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Abstract

In the middle of the 1980s, DAVID POOLE introduced a semantical, model-theoretic
notion of specificity to the artificial-intelligence community. Since then it has found
further applications in non-monotonic reasoning, in particular in defeasible reasoning.
POOLE tried to approximate the intuitive human concept of specificity, which seems to
be essential for reasoning in everyday life with its partial and inconsistent information.
His notion, however, turns out to be intricate and problematic, which — as we show —
can be overcome to some extent by a closer approximation of the intuitive human
concept of specificity. Besides the intuitive advantages of our novel specificity orderings
over POOLE’s specificity relation in the classical examples of the literature, we also
report some hard mathematical facts: Contrary to what was claimed before, we show
that POOLE’s relation is not transitive in general. The first of our specificity orderings
(CP1) captures POOLE’s original intuition as close as we could get after the correction
of its technical flaws. The second one (CP2) is a variation of CP1 and presents
a step toward similar notions that may eventually solve the intractability problem
of PooLE-style specificity relations. The present means toward deciding our novel
specificity relations, however, show only slight improvements over the known ones for
POOLE’s relation, and further work is needed for testing the viability of a workaround
we suggest for applications in practice.
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1 Introduction

A possible explanation of how humans manage to interact with reality — in spite of the
fact that their information on the world is partial and inconsistent — mainly consists of
the following two points:

1. Humans use a certain amount of rules for default reasoning and are aware that some
arguments relying on these rules may be defeasible.

2. In case of the frequent conflicting or even contradictory results of their reasoning,
they prefer more specific arguments to less specific ones.

An intuitive concept of specificity plays an essential role in this explanation, which is
interesting because it seems to be highly successful in practice, even if it were just an
epiphenomenon providing an ez eventu explanation of human behavior.

On the long way approaching this proven intuitive human concept of specificity, the:
first milestone marks the development of a semantical, model-theoretic notion of specificity
having passed first tests of its usefulness and empirical validity. Indeed, at least as the first
step, a semantical, model-theoretic notion will probably offer a broader and better basis
for applications in systems for common sense reasoning than notions of specificity that
depend on peculiarities of special calculi or even on extra-logical procedures. This-holds-in—
particularif the results-of these-systems-are-to-be-aceepted-by-human-users-or-even-by-the-
-human-seeiety— [ -ﬁmﬁ“ @&wﬁ%;g j

DaviD POOLE has sketched such a notion as a binary relation on arguments and eval-
uated its intuitive validity with some examples in |[POOLE, 1985]. POOLE’s notion of
specificity was given a more appropriate formalization in [SIMARI & Loui, 1992]. The
properties of this formalization were examined in detail in [STOLZENBURG &AL., 2003].

In this paper, before we give a specification of the formal requirements on any reasonably
conceivable relation of specificity in § 5, we present a detailed analysis of the reasons behind
our intuition that POOLE’s specificity is a first step on the right way (§4). We expect that
the results of this analysis will carry us even beyond this paper to future improved concepts
of specificity, especially w.r.t. efficiency, but also w.r.t. intuitive adequacy. We hope that
the closer we get to human intuition, the more efficiently our concepts can be implemented,
simply because they seem to run so well on the human hardware, which — by all that
we know today — is pretty slow. :

Moreover, in §6, we clearly disambiguate POOLE’s specificity from slightly improved
versions such as the one in [SIMARI & Loui, 1992|, and introduce a novel specificity
relation (CP1), which presents a major correction of POOLE’s specificity because it removes
a crucial shortcoming of POOLE’s original relation (P1) and its slight improvements (P2, P3),
namely their lack of transitivity.

Furthermore, in §7, we present several examples that are to convince every carefully
contemplating reader of the superiority of our novel specificity relation CP1 w.r.t. human
intuition.

Finally, in §8, we discuss efficiency issues and introduce the specificity ordering CP2,
a variation of CP1, which presents a first step toward similar notions that may finally solve

the intractability problem of POOLE-style specificity relations, for which we also present a
workaround which remains to be evaluated in practice; and then we conclude with §9.



2.2 Secondary Aspects of our Logic

Remark 2.3 (INegation Symbol “—”)

The negation symbol “=", which occurs in Definition 2.1 and which seemingly gets us be-
yond the definite rules of positive-conditional specifications by admitting literals instead of
just atoms, does not have any effect,,go@'ér, on the derivations and theories considered
in this paper (cf. Definition 2.2).

For instance, the literal —flies(edna) may actually be considered as the atom resulting
from application of the predicate —flies to the constant symbol edna.

On the other hand, if we write an atom A as A=true, and a negated atom —A as
the equational atom A=false, for the data type BOOLEan given by the constructors s )
true and false, then the rules of our specification can be seen as positive-conditional equa- “
tional specifications in the framework for positive/negative-conditional specification found uiz \

“in [WIRTH & GRAMLICH, 1994] fWIRTH, 1997; 2009).! Lo ue Jyfyr of bd

In the application context, of course, the literals —flies(edna) and flies(edna) will be con- ¢
sidered to be contradictory (cf. Definition 2.4), but this is a secondary and non-essential ¢
notion built on top of our derivations and theories, which do not rely on this notion.

As a consequence, none of the results in this paper relies on this special negation sym-
bol. To the contrary, in the weakness of our logical theories we see an indication for the
generality of our results (cf. Remark 2.5).

To distinguish the inactive negation here from negation as failure and from any other
form of negation playing an active réle in derivation, the symbol “~” is sometimes used in
the literature of defeasible logic in place of our more standard symbol “=".

Definition 2.4 (Contradictory Sets of Rules)
A set of rules I is called contradictory if there is an atom A such that IT F {A,-A};
otherwise 17 is non-contradictory.

Remark 2.5 (Weakness of Our Logical Theories)

On the one hand, {A, A< A} is contradictory according to Definitions 2.2 and 2.4. | z
[On the other hand; {A<—-A, “A<A} is non-contradictory according to these defi-

nitions, although we can infer both A and -A from {A<-A, -A<A} in classical

(i.e. two-valued) logic. _

For the case of our very limited formal language, our notions of consequence and con-
tradiction are equivalent both to intuitionistic logic and to the three-valued logic where
— and A are given as usual? but (following neither KLEENE nor LUKASIEWICZ) implica-
tion has to be defined via '

(A<TRUE) = A, (A<FALSE) = TRUE, (A<UNDEF) = TRUE.

our specification is non-contradictory in the sense of Definition 2.4, in which case also the equational
specification is consistent in the sense of trues false.

( 2The standard interpretation is that TRUE is 1, UNDEF is , FALSE is 0, —A is 1-A4, and A/\E—[

!Note, however, that derivability is invariant under this equivalence transformation on atoms only ifJ

ismin{A, B}. Inother words: - TRUE = FALSE, —UNDEF = UNDEF, —FALSE = TRUE; TRUEAA = A,
UNDEFATRUE = UNDEF, UNDEFAUNDEF = UNDEF, UNDEFAFALSE = FALSE, FALSEAA = FALSE.
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Remark 2.8 (Minimality and Non-Contradiction of Arguments)
Some authors (cf. e.g. [STOLZENBURG &AL., QUOS'L/fCHESﬂ‘EVAR &AL., 2003]) require all (
arguments
1. to be minimal arguments, and I
2. to be non-contradictory.

—>Because non-minimal as well as contradictory arguments often occur in practical situations, i
there is no use-oriented justification for any of these requirements. | :’
[1 m 1 there is no conceptual justification, either, because the non-minimal !
arguments become inessential by our preference on specific arguments, in the sense that for
every argument there must be a minimal sub-argument that is at least as specific, cf. Co-
rollaries 6.7, 6.13, and 8.11. | !
[Eecause being contradictory is only a secondary aspect of our logic (cf. §2.2), thereis '

Ty
e i e s et

m obtain a more general setting in the comparison of arguments, we omit these re- {
strictions in the context of this paper, where they turned out to be completely superfluous.
Thus, the omission of these requirements has no effect on the results of this paper.

