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Abstract

In the middle of the 1980s, David Poole introduced a semantical, model-theoretic
notion of speci�city to the arti�cial-intelligence community. Since then it has found
further applications in non-monotonic reasoning, in particular in defeasible reasoning.
Poole tried to approximate the intuitive human concept of speci�city, which seems to
be essential for reasoning in everyday life with its partial and inconsistent information.
His notion, however, turns out to be intricate and problematic, which � as we show �
can be overcome to some extent by a closer approximation of the intuitive human
concept of speci�city. Besides the intuitive advantages of our novel speci�city orderings
over Poole's speci�city relation in the classical examples of the literature, we also
report some hard mathematical facts: Contrary to what was claimed before, we show
that Poole's relation is not transitive in general. The �rst of our speci�city orderings
(CP1) captures Poole's original intuition as close as we could get after the correction
of its technical �aws. The second one (CP2) is a variation of CP1 and presents
a step toward similar notions that may eventually solve the intractability problem
of Poole-style speci�city relations. The present means toward deciding our novel
speci�city relations, however, show only slight improvements over the known ones for
Poole's relation, and further work is needed for testing the viability of a workaround
we suggest for applications in practice.

Keywords: arti�cial intelligence, positive-conditional speci�cation, non-monotonic rea-
soning, speci�city, defeasible reasoning
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1 Introduction

A possible explanation of how humans manage to interact with reality � in spite of the
fact that their information on the world is partial and inconsistent � mainly consists of
the following two points:

1. Humans use a certain amount of rules for default reasoning and are aware that some
arguments relying on these rules may be defeasible.

2. In case of the frequent con�icting or even contradictory results of their reasoning,
they prefer more speci�c arguments to less speci�c ones.

An intuitive concept of speci�city plays an essential rôle in this explanation, which is
interesting because it seems to be highly successful in practice, even if it were just an
epiphenomenon providing an ex eventu explanation of human behavior.

On the long way approaching this proven intuitive human concept of speci�city, the
�rst milestone marks the development of a semantical, model-theoretic notion of speci�city
having passed �rst tests of its usefulness and empirical validity. Indeed, at least as the �rst
step, a semantical, model-theoretic notion will probably o�er a broader and better basis
for applications in systems for common sense reasoning than notions of speci�city that
depend on peculiarities of special calculi or even on extra-logical procedures. This holds in
particular if the results of these systems are to be accepted by human users.

David Poole has sketched such a notion as a binary relation on arguments and eval-
uated its intuitive validity with some examples in [Poole, 1985]. Poole's notion of
speci�city was given a more appropriate formalization in [Simari & Loui, 1992]. The
properties of this formalization were examined in detail in [Stolzenburg &al., 2003].

In this paper, before we give a speci�cation of the formal requirements on any reasonably
conceivable relation of speci�city in � 5, we present a detailed analysis of the reasons behind
our intuition that Poole's speci�city is a �rst step on the right way (� 4). We expect that
the results of this analysis will carry us even beyond this paper to future improved concepts
of speci�city, especially w.r.t. e�ciency, but also w.r.t. intuitive adequacy. We hope that
the closer we get to human intuition, the more e�ciently our concepts can be implemented,
simply because they seem to run so well on the human hardware, which � by all that
we know today � is pretty slow.

Moreover, in � 6, we clearly disambiguate Poole's speci�city from slightly improved
versions such as the one in [Simari & Loui, 1992], and introduce a novel speci�city
relation (CP1), which presents a major correction of Poole's speci�city because it removes
a crucial shortcoming of Poole's original relation (P1) and its slight improvements (P2, P3),
namely their lack of transitivity.

Furthermore, in � 7, we present several examples that are to convince every carefully
contemplating reader of the superiority of our novel speci�city relation CP1 w.r.t. human
intuition.

Finally, in � 8, we discuss e�ciency issues and introduce the speci�city ordering CP2,
a variation of CP1, which presents a �rst step toward similar notions that may �nally solve
the intractability problem of Poole-style speci�city relations, for which we also present a
workaround which remains to be evaluated in practice; and then we conclude with � 9.
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2 Basic Notions and Notation

De�nition 2.1 (Term, Atom)
A term is inductively de�ned to be either a function symbol applied to a (possibly empty)
list of terms or a symbol for a free variable.
An atom consists of a predicate symbol applied to a (possibly empty) list of terms.

In what follows, we will mainly use nullary function symbols (�constants�), such as tweety,
and singulary predicate symbols, such as bird, forming atoms such as bird(tweety), which
states that tweety is a bird.

2.1 Specifying Rules and their Theories

For the remainder of this paper, let us narrow the general logical setting of speci�city down
to the concrete framework of defeasible logic with the restrictions of positive-conditional
speci�cation with an inactive negation symbol, as found e.g. in [Stolzenburg &al., 2003]

and [Chesñevar &al., 2003].

In e�ect, these restrictions give us the standard �de�nite rules� of positive-conditional
speci�cation (or Horn-clause logic). Positive-conditional speci�cation di�ers from logic
programming in Prolog (cf. e.g. [Kowalski, 1974], [Clocksin & Mellish, 2003]) inso-
far as termination issues and the order of the de�nite clauses are irrelevant for the semantics,
and insofar as there is no cut predicate (`!') and no negation as failure.

Such de�nite rules are implications of the following form: The conclusion is an atom;
the condition is a (possibly empty) conjunction of (positive) atoms which may contain
extra variables (i.e. free variables not occurring in the conclusion). This is can be seen as
quanti�er-free �rst-order logic with speci�cations restricted to implications of the mentioned
form.

We ask the reader not to get confused on the mentioned e�ective form of our rules by
the fact that � in place of the atoms � literals resulting from an inactive negation sym-
bol are actually admitted in the rules of De�nition 2.2. This special form of negation is
standard in defeasible logic for convenience in the application context (such as an argumen-
tation framework). In this paper, however, we can consider this negation just as a form of
syntactical sugar (cf. De�nition 2.3, Remark 2.4).

De�nition 2.2 (Literal, Rule)
A literal is an atom, possibly pre�xed with the symbol �¬� for negation.
A rule is a literal, but possibly su�xed with a reverse implication symbol �⇐ � that is
followed by a conjunction of literals, consisting of one literal at least.

De�nition 2.3 (Theory, Derivation)
Let Π be a set of rules. The theory of Π is the set TΠ inductively de�ned to contain
• all instances of literals from Π and

• all literals L for which there is a conjunction C of literals from TΠ such that
L ⇐ C is an instance of a rule in Π.

For L ⊆ TΠ , we also say that Π derives L, and write Π ` L.
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2.2 Secondary Aspects of our Logic

Remark 2.4 (Negation Symbol �¬�)
The negation symbol �¬�, which occurs in De�nition 2.2 and which seemingly gets us beyond
the de�nite rules of positive-conditional speci�cations by admitting literals instead of just
atoms, does not have any e�ect on the derivations and theories considered in this paper
(cf. De�nition 2.3).

For instance, the literal ¬flies(edna) may actually be considered as the atom resulting
from application of the predicate ¬flies to the constant symbol edna.

On the other hand, if we write an atom A as A = true, and a negated atom ¬A as
the equational atom A = false, for the data type Boolean given by the constructors true
and false, then the rules of our speci�cation can be seen as positive-conditional equational
speci�cations in the framework for positive/negative-conditional equational speci�cation
found in [Wirth & Gramlich, 1994], [Wirth, 1997; 2009].1

In the application context, of course, the literals ¬flies(edna) and flies(edna) will be
considered to be contradictory (cf. De�nition 2.5), but this is a secondary and non-essential
notion built on top of our derivations and theories, which do not rely on this notion.

As a consequence, none of the results in this paper relies on this special negation symbol.
To the contrary, in the weakness of our logical theories we see an indication for the generality
of our results (cf. Remark 2.6).

To distinguish the inactive negation here from negation as failure and from any other
form of negation playing an active rôle in derivation, the symbol �∼� is sometimes used in
the literature of defeasible logic in place of our more standard symbol �¬�.

De�nition 2.5 (Contradictory Sets of Rules)
A set of rules Π is called contradictory if there is an atom A such that Π ` {A,¬A};
otherwise Π is non-contradictory.

Remark 2.6 (Weakness of Our Logical Theories)
On the one hand, {A, ¬A⇐A} is contradictory according to De�nitions 2.3 and 2.5.

On the other hand, {A⇐¬A, ¬A⇐A} is non-contradictory according to these de�-
nitions, although we can infer both A and ¬A from {A⇐¬A, ¬A⇐A} in classical
(i.e. two-valued) logic.

For the case of our very limited formal language, our notions of consequence and con-
tradiction are equivalent both to intuitionistic logic and to the three-valued logic where
¬ and ∧ are given as usual,2 but (following neither Kleene nor �ukasiewicz) implica-
tion has to be de�ned via

(A⇐TRUE) = A, (A⇐FALSE) = TRUE, (A⇐UNDEF) = TRUE.

1Note, however, that derivability is invariant under this equivalence transformation on atoms only if
our speci�cation is non-contradictory in the sense of De�nition 2.5, in which case also the equational
speci�cation is consistent in the sense of true 6= false.

2The standard interpretation is that TRUE is 1, UNDEF is 1
2 , FALSE is 0, ¬A is 1−A, and A∧B

is min{A,B}. In other words: ¬TRUE = FALSE, ¬UNDEF = UNDEF, ¬FALSE = TRUE; TRUE∧A = A,
UNDEF∧TRUE = UNDEF, UNDEF∧UNDEF = UNDEF, UNDEF∧FALSE = FALSE, FALSE∧A = FALSE.
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2.3 Global Parameters for the Given Speci�cation

Throughout this paper, we will assume a set of literals ΠF and two sets of rules ΠG, ∆
(cf. De�nition 2.2) to be given:

• A set ΠF of literals meant to describe the facts of the concrete situation under con-
sideration,

• a set ΠG of general rules meant to hold in all possible worlds,3 and

• a set ∆ of defeasible (or default) rules meant to hold in most situations.

The set Π := ΠF ∪ ΠG is the set of strict rules that � contrary to the defeasible rules �
are considered to be safe and are not doubted in the concrete situation.

2.4 Formalization of Arguments

Whether a rule is a strict one from Π or a defeasible one from ∆ has no e�ect on theories
and derivations (cf. De�nition 2.3). If a contradiction occurs, however, we will narrow the
defeasible rules from ∆ down to a subset A of its ground instances (i.e. instances without
free variables) � such that no further instantiation can occur. Such a subset, together
with the literal whose derivation is in focus, is called an argument. With implicit reference
to the given sets of rules Π and ∆, the formal de�nition is as simple as follows.

De�nition 2.7 ([Contradictory] [Minimal] Argument)

(A, L) is an argument if A is a set of ground instances of rules from ∆ and A∪Π ` {L}.
(A, L) is a minimal argument if A is an argument, but (A′, L) is not an argument for any
proper subset A′ ( A.

An argument (A, L) is contradictory if A ∪ Π is a contradictory set of rules.

Remark 2.8 (Non-Ground Arguments)
From a re�ned standpoint, what we actually need is not exactly a set A of ground instances,
but just of the instances applied in the derivation. Then, however, we have to freeze
the variables in A because they must not be instantiated in the derivation A∪Π ` {L}.
We avoid this re�nement here until we come to � 8.3, because it does not play an essential
rôle before and because we want to stay within the traditional framework as long as possible
to facilitate a more direct comparison.

3In the approach of [Stolzenburg &al., 2003], the set ΠG must not contain mere literals (without
su�xed condition). To obtain a more general setting, we omit this additional restriction in the context
of this paper, simply because it is neither intuitive nor required for our framework here. For the actual
occurrence of a literal in ΠG, see the discussion of Example 7.7 in � 7.4.
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Remark 2.9 (Minimality and Non-Contradiction of Arguments)
Some authors (cf. e.g. [Stolzenburg &al., 2003], [Chesñevar &al., 2003]) require all
arguments

1. to be minimal arguments, and

2. to be non-contradictory.

Because non-minimal as well as contradictory arguments often occur in practical situations,
there is no use-oriented justi�cation for any of these requirements.

For requirement 1 there is no conceptual justi�cation, either, because the non-minimal
arguments become inessential by our preference on speci�c arguments, in the sense that for
every argument there must be a minimal sub-argument that is at least as speci�c, cf. Co-
rollaries 6.7, 6.13, and 8.11.

Because being contradictory is only a secondary aspect of our logic (cf. � 2.2), there is
no conceptual justi�cation for requirement 2, either.

To obtain a more general setting in the comparison of arguments, we omit these re-
strictions in the context of this paper, where they turned out to be completely super�uous.
In particular, the omission of these requirements has no e�ect on the results of this paper.

2.5 Quasi-Orderings

We will use several binary relations comparing arguments according to their speci�city.
For any relation written as .N (�being more or equivalently speci�c w.r.t. N �), we set

&N := { (X, Y ) | Y .N X } (�less or equivalently speci�c�),

≈N := .N ∩&N (�equivalently speci�c�),

<N := .N \&N (�properly more speci�c�),

≤N := <N ∪ { (X, X) | X is an argument } (�more speci�c or equal�),

MN :=

{
(X, Y )

X, Y are arguments with
X 6.N Y and X 6&N Y

}
(�incomparable w.r.t. speci�city�).

A quasi-ordering is a re�exive transitive relation. An (irre�exive) ordering is an irre�exive
transitive relation. A re�exive ordering (also called: �partial ordering�) is an anti-symmetric
quasi-ordering. An equivalence is a symmetric quasi-ordering.

Corollary 2.10 If .N is a quasi-ordering, then ≈N is an equivalence, <N is an ordering,
and ≤N is a re�exive ordering.
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3 Motivating Examples

For ease of distinction, we will use the special symbol �←� as a syntactical sugar in concrete
examples of defeasible rules from ∆, instead of the symbol �⇐�, which � in our concrete
examples � will be used only in strict rules.

Moreover, in our graphical illustrations we will indicate membership in ΠF by double
underlining.

Example 3.1 (Example 1 of [Poole, 1985])

ΠF
3.1 :=

{
bird(tweety),
emu(edna)

}
,

ΠG
3.1 :=

{
bird(x) ⇐ emu(x),
¬flies(x) ⇐ emu(x)

}
,

∆3.1 :=
{

flies(x) ← bird(x)
}

,
A2 :=

{
flies(edna) ← bird(edna)

}
.

¬flies(edna) flies(edna) flies(tweety)

bird(edna) bird(tweety)

emu(edna)

A2

We have TΠ3.1 = {bird(tweety), emu(edna), bird(edna),¬flies(edna)},
TΠ3.1∪∆3.1 = {flies(edna), flies(tweety)} ∪ TΠ3.1 .

It is intuitively clear that we prefer the argument (∅,¬flies(edna)) to the argument
(A2, flies(edna)), simply because the former does not use any defeasible rules. We will
further discuss this in Example 6.17.

Let us see what happens to Example 3.1 if we are not so certain anymore that no emu
can �y and turn the general rule (¬flies(x) ⇐ emu(x)) ∈ ΠG

3.1 into a defeasible one in the
following example.

Example 3.2 (Example 2 of [Poole, 1985])

ΠF
3.2 :=

{
bird(tweety),
emu(edna)

}
,

ΠG
3.2 :=

{
bird(x) ⇐ emu(x)

}
,

∆3.2 :=

{
¬flies(x) ← emu(x),
flies(x) ← bird(x)

}
.

A1 :=
{
¬flies(edna) ← emu(edna)

}
.

A2 :=
{

flies(edna) ← bird(edna)
}
.

¬flies(edna) flies(edna) flies(tweety)

bird(edna) bird(tweety)

emu(edna)

A2

A1

We have TΠ3.2 = {bird(tweety), emu(edna), bird(edna)},
TΠ3.2∪∆3.2 = {¬flies(edna), flies(edna), flies(tweety)} ∪ TΠ3.2 .

It is intuitively clear that we prefer the argument (A1,¬flies(edna)) to the argument
(A2, flies(edna)), simply because the defeasible derivation of the former is based on
emu(edna), and because this is more speci�c than bird(edna), on which the derivation
of the latter argument is based. We will further discuss this in Example 6.19.
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Let us see what happens to Example 3.2 if we doubt that emus are birds.

Example 3.3 (Renamed Subsystem of Example 3 of [Poole, 1985])

ΠF
3.3 :=

{
emu(edna)

}
, ΠG

3.3 := ∅,

∆3.3 :=


¬flies(x) ← emu(x),
flies(x) ← bird(x),
bird(x) ← emu(x)

 ,

A1 :=
{
¬flies(edna) ← emu(edna)

}
.

A2 :=

{
flies(edna) ← bird(edna),
bird(edna) ← emu(edna)

}
.

¬flies(edna) flies(edna)

bird(edna)

emu(edna)

A1

A2

A2

We have

TΠ3.3 = {emu(edna)}, TΠ3.3∪∆3.3 = {bird(edna), flies(edna),¬flies(edna)} ∪ TΠ3.3 .

Now it is not clear anymore whether we should prefer (A1,¬flies(edna)) to (A2, flies(edna)).
Both arguments are now based on emu(edna), but it is not clear whether the less spe-
ci�c bird(edna) � that has dropped out of TΠ3.3 � can still be considered as a basis for
(A2, flies(edna)). We will further discuss this in Example 6.20.

Let us now suppose that we have a lovely grandma and a grouchy and noisy grandpa, stay
at their house and hear that somebody is coming into the house noisily, but cannot see yet
who it is.

Example 3.4
ΠF

3.4 :=
{

somebody, noisy
}

,

ΠG
3.4 :=

{
lovely ⇐ grandma,
¬lovely ⇐ grandpa

}
,

∆3.4 := A1 ∪ A2.
A1 :=

{
grandpa ← somebody∧noisy

}
,

A2 :=
{

grandma ← somebody
}
.

¬lovely lovely

grandpa grandma

noisy somebody

A1
A1 A2

Let us compare the speci�city of the arguments (A1,¬lovely) and (A2, lovely). We have

TΠ3.4 = {somebody, noisy}, TΠ3.4∪∆3.4 = {grandma, grandpa, lovely,¬lovely} ∪ TΠ3.4 .

Now, because there is somebody who is noisy according to the current situation given
by ΠF

3.4, it is probably grandpa because his characterization is more speci�c. Thus, it is intu-
itively clear that we would prefer (A1,¬lovely) as the more speci�c argument to (A2, lovely).
We will further discuss this in Example 6.21.
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4 Toward an Intuitive Notion of Speci�city

4.1 The Common-Sense Concept of Speci�city

It is part of general knowledge that a criterion is [properly] more speci�c than another one
if the �class of candidates that satisfy it� is a [proper] subclass of that of the other one.

Analogously � taking logical formulas as the criteria � a formula A is [properly] more
speci�c than a formula B, if the model class of A is a [proper] subclass of the model class
of B, i.e. if A |= B [and B 6|= A].

If we consider a formula as a predicate on model-theoretic structures, its model class
becomes the extension of this predicate. From this viewpoint, we can state A |= B also
as the syllogism �every A is B �, and also as the following Lambert diagram [Lambert,
1764, Dianoiologie, �� 173�194].

