakly joinable w.r.tR, X besides A.

Now: — is confluent.
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Lemma B.4
LetR be a CRS ovesig/lcongV. LetXCV. LetB < w. LetSeT.
Assume the following very weak kind of left-linearity:
v((I,r),C)eR. ¥xeVsic. Vp,ge 2os (1).
| €7 (consVsigWV,)
< (/\ | /p=x=1/q ) = p:q).
Furthermore, assume the following compatibility propefdy a termination-pair(>,r>) over
sig'V:
v((I,r),C)eR. Viesus(V,7 (X)).
| € 7 (consVsigWV,)
A Crfulfilled wort. —p >
((1,r),C) is quasi-normal w.r.tR, X

IT>ut

AN YueTERMS(C). [ vV utgdom(—py)

Vo (u) CV,
and
v((I,r),C)eR viesus(V,7 (X)). ( ( Crtfulfiled w.rt.—, ) = IT>r1 ).
[For each te 7 (sig, X) assume; to be a wellfounded ordering onos (t). Define (p=N*,
n<w) A(p7 n) = { tedon(—>R.x,w+n,q) ‘ O#q K¢ p } ]
Assume—,, . to be confluent.
Assume that each critical peak ((to,Do,No), (t1,D1,A1), f, 0, p) € CP(R) with
(Mo,A1)#(1,1) and ( (Ag,A1)#(0,0) V TERM S (DooD10)Z T (consV,) ) is w-shallow
joinable up to and$S w.r.t.R, X and < [besides A].

Now: R, X is w-shallow confluent up t and$ in <.

Lemma B.5
LetR be a CRS ovesig/icongV. Let XCV. Leta € {0,w}. Let < wta. Let Se7.
Assume the following weak kind of left-linearity{(l,r),C) eR. ¥xe V. Vp,qe ros(l).

( |/p=x=1/q ) )
A (a=0 = leT(consVsicwV,) ) | = p=q |.

A ( a=w = XeVgg )
Furthermore, assumi, X to bea-quasi-normal.
Let(>,r>) be a termination-pair ovesig/ V such that the following compatibility property holds:
v((l,r),C)eR Vtesus(V,T (X)).

Cr fulfilled w.r.t. —pg 4.0 ~olts

A (a=0 =leT(consVsicV,) )
[For each te 7 (sig,X) assume; to be a wellfounded ordering onos (t). Define (pe N*,
n<w) A(p,n) :={tedom(—pqyq.ng) | 0£0 < P} ]

AssumeR, X to bea-shallow confluent up ta.
Assume that each critical peaKto, Do,\o), (t1,D1,A1), f, 0, p) € CP(R)
. (a=0 = Ax=0)
with vk<2. A (a=w= (A=1V TERMS(DO)ZT (consVe) ) ) )
is a-shallow joinable up t@ andS w.r.t.R, X and < [besides A].

Now: R, X is a-shallow confluent up tf andS in <.
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Lemma B.6

LetR be a CRS ovesig/lcongV. Let XCV. Let B<w. Let SeT.

AssumeY((l,r),C)eR. ¥ (C)CV,.

Let(>,r>) be a termination-pair ovesig/ V such that the following compatibility property holds:
v((I,r),C)eR.Viesus(V,7 (X)). ( ( Crfulfiled w.rt.—, )= lt>r1).

[For each te 7 (sig,X) assume; to be a wellfounded ordering onos (t). Define (pe N%,

n<w) A(p;n):={tedom(—p, 4nq) | 0FA <Kt P }. ]

Assume—,  to be confluent. Assume that each critical pealCI¥(R) of the forms(0,1),

(1,0), or (1,1) is w-level joinable up td3 and$ w.r.t.R, X and < [besides A].

Now: R, X is w-level confluent up t@ ands in <.

The following lemma generalizes Lemma 7.6 of Wirth & Grarl{@994a) by requiring= to be
terminating only below a restricted set of terms T:

Lemma B.7
Let TC 7. Let >, [T|] denote the set of subterms @t Let = be a sort-invariant
(This can always be achieved by identifying all sorts.) dachonotonic relation orr'. Define
> = p_mlido (= U>g)". Now:

1. EST[THid o= = [T]“d o=xo IZST[THid ;

—=ST
Tlido =z = 1lid 0 = o 11id
2. Tlidopg o= C tlido = otlido g,
Moreover, forT=7": >go= C = obg.

3. > C dgoTlido (2 Ubg)” :

. . + .
> = < ('ZST[THId o =) U (EST[THId o DST) ) o EST[THId ;

Tlido (= UDST)+ = ( Tlid o >or ) U ( (71id O:§)Jr otlido >or )
Moreover, forT=7: > = D>g U (I olg).

4. If =2 is terminating (below all t¢ T) [and = and T are X-stable], thenr> is a well-
founded [andX-stable] ordering on>..[T] (which does not need to be sort-invariant or
T-monotonic).

5. (4) does not hold in general if one of the two conditions: $ort-invariant” or
“ = T-monotonic” is removed. Moreover, (4) does not hold in gahéor (= U>¢,)"
instead ofr>.
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The proof of the following lemma and its far more restrictedecessors has an interesting his-
tory. After its first occurrence in Dershowitz &al. (1988) faverlay joinable positive conditional
systems, in our proof for quasi overlay joinable positieg/ative-conditional systems in Wirth &
Gramlich (1994a) we changed the third component of the itioluordering fromL>RX to >,
the ordering of the ordinals. This change was done becaadievited us to check for general-
izations more easily but did not result in a stronger criterat first. Later, however, this change
of the induction ordering turned out to be essential for Teep21 of Gramlich (1995a) saying
that an innermost terminating overlay joinable positiveditonal rule system is terminating and
confluent: Due to the mutual dependency of the terminatiaitlae confluence proof, when prov-
ing confluence it was not possible to assume global ternonddut local termination only. And
it was especially impossible to assume termination for gaat of — ., which was necessary
for the third component of the induction ordering. The faling lemma (just like Theorem 7 of
Gramlich (1995a)) requires local termination instead afgl termination, which is not really
necessary for proving Theorem 14.7 but again allows us tokcfoe future generalizations more
easily. Moreover, note that the form of the proof has beesidenably improved compared to any
previous publication: Claim O of the proof does not only pdevus with the new irreducibility
assumptions we have included into the notion=eiuasi overlay joinability but also subsumes
the whole second case of the global case distinction of thefdas presented in Dershowitz
(1987) as well as presented in Wirth & Gramlich (1994a)). A®asequence, in the whole new
proof now the second and the third component of the indudrdering are used only once.

Lemma B.8 (Syntactic Confluence Criterion)

LetR be a CRS ovesiglcongV andXCV. LetSe 7 (sig, X). Define T := LRX [{$}].
Assume either that|—, is terminating and> = >,

orthat oml—xx € >, > C >, andr> is a wellfounded ordering o .

Now, if all critical peaks inCP(R) are t>-quasi overlay joinable w.r.R, X,

then 11— is confluent.

C w-Coarse Level Joinability

Using the following notions fotw-coarse level joinability one can work out a whole analoglie o
Theorem 13.9. We did not do so because this analogue doedlowtad a corollary theorem
analogous to Theorem 13.4 because the information on cowfuerovided by the joinability
notion for testing the conditions of critical peaks is to pfuw practically applicable reasoning. To
those who are interested in this notion, however, we prdseetthe analogues of Definition 8.1,
Definition 8.2, Lemma A.7, and Lemma A.8, for which we alsoénaxcluded the proofs.

Definition C.1 (w-Coarse Level Parallel Closed)

A critical peak ((to,Do,No), (t1,D1,A1), {, p)

is w-coarse level parallel closed w.rR, X if

( Vi < 2. Di¢ fulfilled w.r.t. — )
g

N —gx @nd—  are commutin
*

Voesus(V,7(X)).
= toq) _H%RﬁXOL)R,X,w © <_R,X,wtl¢

Definition C.2 (w-Coarse Level Parallel Joinable)
A critical peak ((to,Do,Ao), (t1,D1,A1), f, p)
is w-coarse level parallel joinable w.r.R, X if
Vi < 2. Di¢ fulfilled w.r.t. —
Véesus(V, 7 (X)). ( A R and—r, , are commut|ng>

= tod-t+-rx o0 —)RX. o<—th1¢



Now:
k

O RXO e StrONGly cOmmutes over— .

A fortiori — is confluent.

Lemma C.4
Letpvesus(V,7 (X)). Let((I,r),C) e R.
Assume thaty (C)CV,..

* *
Assume—;, 0 —qy ., C lox-

81
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Now, if Cpis fulfilled w.rt—-, and VxeV. xp—>RXxv
then G is fulfilled w.r.t.— and Vg V.

D The Proofs

Proof of Lemma 3.2

Assume—;, and—, to be locally commuting.

For the first claim we assume that—, U —, is terminating. We show commutation by in-
duction over the wellfounded ordering—:, U —,*. Suppose tj«—s——t;. We have to
show t{—, o «*—t;. In case there is somie< 2 with t'=s the proof is finished due td/ =
s, ] e t] ;. Otherwise t)e— toe—,S—t1—t] for someto, t1 (cf. diagram below).
By local commutation there is sonsewith tg——, S« t;. Dueto s —s,U—,*to, by in-
duction hypothesis we get sorgéwith t)—— '« . Dueto s—s,U—," t1, by induction
hypothesis we ges’——, o« ;.

'
S 1 tl 1 tl
0 *|0
*
—_— *
to 1 d 0
*|0 *|0
/ * / *
o
to 1 s 1

For the second claim we now assume that, or —, is transitive. W.l.0.g. (due to symmetry
in 0 and 1) say—, is transitive. It is sufficient to show

YNeN. Vs o, ty. (fo—pS—,t1 = to——, 0 ——t1).
n=0: toiﬁtoLOS:tl.
n= (n+1): Assumetoéosiﬁt’—ﬁtl (cf. diagram below). By induction hypothesis there is
somew with to——,w«—t’. In case ofw=t’ the proof is finished bylg——,W=t'— t< —t;.
Otherwise, since—, is transitive, we havew——t’'—t;. By the local commutation of—,
and—, this implies w—-, o« to.

n /
S 1 t n 1
*\I/O *\I/O *J/O
* *
W

t o
0 1 1
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Proof of Lemma 3.3
That (3) (or else (2)) implies (1) is trivial. For (1) imphan(2) and (3) it is sufficient to show
under the assumption of (1) that

YneN. Vs b, ty. (fo—pS—t1 = to—, 0 ——t1).
n=0: t0=S—>1t1<LOt1.
n= (n+1): Supposeto%ot’LOS—qtl (cf. diagram below). By induction hypothesis there is
somew with t'— w<—t;. In case of t'=w the proof is finished due tdg—,tg——t'=
w—t;. Otherwise we haveto—_t'—,w and get by the assumed strong commutation
o ;OW.

to— 1

Sﬁtl
n|0 *|0
t ———>w

0 *|0

to ——F—>o°

For proving the final implication of the lemma, we may assutra t+—, strongly commutes
over LO. A fortiori LO and—, are locally commuting. By Lemma 3.2 they are commuting.
Therefore—, and—, are commuting, too.

Proof of Lemma 3.4
It is trivial to show YneN. < C | by induction om.
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Proof of Lemma 5.1
Just like the proof of Lemma 6.3 when the depth consideratawa omitted.

Proof of Lemma 6.3

For ((to,Do,No), (t1,D1,A1), , p) € CP(R) there are two ruley=ro«—Co andl;=r1+—C;

in R (assuming ¥ (lop=ro«—Cp) N ¥ (I1=r1+—C4) =0 w.l.o.g.) and o€ sus(V,T)

with 1o = 110/p;  (to, Do, t1, D1, ) = (lif[p<ro], Co, r1, C1, l1)o and Aj =
0 iflj € 7(consVsigwV,)
1 otherwise

[(no+,m, fd) << (B, s) and]foralli <2: (a=0=Aj=0<n;); (a=w=Ai=n;); D¢

fuffilled w.rt. — ..y I.€. Cio¢ fulfilled wrt. — . ... In case of ;=0 we have

NAi=0 anda=w and therefore by Corollary 2.60¢ — ., [i09. In case ofn; -0 we have

ni=(n-1)+1 and thereford.0¢—>R‘xya+nir,0¢ again due toa = 0= Aj=0. Then

tod = 110¢[ P 1009 |« x 410 1100 R x a1 109 =110
*

By a-shallow confluence [up tB [andsin <i]] we have to®—— o.n, © —rxanl1® -

Let ¢ecsus(V,7(X)); hnon < w; and assume

Proof of Lemma 6.4
The proof is analogous to the proof of Lemma 6.3.

Proof of Lemma 9.1

In case of (f/p/)od = (f/0)odp we get p’=0. Thus A C »os (f)\{0} together withVp' €A.
(f/p')od=(t/0)o¢p implies A=0. If there is someuy with toOU—— Uy ——tiop; definen:= 1;
U := t10; po := 0; and note that,o0¢«—fop whenD,o¢ is fulfilled.

Proof of Lemma 13.2

If R has conservative constructors we ge{C)CV, (sincel € 7 (consVgicwV,)). If 7(C) C
VC7

then 7£R s (C)C7 (consVsigWVe) (sincel € 7 (consVsigwV,)).

Thus we can always assume&z g M s (CH)C7 (consVsicwV). Then we haveVxe 7 (C).
Xpe T (consVsigwVe) and thus Vxe v (C). quR.mxv by Lemma 2.10. MoreoveCl is
fulfilled w.r.t. — , by Lemma 2.10. By confluence ef-,, , and Lemma 2.1Qv is fulfilled
W.I.t. —pg - By Corollary 2.6 we finally getv—, rv.
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Proof of Theorem 13.3 and Theorem 13.4

Due to Corollary 3.8, it suffices to show that the conditiohg loeorem 13.6(1) or else (in case
of Theorem 13.4) Theorem 13.9(l) are satisfied. The only tneral part are the joinability
requirements for the critical pairs. We just have to showthe conjunctive condition lists of the
joinability notions are never satisfied. Assuniéo, Do,/ o), (t1,D1,A1), , p) to be a critical
peak.

We first treat the critical peaks of the for(®,1) or (1,0), and, in case of Theorem 13.3,
also of the form(1,1). For these we have to showrshallow parallel joinability or elseo-
shallow parallel closedness. Thus, assymes u3(V,7 (X)) andng,n1 < w such thatVi < 2.

( Di¢ fulfilled wort. —p . .p ) @nd ¥d=<no+,n:. (R,Xis w-shallow confluent up ta ).

By the assumed complementarlty there must be complemeetargtion literals irDg andDj.
Due to our symmetry in 0 and 1 so far, we may w.l.0.g. assunméuhav) occurs inDg and(U£Vv)
occurs inD1 or else that p=true) occurs inDg and( p=false) occurs inDl We treat the first case
first. Then there are,V € g7 (cong with OL(M -0 YO s (g ) VO (- ¥ @ND LT V. IN
case ofng,n; =<1 this contradicts the required confluencee% cf. Lemma 3.4. OtherW|se in
case ofng=1 we have (np—1)+,(n1~1) < np+,n1 and thus by our above assumptionXRs
w-shallow confluent up ténp—1)+,(n1—1). Due to the assumption of the theorem at least one of
ud, vd, w.l.o.g. saywd, must be either irreducible or have/ac g 7 (cong with v¢i> oHng=1)
Now Lemma 13.7(4) impliesu| | ., V, and then Lemma 2.11 implies the contradlctlugnv

Now we treat the case that th(an—true) occurs inDg and (p=false) occurs inD1. Due to the
definition of complementaritytrue andfalse are distinct irreducible ground terms. Thus we have

pq)Lm(no;l)true and pp—,, wi(ng-pfalse. In case of no,ny <1 this contradicts the required

confluence of—,. Otherwise, in case ofig =1 we have(np—1)+,(n1—1) < no+,n1 and thus
by our above assumptlon,R is w-shallow confluent up tong—-1)+,(n1—1). This again implies
the contradictingtrue | false.

Finally we treat the critical peaks of the for(d,1) in case of Theorem 13.4. For these we
have to showw-level parallel joinability or elsev-level parallel closedness. Thus, assupne
sus(V,7 (X)) andn < wwith 0<n such thatvi <2. ( Di¢ fulfilled w.rt. —_, ., ) and
vd<n. ( R, X is w-level confluent up t® ). Due to O<n we haven-1<n and thus RX is w-
level confluent up tm—1. By the assumed weak complementarity there must be coreplamy
equation literals ilDgD1. First we treat the case that=v) and(u#£v) occur inDoD;. Then there

areu,v € g7 (cong andV € 7 (sig X) with Ge—_ . up—_ Ve o ovo— 0
and uj_V. Now, byw-level confluence up to-1, there is some’ with GLMM)U (_co-»-(n'—l)\/
and then byw-level confluence up ta-1 again ullw—«—(n'—l)\?’ and then Lemma 2.11 implies the
contradicting u] V. Now we treat the case that thgb=true) and (p=false) occur inDgDj.
Due to the definition of weak complementarityue and false are distinct irreducible ground
terms. Thus we havetrueéwﬂn,fl) p¢i>m+(n;l)false. By w-level confluence up to-1 this

again implies the contradictingrue | false. Q.e.d. (Theorem 13.3 and Theorem 13.4)
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Proof of Theorem 13.6

() follows from the lemmas A.1 and A.2.

(I1) follows from the lemmas A.4 and A.6.

(111 follows from the lemmas A.1, A.4, and A.5, since for tical peaks of the forn{0,1) w-
shallow noisy strong joinability up t@ implies w-shallow noisy parallel joinability up ta (cf.
Corollary 7.7) and for non-overlays of the for(i,0) w-shallow parallel closedness up @
implies w-shallow noisy anti-closedness updadcf. Corollary 7.8).

(IV) follows from the lemmas A.3, A.4, and A.5, since for acél peaks of the forn{0,1) w-
shallow noisy strong joinability up t@ impliesw-shallow noisy weak parallel joinability up to
(cf. Corollary 7.7) and for critical peaks of the forfth, 0) w-shallow closedness up toimplies
w-shallow anti-closedness up do(cf. Corollary 7.8).

Proof of Theorem 13.9

(1) follows from the lemmas A.1 and A.8.

(I1) follows from the lemmas A.4 and A.10

(1) follows from the lemmas A.1, A.4, and A.9, since for tical peaks of the forn{0,1) w-

shallow strong joinability up too impliesw-shallow parallel joinability up teo (cf. Corollary 7.7)
and for non-overlays of the forifl, 0) w-shallow parallel closedness updnimplies w-shallow
anti-closedness up to (cf. Corollary 7.8).

(IV) follows from the lemmas A.3, A.4, and A.9, since for arél peaks of the forn{0,1) w-

shallow strong joinability up too implies w-shallow weak parallel joinability up ta (cf. Corol-
lary 7.7) and for critical peaks of the for(i, 0) w-shallow closedness up toimplies w-shallow
anti-closedness up t (cf. Corollary 7.8).

Proof of Theorem 14.2
1= 2:BylLemmaB.3. 2= 1:By Lemma5.1.

Proof of Theorem 14.4
1 = 2:Directly by the lemmas B.4 and B.3.=2 1: By Lemma 5.1.

Proof of Theorem 14.5
1 = 2: Directly by the lemmas B.4 and B.5.=2 1: By Corollary 3.9 and Lemma 6.3.

Proof of Theorem 14.6
1 = 2:Directly by Lemma B.6. 2= 1: By Corollary 3.9 and Lemma 6.4.

Proof of Theorem 14.7
Directly by Lemma B.8.
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Proof of Theorem 15.1(1)
Claim 1:If -, 0—, _, strongly commutes over—, ,then—, and—, are commuting.
Proof of Claim 1: —+-,0—, ., and—, are commuting by Lemma 3.3. Since by Corol-

lary 2.14 and Lemma 2.12 we have—, C —#0—, , € —, , now —, and— are
commuting, too. Q.e.d. (Claim 1)

Forng < n; < wwe are going to show by induction @g+n; the following property:

* *
Wott— U, W1 = Wo—H—)nlo—>n1.710<—n0W1.

I
u I Wy
n1
o *{Ng
*
Wo —H—=> o o

n-1

Claim 2:Letd < w. If

Nop =<Ng
A No+np =<0

VNnp, N1 < . Wt Ut W ,
= VWO,W]_, u. * *
= WO—H—>n10—>nl_71 (¢) <—n0W1
then
Np = N1
Vo, N1 < W. A No+Ny =0 ,

= - 0—, , Strongly commutes over—
and R X is 0-shallow confluent up té.
Proof of Claim 2:By induction ond in <. First we show the strong commutation. Assume
Np < N1 < w with ng+n1 <. By Lemma 3.3 it suffices to show th&tH—)nlOLnl;l strongly

commutes over—, . ASSUMe Wo——, U+, W1—, Wz (cf. diagram below). By the above
property there is somt@/1 with Wo—H%nloL)nl;l\/\/’l;nOWl. Next we show that we can close the
peak V\ﬁ‘LnOV\_’anquZ according tO.V\/anl._lV\/anOWz for somew,. In case of n; =

0 this is possible duewv; =w,. Otherwise we havenp+(n;—1) <ng+n; <4 and due to our

induction hypothesis (saying that R is 0-shallow confluent up to a® < d) this is possible
again.

I *
u I Wy — > W2
ny
\l/ﬂo *J/n() *\Lﬂo
I * *
WO L © np=-1 V\/l m=1 V\/Z

Finally we show 0-shallow confluence updoAssumeng+n; <& and woLnouLnlwl. Due

to symmetry inng andn; we may assumaiy=<n;. Above we have shown tha¥e+—>nloLnl__1

strongly commutes over*—>no. By Claim 1 we finally getwoi>nl o Lnowl as desired.
Q.e.d. (Claim 2)
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Note that forng=0 our property follows from«+—, C id.

The benefit of Claim 2 is twofold: First, it says that our theoris valid if the above property
holds for allng < n; < w. Second, it strengthens the property when used as indugfjosthesis.
Thus (writingnj+1 instead ofn; since we may assume-0ng=<n) it now suffices to show for
no < N1 < wthat
Wottng+1,noU—H—=n+1,m, W1

together with our induction hypotheses that

V0~ (no+1)+(n1+1). R, X is 0-shallow confluent up t®
and (due taip <n;+1 andnp+(n1+1) < (No+1)+(n1+1))

10—, Strongly commutes over—,

. . * *
implies WOty 10—, © <y 41 WL
u f Wi
ni+21,Mq
o+1,Mg *|np+1
*
Wo —ft—>o© 0
ny
n+1

Note that for the availability of our second induction hypedis it is important that we have
imposed the restrictionriy <n1” in opposition to the restrictionrip = n1”. In the latter case the
availability of our second induction hypothesis would riegug+1>n;+1 = ng>n;+1 which
is not true forng=n;. The additional hypothesis

~-n, 0——, ., Strongly commutes over—,
of the latter restriction is useless for our proof.

W.l.o.g. let the positions ofl; be maximal in the sense that for anye IN; and = C
20S (u)N(PN™) we do not haveu-+—, .1\ (p)=Wi anymore. Then for each< 2 andp € T;
there are ((lip.ri,p),Cip) € R and ppc sus(V,7 (X)) with [jpeT(consVsicWV,),
u/p=liphi,p, Tipti,p=Wi/p, GCiphip fulfilled w.rt. —, . Finally, for eachi <2: w=
u[p < riph,p | PEM;].

Define the set of inner overlapping positions by

Q(Mo, M) := | J{ peNai| 3q€M;. 3¢/ eN*. p=qq },
i<2

and the length of a term b¥(f(to, ...,tm-1)) := 1+ ¥ j<mA(tj).

Now we start a second level of induction on Z Au/p) in <.
p'eQ(Mo,M1)
Define the set of top positions by
O©:={ peNouMy | -3qeNouMy. 3 €NT. p=qd }.
Since the prefix ordering is wellfounded we haveyi<2.Vpell;. 3ge®©. 3q e N*. p=
qq. Then Vi<2 wi=w[q—wW/q|gqe@]=u[p«riptip|peni][q—w/q|qed]=
u[g<—w;/q|qe®]. Thus, it now suffices to show for allc ©

* *
WO/ Oty +10—, © <, ., W1/q

1
because then we have

Wo=U[q < Wo/q | € O]ty 10—, 0 . U[d—W1/q | €O =wy.

Therefore we are left with the following two cases {pe O:
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q¢ M1 Then geMg. DefineN) :={ p| gpe; }. We have two cases:

“The variable overlap (if any) case¥peN|N?os(log). log/PEV:

lo.gHo,q 1 wi/q
ni+1, I'I’l
n0+1,® |o’qV
\Lﬂoqu
Wo/q ro,gHoq f ro,qV
nm+1

Define a functio” on V by xeV): T'(x):={ (p/,p") | log/P'=x A p'p" €N} }.
Claim 7: There is some € s us(V,7 (X)) with

Vxe V. ( XH0.q 7+ 11XV ) .
A VP edom(T(x)). xv=Xpog[P” «— rgppHigup | (P, P") €M (X)]
Proof of Claim 7:

In case of dorfl (x))=0 we define xv := xpoq. If there is somey’ such that dorfl (x)) =
{p'} we definexv =Xy q[p” « rigqpptrgpp | (F,P”) €M (X)]. Thisis appropriate since due
to V(p', p") €T (X). Xpog/ P’ =logHo.a/P' P =u/ap P’ =l1gpp b gpp We have

XUO’QZXUO,Q[ P’ — |1,qp(p”U1,qp(p” | (P, p") € r<x)]_H_>nl+1

XHog[ P" — rigpprbagppr | (P, P") €T (X)]=xv.
Finally, in case of [dom(I'(x))| >~ 1, loq is not linear inx, which contradicts the left-linearity

assumption of the theorem. Q.e.d. (Claim 7)

Claim 8: lpqv=w1/0q.

Proof of Claim 8:

By Claim 7 we getw; /q=u/q[p'p" — r1 gqppHrqpp | IXEV. (P, p") T (X)]
el

p
log[ P —Xbog | log/P=xeV][p' P —rigpptrgpp | XeV. (P, p") el (X)]
log[ P« Xpog[ P’ + rgupbagpp | (P, P") €T (X)] [log/P =xeV]=
log[p < xv [log/P'=xeV]=lgqv. Q.e.d. (Claim 8)

Claim 9: Wo/Q—t—n,-1ro,gV-
Proof of Claim 9:Since Wo/q=rogloq, this follows directly from Claim7.  Q.e.d. (Claim 9)

By claims 8 and 9 it now suffices to showo7qV—>nO+1ro,qv, which again follows from
Lemma 13.8 sincé(lo g,r0,q),Co,q) is 0-quasi-normal w.r.t. X (due to lp g€ 7 (cons VsigwV,)
and the assumption of our theorem), sinc&X s 0-shallow confluent up tqn;+1)+ng (by our
induction hypothesis), and sincexe V. prqL xv by Claim 7 and Corollary 2.14.
Q.e.d. (“The variable overlap (if any) case”)

n+1
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“The critical peak case”: There is sorpe= M,N20S (loq) With lo g/ P& V:

lo.gHoq u f w1/
mALp n-+1,105\ {p}
——np+1 *(ng+1
no+1,0 V1 i o * Vi
ni+1 M
*|Ng *1No
*
Wo/q === Wo/q —f—> 0 —— > o
n+1 1
Claim 10: p#0.
Proof of Claim 10:If p=0, then 0<, then geMy, which contradicts our global case
assumption. Q.e.d. (Claim 10)

Let& € sus(V,V) be abijection with&[7 (((11,gp,r1,9p),C1,qp))] N ¥ (((lo,g,r0,9),Co,q)) = O
Define Y= &[¥ (((I1,p: M1.4p),Crap))] YUY (((log;T0,q),Coq))-
ngg if x € V((('O,q’rO,q)vCOﬂ))} (XEV).
X§ ™ "y qp Else
By |1,qup:|1,quE_1U1,qp:U/q p=lo,gto,q/P=logP/P=(log/P)P
leto := mgu({(l1,qpé,log/P)},Y) andd € sus(V,7 (X)) with y1(adp)=vy1p.
Defineu’ := logHoq[ P < r1,qpkiqp]- We get
u=u/d[p « ligphogp | P'E€MIN{PHIP < r1gptegpl -1 ()
u/q(p « rigptogp | P €N ]=wi/a.
If log[p < rigp€lo=roqo, then the proofis finished due to
Wo/d=rogHo,q="0,q00 =log[P < r1qp&]0d = U/_H—>n1+1ﬁn’1\{p}W1/Q-
Otherwise we have (log[ P < r1.qp&];C1qps,0), (ro.9,Co,9,0), log, 0, p) € CRR); p#0 (due
to Claim 10); Cyqp&0¢ = Cagplrgp is fulfilled w.rt. —, ; Coq0¢ = Coglog is fulfilled
w.rt. —, . Since V3= (n+1)+(no+1). R,Xis O-shallow confluent up t6 (by our induction
hypothesis) due to our assumed 0-shallow parallel clos=dimeatching the definitionig to our
n;+1 and itsn; to ourng+1) we haveu =lgg[p «— r17qu]0¢—H—>n0+1V1l>nor0’qO'¢ =roqgtog=
Wo/q for somev;. We then haVG/]_%H—nO_,_lﬁnHU/—H—>n1+1"|-|/l\{p}W1/q for somel”. By
AU/P) = S AU/ = Y Mu/ap’) < Y Au/gp’) =
p'eQ(N”,Ny\{p}) p’ent\{p} p’em\{p} peny
> Au/p) = % Au/p) = > A(u/p’), due to our second induction
peany peQ({a},M) peQ(Mo,My)
level we get some] with V1—H—>nl+1oi>n1\/l<L

Letpe sus(V,7 (X)) be given byxp =

n0+1w1/q. Finally by our induction hypothesis

that —H—>nl+loi>nl strongly commutes over*—>n0 the peak at; can be closed according to

Wo/q—g-q—>nloi>nl o ‘Lno\/l'
Q.e.d. (“The critical peak case”) Q.e.d. (g My”)
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qeMy: DefinelMg :={ p| gpeMp }. We have two cases:

“The second variable overlap (if any) cas&peMNyN2os (I1q). l19/PEV:

l1,qM1.q L0 wi/q
=Mo+1.Mo F1.qM1q
i/l:llo+l
Wo/q =—=I1qV ] ryqVv

Define a functio” on V by xeV): T'(x):={ (p/,p") | lig/p'=x A p'p’" €M }.
Claim 11:There is some € s u3(V,7 (X)) with
vxeV. ( X<ty g )
\ A VP edom(T(X)). XpglP” — FogpprHoapp | (P P") €T (X)]=xv
Proof of Claim 11:
In case of dorfl'(x))=0 we define xv := xpy 4. If there is somep’ such that dor(T (x)) =
{p'} we definexv =X g[ p” < rogpptogpp | (P, P") €M (X)]. This is appropriate since due
to V(p', p") €T (X). Xpo,q/ P’ =l1.qkra/ PP =U/qP'P" =logppbogpp We have
X“LQZXHLQ[ p’ |O,qp(p”li0,qp(p” | (p',p") € r(X>]_H_>n0+1

Xtoo[ P — TFogpprHogppr | (P, p") €M) =xv.
Finally, in case of [dom(I'(x))| > 1, 14 is not linear inx, which contradicts the left-linearity

assumption of the theorem. Q.e.d. (Claim 11)

Claim 12: wo/q=11qVv.

Proof of Claim 12:

By Claim 11 we getwo/q=u/q[p'p" < rogpptogpp’ | IXEV. (P, p") €M (x)]=
l1g[ P« Xbg | lg/ P =xeV][PP" —rogppogpp | XEV. (P, p") el (X)]=

l1g[ P Xbag[ P” < rogppbogpp’ | (P, P")€T(X)] [ l1q/P=x€V]=
l1g[P" XV [l1q/P' =XeV]=I1qv. Q.e.d. (Claim 12)

Claim 13: rq gV<t—y.1W1/0.
Proof of Claim 13Sincer gh1,q=W/d, this follows directly from Claim 11. Q.e.d. (Claim 13)

By claims 12 and 13 using Corollary 2.14 it now suffices to sHeyw—, ,,r1qv, which again
follows from Claim 11, Corollary 2.14, Lemma 13.8 (matchitgng to ourng+1 and itsn; to
ournz), and our induction hypothesis thatRis 0-shallow confluent up tdng+1)+n;.