2.5 Quasi-Orderings

We will use.several binary relations comparing arguments according to their specificity.
For any relation written as Sy (“being more or equivalently specific w.r.t. N”), we set

2w = 4 XY) | ¥Exy X} (“less or equivalently specific”),
~y = SNNZ2N (“equivalently specific”),
<y = S~ \Z2nN (“properly more specific”),
<y = <yU{(X,X)| X is an argument } (“more specific or equal”),

Ay

I

.X > =
{ (X,Y) X’ gjr; Z;%iuﬁe%ti ‘;lth } (“incomparable w.r.t. specificity”).

A gquasi-ordering is a reflexive transitive relation. An (irreflezive) ordering is an irreflexive
transitive relation. A reflezive ordering (also called: “partial ordering”) is an anti-symmetric
quasi-ordering. An equivalence is a symmetric quasi-ordering,.

Corollary 2.9 If Sy is a quasi-ordering, then =y s an equivalence, <y 1s an ordering,
and <y is a reflerive ordering.
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Let us see what happens to Example 3.2 if we g@t-theﬂea—thatremus—ma%&emaﬂybe-sem&
-sort-of dinesaurs—and doubt that they are birds.

Example 3.3 (Renamed Subsystem of Example 3 of [POOLE, 1985])

f, := { emu(edna) }, 05, =P,
3.3 { ﬁfiigs(x) )j emu(:t:),w —flies(edna) flies(edna)
Asz = { flies(z) — bird(z), ¢, 42
bird(z) <« emu(z) A bird(edna)
A, = { —flies(edna) + emu(edna) }. /
A = flies(edna) «+ bird(edna), 2
¥y { bird(edna) «— emu(edna) } emu(edna)

We have
2. = {emu(edna)}, 211, suns s = {bird(edna), flies(edna), —flies(edna)} U T, ,.

Now it is not clear anymore whether we should prefer (A;, —flies(edna)) to (As, flies(edna)).
Both arguments are now based on emu(edna), but it is not clear whether the less spe-
cific bird(edna) — that has dropped out of ®r,, — can still be considered as a basis for
(As, flies(edna)). We will further discuss this in Example 6.20.

Let us now suppose that we have a lovely grandma and a grouchy grandpa, stay at their
house, and somebody is coming into the house noisily, but we cannot see who it is.

EWWVE%MW//

E;{ample el . CJrOJ!MwWﬁ fooi, e comot —lovely lovely
II§, := { somebody, noisy }, 4,-&1‘7 “Wﬂ e
e, .— { lovely <= grandma, VQZ] W I[

84 - —lovely <= grandpa [’ grandpa grandma
Ngy = A U As,. / '\ ]AQ
Al = { grandpa «— somebody/\noisy }, i somebody

A, = { grandma «— somebody }
Let us compare the specificity of the arguments (\A;, —lovely) and (A,, lovely). We have
2n,, = {somebody, noisy},” &p,,ua,. = {grandma, grandpa, lovely, —lovely} U 2y, ,.

Now, because there is somebody who is noisy according to the current situation given
by I1§ ,, it is probably grandpa because his characterization is more specific. Thus, it is intu-
itively clear that we would prefer (A, —lovely) as the more specific argument to (As, lovely).
We will further discuss this in Example 6.21.
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4.3 The Intuitive Roéle of Activation Sets
in the Definition of Specificity

If we want to classify a derivation with defeasible rules according to its specificity, then
we have to isolate the defeasible part of the derivation and look at its input formulas,
so that we can see how specific these input formulas are. The input formulas are the set of
those literals on which the defeasible part of the derivation is based, called the activation set
for the defeasible part of the derivation. In our framework of defeasible positive-conditional
specification, the only relevant property of an activation set can be the conjunction of its
literals which we can represent by the set itself.®

For instance, in Example 3.2 of § 3, the argument (.A,, —flies(edna)) is based only on the
activation set {emu(edna)}, whereas the argument (A, flies(edna)) can also be based on
the activation set {bird(edna)}, or on the union of these sets.

Moreover, in Example 3.4 of §3, the argument (.A;, —lovely) is based only on the acti--
vation set {somebody, noisy}, whereas the argument (As, lovely) can also be based on the
activation set {somebody}.

4.3.1 Modulo Which Theory are Activation Sets to be Compared?

Because all literals of an activation set have been derived from the given specification, it does
not make sense to compare activation sets w.r.t. the models of the entire specification.
Indeed, only a comparison w.r.t. the models of a sub-specification can show any differences

between them.
Therefore, we have to find out which parts of a specification (IT*,II® A) are to be

excluded from the comparison of activation sets.

We want to have the entire set II® available for our comparison of activation sets,
for the following reasons: The general and strict part II¢ of our specification represents
the necessary and stable kernel of our rules, independent of the concrete situation under
consideration given by II¥, and independent of the uncertainty of our default rules A.
Moreover, it is hardly meaningful to exclude any proper rule from II¢ (i.e. any rule from I1¢

that is not just a literal); the technical reason for this will be given right at the beginning
of §4.4.3.

5 A formal definition of an activation set is not needed here and would be harmful to intuition, but several
different formal notions of activation sets will be found in Definition 6.1 of §6.1 and also in Definition 8.7

of §8.3.1. .
o bo satlinl,

WA

e

5.9
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4.4 Isolation of the Defeasible Parts of a Derivation

If (A, L) is an argument (cf. §4.2), then there is a derivation of L which is based only on
those instances of defeasible rules which are contained in 4. Such an argument ignores the
concrete derivation, and therefore suits our model-theoretic intentions (cf. §1). With such
an argument as an abstraction of a derivation, however, we lose the possibility to isolate the
actual defeasible parts of the derivation. Such a loss is typical for abstractions in general;
in our case, however, the discussion of this loss in §4.4.1 will turn out to be conceptually
crucial and result in several different formal notions of activation sets found in Definition 6.1 |/

of §6.1 and also in Definition8.7 of §8.3.3. [, ,Wm( MAWT

4.4.1 Isolation of Actual Defeasible Parts in And-Trees

Let us compare this set A with an and-tree of the derivation. Every node in such a tree
is labeled with the conclusion of an instance of a rule, such that its children are labeled
exactly with the elements of the conjunction in the condition of this instance.

Definition 4.1 (And-Tree)

Let (ITF, I, A) be a defeasible specification (cf. §2.3), and let L be a literal.

An and-tree T for L [and for the derivation of @ F {L}] w.r.t. (IIF, 1%, A) is a finite, rooted
tree, where every node is labeled with a literal, satisfying the following conditions:

1. The root node of T is labeled with L.

2. For each node N in T that is labeled with a literal L', there is a strict or defea-
sible rule (L§ < LYA...ALY) € T1 U A, such that L' = @ for some substitu-
tion o [with (Lyjo < LioA...ALjo) €®P|. Moreover, the nodel(N has exactly & child

nodes, which are labeled with Lio,..., L{c, respectively.
kw\” ]
This standard and very simple formal notion of an and-tree is meant to capture a single
derivation for a single argument. It must not be confused with the compact multi-graphs
that come as a synopsis with our examples (such as the ones in §3).°

An isolation of the defeasible parts of an and-tree of the derivation may now proceed as
follows:

e Starting from the root of the tree, we iteratively erase all applications of strict rules.
This results in a set of trees, each of which has the application of a defeasible rule at
the root.

e Starting now from the leaves of these trees, we again erase all applications of strict
rules. This results in a set of trees where all nodes all of whose children Z)ijiﬁ;

result from an application of a defeasible rule. [3 %J a{f V%é@, My

8These sophisticated multi-graphs illustrate several derivations for several arguments in parallel, share ({
sub-graphs, and may have —-edges between occurrences of the same literal L to represent alternative
derivations of L (cf. Example6.9 in § 6.2 as well as Examples 7.4 and 7.5 in § 7.2). Because these synopses
are redundant in all examples, we do not provide a formalization for these multi-graphs;-either-they-become
, —clearby-immediate-intuition-or-the-reader-had-betterignore-them-

[These o ause z,\‘rm;éf'”%@ br, |
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4.4.4 First Effect: Simplified Second Sketch of a Notion of Specificity

The first effect is that we immediately realize that every model of II in the model class
that is represented by the activation set { P;(a) | ¢€{0,...,n—1} } is also in the model
class represented by the activation set {Q(a)}.