←−−−−−−−−−−−−−−−−−−−B−−−−−−−−−−−−−−−−−−−→
←−−−−−−−−−−−A−−−−−−−−−−−→

4.2 Arguments as an Intuitive Abstraction

To enable a closer investigation of the critical parts of a defeasible derivation, we have to
isolate the defeasible parts in the derivation. From a concrete derivation of a literal L,
let us abstract the set A of the ground instances of the defeasible rules that are actually
applied in the derivation, and form the pair (A, L), which we already called an argument
in De�nition 2.7 of � 2.4.
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4.3 The Intuitive Rôle of Activation Sets

in the De�nition of Speci�city

If we want to classify a derivation with defeasible rules according to its speci�city, then
we have to isolate the defeasible part of the derivation and look at its input formulas,
so that we can see how speci�c these input formulas are. The input formulas are the set of
those literals on which the defeasible part of the derivation is based, called the activation set
for the defeasible part of the derivation. In our framework of defeasible positive-conditional
speci�cation, the only relevant property of an activation set can be the conjunction of its
literals which we can represent by the set itself.4

For instance, in Example 3.2 of � 3, the argument (A1,¬flies(edna)) is based only on the
activation set {emu(edna)}, whereas the argument (A2, flies(edna)) can also be based on
the activation set {bird(edna)}, or on the union of these sets.

Moreover, in Example 3.4 of � 3, the argument (A1,¬lovely) is based only on the acti-
vation set {somebody, noisy}, whereas the argument (A2, lovely) can also be based on the
less speci�c activation set {somebody}.

4.3.1 Modulo Which Theory are Activation Sets to be Compared?

Because all literals of an activation set have been derived from the given speci�cation, it does
not make sense to compare activation sets w.r.t. the models of the entire speci�cation.
Indeed, only a comparison w.r.t. the models of a sub-speci�cation can show any di�erences
between them.

Therefore, we have to �nd out which parts of a speci�cation (ΠF, ΠG, ∆) are to be
excluded from the comparison of activation sets.

We want to have the entire set ΠG available for our comparison of activation sets,
for the following reasons: The general and strict part ΠG of our speci�cation represents
the necessary and stable kernel of our rules, independent of the concrete situation under
consideration given by ΠF, and independent of the uncertainty of our default rules ∆.
Moreover, it is hardly meaningful to exclude any proper rule from ΠG (i.e. any rule from ΠG

that is not just a literal); the technical reason for this will be given right at the beginning
of � 4.4.3.

4A formal de�nition of an activation set is not needed here and would be harmful to intuition. Several
di�erent formal notions of activation sets will be found in De�nition 6.1 of � 6.1 and also in De�nition 8.7
of � 8.3.1.
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We have to exclude ΠF from this comparison, however. This exclusion makes sense
because the defeasible rules are typically default rules not written in particular for the given
concrete situation that is formalized by ΠF. Moreover, as indicated before, the inclusion
of ΠF would typically eliminate all di�erences between activation sets, such as it is the case
in all examples of � 3.

Finally, as we want to compare the defeasible parts of derivations, we should exclude
the set ∆ of the defeasible rules when we compare activation sets.

Thus, on the one hand, all we can take into account from our speci�cation is a subset
of the general rules ΠG, and, on the other hand, we do not want to exclude any of these
general rules.

All in all, we conclude that ΠG is that part of our speci�cation modulo which activation
sets are to be compared.

4.3.2 A �rst Sketch of a Notion of Speci�city

Very roughly speaking, if we have fewer activation sets for the defeasible part of a derivation,
then these activation sets describe fewer models (i.e. their disjunction has fewer models),
which again means that the defeasible part of the derivation is more speci�c. Accordingly,
a �rst sketch of a notion of speci�city can now be given as follows:

An argument (A1, L1) is [properly] more speci�c than an argument (A2, L2) if,
for each activation set H1 for (A1, L1), there is an activation set H2 ⊆ TH1∪ΠG

for (A2, L2) [but not vice versa].

Note that this notion of speci�city is preliminary, and that the notion of an activation set
for an argument has not been properly de�ned yet.
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4.4 Isolation of the Defeasible Parts of a Derivation

If (A, L) is an argument (cf. � 4.2), then there is a derivation of L which is based only on
those instances of defeasible rules which are contained in A. Such an argument ignores the
concrete derivation, and therefore suits our model-theoretic intentions (cf. � 1). With such
an argument as an abstraction of a derivation, however, we lose the possibility to isolate the
actual defeasible parts of the derivation. Such a loss is typical for abstractions in general;
in our case, however, the discussion of this loss in � 4.4.1 will turn out to be conceptually
crucial and result in several di�erent formal notions of activation sets.5

4.4.1 Isolation of Actual Defeasible Parts in And-Trees

Let us compare this set A with an and-tree of the derivation. Every node in such a tree
is labeled with the conclusion of an instance of a rule, such that its children are labeled
exactly with the elements of the conjunction in the condition of this instance.

De�nition 4.1 (And-Tree)
Let (ΠF, ΠG, ∆) be a defeasible speci�cation (cf. � 2.3), and let L be a literal.
An and-tree T for L [and for the derivation of Φ ` {L}] w.r.t. (ΠF, ΠG, ∆) is a �nite, rooted
tree, where every node is labeled with a literal, satisfying the following conditions:

1. The root node of T is labeled with L.

2. For each node N in T that is labeled with a literal L′, there is a strict or defea-
sible rule (L′′

0 ⇐ L′′
1∧ . . .∧L′′

k) ∈ Π ∪ ∆, such that L′ = L′′
0σ for some substitu-

tion σ [with (L′′
0σ ⇐ L′′

1σ∧ . . .∧L′′
kσ)∈Φ ]. Moreover, the node N has exactly k child

nodes, which are labeled with L′′
1σ, . . . , L′′

kσ, respectively.

This standard and very simple formal notion of an and-tree is meant to capture a single
derivation for a single argument. It must not be confused with the compact multi-graphs
that come as a synopsis with our examples (such as the ones in � 3).6

An isolation of the defeasible parts of an and-tree of the derivation may now proceed as
follows:

• Starting from the root of the tree, we iteratively erase all applications of strict rules.
This gives us a set of trees, each of which has the application of a defeasible rule at
the root.

• Starting now from the leaves of these trees, we again erase all applications of strict
rules. This gives us a set of trees with the following property holding for every node:
If all children of a node (if there are any) are leaves, then this node results from an
application of a defeasible rule.

5See De�nition 6.1 of � 6.1 and also De�nition 8.7 of � 8.3.1.

6These sophisticated multi-graphs illustrate several derivations for several arguments in parallel, share
sub-graphs, and may have =-edges between occurrences of the same literal L to represent alternative
derivations of L (cf. Example 6.9 in � 6.2 as well as Examples 7.4 and 7.5 in � 7.2). Because these synopses
are redundant in all examples, we do not provide a formalization for these multi-graphs.
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4.4.2 A �rst approximation of Activation Sets

In a �rst approximation, we may now take the activation set for the original derivation
to be the set of all labels L of all leaves of all resulting trees, unless the literal L is an
unconditional rule from A.

The motivation for this notion of an activation set is that the conjunction of its literals
is a weakest precondition for all defeasible parts of the concrete original derivation. If such
a logically weakest precondition satis�es the speci�city notion of � 4.3.2 as an activation set
for an argument (A1, L1) w.r.t. a second argument (A2, L2), then any other precondition
for all defeasible parts of the given and-tree will satisfy this notion w.r.t. (A2, L2) a fortiori.

7

4.4.3 Growth of the Defeasible Parts toward the Leaves

Note that in the set of trees resulting from the procedure described in � 4.4.1, there may well
have remained instances of rules from ΠG connecting a defeasible root application with the
defeasible applications right at the leaves. Thus � to cover the whole defeasible part of the
derivation in our abstraction � we have to consider the setA∪ΠG instead of just the set A.

More precisely, we have to include all proper rules (i.e. those with non-empty conditions)
from ΠG, and may also include the literals in ΠG because they cannot do any harm.8

As a consequence, in the modeling via our abstractionA, we cannot prevent the isolated
defeasible sub-trees resulting from the procedure described in � 4.4.1 from using the rules
from ΠG to grow toward the root and toward the leaves again.9 Only the growth toward
the leaves, however, can a�ect our activation sets (which are still taken to be the labels
of all leaves of all resulting trees) and thereby our notion of speci�city. Indeed, a growth
toward the root can add to the conjunction of the given leaves only its super-conjunctions,
which are irrelevant because of our focus on weakest preconditions (explained in � 4.4.2).

Let us have a closer look at the e�ects of such a growth toward the leaves in the most
simple case. In addition to a given activation set {Q(a)}, in the presence of a general rule

Q(x) ⇐ P0(x)∧ · · · ∧Pn−1(x)

from ΠG, we will also have to consider the activation set { Pi(a) | i∈{0, . . . , n−1} }.
This has two e�ects, which we will discuss in �� 4.4.4 and 4.4.5.

7Note that a further dissection of the isolated defeasible parts would not in general result in activation
sets that can be inferred from the strict rules in Π. Where this inference is possible, however, a further
dissection leads to the special notion of activation sets given in De�nition 8.7 of � 8.3.1.

8The need to include all proper rules and to exclude the literals from ΠF provides a motivation for
simply de�ning ΠG to contain exactly the proper rules of Π, such as found in [Stolzenburg &al., 2003].

9Of course, our abstraction admits even di�erent defeasible parts of a di�erent and-tree that derives
the same literal in focus from the same set A of instances of defeasible rules, i.e. di�erent derivations of L
from A∪Π for the same argument (A, L). The admission of these multiple derivations is actually intended
in our model-theoretic treatment. The only e�ect on our current discussion, however, is that we would
have to treat several trees disjunctively, which actually makes no di�erence for the ideas we are currently
trying to point out.
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4.4.4 First E�ect: Simpli�ed Second Sketch of a Notion of Speci�city

The �rst e�ect is that we immediately realize that every model of ΠG in the model class
that is represented by the activation set { Pi(a) | i∈{0, . . . , n−1} } is also in the model
class represented by the activation set {Q(a)}.

Indeed, this growth toward the leaves will immediately add { Pi(a) | i∈{0, . . . , n−1} }
as a further activation set for every argument with the activation set {Q(a)}. By this e�ect
it is just made explicit that an argument that can be based on the activation set {Q(a)}
can also be based on the activation set { Pi(a) | i∈{0, . . . , n−1} }. Thus � provided
that there are no other activation sets � an argument that can be based on the activation
set {Q(a)} is less or equivalently speci�c compared to any argument that can be based on
{ Pi(a) | i∈{0, . . . , n−1} }.

Therefore � if we admit the e�ect of a growth toward the leaves on our activation
sets � we may simplify10 the comparison of activation sets in our �rst sketch of a notion
of speci�city of � 4.3.2 as follows:

An argument (A1, L1) is [properly] more speci�c than an argument (A2, L2) if,
for each activation set H1 for (A1, L1), this set H1 is also an activation set
for (A2, L2) [but not vice versa].

4.4.5 Second E�ect: Preference of the �More Concise�

The second e�ect, however, is that an argument (A2, L2) that gets along with {Q(a)}
becomes even properly less speci�c than an argument (A1, L1) that actually requires { Pi(a) |
i∈{0, . . . , n−1} } and does not get along with {Q(a)},11 simply because (A2, L2) has the
additional activation set {Q(a)}.

The resulting preference of (A1, L1) to (A2, L2) as being properly more speci�c is usually
called preference of the �more concise�, cf. e.g. [Stolzenburg &al., 2003, p. 94], [García
& Simari, 2004, p.108]. Although � to the best of our knowledge � this notion has
never been formally de�ned, roughly speaking it is � for an instantiated rule Q(a) ⇐
P0(a)∧ · · · ∧Pn−1(a) of the speci�cation � the preference of an argument that gets along
with the conclusion {Q(a)} of the instantiated rule as an activation set, instead of actually
requiring the condition { Pi(a) | i∈{0, . . . , n−1} }.

For instance, in Example 3.2 of � 3, an argument that gets along with {bird(edna)}
is properly less speci�c than one that actually requires {emu(edna)}, in the sense that
emu(edna) is more concise than bird(edna).

10Note that we have replaced here the option to choose some activation set H2 ⊆ TH1∪ΠG of the �rst
sketch with the restrictive determination H2 := H1. This simplifying restriction applies here for the
following reason: If H2 ⊆ TH1∪ΠG is an activation set for (A2, L2), then H1 is an activation set for (A2, L2)
as well, provided that we admit the �rst e�ect of a growth toward the leaves via ΠG on our activation sets.

11This can happen only if we have { Pi(a) | i∈{0, . . . , n−1} } * {Q(a)}, i.e. only if n 6=0.
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The problem now is that the statement

Q(a) 6|= P0(a)∧ · · · ∧Pn−1(a),

� which is required to justify this preference � is not explicitly given by the speci�ca-
tion (ΠF, ΠG, ∆).

Nevertheless � if we do not just want to see it as a matter-of-fact property of notions
of speci�city in the style of Poole � we could justify the preference of the �more concise�
by imposing the following best practice on positive-conditional speci�cation:

If we write an implication in form of a rule

Q(x) ⇐ P0(x)∧ · · · ∧Pn−1(x)

into a positive-conditional speci�cation Π of strict (i.e. non-defeasible) knowledge, and if
we do not intend that the implication is proper in the sense that its converse does not hold
in general, then we ought to specify the full equivalence by adding the rules Pi(x)⇐ Q(x)
(i∈{0, . . . , n−1}) to the speci�cation.12

Under this best practice of speci�cation, if we �nd such a rule without the speci�cation
of its full equivalence, then it is not intended to exclude models where Q holds for some
object a, but not all of the Pi do. This means that if we �nd such a rule in the strict and
general part ΠG of a speci�cation, then it is reasonable to assume that the implication is
proper w.r.t. the intuition captured in the defeasible rules in ∆.

As a consequence, it makes sense to consider a defeasible argument based on { Pi(a) |
i∈{0, . . . , n−1} } to be properly more speci�c than an argument that can get along
with Q(a).

←−−−−−−−−−−−−−−−−−−Q(a)−−−−−−−−−−−−−−−−−−→
←−−−−−−−−

∧
i Pi(a)−−−−−−−−→

←−−−−−−−−−−−−−−−−−−Pk(a)−−−−−−−−−−−−−−−−−−→

Remark 4.2 (Justi�cation for Preference of the �More Concise�
Not Valid for Defeasible Rules)

Note that our justi�cation for the preference of the �more concise� does not apply, however,
if Q(x)⇐ P0(x)∧ · · · ∧Pn−1(x) is a defeasible rule instead of a strict one, because we then
have the following three problems when trying to justify preference of the �more concise�:

• The implication given by the rule is not generally intended (otherwise the rule should
be a strict one).

• Moreover, we cannot easily describe the actual instances to which the default rule is
meant to apply (otherwise this more concrete description of the defeasible rule should
be stated as strict rules).

• The direct treatment of a defeasible equivalence neither has to be appropriate as a
default rule in the given situation, nor do we have any means to express a defeasible
equivalence in the current setting.

Accordingly, there is, for instance, no clear reason to prefer the �rst argument of Exam-
ple 3.3 in � 3 to the second one. This will be discussed in more detail in Example 6.20.
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4.4.6 Preference of the �More Precise�

If we consider an argument requiring an activation set { Pi(a) | i∈{0, . . . , n} } to be
properly more speci�c than an argument that gets along with a proper subset { Pi(a) |
i∈ I } for some index set I ( {0, . . . , n}, then the resulting preference is usually called
preference of the �more precise�, cf. e.g. [Stolzenburg &al., 2003, p. 94], [García &

Simari, 2004, p.108]. An example for the preference of the �more precise� is Example 3.4
of � 3.

There is, however, an exception from this preference to be observed, namely the case
that we can actually derive the set from its subset with the help of ΠG. In this case,
the above-mentioned growth toward the leaves with rules from ΠG again implements the
approximation of the subclass relation among model classes via the one among activation
sets.13

Apart from this exception, there is again a problem, namely that it is not the case that∧
i∈I Pi(a) 6|=

∧
i∈{0,...,n} Pi(a)

would be explicitly given by the speci�cation via (ΠF, ΠG, ∆).

Nevertheless � if we do not just want to see it as a matter-of-fact property of notions
of speci�city in the style of Poole � we could justify also the preference of the �more
precise� by imposing the following best practice on positive-conditional speci�cation:

If we want to exclude the above non-consequence, then we ought to specify, for each
j ∈{0, . . . , n}\I, a rule like Pj(x) ⇐

∧
i∈I Pi(x).

←−−−−−−−−−−−−
∧

i∈I Pi(a)−−−−−−−−−−−−→
←−−−−−−

∧
i∈{1,...,n} Pi(a)−−−−−−→

←−−−−−−−−−−−−−−−−−−Pk(a)−−−−−−−−−−−−−−−−−−→

4.4.7 Conclusion on the Preferences

Let us �nally point out that an acceptance of our justi�cations of the preferences of the
�more concise� and the �more precise� is not at all a prerequisite for following our investi-
gations on Poole's model-theoretic notion of speci�city and our correction of this notion
in the following sections.

12There is one exception to this justi�cation, however, in the practice of logic programming : If Q(x) ⇐
P0(x)∧ · · · ∧Pn−1(x) is the only rule of the speci�cation with Q as the predicate symbol of the conclusion,
then it is standard in Prolog to consider this implication as an implementation of a full equivalence
de�ning the predicate Q.
This is di�erent in our context of positive-conditional speci�cation here, however, where we can add and

ought to add the rules Pi(x) ⇐ Q(x) (i∈{0, . . . , n−1}) to our speci�cation, simply because we are not
concerned with the non-termination problem of logic programming resulting from such a speci�cation of
the full equivalence (cf. � 2.1).
An alternative which is given also in logic programming is to omit the above indicated rule and to replace

each occurrence of each Q(t) with P0(t)∧ · · · ∧Pn−1(t), respectively.
Moreover, in the frequent case that several cases of the de�nition of a predicate are spread over several

rules, the implications de�nitely tend to be proper also in logic programming, because, roughly speaking,
the de�ned predicate is given as the proper disjunction of the conditions of the several rules.

13This approximation was discussed in � 4.4.4 and will be demonstrated in Example 7.7 of � 7.
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5 Requirements Speci�cation of

Speci�city in Positive-Conditional Speci�cation

With implicit reference to a defeasible speci�cation (ΠF, ΠG, ∆) (cf. � 2.3), let us designate
Poole's relation of being more (or equivalently) speci�c by �.P1�. Here, �P1� stands for
�Poole's original version�.

The standard usage of the symbol �.� is to denote a quasi-ordering (cf. � 2.5). Instead
of the symbol �.�, however, [Poole, 1985] uses the symbol �≤�. The standard usage of
the symbol �≤� is to denote a re�exive ordering (cf. � 2.5). We cannot conclude from this,
however, that Poole intended the additional property of anti-symmetry; indeed, we �nd
a concrete example speci�cation in [Poole, 1985] where the lack of anti-symmetry of .P1

is made explicit.14

The possible lack of anti-symmetry of quasi-orderings � i.e. that di�erent arguments
may have an equivalent speci�city � cannot be a problem because any quasi-ordering .N

immediately provides us with its equivalence ≈N , its ordering <N , and its re�exive order-
ing ≤N (cf. Corollary 2.10 of � 2.5).

By contrast to the non-intended anti-symmetry, transitivity is obviously a conditio sine
qua non for any useful notion of speci�city. Indeed, if we have to make a quick choice
among the three mutually exclusive actions Propose, Kiss, Smile, and if we already have
an argument (A2, Kiss) that is more speci�c than another argument (A3, Smile), and if we
come up with yet another argument (A1, Propose) that is even more speci�c than (A2, Kiss),
then, by all means, (A1, Propose) should be more speci�c than the argument (A3, Smile)
as well. It is obvious that a notion of speci�city without transitivity could hardly be helpful
in practice.