Q.e.d. (“The second variable overlap (if any) case”)
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“The second critical peak case”: There is some MgN2 oS (I1,q) with [14/pEV:

l1,qb1, Y w1/q
no+1,p *[ng+1
/ I v * V:
u I 1 n 2
ni+1
==no+1,M\\{p} *|ng+1 *|ng+1
% *
I
Wo/q I ° n Vi n °

n+1

Let& € sus(V,V) be a bijection with&[v (((logp: fo.qp);Co.qp))] N ¥ (((I1.q,T1.q),Crg)) = O.
Define Y= &[7 (((lo,gp,To.gp):Coap))] UV (((11,9:11,0),C1q))-
X g if x € V(((ll,q=r1,q)aC1,Q))} (XEV).
X§ “Ho,qp €lse
BY lo,qp&P=l0.gpE& tHo.qp=U/ap=l1ql1q/P=1140/P=(I1q/P)P
leto := mgu({(lo,gpé,l1,4/P)},Y) andd € sus(V,7 (X)) with y1(ap)=y1p.
Defineu := |1 qt1.q[ P < ro,gpHo,gp]- We get
Wo/a=u/d[p" < rogpHoqp | P € Mp]tngiing o)
u/a[p" — logpHogp | P EMG\{P}[P  rogpHogp]=U"
If l1g[p < rogp§lo=riq0, then the proofis finished due to
WO/CI‘_H_nOH,n{)\{p}U/:'l,q[p<_ rO,qu]O'q):rl,qo'q):rl,qlll,q:Wl/q-
Otherwise we havé (11.q[ p < roqpé],Co,qpt0), (r1,9:C1q:0), l1.q, 0, P) € CAR); Cogpfod =
Cogplogp Is fulfilled wrt. —, 5 Cyq0¢ = Cigl1q is fulfilled wrt. —, .  Since
V< (np+1)+(n1+1). R, X is 0-shallow confluent up t& (by our induction hypothesis) due to
our assumed 0-shallow noisy parallel joinability (matchthe definition’sng to ournpg+1 and
its Ny to ourm+1) we haveu =l q[p rqupa]G(I)—H—>n1+1V1L>an2<LnO+1r]_7q0'¢ =r1gligq=
wy/q for somevy, vo. We then havewo/q<—H—n0+l‘r,6\{p}u’—H—>nl+l_,nuv1 for somel”. Since

AU/p) = Y AP = Y AMuap) <Y AMu/ap’) =

Letpe sus(V,7 (X)) be given byxp = {

p’eQ(Mp\{p}.N") p’eMp\{p} p’emp\{p} p’eng
> Au/p) = 5 AMwp) =Y Au/p) due to our second induction level
Py peQ(Mo.{a}) PeQ(Mo,M1)

we get some/; with wo /qa4—>nl+1oi>nl\/l<L v1. Finally the peak at; can be closed accord-

np+1
ing to \/1i>nl o«<— Vs by our induction hypothesis saying thapRis 0-shallow confluent
up to(np+1)+n;.

Q.e.d. (“The second critical peak case”) Q.e.d. (Theorem 15.1(1))

n0+l
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Proof of Theorem 15.1(ll)
The parts in the following proof which are only for Theoremi(fa) are in optional brackets.

. . * *
Qlalm 1:1f 0, O 0 (g2 1) strongly commutes ovei—, , then—, and—, are commut-
ing.

Proof of Claim 1: —, o——;_ . ., and —, are commuting by Lemma 3.3. Since by

Lemma2.12 we have— C — o—s C-—»  now—_ and—_ are commuting,
n n O[+(np=1)] n ny o .
too. Q.e.d. (Claim 1)
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Forng < n; < wwe are going to show by induction ag-+n; the following property:

= * *
W0<—no u—>nl W1 = W0—>nl o—— o) <—nOW1,

0[+(ng=1)]
W
u n 1
\I/no *\Lﬂo
= *
Wo o)

(@]
ny O[+(ny=1)]

Claim 2:Letd < w. If

Np =<Ng
A No+np =<0

Vno, N1 < . Wo—, U— Wi ,
:> VWO, Wl, u. = 0 * 1 *
= WO, O g1 (ng -1 © g™
then
Np=N
YN, N1 < . A No+np=<0d ,

S
and R X is 0-shallow confluent up to.
Proof of Claim 2:By induction ond in <. First we show the strong commutation. Assumge<
Ny < wwith np+ng <. By Lemma 3.3 it suffices to show that—>nloi> | strongly com-

*
O+ (ng 1) strongly commutes over—,

O[+(n1;1

mutes over—, . Assumewo%nou—mlwlﬁo oy 1y W2 (cf. diagram below). By the above

[+(

property there is som&] with Wo;nlOL> ] W'1<LHOW1. Next we show that we can close

O[+(ny =
the peakw) ——, wi—— ., Wp according tow,——; ., whe—, w, for somew,. In case
of ny=0 this is possible due tav; =w,. Otherwise we haveng+(0[+(n1—1)]) <ng+n; <o
and due to our induction hypothesis (saying thaX & 0-shallow confluent up to all’ < d) this
is possible again.

*

u m e 0[+(n=1)] W2
\I/no *\Lno *\Lﬂo
- * *

Wo ny ° Of+(n=1)] 1 0[+(n=1f] w2

Finally we show 0-shallow confluence updoAssumeny+n; <& and woLnOuLnlwl. Due

to symmetry img andn; we may assumep < n;. Above we have shown tha{—>nloL0Mnrl)]

strongly commutes over*—>n0. By Claim 1 we finally getwoi>nl o Lnowl as desired.
Q.e.d. (Claim 2)
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Note that forng=0 our property follows from%nO cid.

The benefit of Claim 2 is twofold: First, it says that our theoris valid if the above property
holds for allng < n; < w. For part (lIb) this is because then by Lemma 33, strongly
commutes over—, for all ng < n; < w, i.e. —,, strongly commutes over—, , i.e. —,

strongly commutes over— , i.e. — is strongly confluent. Second, it strengthens the property

when used as induction hypothesis. Thus (writmg1 instead ofn; since we may assume
0<ng=ny) it now suffices to show fong < n; < wthat

Wo— uUu— W1

no+1,pg n1+1,p1
together with our induction hypotheses that

Vo< (np+1)+(n1+1). R, X is 0-shallow confluent up té

implies
= * *
WO, 110 0rtng © T ngra WL
u — W
ni+1,p1 !
J/n0+l7 Po *J/noJrl
= *
(@]

W, o
0 ni+1 0[+nq]

Now for eachi < 2 there are((l;,r;),CG) e R and y € sus(V,7 (X)) with u/pi=lip, wi=
ufpi < rik], Ci fulfilled w.r.t. s and l; € 7 (consVsgigwV,- ).

In case of po| p1 we have wi/pi_i=u[p; < rili]/p1—i=u/pi—i=li—itu—i and therefore
Wi—, 1 U[ P < Tkbi | k=<2], i.e. our proof is finished. Thus, according to whettperis a
prefix of p1 or vice versa, we have the following two cases left:
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There is some) with pop;=p1 and p}#0:

We have two cases:

“The variable overlap case”:
There arexe V andp/, p” such thatg/p'=x A p'p’=pi:

I W1 / P
ok n+1, By 1/Po
np+1,0 |0V

\LﬂoJrl
Wo/ Po rodo — rov

Claim 6:We havexpp/p” =l1p.
Proof of Claim 6:We havexpo/p” =lopo/p'p’ =Uu/pop'p’ = U/ popy = U/ pr=l1p.

Q.e.d. (Claim 6)
Claim 7:We can defin® € s us(V,7 (X)) by xv=xpo[p” < r1pu] and vyeV\{x}. yv =y}o.
Then we havexpo—,, ,,Xv.
Proof of Claim 7:This foIIows directly from Claim 6. Q.e.d. (Claim 7)

Claim 8: lov =w1/ po.

Proof of Claim 8: By the left-linearity assumption of our theorem we may assufip” |
lo/p” =x}={p'}. Thus, by Claim 7 we getv:/po=Uu/po[ Py < ra]=

lo[p"” —yho [ lo/p"=yeV][P) « ripu]=

lo[P” Yo | lo/p"'=yeV Ay#X|[P < Xo][p'Pp" « 1] =

lo[p” =y [lo/p"=yeV Ay#X][p — Xpo[p" — rapu]]=

lo[p” —w |lo/p"=yeV]=lpv. Q.e.d. (Claim 8)
Claim 9: wo/po—,, ,,foV.

Proof of Claim 9: By the right-linearity assumption of our theorem we may assu
[{ P | ro/p"=x}| 1. Thus by Claim 7 we getwo/Po=rolo=

ro[p” < yho | ro/p" =yeV\{X}][p" < xpo | ro/ P =X]—, .,

ro[p” —yko | ro/p" =ye V\{x} ][ p” « xv | ro/p" =x]=

ro[p” —w | ro/p" =yeV\{x}][p” —xv | ro/p” =x]=rov. Q.e.d. (Claim 9)
By claims 8 and 9 it now suffices to sholyv—, afov, which again follows from Lemma 13.8
(matching itsng to ourn;+1 and itsn; to ourno) since RX is 0-quasi-normal and 0-shallow
confluent up to (N1+1)+no by our induction hypothesis, and sincgyeV. y},bLnﬁlyv by
Claim 7. Q.e.d. (“The variable overlap case”)
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“The critical peak case”pj € 205 (lo) Alo/pPy ¢ V:

I W1/ P
\Lﬂo+l,@ *J/ﬂoJrl
_ = *
Wo/ Po o

o
n+1 0[-+ny]

Let§ € sus(V,V) be abijection with&[7 (((11,r1),C1))] N ¥ (((lo,r0),Co)) = 0.
Define Y :=&[(((I1,r1),C1))]U¥ (((lo,r0),Co))-
xp(z1 if xe r1/(((I0,ro),Co))} (xeV).

x¢ W else
By 118p=118& Yt =/ P1=u/Pol, =loko/ P, =lop/ P, = (lo/ PP
leto :=mgu({(11&,lo/P)},Y) andd € sus(V, 7T (X)) with v1(09) =v1p.
If lo[ Py < ri&Jo=roo, then the proofis finished due to

Wo/ Po=roHo=ro0¢ =lo[ Py < ri&]op =lopo[ Py < ripa]=wa/po.
Otherwise we have( (o[ p} < r1§],Ci&,0), (ro0,Co,0), lo, 0, p;) € CR(R); py;#0 (due the
global case assumption)Ci1&o¢ = Cyy is fulfilled w.r.t. g Cood = Colo is fulfilled
w.rt. —, . Since V3= (n+1)+(no+1). R, Xis 0-shallow confluent up t6 (by our induction
hypothesis), due to our assumed 0-shallow [noisy] ansedlmess (matching the definitioms
to ourny+1 and itsny to np+1) we have wi/po=Ilopo[ Py < r1t]=lo[ P < ri€lop—

Letpe sus(V,7 (X)) be given byxp = {

no+1 o
*

“ofeny O;nl+1r00¢ =Tolo=Wo/ Po-
Q.e.d. (“The critical peak case”) Q.e.d. (“There is somp) with pop;=p1 and p;#0")
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There is somey, with p1py=po:

We have two cases:

“The second variable overlap case”.
There arexe V andp/, p” such that1/p'=x A p'p” = pj:

I W1/ P1
1M1 L0 1/| P1
no+1, Py ripa

%ﬂo—i—l
Wo/ P1 l1v -l rav

Claim 11a:We havexp /p” =lopo.
Proof of Claim 11aWe havexp/p” =I1p1/p'p’ =u/p1p’p” =u/p1py=u/po=lolo.
Q.e.d. (Claim 11a)

Claim 11b:We can defin® € su3(V,7 (X)) by xv=xw[p” < ropdo] and VyeV\{x}.yv=
yiu. Then we havexu1—>no XV,

Proof of Claim 11bThis follows directly from Claim 11a. Q.e.d. (Claim 11b)
Claim 12: wp/p1=I1v.

Proof of Claim 12:

By the left-linearity assumption of our theorem we may assufnp” | I1/p” =x} = {p'}.
Thus, by Claim 11b we getvg/p1=u/p1[ Py < rolo] =

l1[p" —yp [ 11/P” =yeV][ Py < robo] =

l1[p" —yp [ 11/p"=yeV Ay#X][P — xp][p'p" « robo] =

l1[p” =y [11/p"=yeV Ny#X][P — Xu[p" < robo] ] =

1[p” —w |l1/p"=yeV]=Iv. Q.e.d. (Claim 12)
Claim 13: r1V<—H—nO+1W1/ 51.

Proof of Claim 13:Since rips =ws/p1, this follows directly from Claim 11b. Q.e.d. (Claim 13)

By claims 12 and 13 using Corollary 2.14 it now suffices to shlqw—>nl+lr1v, which again
follows from Claim 11b, Lemma 13.8 (matching itg to ourng+1 and itsn; to ournz), and our
induction hypothesis that,X is 0-shallow confluent up tqnp+1)-+n;.

Q.e.d. ("“The second variable overlap case”)
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“The second critical peak casefy € 205 (1) A l1/py € V:

l1 L0 W1/ p1
J/no+17 P *J/noﬂ
— = *
Wo/P1 ol O[-+ny] °

Let& € sus(V,V) be a bijection with&[7 (((lo,r0),Co))] NV (((11,r1),C1)) = 0.
Define Y =&[7 (((lo,r0),C0))] U (((I1,r1),C1)).
xuil if xe v (((l1,r1),C1)) (xeV).

x& Mo else
By lo€p=108& "Ho=u/po=u/P1Py =1t/ Po=11p/Po= 11/ Pp)P
leto == mgu({ (108, 11/Ph)},Y) andd € s us (V,T (X)) with y1 (o) =v1p.
If 11[pp < ro&Jo=r10, then the proof s finished due to

Wo/P1=I1M1[Pp < roMo] =I1[Pp < ro§|odp =r10¢ =ripy =wi/p1.
Otherwise we have( (I1[ pp < ro§],Co€,0), (r1,C1,0), 11, 0, py) € CP(R); Co&od = Colg is
fulfiled w.rt. —, ; Ci10¢ = Cypy is fulfilled w.r.t. - Since V&< (no+1)+(ni+1).
R, X is 0-shallow confluent up t& (by our induction hypothesis) due to our assumed 0-shallow
[noisy] strong joinability (matching the definition’g to ourng+1 and itsn; to ourn; +1) we have
Wo/P1=11pa[ P — Fobo] =11[Pp — ro€]od—, ;0= 0= ;10 =Tk =W1/p1.
Q.e.d. (“The second critical peak case”) Q.e.d. (Theorem 15.1(ll))

Proof of Theorem 15.3Due to Corollary 15.2 it suffices to show that the conditiohd loeo-
rem 15.1 are satisfied. Since-Bs normal, RX is 0-quasi-normal. Thus we only have to show
that the conjunctive condition lists of the 0-shallow jdilsty notions are never satisfied for crit-
ical peaks of the fornf0,0). Thus, assumé € s u3(V,7T (X)) andng,n; < w such thatVi < 2.

( Di¢ fuffilled w.r.t. —, ., ) and vé<no+ni. ( R, Xis 0-shallow confluentup t6 ). By the
assumed complementarity there must be complementaryiequigégrals inDg andD;. Due to
our symmetry in 0 and 1 so far, we may w.l.0.g. assume(tlrat’) occurs inDg and(u£v) occurs

in D; or else that p=true) occurs inDg and( p=false) occurs inD;. Since negative conditions are
not allowed for constructor rules we must be in the latteedee. Due to the definition of com-
plementaritytrue andfalse are distinct irreducible ground terms. Thus we hawe—— .. true

Letpe sus(V,7 (X)) be given byxp = {

np-1
and pq)i>n1__1fa|se. In case ofng,n; <1 this implies the contradictingrue = pp =false. Oth-
erwise, in case ohp>=1 we have(ng—-1)+(n1—1) < np+nz and thus by our above assumption
R, X is 0-shallow confluent up ténp—1)+(n;=1). This implies the contradictingrue | false.
Q.e.d. (Theorem 15.3)

Proof of Theorem 15.4
1 = 2: Directly by Lemma B.5. 2= 1: Directly by Lemma 6.3.
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Proof of Lemma A.1
Forn < wwe are going to show by induction erthe following property:

* *
Wot—U—+pnW1 = WO_H_@-»-no—)mH(n;l)] 0, W1.
|
u f w1
w+n
X[
*

Wo I
w+n

Claim 1:If the above property holds for a fixed< w, and
vk=<n. (R, X is w-shallow confluent up t&), then —H—>w+noi>w

*
— .
w

Proof of Claim 1:By Lemma 3.3 it suffices to show that—,,,o——

-y, Strongly commutes over

strongly commutes

(+(n=1))
over—,. Assumew0<—wu+r—>w+nwli>w[+(n;l)]V\/ (cf. diagram below). By the above property

. . *
there is some’ with Wo—t-4,n0—,, .

the peakV'— wi—, ., W according tov— . = o—— w. [Incase ofn=0:] This
is possible due to confluence ef— . [Otherwise we haven-1<n and due to the assumed
w-shallow confluence up to-1 this is possible again.]

nenyV W1 We only have to show that we can close

n o M a7
I * *
o s Y e

Q.e.d. (Claim 1)

Claim 2:1f the above property holds for a fixed< w, and
vk<n. (R, X is w-shallow confluent up t&), then— . and—  are commuting.

Proof of Claim 2: —#-,n0——, and ——_ are commuting by Lemma 3.3 and Claim 1.

+(n=1)]
Since by Corollary 2.14 and Lemma 2.12 we haves,,, C —H—>w+noi>w[+(n;1)] C ">, NOW
—.n @Nd— are commuting, too. Q.e.d. (Claim 2)

Claim 3: If the above property holds for ali < m for somem < w, then RX is w-shallow
confluent up tam.

Proof of Claim 3:By induction onmin <. Assumei+,n<m and Wo«—,, U—, Wi. By
definition of ‘+" and i+, ,n<w w.l.0.g. we havei=0 and n<m. By Claim 2 and our induction

hypothesis we finally getvo——,,.,, 0 <—, w1 as desired. Q.e.d. (Claim 3)
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Note that our property for is trivial fom=0 since then by Corollary 2.14 we haver,., =
%, C ——, and—,, is confluent.

The benefit of claims 1 and 3 is twofold: First, they say thatlemnma is valid if the above prop-
erty holds for alln < w. Second, they strengthen the property when used as indugtmthesis.
Thus (writingn+1 instead oh since we may assume-n) it now suffices to show fon < w that
Wott—,ngU—wnt1,m, W1
together with our induction hypothesis that
R, X is w-shallow confluent up ta

implies
* *
WO_H_>w+n+10%w[+n] o <—Q)Wl~
u f w1
w+-n+1,1q
, o *|W
Wi I *
0 I (@] O
w+n+1 w[+n)

W.l.o.g. let the positions ofly (and M1) be maximal in the sense that for anye MMy
(or else p € M1) and = C 2os(u)N(PNT) we do not have Wot— g (pzU  (Or else
Ut—wini1,(ny\(phuzW1) @nymore. Then for each< 2 andp € IM; there are ((lj p,ri,p).Ci,p) €R
and pp € sus(V,7 (X)) with u/p=Iiplip, ripHi,p=Wi/p. Moreover, for eactp € Mg:
lo,p € T (consVsigV,) and Co plo,p is fulfilled w.r.t. —, . Similarly, for eachp € My: Cy pl p
is fulfilled w.r.t. —, .. Finally, for eachi < 2: wi=u[p«riplip | p€;].
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Claim 5:We may assume&/pe M. Iy p & T (consVsigV,).

Proof of Claim 5: Define = = {pely | IlipeT(consVscwV,)} and U =
ulp«rypkrp| peMi\Z]. If we have succeeded with our proof under the assumption of
Claim 5, then we have shommvo+r—>w+n+loi>w[+n}\/ému’ for someV (cf. diagram below). By
Lemma 13.2 (matching both ifsandv to oury p) we get Vpe=. |y ply p—,r1,pH,p. Thus
from V< u—> w; we getV—>_o<— w; by confluence of—.,.

I / *

U I U Wl
_ A

w+n+1,M1\=

,Mo *|W *|w

* *
Wo i 0 ——— v 5 o
wintl [+l

Q.e.d. (Claim 5)

Define the set of inner overlapping positions by
Q(Mo,My) := [ J{ peM1-i | 3g€N;. 3¢ eN*. p=qqd },
i<2

and the length of a term b¥(f(to, ...,tm-1)) := 1+ ¥ j<mA(tj).

Now we start a second level of induction on Z Au/p) in <.
p'eQ(Mo,My)

Define the set of top positions by
0= { peoully ’ —3qelouUlly. Hq’e NT. p:C]Cf }
Since the prefix ordering is wellfounded we haveyi <2.Vpell;. 3qe®. 3¢ eN*. p=
qq. Then Vi<2 wi=wi[q—W/q|gqe@]=u[p«riptip|peni][q—w/q|qeO]=
u[q<—w/q|qe®]. Thus, it now suffices to show for allc ©
WO/q_H_ZHnHOL)an] © wal/q
because then we have
Wo=U[0 <~ Wo/q | € O] ~tn.10——, © ——,U[q — W1/q| €O =wy.
Therefore we are left with the following two cases tpe O:
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q¢ M1 Then geMg. DefineN) :={ p| gpe; }. We have two cases:

“The variable overlap (if any) casetpe N neos(loq)- log/PEV:

lo,qHo,q f wi/q
w+n+1
*|w
(.0,0 |O7qv
w
| *
Wo/g === ToqgHoq | ° " ro,qV

|
o
Define a functio on V by xeV): T'(x) :={ (p/,p") | log/P'=x A p'p’ €N} }.
Claim 7:There is some € s us(V,7 (X)) with

lebq_"'_>w+n+1oi> XV
vxe V. A o " . .
A VP edom(l (X)). xve—, Xpog[ P’ I gppHaqpp | (P, P") €T (X)]

Proof of Claim 7:
In case of dorfl'(x))=0 we define xv := Xpoq. If there is somep’ such that dor(l (x)) =
{p'} we definexv :=Xuog[ p” < rigpptogpp | (P, P") €M(X)]. This is appropriate since due
to V(p', p") €T (X). Xkog/ P’ =logho.q/ PP’ =u/qp'p" =l1gppbagpp We have

XHoq=XHo.q[P" 1 gpprHagpp: | (P P") €T (X) ]+

XHoq[P” — Iy qppbigpp | (P, P") €M (X)]=xv.
Finally, in case of [dom(I"(x))| > 1, loq is not linear inx. By the conditions of our lemma, this

implies xe V.. Thereforexpp qc 7 (consV,). Together with

VP €dom(T (X)) XHo,g—— e XHogl P’ < Mqppbigpp | (P, P7) €T (X)] this implies

vp' € dom(T (X)). Xbog—,XMogl P’ — Fqppbeapp | (P, P") €T (X)] € T (cons V)

by Lemma 2.10. By confluence ef—_ and Lemma 2.10 again, there is sotme 7 (consV,)
with

vp' edom(T"(x)). Xpog[ P’ — L qpprHiapp | (P, P') €T (X)]—=,t.  Therefore we can de-
fine xv :=t in this case. This is appropriate since byp’edom(l(x)). xquw
Xpo.gl P’ — M qpptegpp | (FsP") €T (X)]—=,xv we haveXpo,g—— XV. Q.e.d. (Claim 7)

Claim 8: g gve—,W1/d.

Proof of Claim 8:

By Claim 7 we getw; /q=u/q[p'p” — r1 qgpbiqup | IXEV. (P, p") el (X)]=
log[P'  Xtog | log/P' =XEV][P'P" — I gppbgpp | XEV. (P, p") €T (X)]=

loal P — Xbog P’ — Figpprbagpp | (B, 0") €T ()] | log/P =XEV]—,
log[P' < xV [log/p' =xeV]=loqv. Q.e.d. (Claim 8)

Claim 9: Wo,/Q—tpns10——,F0,qV-
Proof of Claim 9:Since Wo/q=rogHoq, this follows directly from Claim7.  Q.e.d. (Claim 9)

By claims 8 and 9 it now suffices to show qv<—_,lo,qv, which again follows from Lemma 13.2

since YXe V. Xtog——,,,.,XV by Claim 7 and Corollary 2.14.
Q.e.d. (“The variable overlap (if any) case”)

w+n+1
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“The critical peak case”: There is sorpe= M,N20S (loq) With lo g/ P& V:

lo.gHoq u f w1/q
wtntlp w11\ {p}
®,0 ==, N" *|w
Wo/q =——=Wo/q —f—> o0 —— >0
wintl @i+

Claim 10: p#0.
Proof of Claim 10:If p=0, then 0<, then geMy, which contradicts our global case
assumption. Q.e.d. (Claim 10)

Let& € sus(V,V) be abijection with&[7 (((11,gp,r1,9p),C1,qp))] N ¥ (((lo,g,r0,9),Co,q)) = O
Define Y :=&[¥ (((Igp:r1.ap)sCrap))] U (((log;r0,q),Co,q))-

Letp e sus(V,T (X)) be given byxp = {i?%ul :;;(ee {V(((lo’q’ro’Q)’Co’q»} (XeV).
ap

By |1,qup:|1,quE_1U1,qp:U/q p=lo,gto,q/P=logP/P=(log/P)P
leto := mgu({(l1,qpé,log/P)},Y) andd € sus(V,7 (X)) with y1(adp)=vy1p.
Defineu’ := logHoq[ P < r1,qpkiqp]- We get

u=u/d[p I gphigp | P €MIN{PH[P < r1gptLap] winiang (o)

u/q[p « rigptagp | P EN]]=wi/q.

If log[p < rigp&lo=roqo, then the proofis finished due to

Wo/q=r0,qHo,q=r0,q09 =loq[ P« r1,qp&|0d = U/—H—>w+n+1ﬁn'1\{p}W1/Q-
Otherwise we have (log[ P < r'1,gp&]0,C1,qp&0,1), (r0,q0,C0,q0,0), logo, p) € CP(R) (due to
Claim 5); p#0 (due to Claim 10);Cy qpé0¢ = Cy gphlr,gp is fulfilled w.r.t. — .+ Coq0¢ =
Coqlo,q is fulfilled w.rt. — . Since RX is w-shallow confluent up ta (by our induction
hypothesis), due to our assunweshallow parallel closedness updomatching the definition’s
No to ourn+1 and itsny to 0) we haveu' =lgq[ p < r1,qpt |0d—+—r0,q09 =ro qlo,q=Wo/q. We
then haVGWO/q%H—w,n//U/—H—>w+n+l,|—|/1\{p}W1/q for somel”. We can finish the proof in this case
due to our second induction level since

MUY 25 AR =Y Mu/ap)

p’eQ(N”,n\{p}) p’eni\{p} p’eni\{p}
< Y Mu/ap) = 5 Au/p) = g Au/p) = Au/p).
p’eny p'eqn’y peQ({a},M) p'eQ(Mo,M1)

Q.e.d. (“The critical peak case”) Q.e.d. (‘g&My”)
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qeMy: DefinelMg :={ p| gpeMp }. We have two cases:

“The second variable overlap (if any) cas&peMNyN2os (I1q). l19/PEV:

| Wi

LqM1q w+n+1,0 1/q
T r1,qM1q

Wo/q ——= l1,qv ol M1,V

Define a functio” on V by xeV): T'(x):={ (p/,p") | lig/p'=x A p'p’" €My }.
Claim 11:There is some € s u3(V,7 (X)) with

wxev. [ Vo )
A\ A VP edom(T(x)). Xpg[ P” < TogpprHogpp | (P, P7) €T (X)]=xv

Proof of Claim 11:
In case of dorfl'(x))=0 we define xv := xpy 4. If there is somep’ such that dor(T (x)) =
{p'} we definexv =X g[ p” < rogpptogpp | (P, P") €M (X)]. This is appropriate since due
to V(p',p") €T (X). Xpaq/ P"=l1,gH14/P'P'=0/qP P’ =logpp'Hogpp’ We have

XM, q= XM qf p’ — |0,q|dp”li0,qp(p” | (P, ") €T (X) ]~

X q[P” — roqppbogpp | (P, P") €T (X)]=xv.

Finally, in case of [dom(I"(x))| > 1, l14is not linear inx. By the conditions of our lemma, this
contradicts Claim 5. Q.e.d. (Claim 11)

Claim 12: wo/q=11qVv.

Proof of Claim 12:

By Claim 11 we getwo/q=u/q[p'p" < rogpptogpp’ | IXEV. (P, p") €M (x)]=
l1g[ P« Xbg | lg/ P =xeV][PP" —rogppogpp | XEV. (P, p") el (X)]=

l1g[ P Xbag[ P” < rogppbogpp’ | (P, P")€T(X)] [ l1q/P=x€V]=
l1g[P" XV [l1q/P' =XeV]=I1qv. Q.e.d. (Claim 12)

Claim 13: rq gv«t—,W1/Q.
Proof of Claim 13Sincer gh1,q=W/d, this follows directly from Claim 11. Q.e.d. (Claim 13)

By claims 12 and 13 using Corollary 2.14 it now suffices to shbwyv—, ..,r1qv, Which
again follows from Claim 11, Lemma 13.8 (matching fiigto O and itsn; to ourn) and our
induction hypothesis that,X is w-shallow confluent up to.

Q.e.d. (“The second variable overlap (if any) case”)
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“The second critical peak case”: There is some MgN2 oS (I1,q) with [14/pEV:

w, p *|w
u I V1 * \%)
1

wrnil w[+n)

=—w,My\{p} *| *|
* *
Wo/q I ° Vi
wn+1 el el

Let& € sus(V,V) be a bijection with&[v (((logp, Fo.qp),Cogp))] N (((l1q:T19),C1q)) = O.
Define Y= &[7 (((lo,gp, To.gp):Coap))] UV (((11,9:11,0),C1q))-
X g if x€ V(((ll,q=r1,q)aC1,Q))} (XeV).
X§ ™ “Ho,qp Else
BY lo,qp&P=l0,gpE& tHo.qp=U/AP=1ql1q/P=1140/P=(I1q/P)P
leto := mgu({(lo,qpé,l1,4/P)},Y) andd € sus(V,7 (X)) with y1(odp)=vy1p.
Defineu’ := I gkl P < rogpHo.gp]- We get

Wo/q=u/q[p" < rogplogp | P'€ n6]<_H_w,I'I6\{p}

u/d[p’ —logpHogp | P €M\ {P}][P — rogpHo,gp] =1

If l1g[p < rogp§lo=riq0, then the proofis finished due to

Wo/ Gty (U =l1,9[ P < ro,gp€ |0 =r1,q00 =r1,gl1g=W1/.
Otherwise we have (I3[ p < ro,qp|0,Co,qp&0,0), (r1,q0,C140,1), 1140, p) € CAR) (due to
Claim 5); Coqpé0d = CoqpHo,gp is fulfilled w.r.t. —; Cyq0¢ = Cyqglyq is fulfilled w.r.t.
— - Since RX w-shallow confluent up ta (by our induction hypothesis), due to our
assumedy-shallow [noisy] parallel joinability up tav (matching the definition’sy to 0 and
its Ny to ourn+-1) we have u' =ly [ p « ro7qu]oq)+r—>w+n+1vli>m[+n]vzéwr17qo¢ =r1gtlig=
wy/q for somevy, vo. We then have Wo/q<—H—w_|-|6\{p}U/—H—>w+n+1Y|—|NV1 for somel”. Since

> AU/ 2y MU/ = 5 AMuap) < 5 Au/ap) =

Letpe sus(V,7 (X)) be given byxp =

peQ(Mo\{p}h.N") pemp\{p} p’emMo\{p} ey
> Au/p) = > Au/p) = > A(u/p’) due to our second induction level
pedy p'eQ(Mo.{qa}) p'eQ(Mo,M1)

. * * * *
we get some/; with Wo/q—H—>w+n+1O—>w[+n]\/l%wV1. From the peakv;«— vi— . V2 we

w[+n]
finally get \/1L>w[+n] o+ Vo by w-shallow confluence up to[®n).
Q.e.d. (“The second critical peak case”) Q.e.d. (LemmaA.1)
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Proof of Lemma A.2

Claim 0:R, X is w-shallow confluent up too.
Proof of Claim 0:Directly by the assumed strong commutation, cf. the probfeeclaims 2 and
3 of the proof of Lemma A.1. Q.e.d. (Claim 0)

Claim 1:If LwO—H—mnloL
are commuting.