Indeed, this growth toward the leaves will immediately add { P;(a) | ¢€{0,...,n—1} }
as a further activation set for every argument with the activation set {Q(a)}. By this effect
it is just made explicit that an argument that can be based on the activation set {Q(a)}
can also be based on the activation set { P;(a) | 1€{0,...,n—1} }. Thus — provided
that there are no other activation sets — an argument that can be based on the activation
set {Q(a)} is less or equivalently specific compared to any argument that can be based on

{Pia) | i€{0,...,n—1} }.

Therefore — if we admit the effect of a growth toward the leaves on our activation
sets — we may simplify'® the comparison of activation sets in our first sketch of a notion
of specificity of §4.3.2 as follows:

An argument (A;, L) is [properly] more specific than an argument (Ajs, Lo) if,
for each activation set H; for (A;, Li), this set H; is also an activation set
for (Ajg, Ly) [but not vice versa).

4.4.5 Second Effect: Preference of the “More Concise”

The second effect, however, is that an argument (As, Ly) that gets along with {Q(a)}
becomes even properly less specific than an argument (\A;, L) that actually requires { P;(a) |

i€{0,...,n—1} } and does not get along with {Q(a)},"! simply because (A3, Ls) has the
additional activation set {Q(a)}.

The resulting preference of (A1, L1) to (Ag, L) as being properly more specific is usually
called preference of the “more concise” cf. e.g. [STOLZENBURG &AL., 2003, p. 94J;/rGARCiA
& SIMARI, 2004, p.108]. Although — to the best of our knowledge — this notion has
never been formally defined, roughly speaking it is — for an instantiated rule Q(a) <«
Po(a)A- -+ AP,_1(a) of the specification — the preference of an argument that gets along
with the conclusion {Q(a)} of the instantiated rule as an activation set, instead of actually
requiring the condition { P;(a) | 1€{0,...,n—1} }.

For instance, in Example3.2 of §3, an argument that gets along with {bird(edna)}
is properly less specific than one that actually requires {emu(edna)}, in the sense that
emu(edna) is more concise than bird(edna).

19Note that we have replaced here the option to choose some activation set Hy C Zpy,ype of the
first sketch with the restrictive determination Hs := H;. This simplifying restriction applies here for the
following reason: If Hy C £ e is an activation set for (A, Lp), then H) is an activation set for (Asg, L)
as well, provided that we admit the first effect of a growth toward the leaves via TIC on our activation sets.

This can happen only if we have { P;(a) | i€{0,...,n—1} } € {Q(a)}, i.e. only if n#0.
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4.4.6 Preference of the “More Precise”

If we consider an argument requiring an activation set { P;(a) | i€{0,...,n} } to be
properly more specific than an argument that gets along with a proper subset { P;(a) |
i€l } for some index set I C {0,...,n}, then the resulting preference is usually called
preference of the “more precise” cf. e.g. [STOLZENBURG &AL., 2003, p.94], [GARCIA &

SIMARI, 2004, p.108]. An example for the preference of the “more precise” is Example 3.4
of §3.

There is, however, an exception from this preference to be observed, namely the case
that we actually can derive the set from its subset with the help of II® In this case,
the above-mentioned growth toward the leaves with rules from II¢ again implements the

approximation of the subclass relation among model classes via the one among activation
13
sets.

Apart from this exception, there is again a problem, namely that it is not the case that
Nier Pi(a) /\ie{(],...,'n.} P;(a)

would be explicitly given by _1_%19 specification via (IIF, II¢, A). ! ' [

Nevertheless — if we do not just want to see it as a matter-of-fact property of notions

of specificity in the style of POOLE — we could justify also the preference of the “more
concise” by imposing the following best practice on positive-conditional specification: | l

ﬁf we want to exclude the above non-consequence, then we ought to specify, for each
j€{0,...,n}\I, arulelike P;j(z) & A, Pilz).

E' Nier Pi(a) I
|(7Aie{l,...,n} Pi(a)—'_’l .
I —Pa) {
4.4.7 Conclusion on the Preferences [
Qe

After all, even if youdo not buy our justification of the preference of the “more concise”
and the “more preci{>~’| you can still follow our investigations into the properties of these
preferences w.r.t. POOLE’s model-theoretic notion of specificity and our correction of this
notion in the following sections.

7
I2There is one exception to this _]ustlﬁcatlon, however,'in th%practlce of logic programming: If Q(x) < I
Po{z)A -+ APn—1(2) is the only rule of the specification with Q as the predicate symbol of the conclusion,
then it is standard in PROLOG to consider this implication as an implementation of full equivalence
defining the predicate Q. Thwa G"‘wH/}'{W Yo ¥le, \W bi LM(TI{/QW@ &‘WLLLM;’J,%&Q,
E\}(/}/% 1 This is different in our context of positive-conditional speczﬁmtzon here, however, where we can add and
: ought to add the rules P;(z) <« Q(z) (i€{0,...,n—1}) to our specification, simply because we are not
f ﬂ{fﬂ‘ f,{.r concerned with the non-termination problem of Iogu, programming resulting from such a specification of
) the full equivalence {cf. §2.1).
,(@?’\fr{ An alternative which is given also in logic programming is to omit the above indicated rule and to replace
=3 M},{f each occurrence of each Q(t) with Po(f)A -« APn_1(t), respectively.
Moreover, in the frequent case that several cases of the definition of a predicate are spread over several
f/f{; ¥@d’ _j rules, the implications definitely tend to be proper also in logic programming, because, roughly speaking,
the defined predicate is given as the proper disjunction of the conditions of the several rules.

—

13This approximation was discussed in §4.4.4 and will be demonstrated in Example 7.7 of § 7.
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6 Formalizations of Specificity

6.1 Activation Sets i

e

A generative, bottom-up/(i.e. from the leaves to the root) derivation with defeasible rules
can now be split into three phases of derivation of literals from literals. This splitting follows
the discussion in §4.4.1 on how to isolate the defeasible parts of a derivation (phase2) from
strict parts that may occur toward the root (phase3) and toward the leaves (phasel):

(phase 1) First we derive the literals that provide the basis for specificity considerations.

In our approach we derive the set Ty here. POOLE takes the set £qua instead.

(phase2) On the basis of

e a subset H of the literals derived in phasel,
e the first item A of a given argument (A, L), and

e the general rules II¢, - villy, Wit Mﬁg,\’%
we derive a further set of literals % HUAUTC + ¢, !

(phase 3) Finally, on the basis of €, the literal of the given a.rgumen‘r (A, L) is derived: 2

l (/{0;(/3 i H Lo U2
SUIL F {L} L /l\ f V ol F::C ‘LRJE, iy 90&5’ @/W&
}

In POOLE’s approach, phase 3 is empty and we simply have £={ In our approach,
however, it is admitted to use the facts from II¥ in phase 3, in addition to the general
rules from II®, which were already admitted in phase 2.

With implicit reference to our sets IL = IIF UTI® and A, the phases 2 and 3 can be more
easily expressed with the help of the following notions.

Definition 6.1 ([Minimal] [Simplified] Activation Set)

Let A be a set of ground instances of rules from A, and let L be a literal.

H is a simplified activation set for (A, L) if L€ Tyyaune.

H is an activation set for (A, L) if L € Tgyp for some & C Ty qume -

H is a minimal |simplified] activation set for (A,L) if H is an [simplified] activation set
for (A, L), but no proper subset of H is an [simplified] activation set for (A, L).

Corollary 6.2 Let A be a set of ground instances of rules from A, and let L be a literal.
Every simplified activation set for (A, L) is an activation set for (A, L).

Roughly speaking, an argument is now more (or equivalently) specific than another one if
each of its activation sets is also an-activation set for the other argument. Note that this
follows the simplified second sketch of a notion of specificity displayed in §4.4.4, not the
first one displayed in §4.3.2.



Sy 10 .
o d 4"
b3 (puulli=
i
?/ix}(f.z,b{/&i/b’o

23

6.2 POOLE’s Specificity Relation P1; its Minor Corrections P2, P3

In this section we will define the binary relations <p, <ps, <ps of “being more or equiva-
lently specific according to DAVID POOLE” with implicit reference to our sets of facts and
of general and defeasible rules (i.e. to ITF, II€ and A, respectively).