A further conditio sine qua non for any useful notion of speci�city is that the conjunctive
combination of respectively more speci�c arguments results in a more speci�c argument.
Indeed, if a square is more speci�c than a rectangle and a circle is more speci�c than
an ellipse, then a square inscribed into a circle should be more speci�c than a rectangle
inscribed into an ellipse. This property is called monotonicity of conjunction, which we will
discuss in � 7.1. Already in [Poole, 1985], we �nd an example15 where .P1 violates
this monotonicity property of the conjunction, which is described there as �seemingly un-
intuitive�.16

Further intricacies of computing Poole's speci�city in concrete examples are described
in [Stolzenburg &al., 2003],17 which will make it hard to implement .P1 or its minor cor-
rections as e�ciently as required in the practice of answer computation and SLD-resolution
w.r.t. positive-conditional speci�cations.

14Here we refer to the last three sentences of � 3.2 on Page 145 of [Poole, 1985].
15Here we refer to Example 6 of [Poole, 1985, � 3.5, p.146], which we present here as our Example 7.1

in � 7.1.
16See our Example 7.1 in � 7.1 and the references there.
17Here we refer to � 3.2�. of [Stolzenburg &al., 2003], where it is demonstrated that, for deciding

Poole's speci�city relation (actually .P2 instead of .P1, but this does not make any di�erence here)
for two input arguments, we sometimes have to consider even those defeasible rules which are not part of
any of these arguments. See also our Example 7.4 in � 7.2.
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6 Formalizations of Speci�city

6.1 Activation Sets

A derivation from the leaves to the root can now be split into three phases of derivation
of literals from literals. This splitting follows the discussion in � 4.4.1 on how to isolate
the defeasible parts of a derivation (phase 2) from strict parts that may occur toward the
root (phase 3) and toward the leaves (phase 1):

(phase 1) First we derive the literals that provide the basis for speci�city considerations.

In our approach we derive the set TΠ here. Poole takes the set TΠ∪∆ instead.

(phase 2) On the basis of

• a subset H of the literals derived in phase 1,

• the �rst item A of a given argument (A, L), and

• the general rules ΠG,

we derive a further set of literals L: H ∪ A ∪ ΠG ` L.

(phase 3) Finally, on the basis of L, the literal of the given argument (A, L) is derived:

L ∪ Π ` {L}.
In Poole's approach, phase 3 is empty and we simply have L= {L}. In our approach,
however, it is admitted to use the facts from ΠF in phase 3, in addition to the general
rules from ΠG, which were already admitted in phase 2.

With implicit reference to our sets Π = ΠF ∪ ΠG and ∆, the phases 2 and 3 can be more
easily expressed with the help of the following notions.

De�nition 6.1 ([Minimal] [Simpli�ed] Activation Set)
Let A be a set of ground instances of rules from ∆, and let L be a literal.
H is a simpli�ed activation set for (A, L) if L ∈ TH ∪A∪ΠG .
H is an activation set for (A, L) if L ∈ T L∪Π for some L ⊆ TH ∪A∪ΠG .
H is a minimal [simpli�ed ] activation set for (A, L) if H is an [simpli�ed] activation set
for (A, L), but no proper subset of H is an [simpli�ed] activation set for (A, L).

Corollary 6.2 Let A be a set of ground instances of rules from ∆, and let L be a literal.
Every simpli�ed activation set for (A, L) is an activation set for (A, L).

Roughly speaking, an argument is now more (or equivalently) speci�c than another one if
each of its activation sets is also an activation set for the other argument. Note that this
follows the simpli�ed second sketch of a notion of speci�city displayed in � 4.4.4, not the
�rst one displayed in � 4.3.2.
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Activation sets that are not simpli�ed di�er from simpli�ed ones by the admission of
facts from ΠF (in addition to the general rules ΠG) after the defeasible part of the derivation
is completed.18

Our introduction of activation sets that are not simpli�ed is a conceptually important
correction of Poole's approach: It must be admitted to use the facts besides the general
rules in a purely strict derivation that is based on literals resulting from completed defeasible
arguments, simply because the defeasible parts of a derivation (as isolated in � 4.4.1) should
not get more speci�c by the later use of additional facts that do not provide input to the
defeasible parts.19 Note that the di�erence between simpli�ed and non-simpli�ed activation
sets typically occurs in real applications, but � except Example 7.5 in � 7.2 � not in our
toy examples of � 7, which mainly exemplify the di�erences in phase 1.

F ∪ ΠG

. . .

A

A ∪ ΠG

H

A

A ∪ ΠG

H

H ⊆ . . . F = . . .

Poole's Approach (P1, P2, P3) TΠF∪ΠG∪∆ H 20

Our Approach (CP1, CP2) TΠF∪ΠG ΠF 21

Figure 1: And-Tree with Phases 1, 2, 3.22

18This can be seen in Example 7.5 of � 7, and in Example 8.1 of � 8.2.2. See also the variable F in Figure 1.

19We do not further discuss this obviously appropriate correction here and leave the construction of
examples that make the conceptual necessity of this correction intuitively clear as an exercise. Hint: Have
a look at the proof of Theorem6.16 in � 6.5. Then present two di�erent sets of strict rules with equal
derivability, where only one needs the facts in phase 3 and where the additional speci�city gained by these
facts violates the intuition.

20Look at Note 35 of Example 7.4 in � 7.2 to see that it may really matter for the de�nition of P1, P2,
P3 that we do not have H ⊆ TΠF∪ΠG in general in Poole's approach.

21Although we do not have H ⊆ΠF in general in our approach, the replacement of ΠF with H in this table
would result in fewer derivable roots for our approach, simply because we always have TH∪ΠG ⊆TΠF∪ΠG

in our approach.

22From the leaves to the root: phase 1 (H), phase 2 (sub-trees of the defeasible parts of a derivation,
with explicit defeasible root steps), phase 3 (root sub-tree). For Poole's approach, however, the root
sub-tree is still part of phase 2, whereas phase 3 is empty.
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6.2 Poole's Speci�city Relation P1; its Minor Corrections P2, P3

In this section we will de�ne the binary relations .P1, .P2, .P3 of �being more or equiva-
lently speci�c according to David Poole� with implicit reference to our sets of facts and
of general and defeasible rules (i.e. to ΠF, ΠG, and ∆, respectively).

The relation .P1 of the following de�nition is precisely Poole's original relation ≥ as
de�ned at the bottom of the left column on Page 145 of [Poole, 1985]. See � 5 for our
reasons to write �&� instead of �≥� as a �rst change. Moreover, as a second change
required by mathematical standards, we have replaced the symbol �&� with the symbol �.�
(such that the smaller argument becomes the more speci�c one), so that the relevant well-
foundedness becomes the one of its ordering < instead of the reverse >.

De�nition 6.3 (.P1 : David Poole's Original Speci�city)
(A1, L1) .P1 (A2, L2) if (A1, L1) and (A2, L2) are arguments, and if, for every H ⊆ TΠ∪∆

that is a simpli�ed activation set for (A1, L1) but not a simpli�ed activation set for (A2, L1),
H is also a simpli�ed activation set for (A2, L2).

The relation .P2 of the following de�nition is the relation � of De�nition 10 on Page 94 of
[Stolzenburg &al., 2003] (attributed to [Poole, 1985]). Moreover, the relation >spec of
De�nition 2.12 on Page 132 of [Simari & Loui, 1992] (attributed to [Poole, 1985] as well)
is the relation <P2 := .P2 \&P2.

De�nition 6.4 (.P2 : Standard Version of David Poole's Speci�city)
(A1, L1) .P2 (A2, L2) if (A1, L1) and (A2, L2) are arguments, and if, for every H ⊆ TΠ∪∆

that is a simpli�ed activation set for (A1, L1) but not a simpli�ed activation set for (∅, L1),
H is also a simpli�ed activation set for (A2, L2).

The only change in De�nition 6.4 as compared to De�nition 6.3 is that �(A2, L1)� is replaced
with �(∅, L1)�. We did not encounter any example yet where this intuitively most appro-
priate correction of the variant �(A2, L1)� of De�nition 6.3 makes any di�erence to �(∅, L1)�
in De�nition 6.4, which is standard in the publications of the last two decades.

The relations .P1 and .P2 were not meant to compare arguments for literals that do not
need any defeasible rules � or at least they do not show an intuitive behavior on such
arguments, as shown in Example 6.5.

Example 6.5 (Minor Flaw of .P1 and .P2)

ΠF
6.5 :=

{
thirst

}
,

ΠG
6.5 :=

{
drink ⇐ thirst

}
,

∆6.5 := A2.
A2 :=

{
beer ← thirst

}
.

drink beer

thirst

A2

Let us compare the speci�city of the arguments (A2, beer) and (∅, drink), meaning that
we should have a beer or else an arbitrary drink at our own choice, respectively.
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We have TΠ6.5 = {thirst, drink}, TΠ6.5∪∆6.5 = {beer} ∪ TΠ6.5 .
We have (A2, beer) .P2 (∅, drink) because for every H ⊆ TΠ6.5∪∆6.5 that is a simpli�ed

activation set for (A2, beer), but not a simpli�ed activation set for (∅, beer), we have
H = {thirst}, which is a simpli�ed activation set also for (∅, drink).

We have (∅, drink) .P2 (A2, beer) because there cannot be a simpli�ed activation set
for (∅, drink) that is not a simpli�ed activation set for (∅, drink).

All in all, we get23 (A2, beer) ≈P2 (∅, drink), although (∅, drink) should be strictly
preferred to (A2, beer) according to intuition, simply because an argument that does not
require any defeasible rules should always be strictly preferred to a comparable argument
that does actually require defeasible rules.

To overcome this minor �aw, which consists in the inconvenience of not in general preferring
a non-defeasible argument to a comparable defeasible one, we �nally add an implication as
an additional requirement in De�nition 6.6. This implication guarantees that no argument
that requires defeasible rules can be more or equivalently speci�c than an argument that
does not require any defeasible rules at all.

De�nition 6.6 (.P3 : Rather Un�awed Version of David Poole's Speci�city)
(A1, L1) .P3 (A2, L2) if (A1, L1) and (A2, L2) are arguments, L2 ∈TΠ implies L1 ∈TΠ,
and if, for every H ⊆ TΠ∪∆ that is a [minimal]24 simpli�ed activation set for (A1, L1) but
not a simpli�ed activation set for (∅, L1), H is also a simpli�ed activation set for (A2, L2).

Corollary 6.7 If (A1, L1), (A2, L2) are arguments with A1⊆A2,
then any of the following conditions is su�cient for (A1, L1) .P3 (A2, L2):

1. L1 = L2.

2. L2 ∈ TΠ ⇒ L1 ∈ TΠ and {L1} ∪ A2 ∪ ΠG ` {L2},
3. A1 = ∅ (which implies L1 ∈TΠ by De�nition 2.7).25

As every simpli�ed activation set that passes the condition of De�nition 6.3 also passes the
one of De�nitions 6.4 and 6.6, we get the following corollary of these three de�nitions.

Corollary 6.8 .P3 ⊆ .P2 ⊆ .P1.

By Corollaries 6.7 and 6.8, .P1, .P2, .P3 are re�exive relations on arguments, but
� as we will show in Example 6.9 and state in Theorem6.11 � not quasi-orderings
in general.

23Note that by Corollary 6.8, we will get (A2, beer) ≈P1 (∅, drink) as well. Moreover, note that this
problem does not occur in the similar Example 3.1 of � 3.

24Note that the omission of the optional restriction to minimal simpli�ed activation sets for (A1, L1)
in De�nition 6.6 has no e�ect on the extension of the de�ned notion, simply because the additional non-
minimal simpli�ed activation sets (A1, L1) will then be simpli�ed activation sets for (A2, L2) a fortiori.

25Exercise: Find a counterexample, however, for the conjecture that L1 ∈TΠ implies (A, L1) .P3 (A, L2).
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Example 6.9 (Counterexample to the Transitivities: �Choose one action!�)

Suppose you meet the sexy girl Jo in a lift for a very short time, you smile at her, and
she smiles back with a head akimbo. Since smiling, kissing, and proposing are mutually
exclusive actions of your mouth, you have to make up your mind quickly what to do next,
depending on your current level of boldness.26

ΠF
6.9 :=

{
Bold, HAkimbo(Jo), Smiles(Jo), Sexy(Jo)

}
,

ΠG
6.9 :=

{
Kiss ⇐ Promising(G)

}
,

∆6.9 :=


Smile ← Sexy(G),
Kiss ← Bold∧Smiles(G)∧Sexy(G),
Promising(G) ← HAkimbo(G)∧Smiles(G)∧Sexy(G),
Propose ← Promising(G)∧Bold

 .

A1 :=

{
Promising(Jo) ← HAkimbo(Jo)∧Smiles(Jo)∧Sexy(Jo)
Propose ← Promising(Jo)∧Bold

}
,

A2 :=
{

Kiss ← Bold∧Smiles(Jo)∧Sexy(Jo)
}
,

A3 :=
{

Smile ← Sexy(Jo)
}
.

Compare the speci�city of the arguments (A1, Propose), (A2, Kiss), (A3, Smile) !

Propose Kiss Kiss Smile

Promising(Jo) Bold

HAkimbo(Jo) Smiles(Jo) Sexy(Jo)

A1A1A1

A1

A1
A2

A2
A2 A3

Lemma 6.10 There are

• a speci�cation (ΠF
6.9, Π

G
6.9, ∆6.9) without any negative literals

(i.e., a fortiori, ΠF
6.9 ∪ ΠG

6.9 ∪∆6.9 is non-contradictory), and

• minimal arguments (A1, L1), (A2, L2), (A3, L3),

such that (A1, L1) .P3 (A2, L2) .P3 (A3, L3) 6&P1 (A1, L1)
and (A1, L1) 6&P1 (A2, L2) 6&P1 (A3, L3).

26The nullary predicate Bold could actually be removed from all rules and facts of this example, which
would still remain a counterexample to the transitivities; to the contrary, it would even improve its status
by becoming a minimal counterexample. A renaming of the resulting minimal counterexample was pre-
sented as Example 5.8 in [Wirth & Stolzenburg, 2013; 2014]. The reasons we prefer the non-minimal
counterexample are the following. The minimal counterexample looks arti�cial because the single general
strict rule lacks any e�ect on activation sets for arguments for (A1∪A2,Kiss). Moreover, the minimal
counterexample used to confuse the audience during presentations because the names of its predicates
mixed up di�erent cognitive categories.
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Proof of Lemma6.10

Looking at Example 6.9, we see that only the quasi-ordering properties in the last two lines
of Lemma6.10 are non-trivial. We have

TΠ6.9 = {Bold, HAkimbo(Jo), Smiles(Jo), Sexy(Jo)},

TΠ6.9∪∆6.9 = {Promising(Jo), Propose, Kiss, Smile} ∪ TΠ6.9 .

Thus, regarding the arguments (A1, Propose), (A2, Kiss), (A3, Smile), the implication added
in De�nition 6.6 as compared to De�nitions 6.3 and 6.4 is always satis�ed, simply because
its condition is always false.

(A3, Smile) 6&P1 (A1, Propose) .P3 (A2, Kiss) : The minimal simpli�ed activation sets for
(A1, Propose) that are subsets of TΠ6.9∪∆6.9

and no simpli�ed activation sets for (∅, Propose) (or, without any di�erence, no sim-
pli�ed activation sets for (A3, Propose)) are {Bold, HAkimbo(Jo), Smiles(Jo), Sexy(Jo)}
and {Bold, Promising(Jo)}, which are simpli�ed activation sets for (A2, Kiss) � but
{Bold, Promising(Jo)} is no simpli�ed activation set for (A3, Smile).

(A1, Propose) 6&P1 (A2, Kiss) .P3 (A3, Smile) : The only simpli�ed activation set for
(A2, Kiss) that is a subset of TΠ6.9∪∆6.9 and

no simpli�ed activation set for (∅, Kiss) (such as {Promising(Jo)}) (or, without any di�er-
ence, no simpli�ed activation sets for (A1, Kiss)) is {Bold, Smiles(Jo), Sexy(Jo)}, which is a
simpli�ed activation set for (A3, Smile), but not for (A1, Propose).

(A2, Kiss) 6&P1 (A3, Smile) : The only minimal simpli�ed activation set for (A3, Smile) that
is a subset of TΠ6.9∪∆6.9 and no simpli�ed activation set for

(A2, Smile) is {Sexy(Jo)}, which is not a simpli�ed activation set for (A2, Kiss).

Q.e.d. (Lemma6.10)

6.3 Main Negative Result: Not Transitive!

The relations stated in Lemma6.10 hold not only for the given indices, but � by Corol-
lary 6.8 � actually for all of P1, P2, P3; and so we immediately get:

Theorem 6.11
There is a speci�cation (ΠF

6.9, Π
G
6.9, ∆6.9), such that ΠF

6.9 ∪ΠG
6.9 ∪∆6.9 is non-contradictory,

but none of .P1, .P2, .P3, <P1, <P2, <P3 is transitive. Moreover, the counterexamples
to the transitivity of all these relations can be restricted to minimal arguments.

As a consequence of Theorem6.11, the respective relations in [Poole, 1985], [Stolzen-
burg &al., 2003], and [Simari & Loui, 1992] are not transitive. This means that these
relations are not quasi-orderings, let alone re�exive orderings.

This consequence is immediate for the relation ≥ at the bottom of the left column
on Page 145 of [Poole, 1985]. Moreover, note that the consequence does not depend on
the contentious question on whether our interpretation of the negation symbol ¬ essentially
di�ers from its interpretation in [Poole, 1985]. Indeed, our counterexample to transitivity
occurs in the negation-free de�nite-rule fragment of Poole's original language.



27

Moreover, this consequence is also immediate for the relation � [Stolzenburg &al.,
2003, De�nition 10, p. 94] and for the relation >spec [Simari & Loui, 1992, De�nition 2.12,
p.132], simply because we can replace � and >spec with .P2 and <P2 in the context of
Example 6.9, respectively.

Although transitivity of these relations is strongly suggested by the special choice of
their symbols and seems to be taken for granted in general, we found an actual statement
of such a transitivity only for the relation w of De�nition 2.22 on Page 134 of [Simari &
Loui, 1992], namely in �Lemma2.23� [Simari & Loui, 1992, p.134].27

Finally, note that those readers who do not see a proper con�ict in our counter-
example just should add to Example 6.9 some general rules such as Execute ⇐ Kiss,
¬Execute ⇐ Smile, ¬Execute ⇐ Propose, say to model the situation in one of the areas
of today's planet Earth where an unmarried woman who raises the wish to kiss has to be
executed.

6.4 Our Novel Speci�city Ordering CP1

In the previous section, we have seen that minor corrections of Poole's original relation P1
(such as P2, P3) do not cure the (up to our �nding of Example 6.9) hidden or even denied
de�ciency of these relations, namely their lack of transitivity. Our true motivation for a
major correction of P3 was not this formal de�ciency, but actually an informal one, namely
that it failed to get su�ciently close to human intuition, which will become clear in � 7.

For these reasons, we now de�ne our major correction of Poole's speci�city � the
binary relation .CP1 � with implicit reference to our sets of facts and of general and
defeasible rules (i.e. to ΠF, ΠG, and ∆, respectively) as follows.