Proof of Claim 1: 0 o O (1) and—,,, . are commuting by Lemma 3.3. Since

by Corollary 2.14 and Lemma 2.12 we have—,,, C —, 00—, whng

. (m=1) = r
now —, ., and— , are commuting, too. Q.e.d. (Claim 1)

k
wi(ng-1) Strongly commutes over—,,, . then—, . and—,,

Ny

Fornp < n1 < wwe are going to show by induction @3+,n; the following property:

* * *
Wott—gingU—t—0in W1 = W0—>wO_H_>co+n10—>w+< n-1) o <—w+n0W1.
Il
u I Wi
w+Ng
No *|wH-Ng
W * I *
O (0] (@]
0 w L wH(nm-1)

w+ng
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Claim 2:Let d < w+w. If

Np = N1
A No+,N1 =0

Yo, N1 < W
0,111 WO o +ng U=t W1 ’
= VYWp, W1, U. * *
= W0_>wO_H_>w+n1°_>w+(n -1 wrns W1
then
Nop=<Np
VN, N1 < W. A Not, n1<5 :

= —> o—H—>w+nlo—>
and R X is w-shallow confluent up té.
Proof of Claim 2:By induction ond in <. First we show the strong commutation. Assume
No < M < WWith no+,n1 < 3. By Lemma 3.3 it suffices to show that™ o, n,0—

*
iy -1 StrONgly commutes over—,,,

w+(np=1)
/" /- * * ;
strongly commutes oVeF—, o . Assume U g U Ut WLy W2 (cf. dia-
gram below). By the strong commutation assumed for our leranthCorollary 2.14, there are

wo andwy with "’ whe— w0<—H—Q,+nou. By the above property there are someg,

wt(ng=1)
W, with WOLwW3ﬂ—>w+nlo—> orm-y W & n0W1- Next we show that we can close the peak
* * *
Wi g W1, (o, -y W2 @ccording to W, — i) WowimgW2  fOr somew;,. In case of

n1=0 this is possible due to th@-shallow confluence up ta given by Claim 0. Otherwise
we have np+,(n1—1) <np+,n1 =8 and due to our induction hypothesis (saying thaXks w-
shallow confluent up to adl’ < d) this is possible again. By Claim 0 again, we can close th& pea

W’o‘Lm( >woi> ws according tow,—— \A/<Lw+< ,Ws for somews. To close the whole
*
diagram, we only have to show that we can close the |ma!3a:k—w+ (0= WBH0tm O 01y Wh
*
according tow,——, o+r—>w+nlo—>w+(n 1) O gy Wo- IN Case ofng=0 this is possible due

to the strong commutatlon assumed for our lemma. Otherwisdave np—1<ng=<n; and
(np=—1)+,n1 <no+,n1 <&, and then due to our induction hypothesis this is possiblaga

u i u I W1 i Wo
I .
W ni-1
w+ng w1
=—w+nNg *|w+Ng *¥|wHNg
* * *
w+n Wo w3 i ° 1 Wy
w n-1 ni-1
o w+(ny=-1) w+(m=-1]
*|w+(np=-1) *|w+(np=-1) *|wH(np=-1)
* * * *
u’ W W6 W V\/3 W ° H ° w+(n=1)
w+ng !

. * *
Finally we showw-shallow confluence up ®. Assumeng+,n; <% and WO o1 ng U01ny WA

Due to symmetry inng and n; we may assume ng=<n;. Above we have shown that

— 5,0~ O strongly commutes over— By Claim 1 we finally get

w+(np~1) w+ng *

* * . .
WO—n, © “—in, WL as desired. Q.e.d. (Claim 2)
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Note that for np=0 our property follows from <+, C <— (by Corollary 2.14) and the
assumption of our lemma that for eash < w: ﬂ—@_x_wnlo—kxw(nl , strongly commutes

*
over —y o

The benefit of Claim 2 is twofold: First, it says that our lemisavalid if the above property
holds for allng < n; < w. Second, it strengthens the property when used as indugfjoothesis.
Thus (writingnj+1 instead ofn; since we may assume-<0ng=<n;) it now suffices to show for
N < N1 < wthat
WO t—wtng+1,mg U w0y +1,m, W1

together with our induction hypotheses that

Vo< (no+1)+,(m+1). R,X is w-shallow confluent up td
and (due tap < n1+1 andno+,(N1+1) < (No+1)+,(N1+1))

5,0 10—, StONgly commutes over—,,

wHng
implies
* * *
W0—>wo_H_>&)+n1+lo—>w+nl o <—u>+no+1wl'
u { Wy
wWw+ng+1,1Mq
no+1,Mo *|w+np+1
* *
Wo o I o o

wH+ni+1 Wt

Note that for the availability of our second induction hypedis it is important that we have
imposed the restrictionriy <n;” in opposition to the restrictionrip = n;”. In the latter case the
availability of our second induction hypothesis would reguip+1>n;+1 = ng>=n1+1 which
is not true fornp=n;. The additional hypothesis

N o—H—>w+nloi> strongly commutes over—,,_, .,

w(ng~1)
of the latter restriction is useless for our proof.

W.l.o.g. let the positions of1; be maximal in the sense that for anye IN; and = C
20S (u)N(PN™) we do not haveu——,,n 1n,\(pu=Wi anymore. Then for eadh< 2 andp € I7;
there are((li p,ri p),Ci p) eR and yjpcsus(V,7 (X)) with u/p=Iiplip, ript,p=W/p,
Gi phip fulfilled w.rt. — Flnally, foreach < 2: wi=u[p—riplip| pel].
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Claim 5:We may assume/i <2. Vpell;. | p ¢ 7 (consVsigwV, ).

Proof of Claim 5: Define = := {pell | lipe7T(consVsicwV,)} and u =
ulp«ripHip| PEMi\Zj]. If we have succeeded with our proof under the assumption of
Claim 5, then we have showrm()vaoﬂ—manoLmnlvléwno ,U; for somevy, vy (cf.
diagram below). By Lemma 13.2 (matching bothjitandv to oury p) we get Vi<2. Vpe=;.

li pti p—,fi.pki.p and thereforeVi<2. u/—~ w;. Thus from vj«— uj——, Wy we get

w+ng+1

vleszMle for somev, by w-shallow confluence up t@ (cf. Claim 0). For the same

reason we can close the pealg—— uj—— Vo according towp——, Vy+—, Vo for somev. By

the assumption of our lemma that.—p,anﬁlolm_xmnl strongly commutes over—_, from

0 V001 110 0 V1~ V2 We can finally conc ud 0w 419 g ny © o V2-

u i Uy 5 W1
w+ni+1,M1\Z1
=—w+np+1,Mo\=o *|w+no+1 *|wHno+1
U * v 0 . * * v
0 0 I 1 2
® n W
w+np+1 Wt
*|w *|w *|
* *
Wo W Yo i ° w+n °
w+ni+1 1

Q.e.d. (Claim 5)

Define the set of inner overlapping positions by
Q(Mo,M1) == J{ peMui| 3qeM;. 3q eN*. p=qd },
i<2

and the length of a term b¥(f(to, ...,tm-1)) := 1+ ¥ j<mA(tj).

Now we start a second level of induction on Z Au/p) in <.
p'eQ(Mo,My)

Define the set of top positions by

O] Z:{ peoully ’ —3qelouUlly. 3q’€N+. p:C]Cf }
Since the prefix ordering is wellfounded we haveyi <2.Vpell;. 3qe®. 3¢ eN*. p=
qq. Then Vi<2 wi=wi[q—W/q|qe@]=u[p«riptip|peni][q—w/q|qeO]=
u[q<—w;/q|qe®]. Thus, it now suffices to show for allc ©

* * *
WO/q (,oo (A)—H'Il+lo wtng o u)+n0+]_W1/q

because then we have
*

Wo=U[q — W0/ | §€ O], 0 teny +10— 1, © no 2 U[0 — W1/q | gEO] =w1.

Therefore we are left with the following two cases tpe O:
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q¢ M1 Then geMg. DefineN) :={ p| gpe; }. We have two cases:

“The variable overlap (if any) case¥peN|N?os(log). log/PEV:

lo.gHo,q 1 wi/q
w+np+1
wW+Np+ l, 0 |o’qV
\Lﬂ)—knoJrl
Wo/q ro,qHo,q f ro,qV
w+ni+1

Define a functio” on V by xeV): T'(x):={ (p/,p") | log/P'=x A p'p”" €N} }.
Claim 7:There is some € s u3(V,7 (X)) with

Vxe V. ( XP0.q7H oy -1 XV ) .
A VP edom(T(x)). xv =Xpog[P” «— rgppHigup | (P, P") €M (X)]
Proof of Claim 7:

In case of dorfl (x))=0 we define xv := xpoq. If there is somey’ such that dorfl (x)) =
{p'} we definexv =Xy q[p” « rigqpptrgpp | (F,P”) €M (X)]. Thisis appropriate since due
to V(p', p") €T (X). Xpog/ P’ =logHo.a/P'P"=u/ap P’ =l1gpptigpp We have

Xpo.q=XHog[ P <l gppHagpp | (P, 0") €T (X) | +0in 41

XHog[ P" < I qppHogpp | (P, P7) €T (X)]=xv.

Finally, in case of [dom(I"(x))| > 1, loq is not linear inx. By the conditions of our lemma and
Claim 5 this impliesxe V.. Since there is som@’, p”) € I'(x) with xpo,q/p" =1 qpp'b1,qpp’
this implies |1 qyp/H1qppr €7 (cONsVe) and thenly gy €7 (consVsigwV,) which contra-
dicts Claim 5. Q.e.d. (Claim 7)

Claim 8: lpqv=w1/Q.
Proof of Claim 8:

By Claim 7 we getw; /q=u/q[p'p" < r1qpptogpp | IXEV. (P, p") €T (X)]=

log[P < Xbog [ log/ P =XeV][P'P" —r1qppbigpp | IXEV. (P, p") €T (X)]=

log[ P’ — Xbog[ P I gppHaqpp | (P, P")ET(X)] [log/P'=XEV]=

loglp < xv |log/P=xeV]=lggqV. Q.e.d. (Claim 8)

Claim 9: Wo/0—tn,+1r0,qV-
Proof of Claim 9:Since Wo/q=rogHoq, this follows directly from Claim7.  Q.e.d. (Claim 9)

By claims 8 and 9 it now suffices to shovpqv—,,., .:foqv, Which again follows from
Lemma 13.8 since KX is w-shallow confluent up to(n1+1)+,no by our induction hypothesis
and sinceVxe V. Xt g—,,., .,Xv by Claim 7 and Corollary 2.14.

Q.e.d. (“The variable overlap (if any) case”)
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“The critical peak case”: There is sorpe= M,N20S (loq) With lo g/ P& V:

lo.gHoq u f w1/q
Wi+l p w1, M5\ {p}
=—w+np+1 *|{w+np+1
* *
w+no+1,0 V1 o) H o) \/1
w Wiyl w+nNg
*|w+ng *|w+ng
Wo,/q * \Y; * o ! o * o
0 2 f
@ @ w+np+1 Wt
Claim 10: p#0.
Proof of Claim 10:If p=0, then 0<, then geMy, which contradicts our global case
assumption. Q.e.d. (Claim 10)

Let& € sus(V,V) be a bijection with&[® (((11gp,'1,qp)sCap))] N (((log:Foq):Co.q)) = O.
Define Y = &[V (((l.,gp:r1.gp)sCrap))] U ¥ (((lo,g, fo,q)_,Co,q))-
ngg if x € V((('O,q’rO,q)vCOﬂ))} (XEV).
X§ ™ "y qp Else
By |1,qu.p:|1,quE_1U1,qp:U/qp:|O,q|JO,q/p:|O,qp/p:(IO,q/p)p
leto := mgu({(l1,qpé,log/P)},Y) andd € sus(V,7 (X)) with y1(adp)=vy1p.
Defineu’ := logHoq[ P < r1,qpkiqp]- We get
u=u/q[p <l gpbigp | P €MIN{PHIP < r1qptap] Hwim 1y (p)
u/q[p’ < rigptogp | P €M]=w1/a.
If log[p < rigp&lo=roqo, then the proofis finished due to
Wo/q=r0,qHo,q=r0q00 =lo,g[ P riqp&]od= U,_H—’w+n1+1,n'l\{p}Wl/Q-
Otherwise we have((log[ P« r1,qp&]0,C1qp€0,1), (r0,q0,Co,q0,1),loq0, p) € CAR) (due
to Claim 5); p#0 (due to Claim 10); Ciqp€0¢ = CigpHigp is fulfilled w.r.t.
winys C0q0® = Coglog is fulfilled wrt. — . Since V8= (m+1)+,(no+1).
R, X is w-shallow confluent up td (by our induction hypothesis) due to our assuraeshallow
parallel closedness (matching the definitionisto ourn;+1 and itsn; to our np+1) we have
U =lgg[p r1,qp§]0¢—H—>m+no+1vli>w+novz<iwfo,q0¢=fo,quo,q=Wo/q for somevy, vo. We
then havevy «t—,. o 1 nr U =0, anpmWa/q for somell”. By
Au/p) =5 MU/PY = 5 Mu/ap) < 3 Au/ap’) =

p'eQ(N”.Ny\{p}) p’eni\{p} p’eni\{p} preny

Au/p) = ; Au/p) = > A(u/p’), due to our second induction level
peany peQ({q}.M) p'eQ(Mo,M1)
we get some] with V]_LwO—HﬁmnﬁlOLmnl\/lL

Letpe sus(V,7 (X)) be given byxp =

wy/q. Finally by our induction hypo-

co+n0+l

thesis that—— 0., 10— ., Strongly commutes over*—>m+nO the peak av; can be closed

w+Ng

. * * *
aCCOI‘dIng tOV2—>wO_H_>w+nlo—)w+n1 © w+n0\/l'

Q.e.d. (“The critical peak case”) Q.e.d. (& My")
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qeMy: DefinelMg :={ p| gpeMp }. We have two cases:

“The second variable overlap (if any) cas&peMNyN2os (I1q). l19/PEV:

l1.aba w+n+1,0 wi/q
==w+no+1 rl,qulq
:l\r«)vknoJrl
Wo/q =—=I1qV ] ryqVv

Define a functio” on V by xeV): T'(x):={ (p/,p") | lig/p'=x A p'p’" €My }.
Claim 11:There is some € s u3(V,7 (X)) with
vx e V. ( XV H—1ng+1XH1, g )
A VP edom(T(X)). Xkag[ P — FogpprHogpp | (P P") €M ()] =xv
Proof of Claim 11:
In case of dorfl'(x))=0 we define xv := xpy 4. If there is somep’ such that dor(T (x)) =
{p'} we definexv =X g[ p” < rogpptogpp | (P, P") €M (X)]. This is appropriate since due
to V(p', p") €M (X). Xbhq/ P’ =l1qt1,q/ PP’ =U/AP P’ =logpptogpp We have
Xp,q=Xt1.q[ P” — logppHogpp’ | (P, ") €T (X) | -0ings1
Xitq[ P ToggpHagpp: | (P, P") €T (X)]=xv.
Finally, in case of [dom(I"(x))| > 1, |14 is not linear inx. By the conditions of our lemma and
Claim 5 this impliesxe V.. Since there is som@’, p”) € I'(x) with xpg q/P" =lo qup’Ho.qpp’
this implies lg qyprHoqpp’ €7 (cONsV,) and thenlg gy € 7 (CONsVsigV,) which contra-
dicts Claim 5. Q.e.d. (Claim 11)

Claim 12: wo/q=I14v.

Proof of Claim 12:

By Claim 11 we getwo/q=u/q[p'p” < roqppHogpp’ | IX€V. (P, p") el (X)]=
l1g[ P —Xbag [ 11/ P =XEV][P'P" — rogppHogpp | IXEV. (P, p") €T (X)]=

l1g[ P — Xpug[ P’ < rogppbogpp | (P,P")ET(X)] |l1q/P =xeV]=
l1g[P" =XV [l1q/P' =XEV]=I1qv. Q.e.d. (Claim 12)

Claim 13: ry gV<t—ing1W1/0.
Proof of Claim 13Sincery g1, q=W1/4, this follows directly from Claim 11. Q.e.d. (Claim 13)

By claims 12 and 13 using Corollary 2.14 it now suffices to shawv—:,,, ,,r1qv, Which
again follows from Claim 11, Corollary 2.14, Lemma 13.8 (atg itsng to ourng+1 and its
ni to ourny), and our induction hypothesis that)Ris w-shallow confluent up tang+1)-+,n;.
Q.e.d. (“The second variable overlap (if any) case”)
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“The second critical peak case”: There is some MgN2 oS (I1,q) with [14/pEV:

I w
1M1 P 1/9
w+no+1,p *|w+no+1
u N V1 w+n V2
w41 !
==w+no+1,Mp\{p} *|w+no+1 *|w+no+1
* * *
Wo/d W ° H ° T o Vi w+n °
w+ni+1 1 1

Let € sus(V,V) be abijection with&[7 (((lo.gp, Fo,qp),Co,qp))] N ¥ (((11,q,r1,9),C1,q)) = 0.
Define Y = &[¥ (((lo.p:ro.ap);Co.ap))] U ¥ (((I1L.g:T1.0):Cr))-
X g if x€ 7 (((l1,9:71,4),C1,0)) (XeV).

X§ “Ho,qp €lse
By |O,qup:|O,quE_1UO,qp:U/q p=l1gtq/P=l14P/P= (|17.q/ p)p
leto := mgu({(lo,gpé,l1,4/P)},Y) andd € sus(V,7 (X)) with y1(ad)=vy1p.
Defineu := |1 qta.q[ P < rogpHo,gp]- We get

Wo/q=u/d[p’ < rogphoqp | P’ € Molctwin 1\ ()

u/q[p « logpHogp | P EM\{P}H[P < rogpHogp] =V
If l1g[p < rogp§lo=riq0, then the proofis finished due to
Wo/Gtgngs1mp (o U =11.[ P = T0,gp& J0® =T1q00 =r1 g1 g=W1/q.

Otherwise we have((l1q[p < roqpt0,Coqpt0,1), (r1,q0,C1,40,1), 140, p) € CR(R) (due
tO C|a|m 5), C07quO-¢ - C07qpp.07qp |S fU|f|”ed Ww.r.t. —>w+n0; C17q0-¢ = C17qu_’]_7q |S
fuffiled w.rt. —, . Since V3= (no+1)+,(m+1). R, Xis w-shallow confluent up td
(by our induction hypothesis) due to our assum@eshallow noisy parallel joinability
(matching the definition’sng to our ng+1 and itsn; to our n;+1 ) we have U=

*

*
11,6 P 10.gp& JOO—+0my +1V1— 10, V25111710 = 1.gHLg=W1/q for somevs, vo. We

Letpe sus(V,7 (X)) be given byxp =

then havewo /0t ng 1.0 (0 U~ winys2n7Va fOr somen”. Since z AU /P =
p’€Q(Mp\{p},N")

> AW/p) =5 Muap) < 5 Auap) = 5 Aup) =
p’eMp\{p} p’emp\{p} p’eng p'Eqy

Au/p) = z A(u/p’) due to our second induction level we get sovge
p'eQ(Mo.{a}) peQ(Mo.My)

with wg /quo%MlHoLMl\/lL v1. Finally the peak at; can be closed according

w+ng+1

t0 Vi——n, © “—eing-1V2 DY OUF induction hypothesis saying thatRis w-shallow confluent

up to (no+1)+,n1.
Q.e.d. (“The second critical peak case”) Q.e.d. (Lemma A.2)
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Proof of Lemma A.3
Forn < wwe are going to show by induction erthe following property:

* * *
Wo—Ut=0inW1 - = Wo—4,0 = wn0 " (h-1) © T WL
I
u I W1
w+n

w L[]
W * I *
(e} o (@]
0 ® I w[-+(n=-1)]

w+n

Claim 1:1f the above property holds for a fixet< w, and

vk=<n. (R, X is w-shallow confluent up t&), then ——_ o, ,0— , strongly commutes

W[+(n=1
*
over—.

Proof of Claim 1By Lemma 3.3 it suffices to show that— o+, ,0— , strongly com-

w[+(n-1

/! / * * .
mutes over—,_. Assume u’«—_u Ut WL W2 (cf. diagram below). By

the strong confluence of—_ assumed for our lemma we can close the pe#k—_ u'——_u

according to u’——_wp«—_u for somewp. By the above property there is somg with
* * *

WO——,0 %100y (n- Wi oW1 We only have to show that we can close the peak

Wy Wi, .y W2 according towg——,, ., o«<—,w,. [In case ofn=0:] This is possi-

ble due to confluence of— . [Otherwise we haven—1~<n and due to the assumesshallow

confluence up to—1 this is possible again.]

u * u I Wi * Wo
w ooin wl+(n=1)]
\L(,\) Z\I/(JL) *\L&) *\L&)
" * * I * *
u w Wo © mlJlrn ° w+(n=1)] Wy w+(n=1)] ©
Q.e.d. (Claim 1)

Claim 2:1f the above property holds for a fixet< w, and
vk<n. (R, X is w-shallow confluent up t&), then— . and— are commuting.

Proof of Claim 2: —— o—=ym0—,,,.,;, and —, are commuting by Lemma 3.3 and
Claim 1. Since by Corollary 2.14 and Lemma 2.12 we have,,, C —— ot n0—

W[+(n=1)] <

* . .
—en> NOW— and—  are commuting, too. Q.e.d. (Claim 2)

Claim 3: If the above property holds for att < m for somem < w, then RX is w-shallow
confluent up tan.

Proof of Claim 3:By induction onmin <. Assumei+,n<m and Wo«—,, U—, Wi. By
definition of ‘+," and i+, ,n<w w.l.0.g. we havei=0 and n<m. By Claim 2 and our induction
hypothesis we finally ge\“/voi>w+n o wal as desired. Q.e.d. (Claim 3)




116

Note that our property for is trivial fom=0 since then by Corollary 2.14 we have,, , =
%, C ——, and—, is confluent.

The benefit of claims 1 and 3 is twofold: First, they say thatleonma is valid if the above prop-
erty holds for alln < w. Second, they strengthen the property when used as industmthesis.
Thus (writingn+1 instead oh since we may assume<{) it now suffices to show fon < w that
WO 0, g U w1, W
together with our induction hypothesis that
R, X is w-shallow confluent up ta

implies
* * *
W0—,0 H=w4n410 —>w[+n} O +—,W1.
u t Wi
w+n+1,Mq

, Po *|w

* I *
W o o o
0 ) N w[+n]

There are  ((lopy,r0,p):Copo) € R and  Wp, € SUB(V,7 (X)) such that
lo,po €7 (cONsVsigWVe), u/po=logHo,p,  CopoHo,p is fulfilled w.rt. — , and wo=

u[ Po < r'o, oMo, o ]-

W.l.o.g. let the positions ofl; be maximal in the sense that for anye N1 and = C

20S (u)N(PN™) we do not have U——ni1n,\(pp0=W1 anymore. Then for each € Ny there
are ((I1,p,r1,p),Crp) €R andpp e sus(V,7 (X)) suchthatu/p=Ii pH1p, r1,pte,p=W1/p
, Cy,pHy,pis fulfilled w.rt. — ,and wy=u[p«ryppy p | pey].

w+n?
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Claim 5:We may assume&/pey. Iy p¢ T (consVsigWV,).

Proof of Claim 5: Define = := {peli1 | IypeT(consVsewV,)} and U =
ulp«ryplip| PeMi\=]. If we have succeeded with our proof under the assumption of
Claim 5, then we have showwoLwo—H—@mﬂoLan]\/qu’ for someV (cf. diagram be-
low). By Lemma 13.2 (matching both itsandv to ourpy p) we getVpe =. |1 ply, p—,I'1,pH1, p-
Thus from V< _u'——_w; we getV——_o«— w; by confluence of—..

I / *
u M u W1
l wintl,My\= J/ © J/
® |00 |00
* * *
Wo 5 o I o ol v 5 o
wtnt1

Q.e.d. (Claim 5)

Now we start a second level of induction dfil;| in <.

Define the set of top positions by

©:={ pe{po}uUMy | ~3qc{po}UMy. 3¢ €N". p=qd }.
Since the prefix ordering is wellfounded we havpe {po}Uls. 3q€©. 3 e N*. p=qq. It
now suffices to show for atf € ©

WO/qL)wO_H_)anHOL)an] © wal/q

because then we havewo=Wwp[q« Wo/q| g€ O]=u[po < ro,zHo,p |[d — Wo/0 | O] =
U[Q— W0/ | Q€ O], 0trp4ni10—y, © ——,U[q — W1 /0 | g€O] =
u[p«ripHip| PEM][q—wi/q|qeO®]=wi[q—wi1/q|qeO]=w;.
Therefore we are left with the following two cases tpe ©:
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q¢ M1 Then g=po. DefineMN’ :={ p| qpe; }. We have two cases:

“The variable overlap (if any) casetpeNiN?os (loq)- log/PEV:

lo,gHo.q i w1/q
w+n+1
*|w
w,0 lo.qV
0,9
()]
- I *
Wo/q rogHo,q ——> © 5 roqV
wrn+l

Define a functio on V by xeV): T'(x) :={ (p/,p") | log/P'=x A p'p’ €Ny }.
Claim 7:There is some € s us(V,7 (X)) with

Vxe V. XKt 10— XV .

A VP edom(T(X)). xve— Xtog[ P < r1gpprbagppr | (P, 0") €T (X)]
Proof of Claim 7:
In case of dorfl(x))=0 we define xv := Xpoq. If there is somep’ such that dorfl (x)) =
{p'} we definexv :=xpoq[p" < r1qppHogpp | (P, P") €M (X)]. Thisis appropriate since due
to V(p', p") €T (X). Xko,q/ P’ =logho.q/ P'P' =u/qp" =l1gppbgppr We have

XHo.q=XVog[ P’ < ligppHaapp | (', ") €T (X)]+0inia
XHo[ P’ — Fgpprbagppr | (P, p") €00 =xv.

Finally, in case of [dom(I(x))| > 1, logq=lop €7 (consVsigwV,) is not linear inx. By the
conditions of our lemma, this impliese V.. Thereforexppq< 7 (consV,). Together with
Vp' €dom(T"(X)). Xpo.g—ns 1 XHogl P’ — M qppgup | (P, p7) €T (X)] this implies
VP’ €dom(T (x)). Xpo.g—,XHo.q[P” — Fqppbgppr | (P, p)€F(X)] € T (consV,)
by Lemma 2.10. By confluence ef—_ and Lemma 2.10 again, there is sotme 7 (consV,)
with
vp edom(T(X)). Xkog[ P’ — Fiqpprtagpp | (P P')EF(X)]—,t.  Therefore we can de-
fine xv :=1t in this case. This is appropriate since bylp'edom(l'(x)). ququ
Xpo.gl P’ Mqppbigpp | (PP €T (X)] = xv we havexpoq——,xv.  Q.e.d. (Claim 7)

Claim 8: lg gv+—,W1/0.

Proof of Claim 8:

By Claim 7 we getws /q=u/q[p'p" « 1 qpphogpp’ | XEV. (P, p") el (X)]=

logl P — Xtog | log/P =xeV][P'p —rigppbigep | IXEV. (P, p")elN(X)]=
]

log[ P’ — Xtog[P” — rLqppbrgpp | (P P) €M (X)] [ log/P'=XxeV]—,

log[p < xv |log/p'=xeV]=lgqVv. Q.e.d. (Claim 8)
Claim 9: Wo/q—tn10—, 0.V

Proof of Claim 9:Since wWo/q=rogloq, this follows from Claim 7. Q.e.d. (Claim 9)

By claims 8 and 9 it now suffices to shomy qv+—_loqv, which again follows from Lemma 13.2

since YXe V. Xto.g——,,,.,,XV by Claim 7 and Corollary 2.14.
Q.e.d. (“The variable overlap (if any) case”)

wHn+1
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“The critical peak case”: There is sonpes M,N20s (lpq) with lo q/pE V:

lo.gHoq u i w1/q
wntlp w1, M;\{p}
w,0 =|w *|w
* * *
Wo/q v o f
@ @ w+n+1 w4
Claim 10: p#0.
Proof of Claim 10:If p=0, then 0<, then gy, which contradicts our global case
assumption. Q.e.d. (Claim 10)

Let& € sus(V,V) be a bijection with&[® (((11qp,'1.qp)sCap))] N (((log:Toq):Co.q)) = 0.
Define Y = &[¥ (((ILap:"1ap):Crap)]U ¥ (((lo,g;T0.0): Co.a))-
XI.J(}% if xe (V(((|07q7r07q)aCO,Q))} (XGV).
X§ ™ "y qp else
By I1,qp&P=11,qpE& tH1,qp=U/AP=logtoq/P=l0.q0/P= (lo.q/P)P
let o :=mgu({(l1qp&,loq/P)},Y) andd € sus(V,7 (X)) with y1(ad) =v1p.
Defineu’ := lggHo,q[ P < r1,gpkigpl- We get

U=u/q[p « ligpbigp | P €MN{PH[P < r1qptigp] +winirng (o)

u/q[p’ < rigptogp | P EM;]=w1/q.

If loglp < rigp&lo=roq0, thenthe proofis finished due to

Wo/d=rogHo,qg="r0,q0¢ =log[P < r1,qp& o = U/_H_>w+n+1,n'l\{p}Wl/Q-
Otherwise we have (log[ P < '1,qp&]0,C1qp€0,1), (r0,q0,Co0,q0,0), loq0, p) € CA(R) (due to
Claim 5); p#0 (due to Claim 10);Cy qp€0¢ = Cy gple,qp is fulfilled w.rt. —, . ; Coq0 =
Coqlo,q is fulfilled w.rt. — . Since RX is w-shallow confluent up ta (by our induction
hypothesis), due to our assumaeshallow closedness up to (matching the definition’syy to
ourn+1 and itsny to 0) we haveu' =lo g p « r'1.qpf |0 ——, Ve, l0.q00 =0 qlo.g=Wo/q for
somev. We then haveve— U 107\ W1/d- We can finish the proof in this case due to
our second induction level sinc#17\{p}| < [M}| < |M4].
Q.e.d. (“The critical peak case”) Q.e.d. (‘'ggMNy”)

Letpe sus(V,7 (X)) be given byxp = {
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qeMy: If there is no py with qpy=po, then the proof is finished due towp/q=

u/qg—. w1/g. Otherwise, we can defing, by qp,=po. We have two cases:

w+n+1

“The second variable overlap case™
There arexe V and p/, p” such thatly q/p'=x and p'p’=py:

| W
1abiq Y |/q
W, ﬁO rl,qu'l,q
Wo,/q ! [1qV r1qvV
|| 7q (.0+n+1 7q

Claim 11:Forv € suB(V,7 (X)) defined byxv =Xy o[ p” < ro,pHo.p,] @and vyeV\{x}. yv=
YHLg We getvVyeV. yi g— V.

Proof of Claim 11.:

Due to X q/p'=l1gteg/P'P =u/app’=u/apo=u/po=lo ko We have Xpq=
Xb, o[ P lo,poHo.po | —XHa.al P < Fo,poko.pp | =XV Q.e.d. (Claim 11)
Claim 12: Wo/Q—t—l1,qV-

Proof of Claim 12:

By Claim 11 we getwo/q=u/q[p'p” < ro g0, 5 | =

l1.a[P” < Yhoq | lLa/P"=yeV][P'P" — ropkom] =

l1g[P" < YHog [ 1a/P" =YEV AXAY][P"  Xpg [ l1q/P" =X P" # ']

[P Xihg[ P < ro,poHo,po ] =

l1a[ P =W | l1q/P"=yEV AXZYI[P" < Xihg[lLa/p" =X p"Z P[P < 0]
l1g[P” =W 119/ P =YEV AXAY][P" XV [ I1,q/P"=XA P"#P][p —xv]=

lig[p” —w |l1g/P"=yeV]=Il1gv. Q.e.d. (Claim 12)
Claim 13: rq qv#—,W1/d.

Proof of Claim 13Sincery qp1,q=W1/q, this follows directly from Claim 11. Q.e.d. (Claim 13)

By claims 12 and 13 using Corollary 2.14 it now suffices to sHoyw— ... .r1qv, which again
follows from Claim 11, Lemma 13.8 (matching itg to 0 and itsn; to ourn) and our induction
hypothesis that RX is w-shallow confluent up to. Q.e.d. (“The second variable overlap case”)
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“The second critical peak casefyy € 205 (l1,q) with 114/ p € V:

[ W
LaHiq win+1,0 1/9
W, 56 *|w
* *
W o Il o o
0/d o w+|r|]+1 o[

Leté e sus(V,V) be abijection with&[4 (((lo,py:r0,p0),Co,p5))] NV (((11.g,71,9):C1q)) = 0.
Define Y= &[v (((lo,p0:"0,0) Co.p0))] U "’((('Lq?rl,q)_;cl,q )-
Xk g if x€ v (((ILg:r24),C1a)) (XEV).

X~ "Ho,p, €lse
BY lo,5o&P=10,3&& ~Ho,5=U/Po=1.qH1.a/ Po=I140/Pp= (I1q/ Pp)P
let o := mgu({(lo,p8&:11.q/Pp)},Y) andp € sus (V,7 (X)) with y1(ad)=v1p.
If 11q[Ph < ro,p&]0=r140, then the proof is finished due to

Wo/q=11,gH1,q[ Pp < ro,pHo,p] =114l Pp  ro,p& |00 =11q00 =r1 g q=W1/q.
Otherwise we have( (I1,q[ Py < r0,p&]0,Co.560,0), (r1,40,C140,1), 1140, Py) € CP(R) (due
to Claim 5); Co 5,&0¢ = Co polo,po IS fulfilled w.r.t. —; Cy q0¢ = Cy gl g is fulfilled w.r.t.
— .0 Since RX w-shallow confluent up ta (by our induction hypothesis), due to our assumed
w-shallow [noisy] weak parallel joinability up t@ (matching the definition’sg to 0 and itsn; to
ourn+1) we havewo/q=11g[ Py < 10,38 |00 —,0 +ns10 =,y © o 1.q00 =1 gH1.q =
w1/Q.
Q.e.d. (“The second critical peak case”) Q.e.d. (Lemma A.3)

Letpe sus(V,7 (X)) be given byxp = {
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Proof of Lemma A.4
Forn < wwe are going to show by induction erthe following property:

*

= *
Woe— U— W1 =  Wp— 0— 0, Wi.