The relation <Sp; of the following definition is precisely POOLE’s original relation > as
defined at the bottom of the left column on Page 145 of [POOLE, 1985]. See §5 for our
reasons to write “2” instead of “>”" as a first change. Moreover, as a second change
required by mathematical standards, we have replaced the symbol “2” with the symbol “<”
(such that the smaller argument becomes the more specific one), so that the relevant well-

foundedness becomes the one of its ordering < instead of the reverse >.

Definition 6.3 (Sp;: DAvVID POOLE’s Original Specificity)

(A1, L) Sp1 (Ag, Ly) if (A, L) and (A, Lo) are arguments, and if, for every H C qua
that is a simplified activation set for (A;, L;) but not a simplified activation set for (\Ay, L1)
H is also a simplified activation set for (Ay, Lg).

The relation Spy of the following definition is the relation > of Definition 10 on Page 94 of
|[STOLZENBURG &AL., 2003] (attributed to [POOLE, 1985]). Moreover, the relation Shigpsen GF
Definition 2.12 on Page 132 of [SIMARI & Lout, 1992 (attributed to [POOLE, 1985] as well)
is the relation <ps = Spa\ Zpe.

Definition 6.4 (Spe: Standard Version of DAVID POOLE’s Specificity)

(Ai, L1) Spe (Ag, Le) if (Aq, L) and (As, Lo) are arguments, and if, for every H C Tpya
that is a simplified activation set for (A1, L1) but not a simplified activation set for (@, L;),
H is also a simplified activation set for (A, Ls).

The only change in Definition 6.4 as compared to Definition 6.3 is that “(As, L1)” is re-
placed with “(@, L;)” We did not encounter any example yet where this intuitively most
appropriate correction of the(counter-intuitive)variant “(As, L1)” of Definition 6.3 makes
any difference to “(, L;)” in Definition 6.4 (which is standard in the publications of the
last two decades), and leave it as an exercise to construct one.

The relations <p; and <py were not meant to compare arguments for literals that do not
need any defeasible rules — or at least they do not show an intuitive behavior on such
arguments, as shown in Example6.5.

Example 6.5 (Minor Flaw of <p; and <p»)

MEs = { thirst }, drink beer
s, = %drinkcthirst 1, \ /‘
Ags = As. thirst

Ay = { beer « thirst }

Let us compare the specificity of the arguments (As, beer) and (0, drink).
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Example 6.9 (Counterexample to the Transitivities: “Choose one action!”)

Suppose you meet the sexy girl Jo in a lift for a very short time, you smile at her, and
she smiles back with a head akimbo. Since smiling, kissing, and proposing are mutually
exclusive actions of your mouth, you have to make up your mind quickly what to do next,
depending on your current level of boldness.?

IE, :={ Bold, HAkimbo(Jo), Smiles(Jo), Sexy(Jo) },
1§, := { Kiss < Promising(G) },

Smile « Sexy(G),

Kiss « BoldASmiles(G)ASexy(G),

R69°= Promising(G) — HAkimbo(G)ASmiles(G)ASexy(G),
Propose «— Promising(G)ABold
e Promising(Jo) « HAklmbo(}o)/\Smlles(Jo)ASexy(Jo)
: '_{ Propose « Promising(Jo) ABold }’

A> :={ Kiss «— BoldASmiles(Jo) ASexy(Jo) },
Az ={ Smile — Sexy(Jo) }.

Compare the specificity of the arguments (A;, Propose), (As, Kiss), (Asz, Smile)!

Propose%Klss — Kiss 5 Smile
/ Az

Promising(Jo) Bol

AlT A7 \
HAkimbo(Jo) iles(Jo) Sexy(Jo)

Smiles

Lemma 6.10 There are

e a specification (IIE 4, TIEy, Ago) without any negative literals
(i.e., a fortiori, TIE o UTIS, U Agg is non-contradictory), and

o arguments (Ay, L1), (A, Lo), (As, Ls) with respective minimal sets Ay, As, As
(i.e., (AL, L;) is not an argument for any proper subset A, C A;),

S’uch that (.A],Ll) 5133 (.AQ,LQ) 5]33 (A;g.L;},) zPl (.Aj,Ll)
and (Al:Ll) zm (-AﬁaL?) zpl («43_-.153)-

26The nullary predicate Bold could actually be removed from all rules and facts of this example, which
would still remain a counterexample to the transitivities; to the contrary, it would even improve its status
by becoming a minimal counterexample. A remaming of the resulting minimal counterexample was pre-
sented as Example5.8 in [WIRTH & STOLZENBURG, 2013; 2014].| The reasons we prefer the non-minimal
counterexample are the following. The minimal counterexample looks artificial because the single general
strict rule lacks any effect on activation sets for arguments for (A4;UAs,Kiss). Moreover, the minimal
counterexample used to confuse the audience during presentations because the names of its predicates

mixed up different cognitive categories. L_i i B %Ji LM,JLJ#‘J’LM’ @r e ﬂzfc Ez/ HLallo. —(
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Moreover, this consequence is also immediate for the relation > [STOLZENBURG &AL.,
2003, Definition 10, p. 94| and for the relation >gpe. [SIMARI & Loul, 1992, Definition 2.12,
p.132], simply because we can replace > and >gpec With Spg and <pp in the context of
Example 6.9, respectively.

Although transitivity of these relations is strongly suggested by the special choice of
their symbols and seems to be taken for granted in general, we found an actual statement
of such a transitivity only for the relation 3 of Definition 2.22 on Page134 of [SIMARI &
Loul, 1992], namely in “Lemma 2.23” [SIMARI & Lout, 1992, p.134].%"

Finally, note that those readers who do not see a proper conflict in our counter-
example just should add to Example6.9 some general rules such as Execute < Kiss,
—Execute <= Smile, —Execute <= Propose, say to model the situation in one of the areas
of today’s planet Earth where an unmarried woman who raises the wish to kiss has to be

executed. R f_‘jr i, {uj W{,ﬂw{ i

6.4 Our Novel Specificity Ordering CP1

In the previous section, we have seen that minor corrections of POOLE’s original relation P1
(such as P2, P3) do not cure the (up to our finding of Example6.9) hidden or even denied
deficiency of these relations, namely their lack of transitivity. Our true motivation for a
magor correction of P3 was not this formal deficiency, but actually an informal one, namely
that it failed to get sufﬁmently close to human intuition, which will become even more clear

in § 7[than in §§ 3 and _4]
For these reasons, we now define our major correction of POOLE’s specificity — the
binary relation Scp; — with implicit reference to our sets of facts and of general and

defeasible rules (i.e. to ITF, IIG and A, respectively) as follows.

Definition 6.12 (Scpi: 1ot Version of our Specificity Relation)
(A1, L1) Scp1 (Ag, Lo) if (Ay, L1) and (Ajg, Ly) are arguments, and we have
1. 1L €Zq or

2. Ly &%y and every H C £y that is an [minimal]®® activation set for (A, Ly) is also
an activation set for (A, Lo).

2T According to the rules of good scientific and historiographic practice, we pinpoint the violation of
this “lemma” now as follows. Non-transitivity of J follows here immediately from the non-transitivity of
the relation >¢pec of Definition 2.15, which, however, is not identical to the above-mentioned relation -,
but actually a subset of >, because it is defined via a peculiar additional equivalence /e introduced in
Definition 2.14 [SIMARI & Lour, 1992, p.132], namely via >spec = >spec U Rspec [SIMARI & Loul, 1992,
Definition 2.15, p.132f.]. Directly from Definition 2.14 of [SIMARI & Loul, 1992], we get Rgpec € ~pa.
Thus, by Corollary 6.8, we get >spec & Spz € Spi; and so (recollecting <pz € >spec © Zspec) the(
result

(A1, L1) <p2 (As, La) <pa (As, Ls) Zp1 (A1, L1) ll

of Lemma 6.10 gives us the following counterexample to transitivity

(AlsL } = spec (Az L”) f*pe:‘ -A’; .?(...spec (Alu-[’])

28Note that the omission of the optional restriction to minimal activation sets for (Aj, L1} in Defini-
tion 6.12 has no effect on the extension of the defined notion, simply because the additional non-minimal
activation sets for (A1, L1) will then be activation sets for (Asg, La) a fortiort.
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6.5 Relation between the Specificity Relations P3 and CP1

Theorem 6.16 Let II<? be the set of rules from 11 that are unconditional or have ezactly
one literal in the conjunction of their condition.