De�nition 6.12 (.CP1 : 1stVersion of our Speci�city Relation)

(A1, L1) .CP1 (A2, L2) if (A1, L1) and (A2, L2) are arguments, and we have

1. L1 ∈TΠ or

2. L2 6∈TΠ and every H ⊆ TΠ that is an [minimal]28 activation set for (A1, L1) is also
an activation set for (A2, L2).

27According to the rules of good scienti�c and historiographic practice, we pinpoint the violation of
this �lemma� now as follows. Non-transitivity of w follows here immediately from the non-transitivity of
the relation ≥spec of De�nition 2.15, which, however, is not identical to the above-mentioned relation �,
but actually a subset of �, because it is de�ned via a peculiar additional equivalence ≈spec introduced in
De�nition 2.14 [Simari & Loui, 1992, p.132], namely via ≥spec := >spec ∪ ≈spec [Simari & Loui, 1992,
De�nition 2.15, p.132f.]. Directly from De�nition 2.14 of [Simari & Loui, 1992], we get ≈spec ⊆ ≈P2.
Thus, by Corollary 6.8, we get ≥spec ⊆ .P2 ⊆ .P1; and so (recollecting <P2 ⊆ >spec ⊆ ≥spec) the
result

(A1, L1) <P2 (A2, L2) <P2 (A3, L3) 6&P1 (A1, L1)
of Lemma6.10 gives us the following counterexample to transitivity:

(A1, L1) ≥spec (A2, L2) ≥spec (A3, L3) 6≤spec (A1, L1).
28Note that the omission of the optional restriction to minimal activation sets for (A1, L1) in De�ni-

tion 6.12 has no e�ect on the extension of the de�ned notion, simply because the additional non-minimal
activation sets for (A1, L1) will then be activation sets for (A2, L2) a fortiori.
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Corollary 6.13 If (A1, L1), (A2, L2) are arguments with A1⊆A2,
then any of the following conditions is su�cient for (A1, L1) .CP1 (A2, L2) :

1. L1 = L2.

2. L2 ∈ TΠ ⇒ L1 ∈ TΠ and {L1} ∪ Π ` {L2}. 29

3. L1 ∈ TΠ (which is implied by A1 = ∅ by De�nition 2.7).

The crucial change in De�nition 6.12 as compared to De�nition 6.6 is not the technically
required emphasis it puts on the case �L1 ∈TΠ�, which will be discussed in Remark 6.18
of � 6.6. The crucial changes actually are

(A) the replacement of �H ⊆TΠ∪∆� with �H ⊆TΠ� (as explained already in phase 1 of � 6.1),
and the thereby enabled

(B) omission of the previously technically required,30 but unintuitive negative condition
on derivability (of the form �but not a simpli�ed activation set for (∅, L1)�).

An additional minor change, which we have already discussed in � 6.1, is the one from
simpli�ed activation sets to (non-simpli�ed) activation sets.

Theorem 6.14 .CP1 is a quasi-ordering on arguments.

Proof of Theorem6.14
.CP1 is a re�exive relation on arguments because of Corollary 6.13.
To show transitivity, let us assume (A1, L1) .CP1 (A2, L2) and (A2, L2) .CP1 (A3, L3).
According to De�nition 6.12, because of (A1, L1) .CP1 (A2, L2), we have L1 ∈TΠ � and
then immediately the desired (A1, L1) .CP1 (A3, L3) � or we have L2 6∈TΠ and every
H ⊆ TΠ that is an activation set for (A1, L1) is also an activation set for (A2, L2). The latter
case excludes the �rst option in De�nition 6.12 as a justi�cation for (A2, L2) .CP1 (A3, L3),
and thus we have L3 6∈TΠ and every H ⊆ TΠ that is an activation set for (A2, L2)
is also an activation set for (A3, L3). All in all, we get that every H ⊆ TΠ that is an
activation set for (A1, L1) is also an activation set for (A3, L3). Thus, we get the desired
(A1, L1) .CP1 (A3, L3) also in this case. Q.e.d. (Theorem6.14)

Obviously, an argument is ranked by .CP1 �rstly on whether its literal is in TΠ, and, if not,
secondly on the set of its activation sets, which is an element of the power set of the power
set of TΠ. So we get:

Corollary 6.15 If TΠ is �nite, then <CP1 is well-founded.

29Note that, in general � contrary to Corollary 6.7(2) � A2 must not participate in the derivation of L2

from L1, say in the form that there is a set of literals L with {L1} ∪ A2 ∪ΠG ` L and L ∪Π ` {L2},
because rules from ΠF may have participated in the derivation of L1 from an activation set. The source
of this di�erence between P3 and CP1 is the replacement of simpli�ed activation sets in De�nition 6.6 with
(non-simpli�ed) activation sets in De�nition 6.12.

30See the discussion in Example 6.21 in � 6.6 on why this condition is technically required for P1, P2,
and P3.
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6.5 Relation between the Speci�city Relations P3 and CP1

Theorem 6.16 Let Π<2 be the set of rules from Π that are unconditional or have exactly
one literal in the conjunction of their condition.

Let Π≥2 be the set of rules from Π with more than one literal in their condition.

.P3 ⊆ .CP1 holds if one (or more) of the following conditions hold:

1. For every H ⊆ TΠ and for every set A of ground instances of rules from ∆, and for
L := TH∪A∪ΠG, we have T L∪Π ⊆ L ∪ TΠ.

2. For each instance L ⇐ L′
0∧ . . .∧L′

n+1 of each rule in Π≥2 with L 6∈TΠ<2 ,
we have L′

j /∈ TΠ<2 for all j ∈ {0, . . . , n+1}.

3. For each instance L ⇐ L′
0∧ . . .∧L′

n+1 of each rule in Π≥2,
we have L′

j /∈ TΠ for all j ∈ {0, . . . , n+1}.

4. We have Π≥2 = ∅.

Note that if we had improved .P3 only w.r.t. phase 1 of � 6.1, but not w.r.t. phase 3
in addition, then Theorem6.16 would not require any condition at all. (See the proof!)
This means that a condition becomes necessary by our correction of simpli�ed activation
sets to non-simpli�ed ones, but not because of the major changes (A) and (B) of � 6.4.

Proof of Theorem6.16

First let us show that condition 2 implies condition 1. To this end, let H ⊆ TΠ, let
A be a set of ground instances of rules from ∆, and set L := TH∪A∪ΠG . For an
argumentum ad absurdum, let us assume T L∪Π * L ∪ TΠ. Because of ΠF⊆TΠ<2 , we
have L∪Π = L∪ΠF ∪ΠG ⊆ L∪TΠ<2 ∪ΠG, and thus T L∪Π ⊆ T L∪TΠ<2 ∪ΠG , and thus

T L∪TΠ<2 ∪ΠG * L ∪ TΠ<2 (because otherwise T L∪Π ⊆ T L∪TΠ<2 ∪ΠG ⊆ L ∪ TΠ<2 ⊆ L ∪ TΠ).

Now L is closed under ΠG by de�nition. Moreover, TΠ<2 is closed under Π<2 by de�-
nition and under Π≥2 by condition 2. Because both of the sets of literals L and TΠ<2

are closed under ΠG � but nevertheless their union is not closed under ΠG according to
T L∪TΠ<2 ∪ΠG * L ∪ TΠ<2 � there must be an inference step essentially based on both sets in
parallel. More precisely, this means that there must be an instance L ⇐ L′

1∧ . . .∧L′
n of

a rule from ΠG with L /∈ L ∪ TΠ<2 , and some i, j ∈ {1, . . . , n} with L′
i ∈ L\TΠ<2 and

L′
j ∈ TΠ<2\L. Then L ⇐ L′

1∧ . . .∧L′
n must actually be an instance of a rule from Π≥2,

and L 6∈TΠ<2 , but L′
j ∈TΠ<2 in contradiction to condition 2.

As condition 2 implies condition 1, condition 3 trivially implies condition 2, and condition 4
trivially implies condition 3, it now su�ces to show the claim that (A1, L1) .CP1 (A2, L2)
holds under condition 1 and the assumption of (A1, L1) .P3 (A2, L2). By this assumption,
(A1, L1) and (A2, L2) are arguments and L2 ∈TΠ implies L1 ∈TΠ. If L1 ∈TΠ holds,
then our claim holds as well. Otherwise, we have L1, L2 6∈TΠ, and it su�ces to show
the sub-claim that H is an activation set for (A2, L2) under the additional sub-assumption
that H ⊆ TΠ is an activation set for (A1, L1). Under the sub-assumption we also have
H ⊆TΠ∪∆ because of TΠ⊆TΠ∪∆, and, for L := TH∪A1∪ΠG , we have L1 ∈T L∪Π, and
then, by condition 1, L1 ∈ L ∪ TΠ. Then, by our current case of L1, L2 6∈TΠ, we have
L1 ∈ L. Thus, H is a simpli�ed activation set for (A1, L1).
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Let us now provide an argumentum ad absurdum for the assumption that H is a simpli�ed
activation set also for (∅, L1): Then we would have L1 ∈TH∪ΠG , and because of H ⊆TΠ and
ΠG⊆Π we get L1 ∈TTΠ∪Π =TΠ � a contradiction to our current case of L1, L2 6∈TΠ.

All in all, by our initial assumption, H must now be a simpli�ed activation set for (A2, L2)
and, a fortiori by Corollary 6.2, an activation set for (A2, L2), as was to be shown for our
only remaining sub-claim. Q.e.d. (Theorem6.16)

6.6 Checking Up the Previous Examples

With the help of Theorem6.16, we can now analyze the examples of � 3, and also check
how our relation CP1 behaves in case of our counterexample to transitivity. Note that
condition 4 of Theorem6.16 is satis�ed for all of these examples.

Example 6.17 (continuing Example 3.1 of � 3)
We have (A2, flies(edna)) 6.CP1 (∅,¬flies(edna))

because flies(edna) 6∈TΠ3.1 and ¬flies(edna)∈TΠ3.1 .
We have (∅,¬flies(edna)) .P3 (A2, flies(edna)) by Corollary 6.7(3).
All in all, by Theorem6.16, we get (∅,¬flies(edna))<CP1(A2, flies(edna))

and (∅,¬flies(edna)) <P3 (A2, flies(edna)).

Remark 6.18 One may ask why we did not de�ne an additional quasi-ordering, say .CP0,
simply by replacing the two conditions of De�nition 6.12 with the single condition

�L2 ∈TΠ implies L1 ∈TΠ, and every H ⊆ TΠ that is an [minimal] activation
set for (A1, L1) is also an activation set for (A2, L2).�

This would be more in the style of De�nition 6.6 for .P3, and would also avoid the sin-
gular behavior of the �rst alternative condition of De�nition 6.12, and so o�er continuity
advantages.31 Moreover, for .CP0 instead of .CP1, items 1 and 2 (but not item3) of Corol-
lary 6.13 still hold, as well as Theorem6.14 and its Corollary 6.15. Furthermore, we get
.CP0 ⊆ .CP1. It is fatal for .CP0, however, that this subset relation may be proper. For
instance, .CP0 does not in general satisfy Theorem6.16. Even worse, .CP0 does not show
the proper behavior of .CP1 in Example 3.1 of � 3, as discussed in Example 6.17 of � 6.6:
We get (∅,¬flies(edna)) MCP0 (A2, flies(edna)) instead of

(∅,¬flies(edna)) <CP1 (A2, flies(edna)).
This can be seen by considering the activation set ∅ for (∅,¬flies(edna)), which is not

an activation set for (A2, flies(edna)).
Such a behavior is obviously unacceptable in practice, and so we do not think that it

makes sense to consider .CP0 any further.

Example 6.19 (continuing Example 3.2 of � 3)
We have (A2, flies(edna)) 6.CP1 (A1,¬flies(edna)) because flies(edna) 6∈TΠ3.2 and because
{bird(edna)} ⊆ TΠ3.2 is an activation set for (A2, flies(edna)), but not for (A1,¬flies(edna)).

We have (A1,¬flies(edna)) .P3 (A2, flies(edna)), because flies(edna) 6∈TΠ3.2 and be-
cause, if H ⊆ TΠ3.2∪∆3.2 is a simpli�ed activation set for (A1,¬flies(edna)), but not for

31Cf. the discussion of such a continuity advantage in � 7.1 for the monotonicity w.r.t. conjunction.
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(∅,¬flies(edna)), then we have emu(edna)∈H, and thus H is a simpli�ed activation set
also for (A2, flies(edna)).

All in all, by Theorem6.16, we get (A1,¬flies(edna))<CP1(A2, flies(edna))
and (A1,¬flies(edna)) <P3 (A2, flies(edna)).

Example 6.20 (continuing Example 3.3 of � 3)
We have (A2, flies(edna)) .CP1 (A1,¬flies(edna)) because ¬flies(edna) 6∈TΠ3.3 and, for
every activation set H ⊆ TΠ3.3 for (A2, flies(edna)), we get emu(edna)∈H, and so H is
an activation set also for (A1,¬flies(edna)).

Nevertheless, we have (A2, flies(edna)) 6.P3 (A1,¬flies(edna)), because {bird(edna)} ⊆
TΠ3.3∪∆3.3 is a simpli�ed activation set for (A2, flies(edna)), but neither for (∅, flies(edna)),
nor for (A1,¬flies(edna)).

We have (A1,¬flies(edna)) .P3 (A2, flies(edna)), because of flies(edna) 6∈TΠ3.3 and
because, if H ⊆ TΠ3.3∪∆3.3 is a simpli�ed activation set for (A1,¬flies(edna)), but not for
(∅,¬flies(edna)), then we have emu(edna)∈H and thus H is a simpli�ed activation set also
for (A2, flies(edna)).

All in all, by Theorem6.16, we get (A1,¬flies(edna))≈CP1(A2, flies(edna))
and (A1,¬flies(edna)) <P3 (A2, flies(edna)).

From a conceptual point of view, we have to ask ourselves, whether we would like the two
defeasible rule instances in A2 = { flies(edna)←bird(edna), bird(edna)←emu(edna) } to re-
duce the speci�city of (A2, flies(edna)) as compared to a system that seems equivalent for the
given argument for flies(edna), namely the argument ({flies(edna)←emu(edna)}, flies(edna)).

Does the speci�city of a defeasible reasoning step really reduce if we introduce inter-
mediate literals (such as bird(edna) between flies(edna) and emu(edna)) ?

According to human intuition, this question has a negative answer, as we have already
explained in Remark 4.2 at the end of � 4.4.5.32

Example 6.21 (continuing Example 3.4 of � 3)
We have (A2, lovely)6.CP1(A1,¬lovely) because lovely 6∈TΠ3.4 and because {somebody} ⊆ TΠ3.4

is an activation set for (A2, lovely), but not for (A1,¬lovely).
We have (A1,¬lovely).P3(A2, lovely) because of lovely 6∈TΠ3.4 and because, if H ⊆

TΠ3.4∪∆3.4 is a simpli�ed activation set for (A1,¬lovely), but not for (∅,¬lovely), then
we have {somebody, noisy} ⊆ H, and so H is also a simpli�ed activation set for (A2, lovely).

All in all, by Theorem6.16, we get (A1,¬lovely)<CP1(A2, lovely)
and (A1,¬lovely) <P3 (A2, lovely).

Note that we can nicely see here that the condition that H is not a simpli�ed activation
set for (∅,¬lovely) is relevant in De�nition 6.6. Without this condition we would have to
consider the simpli�ed activation set {grandpa} for (A1,¬lovely), which is not an activation
set for (A2, lovely); and so, contrary to our intuition, (A1,¬lovely) would not be more
speci�c than (A2, lovely) w.r.t. .P3 anymore.

32Moreover, Examples 7.1 and 7.2 will exhibit a strong reason to deny this question: the requirement
of monotonicity w.r.t. conjunction. Furthermore, see Example 7.3 for another example that makes even
clearer why defeasible rules should be considered for their global semantical e�ect instead of their syntactical
�ne structure.
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Example 6.22 (continuing Example 6.9 of � 6.2)
The following holds for our speci�cation of Example 6.9 by Lemma6.10 and Corollary 6.8:

(A1, Propose) <P3 (A2, Kiss) <P3 (A3, Smile) 6&P3 (A1, Propose).
For our corrected relation CP1 we have:

(A1, Propose) <CP1 (A2, Kiss) <CP1 (A3, Smile) >CP1 (A1, Propose)
simply because the trouble-making set {Bold, Promising(Jo) } is not to be considered here.
Indeed, this set is not a subset of TΠ6.9 . The checking of the details is left to the reader.
Note that, because of Lemma6.10, Theorem6.16, Theorem6.14, and Corollary 2.10, all
that is actually left to show is

(A1, Propose) 6&CP1 (A2, Kiss) 6&CP1 (A3, Smile).

7 Putting Speci�city to Test w.r.t. Human Intuition

Before we will go on with further conceptual material and e�ciency considerations in � 8,
let us put our two main notions of speci�city � as formalized in the two binary relations
.P3 and .CP1 � to test w.r.t. our changed phase 1 of � 6.1 in a series of further examples.

Note that we can freely draw the consequence .P3 ⊆ .CP1 of Theorem6.16 because
at least one33 of its conditions is satis�ed in all the following examples except Example 7.5,
which is the only example in � 7 with an activation set that actually is not a simpli�ed one.

Besides freely applying Theorem6.16 � to enable the reader to make his own selection
of interesting examples � we are pretty explicit in all of the following examples.

7.1 Monotonicity of the Speci�city Relations w.r.t. Conjunction

Monotonicity w.r.t. conjunction is the following property for a binary relation R on argu-
ments: In case of (Ai

1, L
i
1) R (Ai

2, L
i
2) for i∈{1, 2},

we always have (A1
1∪A2

1, L
′
1) R (A1

2∪A2
2, L

′
2)

for fresh constant literals L′
j with rules L′

j⇐L1
j∧L2

j added to the general rules ΠG (j ∈{1, 2}).
In this case, we will call (A1

j∪A2
j , L

′
1) the conjunction of the arguments (A1

j , L
1
j) and (A2

j , L
2
j).

This property is obviously given for .CP1 in case of L1
1, L

2
1 ∈TΠ (which implies L′

1 ∈TΠ)
and also in case of L1

1, L
2
1 6∈TΠ (where we get L1

2, L
2
2, L

′
1, L

′
2 6∈TΠ and just take the union

of the two activation sets). Note that the latter case � where both arguments are defea-
sible � is certainly the most important one.

For the remaining borderline case of Li
1 6∈TΠ 3L3−i

1 (for some i∈{1, 2}), however,
monotonicity cannot be expected in general for .CP1, simply because then we get L′

1 6∈TΠ,
but do not necessarily have any activation set for L3−i

2 . This non-monotonicity, however,
is part and parcel of our decision to prefer arguments whose literals are elements of TΠ, as
expressed in item1 of De�nition 6.12 of � 6.4. As explained in Remark 6.18 of � 6.6, there
does not seem to be an alternative to this technically required preference.

For .P1, however, monotonicity is not even given for the case we just realized to be the
most important one. This was already noted in [Poole, 1985], using the following example.

33Condition 4 of Theorem6.16 is satis�ed for Examples 3.2, 3.3, 3.4, and 7.7. Condition 3 (but not
condition 4) is satis�ed for Examples 7.1, 7.2, 7.3, 7.4 and 7.6.
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Example 7.1 (Example 6 of [Poole, 1985])

ΠF
7.1 :=

{
a, d

}
,

ΠG
7.1 :=

{
g1 ⇐ ¬c∧¬f,
g2 ⇐ c∧f

}
,

∆7.1 := A1 ∪ A2.

A1 :=

{
¬c ← a,
¬f ← d

}
.