[+(n=1)]

u
w+n
= *
Wo o)

o
w+n w[+(n-1)]

Claim 1:1f the above property holds for a fixed< w, and

vk=<n. (R, X is w-shallow confluent up t&), then —>w+noi>w[+(n,71>] strongly commutes over

*
—

Proof of Claim 1By Lemma 3.3 it suffices to show that—_, ,o—— strongly commutes

Wi+(n=1)]
over—,. Assumewo<—wu—>w+nwll>w[ +n-yW (cf. diagram below). By the above property
there is some’ with wo—,, .0~ .., V<—,Wi. We only have to show that we can close

the peakV'«— wi—, . W according tov— . o<— w. [Incase ofn=0:]This
is possible due to confluence ef- . [Otherwise we haven-1<n and due to the assumed
w-shallow confluence up to-1 this is possible again.]

Y w+n W1 w[+(n=1)]
\I/w *\L@) *\I/U)
= % *

Wo i ° Tarin=1) v otn-1] °

Q.e.d. (Claim 1)

Claim 2:If the above property holds for a fixed< w, and
vk<n. (R, X is w-shallow confluent up t&), then— . and— are commuting.

Proof of Claim 2: —_, o—— and ——_ are commuting by Lemma 3.3 and Claim 1.

ot +(n=1)]
*

. *
Since by Lemma 2.12 we have—,,,, C —,..0—, n:1) & ~winy NOW —,,, and—

are commuting, too. Q.e.d. (Claim 2)

Claim 3: If the above property holds for ait < m for somem < w, then RX is w-shallow
confluent up tam.

Proof of Claim 3:By induction onmin <. Assume i+,n<m and Wo«—,, ,U—, Wi. By
definition of ‘+," and i+, n<w w.l.0.g. we havei=0 and n<m. By Claim 2 and our induction

hypothesis we finally getvo——,,, , o < Wy as desired. Q.e.d. (Claim 3)
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Note that our property for is trivial fon=0 since—, is confluent.

The benefit of claims 1 and 3 is twofold: First, they say thatlesnma is valid if the above prop-
erty holds for alln < w. Second, they strengthen the property when used as industmthesis.
Thus (writingn+1 instead oh since we may assume-n) it now suffices to show fon < w that
Wo—,, Po U4 ni1, ] W1
together with our induction hypothesis that
R, X is w-shallow confluent up ta

implies

= * *
WO—6n+1° 7w © oW1
u — W

w+n+1, p1 1
J/oo, Po *J/m
= *
Wo o

(@]
wHn+1 w[+n]

Now for eachi < 2 there are((l;,ri),Ci) e R and y € sus(V,7 (X)) with u/pi=Ilip, wi=
ulpi < riki], loe7 (consVsigWV,), Colo fulfilled w.r.t. —, Cypy fulfilled wrt. — .

Claim 5:We may assume; ¢ 7 (consVsigWV, ).
Proof of Claim 51n case ofl; € 7 (consVsigwV,-) by Lemma 13.2 (matching both itsandv to
ourpy) we getlipy—,rips. Then the proof is finished by confluence-efs . Q.e.d. (Claim 5)

In case of po||p1 we have wi/p1_i=u[pi < rili]/p1—i=u/pi—i=l1_jpu—i and therefore
WO 1 U[ Pk < kbl | K<2]«—, w3, i.e. our proof is finished. Thus, according to whether
Po is a prefix ofpy or vice versa, we have the following two cases left:
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There is some) with pop;=p1 and p}#0:

We have two cases:

“The variable overlap case”:
There arexe V andp/, p” such thatg/p'=x A p'p’=pi:

I W1/ P
oHo w+n+1, p) 1/ Po
w,0 |o\)
lw
Wo/ Po roko — rov

wtn+1

Claim 6:We havexpp/p”=Il1p1 and may assumee Vgic.

Proof of Claim 6:We havexpo/p” =loto/p'p’ =Uu/pop'p’ = U/ popy = U/ pr=Il14.

If xeV,, then xppe 7 (consV,.), then xpo/p” €T (consV,), then

l1py € 7 (consV,), and thenly € 7 (consVsigwV,) which we may assume not to be the case
by Claim 5. Q.e.d. (Claim 6)

Claim 7:We can defin® € su3 (V,7 (X)) by xv=xpo[p" < ripz] and vyeV\{x}. w=yo.
Then we havexpo—, ., XV.

Proof of Claim 7:This follows directly from Claim 6. Q.e.d. (Claim 7)

Claim 8: lov =w1/ po.

Proof of Claim 8:By the left-linearity assumption of our lemma and Claim 6 waynassume
{p”" ] lo/p"=x}={p'}. Thus, by Claim 7 we getv1/po=u/po[ P} < ripu]=

lo[P” < Yio [ lo/p”"=yeV][p} — riu]=

lo[p” = yo | lo/p"=yeV Ay#X][P « xpo][p'Pp" « 1] =

lo[p” =y [lo/p"=yeV Ay#X][p — Xo[p" — ripu]] =

lo[p"” <y | lo/p"=yeV]=lov. Q.e.d. (Claim 8)

Claim 9: Wo/Po—,,1.1f0V-

Proof of Claim 9:By the right-linearity assumption of our lemma and Claim 6mway assume
[{ p” | ro/p"” =x}| < 1. Thus by Claim 7 we getwo/Po=ropo=

ro[ " —yko | ro/P” =yeV\{X}][p" —XWo [ ro/ P =X]—4, 0.1

ro[p” —yko | ro/p” =yeV\{x} ][ p" « xv | ro/p"' =x]=

ro[p” < w |ro/p"=yeV\{x}|[p" < xv | ro/p"=x]=rqv. Q.e.d. (Claim 9)
By claims 8 and 9 it now suffices to show qv<—_,lo.qv, which again follows from Lemma 13.2
since YyeV. quL yv by Claim 7. Q.e.d. (“The variable overlap case”)

w+n+1
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“The critical peak case”pj € 205 (lo) Alo/pPy ¢ V:

loko W+, p w1/ Po
\Loo, 0 *J/oo
_ = *
Wo/ Po w+n+1 ° w[+n] °

Let§ € sus(V,V) be abijection with&[7 (((11,r1),C1))] N (((lo,r0),Co)) = 0.
Define Y =& (((I1,r1),C1))]U% (((lo,r0),Co))-
xp(z1 if xe r1/(((I0,ro),Co))} (xeV).

x¢ W else
By 118p=11£& "y =u/p1=u/PoP, =loko/ F,=lop/ ;.= (lo/ P} )P
leto := mgu({(11&,lo/P)},Y) andd € s us(V, T (X)) with v1(09) =v1p.
If lo[ Py < ri&Jo=roo, then the proofis finished due to

Wo/ Po=roHo=roo® =lo[ Py < ri&]op =lopo[ Py < ripa]=wi/po.
Otherwise we have( (lo[p} <+ r1&],Ci&,1), (ro0,Co,0), lo, 0, pj) € CP(R) (due to Claim 5),
Py #0 (due the global case assumptio®iod = Cipy is fulfilled w.r.t. —,,; Cood = Colo
is fulfilled w.rt. —,_. Since RX is w-shallow confluent up ta (by our induction hypo-
thesis), due to our assumedshallow [noisy] anti-closedness up to (matching the defini-
tion’s ng to ourn+1 and itsn; to 0) we havew; /q=lopo[ P} « ripu ] =lo[ P} < ri1&]op——, o

*

Tl o;w+n+1r00¢ =ToHo=Wo/Q.
Q.e.d. (“The critical peak case”) Q.e.d. (“There is somg] with pop;=p1 and p;#0")

Letpe sus(V,7 (X)) be given byxp = {
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There is somey, with p1py=po:

We have two cases:

“The second variable overlap case”.
There arexe V andp/, p” such that1/p'=x A p'p” = pj:

m St wl/|m
(1)7 HO rlul
Wo/ P1 l1v el rav

We havexpy/p” =l1p/p'p" =u/p1p’'p” =u/p1py=U/po=loko.
Claim 11:We can define € sus(V,7 (X)) by xv=xw[p” < rodo] and vyeV\{x}.yv=
Y. Then we havexp — Xxv.

Proof of Claim 11:This follows directly from the above equality and Lemma 2.10
Q.e.d. (Claim 11)

Claim 12: wp/p1=I1v.

Proof of Claim 12:

By the left-linearity assumption of our lemma and Claim 5 weyrassume{ p”’ | I1/p" =x} =
{p'}. Thus, by Claim 11 we geto/p1=u/p1[ Py < foko] =

I[P — yi | 1/p" =y V][ Py Fobo] =

l1[p” —yp [11/p"=yeV Ay#X]|[p « xpu][p'P" < roko] =

l1[p” =y [11/p"=yeV Ay#X] [P« xpu[p” + rofo] ] =

1] p” —w |l1/p"=yeV]=Iv. Q.e.d. (Claim 12)
Claim 13: rqvt—,W1/p1.

Proof of Claim 13:Since riy =wsi/p1, this follows directly from Claim 11. Q.e.d. (Claim 13)

By claims 12 and 13 using Corollary 2.14 it now suffices to shbwv—. ,r1qv, which
again follows from Claim 11, Lemma 13.8 (matching figto O and itsny to ourn) and our
induction hypothesis that,X is w-shallow confluent up to.

Q.e.d. ("“The second variable overlap (if any) case”)
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“The second critical peak casefy € 205 (1) A l1/py € V:

l1hh Lo Wi/ p1
\Loo, % *\Lu)
_ - *
WO/ b1 w+n+1 © W[+n] °

Let& € sus(V,V) be a bijection with&[7’ (((lo,r0),Co))] N ¥ (((11,r1),C1)) = 0.
Define Y =¢&[7 (((lo,r0),C0))] U (((I1,r1),C1)).
X“E if xe v (((I1,r1),C1)) (xeV).

x€ 1o else
By lo&p=10&& tHo=Uu/po=u/prPp=I1t1/Pp=11p/Pp=(I2/PH)P
let o := mgu({(I6&,11/Ph)},Y) andd € sus (V,7 (X)) with y1(0¢) =
If 11[pp < ro&Jo=r10, then the proof s finished due to

Wo/P1=Il1M1[Pp < roMo] =I1[Pp < ro§|odp =r10¢ =ripy =wi/p1.
Otherwise we have( (I1[pj < ro§],Co€,0), (r1,C1,1), 11,0, py) € CAR) (due to Claim 5);
Coéad = Colo is fulfilled w.r.t. —_; Ci0¢ = Cypy is fulfilled w.r.t. — . . Since RX w-
shallow confluent up ta (by our induction hypothesis), due to our assurmaslhallow [noisy]
strong joinability up tow (matching the definition’syy to 0 and itsn; to our n+1) we have
Wo/ P1=l1ph[ By < Fobo] =11[Ph o8]0 —(,. 10— © 100 =T1th =W1/P1.
Q.e.d. (“The second critical peak case”) Q.e.d. (Lemma A.4)

Letpe sus(V,7 (X)) be given byxp = {

Proof of Lemma A.5

Claim 0:R, X is w-shallow confluent up too.

Proof of Claim O:Directly by the assumed strong commutation-et, , ,0—¢ ,,(n-1) OVEr
*

—rx.o Cf- the proofs of the claims 2 and 3 of the proof of Lemma A.4. ..Q (Claim 0)

Claim L:If —_o—t.n 0— strongly commutes ovef— then— and—

. w+(np 1) w+ng? w+ng w+ng
are commuting.
Proof of Claim 1: — 0+, 0, , .,y @Nd—,_, are commuting by Lemma 3.3. Since
by Corollary 2.14 and Lemma 2.12 we have—,.,, C 0t O o S iy
now —,,, and—,, . are commuting, too. Q e.d. (Clalm 1)

Fornp < n1 < wwe are going to show by induction @3+,n; the following property:

* * *
WO (A)'HWOU (A)+n1Wl :> WO mo w+nlo (kH’(nl;l) o (L)+nOWl
u i W1
wHNy
w+Ng *|wH+Ng
W * 1 *
(@] o] O
0 w L w+(np=1)

w+ng
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Claim 2:Let d < w+w. If

Np = N1
A No+,N1 =0

Ng, N1 < W
Vo, Nt < W0<—w+n0u_H_>‘*’+n1W1 ’
= VYWp, W1, U. * % *
:> WO wo u)+nlo (A)'F(n]_'*l) o w+n0W1
then
Np =Nz
VNg, N1 < 0. A Not, n1<5 ,

= —> o—H—>w+nlo—>
and R X is w-shallow confluent up té.
Proof of Claim 2:By induction ond in <. First we show the strong commutation. Assume
No < M < WWith no+,n1 < 3. By Lemma 3.3 it suffices to show that™ o, n,0—

*
iy -1 StrONgly commutes over—,,

w+(n1;1)
" ;X *

sFroneg commutes OVEF—,. - Assume g “ornpY —.>wU—H—>w+nlW1—>QH<nl;l>W2 (cf.

diagram below). By the strong commutation assumption of leaima there arevy and

Wy with o’ whe— Wo—,,,U. By the above property there are some, wj

(.o+(n0—1)
. * * *
With  Wo—— W30, 0=, 1. - V\/l%wnowl. Next we show that we can close the peak

(m=1)
Wi g W1~y W2 aCCOrding tow;—, . Whe—, . Wo for somew,. In case of
n1=0 this is possible due to th@-shallow confluence up ta given by Claim 0. Otherwise
we have np+,(n1—1) <np+,n1 =& and due to our induction hypothesis (saying thaXks w-
shallow confluent up to al’ < d) this is possible again. By Claim 0 again, we can close th& pea
\/\/0<Lm+< >woi> ws according tow,—— \A/<Lw+< ,Ws for somews. To close the whole

diagram, we only have to show that we can close the pdg;rle W3+r—>w+nloi>

w+(ng= w+(ng -1 )V\/Z

according to Wa——,0—1uin 0, (n ) © o) Wo- 1N CBSE Of No=0 this is possible
since it is assumed for our lemma (below the strong comnuutatssumption). Otherwise we
have np—1<np<n; and (ng—-1)+,n1 <ng+,N1 =98, and then due to our induction hypothesis

this is possible again.

u * u I W * Wo
1 .
W ni-1
W+ w17
=|w+ng *|wHng *|wHng
* * *
wHNo Wo W3 i o 1 V\/2
) n=1 nm=1
oty +(m=1) wH(n =1
*|w+(np=1) * [+ (np=1) *|w+(ng~1)
* * * *
o’ V\/O ® W3 ® © f ° w+(n-1) °
Wty 1

Finally we showw-shallow confluence up . Assumeng+,n <3 and WOLMOUL Wi.

w+n

Due to symmetry inng and n; we may assume np=<n;. Above we have shown that

Ot O strongly commutes ove|i>w+no. By Claim 1 we finally get

w+(nl‘71)

* * . .
WO—4n, © in W1 @S desired. Q.e.d. (Claim 2)
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Note that for ng=0 our property follows from the assumption of our lemma (letbe strong
commutation assumption).

The benefit of Claim 2 is twofold: First, it says that our lemmavalid if the above property
holds for allng < n; < w. Second, it strengthens the property when used as indutfjoothesis.
Thus (writingn;+1 instead ofn; since we may assume<ng<n;) it now suffices to show for
N < N1 < wthat
W0<—0)+n0+1750 U_H_>w+n1+1,l'|1Wl

together with our induction hypotheses that

Vo< (no+1)+,(nm+1). R,X is w-shallow confluent up td
and (due tap<n1+1 andno+,, (N1+1) < (No+1)+,(N1+1))

Ot 110 ——.n. Strongly commutes over—,

wHNng
implies
* * *
WO wo w+n1+10 w+ng o 00+n0+1W1'
u f Wy
Q)+n1+1, |_|1
w+no+1, po *|w+no+1
* ! *
Wo W ° M ° T o ©
w+ni+1 1

Note that for the availability of our second induction hypegis it is important that we have
imposed the restrictionry <n1” in opposition to the restrictionrip = n;1”. In the latter case the
availability of our second induction hypothesis would riegup+1>n;+1 = ng>n;+1 which
is not true forng= n1 The addltlonal hypothesis

=, Oﬂewnlo—m(nl n strongly commutes over—
of the latter restriction is useless for our proof.

There are((lo,py,0,p5),Co,p0) € R @andpo p, € S UB(V, 7 (X)) with u/p=Io,pHo.pe, Co,poHo.po
fuffilled w.rt. —,. ', and Wo=u[ p < ro,gHo, -

W.l.o.g. let the positions of1; be maximal in the sense that for anye N1 and = C
205 (U)N(pNT) we do not haveu—t—.n,+1m,\(ppuzW1 anymore. Then for each € MM there
are ((|17p,l'17p),C17p) € R and Mip € 5‘(1%(V,‘T(X)) with U/p:|17p|,ll’p, I'17p|.117p:W1/p,
Cy,pHy, p fulfilled w.r.t. —iny Finally, wi=u[p«rypHyp | peMy].

u)+n0+1



130

Claim 5:

We may assumeyg p, €7 (consVsigV,) and Vpelly. 1 p &7 (consVsigwV, ).

Proof of Claim 5:In case of lgp, €7 (consVsigwV,) we get wo——, u by Lemma 13.2
(matching both itsp and v to our g p,) and then our property follows from the assump-
tion of our lemma (below the strong commutation assumptioRpr the second restriction
define=1 := { peM1 | Iy peT(consVsicwV,) } andu] = u[p«riplip| peMi\Z1]. If
we have succeeded with our proof under the assumption omChithen we have shown
Woi)wo_H_)WrnlJrloi)w-«-anJ-(Lwno+1uéL for somev; (cf. diagram below). By Lemma 13.2
(matching both itsy andv to our Py p) we get Vpe=1. |y plls p—,r1,pl1p and therefore
u;——, wi. Thus from v1<lMHO+lu’1i>ww1 we get vi—— Vo — wy for somev, by
w-shallow confluence up t@ (cf. Claim 0).

w+ng+1

, *

u i Uy 5 W1
w+ni+1,M1\Z1
w+no+1, po *|w+no+1 *|wHno+1
W, * : * V * Vi
(@] O
0 ® m W+ 1 w 2

w+ny+1

Q.e.d. (Claim 5)

Now we start a second level of induction dfly| in <.

Define the set of top positions by

©:={ pe{po}uUMs | ~3q€ {po}uUMs. 3¢ eN". p=qd }.
Since the prefix ordering is wellfounded we have {po}UM;. 3g€©. 3q eN*. p=qq. It
now suffices to show for alf € ©

WO,/ 0,0 s 10—y © —gpin 11 W1/0]

because then we havewg=wp[q«+ Wp/q| qeO]=uU[Po « ro pHo,p ][4 — Wo/0 | q€O]=
Ul = Wo/0l | € O] —=,0 % ny 1104 © “—gping 12U 0 = W1/ | EO] =
ulp—riptip| PeM][q—wi/q[qe®]=wi[q—wW1/q|qeO]=w;.
Therefore we are left with the following two cases tpe O:
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q¢ M1 Then g=po. DefineN’ :={ p| qpe; }. We have two cases:

“The variable overlap (if any) case¥pe|N?os(log). log/PEV:

lo.gHo,q 1 wi/q
w+np+1
wW+Np+ l, 0 |o’qV
\Lﬂ)—knoJrl
Wo/q ro,qHo,q f ro,qV
w+ni+1

Define a functio” on V by xeV): T'(x):={ (p/,p") | log/P'=x A p'p”" €N} }.
Claim 7:There is some € s u3(V,7 (X)) with

Vxe V. ( XP0.q7H oy -1 XV ) .
A VP edom(T(x)). xv =Xpog[P” «— rgppHigup | (P, P") €M (X)]
Proof of Claim 7:

In case of dorfl (x))=0 we define xv := xpoq. If there is somey’ such that dorfl (x)) =
{p'} we definexv =Xy q[p” « rigqpptrgpp | (F,P”) €M (X)]. Thisis appropriate since due
to V(p', p") €T (X). Xpog/ P’ =logHo.a/P'P"=u/ap P’ =l1gpptigpp We have

Xpo.q=XHog[ P <l gppHagpp | (P, 0") €T (X) | +0in 41

XHog[ P" < I qppHogpp | (P, P7) €T (X)]=xv.

Finally, in case of [dom(I"(x))| > 1, loq is not linear inx. By the conditions of our lemma and
Claim 5 this impliesxe V.. Since there is som@’, p”) € I'(x) with xpo,q/p" =1 qpp'b1,qpp’
this implies |1 qyp/H1qppr €7 (cONsVe) and thenly gy €7 (consVsigwV,) which contra-
dicts Claim 5. Q.e.d. (Claim 7)

Claim 8: lpqv=w1/Q.
Proof of Claim 8:

By Claim 7 we getw; /q=u/q[p'p" < r1qpptogpp | IXEV. (P, p") €T (X)]=

log[P < Xbog [ log/ P =XeV][P'P" —r1qppbigpp | IXEV. (P, p") €T (X)]=

log[ P’ — Xbog[ P I gppHaqpp | (P, P")ET(X)] [log/P'=XEV]=

loglp < xv |log/P=xeV]=lggqV. Q.e.d. (Claim 8)

Claim 9: Wo/0—tn,+1r0,qV-
Proof of Claim 9:Since Wo/q=rogHoq, this follows directly from Claim7.  Q.e.d. (Claim 9)

By claims 8 and 9 it now suffices to shovpqv—,,., .:foqv, Which again follows from
Lemma 13.8 since KX is w-shallow confluent up to(n1+1)+,no by our induction hypothesis
and sinceVxe V. Xt g—,,., .,Xv by Claim 7 and Corollary 2.14.

Q.e.d. (“The variable overlap (if any) case”)
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“The critical peak case”: There is sorpe= M,N20S (loq) With lo g/ P& V:

lo.gHoq u f w1/q
Wi+l p w1, M5\ {p}
=|w+nog+1 *|w+ng+1
* *
w+no+1,0 V1 o) H o) \/1
w Wiyl w+nNg
*|w+ng *|w+ng
Wo,/q * \Y; * o ! o * o
0 2 f
@ @ w+np+1 Wt
Claim 10: p#0.
Proof of Claim 10:If p=0, then 0<, then geMy, which contradicts our global case
assumption. Q.e.d. (Claim 10)

Let& € sus(V,V) be abijection with&[7 (((11,gp,r1,9p),C1,qp))] N ¥ (((lo,g,r0,9),Co,q)) = O
Define Y= &[7 (((ILap:r1.4p),C1ap))]1U ¥ (((lo.g,"0.0),Cog))-
Letp e sus(V,T (X)) be given byxp = {i?%ump :;;(ee v (o, ro"‘)’co’q>)} (XeV).
BY l1,qpEP=11.qp&& tH1gp=U/qp=logHoq/P=logP/P=(loq/P)P
leto := mgu({(l1,qpé,log/P)},Y) andd € sus(V,7 (X)) with y1(adp)=vy1p.
Defineu’ := logHoq[ P < r1,qpkiqp]- We get

U=u/a[p « l1gpbigp | P'EMN{PHP < rLgpieap] w1 o

u/glp’ — rigphigp | P'€Ni]=w1/q.

If log[p < rigp&lo=roqo, then the proofis finished due to

Wo/Q=ro,gHo,q="0,q09 =loqg[ P+ r1,qp&|0d = U/_H_’w+n1+1,n'l\{p}Wl/Q-
Otherwise we have((log[ P« r1,qp&]0,C1qp€0,1), (r0,q0,Co,q0,1),loq0, p) € CAR) (due
to Claim 5); p#0 (due to Claim 10); Cyqpé0¢ = Cigpliqp is fulfilled w.r.t.
— oy C0q0® = Cogloq is fulfilled wrt. — . Since V0= (ni+1)+,(no+1).
R, X is w-shallow confluent up td (by our induction hypothesis) due to our assuraeshallow
closedness (matching the definitiomis to our n3+1 and itsn; to our np+1) we have U =

loglp qupE]oq);mnoﬂvlenoszwro,qoq):ro,quo,q:wo/q for somevy, vo. We then
have vie—,, . Ut anpmWi/d- By [M\{p}| < |Mi[ = [M1], due to our second in-

duction level we get SOMg With Vi——, 0—n 10—, Vi< wi/g. Finally by our

w+ng+1

induction hypothesis that—, o—.n+10—,,,, Strongly commutes over—,, . the peak at

wtng n

. * * *
v; can be closed according 0 ——,0—H%ny O, © <—w+n0\/1.

Q.e.d. (“The critical peak case”) Q.e.d. (g&My”)
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qeMy: If there is nopy with qpy=po, then the proof is finished due tavg/q=u/q=

11,0H1,g—1n, 117 1.qHL,g=W1/0. Otherwise, we can defing, by qpp=po. We have two cases:

“The second variable overlap case”:
There arxe V andp/, p” such thaty q/p'=x A p'p’ = pp:

l1.aba Wng+1,0 w1/q
wino+1, Py M,gH1,q
i/l:Q»H’\o-l-l
Wo/0 ———=l1,qV T r1qv

Claim 11a:We havexpy q/p” =logHo,p, @and may assumee V.

Proof of Claim 11aWe have Xy q/p” =l1gl1q/P' P’ =u/qp p” =u/qpy=u/po=lo g Ho,po- If

XeVe, then xpg g€ 7 (consVe ), then xpy q/p” €7 (consV,), then lg plo,p, €7 (CONSV,),

and thenlg 5, € 7 (cons VsV ) which we may assume not to be the case by Claim 5.
Q.e.d. (Claim 11a)

Claim 11b:We can defin® € sus(V, 7 (X)) by xv=Xp1q[p” < ro,pHo,p] and vyeV\{x}.
W =Yl q. Thenwe havexul,qﬁwnoﬂxv.
Proof of Claim 11bThis follows directly from Claim 11a. Q.e.d. (Claim 11b)
Claim 12: wo/q=I14Vv.
Proof of Claim 12:By the left-linearity assumption of our lemma, Claim 5, ani@ 1la
we may assume { p” | liq/p”=x} = {p'}. Thus, by Claim 11b we getwy/q=
u/q[ F_),O — rO,FTo”O,FTo] =
l1g[P” < Yioq | l1a/P” =yEV][ Py < romHop] =
l1g[P" —Yhag | lra/P"=YEV AYF#X][P —Xpg][P'P" — ro,mHo.p0] =
l1g[P" — W | l1,q/P"=yEV Ny#X][P" Xt g[ P < To.5Ho.p0] ] =
lig[p" =W lLg/P"=yeV]=l1qv. Q.e.d. (Claim 12)
Claim 13: ry gV «t—ing1W1/0.
Proof of Claim 13:Since ry gl1 g=W1/0, this follows directly from Claim 11b.

Q.e.d. (Claim 13)

By claims 12 and 13 using Corollary 2.14 it now suffices to shbwv—,,,, .,r1,4v, which
again follows from Claim 11b, Lemma 13.8 (matchingntsto ournng+1 and itsn; to ourny),
and our induction hypothesis thatRis w-shallow confluent up tqng+1)+, ns.

Q.e.d. (“The second variable overlap case”)
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“The second critical peak casepy€ 205 (I1.q) A l1,q/PpEV:

l1.qM1.q +m+1,0 w1/q
\Lerno+17 (A *\LMnOH
* k
Wo/ ° { o o
© w+ng+1 Wt

Leté € sus(V,V) be a bijection with&[4 (((lo,py:r0,p0),Co,p5))] NV (((11,g:71,9),C1q)) = 0.
Define Y = &[7 (((lo,:o.3)-Co.m))] U (((l1.q:"1.0)-C1.0)).

XM g if xe rV((('anrl,q)aCl,q))} (XEV)
X€ 1o 5, else '
By lo,5&P=10,m&& Ho,5,=U/Po=U/APp=1qH10/ Po=114P/ Po=(11.a/ Pp)P
let o :=mgu({(lo,p&,11.9/Pp)},Y) andd € sus (V, 7 (X)) with v1(od) =y1p.
If 11q[Ph < ro,p&]0=r140, then the proof is finished due to

Wo/0=l1gkLql Pp < ro.mMo.po | =114l Pp  romE]0¢ =r140¢ =rigp1q=wi/q.

Otherwise we have( (I14[ Py < r0.5510,Co.580,1), (r1,90,C140,1), 1140, Pp) € CP(R) (due
to Claim 5); Cop,80¢ = Comlop, is fulfilled wrt. —,, 1 Cy1q0¢ = Cighq is fulfilled
W.rt. — . Since V8 < (no+1)+,(n+1). R, X is w-shallow confluent up td (by our induc-
tion hypothesis) due to our assumexshallow noisy weak parallel joinability (matching the
definition’sng to ourng+1 and itsny to ourny+1) we have wo/q=11gl1,q[ Py < ro,poHo,po ] =

*

11,90 P < 10,508 J0® 1,0 011 110515y © 127 190D =T 1gH1q=W1/.
Q.e.d. (“The second critical peak case”) Q.e.d. (Lemma A.5)

Letpe sus(V,7 (X)) be given byxp = {

Proof of Lemma A.6

Claim 0:R, X is w-shallow confluent up to.
Proof of Claim O:Directly by the assumed strong commutation, cf. the probtseclaims 2 and

3 of the proof of Lemma A.1. Q.e.d. (Claim 0)

. . * * *
Claim 1: If 00t O b 1) strongly commutes ovef—,,. ., then —, and
—4in, &€ commuting.
Proof of Claim 1: — o—,,, 0=, .., @nd—,,, are commuting by Lemma 3.3. Since

* * *

by Lemma 2.12 we have—,,., © 4,04 O uin1) & oy NOW —>w+nl_and
—4:n, @r€ commuting, too. Q.e.d. (Claim 1)

Fornp < n; < wwe are going to show by induction @3+, n; the following property:

* = * *
WO w+n0u co+n1W1 = WO coo co+n10 w+(np=1) © w+n0W1‘
u W1
w+nNg
\I/&)—i—no *\L&H—no
* = *
Wo o ¢}

(@]
W wHNg w+(np=1)
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Claim 2:Let d < w+w. If

Np = N1
A nNo+,N1=0d

No, N1 < .
Vo, m < Wos (,o+n0u (.o+n1W1 7
= \V/WO, Wl, u. * = * *
= Wo w® w+nlo w+(np 1) © w+n0W1
then
o =N
Vo, N1 < . A No+,N1 <o ,
* * *
= 0 am O e - 1) strongly commutes oVer—g, o

and R X is w-shallow confluent up td.
Proof of Claim 2:By induction ond in <. First we show the strong commutatlon Assume
No = N1 < wwith np+,,n; <&. By Lemma 3.3 it suffices to show that—> o—>

O%
wtng w+(n=1)
/! *
strongly commutes over— . wing: ASSUMe u <—w+n0u—> Uy WL -1y W2 (cf.
diagram below). By the strong commutation assumed for ommia, there' arenvg and

Wy with U’ wje— orng-y WO U By the above property there are soms, w

with  wo——_ Wz— wnloL)w(nl'—l)W].(Lanowl' Next we show that we can close the peak
V\/léwno_wl_éwn ., W2 according to V‘/1L>w+<nl;1>"‘/2£w+nov‘_’2 for somew,. In case of
ny=0 this is possible due to the-shallow confluence up ta given by Claim 0. Otherwise
we have np+,(n1—1) <np+,n1 =& and due to our induction hypothesis (saying thaXks w-

shallow confluent up to all’ < d) this is possible again. By Claim 0 again, we can close th& pea

V\/OL(M >Woi> ws according tow,—— V\/LM( ,Ws for somews. To close the whole
= *
diagram, we only have to show that we can close the pvgak—wno IWB— 1, O g1y W
* *
according tow;—— o—>w+nlo—> (1) wring-n Wa- IN case ofng=0 this is possible due

to the strong commutatlon assumed for our lemma. Otherwisdave np—~1<ng=<n; and
(np—1)+,n1 <np+,n1 <o, and then due to our induction hypothesis this is possibleaga

* *
u w n w+ng " wt(m=1) W2
=|W+nNg *\L&)Jrno *|W+Ng
* = * *
o Wo —— > Wg — >0 — L g Wi — e W)
*|w+(np~1) *\Ler(no'l) *|w+(np=-1)
g A S Y/ A A e S i
® W W wW+ng w+(np=1)

Finally we showw-shallow confluence up & Assumeng+,ni <& and wo«—_, OuL oy WL
Due to symmetry inng and n; we may assume no<n1 Above we have shown that

N O—>‘*’+”10H®+(n1‘*1} strongly commutes over—> . By Claim 1 we finally get

WO—1n, © e, W2 @S desired. Q.e.d. (Claim 2)
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Note that forng=0 our property follows from the strong commutation assuorptif our lemma.

The benefit of Claim 2 is twofold: First, it says that our lemisavalid if the above property
holds for allng < n; < w. Second, it strengthens the property when used as indugfjosthesis.
Thus (writingnj+1 instead ofn; since we may assume-0ng=<n;) it now suffices to show for
nNg < N1 < wthat

Wo— Uu—:

w+ng+1,pg 0)+n1+l,ﬁlwl
together with our induction hypotheses that

V0= (np+1)+,(m+1). R, X is w-shallow confluent up té

implies
* = * *
Wo w© w+n1+lo w+ng © w+n0+1W1‘
u — W
w+n+1,p1 1

J/w+n0+17 Po *J/ernoJrl

* = *
Wo o o o)

w w+np+1 w+ng

Now for eachi < 2 there are((l;,r;),CG) e R and y € sus(V,7 (X)) with u/pi=lig, w=
u[pi < ripy ], andCy fulfilled w.r.t. o
Claim 5:We may assumé&/i < 2. |; €7 (cons VgV, ).