Let 1122 be the set of rules from I with more than one literal in their condition.

<p3 C Scp1 holds if one (or more) of the following conditions hold:

e Sl
T R e

- = ;”P‘:—/—::_ e s o b, A G,
2. For each instance L < LyA ... ALL, of each rule in I12* with L & Sp<e,

we have L; ¢ En<z for all j € {0,...,n+1}. [S\LI’CMV?@ WWW,é]
3. For each instance L <= LyA ... ALl of each rule in 12
we have L} ¢ T for all j € /{ME}/

4. We have TI2%2 = ). [Grl’ﬂ}{/t'ig(ﬂ df/wbﬂéébu::gj

1. For every H C 2 and for every set A of ground instan
e

ules from A, and for
£ := Spuaune, we have 7

Note that if we had improved <ps only w.r.t. phasel of §6.1, but not w.r.t. phase3
in addition, then Theorem 6.16 would not require any condition at all,~ (8ee the proofi). 1
This means that a condition becomes necessary by our correction of simplified activation
sets to non-simplified ones, but not because of the major changes (A) and (B) of §6.4.

Proof of Theorem 6.16

First let us show that condition 2 implies condition1. To this end, let H C Zp, let
A be a set of ground instances of rules from A, and set ¢ = Tyygune. For an
argumentum ad absurdum, let us assume Zgum g gUZn. Because of IIFC Sp<z, we
have SUII = SUTIFUII® C ¢UZn<xUII® and thus Seun C Zsuz,oune, and thus
Tyug cauTS ¢ ¢U %<2 (because otherwise Leum C Reuggeaune € U<z C EU 2y).
Now ¢ is closed under II¢ by definition. Moreover, $p<2 is closed under II<? by defi-
nition and under II2% by condition2. Because both of the sets of literals ¢ and <2
are closed under II® — but nevertheless their union is not closed under II¢ according to
Tpug, < une ¢ 2U £p<2 — there must be an inference step essentially based on both sets in
parallel. More precisely, this means that there must be an instance L <= LiA...AL], of
a rule from I1¢ with L ¢ €U %<2, and some i,j € {1,...,n} with L] € §Zn<> and-
L; € Tp<2\&.  Then L <« LiA...AL, must actually be an instance of a rule from IT*?
and L ¢ %<2, but L;€Zp<e in contradiction to condition 2.

As condition 2 implies condition 1, condition3 trivially implies condition 2, and condition 4
trivially implies condition 3, it now suffices to show the claim that (A, L1) Scp1 (Asg, Lo)
holds under condition 1 and the assumption of (A;, L1) <ps (A, Ls). By this assumption,
(A1, L1) and (Ajg, L2) are arguments and L, € Ty implies [, €8n. If Ly €Ty holds,
then our claim holds as well. Otherwise, we have Li, L&, and it suffices to show
the sub-claim that H is an activation set for (A, L) under the additional sub-assumption
that H C %y is an activation set for (A;, L;). Under the sub-assumption we also have
HCZnua because of T CZua, and, for & := Tyyg,une, we have L; €Xgyup, and
then, by conditionl, IL; € $Ufy. Then, by our current case of Lq, Ly € %, we have
L, €8 Thus, H is a simplified activation set for (A;, Ly).
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(B, —flies(edna)), then we have emu(edna) € H, and thus H is a simplified activation set
also for (As, flies(edna)).
All in all, by Theorem 6.16, we get (.A;, —flies(edna)) <cpi1(As, flies(edna))
and (A, —flies(edna)) <ps (As, flies(edna)).

Example 6.20 (continuwing Example 3.3 of §3)
We have (As,flies(edna)) <cpy (A;, —flies(edna)) because —flies(edna) € 2y,, and, for
every activation set H C &, , for (A, flies(edna)), we get emu(edna) € H, and so H is
an activation set also for (A;, —flies(edna)). '

Nevertheless, we have (As, flies(edna)) £ps (A;, —flies(edna)), because {bird(edna)} C
211, 5uns 5 18 a simplified activation set for (Asy, flies(edna)), but neither for (0, flies(edna)),
nor for (A;, —flies(edna)).

We have (A, —flies(edna)) Sps (As, flies(edna)), because of flies(edna) & 2yr,, and
because, if H C &, ,0n,, is a simplified activation set for (A;, —flies(edna)), but not for
(@, —flies(edna)), then we have emu(edna) € H and thus H is a simplified activation set also
for (As, flies(edna)).

All in all, by Theorem 6.16, we get (A;, —flies(edna))=cp; (As, flies(edna))

and (A, —flies(edna)) <ps (As, flies(edna)).

From a conceptual point of view, we have to ask ourselves, whether we would like the two -
defeasible rule instances in A; = { flies(edna)«bird(edna), bird(edna)«emu(edna) } to re-
duce the specificity of (As, flies(edna)) as compared to a system that seems equivalent for the
given argument for flies(edna), namely the argument ({flies(edna)«—emu(edna)}, flies(edna)).

Does the specificity of a defeasible reasoning step really reduce if we introduce inter-
mediate literals (such as bird(edna) between flies(edna) and emu(edna)),? f

According to human intuition, this question has a negative answer, as we have already
explained in Remark4.2 at the end of §4.4.5.%2

Example 6.21 (continuing Ezample 3.4 of §3)
We have (As, lovely)Zcop1(A;, —lovely) because lovely ¢ £, , and because {somebody} C £y, ,
is an activation set for (As, lovely), but not for (A;, —lovely).

We have (A;, —-lovely)<ps(Asg, lovely) because of lovely ¢ 2n,, and because, if H C
R, 4uAs 4 15 a simplified activation set for (A;, —lovely), but not for (@, —lovely), -then
we have {somebody,noisy} C H, and so H is also a simplified activation set for (As, lovely).

All in all, by Theorem 6.16, we get (A1, —lovely)<cp1(As, lovely)

and (A, —lovely) <ps (As, lovely).

Note that we can nicely see here that the condition that H is not a simplified activation
set for (@, —lovely) is relevant in Definition6.6. Without this condition we would have to
consider the simplified activation set {grandpa} for (\A;, —lovely), which is not an activation
set for (Ajs,lovely); and so, contrary to our intuition, (A;, —-lovely) would not be more
specific than (A,, lovely) w.r.t. Sps anymore.

32\oreover, Examples 7.1 and 7.2 will exhibit a strong reason to deny this question: the requirement
of monotonicity w.r.t. conjunction. Eﬁ‘mthermore, see Example 7.3 for another example that makes even
clearer why defeasible rules should be considered for their global semantical effect instead of their syntactical
fine structure.
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Example 7.1 (Example 6 of [POOLE, 1985]) g1
a g1 < —cAf, ,
7, = g < cAf }a B2

A7y = A UA. / \f f
—C + a, =6 c =
A] LI { _lf e d }- Ag TAQ
b « Ej s b & A
Ar = 4 e d, (- / \
a d

o

f—e

Let us compare the specificity of the arguments (4;,g;) and (As, g2).

We have (A1, g1) =~cp1 (As,g2) because H C 2y, = {a,d} is an activation set for
(A;,g;) if and only if H ={a,d}.

We have (A;,g1) Aps (As,gs) for the following reasons: {a, —f} C T, ua,, is a sim-
plified activation set for (A;, g1), but neither for (§, g1), nor for (As,g2). {a,f} € T, ,uaq.,
is a simplified activation set for (Aj, g2), but neither for ((2) gz2), nor for (A, g1).