A2 :=


b ← a,
c ← b,
e ← d,
f ← e

.

g1

g2

¬c c f ¬f

b e

a d

A1
A1

A2

A2

A2

A2

Let us compare the speci�city of the arguments (A1, g1) and (A2, g2).
We have (A1, g1) ≈CP1 (A2, g2) because H ⊆ TΠ7.1 = {a, d} is an activation set for

(Ai, gi) if and only if H = {a, d}.
We have (A1, g1) MP3 (A2, g2) for the following reasons: {a,¬f} ⊆ TΠ7.1∪∆7.1 is a

simpli�ed activation set for (A1, g1), but neither for (∅, g1), nor for (A2, g2). {a, f} ⊆
TΠ7.1∪∆7.1 is a simpli�ed activation set for (A2, g2), but neither for (∅, g2), nor for (A1, g1).

Poole [1985] considers the same result for .P1 as for .P3 to be �seemingly unintuitive�,
because, as we have seen for the isomorphic sub-speci�cation in Example 3.3 of � 3, we have
both (A1,¬c) <P3 (A2, c) and (A1,¬f) <P3 (A2, f).

Indeed, as already listed as an essential requirement in � 5, the conjunction of two
respectively more speci�c derivations should be more speci�c.

On the other hand, considering .CP1 instead of .P3, the conjunctions of two respective
arguments that are pairwise equivalently speci�c are equivalently speci�c � exactly as one
intuitively expects.

By turning the defeasible rule b←a of Example 7.1 into a strict general rule, we obtain the
following example.

Example 7.2 (1stVariation of Example 7.1)

ΠF
7.2 :=

{
a, d

}
,

ΠG
7.2 :=


g1 ⇐ ¬c∧¬f,
g2 ⇐ c∧f,
b ⇐ a

 ,

∆7.2 := A1 ∪ A2.

A1 :=

{
¬c ← a,
¬f ← d

}
.

A2 :=


c ← b,
e ← d,
f ← e

.

g1

g2

¬c c f ¬f

b e

a d

A1
A1

A2 A2

A2

Let us compare the speci�city of the arguments (A1, g1) and (A2, g2).
We have (A2, g2) 6.CP1 (A1, g1) because {b, d} ⊆ TΠ7.2 = {a, b, d} is an activation set

for (A2, g2), but not for (A1, g1).
We have (A1, g1) .CP1 (A2, g2) because, for every activation set H ⊆ TΠ7.2 for (A1, g1),

we have {a, d}⊆H; and so H is also an activation set for (A2, g2).
We again have (A1, g1) MP3 (A2, g2), for the same reason as in Example 7.1. Thus, the
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situation for .P3 is just as in Example 7.1, and just as �seemingly unintuitive� for exactly
the same reason.

We have (A1, g1) <CP1 (A2, g2), which is intuitively correct because the conjunction of
a more speci�c and an equivalently speci�c argument, respectively, should be more speci�c.
Indeed, from the isomorphic sub-speci�cations in Examples 3.2 and 3.3, we know that
(A1,¬c) <CP1 (A2, c) and (A1,¬f) ≈CP1 (A2, f), respectively.

All in all, the relation .P3 fails in this example again, whereas the quasi-ordering .CP1

works according to human intuition and satis�es monotonicity w.r.t. conjunction.

7.2 Implementation of the Preference of the �More Precise�

As primary sources of di�erences in speci�city, all previous examples � except Exam-
ple 3.4 of � 3, continued in Example 6.21 of � 6.6 � illustrate only the e�ect of chains of
implications. According to our motivating discussion of � 4.4.5, we should consider also
examples where the primary source of di�erences in speci�city is an essentially required
condition that is a super-conjunction of the condition triggering another rule. We will do
so in the following examples.

As we have already shown in Example 6.21, both relations .P3 and .CP1 produce the
intuitive result if the �more precise� super-conjunction is directly the condition of a rule.
Let us see whether this is also the case if the condition of the rule is derived from a super-
conjunction.

By removing the second condition literal ¬f in the strict general rule g1⇐¬c∧¬f of
Example 7.1, we obtain the following example.

Example 7.3 (2ndVariation of Example 7.1)

ΠF
7.3 :=

{
a, d

}
,

ΠG
7.3 :=

{
g1 ⇐ ¬c,
g2 ⇐ c∧f

}
,

∆7.3 := A1 ∪ A2.
A1 :=

{
¬c ← a

}
.

A2 :=


b ← a,
c ← b,
e ← d,
f ← e

.

g1 g2

¬c c f

b e

a d

A1

A2

A2

A2

A2

Let us compare the speci�city of the arguments (A1, g1) and (A2, g2).
We have (A1, g1) 6.CP1 (A2, g2) because {a} ⊆ TΠ7.3 = {a, d} is an activation set for

(A1, g1), but not for (A2, g2).
We have (A2, g2) .CP1 (A1, g1) because any activation set for (A2, g2) that is a subset

of TΠ7.3 includes a, and so is also an activation set for (A1, g1).
Considering Theorem6.16 as well as the the activation set {b, d} for (A2, g2),

we get (A1, g1) MP3 (A2, g2),
contrary to (A1, g1) >CP1 (A2, g2).

Thus, .CP1 realizes the intuition that the super-conjunction a∧d � which is essential
to derive c∧f according to A2 � is more speci�c than the �less precise� a.

Just like Example 6.20 of � 6.6, this example shows again that .P3 does not properly
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implement the intuition that � in a model-theoretic approach to speci�city � defeasible
rules should be considered for their global semantical e�ect instead of their syntactical �ne
structure.

Example 7.4 (Example 11 from [Stolzenburg &al., 2003, p. 96])

ΠF
7.4 :=

{
c, d, e

}
,

ΠG
7.4 :=

{
x ⇐ a∧f

}
,

∆7.4 := A1 ∪ A2 ∪ A3 ∪ A4 ∪ A5.
A1 :=

{
x ← a∧b∧c

}
.

A2 :=
{
¬x ← a∧b

}
.

A3 :=
{

f ← e
}
.

A4 :=
{

a ← d
}

.
A5 :=

{
b ← e

}
.

x x

¬x

a b f

d c e

A1

A1

A1

A2

A2

A3

A4
A5

Compare the speci�city of the arguments (A1∪A4∪A5, x), (A2∪A4∪A5,¬x), (A3∪A4, x) !
We have (A1∪A4∪A5, x) <CP1 (A2∪A4∪A5,¬x) ≈CP1 (A3∪A4, x),

because of x,¬x 6∈TΠ7.4 , and because any activation set H ⊆ TΠ7.4 = {c, d, e} for any of
(A1∪A4∪A5, x), (A2∪A4∪A5,¬x), (A3∪A4, x) contains {d, e}, which is an activation set
only for the latter two.

This matches our intuition well, because the �rst of these arguments essentially requires
the �more precise� c∧d∧e instead of the less speci�c d∧e.

We have (A1∪A4∪A5, x) MP3 (A2∪A4∪A5,¬x) MP3 (A3∪A4, x) MP3 (A1∪A4∪A5, x),
however.34 This means that .P3 cannot compare these counterarguments and cannot help
us to pick the more speci�c argument.

What is most interesting under the computational aspect is that, for realizing
(A1∪A4∪A5, x) 6.P3 (A2∪A4∪A5,¬x),

we have to consider the simpli�ed activation set {d, f}⊆TΠ7.4∪∆7.4 for (A1∪A4∪A5, x). This
means that here � to realize that f ∈TΠ7.4∪∆7.4 �we have to take into account the defeasible
rule of A3, which is not part of any of the two arguments under comparison.35

Note that such considerations are not required, however, for realizing the properties
of .CP1, because defeasible rules not in the given argument can be completely ignored when
calculating the minimal activation sets as subsets of TΠ instead of TΠ∪∆. In particular, the
complication of pruning � as discussed in detail in [Stolzenburg &al., 2003, � 3.3] �
does not have to be considered for the operationalization of .CP1.

34Because {d, f} ⊆ TΠ7.4∪∆7.4 is a simpli�ed activation set for (A4, x), but neither for (∅, x), nor for
(A2∪A4∪A5,¬x), we have (A1∪A4∪A5, x) 6.P3 (A2∪A4∪A5,¬x) 6&P3 (A3∪A4, x).
Because of (A3∪A4, x) 6.CP1 (A1∪A4∪A5, x) 6&CP1 (A2∪A4∪A5,¬x),
we have (A3∪A4, x) 6.P3 (A1∪A4∪A5, x) 6&P3 (A2∪A4∪A5,¬x)
by Theorem6.16. Because {b, c, d} ⊆ TΠ7.4∪∆7.4 is a simpli�ed activation set for (A2∪A4∪A5,¬x) and
(A1∪A4∪A5, x), but for none of (∅,¬x), (∅, x), (A3∪A4, x), we have

(A2∪A4∪A5,¬x) 6.P3 (A3∪A4, x) 6&P3 (A1∪A4∪A5, x).
35Have a look at Figure 1 in � 6.1 to see that the e�ect of f proceeds here only via the set F , but not via

the usage of the set H at the bottom of Figure 1.
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By turning the defeasible rule f←e of Example 7.4 into a strict general rule, we obtain
the following example.

Example 7.5 (Variation of Example 7.4)

ΠF
7.5 :=

{
c, d, e

}
,

ΠG
7.5 :=

{
x ⇐ a∧f,
f ⇐ e

}
,

∆7.5 := A1 ∪ A2 ∪ A4 ∪ A5,
A1 :=

{
x ← a∧b∧c

}
.

A2 :=
{
¬x ← a∧b

}
.

A4 :=
{

a ← d
}

,
A5 :=

{
b ← e

}
.

x x

¬x

a b f

d c e

A1

A1

A1

A2

A2

A4
A5

Compare the speci�city of the arguments (A1∪A4∪A5, x), (A2∪A4∪A5,¬x), (A4, x) !
Obviously, x,¬x /∈ TΠ7.5 = {c, d, e, f}. Moreover, {d} ⊆ TΠ7.5 is an activa-

tion set for (A4, x) (but not a simpli�ed one!) and, a fortiori (by Corollary 6.13(1)),
for (A1∪A4∪A5, x), but not for (A2∪A4∪A5,¬x). Furthermore, every activation set
H ⊆ TΠ7.5 for (A2∪A4∪A5,¬x) satis�es {d, e}⊆H, which is an activation set for (A4, x)
and (A1∪A4∪A5, x). Finally, every activation set H ⊆TΠ7.5 for (A1∪A4∪A5, x) satis�es
{d} ⊆ H which is an activation set for (A4, x).

All in all, we have (A4, x) ≈CP1 (A1∪A4∪A5, x) >CP1 (A2∪A4∪A5,¬x).
This is intuitively sound because (A2∪A4∪A5,¬x) is activated only by the more speci�c

d∧e, whereas (A4, x) is activated also by the �less precise� d.
Moreover, c∧d∧e is not essentially required for (A1∪A4∪A5, x), and so this argument

is tantamount to (A4, x). The reason for this remarkable e�ect is not the lack of minimal-
ity of the argument (A1∪A4∪A5, x), but our semantical, model-theoretic approach, which
simply ignores the fact that the derivation via A1 requires the more precise activation set.
Indeed, we primarily consider consequence, not derivation.

We have (A4, x) <P3 (A1∪A4∪A5, x) MP3 (A2∪A4∪A5,¬x) MP3 (A4, x), however.36

This means that .P3 fails here completely w.r.t. Poole's intuition, as actually in most
non-trivial examples.

7.3 Con�ict between the �More Concise� and the �More Precise�

By removing the second condition literal ¬f in the strict general rule g1⇐¬c∧¬f of Exam-
ple 7.2, we obtain the following example.

36The minimal simpli�ed activation sets for (A4, x) that are no simpli�ed activation sets for (∅, x) are
{d, e} and {d, f}. The minimal simpli�ed activation sets for (A1∪A4∪A5, x) that are no simpli�ed acti-
vation sets for (∅, x) are {d, e}, {d, f}, {a, b, c}, and {b, c, d}. The minimal simpli�ed activation sets for
(A2∪A4∪A5,¬x) that are no simpli�ed activation sets for (∅,¬x) are {a, b}, {a, e}, {b, d}, and {d, e}.



37

Example 7.6 (Variation of Example 7.2)

ΠF
7.6 :=

{
a, d

}
,

ΠG
7.6 :=


g1 ⇐ ¬c,
g2 ⇐ c∧f,
b ⇐ a

 ,

∆7.6 := A1 ∪ A2.

A1 :=
{
¬c ← a

}
.

A2 :=


c ← b,
e ← d,
f ← e

.

g1 g2

¬c c f

b e

a d

A1

A2 A2

A2

Let us compare the speci�city of the arguments (A1, g1) and (A2, g2).
We have (A1, g1) MCP1 (A2, g2) for the following reasons: {a} ⊆ TΠ7.6 = {a, b, d} is

an activation set for for (A1, g1), but not for (A1, g1); {b, d} ⊆ TΠ7.6 is an activation set
for (A2, g2), but not for (A2, g2).

By Theorem6.16 we also get (A1, g1) MP3 (A2, g2).
In this example the two intuitive reasons for speci�city � super-conjunction (preference

of the �more precise�) and implication via a strict rule (preference of the �more concise�) �
are in an irresolvable con�ict, which goes well together with the fact that neither .CP1

nor .P3 can compare the two arguments.

7.4 Global E�ect matters more than Fine Structure

The following example nicely shows that any notion of speci�city based only on single
defeasible rules (without considering the context of the general strict rules as a whole)
cannot be intuitively adequate.

Example 7.7 (Example from Page 95 of [Stolzenburg &al., 2003])

ΠF
7.7 :=

{
q(a)

}
,

ΠG
7.7 :=

{
s(x) ⇐ q(x)

}
,

∆7.7 :=

{
p(x) ← q(x),
¬p(x) ← q(x)∧s(x)

}
,

A1 :=
{
¬p(a) ← q(a)∧s(a)

}
,

A2 :=
{

p(a) ← q(a)
}

¬p(a) p(a)

s(a)

q(a)

A1

A1 A2

Let us compare the speci�city of the arguments (A1,¬p(a)) and (A2, p(a)).
We have (A1,¬p(a)) ≈P3 (A2, p(a)), because of p(a),¬p(a) /∈ TΠ7.7 = {q(a), s(a)},

and because, for H ⊆ TΠ7.7∪∆7.7 , i ∈ {1, 2}, L1 := ¬p(a), and L2 := p(a), we have the
logical equivalence of H = {q(a)} on the one hand, and of H being a minimal simpli�ed
activation set for (Ai, Li) but not for (∅, Li), on the other hand.

By Theorem6.16, we also get (A1,¬p(a)) ≈CP1 (A2, p(a)).
This makes perfect sense because q(a)∧ s(a) is not at all strictly �more precise� than q(a)

in the context of ΠG
7.7.

Note that nothing is changed here if s(x) ⇐ q(x) is replaced by setting ΠG
7.7 := {s(a)}.

If s(x) ⇐ q(x) is replaced by setting ΠG
7.7 := ∅ and ΠF

7.7 := {q(a), s(a)}, however, then
we get both (A1,¬p(a)) <P3 (A2, p(a)) and (A1,¬p(a)) <CP1 (A2, p(a)).

This also speaks for our admission of literals (i.e. unconditional rules) to ΠG.37
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8 E�ciency Considerations and

the Speci�city Ordering CP2

The speci�city relations P1, P2, P3, and CP138 share several e�ciency features, which
we will highlight in this section. Moreover, we will introduce the speci�city ordering CP2,
a minor variation of CP1 toward more e�ciency and intuitive adequacy. Finally, we will
discuss further steps toward more e�ciency following Herbrand's Fundamental Theorem.

8.1 A Slight Gain in E�ciency

A straightforward procedure toward deciding the speci�city relations .CP1 and .P3 be-
tween two arguments is to consider all possible activation sets from the literals in the
sets TΠ and TΠ∪∆, respectively. The e�ort for computing .CP1 is lower than that of .P3

because of TΠ ⊆ TΠ∪∆, though not w.r.t. asymptotic complexity: In both cases already
the number of possible (simpli�ed) activation sets is exponential in the number of literals
in the respective sets TΠ and TΠ∪∆, because each possible subset has to be tested

8.2 Comparing Derivations

To lower the computational complexity, more syntactic criteria for computing speci�city
were introduced in [Stolzenburg &al., 2003]. These criteria refer to the derivations for
the given arguments. More precisely, they refer to the and-trees of De�nition 4.1 in � 4.4.1.

8.2.1 No Pruning Required

The concept of pruning and-trees is introduced in [Stolzenburg &al., 2003, De�nition 12]

in this context, because, for the case of .P2, attention cannot be restricted to derivations
which make use only of the instances of defeasible rules given in the arguments. The
reason for this is that the speci�city notions according to [Poole, 1985] and [Simari &
Loui, 1992] admit literals L in activation sets that cannot be derived solely by strict rules,
i.e. L ∈ TΠ∪∆\TΠ. Since this is not possible with the relation .CP1, this problem vanishes
with our corrected version of speci�city. This problem and its vanishing are discussed in
Example 7.4 of � 7.2.

8.2.2 Sets of Derivations have to be Compared

Yet still, the speci�city relation .CP1 inherits several properties from .P3. For instance,
the syntactic criteria of their de�nitions require us in general to compare two sets of deriva-
tions element by element. This is true for both speci�city relations, as shown in the
following example.

37Cf. Note 3 of � 2.3.

38P1 follows [Poole, 1985] and can be found in this paper in De�nition 6.3 of � 6.2. P2 follows [Simari
& Loui, 1992] and can be found in De�nition 6.4 of � 6.2. P3 respects non-defeasible arguments and can
be found in De�nition 6.6 of � 6.2. CP1 is our transitive relation found in De�nition 6.12 of � 6.4.
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Example 8.1 (Minimal argument with two minimal and-trees/activation sets)

ΠF
8.1 :=

{
b, c, d

}
,

ΠG
8.1 :=


f ⇐ c∧e,
f ⇐ d∧e,
g ⇐ d∧e,

 ,

∆8.1 := A1 ∪ A2.

A1 :=

{
¬h ← g,
e ← b

}
.

A2 :=

{
h ← f,
e ← b

}
.

¬h h

g f f

d e c

b

A1
A2

A1∩A2

The argument (A1,¬h) has {b, d} as the only minimal activation set that is a subset of
TΠ8.1 = ΠF

8.1. {b, d} is also a minimal activation set for (A2, h). On the other hand, {b, c} is
an activation set for (A2, h), but not for (A1,¬h). Thus, we get (A1,¬h) <CP1 (A2, h).

Because either d or c is in an and-tree of the argument (A2, h) (but never both!), a com-
parison of two �xed and-trees does not su�ce.

Moreover note that we have (A1,¬h) MP3 (A2, h), because of the simpli�ed activation
sets {g} and {f}, respectively.

Furthermore note that the only minimal activation set for the minimal argument
({e←b}, f) is {b}, which, however, is not a simpli�ed activation set for that argument.

The reason for the complication of an element-by-element comparison of and-trees is that
we consider a very general setting of defeasible reasoning in this paper. Indeed, we admit

1. more than one condition literal in rules, i.e. conditions containing more than one
literal, and

2. non-empty sets of background knowledge, i.e. general rules, not only facts.

Typically, only restricted cases are considered: Conditions have always to be singletons in
[Gelfond & Przymusinska, 1990], no background knowledge is allowed in [Dung &

Son, 1996], and both restrictions are present in [Benferhat & Garcia, 1997].