Proof of Claim 5:In case oflj € 7 (consVsigWV,) we getu—_ w; by Lemma 13.2 (matching
both itsp andv to oury). In case of ¥=0" our property follows from the strong commutation
assumption of our lemma. In case o&'1” our property follows from Claim 0. Q.e.d. (Claim 5)

In case of po||p1 we have wi/pi_i=u[p; < riki]/p1—i=u/pi—i=l_iu—i and therefore
Wi —>w+ni+1u[5k — rk | k=<2], i.e. our proof is finished. Thus, according to whetlpgris a
prefix of p; or vice versa, we have the following two cases left:
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There is some) with pop;=p1 and p}#0:

We have two cases:

“The variable overlap case”:
There arexe V andp/, p” such thatg/p'=x A p'p’ = pi:

I W1/ P
oo w+n1+1, [Z_)'l 1/ Po
w+ng+1,0 |oV
\L(A)JrnoJrl
WO/ 50 Foko w+n+1 fov

Claim 6:We havexpp/p”=Il11 and may assumee Vgg.

Proof of Claim 6:We have xpo/p” =lopo/p'p’ =u/pop’ p” =u/pop; =u/p1=I1}u.

If xeV,, then xppe 7 (consV,.), then xpo/p’ €7 (consV,), then

l1py € 7 (cons V), and thenl; € 7 (consVsigWV,) which we may assume not to be the case
by Claim 5. Q.e.d. (Claim 6)

Claim 7:We can defin® € sus (V,7 (X)) by xv=xpo[p" < ripz] and vyeV\{x}. w=yo.
Then we havexpo—,,, 1 XV-
Proof of Claim 7:This follows directly from Claim 6. Q.e.d. (Claim 7)

Claim 8: |0V:W1/50.

Proof of Claim 8:By the left-linearity assumption of our lemma and claims & &we may
assume{ p” | lo/p”=x} = {p'}. Thus, by Claim 7 we getv;/po=u/po[ P} < r1fa]=

lo[p” < yio | lo/p"=yeV][p] < ripu]=

lo[p” < yio | lo/P"=yeV Ay#X][P < Xpo][p'p" « riu]=

lo[p” =W [lo/p"=yeV Ay#X][P — X[’ — ripu]]=

lo[p"” W | lo/p"=yeV]=lov. Q.e.d. (Claim 8)

Claim 9: Wo/Po—,.4,+110V-

Proof of Claim 9:By the right-linearity assumption of our lemma and claimsnd & we may
assume|{ p” | ro/p” =x}| =1. Thus by Claim 7 we getwp/ po=roto=

ro[P” —yho | ro/P" =yeVA\{X}[P" — Xt | ro/P" =X]— 0, 11

ro[ P ko | 1o/ P =yEVAX}H [P xv [ ro/p" =X] =

ro[ p” < w | ro/p” =yeV\{x}][p" < xv | ro/p" =x]=rov. Q.e.d. (Claim 9)
By claims 8 and 9 it now suffices to showov—,,. . ,rov, which again follows from
Lemma 13.8 (matching iteg to our n1+1 and itsn; to our ng) since RX is quasi-normal
and w-shallow confluent up to(ni1+1)+,no by our induction hypothesis, and sincéycV.

YHO—., 1YV Dy Claim 7. Q.e.d. (“The variable overlap case”)
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“The critical peak case”p; € 205 (lo) Alo/pPy € V:

loko wHni+1, Py w1/ Po
J/Mnﬁl,@ *\LMnOH
— LS = *
Wo/ Po " o ol o o o

Let§ € sus(V,V) be a bijection with&[v (((11,r1),C1))] N ¥ (((lo,r0),Co)) = 0.
Define Y :=&[(((I1,r1),C1))]U¥ (((lo,r0),Co))-
X  if xe rV(((Io,ro),Co))} (xeV)

x€ 1y else '
By 11&p=11&& "ty =u/p1=u/pop; =loko/ Py =lop/ Py = (lo/ P1)P
leto:=mgu{(11&,lo/Py)},Y) andd € sus (V,7 (X)) with v1 (o) =
If lo[py < ri&Jo=roo, then the proofis finished due to

Wo/ Po=roHo=ro0¢ =lo[ Py < r1&]od =lopo[ Py « ripa]=wi/po.
Otherwise we have((lo[p} < r1&],Ci&,1), (r0,Co,1), lo, 0, pj) € CAR) (due to Claim 5);
p;#0 (due the global case assumptiory§od = Cipy is fulfilled w.r.t. —aing; Coo =
Colo is fuffilled w.rt. —, . . SinceVd=< (n1+1)+,(no+1). R, Xis w-shallow confluent up to
(by our induction hypothesis), due to our assumedhallow noisy anti-closedness (match-
ing the definition’sng to our nj+1 and itsny to No+1) we have wi/po=Ilolo[ P} < rp]=

* =

IO[ Py < rla]o¢—)w+no+l <_"°+“1 w+nl+1o<_ r00¢ =rolo= WO/ Po.
Q.e.d. (“The critical peak case”) Q.e.d. (“There is somp) with pop;=p1 and p;#0")

Letpe sus(V,7 (X)) be given byxp = {
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There is somey, with p1py=po:

We have two cases:

“The second variable overlap case”:
There arexeV andp/, p” such that1/p'=x A p'p”’=pj:

[ W1/ P1
" S /P
w+ng+1, pfy rika
i/L«)—H’\o-l-l
Wo/ P1 [1v v
O/pl 1 ww+n+1 1

Claim 11a:We havexp /p” =lopo and may assumee Vsg.

Proof of Claim 11aWe havexpy/p’ =l1p/p'p” =u/p1p' P’ =u/p1py=Uu/po=Iolo.

If xeV,, then xpy €7 (consV,), then xw/p” €7 (consV,), then

lopo € 7 (cons V), and thenlpe 7 (consVsicwV,-) which we may assume not to be the case

by Claim 5. Q.e.d. (Claim 11a)
Claim 11b:We can define € sus(V,7 (X)) by xv=xp[p” < ropp] and vyeV\{x}.yv=
yhi. Then we havexpyy— .. . XV.

Proof of Claim 11bThis follows directly from Claim 11a. Q.e.d. (Claim 11b)

Claim 12: wp/p1=11v.

Proof of Claim 12:

By the left-linearity assumption of our lemma and claims 8 dia we may assum¢g p” |
l1/p"” =x} ={p'}. Thus, by Claim 11b we getvp/ p1=U/p1[ Py < roto] =

l1[p" —yp [11/p" =y€eV][Ph < roHo] =

[P~y [11/P"=yeV Ay#X][p" X |[P'p" < ropo] =

l1[p" =W [ l1/p"=yeV Ay#X][p' — X[ p" « ropo]]=

lhi[p” —w | l1/p"=yeV]=Iv. Q.e.d. (Claim 12)
Claim 13: 11Vt ny+1W1/P1.

Proof of Claim 13Since rips =ws /p1, this follows directly from Claim 11b. Q.e.d. (Claim 13)

By claims 12 and 13 using Corollary 2.14 it now suffices to sH@\A/—>w+nl+lr1v, which again
follows from Claim 11b, Lemma 13.8 (matching iig to ourng+1 and itsny to ourny), and our
induction hypothesis that,K is w-shallow confluent up tang+1)-+,ns.

Q.e.d. (“The second variable overlap case”)
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“The second critical peak casepy € 205 (11) A l1/py ¢ V:

l1 Lo W1/ p1
iw+no+17 P *J/wrnoﬂ
_ * = *
Wo/ P1 w ° w+np+1 © w-+ng ©

Let& € sus(V,V) be a bijection with&[7 (((lo,r0),Co))] N ¥ (((11,r1),C1)) = 0.
Define Y:=¢&[7 (((lo,r0),Co))]U ¥ (((I1,r1),C1)). f (ar.C)
. X if xe v (((l,r1),Cy

Letpe sus(V,7 (X)) be given byxp = {XE._llJO else } (xeV).
By lo&p=10&& tHo=U/Po=Uu/P1Pp=I1H1/Py=110/Pp= (11/Pp)P
leto :=mgu({(1o&,11/Pp)},Y) andp € sus (V, 7 (X)) with y1(5d) =v1p.
If 11][p; < ro&Jo=r10, then the proof s finished due to

Wo/p1=Il1pa[ P < roto] =I1[Pp < ro§|odp =r10¢ =ripg =wz/p1.
Otherwise we have((I1[pp < ro§],Co€, 1), (r1,C1,1), 11, 0, p) € CP(R) (due to Claim 5);
Cood = Colp is fulfilled w.r.t. —wing) C10¢ = Cqpy is fulfilled w.r.t. —ny Since
Vo< (np+1)+,(Mm+1). R, X is w-shallow confluent up td (by our induction hypothesis) due to
our assumed»shallow noisy strong joinability (matching the definitismg to ourng+1 and its

n; to OUI'ﬂ]_—{—l) we haVEWO/51:|1|,11[ 56 — I'ol.lo] :|1[ 56 — I‘oE]O'(I)LwO;ManOLMnl o
*

(_u)+n0+lr10-¢ =TI =W1/p1.
Q.e.d. (“The second critical peak case”) Q.e.d. (Lemma A.6)

Proof of Lemma A.7 For each literal in C we have to show thdtv is fulfilled w.r.t. —, ., -
Note that we already know thagi is fulfilled w.rt. —, .. . If 7(C)CV,, then for allx

in 7 (C) we have xue T (consV,) and then by Lemma 2.1, oyi Thus, by the
disjunctive assumption of our lemma we may assumge ny.

L = (So=51): We havesov——g ., SoH— SIU—"x i SLV fOT SOMEty. By

*

R,X.(AH*an

*
R,x,w+n1t0 TTRXwim R.X, N

our w-level confluence up to; and np<n;, we get somes with spv—— Rx e 10

*

and then (due tor—g, .0 STk x 010 SIV) VR x o, © ¢ SIv.

R,X,w+nq

L = (Defs): We know the existence dfe G 7 (cong with sve—g, .. Sy, t. By our
t. By

w-level confluence up ta; and np<ny, there is som¢’ with sv—— o
Lemma 2.10 we get’ € g 7 (cons.
L = (so#s1): There exist some,t; € G 7 (cong with Vi<2. SV(LR,X.mnOSp'L)

toiR,X,wnltl' Just like above we gef, t; € 6 7 (cong with Vi<2. sv——;

R.X,w+nl R,X,mnl

ti and
1

RX,04+n t;.

lti. Q.e.d. (LemmaA.7)

R X,0+n

/e
'l R X, w+nq
*

Finally th——qy on tof t1—px wun, t1 iMPliEes tof

RX,w+nq R, X,w+n
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Proof of Lemma A.8

Claim 0:R, X is w-shallow confluent up too.
Proof of Claim 0:Directly by the assumed strong commutation, cf. the probfeeclaims 2 and
3 of the proof of Lemma A.1. Q.e.d. (Claim 0)

Claim 1: If —_o——,,,0—, Strongly commutes over—
commuting.
Proof of Claim 1: —_o-t-,,,0—, and —— .. are commuting by Lemma 3.3. Since by

* * *
Corollary 2.14 and Lemma 2.12 we have—, , C —— oty n0—, C — ., NOW —

and—, ., are commuting, too. Q.e.d. (Claim 1)

i then— and —_ . are

Forn < wwe are going to show by induction erthe following property:

* * *
Wot—winU—=o W1 = Wo——,,0—Hun0—, 0« ,W1.

u t W
w+n
n XN
Wi * I *
(@] o] O
0 w 1 w

Claim 2: Let & < w. If ¥Yn=<d. Vwp,Wr,U. 0wt o T . , then
= WO—>wo—H—>w+no—>wO%w+nW1
vn=2d. ( s Ot min0——,, Strongly commutes over—, ), and RX is w-level confluent

up tod.
Proof of Claim 2: First we show the strong commutation. Assumgd. By Lemma 3.3

it suffices to show that —— o-t—,..0—, strongly commutes over—,_ . Assume

U e U~ Ut Wy —— Wo - (cf. diagram below). By the strong commutation assumed
for our lemma and Corollary 2.14, there avg andwy with u”—— Wy«<— Wo«t—,U. By the
above property there are somg, W) With Wo—— W3- 00— W< —,.,Wi1. By Claim 0

we can close the peakv)«—_ w;—— wy according to w;—— W< W, for somew,.

By Claim 0 again, we can close the peak,«— wo—— Wz according to Wy——s Ws«— W3

for somew;. To close the whole diagram, we only have to show that we casecthe peak
Wi~ W3~ 00— W AcCOrding toWs—t—,,,0——,, o «—— W, Which is possible due to the
strong commutation assumed for our lemma.

u * u I W * W
w Il 1 W 2
w+n
——w+n *\L&)—i—n X |W+n
* * *
W I o
w+n
X *\L&) * W
* * *
u’ W, Wy s o
w w w
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Flnally we showw-level confluence up t@. Assumeno,nl < w with max{ng,n;} <4 and

W0<— U—>w+n1W1. By Lemma 2.12 we getwp«— wi. Since

max{no,N;1 } <o, above we have shown that— O—H—>w+max{no nl}o—> strongly commutes over

- By Claim 1 we finally getwy—— wy as desired.
Q.e.d. (Claim 2)

—>
w+max{ng, nl} w+max{ng,nq }

w+max{ng,ny } * mmax{no,nl} w+max{ng,nq }

Note that forn=0 our property follows from«+—, C Lm (by Corollary 2.14) and Claim 0.

The benefit of Claim 2 is twofold: First, it says that our lemmavalid if the above property
holds for alln < w. Second, it strengthens the property when used as indutfjpothesis. Thus
(writing n+1 instead oh since we may assume-(n) it now suffices to show fon < w that
WO<_H_m+n+1,r|0U_H_>w+n+1,n1W1
together with our induction hypotheses that
R, X is w-level confluent up tm

implies
* * *
WO, 0 Hwin410—, © %w+n1+1wl‘
u 1 Wy
w+-n+1,Mq
n+1,Mg w+n+1

* 0 *

Wo o I o o

W.l.o.g. let the positions ofl; be maximal in the sense that for anye IN; and = C
20S (u)N(PN™) we do not haveu—+—n1,m;\(pp=Wi @anymore. Then for eadh< 2 andp € IT;
there are((li p,rip),Cip) €R and pjpc sus(V,7 (X)) with u/p=Ii pli p, ri,pki,p=Wi/Pp,
Gi pHip fulfilled w.r.t. — . Finally, for each < 2: wi=u[p « ri pHip | p€M;i].



143

Claim 5:We may assume/i <2. Vpell. | p ¢ 7 (consVsigwVe ).

Proof of Claim 5: Define = = {pel; | lipe7(consVsgwV,)} and u =
u[p<«ripkip| peMi\Zi]. If we have succeeded with our proof under the assumption of
Claim 5, then we have Shownu)—— Vo-t-n:10—— Vi, ..U for somevo, vi (cf.
diagram below). By Lemma 13.2 (matching bothitandv to our; p) we get Vi<2. Vpe=;.

i, pHi,p—,i,pki,p and thereforevi < 2. ui’ﬂﬂ—>w5iwi. Thus from vj«— u’lewl we get

w+ng+1
wy for somev; by w-shallow confluence up ta (cf. Claim 0). For the same

reason we can close the pealg—— uj—— Vo according towp—— Vy+—, Vo for somev,. By
the assumption of our lemma thatirx u.n 10—y, Strongly commutes over—,, from
Vo VO o iny 10— V1 ——, V2 We can finally concluder)—t—pp, .10——, 0 «—, V.

* *
V1= V2 ing 41

Il / 1l
u I Up I Wi
w+n+1,M\=1 W,=1
=—=w+n+1,Mp\=o *lw+n+1 *|w+n+1
ur * Vi I o * Vv * V:
0 o 0 Il © 1 © 2
w+n+1
=W, EO *\LQ) *lw
* *
Wo Vo —H—=>o o
w w
w+n+1

Q.e.d. (Claim 5)

Define the set of inner overlapping positions by
Q(Mo,My) := | J{ peNii| 3qeM;. 3 eN*. p=qd },
i<2
and the length of a term b (f(to, ...,tm-1)) := 1+ ¥ j<mA(tj).

Now we start a second level of induction on z Au/p) in <.
p'eQ(Mo,M1)

Define the set of top positions by
Q.= { pellouly ‘ —3gellguUlly. 3q’eN+. pZQd }
Since the prefix ordering is wellfounded we haveyi<2.Vpell;. dge®. 3¢ eN*. p=
qq. Then Vi<2 wi=wi[q—WwW/q|gqe@]=u[p«—riplip|pei][q—w/q|qeO]=
u[g < w;/q| qe®]. Thus, it now suffices to show for ajc ©
WO/qLQoO_H_)anHOL)w o Lwn+lwl/q
because then we have
Wo=U[Q — W0/ | € O] =, 0-t4n110—, 0 . U[0 < W1 /0 | EO] =Wy,

Therefore we are left with the following two cases &pe O:
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q¢M1: Then geMg. DefineN’ :={ p| qpeM; }. We have two cases:

“The variable overlap (if any) case¥pen|nNzos(log). log/pPeV:

lo,qHo.q f wi/q
w+n+1,M}
(x)+n+1,0 |07qv
J/wrn+1
Wo/ 0 === logHo i roqv
w+n+1

Define a functiol” on V by xeV): T'(x):={(p,p") | log/P'=x A p'p’ €N} }.
Claim 7:There is some € s u3(V,7 (X)) with

Vxe V. < XHO.q o 01XV ) )
A VP edom(T(x)). xv =Xpog[ P’ — r1qppbaqup | (P, P") €M (X)]
Proof of Claim 7:

In case of dorfl (x))=0 we define xv := xpoq. If there is somep’ such that dorfT (x)) =
{p'} we definexv =X q[p” — rgqpptrgpp’ | (P, P") €M (X)]. Thisis appropriate since due
to V(p', p") €T (X). Xpog/ P’ =logHo.a/ PP =u/ap'p’ =l1gpp b gpp We have

Xpo.q=XHog[ P — l1gppHagpp | (P, ") ET(X) ] +0ini

XHoql P" < rigpprbagppr | (P, P") €T (X)]=xv.
Finally, in case of [dom(I"(x))| >~ 1, loq is not linear inx. By the conditions of our lemma and

Claim 5 this impliesxe V.. Since there is som@’, p”) € I'(x) with xpo,q/P" =1 qup/b1,qpp
this implies |1 qypr . gqppr €7 (cONsVe) and thenly gy €7 (consVsigwV,) which contra-
dicts Claim 5. Q.e.d. (Claim 7)

Claim 8: lpqv=w1/Q.
Proof of Claim 8:

By Claim 7 we getwi/q=u/q[p'p” « I qupHrgpp | IXEV. (P, p") €M (X)]=

lo,g[P — Xtoq | log/P =xeV][P'P — i gpptogup | XEV. (P, p") el (X)]=

log[ P < Xtog[P"  rLgppbagep | (P, P") €T (X)] |log/P=xeV]=

logl P <XV |log/P=xeV]=lggqv. Q.e.d. (Claim 8)

Claim 9: Wo/g—n1l0,qV-
Proof of Claim 9:Since wo/q=roqgHo,q, this follows directly from Claim 7.  Q.e.d. (Claim 9)

By claims 8 and 9 it now suffices to showyqv—,, ..,f0qv, Which again follows from
Lemma A.7 (matching it$1p to our n+1 and itsny; to our n) since RX is w-level confluent
up ton by our induction hypothesis and sinc&eV. prqL xv by Claim 7 and Corol-
lary 2.14.

Q.e.d. (“The variable overlap (if any) case”)

w+n+1
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“The critical peak case”: There is sonpes M,N20s (lpq) with lo q/pE V:

lo.gHoq u i w1/q
@l P w+n+1,M7\{p}
=—w+n+1 *|W+n+1
* *
w+n+1,0 V1 V3 H o \/1
@ wnt1 @
*|W *\Lu) *|(W
* * I *
Wo/q o \2) " Vg i ¢} " o
w+n+l
Claim 10: p#0.
Proof of Claim 10:If p=0, then 0<, then gy, which contradicts our global case
assumption. Q.e.d. (Claim 10)

Let& € sus(V,V) be a bijection with&[® (((11qp,'1.qp)sCap))] N (((log:Toq):Co.q)) = 0.
Define Yi:EW((('Lqpvrl,qp)vcl,qp))]U7/(((|07q>r07q)_]:C0,q))-(((I o)
. _ JXMog ITxe v 0,g-0,9),Co,q

Letpe sus(V,7 (X)) be given byxp = {x&lumpelse } (xeV).
BY I1,qp€P=11.qp&& tH1gp=U/ap=logHoq/P=l0gP/P=(loq/P)P
let o :=mgu({(l1qp&,loq/P)},Y) andd € sus(V,7 (X)) with y1(ad) =v1p.
Defineu’ := lggHo,q[ P < r1,gpkigpl- We get

U=u/d[p" < lyqpbagp | P €MN{PH[P — rigphaap] Hwmniang o

u/q[p’ « rigptigp | P'E€Ni]=wi/q.

If loglp < rigp&lo=roq0, thenthe proofis finished due to

Wo/d=rogHo,qg="r0,q0¢ =log[P < r1,qp& o = U/_H_>w+n+1,n'l\{p}Wl/Q-
Otherwise we have((log[ P« r1,qp&]0,C1qp€0,1), (r0,q0,Co0,q0,1), l0.q0, P) € CPR) (due
to Claim 5); p#0 (due to Claim 10); Cyqp€0¢ = CigpHiqp is fulfilled w.rt. —  ;
Co,q0¢ = Coglog is fulfilled w.rt. — . . Since RX is w-level confluent up ton (by
our induction hypothesis) andrshallow confluent up tow (by Claim 0) due to our as-
sumedw-level parallel closedness (matching the definition’so our n+1) we have U =

* *
lo.g[ P r1,qp€ |00 i V1— Vo— F0,q0P =TogHog=Wo/q for somevy, vo. We then

have Vet nn U +pmnr (mW1/q  for somen”. By Z AU /P =
p'eQ(n”,N\{p})
> AU/p") = > Au/gp’) <
p’eni\{p} p’eni\{p}
> Au/ap’) = 5 AMu/p) = S Au/p) =Y Au/p), dueto our
p’eny p'eqny p'eQ({q}.M1) p'eQ(Mo,My)

second induction level we get SOMg V3 With Vi—— Va3—t.n10—— V)0 0., W1/0. By
Claim 0 we can close the peak\ataccording toszwv4<LQ,V3 for somev,. Finally by the
assumption of our lemma th&m—mwnﬁloi@m strongly commutes over*—>w, the peak at

v3 can be closed according 4+, 10—, 0« Vj.
Q.e.d. (“The critical peak case”) Q.e.d. (‘ggMNy”)
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qeMy: DefineNg :={ p| gpeMp }. We have two cases:

“The second variable overlap (if any) cas&peMyN2os (11q). l1,9/PEV:

l1.abe.a W+n+1,0 wi/q
::w+n+1l'l6 r]_7q|J.]_7q
%Mnﬂ
Wo/q =——= 1,9V PR rqv

Define a functiol” on V by xeV): T'(x):={ (p,p") | lig/P'=x A p'p’" €M} }.
Claim 11:There is some € s u3(V,7 (X)) with

vx € V XV t—uint1XHa g )
“\ A VP edom(T(X)). Xpag[ P” < ToqpprHogpp | (P, P") ET(X)]=xv
Proof of Claim 11:
In case of dorfl(x))=0 we define xv := Xy q. If there is somep’ such that dorfl (x)) =
{p'} we definexv :=xpy [ P < rogqppHoqpp’ | (P, P") €T (X)]. Thisis appropriate since due
to V(p', p") €T (X). Xpaq/ P =l1grq/ PP =U/AP'P" =loqpp'Hoqpp’ We have
Xihq =Xk g[ P” + logppHogpp’ | (P, P") €T (X) ] =0inia
Xpa,q[ P < rogpprHogpp | (P, P") €T (X)]=xv.
Finally, in case of [dom(I"(x))| > 1, |1 q is not linear inx. By the conditions of our lemma and
Claim 5 this impliesxe V.. Since there is som@’, p”) € I'(x) with Xpy q/P" =logpp’Ho.qpp’
this implies lg qypHoqpp €7 (cONsV,) and thenlg gy €7 (CONsVsigWV,) which contra-
dicts Claim 5. Q.e.d. (Claim 11)

Claim 12: wo/q=I14v.

Proof of Claim 12:

By Claim 11 we getwo/q=u/q[p'p" < rogppHogpp’ | IXEV. (P, p") el (x)]=

l1g[ P Xbg [ 11,9/ P =XEV][P'P"  rogppHogpp | IXEV. (P D) Er()]=

l1.9[ P’ Xbeq[P” — rogppHogpp | (P, P") ET(X)] [ l19/P' =XEV]=

l19[P' =XV [ l1,q/P =XEV]=I1qV. Q.e.d. (Claim 12)
Claim 13: rq qV<t—un-1W1/0.

Proof of Claim 13Sincery gh1,q=W1/q, this follows directly from Claim 11. Q.e.d. (Claim 13)

By claims 12 and 13 using Corollary 2.14 it now suffices to sHoyw— ... .r1qv, which again
follows from Lemma A.7 (matching itgg to ourn+1 and itsn; to ourn) since RX is w-level
confluent up tan by our induction hypothesis and sincée V. xplqu xv by Claim 11
and Corollary 2.14.

Q.e.d. (“The second variable overlap (if any) case”)

wn+1
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“The second critical peak case”: There is some MyN20s (11,q) with 114/ p&V:

l1.qH1q w+n+1,0 w1/q
wt+n+1,p *|o4-n+1
/ I v - v
u 1 1 w 2
wHn+1
==w+n+1,M\{p} *|w+n+1 *|wtn+1
* * *
W o 1
0/ " I ° o Vi " ©
w+n+1

Let € sus(V,V) be abijection with&[7 (((lo.gp,fo,qp),Co,qp))] N ¥ (((11,9,r1,9),C1q)) =O.
Define Y = &[¥ (((lo.gp:ro.ap):Co.ap))]U ¥ (1.0, 1.0): Cra))-
X§ “Ho,qp else
BY lo.qpéP=lo.qp&& tHo.gp=U/qp=l1qt1q/P=I140/P= (lLa/P)P
leto := mgu({(lo,gp&,l1,q/P)},Y) andd € sus(V,7 (X)) with y1(ap) =v1p.
Defineu’ := 11 qp1,4[ P < ro,qpHo,gp)- We get

Wo/q=u/q[p’ < roqpHoqp | p/6n6]“H_w+n+lﬂ6\{p}

u/q[p —logpHogp | P EM\{P} [P rogpHogp] =V
If l1g[p < rogp&lo=ri1q0, thenthe proofis finished due to
W0/t nimp (U =11,0[ P < F0,qp& |0d =T1,q00 =r1 gl g=W1/0.

Otherwise we have((l1q[p < roqp]0,Coqp€0,1), (r1,q0,C140,1),1140, p) € CAR) (due
to Claim 5); Coqp0¢ = Coqploqp is fulfilled w.rt. — . ; C1q0¢ = Cigl1q is fulfilled
w.rt. — ... Since RX is w-level confluent up tan (by our induction hypothesis) ana-
shallow confluent up too (by Claim 0) due to our assumegtlevel parallel joinability (match-
ing the definition’sn to our n+1) we have U =l1q[p < roqp |00 —+ini1V1—— Vo4 mia
r1,q0¢=riql1q=w1/q for somevy, vo. We then havewo/qeﬁ—mm,%\{p}u’—H—mnHﬂuvl for

Letpe sus(V,7 (X)) be given byxp = {

somel”. Since > AU/ =2 S MU/ = Y Au/ap) <
p’eQ(Mp\{p},N") preMo\{p} P eMo\{p}

> Au/ap’) = 3 Au/p) = Y Au/p) =Y Au/p) due to our

p'eMy p'eqy p'eQ(Mo,{a}) p'eQ(Mo,My)

second induction level we get SOvigwith Wo/g—— 0 —tpin10——, V). V1. Finally the

peak atv; can be closed according ¢ ——_ o «—,...,v> by Claim 0.
Q.e.d. (“The second critical peak case”) Q.e.d. (Lemma A.8)

wHn+1
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Proof of Lemma A.9

Claim 0:R, X is w-shallow confluent up too.
Proof of Claim O:Directly by the assumed strong commutation, cf. the probfeeclaims 2 and
3 of the proof of Lemma A.1. Q.e.d. (Claim 0)

Claim 1: If —_o—t—,,,0—, Strongly commutes over—
commuting.
Proof of Claim 1: ——_o——,,,0—,, and ——

then— . and — . are

w+n? w+n

w+n

are commuting by Lemma 3.3. Since by

* *
Corollary 2.14 and Lemma 2.12 we have—  C — ot n0—, C —¢., NOW ~n
and—_,, are commuting, too. Q.e.d. (Claim 1)
Forn < wwe are going to show by induction erthe following property:
Wo— nUt—0mW1 - = Woiqno —+H1n© Lw o ‘Lmnwl-
u f Wy
w+n
w+n *\L&H—n
Wi * I *
o P o i o P o
w+n
. Wo<— U+ n W
Claim2: Let d < w. If VYn=d. Vwp,wq,u. 0 o o o *1 x , then
= Wo—,0H=unO0—, © %mnwl

vn=2d. ( s Ot min0——,, Strongly commutes over -, ), and RX is w-level confluent

up tod.
Proof of Claim 2: First we show the strong commutation. Assum&d. By Lemma 3.3

it suffices to show that ——_o-t—,..0—, strongly commutes over—_ . Assume
U e U = Ut W1 — W (cf. diagram below). By the strong commutation assumed
for our lemma, there anep andw; with u” waoéwwo;wnu. By the above property there

. * k k .
are somews, Wy With Wo— W3—t—,.n0— Wi <—,.,W1. By Claim 0 we can close the peak
Wy, nW1—, W according to w;— Wo«—,. W> for somew,. By Claim 0 again, we

* * . * *

can close the peakv——, wo—, W3 according to wy— Ws——, ws for somew;. To close
the whole diagram, we only have to show that we can close thale P&« — W3t n0——, W,

according tow,——_ o—t—,.,0—, 0 —— W, Which is possible since it is assumed for our lemma
(below the strong commutation assumption).

/ * %

u u [
" I W1 o W2
w+n
=|W+n *\L&)—H’] *|w+n
* * *
I 5
w+n
* W *\Lﬂ) X[
LS * * *
U// V\/6 V\/3 o H @) 0]
W (V) w w
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FlnaIIy we showw-level confluence up ta. Assumeno,nl < w with max{np,n;} <& and

W0<— U—> wi. By Lemma 2.12 we getwo«—— wi. Since

—>
w+ng w+max{ng, “1} w+max{ng,nq }

max{no, nl} <&, above we have shown that— o—H—>w+max{n0 nl}o—> strongly commutes over

- By Claim 1 we finally getwp— w; as desired.
Q.e.d. (Claim 2)

b
w+max{ng,ny } w+max{ng,nq } w+max{ng,ny }

Note that forn=0 our property follows from Corollary 2.14 and Claim O.

The benefit of Claim 2 is twofold: First, it says that our lemmeavalid if the above property
holds for alln < w. Second, it strengthens the property when used as indueyjpothesis. Thus
(writing n+1 instead oh since we may assume-(n) it now suffices to show fon < w that

W0<—w+n+17ﬁo U_H_)w+n+1,l'l 1W1
together with our induction hypotheses that

R, X is w-level confluent up tom

implies
* * *
WO—>mO_H_>m+n+1O_)w o <_w+n+1W1'
u i !
w+ni+1,My

wHn+1, po w+n+1

* *
Wo o - o o
W W
w+n+1

There are((lo,py,0,p5),Co,p0) € R @andpo,p, € S UB(V, 7 (X)) with u/p=Io,pHo,pe, Co,poHo.po
fulfilled w.r.t. — .., and Wo=u[ p < ro Mo, p, |-

W.l.o.g. let the positions of1; be maximal in the sense that for anyec Ny and = C
20s (W)N(PNT) we do not haveu——q .1 n,\(ppu=W1 anymore. Then for each € My there
are ((I4p,ry,p),Crp) €R and ppe sus(V,7 (X)) with u/p=Iiplrp, r1pHs,p=W1/p,
Cy.pHy p fulfilled w.r.t. —, ... Finally, wy=u[p« rqppsp | pey].
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Claim 5:

We may assumeyg p, €7 (consVsigV,) and Vpelly. 1 p &7 (consVsigwV, ).