POOLE [1985] considers the same result for <p; as for <ps to be “seemingly unintuitive’,
because, as we have seen for the isomorphic sub-specification in Example 3.3 of § 3, we have
both (./4.1, _1C) <p3 (Ag, C) _&Hd (A], _'f) <p3 (./42._. f)

Indeed, as already listed as an essential requirement in § 5, the conjunction of two re-
spectively more specific derivations should be more specific.

On the other hand, considering <cp; instead of Sps, the conjunctions of two equiva-
lently specific argument are equivalently specific — exactly as one intuitively expects.

By turning the defeasible rule b«—a of Example 7.1 into a strict general rule, we obtain the
following example.

Example 7.2 (1=t Variation of Example 7.1)

M5y o= { & },
gy &= =epf,
H(Tg_z = g2 <~ C/\f,
b« a

A7_2 = A]UAQ

o Ll A AQ
A= { <f «—d } ’
b e 4y
c +« b,
A = e «—d, ». / \
d

fi-p

Let us compare the specificity of the arguments (Ai,g1) and (Ao, g2).

We have (As,g2) Lcpi1 (A1, 81) because {b,d} C 25,, = {a,b,d} is an activation se
for (As, g2), but not for (A, g1).

We have (Ay,g1) Scpi (A2, g2) because, for every activation set H C 2y, , for (A1, 81),
we have {a,d} C H; and so H is also an activation set for (A,, g2).

We again have (Aj,g1) Aps (As, g2), for the same reason as in Example 7.1. Thus, the
situation for <pz is just as in Example 7.1, and just as “seemingly unintuitive” for exactly
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implement the intuition that defeasible rules should be considered for their global semantical
effect instead of their syntactical fine structure.

Example 7.4 (Example 11 from [STOLZENBURG &AL., 2003, p. 96])

g, = {«x i }

Ay = ALUA*U AL AU A®,

Al = { x + aAbAc }

A? = { ~x—aAb}

A = { fee } b B
A ;:?a(—d} A]/
A = be—e}. d c e
Compare the specificity of the arguments (A'UA*UAS, x), (A2UANUAS, —x), (A°UA%,X)

We have (AlUA4UA5,X) <cP1 (AQUA4UA5, —'X) ~op1 (A3UA4?X)}
because of x,-x¢ Zp,,, and because any activation set H C g, , = {c,d, e} for any of
(ATUAUAS, x), (APUAYUAS, —x), (A°UAY X) contains {d,e}, which is an activation set
only for the latter two. '

This matches our intuition well, because the first of these arguments essentially requires
the “more precise” cAdAe instead of the less specific dAe.

We have (A'UANAS, x) Aps (A2UANUAS, —x) Aps (APUA%L X) Aps (A'UATUAS, x),
however 34 This means that <ps cannot compare these counterarguments and cannot help
us to pick the more specific argument.

What is most interesting under the computational aspect is that, for realizing

(AlUAdUA5, X) gpg (A2UA4U.A5, ‘1X)=
we have to consider the simplified activation set {d, f} C &, ,ua,., for (A'UA*UA® x). This
means that here — to realize that f € £, ,ua,, — we have to take into account the defeasible
rule of A% which is not part of any of the two arguments under comparison.3®

Note that such considerations are not required, however, for realizing the properties
of <cp1, because defeasible rules not in the given argument can be completely ignored when
calculating the minimal activation sets as subsets of ¥y instead of Tqya. In particular, the
complication of pruning,— as discussed in detail in [STOLZENBURG &AL., 2003, §3.3] —
does not have to be con%idered for the operationalization of <cp1.

dbivpadity,, Cuggl-beys

3Because {d,f} € Tn. ,uA,, is a simplified activation set for (A* x), but neither for (#,x), nor for
i (A2UAMAS, —x), we have (A'UA*UAS x) Lps (APUATUAS, —x) Zps (A*UAY, X).
M (Because of (APUA%, x) Lop1 (ATUANUAS x) Zeop1 (APUATUA®, —x),
’ we have (APUAY, x) Eps (A'UAUA®, x) Zps (APUATUAS, —x)
23 wabv{i by Theorem6.16. Because {b,c,d} C &, ,ua,, is a simplified activation set for (A*UA*UA®, —x) and
(A'UATUAS, x), but for none of (#,—x), (0,x), (A*UA%, x), we have
(APUASUAP, x) Lpg (APUAL, %) Zpa (AUALUAS, ).

35 Have a look at Figure 1 in §6.1 to see that the effect of f proceeds here only via the set ', but not via
the usage of the set H at the bottom of Figure 1.
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Example 7.6 (Variation of Example 7.4) /

g1 g2
g]_ ¢ _|C1 / / \
e = gy <= cAf, - : ¢

k]

b<a IAQ »[Az
A'?_ﬁ = A] UAQ.
A = { —C «— a } \ b =
G b, / Ao
: a

Ay = e «—d,

le-

fe—e
E/me!\ MW Let us compare the specificity of the arguments (A}, g;) and (A, g2).

%W We have (Aj,g1) Acp1 (As, g2) for the following reasons: {a} C %, = {a,b,d} is
an activation set for for (A, g1), but not for (Ai,81); {b,d} € %, , is an activation set

l/;/(f JWM for (Ag, gg): but not for (Ag,gg).
By Theorem 6.16 we also get (A, g1) Aps (As, g2).

Viotr In this example the two intuitive reasons for specificity — super-conjunction (preference
of the “more precise”) and implication via a strict rule (preference of the “more concise”) —
are in an irresolvable conflict, which goes well together with the fact that neither Scpi
nor <ps can compare the two arguments.
-
7.4 Global Effect matters more than Fine Structure ﬂﬂfﬂ:
The following example nicely shows that any notion of specificity based only on single
defeasible rules (without considering the context of the general strict rules as a whole) }'
cannot be intuitively adequate. [ M{% ol i c @Ii o wr H/( » 4/‘%24! .
moféz/ { aride] /
Example 7.7 (Example from Page 95 of [STOLZENBURG &AL., 2003])
mE, = {q@)}, —p(a) p(a) |
g, = { 5(( ))¢ q((w))} , A ,
s Pl i sy 4 I
A 3= { ~p(z) — a(z)As(z) } 24 : |
A= o) el ) AN |
Ay = {p(@) —a(a) } afa) j
Let us compare the specificity of the arguments (\A;, —p(a)) and (As.p(a)).

We have (A;,—p(a)) ~ps (A2 p(a)), because of p(a),—p(a) ¢ Fm,, = {a(a),s(a)},
and because, for H C . .ua,,, 4 € {1,2}, L1 :=-p(a), and Ly := p(a), we have the
logical equivalence of H = {q(a)} on the one hand, and of H being a minimal simplified
activation set for (A;, L;) but not for (0, L;), on the other hand.

By Theorem 6.16, we also get (A;, —p(a)) =cp1 (A2, p(a)).

This makes perfect sense because q(a)As(a) is not at all strictly “more precise” than q(a)
in the context of IIZ,.

Note that nothing is changed here if s(z) < q(z) is replaced by setting IIS; := {s(a)}.

If s(z) < q(z) is replaced by setting I1$; := @ and II7; := {q(a),s(a)}, however, then \
we get both (A;,—p(a)) <p3 (A2, p(a)) and (Ai,—p(a)) <cp1 (A2, p(a)).
This also speaks for our admission of literals (i.e. unconditional rules) to I1¢.37
|

\
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Example 8.1 (Minimal argument with two minimal and-trees/activation sets)

Hg_l = { b, ¢, d }, =h h
f < che, '-41 dig|
Hg'l = f < dAe,
g < dAe, & f '
Agy= A1 UAs,. UX”/”
A] = e — b } » IA”"IAQ
h—f
- ) b
./4.2 Z o } 2 =

The argument (A;, —h) has {b,d} as the only minimal activation set that is a subset of
8n,,=1IE,. {b,d} is also a minimal activation set for (As,h). On the other hand, {b,c} is
an activation set for (As, h), but not for (A;, =h). Thus, we get (A, —=h) <cp1 (As.h).

Because either d or ¢ is in an and-tree of the argument (As, h) (but never both!), a com-
parison of two fixed and-trees does not suffice. /

| Moreover note that we have (A;,—h) Aps (As, h), because of the simplified activation

sets {g} and {f}, respectively. |

Furthermore note that the only minimal activation set for the minimal argument
({e«b},f) is {b}, which, however, is not a simplified activation set for that argument.