8.2.3 Path Criteria?

Before we come to the computation of activations sets via goal-directed derivations in � 8.3,
let us have a closer look here at the path criterion of [Stolzenburg &al., 2003, � 3.4].

De�nition 8.2 (Path)
For a leaf node N in an and-tree T, we de�ne the path in T through N as the empty set
if N is the root, and otherwise as the set consisting of the literal labeling N, together with
all literals labeling its ancestors except the root node. Let Paths(T ) be the set of all paths
in T through all leaf nodes N .

With this notion of paths, the quasi-ordering E on and-trees can be given as follows:

De�nition 8.3 ([Stolzenburg &al., 2003, De�nition 23])
T1 E T2 if T1 and T2 are two and-trees, and for each t2 ∈ Paths(T2) there is a path
t1 ∈ Paths(T1) such that t1 ⊆ t2.
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Two and-trees can be compared w.r.t. E e�ciently. This requires the subset comparison
of all paths of the two trees, respectively. Hence, the respective complexity is polynomial,
at most O(n3), where n is the overall number of nodes in the and-trees.39 This made
the relation E attractive for practical use in the context of [Stolzenburg &al., 2003]

compared to the exponential comparison mention in � 8.1. As stated in the following
de�nition, for a comparison of speci�city we have to consider all and-trees, however, and so
we still remain with an overall exponential time complexity, which is not better than the
one we will describe in Remark 8.28 of � 8.3.4.

De�nition 8.4 ([Stolzenburg &al., 2003, De�nition 24])
(A1, h1) ≤ (A2, h2) if (A1, h1) and (A2, h2) are two arguments in the given speci�cation
and for each and-tree T1 for h1 there is an and-tree T2 for h2 such that T1 E T2.

It is shown in [Stolzenburg &al., 2003, Theorem 25] that ≤ and .P2 are equal in
special cases, namely if the arguments involved in the comparison correspond to exactly
one and-tree. Let us try to adapt this result to our new relation .CP1, in the sense that
we try to establish a mutual subset relation between ≤ and .CP1.

The forward direction is pretty straightforward, but comes with the restriction to be
expected: From [Stolzenburg &al., 2003, Theorem 25] we get ≤ ⊆ .P2. By looking
at the empty path, we easily see that ≤ satis�es the additional restriction of De�nition 6.6 as
compared to De�nition 6.4; so we also get ≤ ⊆ .P3. Finally, we can apply Theorem6.16
and get the intended ≤ ⊆ .CP1, but only with the strong restriction of the condition of
Theorem6.16. We see no way yet to relax this restriction resulting from phase 3 of � 6.1.

It is even more unfortunate that the backward direction does not hold at all because of
our change in phase 1 of � 6.1. In particular, as shown in the following example, it does not
hold for the special case where it holds for .P2, i.e. in the case that there are no general
rules and hence each minimal argument corresponds to exactly one derivation (cf. the proof
of Theorem25 in [Stolzenburg &al., 2003]).

Example 8.5
ΠF

8.5 := {a, b}, ΠG
8.5 := ∅,

∆8.5 := A1 ∪ A2.

A1 :=

{
c1 ← a∧b,
d ← c1

}
.

A2 :=

{
c2 ← a,
¬d ← c2

}
.

¬d d

c2 c1

a b

A2

A2

A1

A1 A1

We have (A1, d) MP3 (A2,¬d) and (A1, d) <CP1 (A2,¬d).
Both arguments (A1, d) and (A2,¬d) correspond to exactly one and-tree, say T1 and T2,

respectively. All paths in Paths(T1) contain c1, but not c2, and all paths in Paths(T2)
contain c2, but not c1. Hence, (A1, d) ≤ (A2,¬d) does not hold.

39To see this, note that the literals of the paths of the and-trees can be sorted, which reduces the
complexity of the test for the subset property.
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8.3 Toward a More E�ciently Realizable Notion

of Poole-Style Speci�city

Contrary to our small examples in the previous sections, examples of a practically relevant
size require notions of speci�city that can be decided e�ciently.

As we are mainly interested in the more speci�c arguments, i.e. in the minimal elements
of our speci�city ordering, we may admit variations of our speci�city ordering CP1 that
o�er better chances for an e�cient implementation, but do not relevantly di�er w.r.t. these
minimal elements.

Therefore, in this section, we will introduce another correction (CP2) of Poole's speci-
�city relation, which o�ers some advantages for the computation of the respective activation
sets, whereas our speci�city ordering CP1 o�ers only the minor advantages over P1, P2, P3
we have already described in �� 8.1 and 8.2.1.

More precisely, our plan for this section is to obtain another quasi-ordering .CP2 by
slight modi�cation of our quasi-ordering .CP1, such that the two do not di�er in any of our
previous examples, and such that .CP2 may mirror our intuition on speci�city according
to the analysis in � 4 even more closely in some aspects. Finally, we will try to develop a
more e�cient procedure for deciding the speci�city quasi-ordering .CP2 than those known
for any of .P1, .P2, .P3, .CP1.

The crucial step in such a procedure is the computation of activation sets. For a goal-
directed, SLD-resolution-like computation of activation sets we cannot keep our restriction
to arguments that are ground. For this reason, we now have to modify our notion of
a derivation by disallowing the instantiation of variables in our de�nition of TΠ and `
(cf. De�nition 2.3) as already hinted at in Remark 2.8 at the end of � 2.4. As a compen-
sation, we then may add a hat over a set of rules Π, such that Π̂ denotes the set of all
instances of Π.

8.3.1 Immediate Activation Sets

As a �rst step � since the workaround via path criteria failed in � 8.2.3 � we now have to
�nd a new notion of an immediate activation set such that there are less40 and more easily
computable immediate activation sets for a given argument than (non-immediate) activation
sets according to De�nition 6.1 of � 6.1. Our idea here is to avoid SLD-resolution steps
that expand a goal clause by inessential applications of rules in the sense of the following
de�nition, where we again apply the simple concept of an and-tree given in De�nition 4.1
of � 4.4.1.

De�nition 8.6 (Inessential Application of an Instance of a Rule)
The application of the instance L⇐C of a rule in an and-tree is inessential (in the and-tree)
if there is a node between the root (inclusively) and the application (including the node
labeled with L) that is labeled with an element of TΠ̂.

40There are indeed never more (cf. Corollary 8.8(4)), and typically much less immediate activation sets
than activation sets.
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As a step toward a more e�ciently realizable notion of Poole-style speci�city, we will
now eliminate those activation sets from our considerations that rely on and-trees with an
inessential application of the instance of a defeasible rule.41

As a side e�ect, this step will also eliminate all redundant activation sets that result
from what was called �growth of the defeasible parts toward the leaves� in � 4.4.3. This
growth results from inessential application not of defeasible rules, but of general rules only.
Contrary to the inessential application of instances of defeasible rules, this elimination of
inessential applications of general rules will not change our speci�city relation.

The positive e�ect, however, of cutting o� this growth is the following. When the leaves
of the defeasible part of an and-tree are included in TΠ̂ for the �rst time in a root-to-leaves
traversal, we immediately stop and obtain one single immediate activation set, and that's it!
The further enumeration of subsumed activation sets is no longer required.

While this reduction of the number of activation sets to one single immediate activation
set for each and-tree is most helpful for the computation related to the �rst argument of the
relation .CP2 when trying to decide it, for the computation related to the second argument
it re-introduces the complication we already had in our �rst sketch of a notion of speci�city
in � 4.3.2, as compared to the simpli�ed, second version of this sketch in � 4.4.4, which was
the basis for our �rst formal de�nition of activation sets in De�nition 6.1 of � 6.1.

This complication is only a notational one. It requires the notion of weakly immedi-
ate activation sets in addition to (non-weakly) immediate ones. This complication does
not mean any extra-computation, not even for the second argument in the test for .CP2:
It is just so that the test whether every activation set of the �rst argument is subsumed by
some activation set for the second argument becomes independent from the computation
of activation sets. This independence has the advantage that we can optimize it in several
directions: First of all, we must omit all rules from ΠF and ∆, which play some minor rôles
in the computation of non-immediate activation sets (namely ΠF for acceptance as an acti-
vation set, and the instances of ∆ that form the �rst element of the argument for expansion
of activation sets). It is more important, however, that we may also add some forward
reasoning from the activation set computed for the �rst argument in the test for .CP2.

All in all, this means for our operationalization that the computation of activation sets
(cf. De�nition 6.1) has to be replaced with the computation of immediate activation sets
according to the following de�nition, which also mirrors our isolation of defeasible parts of
derivations in � 4.4.1 more directly than before, namely in the sense that a growth towards
the leaves is avoided and the further dissection described in Note 7 of � 4.4.2 takes place.

It may be helpful for an intuitive understanding of the following de�nition to have a
look at Figure 1 in � 6.1: The root tree depicted there is captured in item2 of the following
de�nition, its sub-trees in item1.

41The �rst idea could be to take only activation sets all of whose literals occur in the condition of a rule
in A, for the respective argument (A, L). This idea, however, is too restrictive because also general rules
may play a rôle in the defeasible parts of the derivations, cf. � 4.4.1.
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De�nition 8.7 ([Minimal/Weakly] Immediate Activation Set)

Let A be a set of instances of rules from ∆, and let L be a literal.

H is an immediate activation set for (A, L) if H ⊆ TΠ̂ and there is a (possibly empty)
set of literals L, such that both of the following two items hold:

1. For each L′ ∈ L there is an and-tree for the derivation of H ∪A∪ Π̂G ` {L′} in which

(a) the root is labeled with L′ and generated by an element of A, and

(b) every literal L′′ that labels a non-leaf node or the root satis�es L′′ 6∈TΠ̂, and

(c) every literal L′′ /∈ A that labels a leaf node satis�es L′′ ∈TΠ̂,42

such that the set of literals labeling the leaves of these trees is a subset of H∪ TΠ̂G∪A.

2. There is an and-tree for the derivation of L ∪ Π̂ ` {L}, such that each literal L′′

labeling a node in a path from the root to a leaf labeled with an element from L

satis�es L′′ 6∈TΠ̂.

H is a minimal immediate activation set for (A, L) if H is an immediate activation set
for (A, L), but no proper subset of H is an immediate activation set for (A, L).

H is a weakly immediate activation set for (A, L) if H ⊆ TΠ̂ and there is an immediate
activation set H ′ for (A, L) with H ′ ⊆ TH∪Π̂G .

Corollary 8.8 Let A be a set of instances of rules from ∆, and let L be a literal.

1. If H is an [weakly ] immediate activation set for (A, L), then we have H ⊆ TΠ̂.

2. If H is a minimal immediate activation set for (A, L),
then we have H ⊆ TΠ̂ \ (TΠ̂G ∪ A).

3. Every immediate activation set for (A, L)
is a weakly immediate activation set for (A, L).

4. Every [weakly ] immediate activation set for (A, L) is an activation set43 for (A, L).

5. Every minimal activation set for (A, L) that is an immediate activation set for (A, L)
is a minimal immediate activation set for (A, L).

42Here �literal L′′ 6∈A� means that L′′ is a literal that is not a literal in A, i.e. no conclusion of an
unconditional rule from A. Note that, by (a), this excludes any overlap of (b) and (c) (which would result
in contradictory requirements): If the root is a leaf, then, by (a), it is labeled with a literal from A.

43Instead of the otherwise required condition that A is ground, we assume here � and will do so in what
follows without further mentioning � that the de�nition of an activation set in De�nition 6.1 of � 6.1 refers
(just as De�nition 8.7 of immediate ones and just as we have changed arguments and derivations in this
section) to sets also of non-ground instances of defeasible rules in the �rst element of arguments, but with
non-instantiating derivations and theories.
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Remark 8.9 (Di�erence between an Activation Set and an Immediate one)
Regarding the respective speci�city orderings, an immediate activation set crucially di�ers
from an activation set as follows: Certain defeasible parts may no longer participate in
the derivation, namely those parts that derive a node labeled with an element of TΠ̂.
This means that those deviations which contain inessential (in the sense of De�nition 8.6)
applications of instances of defeasible rules can no longer increase the number of activation
sets, i.e. can no longer reduce the speci�city of an argument.
We cannot see any reason why the fact that the �rst element of the argument may also
be re-used to re-derive a literal of TΠ̂ from TΠ̂ should be relevant for the speci�city of the
argument. Therefore we think that this crucial di�erence (besides the omission of subsumed
activation sets, which e�ects e�ciency only) is in line with common intuition.
Moreover, note that the crucial di�erence also admits the omission of all defeasible rules
whose conclusion is part of the theory TΠ̂ when computing immediate activations sets,
which does not seem to be possible for (non-immediate) activation sets.

De�nition 8.10 (.CP2 : 2ndVersion of our Speci�city Relation)
(A1, L1) .CP2 (A2, L2) if (A1, L1) and (A2, L2) are arguments, and we have

1. L1 ∈TΠ̂ or

2. L2 6∈TΠ̂ and every H ⊆ TΠ̂ that is an [minimal] immediate activation set for (A1, L1)
is a weakly immediate activation set for (A2, L2).

To see that nothing essential has changed, compare the following Corollary 8.11 to Corol-
lary 6.13 of � 6.4.

Corollary 8.11 If (A1, L1), (A2, L2) are arguments with A1⊆A2,
then any of the following conditions is su�cient for (A1, L1) .CP2 (A2, L2) :

1. L1 = L2.

2. L2 ∈ TΠ̂ ⇒ L1 ∈ TΠ̂ and {L1} ∪ Π̂ ` {L2}.
3. L1 ∈ TΠ̂ (which is implied by A1 = ∅ by De�nition 2.7).

Remark 8.12 (Optional Minimality Restriction has No E�ect)
Note that the omission of the optional restriction to minimal immediate activation sets
for (A1, L1) in De�nition 8.10 has no e�ect on the extension of the de�ned notion.
Proof: Suppose that L1, L2 6∈TΠ̂, and that H ′′ is an immediate activation set for (A1, L1).
Because the related derivation is �nite, we may assume that H ′′ is �nite w.l.o.g. Thus,
there is a minimal immediate activation set H ⊆ H ′′ for (A1, L1). If we now assume
(A1, L1) .CP2 (A2, L2) with respect to a de�nition with the optional minimality restric-
tion, then H is a weakly immediate activation set for (A2, L2), i.e. there is an immediate
activation set H ′ ⊆ TH∪Π̂G for (A2, L2), which (because of the monotonicity of our logic)
implies H ′ ⊆ TH′′∪Π̂G , i.e. H ′′ is a weakly immediate activation set for (A2, L2) as well,
as was to be shown.
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Remark 8.13 (Relaxation to a Weakly immediate activation set is crucial)
Note that we cannot straightforwardly require H to be a (non-weakly) immediate acti-
vation set for (A2, L2) in De�nition 8.10, because otherwise our new relation CP2 would
already fail to pass Example 3.2 of � 3, in the sense that both arguments there would be
incomparable.44 45

Theorem 8.14 .CP2 is a quasi-ordering on arguments.

Proof of Theorem8.14
.CP2 is a re�exive relation on arguments because of Corollary 8.11.
To show transitivity, let us assume (A1, L1) .CP2 (A2, L2) and (A2, L2) .CP2 (A3, L3).
According to De�nition 8.10, because of (A1, L1) .CP2 (A2, L2), we have L1 ∈TΠ̂ � and
then immediately the desired (A1, L1) .CP2 (A3, L3) � or we have L2 6∈TΠ̂. The latter
case excludes the �rst option in De�nition 8.10 as a justi�cation for (A2, L2) .CP2 (A3, L3).
Thus, it now su�ces to consider the case that Li 6∈TΠ̂ for all i ∈ {1, 2, 3}.
Suppose that H is an immediate activation set for (A1, L1). It su�ces to show that
H is a weakly immediate activation set for (A3, L3), i.e. to �nd an immediate activation
set H ′′ ⊆ TH∪Π̂G for (A3, L3). Because of our supposition, the �rst step of our original
assumption, and the case considered, H is a weakly immediate activation set for (A2, L2),
i.e. there is an immediate activation set H ′ ⊆ TH∪Π̂G for (A2, L2). Then, because of the
second step of our original assumption and the case considered, there is an immediate
activation set H ′′ ⊆ TH′∪Π̂G for (A3, L3). Because of the monotonicity of our logic and
the closedness of our theories, we now have H ′′ ⊆ TH′∪Π̂G ⊆ T

T
H∪Π̂G∪Π̂G = TH∪Π̂G , i.e.

H ′′ ⊆ TH∪Π̂G , as was to be shown. Q.e.d. (Theorem8.14)

Example 8.15 (.CP1 vs. .CP2)

ΠF
8.15 :=

{
thirst, danger

}
, ΠG

8.15 := ∅, ∆8.15 := A1 ∪ A3.
A1 :=

{
drink ← thirst

}
.

A2 :=
{

alarm ← danger
}
.

A3 := A2 ∪
{

danger ← thirst
}
.

drink alarm alarm

danger

thirst

A1

A2

A3

A3

First note that � because of ΠG
8.15 = ∅ � the two notions of

an immediate and a weakly immediate activation set coincide here.
We have TΠ̂8.15

= ΠF
8.15. Moreover, we have

(A2, alarm) <CP1 (A3, alarm) ≈CP2 (A2, alarm):
There is only one minimal activation set for (A2, alarm) that is a subset of TΠ̂8.15

, namely
{danger}. It is also a minimal immediate activation set for (A2, alarm); to see this, take L :=
{alarm} in De�nition 8.7. There are only two minimal activation sets for (A3, alarm) that
are subsets of TΠ̂8.15

, namely {danger} and {thirst}, but only the �rst one is an immediate
activation set for (A3, alarm). Note that (A2, alarm) is strictly more speci�c than (A3, alarm)
in the sense of (A2, alarm) 6&CP1 (A3, alarm) by the inessential46 application of the rule
danger←thirst of A3, which is not admitted for immediate activation sets.

44See the discussion at the end of Example 8.15.

45It might also be interesting to see that the slight modi�cation (via �weakly�), which we need here,
occurred already in our �rst intuitive sketch of a notion of speci�city in � 4.3 � long before the development
of the CP2 notion, cf. [Wirth & Stolzenburg, 2013, � 3.2].

46This means inessential in the sense of De�nition 8.6.
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Furthermore, we have
(A1, drink) <CP1 (A3, alarm) MCP2 (A1, drink):

The minimal [immediate] activation set {danger} for (A3, alarm) is not an activation set for
(A1, drink). The only [immediate] activation set for (A1, drink) that is a subset of TΠ̂8.15

is
{thirst}, which is an activation set for (A3, alarm), but not a weakly immediate one. Note
that (A1, drink) is no longer more or equivalently speci�c than (A3, alarm) in the sense of
(A1, drink) 6.CP2 (A3, alarm), because the inessential application of the rule danger←thirst
of A3 is not admitted for immediate activation sets.

In spite of these minor but noticeable di�erences, however, nothing has actually changed
by stepping from CP1 to CP2, except the positioning of the argument (A3, alarm), which is
non-minimal as an argument (and therefore practically irrelevant and not even considered
in many frameworks, cf. Remark 2.9 of � 2.4) and also non-minimal in .CP1 (and therefore
less speci�c and not really relevant either). What is crucial, however, is that a most speci�c
argument cannot be found in either case. Indeed, we have both

(A1, drink) MCP1 (A2, alarm)
and (A1, drink) MCP2 (A2, alarm).