Proof of Claim 5:In case of lgp, €7 (consVsigwV,) we get wo——, u by Lemma 13.2
(matching both itsp and v to our g p,) and then our property follows from the assump-
tion of our lemma (below the strong commutation assumptioRpr the second restriction
define=1 := { peM1 | Iy peT(consVsicwV,) } andu] = u[p«riplip| peMi\Z1]. If
we have succeeded with our proof under the assumption omChithen we have shown
WO——,0—H %410 —— V1 ni, Uj fOr SOMevy (cf. diagram below). By Lemma 13.2 (match-
ing both itspandv to ourpy p) we getVpe =1. 1 ppls p—,F'1,pH1,p and thEl’EfOfng_—H—@_ng]_.
Thus from v1<iw+r10+lu’li>wwl we get vli>mv2<L wy for somev, by w-shallow con-
fluence up taw (cf. Claim 0).

w+ng+1

1l / Il
u f Uy i W1
w+n+1,M\=1 w, =1
w+n+1, po *|wtn+1 *|Hn+1
Wi * I i V i Vi
(@] O
0 A L w 1 W 2

Q.e.d. (Claim 5)

Now we start a second level of induction dfly| in <.

Define the set of top positions by

©:={ pe{po}Uy | ~3a€{po}UMy. 3 €N". p=qq }.
Since the prefix ordering is wellfounded we have {po}UM;. 3g€©. 3q eN*. p=qq. It
now suffices to show for alf € ©

WO,/ Q3 0110 — ) © (g W1 /0]

because then we havewg=wp[q« Wp/q| qeO]=u[Po « ro pHo,p ][4 — Wo/0 | q€O]=
(g Wo/Q | € O] —,0H01ns10—, 0 0. U[d — W1 /0 | gEO] =
u[pryphyp | PEM][q—w1/q|qeO]=wi[q—wi/q|qeO]=wi.
Therefore we are left with the following two cases tpe O:
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q¢ M1 Then g=po. DefineN’ :={ p| qpe; }. We have two cases:

“The variable overlap (if any) case¥pe|N?os(log). log/PEV:

lo,gHo,q I w1/q
w+n+1,M%
(0+n+1,0 |o’qV
lwﬂ
Wo/q ro,qHo,q f ro,qV
wintl

Define a functiol” on V by xeV): T'(x):={ (p/,p") | log/p'=x A p'p" €N} }.
Claim 7: There is some € s u3(V,7 (X)) with

Vxe V. ( XH0.q7H %o cnia XV ) .
A VP edom(T(x)). xv =Xpog[P” «— rgppHigpp’ | (P, P") €M (X)]
Proof of Claim 7:

In case of dorfl (x))=0 we define xv := xpoq. If there is somey’ such that dorfl (x)) =
{p'} we definexv =Xy q[p” « rigqpptrgpp | (F,P”) €M (X)]. Thisis appropriate since due
to V(p', p") €T (X). Xpog/ P’ =logho.a/P'P"=u/ap P’ =l1gpptigpp We have

XHo.q=XVog[ P" —l1gpptaapp | (P P") €T (X) | +uinis

XHog[ P" < rigpprbagpp | (P, P") €T (X)]=xv.
Finally, in case of [dom(I"(x))| > 1, loq is not linear inx. By the conditions of our lemma and

Claim 5 this impliesxe V.. Since there is som@’, p”) € I'(x) with xpo,q/p" =1 qup'b1,qpp’
this implies |1 qyp/ 1 gqppr €7 (cONsVe) and thenly gy €7 (consVsigwV,) which contra-
dicts Claim 5. Q.e.d. (Claim 7)

Claim 8: lpqv=w1/Q.
Proof of Claim 8:

By Claim 7 we getw; /q=u/q[p'p" < r1qpptogpp | IXEV. (P, p") €T (X)]=

log[P < Xbog [ log/ P =XeV][P'P" —r1qppbigpp | IXEV. (P, p") €T (X)]=

log[ P’ — Xbog[ P I gppHaqpp | (P, P")ET(X)] [log/P'=XEV]=

loglp < xv |log/P=xeV]=lggqV. Q.e.d. (Claim 8)

Claim 9: Wo/g—n10,qV-
Proof of Claim 9:Since Wo/q=rogHoq, this follows directly from Claim7.  Q.e.d. (Claim 9)

By claims 8 and 9 it now suffices to showqv—,, ..,f0oqv, Which again follows from
Lemma A.7 (matching it$1p to our n+1 and itsny to our n) since RX is w-level confluent
up ton by our induction hypothesis and sinc&e V. pr,qL xv by Claim 7 and Corol-
lary 2.14.

Q.e.d. (“The variable overlap (if any) case”)

w+n+1
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“The critical peak case”: There is sorpe= M,N20S (loq) With lo g/ P& V:

lo.gHo,q u f w1/q
@l p w+n+1,M7\{p}
=|w+n+1 *|wn+1
* k
|
wn+1,0 Vi = V3 | o = Vi
w+n+1
X *J/w *|W
Wo/ WS - V. - o | o - o
0/9 o 2 © 4 o I oo
w+n+1
Claim 10: p#0.
Proof of Claim 10:If p=0, then 0<, then geMy, which contradicts our global case
assumption. Q.e.d. (Claim 10)

Let& € sus(V,V) be abijection with&[7 (((11,gp,r1,9p),C1,qp))] N ¥ (((lo,g,r0,9),Co,q)) = O
Define Y::E[r’/(((ll,qp,rl,qp)>Cl7qp))]U‘V(((lo,q;rO,q)_%CO,q))-(((l oo
. X[o, T xe v (((log,roq),Co,
Letp e sus(V,T (X)) be given byxp = {XETULqp olse BT84/ =09 } (XeV).
By |1,qu.p:|1,quE_1U1,qp:U/qp:|O,q|JO,q/p:|O,qp/p:(IO,q/p)p
leto := mgu({(l1,qpé,log/P)},Y) andd € sus(V,7 (X)) with y1(adp)=vy1p.
Defineu := qupoq[p<— r1qpHigpl- We get
U=u/q[p" — ligptigp | P EMN\{PHIP < rLaptiap] winiiny ip)
u/a[p’ —rigpbogp | P'EMi]=wi/q
If log[p < rigp€lo=roqo, then the proof is finished due to
Wo/0=r0,gH0qg="0,q09 =log[ P < '1,qp& |00 =~ 101 (5 W1/ -
Otherwise we have((log[ P« r1,qp&]0,C1qp€0,1), (r0,q0,Co,q0,1),loq0, p) € CAR) (due
to Claim 5); p#0 (due to Claim 10); Ciqp€0¢ = CigpHigp is fulfilled w.r.t.
— o Coq0d = Coglog Is fulfilled w.rt. — . Since RX is w-level confluent up
to n (by our induction hypothesis) ana-shallow confluent up taw (by Claim 0) due to
our assumedxy-level closedness (matching the definitiomisto our n+1) we have U=
qu[p<— rlqu]0¢—>m+n+lv1—> v2<— ro,q09 =rogko,q=Wo/d for somevy, vo. We then have
Vie—, g U —H—>w+n+1|-|/\{p}W1/q By [Mi\{p}| < |MN} ] =< |M4|, due to our second induction
level we get some; with V1—>wO—H—>w+n+lO—>wV,1 winiaW1/0. By Claim O we can close
the peak at/; according to V2L>u,v4<Lu,V3 for somev,. Finally by the assumption of our
lemma (below the strong commutation assumption) the peak ean be closed according to
V4L>wo—H—>w+no—> 0 V]

w+n

Q.e.d. (“The critical peak case”) Q.e.d. (¢ My")
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qeMy: If there is nopy with qpy=po, then the proof is finished due tavg/q=u/q=

l1,gM1,g——4.ni1 " LgHLg=W1/0. Otherwise, we can defing, by qpy=po. We have two cases:

“The second variable overlap case”:
There arxe V andp/, p” such thaty q/p'=x A p'p’ = pp:

N1, r1,9M1,q
{v:wﬂ
Wo/Q=—=I1qV e riqv

Claim 11a:We havexpy q/p” =lo gHo,p, @and may assumee Vsic.

Proof of Claim 11aWe have Xy q/p” =l1gl1q/P' P’ =u/qp p” =u/qpy=u/po=lo g Ho,po- If

XeVe, then xpg g€ 7 (consVe ), then xpy q/p” €7 (consV,), then lg plo,p, €7 (CONSV,),

and thenlg 5, € 7 (cons VsV ) which we may assume not to be the case by Claim 5.
Q.e.d. (Claim 11a)

Claim 11b:We can defin® € sus(V, 7 (X)) by xv=Xp1q[p” < ro,pHo,p] and vyeV\{x}.
YW =Yl q. Thenwe havexpy q—y, ,.1XV.
Proof of Claim 11bThis follows directly from Claim 11a. Q.e.d. (Claim 11b)
Claim 12: wo/q=I14Vv.
Proof of Claim 12:By the left-linearity assumption of our lemma, Claim 5, ani@ 1la
we may assume { p” | liq/p”=x} = {p'}. Thus, by Claim 11b we getwy/q=
u/q[ F_),O — rO,FTo”O,FTo] =
l1g[P” < Yioq | l1a/P” =yEV][ Py < romHop] =
l1g[P" —Yhag | lra/P"=YEV AYF#X][P —Xpg][P'P" — ro,mHo.p0] =
l1g[P" — W | l1,q/P"=yEV Ny#X][P" Xt g[ P < To.5Ho.p0] ] =
lig[p" =W lLg/P"=yeV]=l1qv. Q.e.d. (Claim 12)
Claim 13: rq gVt in1W1/0.
Proof of Claim 13:Since ry gl1 g=W1/0, this follows directly from Claim 11b.

Q.e.d. (Claim 13)

By claims 12 and 13 using Corollary 2.14 it now suffices to sheyw — .. ,r1qv, Which again
follows from Lemma A.7 (matching itgg to ourn+1 and itsn; to ourn) since RX is w-level

confluent up ta by our induction hypothesis and sinaG&xec V. xplqu xv by Claim 11b.

Q.e.d. (“The second variable overlap case”)

wn+1
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“The second critical peak casefyc 205 (I1,q) A l1,q/Pp & V:

| W
1qH1q win+1,0 1/9
J/wnﬂ, P *\L&)—i—ﬂ-Fl
* *
wo/q > o H o = o
wHn+1

Let_E e sus(V,V) be a bijection with&[ (((lo,pyr0.p0),C0,p5))] NV (((11,g:71,9),C1q)) = 0.
Define Y =&+ (((lo,5:"0,),Co.))] U (((I10.714),C1q))-
Xuﬂ ) if xe v (((I19,1.0),Cra)) (xeV).

X§ ™ Mo, p, €lse
BY lo,5&P=10,3&& ™ Ho,5 =U/Po=U/APp=1qH10/ Po=114P/ Po=(11.a/ Pp)P
let o :=mgu({(lo,p&,11.9/Pp)},Y) andd € sus (V, 7 (X)) with v1(od) =y1p.
If 11q[Ph < ro,p&]0=r140, then the proof is finished due to

Wo/q=11,qM1,a[ P — Fo.poHo.po] =110l P < F0.p0&]0® =r1q0® =r1gtag=Wa/q.
Otherwise we have( (I1q[ Py < r0.5510,Co.580,1), (r1,90,C140,1), 1190, Pp) € CP(R) (due
to Claim 5); Cop,é0¢ = Copto,p, Is fulfilled w.rt. — 5 Cyq0¢ = Ciglrg Is ful-
filled w.r.t. — . . Since RX is w-level confluent up ta (by our induction hypothesis) and
w-shallow confluent up tav (by Claim 0) due to our assumegd-level weak parallel join-
ability (matching the definition’s1 to our n4+-1) we have wo/q=I1qM1.q[ By < ro,poHo,p0 | =
11,90 Ph < 10,508 |00 ——, 010110 —4 0 ¢ 112 F1,g0D =T1,gH1,g=W1 /0.
Q.e.d. (“The second critical peak case”) Q.e.d. (Lemma A.9)

Letpe sus(V,7 (X)) be given byxp = {
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Proof of Lemma A.10

Claim 0:R, X is w-shallow confluent up too.
Proof of Claim 0:Directly by the assumed strong commutation, cf. the probfeeclaims 2 and
3 of the proof of Lemma A.1. Q.e.d. (Claim 0)

,o——, strongly commutes over—

o then— . is confluent.
Proof of Claim 1: —»_o—_ o——_ and—_  are commuting by Lemma 3.3. Since by

Lemma 2.12 we have—,,, C ——_o—,. wens NOW—_and— . are com-
muting, too. Q.e.d. (Claim 1)

Claim 1:1f = o—s,,

* *
no Q)g

Forn < wwe are going to show by induction erthe following property:

* = * *
WO inU——0:aW1 = WO——,0 .00, O n W1

W
u w
w+n 1
\I/(x)—i-n *\L&)—i—n
* = *
Wo o o o
w w+n w
. Wos—,,, U— . W1
Claim2: Let d < w. If vn=3d.VYwg, Wy, U. L o ek “ ,
= Wo w® w+no w© w+nW1

thenvn=<s. ( s 0——n0—,, Strongly commutes over—, ), and RX is w-level con-

fluent up tod.

Proof of Claim 2: First we show the strong commutation. Assumgd. By Lemma 3.3

it suffices to show that ——_o—s, o—, strongly commutes over—,_, . Assume

U e U = U—,, W1 — Wy (cf. diagram below). By the strong commutation assumed
for our lemma, there anep andwj with u”’——_wp+«— Wo+—,,,U. By the above property there
are somaws, W, with Wo——_Ws—_, o—— Wj«—_ w;. By Claim 0 we can close the peak
W), Wi —— Wz according to wj—— W, — . w, for somew,. By Claim 0 again, we
can close the peakvy——, wo——,Ws according tow,—— ws«— w3 for somew,. To close
the whole diagram, we only have to show that we can close thle pg«— Ws—,, ,0—— W)

according to wy—_, o——_ o+ — W,, Which is possible due to the strong commutation as-
sumed for our lemma or due to Claim O.

’ * *

u u W W
® w+n 1 N 2
=|w+n *J/wrn *|w+n
* = * *
n W W o V\/ V\/
wr 0 w 3 4N o 1 w 2
*|w *\Lm *|w
* * = *
¥ W " o o
A A w+n W
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Flnally we showw-level confluence up t@. Assumeno,nl < w with max{ng,n;} <4 and

W0<— U—>w+nlW1. By Lemma 2.12 we getwp«— wi. Since

max{no,n1} <8, above we have shown that—>wo—> oLw strongly commutes

w+max{ng,ny }
w; as desired.
Q.e.d. (Claim 2)

—>
w+max{ng,ny } w+max{ng,ny }

*

. . *
By Claim 1 we finally getWo—,, .00 1} © o maxing n1}

*
over w+max{ng,ny } *

Note that forn=0 our property follows from Claim 0.

The benefit of Claim 2 is twofold: First, it says that our lemmavalid if the above property
holds for alln < w. Second, it strengthens the property when used as indutyiesthesis. Thus
(writing n+1 instead oh since we may assume-<n) it now suffices to show fon < w that

WO w+n+1, 50 u Wl

w+n+1,p1
together with our induction hypotheses that

R, X is w-level confluent up tm

implies
* = * *
WO wo w+n+lo w o w+n+1W1'
u = Wy
w+n+1, py

lw+n+1, Po *J/wrnﬂ
* = *

Wo o o o
w w+n+1 w

Now for eachi < 2 there are((l;,r;),G) e R and y € sus(V,7 (X)) with u/pi=lipi, w=
ulpi < rifi], andGy fulfilled w.r.t. —

Claim 5:We may assumé&’i < 2. |; ¢ 7 (consVsigbV, ).

Proof of Claim 5:In case oflj € 7 (consVsigWV,) we getu—_ w; by Lemma 13.2 (matching
both itspandv to oury). In case of f=0" our property follows from the strong commutation
assumption of our lemma. In case 0&1” our property follows from Claim 0. Q.e.d. (Claim 5)

In case of po||p1 we have w/p1_i=u[pi < ril]/p1-i=u/p1-i=l1-iu—i and therefore
Wi— 01Ul Pk kbl | K<2], i.e. our proof is finished. Thus, according to whetlpgris a
prefix of p; or vice versa, we have the following two cases left:
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There is some) with pop;=p1 and p}#0:

We have two cases:

“The variable overlap case”:
There arexe V andp/, p” such thatg/p'=x A p'p’ = pi:

[ W1/ P
oHo w+n+1, p) 1/ Po
wn+1,0 lov
Wl
Wo/ Po Foko winil fov

Claim 6:We havexpp/p”=Il11 and may assumee Vgg.

Proof of Claim 6:We have xpo/p” =lopo/p'p’ =u/pop’ p” =u/pop; =u/p1=I1}u.

If xeV,, then xppe 7 (consV,.), then xpo/p’ €7 (consV,), then

l1py € 7 (cons V), and thenl; € 7 (consVsigWV,) which we may assume not to be the case
by Claim 5. Q.e.d. (Claim 6)

Claim 7:We can defin® € sus (V,7 (X)) by xv=xpo[p" < ripz] and vyeV\{x}. w=yo.

Then we havexpo— .., XV.

Proof of Claim 7:This follows directly from Claim 6. Q.e.d. (Claim 7)

Claim 8: |0V:W1/50.

Proof of Claim 8:By the left-linearity assumption of our lemma and claims & &we may
assume{ p” | lo/p”=x} = {p'}. Thus, by Claim 7 we getv;/po=u/po[ P} < r1fa]=

lo[p” < yio | lo/p"=yeV][p] < ripu]=

lo[p” < yio | lo/P"=yeV Ay#X][P < Xpo][p'p" « riu]=

lo[p” =W [lo/p"=yeV Ay#X][P — X[’ — ripu]]=

lo[p"” W | lo/p"=yeV]=lov. Q.e.d. (Claim 8)

Claim 9: Wo/Po—..,f0V-

Proof of Claim 9:By the right-linearity assumption of our lemma and claimsnd & we may
assume|{ p”" | ro/p” =x}| X1. Thus by Claim 7 we getwgy/po=ropo=

ro[ "« yHo | ro/P" =ye VA{X}][p"” < X0 | To/ P =X]—, s

ro[ " —ylo | ro/p" =yeV\{x} ][ p” « xv | ro/p” =x]=

rol P W | ro/p” =yeV\{x}|[p"” —xv | ro/p" =x] =rqv. Q.e.d. (Claim 9)
By claims 8 and 9 it now suffices to showgv—_ .. ..rov, which again follows from
Lemma A.7 since RX is w-level confluent up ta by our induction hypothesis and sintgyc V.
ypoLwHHlyv by Claim 7. Q.e.d. (“The variable overlap case”)
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“The critical peak case”p; € 205 (lo) Alo/pPy € V:

|OHO w+n+1, p) Wl/ Po
J/Mnﬂ, 0 *luwrnﬂ
_ * = *
Wo/ Po w © w+n+1 © W °

Let§ € sus(V,V) be a bijection with&[v (((11,r1),C1))] N (((lo,r0),Co)) = O.
Define Y= &[v (((l1,r1),C1))]U 7 (((lo,r0),Co))-
ngl if xe rV(((Io,ro),Co))} (xEV).

X¢ |y else
By 11€p=11&& "1 =u/pr=u/PoP; =loko/ Py =lop/ Py = (lo/ PP
leto:=mgu{(11&,lo/Py)},Y) andd € sus (V,7 (X)) with y1(od) =v1p.
If lo[py < ri&Jo=roo, then the proofis finished due to

Wo/ Po=TroHo="ro0¢ = lo[ p} « ri&]od =lopo[ Py < ripa] =wa/po.
Otherwise we have((lo[p} < r1&],Ci&,1), (r0,Co,1), lo, 0, pj) € CAR) (due to Claim 5);
Py #0 (due the global case assumptio®i&op = Cqpy is fulfilled w.r.t. —,; Coodp = Colo
is fulfilled w.rt. —_ .. Since RX is w-level confluent up ton (by our induction hypo-
thesis) ando-shallow confluent up to, due to our assumed-level anti-closedness (matching
the definition’sn to our n+1) we have wi/po=lopo[ P < rita]=lo[ P} < ri&lodo——,,, , °
Lwo;mn+lo<iwroo'¢ =Toklo=Wo/ Po.
Q.e.d. (“The critical peak case”) Q.e.d. (“There is somp) with pop;=p1 and p;#0")

Letpe sus(V,7 (X)) be given byxp = {
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There is somey, with p1py=po:

We have two cases:

“The second variable overlap case”:
There arexeV andp/, p” such that1/p'=x A p'p”’=pj:

b s w/
w+n+1, P, rika
{VDMH
Wo/ p1 [1v ) rav

Claim 11a:We havexp /p” =lopo and may assumee Vs.

Proof of Claim 11aWe havexpy/p’ =l1p/p'p” =u/p1p' P’ =u/p1py=Uu/po=Iolo.

If xeV,, then xpy €7 (consV,), then xw/p” €7 (consV,), then

lopo € 7 (cons V), and thenlpe 7 (consVsicwV,-) which we may assume not to be the case
by Claim 5. Q.e.d. (Claim 11a)

Claim 11b:We can define € sus(V,7 (X)) by xv=xp[p” < ropp] and vyeV\{x}.yv=
ypi. Then we havexpy—, . .. Xv.

Proof of Claim 11bThis follows directly from Claim 11a. Q.e.d. (Claim 11b)
Claim 12: wp/p1=11v.

Proof of Claim 12:

By the left-linearity assumption of our lemma and claims 8 dia we may assum¢g p” |
l1/p"” =x} ={p'}. Thus, by Claim 11b we getvp/ p1=U/p1[ Py < roto] =

l1[p” —yw [ 11/p"=y€e V][ Py < robo] =

la[p” —yp | 11/p"=yeV Ay#X]|[p —xw][P'p" « roko] =

l1[p” —yv | 11/p"=yeV Ay#X][p' — Xiu[p" — ropo] ] =

lhi[p” —w | l1/p"=yeV]=Iv. Q.e.d. (Claim 12)
Claim 13: r{V«t—gn1W1/ P1-

Proof of Claim 13Since rip; =ws /p1, this follows directly from Claim 11b. Q.e.d. (Claim 13)

By claims 12 and 13 using Corollary 2.14 it now suffices to shgw—_ . ..ri1v, which again
follows from Claim 11b, Lemma A.7 (matching it to ourn+1 and itsn; to ourn), and our
induction hypothesis that,X is w-level confluent up ta.

Q.e.d. (“The second variable overlap case”)
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“The second critical peak casepy € 205 (11) A l1/py ¢ V:

l1 ) w1/ p1
iw+n+1, % *\LUH—“-FJ-
_ * = *
Wo/ P1 " o ] o 5 o

Let& € sus(V,V) be a bijection with&[7 (((lo,r0),Co))] N ¥ (((11,r1),C1)) = 0.
Define Y =¢&[7 (((lo,r0),C0))] U (((I1,r1),C1)).
xuil if xe v (((I1,r1),C1)) (xeV).

x& Mo else
By lo€p=108& "Ho=u/po=u/P1Pp=l1t/Py=11p/Po= 11/ )P
leto :=mgu({(lo&,11/Pp)},Y) andd € sus (V, 7 (X)) with y1(ad) =v1p.
If 11][p; < ro&Jo=r10, then the proof s finished due to

wo/ p1=l1pu[ Py < rodo] =11[ Py < ro&]od =r100 =rip =ws/ps.
Otherwise we have((I1[pp < ro§],Co€, 1), (r1,C1,1), 11, 0, p) € CP(R) (due to Claim 5);
Coéad = Colo is fulfilled w.r.t. — . ; C10¢ = Cypy is fulfilled w.r.t. —_ .. Since RX is
w-level confluent up tan (by our induction hypothesis) and-shallow confluent up to, due to
our assumed-level strong joinability (matching the definitiorrsto ourn+1) we havewp/p1 =
l1pt2[ Py — Fobo] =11[ By «— M0€ | 0P —=,0—. 110~ © 1 ny 2[00 =T 1ps = W1/ P1.
Q.e.d. (“The second critical peak case”) Q.e.d. (Lemma A.10)

Letpe sus(V,7 (X)) be given byxp = {

Proof of Lemma B.1
Due to 7 -monotonicity of> and > C >, it is easy to show by induction ovg¥ in < that
VB2 wHa. —, , C > using Lemma 2.12.
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Proof of Lemma B.2

Claim 0: Yue 7R M s (C). Vi e 7 (sig, X). ( up—0 = uvl]d )

Proof of Claim 1:We get the following cases:

l|ut> up uv——up——0a implies uv|( by the assumed confluence belaw

upg dom(—): uv——up—0 implies uv=up=0a.
[7 (u) C V,: By Lemma 2.10 we get/xc v (u). Xg—_xv. Thus from uv«—_up——0 due to
the assumed*—Rﬁxﬁwo LRX C | wegetuv]a.] Q.e.d. (Claim 0)

By Lemma 2.7 it suffices to show th@v is fulfilled. For each. in C we have to show thdtv is
fulfilled. Note that we already know thaftis fulfilled.

L = (u=v): There is someu with up——d<—vy By Claim 0 there is somes With
uw——¥——0——vp Thus, by Claim 0 we getiv——V|w.

L = (Defu): We know the existence afi ¢ g7 (cong with up——0d. By Claim 0 we get
uv——U'<—0 for someu’. By Lemma 2.10 we getf € G T (cons.

L = (uv): We know the existence ofi,V € g 7 (cong with up——049——vu Just like above

we getu,V € ¢ 7 (cong with uv——u'<—0 and V-V —w. Due to W}V we finally get
uv. Q.e.d. (LemmaB.2)

Proof of Lemma B.3

First notice that the usual modularization of the proof fo tinconditional analogue of the the-
orem (by showing first that local confluence is guaranteeexor the cases that are matched
by critical peaks (the so-called “critical pair lemma”))nst possible here because we need the
confluence property to hold for the condition terms even lier ¢ases that are not matched by
critical peaks. Now to the proof: For ale 7 (sig,X) we are going to prove confluence belew
by induction oversin <. Letsbe minimal in< such that— is not confluent belove. Because

of — C > (by Lemma B.1) and minimality o§, — is not even locally confluent belos/

Let p,q € 205 (S); 10t—4.0pS —wiwgtls totts. Now as one ofp,q must be a prefix of the
other, w.l.0.g. say thaj is a prefix ofp. As si>s/q, by the minimality ofswe haveq=0. We
start a second level of induction gnin <«<s. Thus assume that is minimal such that there are

p € Pos (s) andty,t; € 7 (sig, X) with toe—_,. S, . ,of1 and tofts.

w+w,p w+w,0
Now for k < 2 there must bé(ly,rx),Ck) € R; ik € SuB(V,7 (X)); with Cyp fulfilled; s=
lipg;  s/p=lodo; to=lipa[p < roto]; ti=rips. Moreover, fork < 2 we define Ay :=
0 iflxe7 (consVgicgwV, )
{ 1 otherwise }
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Claim 0:We may assume thatqe 205 (S). ( 0#9<sp = sgdom(—, ) )

Proof of Claim O: Otherwise there must be somg e 20s5(s); ((I2,r2),C2) € R; W €
sus(V,T (X)), with Copp fulfilled; s/q=Izpp; and 0#q <s p. By our second induc-
tion level we get I1y[q«— rzpz]LWyirlpl for somewy; cf. the diagram below. Next
we are going to show that there is somg with |1 p < ropo] —Wo——Il1p1[q < rap2].
Note that (since— C > impliess>l1p[qg <« rapz]) this finishes the proof of Claim O since
then WOL']_H]_[QH rzuz]Lwl by our first level of induction implies the contradictory

toLWOJ,Wthl.

to S 1
l1pa[ P < roko] oD l1Hg P ripy
* J/&Hw,q *
* *
Wo l1pa[q — rapz] Wy
k *k
o] O

In case of p||q we simply can choosevy := l1p1[p < roMo][g < rapz]. Otherwise, there must
be somep, p, §, with p=pp, gq=pG, and (p=0V §=0). Now it suffices to show
S/ Pl P — roko]——Wo——S/P[§ — rate]

for somew), because by (sig, X)-monotonicity of—— we then have
|1t [ p < ropo] =S[ PP « ropo] =S[ P — /P][ PP  Toko] =S P /P P« roko]]—
SR
—s[p— /PG raklz]]=S[p < S/P][ PG — rabz] =S[ pd « rablp] =l1p[q « rapb].
Note that

S/PLP oMo [« 10055/ P—0010qS/ PLG < F2b2].
In case of p#0 (since then >, C > implies s> s/p) we get somew, with
S/P[P < roto] —Wy<—s/P[G < rapz] by our first level of induction. Otherwise, in case of
p=0, our disjunction from above meangp=0V q=0). Since we have0#q by our ini-
tial assumption, we may assuntg=G+#0 and p=p=p=0. Then the above divergence reads
S/PIP  roHo ¢ 005 wr0qS/ PIG < r2kk] and we get the required joinability by our second
induction level due toq << p. Q.e.d. (Claim 0)
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Claim 1:In case of«—_ o0 — C | we may assumea¢gdom(—,,).
Proof of Claim 1:Assume «—,_ o — C |. Ifthere is atp with s—_t, then we get somg, t}

with to——t)e—tr,——t]«—t;. Due —, C — C > by our first level of induction we get the
contradictoryto——t} | tj«—t;. Q.e.d. (Claim 1)

Claim 2:In case of «——_ o — C | for eachk < 2 we may assume:
Ik & T (consVsigwV,) and

(kg7 (consVsigwWVe) V TERM S (Cupl) 7 (consVsigWVe ) ).
Proof of Claim 2: By Lemma 2.10 and lypk—ry, Ik €7 (consVsigwVe) implies
lklk—, kM Which we may assume not to be the case by Claim 1. In case of
lx€e T (consVsicgwWV,) and TERM S (Cypi) C7 (consVsicwV,) by Lemma 2.10Cp is ful-
filled w.r.t. —_ and then Corollary 2.6 implie§p—: ki again, which we may assume not
to be the case by Claim 1. Q.e.d. (Claim 2)

Now we have two cases:

The variable overlap casep=qoq1; l1/go=x€ V :
We have xp /01=I111/qo01=S/p=Ioto. By Lemma 2.10 (in case ofcV,), we can define
vesus(V,7 (X)) by (yeV):
Wie Xp[G1 < roko] if y=X

"] Y otherwise
to=1l1a[qodl1 — ropo] =l1[do —xv ][ —ypu [ l1/d =y eV A #go] —
l1[q =W | l1/d =yeV]=1v;
tlzrluliwlv. It suffices to showl;v—r1v, which follows from Lemma B.2 because of
[, o—— C|,] lin=s and our first level of induction.  Q.e.d. (The variable overtase)

} and getyyy—yv foryeV. By Corollary 2.8:
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The critical peak casep € 20s(l1); l1/p ¢V : Let& € sus(V,V) be a bijection with

&[V (lo=ro——Co)|N ¥ (l1=r1+<—C1) =0. Define Y= ((lo=ro«—Cp)&,l1=r1<—C1) .
iglluo glgee V(li=ri—C) (xeV). By lo€p=I10&& ‘o=
s/p=li1/p=Il1p/p=(l1/p)p let o :=mgu{(le¢,11/p)},Y) and ¢ € sus(V,7 (X))
with y1(a)=v1p.

Claim A: We may assumg p=0 Vv Vye v (l1). yop ¢ dom(—) )

Proof of Claim A: Otherwise, whenp#0 holds but Vye v (I1). yo¢ ¢dom(—) is not the
case, there are somec v (1), vesus(V,7 (X)) with xop—xv and VyeV\{x}.ym =
yv. Due to 11 /p<lips=s by our first level of induction fromro§od«——Io§op =110¢/p=
Iy /p—l1v/p we know that there must be somwewith rofod——u<—Iv/p. Due to
IlulLllv and — C > we get liv<lju=s. Thus, by our first level of induction,
from l1v[p u]Lllv—wlv (which is due to Lemma B.2,«[k—wo —~5C,] lhiu=s and
our first level of induction) we getto=I1p1[p < ro€od]——I1v[p — rofad | ——lv[p—u] |
FVe—ripy =t1. Q.e.d. (Claim A)

Let p be given by xp:{

If 11[p <« ro§lo=ri0, then we are finished due ty=I1[p < ro§]op =ri0p=t;. Otherwise
((I1[p<ro&],Co&,No), (r1,C1,A1), l1, 0, p) is a critical peak in CFR).
Now (Co&Ci1)op=CoppCipy is fulfilled w.rt. —. Due to hoo=Ilip=hm=
s, by our first level of induction we get Vu < l10¢. (— is confluent below).
[By Clam 1 we get liop¢dom(—_).] By Claim 0 we get Vgeros(l10¢).
(0#9 <09 P = 100 gdom(— ) ). This meansl;0¢ ¢A(p). [DefineDg := CoE and
D1 :=Cy. If Ax=0 for somek < 2, then Iy€ 7 (consVsicWV,-), which by Claim 2 implies
TERM S (Dkod)Z T (consVsigwV,), and thenTER M s (Dyo)Z 7 (consV). ] Thus, in case
of YyeV.ypZdom—), by Claim A and the assumesd-weak joinability w.r.t. RX besides
Awe getto=I1[p <« ro§]ad | riop=t.
Otherwise, whenVyeV.yd Zdom(—) is not the case, by— C > and the Axiom of
Choice there is som@ € s 1B (V,7 (X)) with YyeV. yo——yd’ ¢dom(—). Then, of course,
VyeV.yEop——yEad’ and VyeV.yod——yod’. By Lemma B.2 (due todf—, o = C ]
load,l109<..s; <, € <; and our first level of induction) we know th&§o¢’ and Cio¢’
are fulfilled. Furthermore, we havé;[p « rof]od——li[p«—rof]od’ and rio¢'<—ric¢.
Therefore, in case of;op =1,0¢’ the proof succeeds like above withinstead ofp. Otherwise
we have l;00——l10¢’. Then due to— C > we get s=110¢ > 110¢’. Therefore, by our
first level of induction, fromly[p < ro&Jod’«—I1[ p < o€ |od’ =110¢’'—r10¢’ (which is due
to [«—,0— C |;] lo€0d,l100<.s, <, C <; and our first level of induction) we conclude
to=l1[p — ro€|od——l1[p — ro€]od’ | rio¢’——riodp=t;. Q.e.d. (The critical peak case)
Q.e.d. (Lemma B.3)
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Proof of Lemma B.4 and Lemma B.5

Since the proofs of the two lemmas are very similar, we tieamttogether, indicating the differ-
ences where necessary and usimg6 denotew in the proof of Lemma B.4.