The reason for the coinplication of an element-by-element comparison of and-trees is that
we consider a very general setting of defeasible reasoning in this paper. Indeed, we admit

1. more than one condition literal in rules, i.e. conditions containing more than one

literal, and : @z,@’ \«%&/&1 {

2. non-empty sets of background knowledge, i.e. general rules, not only facts.

Typically, only restricted cases are considered: Conditions have always to be singletons in
[GELFOND & PRZYMUSINSKA, 1990], no background knowledge is allowed in [Dung &
SON, 1996, and both restrictions are present in [BENFERHAT & GARCIA, 1997).

8.2.3 Path Criteria?

Before we come to the computation of activations sets via goal-directed derivations in § 8.3,
let us have a closer look here at the path criterion of [STOLZENBURG &AL., 2003, §3.4].

Definition 8.2 (Path)

For a leaf node N in an and-tree T, we define the path in T through /N as the empty set
if N is the root, and otherwise as the set consisting of the literal labeling N, together with
all literals labeling its ancestors except the root node. Let Paths(T') be the set of all paths
in T through all leaf nodes N.

With this notion of paths, the quasi-ordering < on and-trees can be given as follows: '

Definition 8.3 ([STOLZENBURG &AL., 2003, Definition 23)])
T, < T, if T; and Ty are two and-trees, and for each t; € Paths(T2) there is a path
' t; € Paths(71) such that ¢; € ts.
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8.3 Toward a More Efficiently Realizable Notion
of POOLE-Style Specificity

_ bl
Contrary to our oy examples in the previous sections, examples of a practically relevant
size require notions of specificity that can be decided efficiently.

As we are mainly interested in the more specific arguments, i.e. in the minimal elements
of our specificity ordering, we may admit variations of our specificity ordering CP1 that
offer better chances for an efficient implementation, but do not relevantly differ w.r.t. these
minimal elements.

Therefore, in this section, we will introduce another correction (CP2) of POOLE’s speci-
ficity relation, which offers some advantages for the computation of the respective activation
sets; whereas our specificity ordering CP1 offers only the minor advantages over P1, P2, P3
we have already described in §§ 8.1 and 8.2.1.

More precisely, our plan for this section is to obtain another quasi-ordering Scps by
slight modification of our quasi-ordering <cp1, such that the two do not differ in any of our
previous examples, and such that <gpy may mirror our intuition on specificity according
to the analysis in §4 even more closely in some aspects. Finally, we will try to develop a
more efficient procedure for deciding the specificity quasi-ordering Scpe than those known
for any of Sp1, Spey Sea, Scrt. ‘

~

The crucial step in such a procedure is the computation of activation sets. For a goal-
directed, SLD-resolution-like computation of activation sets we cannot keep our restriction
to arguments that are ground. For this reason, we now have to modify our notion of
a derivation by disallowing the instantiation of variables in our definition of £y and
(cf. Definition 2.2) as already hinted at in Remark 2.7 at the end of §2.4. As a compen-
sation, we then may add a hat over a set of rules /I, such that IT denotes the set of all
instances of I

8.3.1 Immediate Activation Sets

As a first step — since the workaround via path criteria failed in §8.2.3 — we now have
to find a new notion of an immediate activation set such that there are less®® and more
casily computable immediate activation sets for a given argument than (non-immediate)
activation sets according to Definition 6.1 of §6.1. Our idea here is to avoid SLD-resolution
steps that expand a goal clause by inessential applications of rules in the sense of the
following definition, where we again apply the simple concept of an and-tree according to
Definition4.1 of §4.4.1.

Definition 8.6 (Inessential Application of an Instance of a Rule)

The application of the instance L<=C' of a rule in an and-tree is inessential (in the and-tree)
if there is a node between the root (inclusively) and the application (including the node
labeled with L) that is labeled with an element of Ty.

*There are indeed never more (cf. Corollary 8.8(4)), and typically much less immediate activation sets
than activation sets.
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Definition 8.7 ([Minimal/Weakly| Immediate Activation Set)
Let A be a set of instances of rules from A, and let L be a literal.

H is an immediate activation set for (A,L) if H C &5 and there is a (possibly empty)
set of literals £, such that both of the following two items hold:

1. For each L' € ¢ there is an and-tree for the derivation of HUAUIIC - {L'} in which
(a) the root is labeled with L’ and generated by an element of A, and
(b) every literal L” that labels a non-leaf node or the root satisfies L” ¢ 5, and
(c) every literal L” ¢ A that labels a leaf node satisfies L” € £,
such that the set of literals labeling the leaves of these trees is a subset of HUZpc UA.

2. There is an and-tree for the derivation of £UTIIF {L}, such that each literal L"

labeling a node in a path from the root to a leaf labeled with an element from ¢
satisfies L" & Tj.

H is a minimal immediate activation set for (A, L) if H is an immediate activation set
for (A, L), but no proper subset of H is an immedidte activation set for (A, L).

H is a weakly immediate activation set for (A,L) if H C & and there is an immediate
activation set H' with H' C £ e for (A, L).

Corollary 8.8 Let A be a set of instances of rules from A, and let L be a literal.

1. If H is an |weakly| immediate activation set, then we have H C Ty,
2. If H is a minimal immediate activation set, then we have H C T\Zpe.

3. Buvery immediate activation set for (A, L)
is a weakly immediate activation set for (A, L).

4. Every |weakly| immediate activation set for (A, L) is an activation set*? for (A, L).

5. Every minimal activation set for (A, L) that is an immediate activation set for (A, L)
is a minimal immediate activation set for (A, L).

41Here “iteral L” € A” means that L” is a literal that is not a literal in A, i.e. no conclusion of an
unconditional rule from A. Note that, by (a), this excludes an overlap of (b) and (c): If the root is a leaf,
then, by (a), it is labeled with a literal from A.

“?Tnstead of the otherwise required condition that A s ground, we assume here — and will do so in what
follows without further mentioning — that the definition of an activation set in Definition 6.1 of § 6.1 refers
(just as Definition 8.7 of immediate ones and just as we have changed arguments and derivations in this
section) to sets also of non-ground instances of defeasible rules in the first element of arguments, but with
non-instantiating derivations and theories.
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Remark 8.13 (Relaxation to a Weakly Immediate Activation Set is Crucial)
Note that we cannot straightforwardly require H to be a (non-weakly) immediate acti-
vation set for (Ap, Ls) in Definition 8.10, because otherwise our new relation CP2 would

already fail to pass Example 3.2 of §3, in the sense that both arguments there would be
incomparable.14 45

Theorem 8.14 <cps is a quasi-ordering on arguments.

_ ] \ -
Proof of Theorem 8.14 /ﬂiﬂd{ (WZ(LZ)f\/

<cps is a reflexive relation on arguments because of Corollary 8/11.

To show transitivity, let us assume (A1, L) Scpa (As, Lg)/,SCPQ (As, L3).

According to Definition 8.10, because of (A1, L1) Scpe (Ag, L), we have L; €2jp
— and then immediately the desired (A1, L1) Scpa (As, Ls) — or we have L, €¥5. The
latter case excludes the first option in Definition 8.10 as a justification for (A, La) Scpa
(As, L3). Thus, it now suffices to consider the case that L; 4 for all i € {1,2,3}.