If we remove danger from ΠF
8.15, then (A2, alarm) is no argument anymore, but we can

embed the speci�cation injectively into the one of Example 3.3 of � 3 and get both
(A1, drink) ≈CP1 (A3, alarm)

and (A1, drink) ≈CP2 (A3, alarm),
because the activation set {thirst} now becomes an immediate one also for (A3, alarm).
Indeed, the application of the rule danger←thirst is no longer inessential for deriving alarm.

Moreover, if we now add the rule danger⇐thirst to ΠG
8.15, resulting in the speci�cation

({thirst}, {danger⇐thirst}, ∆8.15), then the situation is essentially the same as in Exam-
ple 3.2 of � 3, and so we get both (A1, drink) <CP1 (A3, alarm) ≈CP1 (A2, alarm)

and (A1, drink) <CP2 (A3, alarm) ≈CP2 (A2, alarm),
because � although the application of the rule danger←thirst becomes inessential again
by danger∈TΠ̂ � {thirst} now becomes a weakly immediate activation set for (A3, alarm)
and for (A2, alarm), though not a (non-weakly) immediate one.

Corollary 8.16 (.CP1 and .CP2 are incomparable)
There are a speci�cation (ΠF

8.15, Π
G
8.15, ∆8.15) (without any negative literals) and arguments

(A1, L1), (A3, L3), (A2, L2), such that (A1, L1) .CP1 (A3, L3) .CP2 (A2, L2)
and (A1, L1) 6.CP2 (A3, L3) 6.CP1 (A2, L2),

i.e. .CP1 * .CP2 * .CP1.

Nevertheless, Example 8.15 suggests that only some unimportant details make .CP1

and .CP2 incomparable to each other, but that the most speci�c minimal arguments seem
to remain most speci�c and so nothing essential seems to change.

So we may ask ourselves: What changes occur in our previous examples when we switch
from CP1 to CP2 ? Do any of the relations stated for CP1 change for CP2 ?

The answer to the latter question is: No! We would like to ask the reader to check this
carefully.
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Example 8.17 (continuing Example 7.7)
Indeed, the only noticeable change at all occurs in Example 7.7, where {q(a)} is a minimal
activation set for (A1,¬p(a)), but not an immediate activation set. Nevertheless, because
{q(a)} is a weakly immediate activation set for (A1,¬p(a)), and because the only imme-
diate activation set for (A1,¬p(a)) is {q(a), s(a)} (which is a weakly immediate activation
set for (A2, p(a)), though not {q(a)}, the only (non-weakly) immediate one), we have
(A1,¬p(a)) ≈CP2 (A2, p(a)), just as we have (A1,¬p(a)) ≈CP1 (A2, p(a)).

Example 8.18 (continuing Example 8.1 of � 8.2.2)
(Minimal argument with two minimal immediate activation sets)
It is obvious that a minimal argument can easily have two minimal activation sets that
are incomparable w.r.t. ⊆ . For instance, already in Example 3.2 of � 3, the minimal
argument (A2, flies(edna)) has two minimal [simpli�ed] activation sets, namely {bird(edna)}
and {emu(edna)}, from which, however, only {bird(edna)} is an immediate activation set.
Indeed, minimal arguments can have more than one minimal immediate activation set
only if conditions of general rules directly contribute to the leaves of the isolated defeasible
part as described in � 4.4.1.47 This is happens in Example 8.1 of � 8.2.2 for the minimal
argument (A2, h) : The general rule f⇐c∧e contributes the leaf c to the isolated defeasible
part with root h, the inner nodes f and e, and the set of leaves {b, c}, which is one minimal
immediate activation set of (A2, h). Moreover, the general rule f⇐d∧e contributes the
leaf d to the isolated defeasible part with root h, the inner nodes f and e, and the set of
leaves {b, d}, which is the other minimal immediate activation set of (A2, h), and also the
only one for (A1,¬h). Thus, we get both (A1,¬h) <CP1 (A2, h)

and (A1,¬h) <CP2 (A2, h).

8.3.2 Special Cases with Simple Activation-Set Computation

A typical problem in practical application is to classify rules automatically as being facts,
general rules, or defeasible rules. We brie�y discuss the trivial forms of such a classi�cation
now.

The �rst trivial form of classi�cation is to take all proper rules as defeasible rules.
Note that the following lemma (motivated by Example 8.18 of � 8.3.1) reduces the task of
computing activation sets to the simpler task of computing minimal arguments.

Theorem 8.19 Assume that all rules in ΠG are just literals (i.e. have empty conditions).
Let (A, L) be a minimal argument. Let C be the set of all condition literals of all rules in A.
Then (A, L) has a unique minimal activation set H; and this H is actually a minimal
immediate activation set for (A, L) and equal to C ∩ Π̂F \ Π̂G.

47Technically, it is possible to enforce a unique immediate activation set for each minimal argument by
including the instances also of the general rules of the isolated defeasible part into the �rst element of
the arguments. Intuitively, however, this is not reasonable because it leads to unintendedly incomparable
arguments.
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Proof of Theorem8.19
Let (A, L) be a minimal argument.
In case of L∈TΠ̂, there is exactly one minimal activation set for (A, L), namely the empty
set ∅, and this an immediate activation set (choose L := ∅ in De�nition 8.7). Moreover,
because (A, L) is a minimal argument, we haveA= ∅, and then C= ∅. So we get our unique
minimal activation set ∅ indeed in the claimed form of C ∩ Π̂F \ Π̂G = ∅ ∩ Π̂F \ Π̂G = ∅.
It now remains to consider the case of L 6∈TΠ̂. Because (A, L) is an argument, there is an

and-tree for the derivation of Π̂F ∪ A ∪ Π̂G ` {L}. As every and-tree is �nite, there is a
�nite activation set H ′ ⊆ Π̂F for (A, L). Then there must be a minimal activation set H
for (A, L) with H ⊆ H ′. Then we have H ⊆ Π̂F\Π̂G. Then there is an and-tree T for the
derivation of H ∪A∪ Π̂G ` {L} (which is actually unique, but this does not matter here).
Let D be the set of all conclusions of all rules in A. Let D′ be the set of all literals in A
(i.e. rules with empty conditions). Then D

′ ⊆ D. Because (A, L) is a minimal argument,
we know that D ∩ TΠ̂ = ∅ and that every rule from A is applied in T. Thus, because of

L 6∈TΠ̂ and because all rules in Π̂ are just literals, the set of the labels of the leaves of T is

exactly (C ∩ TΠ̂)∪D′. Because T is an and-tree for the derivation of H ∪A∪ Π̂G ` {L},
because A ∩ TΠ̂ ⊆ D

′ ∩ TΠ̂ ⊆ D ∩ TΠ̂ = ∅, and because all rules in Π̂G are just literals,
we have
(a) C ∩ TΠ̂ ⊆ (H ∪ A ∪ Π̂G) ∩ TΠ̂ = H ∪ ∅ ∪ Π̂G = H ∪ Π̂G,

(b) TΠ̂G = Π̂G, and

(c) TΠ̂ = Π̂F ∪ Π̂G.
Because H is a minimal activation set for (A, L), H must be a subset of the leaves of T
not in D

′: H ⊆ C ∩ TΠ̂. Because of our previous result of H ⊆ Π̂F\Π̂G, we now get

H ⊆ C∩TΠ̂∩ Π̂F\Π̂G ⊆(a) (H ∪ Π̂G)∩ Π̂F\Π̂G = H ∪∅ = H, i.e. H = C∩TΠ̂∩ Π̂F\Π̂G =(c)

C∩ (Π̂F ∪ Π̂G)∩ Π̂F\Π̂G = C∩ Π̂F\Π̂G. Choosing L := {L} in item1 of De�nition 8.7, and
a proof tree consisting only of a root in item2, we see that H is actually an immediate
activation set for (A, L); in particular we have L 6∈TΠ̂ and the property required in the last

line of item1 of De�nition 8.7: (C ∩ TΠ̂)∪D′ ⊆(a) H ∪ Π̂G ∪A =(b) H ∪ TΠ̂G ∪A. Finally,
H is a minimal immediate activation set by Corollary 8.8(5). Q.e.d. (Theorem8.19)

The second trivial form of classi�cation is to take all rules without conditions to be defea-
sible. It is not a good idea for comparing arguments w.r.t. speci�city, however:

Corollary 8.20 Assume that ΠF = ∅ and that ΠG contains only rules with non-empty
conditions. Then we have TΠ̂ = ∅. Moreover, for every argument, there is exactly one
[immediate] activation set H with H ⊆ TΠ̂, namely H = ∅. Furthermore, all arguments
are equivalent w.r.t. ≈CP1 and ≈CP2.

Finally, note that the computation of simpli�ed activation sets that are a subset of TΠ̂∪∆̂

� as required for P1, P2, P3 instead of CP1, CP2 � is not simpli�ed for the special cases
of this section, contrary to the computation of [immediate] activation sets that are subsets
of TΠ̂.
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8.3.3 A Step Toward Operationalization of Immediate Activation Sets

Let us assume that the sets of our predicate and function symbols are enumerable and
contain only symbols with �nite arities. This assumption does not seem to restrict practical
application.

It is straightforward to enumerate for a given input literal � say in a top-down SLD-
resolution style � the and-trees of all possible derivations of instances of this input literal,
and to interleave this enumeration of and-trees with the enumeration of all ground instances
of each and-tree, and �nally to enumerate for each ground instance of an and-tree all
activation sets for all contained arguments and the ground instance of the input literal
labeling the root. Indeed, this is possible because TΠ̂ is enumerable (i.e. semi-decidable)
by our above assumption.

To do the same for all immediate activation sets, we have to require the co-semi-decid-
ability of TΠ̂, because, in general, we cannot output an activation set supposed to be an
immediate one before we have established that the literals labeling the ancestors of the
nodes of its literals really do not occur in TΠ̂.

So let us assume the decidability of TΠ̂ for the remainder of this section.48

It is much harder, however, to enumerate all activation sets in an SLD-like derivation
style directly, i.e. without storing the intermediate and-trees and their instances. Although
immediate activation sets o�er a crucial advantage for a direct enumeration in principle
(because they admit to cut o� inessential49 derivations of literals), the imperative, tail-
recursive procedure we will sketch in this section (cf. Figure 2) still needs further re�nement.
This procedure enumerates the immediate activation sets directly, unless it sometimes out-
puts the character string "breach", which indicates that some immediate activation sets
may be missing.

We present the procedure of Figure 2 here mainly because we want to concretize the
tasks that still remain to be solved for obtaining a Poole-style notion of speci�city that
admits a su�ciently e�cient operationalization, and because our solution of these tasks
in � 8.3.4 may not be the only way to solve them.

Let us assume that picking elements from sets satis�es some fairness restriction in the
sense that every element will be picked eventually. Moreover, let us assume that we have
a procedure to decide TΠ̂. Furthermore, let us assume that L is a literal with L /∈ TΠ̂.

Under these assumptions, the SLD-like procedure immediate-activation-sets(L) of
Figure 2 has the following two properties:

1. If it outputs (H, (A, I)) then I /∈ TΠ̂ is an instance of L, we have A 6= ∅, and H ⊆ TΠ̂

is an immediate activation set for the argument (A, I).

2. If it never outputs "breach", then, for each instance L% /∈ TΠ̂ with a minimal
immediate activation set H ′ for an argument (A, L%), it outputs some (H, (A, I)) such
that there is a substitution µ with (Aµ, Iµ) = (A, L%) and H ′ = Hµ \ (TΠ̂G ∪ Aµ).
As this is similar to what is called a �most general uni�er�, we may speak of all
maximally general, immediate activation sets with arguments here.

48We will relax this restriction in � 8.3.4.
49This means inessential in the sense of De�nition 8.6.
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procedure immediate-activation-sets(L):
(* L must be a literal *)

if L 6∈TΠ̂ then (call immediate-activation-sets-helper({(L, 2)}, ∅, ∅, ∅, L)).

procedure immediate-activation-sets-helper(T, O,H, A, I):
(* T is the current goal. T must be a set of pairs (L, B) of a literal L /∈ TΠ̂ and

a bit B ∈ {1, 2} referring to the two items of De�nition 8.7,
such that B = 1 indicates that L labels a defeasible part *)

(* O is a set of literals that indicate that our algorithm may have missed
to enumerate a most general immediate activation set in case of O ∩ TΠ̂ 6= ∅
because the and-tree has already been properly expanded at their nodes
(which occur in a defeasible part!) *)

(* H is an accumulator for the immediate activation set,
H must always be a set of literals L ∈ TΠ̂ from the fringes of defeasible parts *)

(* A is an accumulator for the �rst element of the argument *)
(* I is the possibly instantiated input literal and second element of the argument *)

if T = ∅ then (output "H is immediate activation set for (A, I)" and exit);
pick some (L, B) from T ; T := T \ {(L, B)};
for each rule (L′⇐L′′

1∧ . . .∧L′′
n) ∈ Π ∪∆ do

for some ξ that maps all variables in L′⇐L′′
1∧ . . .∧L′′

n to fresh variables do
if L and L′ξ have the most general uni�er σ then [

I ′ := Iσ; if I ′ ∈TΠ̂ then (output "Instance I ′ ∈ TΠ̂" and exit);
O′ := Oσ; if O′ ∩ TΠ̂ 6= ∅ then (output "breach" and exit);
T ′ := { (L′′′σ, B′′′) | (L′′′, B′′′)∈T ∧ L′′′σ 6∈TΠ̂ };
H ′ := Hσ ∪ { L′′′σ | (L′′′, 1)∈T ∧ L′′′σ ∈TΠ̂ };
A′ := Aσ;
if Lσ ∈TΠ̂ then (if B = 1 then (H ′ := H ′ ∪ {Lσ}))
else (

B′ := B;
if (L′⇐L′′

1∧ . . .∧L′′
n) 6∈Π then (

(* The applied rule is necessarily a defeasible one! *)
A′ := A′ ∪ {(L′⇐L′′

1∧ . . .∧L′′
n)ξσ};

B′ := 1);
T ′ := T ′ ∪ { (L′′

i ξσ, B′) | i∈{1, . . . , n} ∧ L′′
i ξσ 6∈TΠ̂ };

if B′ = 1 ∧ n≥1 then (
(* B′ = 1 means that we are in a defeasible part now,

and so we have to accumulate our activation set! *)
(* n≥1 means that we have to expand the and-tree properly

under the crucial assumption that Lσ 6∈TΠ̂. *)
H ′ := H ′ ∪ { L′′

i ξσ | i∈{1, . . . , n} ∧ L′′
i ξσ ∈TΠ̂ };

O′ := O′ ∪ {Lσ}));
O′ := { L′′′ ∈O′ | L′′′ is not ground };
call immediate-activation-sets-helper(T ′, O′, H ′, A′, I ′)].

Figure 2: Sketch of immediate-activation-sets and immediate-activation-sets-helper
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Remark 8.21 (Restriction to Ground Conclusions Prevents "breach")
In the special case that the conclusions of all rules of ΠG∪∆ with non-empty condition are
ground, however, the call of the procedure immediate-activation-sets(L) is guaranteed not to
output "breach", simply because then only ground literals can enter the set of the program
variable O′, which are immediately removed again by the line before the tail-recursive call.

Remark 8.22 (Restriction to Ground Input Literals Does Not Prevent "breach")
Note that a restriction to input literals that are ground does not really solve the crucial
problem (of which the program variables O, O′ have to take care in Figure 2) that a literal
with free variables may be not in TΠ̂, whereas some of its instances actually are in TΠ̂.
The main source of the free variables here are the extra-variables, i.e. the free variables that
occur in the condition but not in the conclusion of a rule. Such rules with extra-variables
and non-ground conclusions, however, are standard in positive-conditional speci�cation,
just as in logic programming. A single extra-variable in an arbitrary rule of ΠG ∪ ∆ can
force SLD-resolution to work on non-ground goals even for a ground input literal.

Some examples may be more appropriate here than a proof of the soundness of the procedure
of Figure 2 (that enumerates a maximally general, immediate activation set for each minimal
immediate activation set unless it sometimes indicates "breach"), because we see the
procedure only as a step in a further development toward a tractability that is su�cient in
practice. Therefore, we will give some examples here on how the procedure

immediate-activation-sets(L)

works for certain literals L /∈ TΠ̂, namely by

listing all calls of the auxiliary procedure immediate-activation-sets-helper.

Example 8.23 (continuing Example 7.7 of � 7.4)
Let us start with Example 7.7 of � 7.4, which we recently reconsidered in Example 8.17.
A call of immediate-activation-sets(¬p(a)) results in a call of immediate-activation-sets-helper
with the argument quintuple

(
{(¬p(a), 2)}, ∅, ∅, ∅, ¬p(a)

)
, where the only rule

whose conclusion is uni�able with the only goal literal is a defeasible one, namely
¬p(x)←q(x)∧s(x) from ∆7.7. We can take ξ and σ as the identity and {x 7→a}, respectively.
The program variable B′ will be set to 1, and the tail-recursive call will have the argument
tuple (

∅, ∅, {q(a), s(a)}, {¬p(a)←q(a)∧s(a)}, ¬p(a)
)
.

This call immediately terminates by outputting the immediate activation set {q(a), s(a)} for
the argument

(
{¬p(a)←q(a)∧s(a)}, ¬p(a)

)
. As all calls are terminated now and there

was no output of "breach", this means that we have enumerated all immediate activation
sets for the input literal.

Example 8.24 (continuing Example 3.3 of � 3)
Let us now come to Example 3.3 of � 3. A call of immediate-activation-sets(flies(y)) results
in a call of immediate-activation-sets-helper with the argument quintuple(

{(flies(y), 2)}, ∅, ∅, ∅, flies(y)
)
,

where the only rule whose conclusion is uni�able with the only goal literal is a defeasible
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one, namely flies(x)←bird(x) from ∆3.3. We can take ξ and σ as the identity and {x 7→y},
respectively. The program variable B′ will be set to 1, and the tail-recursive call will have
the argument tuple(

{(bird(y), 1)}, {flies(y)}, ∅, {flies(y)←bird(y)}, flies(y)
)
.

Again the only rule whose conclusion is uni�able with the only goal literal is a defeasible
one, namely bird(x)←emu(x) from ∆3.3. We can again take ξ and σ as the identity
and {x 7→y}, respectively. The program variable B′ will be set to 1, and the tail-recursive
call will have the argument tuple(

{(emu(y), 1)}, {flies(y), bird(y)}, ∅, {flies(y)←bird(y), bird(y)←emu(y)}, flies(y)
)
.

Now the only rule whose conclusion is uni�able with the only goal literal is a fact, namely
emu(edna) from ΠF

3.3. We can take ξ and σ as the identity and {y 7→edna}, respectively.
The program variable B′ will be set to 1, and the tail-recursive call will have the argument
tuple(
∅, ∅, {emu(edna)}, {flies(edna)←bird(edna), bird(edna)←emu(edna)}, flies(edna)

)
.

This call immediately terminates by outputting the immediate activation set {emu(edna)}
for the argument

(
{flies(edna)←bird(edna), bird(edna)←emu(edna)}, flies(edna)

)
. As all

calls are terminated now and there was no output "breach", this means that we have
enumerated all immediate activation sets for all instances of the input literal.

Example 8.25 (continuing Example 3.2 of � 3)
Let us now come to Example 3.2 of � 3. We start with the same input as for Example 8.24
above, and there is no change up to the call with argument tuple(

{(bird(y), 1)}, {flies(y)}, ∅, {flies(y)←bird(y)}, flies(y)
)
,

and the only di�erence before the next call is that the applied rule is a strict one and is not
recorded in the program variable A′. Thus, we get a call with the argument tuple(

{(emu(y), 1)}, {flies(y), bird(y)}, ∅, {flies(y)←bird(y)}, flies(y)
)
.