For (3,s) <<1(B,$) we are going to show that,X is a-shallow confluent up td andsin < by
induction over(d,s) in <<1. Suppose that fong,n; < w we have (ng+,Nn1,) <<(B,$) and

*

t;. We have to showt)——,,, o« t].

t/ * *
0 a+ng S a+nq a-+ng

a+nq

In case ofJi < 2.t/ =s this is trivially true.

Thus, for t6La+not0<_a+no.ps—)a+n1,qt1L)ownltill.
using the induction hypothesis that

V(d,W) << (np+,Nn1,S). R, X is a-shallow confluent up td andw’ in <
we have to show

*

! _* /
tO—)oHrnl O t1'

a+ng

Note that due to Lemma B.1 we have—_  C>.

Claim 0:Now it is sufficient to showto——,, U——,., t1 for someu.
Proof of Claim 0:Due to —_., € > we have sp>tp,t;. Thus by our induction hypo-
theses u——

t; (cf. diagram below) implies the existence of somewith

t k
at+ng 1T Catm

*

* / ] * * . . ;) X *
U0, V< —ain t1 and thentpe—, . to—, v implies ty—,,, o« W

a+nq a-+ny a-+n, a-+ng
* !
t]_ tl
a-+ng a-+ng
a+ng *\LaJrno *|a+ng
* *
to u
a+ng a+ng
*|a+ng *|a+ng
/ * .
to o Q.e.d. (Claim 0)

a+ng

In case of p|[q we haveto/q=s[p«to/p]/q=s/q and t1/p=s[q«t1/q]/p=s/p and
thereforeto—, ., (S P < to/P][d < t1/q]<—; , ot1, i-€. our proofis finished. Otherwise one

of p,q must be a prefix of the other, w.l.0.g. say tlogis a prefix ofp. In case of q#0 due
to >, C > we gets/g<s and the proof finished by our induction hypothesis arnaig, X)-

monotonicity ofL(an. Thus we may assumg=0. We start a second level of induction gn
in <<s. Thus we may assume the following induction hypothesis:
Yge2os (). Vi, ty. Vg, nj.

!/ !/

t0<—a+n6,qs—>u+n’l,0tl . .
A oM = No+, = o O

N Q<Ksp

t/
/
0(+n0 1

Now for k < 2 there must bé(l,rk),Ck) € R; lk € su3B(V, 7 (X)); with Cyuy fulfilled w.r.t.

a1 s=lip1; s/p=loto; to=lipa[p <« roto]; ti=ripy; and Ax=<nx and a=0 =

1<ng . J 0 iflgeT (consVsigV,)
( A /\k:O) for Ak'_{ 1 otherwise '
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Claim 1:We may assume thatge 205 (S). ( 0#£9<sp = sgdom(—, oy o) >

Proof of Claim 1: Otherwise there must be somg e 20s(s); ((l2,r2),C2) € R; W €
sus(V,7 (X)); with Coup fulfilled w.r.t. s min{ng g} 1)’ s/q=Ialp; 0#0 s p. By
our second induction level we getllul[q<—rzuz]Lumlwl&“mm{no’nl}rlpl for some
wy; cf. the diagram below. Next we are going to show that theresame wgy with
I [ p — ropo]L)a+min{n0,nl}W0<L(X+noIlul[q<— rokz]. Note that (since —,,, € > implies

wH
s>y [q < rapp]) this finishes the proof since themo<Lu+nOI1p1[q — rzllz]idmlwl by our
first level of induction implies

* * * *

to a+min{n0,nl}W0 a+ny © cx+n0W1 a+min{no,nl}t1'
to S 4]
I r I r
1H1[ P < Toko] aroD 1M1 . 1t
*|a+min{ng,ny } J/a+min{no7n1},q *|a+min{ng,ny }
Wi * I r * w
H
0 i 1Ha[g < rap] o 1
*|a-+ng *|a-+ng
O (o]
In case of p||q we simply can choos&vy := l1|[p < roto][g < rapz]. Otherwise, there must

be somep, P, §, with p=pp, gq=pG, and (p=0V §=0). Now it suffices to show

S/ﬁ[ P roUo]mem{no’nl}V\/oLMnOS/ﬁ[q — r2p~2]
for somew,, because by (sig, X)-monotonicity ofLM, we then have
l1pa[ p < robo] =S[ PP < roko] =S[p < S/ P][ PP < roko] =
S[p < s/P[P < roko] ]L)ourmin{no,nl}s[ P %];‘H”OS[ P s/Pla«rape]]=
[P« s/P][ PG < rap2] =s[ pd « raz| =l1pa [0 < rap].
Note that

S/PLP— rouo]&wnoﬁs/ 5—>a+min{n0,n1},qs/5[q — o).

In case of p#0 (since then >, C > implies s> s/p) we get somew, with
S/p[P rouo]Lu+min{n07nl}%éa+nos/ﬁ[q — 2] by our first level of induction. Otherwise,
in case of p=0, our disjunction from above mean@=0V q=0). Since we haved#q by
our initial assumption, we may assunge=G#0 and p=p=p=0. Then the above divergence
readss/p[p < rOUO]<—u+no,05—’a+mm{no,nl},qS/5[61 — raz] and we get the required joinability
by our second induction level due << p. Q.e.d. (Claim 1)

Claim 2 of the proof of Lemma B.4AMe may assume that for some: 2:
n=0=<nyj; lieT(consVsigwV,); li it i€ T (consVsigWV,);

and (11_j¢7 (consVsigWV,) V TERM S (Cl_i}.ll_i)g‘f(COI’]SVSK;HjVC) ).
Proof of Claim 2 of the proof of Lemma B.4f Vi<2.s— t1_j, then the whole proof is fin-
ished by confluence of—,. Thus there is someé < 2 with s/ ti_i. Then we get
0<ni_j. The case of &n; is empty, since then due t < w < np+,n1 the globally sup-
posed ordering propertyno+,n1,s) <<1(B,8 cannot hold. Thus we gety=0<n;_;. Due
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Ai=<nj=0 we get lje7 (consVsigWV,-). By Lemma 2.10 and'l—illl—i—@mlfirl—iP—l—i»
l1_ipa—i € 7 (consVsigwV,e) would imply the contradictory l1_ijpy—i— r1—ipa—i. Finally,
l1_j €7 (consVsigwV,) and TERM S (Ci—iu—i)C7 (consVsigwV,) by Lemma 2.10 would
imply that C1_ijy—; is fulfilled w.r.t. —,_ and then Corollary 2.6 would imply the contradictory
l1_ipM—i—, r1-iM1—i again. Q.e.d. (Claim 2 of the proof of Lemma B.4)

Claim 2 of the proof of Lemma B.3:or eachk < 2 we may assume: Qny;
a=0 = IlxeT (consVsigwV,); and
Ik & 7 (cons VsigWV,) ) )

a=w = A Ik T (consVsigWV,)

V. TERM S (Cy) LT (consVsigwV,)
Proof of Claim 2 of the proof of Lemma B.5In case of a=0 we have &ng due to
1<n¢ and have lxe7T (consVgcwV,) due to Ax=0. Now we treat the case of
oa=w: We may assume Vk<2.s-/ tx, since otherwise the whole proof is finished
by w-shallow confluence up taw. Thus we have &ng,n;. By Lemma 2.10 and
lklk—1n TkM, kB € T (CONSVsigWV)  would imply the contradictory lipk—, Mk
Finally, lxe 7 (consVsicwV,.) and TERM s (Cyk)C7T (consVsigwVe-) by Lemma 2.10
would imply that Cypy is fulfilled w.r.t. —_ and then Corollary 2.6 would imply the con-
tradictory lyp—, ki again. Q.e.d. (Claim 2 of the proof of Lemma B.5)

Claim 3:For allk< 2 we may assume:
(a=0 = lxeT (consVsicwV,) );
( min{ng,n1} < (k=1) Vv ((l,rk),Cx) is a-quasi-normal w.r.t. RX );
and R X is a-shallow confluent up to mimg, ny } +, (Nk=1).
Proof of Claim 3 of the proof of Lemma B.4The first property is trivial due to a=
w. By Claim 2 we get mifng,n1}=0=<(nk=1) as well as mifng,N1}+, (Nk=1)=
0+, (nk=1) = (nk=1) < max{1,nk} < max{ng, N1} =np+,n1. Thus RX is w-shallow confluent
up to min{ng, N1 }+,(nk=1) by our first level of induction.

Q.e.d. (Claim 3 of the proof of Lemma B.4)
Proof of Claim 3 of the proof of Lemma B.5[he first property follows from Claim 2. Since
R, X is a-quasi-normal, ((lx,rk),C«) is a-quasi-normal w.rt. RX. By Claim 2 we have
min{ng, N1 } -+, (Nk—1) < min{ng, N1 } +, Nk <o+, N1. Thus Claim 3 follows from our first level of

induction. Q.e.d. (Claim 3 of the proof of Lemma B.5)
Claim 4: For anyk < 2 andv € sus(V,7 (X)), if G is fulfiled w.rt. —, ., then
Ikv—>a+nkrkv.

Proof of Claim 4 of the proof of Lemma B.8y Claim 2 we have &ny or
k=0 A lxe 7T (consVsigwV, ). In the first case Claim 4 is trivial due tong—1) +1=ng. In
the second caggyv is fulfilled w.r.t. —_ and Iy € 7 (consVsigwV,). Thus, by Corollary 2.6,
we get lyv—,_ rv, which completes the proof of Claim 4 due g =0 in this case.

Q.e.d. (Claim 4 of the proof of Lemma B.4)
Proof of Claim 4 of the proof of Lemma B.5By Claim 2 we have &nc and a=0 =
lx€ T (consVsigWV,). Thus Claim 4 is trivial due to(ng—1) +1=n.

Q.e.d. (Claim 4 of the proof of Lemma B.5)

Two cases:
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The variable-overlap case: There gfgd; such thatp=qya}; l11/gp=xeV:

BTV — ripa
\LO(Jrno *\LGwLnO
lp | rolo] i l1v riv
«—
11| P oMo o 1 o 1

We havexpy /d) =l1p1/d60; =S/ p=Iolo.

Claim A of the proof of Lemma B.4:

In case of {=1" for the ‘i’ of Claim 2 we may assum& € VgG.

Proof of Claim A of the proof of Lemma B.40therwise we would havec V., which implies
X € 7 (cons V) and therlppp € 7 (cons V). We may assumi i ¢ 7 (consV,-) for thei
of Claim 2. Q.e.d. (Claim A of the proof of Lemma B.4)

Claim A of the proof of Lemma B.5:

(a=0 = lie7 (consVsigWV,) )
A ( a=w = XeVgg )
Proof of Claim A of the proof of Lemma B.5The first statement follows from Claim 2.
The second is show by contradiction: Suppose we would hev®/ ., which implies
X € 7 (cons V) and thenlpppo € 7 (consV,). By Claim 2 we can assume that this is not the
case fora=w. Q.e.d. (Claim A of the proof of Lemma B.5)

We may assum

By Lemma 2.10 (in case ofe V), we can defin® € sus(V,7 (X)) by (ye V):

[ xtaldj —roko] ify=x =
V '_{ Yh otherwise [ 2d 98— WV for ye V.

By 7 (sig, X)-monotonicity of—,
l1ia[Go0; < rofo] =

l1[dp —xv][q" vy | 11/d"=yeV A d"#qy] =

l1[dp = xv][d" x| 11/d"=x A q"#Q][d" W | x#l1/d"=yeV A d"#qp]

*

Hourno Il[q” —Ww | ll/q” =Yye V] = |1V.

riv and

*
+np WE getripy —,

a-+ng

Claim B: I [p « FoUo]qunlllV-

Proof of Claim B of the proof of Lemma B.8By case distinction over the' ‘of Claim 2:

“i=0" ng=0=<ny implies —, win, Dy Lemma 2.12.

“i=1": Inthis case we havé € 7 (consVsigWV,-). By Claim A we may assumec Vsg. Then

l1 is linear inx. Thus {q" | I1/q"=x A d"#qy } = 0, which means that the above reduction
takes O steps, i.€jp[p < ropo] =11v. Q.e.d. (Claim B of the proof of Lemma B.4)

Proof of Claim B of the proof of Lemma B.By Claim A and the assumption of our lemma we
know thatlg is linear inx. Thus { g” | 11/q"=x A d"#qy } = 0, which means that the above
reduction takes O steps, i.&.p1[p < ropo] =I11v. Q.e.d. (Claim B of the proof of Lemma B.5)

CcC —
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Claim C: [1v—,,, r1v.
Proof of Claim C of the proof of Lemma B.8y case distinction over the ‘of Claim 2:
“i=0". Due to ng=0=<n;z this follows directly from Lemma 13.8 (matching itg to ourng=
0 and itsny to ourn;—1) (since 0<n;—-1 and RX is w-shallow confluent up to;—1 by our
induction hypothesis).
“i=1". In this case we have;=0 and I; € 7 (consVsicWV,). Thus, sinceC iy is fulfilled
w.r.t. —,, by assumption of the lemma we know tiét,r1),Ci) is quasi-normal w.r.t. R and
that for allue 728 M s (C1) we havel py > upy or upy dom(—) or 7 (u) C Ve. Inthe latter
case, since we may assunxes Vgig by Claim A, we getVye ¢ (u). ywp=yv and, moreover,
Vd<no+,n1. R, X is w-shallow confluent up td by our induction hypothesis. In the first case,
due to I1pup=s our induction hypothesis even implies thatRis w-shallow confluent up to
No+,N1 andupy in <. Thus Lemma 13.8 (matching ity to ourng and itsny to ourng) implies
that Cyv is fulfilled w.r.t. in - Now since ny=0, Corollary 2.6 implies Ilv—>w+nlr1v.
Q.e.d. (Claim C of the proof of Lemma B.4)
Proof of Claim C of the proof of Lemma B.®irectly Lemma 13.8 (matching itgp to our ng
and itsns to ourn;—1) (by Claim 2 and since X is a-quasi-normal and-shallow confluent up
to no+, (n1—1) by our first level of induction due to;~1 < n; by Claim 2).
Q.e.d. (Claim C of the proof of Lemma B.5)

Q.e.d. (The variable-overlap case)

The critical peak casepe 205 (11); l1/pgV: Let & € sus(V,V) be a bijection with

Eo[‘V (|0:I’0<—C0)]ﬂ’l/(|1=l‘1<—cl) =0. Define Y= ’V((|0=I’0<—Co)§o,|1=l’1<—cl). De-
X|.J.£:L if xe ’V(|1ZI’1<—C1)} (XGV).

x€, "Ho else

By loop=Io&o&y o=s/p=I1t1/p=I1p/p=(11/p)p let o :=mgu{(lofo.l1/p)},Y) and
b € suB(V, (X)) with v](00) =y ]p.

fine&, :=v1id. Letp be given byxp = {

Claim A: We may assume( p=0 Vv vye v (l1). yob g_idom(—>a+mm{n0ﬁn1}) )
Proof of Claim A: Otherwise, when p#0 holds but Yye 4 (I1). yo¢ ¢ dom(—
is not the case, there are somes 7V (l1), v € Sus(V,7 (X)) with  Xth— o oy

and vyeV\{x}.ypu=yv. Due to liju1/p<tlipp=s by our first level of induction from
roEoo¢<—a+noloéoo¢:I10¢/p:I1u1/ pi’wmm{n&nl}'l"/p we know that there must be some

a+min{no,nl})

u with ro§o00——,, U, l1v/p. Due to Claim 3, by Lemma 13.8 (matching its

no to our min{ng,n1} and itsn; to our (n1=1)) Cyv is fulfilled w.r.t. 1) Then

. . . +
Claim 4 implies I;v—,_, riv. Due to liln— oo il1v and —,  C > we get

l1v < lipp=s. Thus, by our first level of induction, fromlv]p — u]<L [{v—

a+nq
* % %
we get to= |1l-11[ P rOEOO-(I)]—>°‘+mi“{”0~,“1} |1V[ P rOEOo-q)]—>o(+min{noﬁn1} |1V[ P u]—>a+n1 ©
* * .
rv a+min{n0,nl}rluj-:t1' Qed (Clalm A)

a+ng

a-+ng rlv
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If I1[p<« ro§oJo=ri10, then we are finished due tthy=I1[p < ro€o]op =r0¢p =t;. Other-
wise we have ((l1[p < roo],Co0,MNo), (r1,C1&1,A1), 11, 0, p) € CPR) with the following
additional structure:

In the proof of Lemma B.4By Claim 2 the critical peak cannot be of the forth 1). More-
over, if it is of the form (0,0), then we have VYk<2.lxe 7 (consVsicwV,), which by
Claim 2 for somei < 2 implies 7R S (C1-i&§1-i0¢)Z7 (consVsigWV,), and then
TERM S (C1-i&1-i0)ZT (consV,), i.e. TERM S (Co&o0C1&10)Z T (consV,).

In the proof of Lemma B.5:For all k < 2 we have: a=0 = Ax=0. If a=w and
N¢=0 for somek < 2, then Ixe7 (consVsicwV,), which by Claim 2 implies
TERM S (Ci&k09)Z T (consVsigwVe ), and thenTEx M s (Cyéko)ZL T (consVe).

Now Cocoo¢ = Coppo is fulfilled w.rt. —,, . .,; C1€100 = Cypy s fulfilled wort. —, ..
Since l10¢=I1pr=s, by our induction hypothesis we have/(d,s) << (ng+,n1,1109).
(R,X is a-shallow confluent up t&® ands in <). By Claim 1 we get Vqe 205 (1100).
< 0#9<<iyop P = 1100 ZdOM(— 01 ) ) This means 1100 ¢ A(p,min{ng,nz}).
Furthermore, (no+,n1,1100) = (no+,n1,s) << (B,8). Therefore, in case of VyeV.
yo gZdom(—>a+min{nO7nl}), by Claim A and by the assumed form @fshallow joinability up to3

andsw.r.t. R X and < [besidesA], we getto=11[p « roEo]o¢i>a+nl o <Lmor10¢ =t;.

is not the case, by —_ ., C > and

w+a

Otherwise, when vyeV.ydZdom(—,, ... ..)
the Axiom of Choice there is som@ e sus(V,7 (X)) with VyeV.yp—, . yo'¢
dOM(—, iy ). THEN, OF cCOUrse, Vi<2. VyeV.y&iohp—, .. y&o¢'. Due to
Claim 3, by Lemma 13.8 (matching itsp to our min{ng,n;1} and itsn; to our (nj-1))
we know that Vi<2 Ci&o¢'is fulfiled w.rt.—_  .,. Then Claim 4 implies Vi<2.
li&i0¢'—,.,Ti&od’. Furthermore, we haveli[p «— ro&o]od——, i o1l P — rogo]od’

and rloq)’LMmm{nO’nl}rloq), cf. the diagram below. Therefore, in case ¢fop=I1,0¢’

the proof succeeds like above witi instead of¢. Otherwise we havelloq)%wwllcq)’ .

Then due to —,_,, € > we get s=I110¢ >1,0¢’. Therefore, by our first level of in-
duction, from Il[p<—roEo]o¢’<—a+n0’pI1[p<—IoEo]ocb’:I10¢’—>a+n1’0r10¢’ we conclude

Il[ P I’oE,o]O'(I)/Lanl © <L(:Hrnorlo-q)/'

to S 4]
ll[ P roEo]Od) a+ng, p |10d) a+ny,0 I‘10(|)
*[a+min{ng,ny } *J/a+min{no7n1} *|a+min{ng,ny }
/ * / * /
ll[ P roEo]Gd) a-+ng, p |10¢ a+ny,0 I’10d)
*|o4ng *|o4ng
o o

Q.e.d. (The critical peak case) Q.e.d. (Lemma B.4 and Lemma B.5)
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Proof of Lemma B.6

For (8,s) <<1(B,$) we are going to show that,R is w-level confluent up t@ andsin < by
induction over(d,s) in <<. Suppose that fong,n; < w we have (max{ng,n1},s) << (B,9)

/ * * / / * * /
and to<—w+ﬁos—> t;. We have to show,— wrmax i) © o maxig i) 1

U\H’I’Tl
In case ofdi < 2.t =s this is trivially true by Lemma 2.12. In case oh=n; =0 this is true by
confluence of—,. Using symmetry in 0 and 1, w.l.0.g. we may assumes< n;.

Thus, assumingig=ny >0, for t s 10 S0 1 sm, 1
using the induction hypothesis that

V(m,w) << (max{no,n },s). R,Xis w-level confluent up tanandw in <
we have to show

* !

té—)w—kﬁl © <_(A)+ﬁltl'
Claim 0:Now it is sufficient to showto—,, U~ t1 for someu.
Proof of Claim 0:By Lemma B.1 we havesitg,t;. Thus, due té° (max{ny,ni},t1) <<

(max{ng,n1},s), by our induction hypotheseyﬁwﬁltleﬁlti (cf. diagram below) im-

. . . * * / )k * . .
plies the existence of somewith u—,, 5 ve—,.t; and thenty—, - to—, ;v implies

*

/ *
tO -y © mﬁlv'
t i /
w+ng 1 w+ny 1
w+Ng *lwrﬁl *|0+ng
* *
to — u —
w+nNg wHnNg
*|wHNg *| Ny
t! -
— o i
0 ot Q.e.d. (Claim 0)

Definingn := n;=~1 and using Lemma 2.12 we can now restate our proof task inolfeving
symmetric way:

Forn < w, to«— S t; using the induction hypothesis that

winilp> wintlg
V(mw) << (n+1,s). R, X is w-level confluent up tanandw in <
we have to show

* *

to w+n+1 © u)+n+1t1‘

In case ofp|| q this is trivial. Otherwise one gb,q must be a prefix of the other, w.l.0.g. say that
qis a prefix ofp. In case ofq#0 due to >4, C > we get s/q<is and the proof finished by
our induction hypothesis and (sig, X)-monotonicity ofimm. Thus we may assumg=0.
We start a second level of induction @in <<s. Thus we may assume the following induction
hypothesis:
g<KLsp
Vaeros (s). Vg, 1. ( ( A 5ot ) = toloinatl )

3Note that it is this change fromg o Ny in max{np,n;} that makes a two level treatment similar to that for
w-shallow confluence (i.e. considering+,n; instead ofhp-+n;) impossible because then fop=0~<n; we would
get max{no, N1} <w=max,{n;,n;:} and thus would not be allowed to apply our induction hypathkere.
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Now for k < 2 there must bé(l,rk),Ck) € R; ik € sus(V,7 (X)); with Cypy fulfilled w.r.t.
— o S=l1M1;  S/p=lolo; to=Il1pa[proto]; ti=ripz. Moreover, fork < 2 we define

AL 0 iflke7 (consVsigwV,)
K-=3 1 otherwise ’

Claim 1:We may assume thatqe 205 (s). ( 0#q<<sp = s¢dom(—,, ...) ).

Proof of Claim 1: Otherwise there must be somg e 20s5(s); ((I2,r2),Co) € R; W €
sus(V,7(X)); with Copp fulfilled w.rt. — . ; s/q=l; and 0#q <s p. By
our second induction level we getlipy[q« rapo]——, . Wi, n.,f11  for some wy;
cf. the diagram below. Next we are going to show that there ameswp with
l1pa[ P < Fobo] =, WOy nal1Ha[G < F2p2].  Note that (since — C > implies
s>l1[q < rapp]) this finishes the proof since thewoéwmllul[q — rzuz]L wp by

*

our first level of induction implieto—,,, .. ;W0 4, 1 W14 n 111

w+n+1

to S 4]
l1pu[ p < roko] i l1p PR ripy
*|w+n+1 J/w+n+l,q *|w+n+1
W, - l1p| ropo | i W
—
o ol 119 22 ol 1
*|w+n+1 *|{w+n+1
o (@]

In case of p||q we simply can choosevp := l1p1[p < roMo][g < rapz]. Otherwise, there must
be somep, P, §, with p=pp, q=pg, and (p=0V §=0). Now it suffices to show
S/ﬁ[ ﬁ — rO“O]Lmn+1%Lw+n+ls/5[q — r2“2]

for somew,, because by (sig, X )-monotonicity o1‘i>w+n+1 we then have
l1ka[ P < roHo] =s[ PP « roko] =S p« s/p][ PP « roko] =
[P S/ PLP < Fobo] |~y r S P WoJ s S P 5/ P16 < Falio] ] =
[P s/P][PG « rabz] =S[ PG < rabz] =l1p1[q < rapz].
Note that

S/PLP < T0HO} 101155/ P2/ PLA — Fafi2].
In case of p#0 (since then >, C > implies s> s/p) we get somew, with
S/PIP  robo] . s Wo—u.niaS/PLG < r2bk2] by our first level of induction. Otherwise, in
case of p=0, our disjunction from above meangp=0V gq=0). Since we have0#q by
our initial assumption, we may assunge=§#0 and p=p=p=0. Then the above divergence
reads s/p[P < rokoJ«—,n 105 wins1qS/ PlG < 2kkz] and we get the required joinability by
our second induction level due << p. Q.e.d. (Claim 1)

Claim 2:We may assumedi < 2. |; ¢ 7 (consVgigwV,-).
Proof of Claim 2:SinceCjyy is fulfilled w.rt. —_ .., by Lemma 13.2 (matching both itsand
v to ourpy) lie7T (consVsigwV,) implies lipy—,ripi and thens— ti. Thus, if the claim
does not hold, we havey«—_s—_t1 and the proof is finished by confluence-ef,,.

Q.e.d. (Claim 2)
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Now we have two cases:

The variable overlap casep=qoQs1; l1/go=X€ V :

We have xp /g1=I111/qog1=s/p=Iloto. By Lemma 2.10 (in case ofeV,), we can define
vesus(V,7 (X)) by (yeV):
W .:{ Xpa[d1 « rodo] if y=x

' Yik otherwise
to=1l1a[qod1 < Fobo] =l1[do — V][ —ypu | l1/d =y €V Ad #0o] —4.ns
lh[d v [11/d =yeV]=hv;
tlzrlulimnﬂrlv. It suffices to showl;v—, ... .r1v, which follows from our first level of
induction saying that X is w-level confluent up te by Lemma A.7 (matching itgg to ourn+1
and itsn; to ourn). Q.e.d. (The variable overlap case)

} and getypy—,,.,..,yv foryeV. By Corollary 2.8:

The critical peak casep € Pos(l1); l1/p¢ V: Let§ € sus(V,V) be a bijection with
&V (lo=ro«——Cp)|N ¥ (I1=r1+—C41)=0. Define Y = ((lo=ro«—Cp)&,l1=r1<—Cy) .
igiluO gl;(ee vh=r—a) (xeV). By lo&p=I10&& o=
s/p=lipa/p=1l1p/p=(I1/p)p let o :=mgu{(lo¢,l1/p)},Y) and ¢ € sus(V,7 (X))
with v1(a¢)=v1p.

Claim A: We may assumg p=0 Vv Vye ¥ (l1). yop ¢dom(—...) ).

Proof of Claim A: Otherwise, when p#0 holds but Vyc v (l;). yop Zdom(— . ..,) is
not the case, there are somec 7 (l1), vesus(V,7 (X)) with xo¢p—, .,xv and
VYyeV\{x}.ysu=w. Due to Ilj/p<lipu=s by our first level of induction from
ro€0¢«——,. ... lo€od=1100/p=I1p1/ pLMnHIlv/p we know that there must be somevith
[0&00——, 1. U1 l1V/P. Due to lipy——, . ,liv and — C > we get 1v <l =
s. Thus, by our first level of induction, fromqv[p « u]«—_. ., winial1V (Which is due
to Lemma A.7 and our first level of induction saying thaiHs w-level confluent up tam) we
get to=lapu[p —ro€00]—,, V[P — 10800 |—=,, V[P U]| 0 11V oyl 1H =
tg. Q.e.d. (Claim A)
If 11[p« ro§lo=ri0, then we are finished due ty=I1[p < ro§|op =r10¢ =t;. Otherwise
((I1[p<ro&],Co&,No), (r1,C1,A1), l1, 0, p) is a critical peak in CFR). Furthermore, due to
Claim 2, this critical peak is not of the for(®,0).

Let p be given by xp:{

|1V—>

Now (Co§C1)0¢ =CopoCrpy is fulfilled w.r.t. — . Due to l,0¢ =I1p=I1p1 =s, by our first
level of induction we getV(d,5) << (n+1,1109). (R,X is w-level confluent up t& ands' in
<1). By Claim 1 we getvqe 205 (1100). ( 0#9 <<i,0p P = 1100 ¢dom(—,, ., .) ). This
meansl 09 € A(p,n+1). Furthermore,(n+1,110¢)= (max{ng,n1},s) << (B,$). Thus, in case
of vyeV.ypgZdom(— . ..,), by Claim A and the assumed bylevel joinability up top and
Sw.r.t. R X and < [besidesA] (matching the definition'syy andn; to our n+1) we get to=

l1[pro&lod],, . ,r100=ts.
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Otherwise, whenvyeV.yd Zdom(— . ..,) is not the case, by— C > and the Axiom
of Choice there is somé’csus(V,7 (X)) with Vyev.y¢i>w+n+ly¢’§zdom(—>w+n+l).
Then, of course,vye V. y&odp——, .. ,¥&ad’ and YyeV.yop——, ..,yo¢’. By Lemma A.7
(due to our first level of induction saying that,R is w-level confluent up ton) we
know that Cofo¢’ and Cyo¢’ are fulfilled w.rt. — . Furthermore, we have
l1[p < ro€]od——,,,.,11[p < ro&Jod’ and r1o¢’<— . ,r1o¢. Therefore, in case of;0¢ =
l,0¢’ the proof succeeds like above wigh instead ofd. Otherwise we have 10 ——l,0¢’.
Then due to— C > we get s=1,0¢ > 1,0¢’. Therefore, by our first level of induction, from
l1[p—ro§lo¢’ ..., l1[p — lo&]od'=l10¢'—, . ,r10¢’ (which is due to Lemma A.7 and
our first level of induction saying that,K is w-level confluent up tan) we conclude to=

Il[ P I’QE]O'(I) L>oo+n+1|1[ P rOE]0¢,lw+n+1rlo-¢/Lw+n+1r10—¢ =11.
Q.e.d. (The critical peak case) Q.e.d. (Lemma B.6)

Proof of Lemma B.7

1.: Since the direction®” is trivial we only have to show &” and begin with the first equation.
Fort’ € >, [T] there are somee T andp € 205 (t) with t/p=t’. Now, in case oft’ =t" by
sort-invariance and T-monotonicity of we gett=t[p«—t'] = t[p«t”]€T, which implies
t" e [T]. Thus we have shown._rjlido = C »_mjlido = o _rlid. Incase oft’eT
we can choosg=0 and gett” € T, which provestlid o = C tlid o = o 1id.

2. For Tot>gt' = t” thereis ap € 205 (t); p#0 with t'=t/p. By sort-invariance and
T-monotonicity of= we gett =t[p—t'] = t[p—t"]>t” andt[p—t"]eT.

3.: The subset relationship is simple:
EST[TH ido (B U>g)" C dgorlidolgo(mUbg)" C dgorlido (mURg)"

The first equality follows from (1) andEST[TH idop>g = EST[TH ido>g 0 IZST[TH id . Forthe
second equality consider the following subset relatigmslais a word rewriting system over the
alphabet{11id, =,>¢,} (containing three letters):

Tlido>go= C glido = otlido>g ;

Bsr o Pgr >sr ;

Tlido = 0o >g; Tlido =Zotlido>g;

Tlido=0= C qlido=otlido=
First note that the system is sound: The first rule was pravéd)i The second is transitivity of
>4 The third and fourth are implied by (1). Since the numberuifstrings from {=, >, }?
is decreased by 1 by each of the rules, the word rewritingegys$ terminating. Thus, since
all normal forms from tlid{=,>.,}" are in {rlid>.} U {rlid=}T[{rlid>s}], we get
tlid o (U )" C (Tlido>g ) U ( (tlido =)o (7lido>g )~ ). Using (1) again
as well as>..~ C >, this implies the one direction; the other direction as wsltlee special
case are trivial.

-
C

ST
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4.: By the first equation of (3) we conclude C > [T] x > [T] as well as transitivity of>.
Suppose that is not terminating. By the first equation of (3) there is samé&l — > [T] with
VieN. (ri==riz1 Vri>glit1 ). There is soméy € T and somepg € 205 (tg) with to/po=ro.
Moreover, there is also songe N, — N* such that

. N =riq ri>grliv1
VieN. )
'S ( (/\ Pir1=0 ) v (/\ ri/pi+1=ri+1> )

Define(th)nen inductively by thy1 :=1tn[Po- .. Pn+1 < Fn+1]-
tnytn+1€T
A th/Po...Pn="n
Claim 2:Foreacme Nweget | A thi1/Po--- Pnt1="rn+1
th=1tnt1
A\ ( tnjtn+1 V ( A rn[>STrn+1 > )
Proof of Claim 2: We have t,€T and ty/po...pn=rn in case of n=0 by our choice
above and otherwise inductively by Claim 2. In case gf=rn.1 A pna1=0, since= is
sort-invariant and T-monotonic, we thus geth=tn[Po... Pn < rn] = ta[Po... Pn < rn+1]=
th[Po- .. PnPnt1 < Mt1]=thr1€T. Otherwise we havern>¢ fnr1 and rn/pni1=rne1 and
get: Toth=ta[Po-.. Pn < Mn]=ta[Po. .. Pn < In[Pn+1 < rns1]]=
ta[Po-.-Pn < rn][Po--- PnPn+1 < Mm+1] =tn[Po--- PnPn+1 < fm+1]=th+1. In both cases we
have th11/po--- Pnr1=tn[Po--- Pnt1 < nt1]/Po--- Pnt1="rn+1- Q.e.d. (Claim 2)
Sincer>; is terminating, Claim 2 contradicts; being terminating (below atle T).
If = and T are X-stable, additionally, thenis X-stable too, because[T], » _7/lid, andr>;
are.
Here is an example far not sort-invariant and not T-monotonic: L&iB be two different sorts.
Let a(a)=A, a(f)=A—B, a(g)=A— A. Define=:=0and T= 7. Then we have
> = >, and therefrom:f(a) >a (hence not sort-invariant); ang(a) >a but f(g(a)) 1% f(a)
(hence not T-monotonic).

5.: Take the signature from the example in the proof of (4). Define= {(a,f(a))}and T= 7.
Now = is a T-monotonic (indeed!), terminating relation onthat is not sort-invariant; whereas
> is notirreflexive:a = f(a) >4, a . If one changes (f) to be a(f) = A — A, then= is a sort-
invariant, terminating relation om that is not T-monotonic bul-monotonic; whereas neither
nor (= Ut>¢;) " (in contrast to._jglido (= Ug,)") are irreflexive. Q.e.d. (Lemma B.7)
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Proof of Lemma B.8

For the proof of Claim 3 below, we enrich the signatures byva s@rts,eyw and new constructor
symbolseqs for each old sors € S with arity sS— Shew and L with arity spew. We take (in
addition to R) the following set of new rules (wi¥y € Vsigsfor s S):
R :={eqs(XsXs) =L | SeS }.
Since the sort restrictions do not allow- to make any use of terms of the seftw when
rewriting terms of an “old” sort, we get
VB = wto. —>RUR’,X,B N (T (Sig’ X) X {I) = —)R,X,B/sig/cons

(the latter being defined over the non-enriched signatuf@sys, T= ——[{§}], 1]—, and
~(T]]— do not change when we exchange the ene with the other. We use>;’ to denote
the subterm ordering over the enriched signature. For kgape assumptions of our lemma valid
for this subterm ordering (instead of the subterm orderimthe non-enriched signature) we have
to extend> with eqs(to,t1) >t" if Ji<2.ti>,t’ for somese S andto,t; € 7 (sig, VsicWV, )s
This extension neither changes[T] nor .1—. Thus, since.yj1— is not changed by
any of the extensions, it now suffices to show its confluentsr #ie extensions. Since the sort
restrictions do not allow a term of the s&#w to be a proper subterm of any other term, it is
obvious that after the extension mfwe still may assume either that|—_ . is terminating
and > =>4, orthat 'Z[T]1—>RUR’,>< Cr>, g €, andr is a wellfounded ordering ofr.
Moreover, again due to the sort restrictions not allowingrant of the sors,ew to be a proper
subterm of any other term, #iv(«+—U<1)" (f/p)od holds for the extended— andr> and iff is

an old term, then this also holds for the non-extendedandr>. Therefore, (as no new critical
peaks occur) the critical peaks keep beingjuasi overlay joinable.

RUR’ X,B

We define—, := R X for any ordinal with 3 < w+w; and — (= —

Since— is sort-invariant, T-monotonic (cf. Corollary 2.8), andnteénating below alt € T, by

Lemma B.7(4),>" = > (mlido(—U >¢)" is a wellfounded ordering o> [T]. In case
of >=pg;, we define > :=r'". Otherwise, in case that(rj]|—zx S >, Dg S >, ande

is a wellfounded ordering, we define := >N (>[T] x >[T]) . In any case;> is a wellfounded
ordering on>(T] containing nlido (— U>gU>)". This means in particular that[T] is

closed under—, >4, andr>.

=— .
W+ RUR’ X

We say thatP(v,u,s,t,M) holds if for v,u,t € 7(sig,X) ands e >[T] with v<—u; and
s—t; M CPos(u) with Vp,gel. (p#g= p|/q) and Yoel.u/o=s, we havev |
ufo—t|oeN]. Now (byn := {0}) it suffices to show tha®(v,u,s,t, M) holds for all appropri-
atev,u,s,t, . We will show this by terminating induction over the lexicaghic combination of
the following orderings:

1 >
2. =
3. >
using the following measure dw, u,s,t,1):
1 s

2. the smallest ordingd < w+w for whichve—,u

3. the smallesh € N for whichv<"—_u for the  of (2)
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For the limit ordinals 0w, w+w in the second position of the measure, the induction step is
trivial («—, Cid; <, CUien“—: “—ui0 C Uien ——o.i )- Thus, as we now suppose a
smallest(v,u,s,t, M) with P(v,u,s,t,IM) not holding for, the second position of the measure must

be a non-limit ordinaB+1.
As P(v,u,s,t,M) holds trivially for u=v or s=t we have some’,s with
v U, u (neN) (with ymeN. (v .U = m>n)) and s—g—5t. Now for a

B+1 7 " B+l o
contradiction it is sufficient to show

B

Claim: There is somewith v——z——u[o— S |oeM].

because then we hawe| ulo«—t|oecM] by P(zulo— s |oel],s,t,M), which is smaller
than(v,u,s,t,M) in the first position of the measure by—s.

u - ufo— < |oeM]
wHw, I
B+1
u *
nip+1
*
\ o

Claim 0:We may assumé&/p” € 205 (s)\{0}. s/p” ¢dom(—).
Proof of Claim 0:Otherwise there are sonp € 205 (s)\{0} and some” with s/p’—s".

n+1

v ¥ u mﬂ).n ulo— ¢ |oeN]
V" uo—gp —¢]|oeM] i uo—s"|oeN]
* *
o o

Then, by P(s,s,s/p",s’,{p"}), which is smaller in the first position of the measure by
s>, s/p’, we get §—8" g p’«§'] for somes”. Similarly, by P(v,u,s/p",s’,Mp")
we get v——V——u[p—¢’ | peNp’]|=ulo—s[p’ —']|ocMN] for someV. Finally, by
P(V, ulo—s[p’ < '] |oen], §[p” «—¢’], ", M), which is smaller in the first position of
the measure bys—g[p” — &’], we getV | u[o—s” | ocN]<—u[o— ¢ | oeN].

Q.e.d. (Claim 0)

By Claim O there are somglo,ro),Co) € RUR'; po € sus(V, 7 (X)); with s= lpHo; S = ropo;
andColp is fulfilled w.r.t. —. Furthermore, we have songes 205 (u); ((I1,r1),C1) € RUR;
Wwesus(V,7(X)); with u/g=Il1a; U=u[q« rip]; Cipy fulfilled w.r.t. — and ifC;
contains some inequalitju£v) then w=<p. By Claim 0 we may assume thgtis not strictly
below anyp € M, i.e. that there are np, p’ with pg=q, p'#0, and pel.
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Define = = M\ (gN¥) ;

n’ {p| gpen A (Peros(lr) =11/peV)}

n” = {papen\(an’)} :
Define a functiom on V by xeV): T(x):={p”| 3p. (I1/p=x A p'p’ €’) }. Since for
p” € I'(x) we always have somg with |1/p'=x; xw/p’'=lim/p'p’=u/qpp”’=s, we have

vxeV.vp” el (). xpu/p’=s. (#0)
Since the proper subterm ordering is irreflexive we canne¢ s> .S, and therefore get
VxeV.vp,p"el(x). (p'=p" Vv p'|p"). (#1)

Due to (#0) and (#1) we can defipg by (xe V):
Xpy == xpu[p” S| p" € T(X)].
Define forw e 7':
O :={p'p"| 3x (W/p'=xAp"er(x) }.

By (#0) we get
YweT.Vp €O Wi /p =S (#01)
and by (#1)
vweT. Vp,p’e0w. (PP=p" vpIp") (#02)
and
YWET . Wy =Wih[p — S | P €Oy]. (#03)
Note that forA := 0\’ we have
O, =MN'wA. #2)
By (#01) and (#2) we get
VDIEHIUAUHII.|1U1/DIZS #3)
and by (#©2) and (#2)
v, p'eMUA. (P'=p" v Pp"). (#4)
Since
v eMUA. (P eros(l1) = l1/p €V);
vp'en”. (p'eros(lh) A li/p" ¢V) (#5)
we get by (#3)
v eMuA.vp'en”. p’ | pf (#6)
and then together with (#2) and (#4)
vp,pt e MwAwn” (p'=p" v p'[|p"). (#7)
Now due to (#2) and @3) we have
iy =lw[p —s| peMUA] (#8)

and then by (#6) and (#3)
vp'en” iy /p’=s. (#9)
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Summing up and defining we have:

o = ulq—li[p s |pen’]] [0S |oe=] ;
iy = U[qulu}[p’Hém’eﬂ’U/\]] [on\oez]
by (#8 = ulgq«| 0+« oc=| :
o) y = U%ghliﬁigp’hﬂp’el'l’ul'l”]] %m—#loef% :
Uz = u[q<li[p < |peNuAun”]]lo—s|oe=]
(by @#6), (#8)) = ulg— (P —s|pen’]]  [o—<|oeZ] ;
u = u[gerip] o
Go = ulge rayh) 09 [0cZ]
(by Claim 2) = u[g < Uo] [0—S|oe=] ;
Giy1 = u[q< Ui1] [0— 9§ |0eZ]
u u n v
B+1,q B+1
==+, Zu(qr1’) ==w+w, =U (90, ) *
*
to I U1 Uo Wo
@+, (M) wred _
W+, qPo *
=—=w+w, (") =—=w+w, (q") 01 * W1
Uiz f Uiz * i * Wi
w+w, (gN)

Due to (#3) we haveupt—,, , g Uo—Hw e gn) UL-
Thus by (#6): Uz .0 (qn) U3t @) Ut.-
We getu;—

wiwglo Dy Lemma 2.7 and

Claim 3: C1j; is fulfilled.
Moreover, we get uj—wp——Vv for some wp by (#91), (#92), (#93), and
P(v,U,s,s,=U(g®y,)), which is smaller in the second or third position of the measur
Claim 1:We may assume that there is sojen” with 1 [p «— S| #r11].

Claim 2: There are somacN; p:{0,...,n—1} — N*; u:{0,...,n} — 7 (sig, X); such that
[P’ S | p'en”]—n;
amn ((, G200p - d/pl

A Ui/ pie—Ui/pi <s

); and Up=r1}y.

Inductively fori < n we now get somev; . with 0i+1l>wi+1<iwi due to Claim 2 and
P(wi, Gi, Ui /pi, Uir1/Pi, {api}) which is smaller in the first position of the measure by Claim 2
Finally by Claim 2 we getus——u[q« Up][0+ S |0€ Z]=0,. This completes the proof of
Claim due to u[o — S | 0 € M] =l——Wp—V.
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Proof of Claim 1:In case ofp,p'eM” with I1Wj[p«—S]=ry and I[P S |=ri
we cannot have p||p’ because then by (#9) we would get the contradicties:111; /p=
iy [p —S]/p=riy/p=l1y[p < S]/p=5<s. Therefore, if Claim 1 does not hold, i.e. if
vp'eN”. iy p” — s]=ri;, by (#7) must have we havel”| <1. In case MN”"=0, we
have u3=U;——wp. Otherwise, in case ofl1”={p} and liy[p+ §]=ri, we have
lhy[p s | pen’|=liy[p—s]=ri;, and then us=CUp—Wp. In both cases we have
shownClaim due to u[o < § | 0 € M] =l ——liz3—Wp—V. Q.e.d. (Claim 1)
Proofof Claim2 Let & € sus(V,V) be a bijection with &[¥ (lo=ro«—Cp)] N
v (l1=r1+—Cp) = 0. Letp be given byx € V): xp := {ig‘i% gtﬁjvq\;ég_rl%q)}.
By (#9) and (#5) for thep of Claim 1 we have IoEp:IOEE*uO:s:Ilu’l/p:(Il/p)p and
l1/pgV. Thus, let Y = ¢ ((lo=ro«—Cp)&,l1=r1+—Cy); o := mgu{(lp&,11/p)},Y);
and ¢ € sus(V,7 (X)) with yl(od) = yIp. Lettg:=I1[p«—ro&] andt; :==r1. By
Claim 1 we may assume top0#t10  (since otherwiselij[p«— S |=Il14[p < roto]=
toop =t10¢p =ripy). Thus ((to,Coi,...), (t1,Cy,...), l1, 0, p) is a critical peak. By
Lemma 2.12, (Co§Cyp)a¢ is fulfilled w.rt. —, . Since (I1/p)odp=s it makes
sense to defineA := { p'eros(I)\{p} | l1/p ¢V A (I1/p))odp=s}. Then by (#5) and
(#9) we get N” C {p}uA. Thus by pel” we get N"UA = {p}UA and therefore
|1U/1[p”HS/’ p”el'l”] _ |10¢[p//<_s/| p”El_l"] [p”<—s| p”EA\rl”]

L} |10¢[p//(_sl| pllen//] [p//(_sl| DHEA\I_I”]

= ho¢[p’ < s'| p’e{p}ul]

= l1[prog] [p" —ro€ | p"€d] b

= 1 [p"—to/p|p"€h] .
Moreover, forw with w(«—U<))" (I1/p)o¢ dueto (I1/p)op =s we havew<s and therefore
— is confluent belowv due toP(?,w,w, ?, {0}) which is smaller in the first position of the mea-
sure. Finally, by Claim 0 we getp” € 205 ((11/p)ad)\{0}. (11/p)ad/p” gdom(—, ). Thus,
by >-quasi overlay joinability, there are some N; p: {0,...,n—1} — N*; 0:{0,...,n} — T;
with to[p” «—to/p | P’ €A]od——Ug;
Vi<ﬁ( U1 =GP — U1/ P

A A Ui/ Pie—Ui/pi («—U<)" (l1/p)op =s

vdue to se>[T] we know thats(— Ur>)"v implies s>v. Q.e.d. (Claim 2)

) and up=ty0¢ =rq1y. Finally, for all

Proof of Claim 3:For (u=v) in C; we have upy | Vih. In case of =0, due to (#1), (#92),
and (#93), we have upy[p’ — s | p' € Ogl«to,Ut =Vih o Viu [P — S | P€Oy] and then
upy =upy[p’ s | p’ € Og]—op0y
Upp[p' —s'| p'€ OBy =Vu[p’ 5’| p' € B3O  top oVt P S| p'€O7] =Via.
Otherwise, in case of @B, we have for the sors € S of u: L;B(qu(u_,\ﬂ)pl. We get
1 | (eqs(u, V) by P(L, (eqs(U, V)M, S, S',Ocqyavy) Which is smaller in the second position.
Since there are no rules fdr and only one foeqg; this meansugf | vij. For (Defu) in Cy we
know the existence of somiee G 7 (cons with U——,Upy. We get somel with U—— U4
by P(0,upy,s,s,0g) which is smaller in the second position. By Lemma 2.10 we iget
G 7 (cons. Finally, for (Uz£V) in C; we have somé&, Ve G 7 (cons with iy ——, 0 Ve— iy (by
Lemma 2.11 and< B). By applying the same procedure as before twice welget G 7 (cons
with Uy —— 0 TIV—"-Ve—— Vi, i.e. Uy —— U VeV . Q.e.d. (Claim 3)
Q.e.d. (Lemma B.8)
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Proof of Lemma C.3

Claim 0: — and—_ are commuting.
Proof of Claim 0:By the assumed strong commutation assumption and Lemma+3:3 Lw

and——,_ are commuting. Since by Corollary 2.14 we have- C +-0——_C ——, now —
and—, are commuting, too. Q.e.d. (Claim 0)

Claim 1:1f —_o-#+o——_ strongly commutes over—, then— is confluent.
Proof of Claim 1: —_o-#+0o——_ and —— are commuting by Lemma 3.3. Since by Corol-

lary 2.14 we have— C —_o-+o—— _ C ——, now — and— are commuting, too.
Q.e.d. (Claim 1)

We are going to show the following property:

* * *
Wot—wrwngUtwion, W1~ = Wp——,0—H>0—— 0 «—Wj.

u i w1
w+w, Mg
w, Mg *
k %
Wo o - o o

W W

Claim 2: The above property implies that—_o-+o——_ strongly commutes over— and that
— is confluent.
Proof of Claim 2:First we show the strong commutation. By Lemma 3.3 it sufftoeshow that

— o->o0——_ strongly commutes over—. Assume u’«——u'——_u--w;— W, (cf. di-
agram below). By the strong commutation assumed for our lerand Corollary 2.14, there
arewp andwg with u” vax/oéwwoeﬁ—u. By the above property there are somg w; with
Wo——, Wa—t0—— Wj+—wj. By Claim O we can close the peak/;«—w;——_ wy accord-
ing to w;——_ W,«—w, for somew,. By the assumed confluence ef-,, we can close the
peak W) wo—— W3 according towy—— Wi — w3 for somews. To close the whole di-
agram, we only have to show that we can close the pegk*—wW3—H—>oi>wW2 according to
Wj-t0—— o+ — W, which is possible due to the strong commutation assumedifdemma.

u i u I W1 i Wo
w I w
= *\L *
* * *
I o
Wo " W3 T " V\/l " VV,Z
*|w *\L&) X
17 * * I *
O @)
u = W = Wy I =
Finally, confluence of— follows from Claim 1. Q.e.d. (Claim 2)

W.l.o.g. let the positions of1; be maximal in the sense that for anye IN; and = C
20S (u)N(PN™) we do not haveu—+—,n,\(p=Wi anymore. Then for eadh< 2 andp < T;
there are((li p,rip),Cip) €R and pyjp e suB(V,7 (X)) with u/p=Iipli,p, i pki,p=Wi/Pp,
Ci pHi,p fulfilled w.r.t. —. Finally, for eachi < 2: wi=u[p < i plip | p€;i].
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Claim 5:We may assume/i <2. Vpell;. | p ¢ 7 (consVsigwV, ).

Proof of Claim 5: Define = := {pell | lipe7T(consVsicwV,)} and u =
ulp«ripHip| PEMi\Zj]. If we have succeeded with our proof under the assumption of
Claim 5, then we have ShOWD’OLwVO—H%OL)wV]fLU& for somevyp, v1 (cf. diagram below).

By Lemma 13.2 (matching both ifsandv to our; p) we getVi <2.Vpe=j. | pli p—, T, pHi.p

and thereforevi < 2. U~ wi. Thus from vy« —uj——_w; we getv;—— Vo« —w; for some

v, by Claim 0. Due to the assumed confluence-ef,, we can close the peawp«—,uy—— Vo
according to woi>w\/0<iwvo for somev,. By the strong commutation assumption of our
lemma, from v« vo-t-o——_v1— V2 We can finally concludes—+o——_ o« — va.

/ *

u i Uy 5 W1
W+, M\=1

==w+w,Mo\=Zp *J/ *
VA * V I o * Vv i Y
0 w 0 W 1 W 2

L[] *\Lu) * |

* *

W \/ ! ¢} o

0 (V] 0 I (V]
Q.e.d. (Claim 5)

Define the set of inner overlapping positions by
Q(Mo,M1) == J{ peMui| 3qeM;. 3q eN*. p=qd },
i<2

and the length of a term b¥(f(to, ...,tm-1)) := 1+ ¥ j<mA(tj).

Now we start an induction on Z Au/p) in <.
p'eQ(Mo,My)

Define the set of top positions by
©:={ peNoumy | =3geNouM;. 3 eNT. p=qd }.
Since the prefix ordering is wellfounded we haveyi <2.Vpell;. 3qe®. 3¢ eN*. p=
qq. Then Vi<2 wi=wi[q—W/q|gqe@]=u[p«riptip|peni][qg—w/q|qeO]=
u[q<—w/q|qe®]. Thus, it now suffices to show for allc ©
WO/quo—H—meoéwl/q
because then we have
Wo=U[q < Wo/q | € O] o-t>0——_ 0+ —U[q+ W1 /q | g€ O] =Wj.

Therefore we are left with the following two cases tpe O:
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q¢ M1 Then geMg. DefineN) :={ p| gpe; }. We have two cases:

“The variable overlap (if any) case¥peN|N?os(log). log/PEV:

lo.gHoq { w1/q
W+, M)

(l)+00,0 |o’qV

Wo/q === ToqHoq H roqV

Define a functio on V by xeV): T'(x) :={ (p/,p") | log/P'=x A p'p’ €N} }.
Claim 7:There is som® € s us(V,7 (X)) with

VX e V. XHo g )
\ A VP edom(T(X)). xv=XHoq[P" < 1 qppbrgpp’ | (P, P") EF(X)]
Proof of Claim 7:
In case of dorfl (x))=0 we define xv := Xpoq. If there is somey’ such that dorfl (x)) =
{p'} we definexv :=xpoq[ p” < r1gpptaegpp | (P, P") €T (X)]. Thisis appropriate since due
to V(p', p") €T (X). Xkoq/ P’ =loglo.q/P'P'=u/q'p" =l1qppbagpp We have
XHo,q=XHog[ P + I qpptegpp | (P, P") €T (X) ]

XHo,q[P” — riqppbugpp | (P, P7) €T (X)]=xv.
Finally, in case of [dom(I"(x))| > 1, loqis not linear inx. By the conditions of our lemma and

Claim 5 this impliesxe V.. Since there is som@’, p”) € I'(x) with Xpo,q/P" =l1qyp’H1.qpp’
this implies |1 qypH1qpp €7 (cONsV,) and thenly gy € 7 (cONs VsV, ) which contra-
dicts Claim 5. Q.e.d. (Claim 7)

Claim 8: lpqv=w1/0q.

Proof of Claim 8:

By Claim 7 we getw; /q=u/q[p'p” — r1 qypbiqop | IXEV. (P, p") el (X)]=
log[P < XHog [ log/P' =XeV][P'P" 1 gpphigpp | XEV. (P, p") €T (X)]=

log[ P« Xpog[ "+ rgupbagpp | (P, P") €T (X)] [log/P =xeV]=
loglP < xv [log/p'=xeV]=lgqV. Q.e.d. (Claim 8)

Claim 9: wo/q-+-rogV.
Proof of Claim 9:Since Wo/q=rogloq, this follows directly from Claim7.  Q.e.d. (Claim 9)

By claims 8 and 9 it now suffices to sholy qv—:roqv, which again follows from Lemma C.4

since— and—_ are commuting by Claim 0 and sincéxec V. xpo,qi>xv by Claim 7 and
Corollary 2.14.
Q.e.d. (“The variable overlap (if any) case”)
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“The critical peak case”: There is sorpe= M,N20S (loq) With lo g/ P& V:

lo.gHo.q u f w1/q
@re.p wtw.My\{p}
=—w+w,N” *
* I *
w+w,0 V1 ” V3 f o S \/1
*|w *\L&) *|w
* V; * V. I * o
Wo/q " 2 " 4 I ° "
Claim 10: p#0.
Proof of Claim 10:If p=0, then 0<}, then qeli, which contradicts our global case
assumption. Q.e.d. (Claim 10)

Let& € sus(V,V) be abijection with&[7 (((I1,qp,F1.gp),Crap))] N ¥ (((log:0,9):Co.q)) = ©.
Define Y= &[7 (((lLap:r1.qp),C1qp))|U ¥ (((lo.0,0.0),Cog))-
ng’% if x e ‘V(((|o7q,|’o7q),Co,q))} (XeV).
X€ My gp else
BY l1,qp&P=11,qpE€ tH1,qp=U/aP=loqkoq/P=logp/P= (log/P)P
let o := mgu({(l1qp¢,loq/P)},Y) andd € sus(V,7 (X)) with y1(od)=vy1p.
Defineu’ :=lg gHo,ql P < r1,qpt1,qp]. We get

U=u/q[p" — lygphrgp | P'E€M\{PHIP < r1qpt1,ap] Hwwn; (o)

u/a[p’ — rigpgp | P'EM;]=wi/q.

If log[p < rigp§lo=roqo, then the proofis finished due to

Wo/d=rogHo,g="0,q00 =log[ P« r1,qp&]0¢ = U/_H—>w+w,r|’l\{p}Wl/Q~
Otherwise we have (loq[p < r'1,qp&]0,C1,qp€0,1), (r0,40,Co,q0,1), l0q0, P) € CAR) (due to
Claim 5); p#0 (due to Claim 10); Cy qp€0¢ = Cy gph1,gp is fulfilled w.r.t. —; Coq0d =
Coqloq is fulfilled w.r.t. —. Due to Claim 0 and our assumeslcoarse level parallel closed-

* *
ness we havel =log[p < r1,qp |00 —+-V1— Vo ro,q0d =roglo,g=Wo/q for somevy, vo.

Letpe sus(V,7 (X)) be given byxp = {

We then havevl(—H—(an,l'l”u/_H_>w+w,|'|’l\{p}W1/q for somel”. By Z )\(u//p//) <
p'eQ(n”,n1\{p})
MU/ =S Au/ap’) <
pem\{p} p'elm\{p}

> Auap) = 5 Au/p) = ; Au/p) = ; A(u/p’), due to our
preny peany peQ({a},M) P'eQ(Mo,M1)

induction hypothesis we get sormg, vz with v;——_v3-#-0—— Vj<—w;/g. By confluence
of —_, we can close the peak & according to V2L>wV4<LwV3 for somev,. Finally by
the strong commutation assumption of our lemma, the peals aan be closed according to
V4—+—0 Lw o ;w\/l'

Q.e.d. (“The critical peak case”) Q.e.d. (g&My”)
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qeMy: DefinelMg :={ p| gpeMp }. We have two cases:

“The second variable overlap (if any) cas&peMNyN2os (I1q). l19/PEV:

W+, |_|6 rl,qulq
Wo/q =——= l1.qv r1,qv

Define a functio on V by xeV): T'(x) :={ (p/,p") | lng/P'=x A p'p’ €Nj }.
Claim 11:There is some € s u3(V,7 (X)) with
vxe V. ( XVer—xihg ) .
A VP edom(T(X)). Xkag[ P — FogpprHogpp | (P P") €M ()] =xv
Proof of Claim 11:
In case of dorfl (x))=0 we define xv := xpy . If there is somey’ such that dorfl™ (x)) =
{p'} we definexv := Xy q[ p” < rogppHogpp’ | (P, P") €T (X)]. Thisis appropriate since due
to V(p', p") €T (X). Xpoq/ P’ =l1.gbra/P'P'=U/qP'P"=logppHogpp We have
Xt =Xteg[ P’ — logpprboapp: | (P, P") €T () ]+

Xba.q[ P" — FogpprHogppr | (P, P") €T (X)]=xv.
Finally, in case of [dom(I"(x))| > 1, |14 is not linear inx. By the conditions of our lemma and

Claim 5 this impliesxe V.. Since there is som@’, p”) € I'(x) with xp1,q/P" =lo qup’Ho.qpp’
this implies lo qyp/Hogpp’ €7 (cONsVe) and thenlg gy €7 (consVsicwV,) which contra-
dicts Claim 5. Q.e.d. (Claim 11)

Claim 12: wo/q=I14v.

Proof of Claim 12:

By Claim 11 we getwo/q=u/q[p'p" — rogpp'Hogpp’ | IXEV. (P, p") el (x)]=
l1a[ P Xbg [ l1q/P' =XEV][P'P’ —roqppHogpp’ | XEV. (P, p") €T (X)]
l19[ P’ — Xt g[ P TogppHoqpp | (P, P")€T(X)] [ l1q/P'=XEV]=

l1glp —xv |lyg/P=xeV]=Ilgv. Q.e.d. (Claim 12)

Claim 13: rq gv+#+-w1/q.
Proof of Claim 13Sincery qh1,q=W1/q, this follows directly from Claim 11. Q.e.d. (Claim 13)

By claims 12 and 13 using Corollary 2.14 it now suffices to shiwv—r1qv, which again
follows from Lemma C.4 since— and —_ are commuting by Claim 0 and sincgxeV.
X}y q——xv by Claim 11 and Corollary 2.14.

Q.e.d. (“The second variable overlap (if any) case”)
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“The second critical peak case”: There is some MgN2 oS (I1,q) with [14/pEV:

I W
17qu'17q (D+(.0,0 1/q
W+, p *

(l)+w n//
==+, Mo\ {p} * *
% * *
W/ >0 >0 sV, s

Let € sus(V,V) be abijection with&[7 (((lo,gp; Fo,gp),Co.qp))] N ¥ (((11,g,71,9),C1,q)) = 0.
Define Y = &% ((logp,ro.ap),Co.qp))] U (((I1g,71q),C1q))-
X}J.]:% if x € rV(((llvq’rLQ)vCl,Q»} (XEV).
X¢ " “Hoqp €lse
By lo.qp€P=10,qpE& Hoqp=U/ap=I1qt1q/P=11.40/P= (l14/P)P
leto := mgu({(lo,gpé,l14/P)},Y) andd € sus(V,7 (X)) with y1(od)=y1p.
Defineu’ := 11 gqH1,q[ P < ro,qpHo,gp]- We get
Wo/q=u/d[p' < rogptogp | P’ € Moltwranp)
u/d[p’ — logpHogp | P'EM\{P}][P — rogpHo.gp] =1
If l1g[p < rogp§lo=r1q0, then the proofis finished due to
Wo/ Gt wn (U =l1,g[ P < r0,qp& |00 =T1400 =r1 gl g=W1/0.
Otherwise we have((I1,q[p < roqgp&]0,Coqp€0,1), (r1q0,C1,40,1),1140, p) € CAR) (due
to Claim 5); Coqpd¢d = CogpHogp Is fulfilled w.rt. —; Cypq0¢ = Cyglrq is ful-
filled w.rt. —. Due to Claim 0 and our assumeotcoarse level parallel joinability we
have U=liq[p«— ro7qpﬁ]o¢ﬂﬂ—>vli>wv2<ir17qo¢:r17qul7q=W1/q for somevy, vo. We

Letpe sus(V,7 (X)) be given byxp = {

then have Wo/ <t wny (U V1 for somen”. Since Z AU /p") =
p'eQ(Mp\{p}.N")

> AW/p) =5 Muae) < 5 Auap) = 5 Au/p) =
PeMo\{p} PeMo\{p} p’eMy ey

Au/p) = z A(u/p’) due to our induction hypothesis we get sovhevith
p'eQ(Mo.{a}) p'eQ(Mo,My)
Wo,/q—, 00— Vi« —Vy. Finally the peak at; can be closed according g —— o <V,
by Claim 0.
Q.e.d. (“The second critical peak case”) Q.e.d. (Lemma C.3)
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Proof of Lemma C.4
By Lemma 2.7 it suffices to show for each litetain C thatLv is fulfilled w.r.t. —, . Note that

we already know thattp is fulfilled w.r.t. — . Since ' (C)CV,, for all xin 7 (C) we have

XHe T (consV,) and then by Lemma 2-1&UL>R,X@VM

L = (so=51): We have spv+—g,  Sol——gxloc—rxSIH—ry oSV for someto. By the in-

clusion assumption of the lemma we get somwith SOVLR’Xwinto and then (due to
VLR,X sluLRﬁXﬁwslv) VL}R,X o LR,X S1V.

L = (Defs): We know the existence dfe g7 (cong with sve—_, sp—,t. By the above
inclusion property again, there is sortlewith vaR’Xt’LR’Xt. By Lemma 2.10 we get
t'€ g7 (cons.

L = (so#s1): There exist somdo,t; € 7 (cong with Vi<2. sv<—, ;Sh—p,ti and

tof, t1. Just like above we geh, t] € 7 (cong with Vi<2. sv—_,t/—— ti. Finally

/,* * I ; / /
to<—R,xt0iR,xt1—>R,xt1 implies tof_ b