There is still no essential change, except that the test for "breach" becomes positive:
We again have Oσ = {flies(edna), bird(edna)}, but now we have bird(edna) ∈ TΠ̂, and our
procedure outputs "breach". Indeed, it missed to enumerate the immediate activation
set {bird(edna)} for the argument ({flies(edna)←bird(edna)}, flies(edna)), simply because the
instantiation came too late to stop us from proper expansion of the and-tree.

Remark 8.26 (Closer Matching of Activation Sets to SLD-Resolution
Results in Inappropriate Semantics)

The obvious idea to avoid the possibility that the procedure of Figure 2 may output
"breach" and miss some maximally general, immediate activation sets is the following.

Just like we obtained CP2 from CP1, it is possible to obtain a notion CP3 from CP2 by
a minor modi�cation of immediate activation sets, resulting in, say, SLD activation sets,
such that the SLD-like computation of Figure 2 enumerates all maximally general, SLD
activation sets.

We do not see a chance to satisfy the crucial requirement of such a modi�cation, however,
namely that it does not a�ect any of our previous examples. If we look at the application of
the procedure of Figure 2 to the speci�cation of Example 3.2 as described in Example 8.25,
then we see that all SLD activation sets remaining in Example 3.2 could be {emu(edna)},
such that the arguments (A1,¬flies(edna)) and (A2, flies(edna)) would become equivalently
speci�c w.r.t. the speci�cation of Example 3.2, which seems to be absurd.
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8.3.4 A Speci�city Relation Based on Given And-Trees

We see no straightforward procedure to decide .CP2. Even worse, we see neither a proce-
dure to semi-decide it, nor a procedure to co-semi-decide it. A positive answer can be given
if the procedure of Figure 2 terminates for the �rst argument of .CP2 without outputting
"breach". A negative answer can be given if, for an immediate activation set enumerated
for the �rst argument, the derivation for testing the property of being a weakly imme-
diate activation set for the second argument terminates with failure. In general, even if
we assume TΠ̂ to be decidable, none of these terminations is guaranteed.50

In such a situation it is clearly appropriate to relax our requirement of a model-theoretic
speci�city relation a bit. So we replace the fancied decision procedure for TΠ̂ with the
test whether the literal has a derivation from those instances of Π which can be found
in some and-tree occurring in a �nite set of and-trees �xed in advance. For the solution
we are aiming at, it is crucial that this given �nite set of and-trees cannot be further
extended during related speci�city considerations. A good candidate may be the set of
those and-trees that our derivation procedure has been able to construct within a certain
time limit.

Then we can replace each of the three elements of our speci�cation (ΠF, ΠG, ∆) with
the sets of those instances of their elements that are actually applied in our �nite set of
and-trees, resulting in the new speci�cation (ΠF

g , ΠG
g , ∆g). The further considerations must

use these three �nite sets without any further instantiation. This means that their rules
are to be considered to be ground and this is what the lower index �g� stands for.

We again abbreviate Πg := ΠF
g ∪ΠG

g , and also replace the typically undecidable set TΠ̂

with �nite set TΠg .

Note that hardly anything has changed for our set of defeasible rules, because arguments
work anyway with instances that are ground, or are at least treated as if they were ground
(cf. Remark 2.8 in � 2.4), and we can hardly consider an argument that is not contained in
some and-tree we have constructed in advance.

There is a major change, however, for the set Π of strict rules. The situation here
is similar to an expansion w.r.t. a champ �ni in Herbrand's Fundamental Theorem,51

and we have reason to hope that the e�ect of this change can be neglected in practice,
provided that a su�cient number of the proper instances is considered. Note that, for �rst-
order logic, the depth limit n for terms required for Herbrand's PropertyC to establish
a sentential tautology (i.e. the natural number n for the champ �ni of order n) is not
computable in the sense of a total recursive function. Even if we knew the smallest such n,
however, the number of terms of depth smaller than n would still be too high for practical
feasibility in general. This means that it is crucial to choose the instances of our rules in
a clever way, say from the successful proofs delivered by a theorem-proving system within
a su�cient time limit.

50Both of these terminations can be guaranteed, however, under most restrictive conditions, such as the
one that the conclusions of every defeasible rule from ΠG ∪ ∆ with a non-empty condition are ground
(cf. Remark 8.21).

51Cf. [Herbrand, 1930], [Wirth &al., 2009; 2014], [Wirth, 2012; 2014].
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Remark 8.27 (Speci�cityRelation onArguments Extendedwith anAnd-Tree)
A straightforward idea to improve tractability is to attach an and-tree to each argument
and to compute a unique52 immediate activation set for each argument as follows:

Starting from the root, we traverse the tree, remembering whether we have passed
an application of the instance of a defeasible rule, and stop traversing at the �rst node
labeled with an element of the �nite set TΠg , outputting its literal as part of the single
tree-immediate activation set, provided that we have passed an application of the instance
of a defeasible rule.

The problem we see here, however, is that such a �xed and-tree does not make much
sense for the second argument of our relation .CP2, simply because we should not let an
inappropriately chosen and-tree for the second argument produce a failure of the property
of being more speci�c, cf. Example 8.1 of � 8.2.2. This means that we need an existential
quanti�cation over the and-tree of the second argument. If we were able to �nd a way
to handle this quanti�cation, the same technique would probably admit us to handle a
universal quanti�cation over the and-tree of the �rst argument, which brings us back to our
original relation .CP2 on arguments without and-trees.

So this restriction to concrete and-trees does not seem to help. We will now show that
we do not need it either.

procedure ground-immediate-activation-sets-helper(T, H, A):
(* T is the current goal. T must be a set of pairs (L, B) of a literal L /∈ TΠg and

a bit B ∈ {1, 2} referring to the two items of De�nition 8.7,
such that B = 1 indicates that L labels a defeasible part *)

(* H is an accumulator for the immediate activation set. H must always be
a set of literals L ∈ TΠg\TΠG

g
from the fringes of defeasible parts. *)

(* A is an accumulator for the �rst element of the argument with A∩TΠg = ∅. *)
(* note that the input literal I is invariant now; no input, no output *)

if T = ∅ then (output (H, A) and exit);
pick some (L, B) from T ; T := T \ {(L, B)};
(* We do not have to test rules from ΠF

g because of L 6∈TΠg . *)
for each rule (L′⇐L′′

1∧ . . .∧L′′
n) ∈ ΠG

g ∪∆g do
if L = L′ then [

H ′ := H; A′ := A; B′ := B;
if (L′⇐L′′

1∧ . . .∧L′′
n) /∈ ΠG

g then (
(* The applied rule is now necessarily a defeasible one. *)
A′ := A′ ∪ {(L′⇐L′′

1∧ . . .∧L′′
n)};

B′ := 1);
T ′ := T ∪ { (L′′

i , B
′) | i∈{1, . . . , n} ∧ L′′

i 6∈TΠg };
if B′ = 1 then (

(* B′ = 1 means that we are in a defeasible part now,
and so we have to accumulate our activation set! *)

H ′ := H ′ ∪ { L′′
i | i∈{1, . . . , n} ∧ L′′

i ∈TΠg\TΠG
g
});

call ground-immediate-activation-sets-helper(T ′, H ′, A′)].

Figure 3: Sketch of procedure ground-immediate-activation-sets-helper

52See, however, Example 8.18 in � 8.3.1.
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With the modi�cations described above, let us now come back to our procedure
of Figure 2. As noted before (cf. Remark 8.21), there cannot be any output of
"breach" anymore, because our new sets of general strict and defeasible rules, i.e. the
sets ΠG

g and ∆g, are now ground by de�nition. After the resulting simpli�cations,
the procedure immediate-activation-sets-helper now may be replaced with the procedure
ground-immediate-activation-sets-helper sketched in Figure 3.

To ensure termination of ground-immediate-activation-sets-helper we additionally have to
store the current path of the and-tree and exit without further output if we encounter a
literal for a second time on the same path.

Remark 8.28 (Considerations on Complexity)
Regarding time complexity of the procedure of Figure 3 extended with the storage of the
current path of the and-tree for ensuring termination mentioned above, only the following
preliminary remarks apply in this early state of development.

From practical experience, complexity is not relevant yet: Our straightforward Prolog
(cf. e.g. [Clocksin & Mellish, 2003]) implementation of this procedure (which prefers
simplicity of coding over e�ciency) computes, compares, and sorts � without any notice-
able delay in the answer � all minimal immediate activation sets for all minimal arguments
for all literals of TΠg∪∆g\TΠg , for a speci�cation (ΠF

g , ΠG
g , ∆g) of all instances required for

a superset of all examples in this paper.
Regarding the theoretical worst case, which will hardly ever occur in practice, the fol-

lowing �rst estimate may be not completely irrelevant. Let n be the number of di�erent
literals in all conclusions of all rules of Πg ∪ ∆g. With our mentioned mechanism for en-
suring termination, it is obvious that n limits the maximal depth of the SLD-like search
tree. Let m be the maximal number of all condition literals of all rules with an identical
conclusion. It is obvious that m limits the maximal number of children of any node in the
SLD-like search tree, cumulated over the whole run. This means that the maximal size
of the cumulated search tree is mn−1−1, i.e. O(mn). Luckily, this Landau-O limits also
the size of the theory TΠg (which we pre-compute in our Prolog implementation) and all
other e�orts at each node, such as indexing our rules for obtaining a constant e�ort at each
node. Therefore, the whole algorithm is O(mn).

Now we can compute the �nite set of all minimal53 immediate activation sets of all minimal
arguments for a given input literal w.r.t. our ground speci�cation (ΠF

g , ΠG
g , ∆g). All what

is left for deciding .CP2 is to check whether each of the computed immediate activation
sets whose defeasible rules are part of the �rst argument is a weakly immediate activation
set for the second argument. This is straightforward, although it is not clear yet which
implementation will be optimal.

We should not forget, however, that the speci�cation (ΠF
g , ΠG

g , ∆g) is only a reason-
ably constructed sub-speci�cation of our original speci�cation (ΠF, ΠG, ∆), which actually
stands for (Π̂F, Π̂G, ∆̂). Practical tests have to show whether such an omission of in�nitely
many instances can be viable without deteriorating our speci�city ordering. Theoretically,
such a viability can only be guaranteed for the special case that the number of instances of
the rules of the speci�cation is �nite (up to renaming of variables).
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9 Conclusion

9.1 Summary

We would need further discussions on our surprising new �ndings w.r.t. Poole's speci�city
relation, in particular its lack of transitivity. After all, defeasible reasoning with Poole's
notion of speci�city is being applied now for over a quarter of century, and it was not to be
expected that our investigations could shake an element of the �eld to the very foundations.

One remedy for the discovered lack of transitivity of .P3 could be to consider the
transitive closure of the non-transitive relation .P3. This could be an advantage compared
to .CP1 only under the condition that the transitive closure of .P3 is a subset of .CP1, i.e.
only under one of the conditions of Theorem6.16. Moreover, this transitive closure will still
have the intuitive shortcomings made obvious in � 7. Furthermore, we do not see how this
transitive closure could be decided e�ciently. Finally, the transitive closure lacks a direct
intuitive motivation, and after the �rst extension step from .P3 to its transitive closure,
we had better take the second extension step to the more intuitive .CP1 immediately.

Contrary to the transitive closure of .P3, our novel relations .CP1 and .CP2 also solve
the problem of non-monotonicity of speci�city w.r.t. conjunction (cf. � 7.1), which was
already realized as a problem of .P1 by Poole [1985] (cf. Example 7.1).

The present means to decide our novel speci�city relation .CP1, however, show several
improvements54 and a few setbacks55 compared to the known ones for Poole's relation.
Further work is needed to improve e�ciency.

By a minor restriction of activations sets, resulting in immediate activations sets, we have
come in � 8.3 to the quasi-ordering .CP2, which does not show any di�erence compared
to .CP1 in any of our examples except Example 8.15, which was constructed to show the
di�erence. The new speci�city ordering .CP2 has advantages w.r.t. intuition and e�-
ciency. The latter advantage, however, requires decidability of TΠ̂ (in addition to the
always given semi-decidability). To concretize the problems of computing activation sets
by SLD-resolution, we have sketched a procedure that may indicate "breach" if it may
have missed some output in � 8.3.3. Then, in � 8.3.4, we have shown how to obtain de-
cidability of TΠ̂ by restriction to a �nite set of instances that are then treated as if they
were ground. Without such a restriction we do not know how to decide any of the rela-
tions .P1, .P2, .P3, .CP1, .CP2 in general; and we hope that we can �nd a procedure
for generating the �nite set of rule instances such that the e�ect of this restriction can be
neglected in practice.

53Minimal immediate activation sets are obtained after completion of the procedure of Figure 3 simply as
follows: For each minimal argument (A, L), we remove all proper supersets among the immediate activation
sets. Note that we do not have to �lter the immediate activation sets by removing all elements of A, simply
because, as subsets of TΠg , they are disjoint from the literals in A (i.e. the rules with empty conditions).

54See �� 8.1, 8.2.1, 8.3.2, 8.3.3, and 8.3.4 for the improvements.

55See �� 8.2.3 and 8.3.3 for the setbacks.
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9.2 Application Context

We plan to apply the speci�city relations to question answering in the context of the
RatioLog project, funded by the DFG (German Research Assoc.). Question answering
systems such as LogAnswer [Furbach &al., 2010] usually determine several possible
answer candidates for a given query. For each candidate, a possibly defeasible derivation
of the answer is available. The best answer candidate has to be chosen. One idea among
others is to prefer more speci�c answers. Thus, speci�city is incorporated as a mechanism
of rationality here.

An important part of the application context for speci�city orderings consists of numer-
ous frameworks for argumentation in logic. The overall process usually includes a dialectical
process used for answering queries. Di�erent arguments are pro or contra a certain answer.
By means of an attack relation, con�icts between contradicting arguments can be deter-
mined in abstract argumentation frameworks, such as the ones of [Dung, 1995], [Prakken
& Vreeswijk, 2002], and [Modgil & Prakken, 2014]. A concrete speci�city or similar
relation helps then to decide among con�icting arguments.

The ASPIC+ framework [Modgil & Prakken, 2014] combines an (abstract) argu-
mentation system with a concrete knowledge base, which may contain strict and defeasible
rules. In this context, an argument can be attacked on a conclusion of a defeasible inference,
on a defeasible inference step itself, or on an ordinary premise. Nonetheless, also ASPIC+
is not a concrete system but a framework for specifying systems. The choice of the logic is
left open in ASPIC+. Thus, on the basis of the di�erent rule types, the attack or con�ict
relation may be de�ned, e.g. by means of one of our speci�city relations.

As the discussion in this paper demonstrates, it is not that easy, however, to �nd an
e�ective concrete speci�city relation. One of the main problems is that such relations are
often computationally highly complex (such as in [Kern-Isberner & Thimm, 2012]).

Moreover, we have to distinguish between orderings for comparing con�icting arguments
w.r.t. speci�city and orderings for comparing arguments w.r.t. a form of subsumption,
such as the quasi-ordering of being �more conservative� found in [Besnard & Hunter,
2001, De�nition 3.3, p. 206], [Besnard &al., 2013, De�nition 6, p. 50]). There, roughly
speaking, an argument (A1, L1) ismore conservative than an argument (A2, L2) if A1 ⊆ A2

and {L2} ` {L1}. So if our opponent accepts the argument (A2, L2), then he also has
to accept our more conservative argument (A1, L1), because we need less presuppositions
and our result follows from our opponent's result. In many practical situations, how-
ever, the less conservative argument will be preferred. For instance, when we ask a
question-answering system (such as LogAnswer [Furbach &al., 2010]) for the mother
of Pierre Fermat, then � as an answer � we prefer56 the less conservative argument
(A, Mother(Claire de Long,Pierre Fermat)) to

(A,∃x. Mother(x,Pierre Fermat)).

Moreover, the arguments (A, Mother(Françoise Cazeneuve,Pierre Fermat)) and
(A, Mother(Claire de Long,Pierre Fermat)),

are incomparable in the �more conservative�-quasi-ordering. Even worse, for a non-trivial
derivability relation, i.e. in a non-contradictory theory, this quasi-ordering cannot compare
arguments with contradictory results L, ¬L by de�nition, and none of the arguments of
our examples can be compared by this quasi-ordering.
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9.3 Critical Assessment

It has become clear in several discussions that the main obstacle for an acceptance of one
of our relations .CP1 or .CP2 as a replacement for .P3 is the change this brings to Exam-
ple 3.3 of � 3: Some scientists working in the �eld have become used to the preference given
by .P3 in this most popular example � so much that they now consider that preference
a must. Note that the situation in Example 3.3 is actually most unstable under the two
following aspects:

1. The preference chosen by .P3 in Example 3.3 has justi�cations that are intuitive
and valid, but are in general uncorrelated to speci�city, such as the preference of
conservativeness or the non-model-theoretic preference of defeasible derivations of
shorter length. In particular in this example, such intuitive justi�cations easily
contaminate the readers' intuition w.r.t. speci�city. Moreover, as the arguments
in Example 3.3 are not incomparable, but just equivalent according to .CP1, we can
easily combine .CP1 lexicographically with another ordering, say �minimum in the
ordering of the natural numbers, for all and-trees, of the maximal length of defeasible
paths�, and so recover the traditional preference of Example 3.3.

2. The situation of the example is chaotic in the sense that di�erent preferences result
from minor changes that may escape the readers' disambiguation. For instance, if
we add the general rule of the example that precedes Example 3.3 (i.e. of Example 3.2),
then the preference chosen by .P3 is chosen by .CP1 and .CP2 as well. Moreover, if
we alternatively add bird(edna) as a fact, then we can embed the example injectively
into Example 8.15 of � 8.3.1, and then the preference chosen by .P3 is again chosen
by .CP1, whereas the arguments become incomparable w.r.t. .CP2.

Already the examples in � 7 show, however, that .P3 almost always fails to prefer any
argument in slightly bigger examples, not to speak of big ones. Indeed, .P3 can be consid-
ered a reasonable choice only if we restrict our considerations to tiny examples. Moreover,
we presented good intuitive reasons for the failure of the preference of Example 3.3 in Ex-
ample 6.20 of � 6.6 (cf. also the pointers to further reasons in Note 32).

It is just too early for a further assessment, and the further implications of the contri-
butions of this paper and the technical details of the operationalization of our correction of
Poole's speci�city will have to be discussed in future work.

56Let us compare our speci�city relations P3, CP1, CP2 with the �more conservative�-quasi-ordering by
looking at our Corollaries 6.7, 6.13, and 8.11 in the context of Corollary 6.8. So let us assume A1 ⊆ A2.
For the trivial case of L1 = L2, the argument (A1, L1) is quasi-smaller than the argument (A2, L2) for
all of P3, CP1, CP2, and �more conservative�. In case of L2 ∈ TΠ̂ ⇒ L1 ∈ TΠ̂ and {L1} ∪ Π̂ ` {L2},
again the argument (A1, L1) is quasi-smaller than the argument (A2, L2) for all of P3, CP1, CP2, but
for �more conservative� it is the other way round, provided that we adopt the straightforward assump-
tion that derivability is derivability w.r.t. the basic theory of Π̂. Thus, P3, CP1, CP2 would all prefer
(A,Mother(Claire de Long,Pierre Fermat)) to (A,∃x. Mother(x,Pierre Fermat)), provided that
we could express existential quanti�cation.
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