Suppose that H is an immediate activation set for (Aj, L;). It suffices to show that
H is a weakly immediate activation set for (As, L3), i.e. to find an immediate activation
set H" C &4 ¢ for (As, Ls). Because of our supposition, the first step of our original
assumption, and the case considered, H is a weakly immediate activation set for (As, Ls),
i.e. there is an immediate activation set H' C &, ¢ for (A, Ls). Then, because of the
second step of our original assumption and the case considered, there is an immediate
activation set H” C £, ¢ for (As, L3). Because of the monotonicity of our logic and
the closedness of our theories, we now have H" C Zpype € %5 une = Tyupe, 1e

H" C &, fc, as was to be shown. Q.e.d. (Theorem 8.14)
Example 8.15 (Scp1 vs. Scpa) drink alarm = alarm
il { thirst, danger t, O$s:=0, Agis:=AUAs. - % TA;;
Ay = { drink « thirst }. - v

Ap = { alarm < danger } anger
A3 = AU { danger «— thirst } _ 14
First note that — because of II§ ;s =0 — the two notions of thirst

an immediate and a weakly immediate activation set coincide here.
We have g, =1I§,5. Moreover, we have

(As, alarm) <cp1 (As, alarm) mgpg (Ag, alarm):
There is only one minimal activation set for (A, alarm) that is a subset of £, namely
{danger}. It is also a minimal immediate activation set for (A,, alarm); to see this, take £ :=
{alarm} in Definition8.7. There are only two minimal activation sets for (Asz, alarm) that
are subsets of £, namely {danger} and {thirst}, but only the first one is an immediate
activation set for (A3, alarm). Note that (As, alarm) is strictly more specific than (Aj3, alarm)
in the sense of (As,alarm) Zcp1 (As,alarm) by the inessential?® application of the rule
danger«thirst of A3, which is not admitted for immediate activation sets.

44Gee the discussion at the end of Example 8.15..

occurred already in our first intuitive sketch of a notion of specificity in §4.3 — long before the development

45Tt might also be interesting to see that the slight modification (via “weakly”), which we need herej
of the CP2 notion (cf. [WIRTH & STOLZENBURG, 2013, §3.2]).

46This means inessential in the sense of Definition 8.6:(
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Example 8.17 (continuing Example 7.7)
Indeed, the only noticeable change at all occurs in Example 7.7, where {q(a)} is a minimal
activation set for (A1, —p(a)), but not an immediate activation set. Nevertheless, because
{q(a)} is a weakly immediate activation set for (A;,—p(a)), and because the only imme-
diate activation set for (A;, —p(a)) is {q(a),s(a)} (which is a weakly immediate activation
set for (A, p(a)), though not {q(a)}, the only (non-weakly) immediate one), we have
(Ay, —p(a)) ~2cpa (As, p(a)), just as we have (A, —p(a)) ~cp1 (A2, p(a)).

Example 8.18 (continuing Example 8.1 of §8.2.2)
(Minimal argument with two minimal immediate activation sets)
It is obvious that a minimal argument can easily have two minimal activation sets that
are incomparable w.r.t. €. For instance, already in Example3.2 of §3, the minimal
argument (As, flies(edna)) has two minimal [simplified] activation sets, namely {bird(edna)}
and {emu(edna)}, from which, however, only {bird(edna)} is an immediate activation set.
Indeed, minimal arguments can have more than one minimal immediate activation set
only if conditions of general rules directly contribute to the leaves of the isolated defeasible
part as described in §4.4.1.47 This is happens in Example8.1 of §8.2.2 for the minimal
argument (A, h): The general rule f<=cAe contributes the leaf ¢ to the isolated defeasible
part with root h, the inner nodes f and e, and the set of leaves {b, ¢}, which is one minimal
immediate activation set of (A, h). Moreover, the general rule f<=dAe contributes the
leaf d to the isolated defeasible part with root h, the inner nodes f and e, and the set of
leaves {b,d}, which is the other minimal immediate activation set of (A, h), and also the
only one for (A;,—h). Thus, we get both (A;, —h) <cp1 (A2, h)

and (.Al., —|h) <cp2 (./4.2., h).

8.3.2 Special Cases with Simple Activation-Set Computation

A typical problem in practical application is to classify rules automatically as being facts,
general rules, or defeasible rules. We briefly discuss the trivial forms of such a classification
now.

The first trivial form of classification is to take all proper rules as defeasible rules.
Note that the following lemma (motivated by Example8.18 of §8.3.1) reduces the task of
computing activation sets to the simpler task of computing minimal arguments.

Lemma 8.19 Assume that all rules in TIC are just literals (i.e. have empty conditions).
Let (A, L) be a minimal argument. Let € be the set of all condition literals of all rules in A.
Then (A, L) has a unigue minimal activation set H; and this H is actually a minimal
immediate activation set for (A, L) and equal to € NTIF \ TI¢

4" Technically, it is possible to enforce a unique immediate activation set for each minimal argument by
including the instances also of the general rules of the isolated defeasible part into the first element of
the arguments. Intuitively, however, this is not reasonable because it leads to unintendedly incomparable
arguments.



49

8.3.3 A Step Toward Operationalization of Immediate Activation Sets

Let us assume that the sets of our predicate and function symbols are enumerable and

contain only symbols with finite arities. This assumption does not seem to restrict practical
application.

It is straightforward to enumerate for a given input literal — say in a top-down SLD-
resolution style — the and-trees of all possible derivations of instances of this input literal,
and to interleave this enumeration of and-trees with the enumeration of all ground instances
of each and-tree, and finally to enumerate for each ground instance of an and-tree all
activation sets for all contained arguments and the ground instance of the input literal
labeling the root. Indeed, this is possible because £y is enumerable (i.e. semi-decidable)
by our above assumption.

To do the same for all immediate activation sets, we have to require the co-semi-decid-
ability of T4, because, in general, we cannot output an activation set supposed to be an
immediate one before we have established that the literals labeling the ancestors of the
nodes of its literals really do not occur in 2. f

{Massume the decidability of £ for the remainder of this section.

It is much harder, however, to enumerate all activation sets in an SLD-like derivation
style directly, i.e. without storing the intermediate and-trees and their instances. Although
immediate activation sets offer a crucial advantage for a direct enumeration in principle
(because they admit to cut off inessential?® derivations of literals), the imperative, tail-
recursive procedure we will sketch in this section (cf. Figure 2) still needs further refinement.
This procedure enumerates the immediate activation sets directly, unless it sometimes out-
puts the character string "breach", which indicates that some immediate activation sets
may be missing.

We present the procedure of Figure2 here mainly because we want to concretize the
tasks that still remain to be solved for obtaining a POOLE-style notion of specificity that
admits a sufficiently efficient operationalization, and because our solution of these tasks
in §8.3.4 may not be the only way to solve them.

Let us assume that picking elements from sets satisfies some fairness restriction in the
sense that every element will be picked eventually. Moreover, let us assume that we have
a procedure to decide £y. Furthermore, let us assume that L is a literal with L ¢ 5.

Under these assumptions, the SLD-like procedure immediate-activation-sets(L) of
Figure 2 has the following two properties:

1. If it outputs (H, (A,I)) then I ¢ Ty is an instance of L, we have A0, and H C o
is an immediate activation set for the argument (A, I).

2. If it never outputs "breach", then, for each instance Lo ¢ £ with an immediate
activation set H' C ¥y for an argument (A, Lg), it outputs some (H, (A4, I)) such
that there is a substitution p with (H, (A, I))p = (H',(A, Lp)). As this is similar
to what is called a “most general unifier”, we may speak of all mazimally general,
immediate activation sets with arguments here.

48We will relax this restriction in §8.3.4.

EgThis means inessential in the sense of Definition 8.6}
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Remark 8.21 (Restriction to Ground Conclusions Prevents "breach")

In the special case that the conclusions of all rules of II® U A with non-empty condition are
ground, however, the call of the procedure immediate-activation-sets(L) is guaranteed not to
output "breach", simply because then only ground literals can enter the set of the program
variable O, which are immediately removed again by the line before the tail-recursive call.

Remark 8.22 (Restriction to Ground Input Literals Does Not Prevent "breach")
Note that a restriction to input literals that are ground does not really solve the crucial
problem (of which the program variables O, O" have to take care in Figure2) that a literal
with free variables may be not in £, whereas some of its instances actually are in ¥j.
The main source of the free variables here are the extra-variables, i.e. the free variables that
occur in the condition but not in the conclusion of a rule. Such rules with extra-variables
and non-ground conclusions, however, are standard in positive-conditional specification,
just as in logic programming. A single extra-variable in an arbitrary rule of II° U A can
force SLD-resolution to work on non-ground goals even for a ground input literal.

Some examples may be more appropriate here than a proof of the soundness of the proce-
dure of Figure2 (that enumerates a maximally general, immediate activation set for each
immediate activation set unless it sometimes indicates "breach"), because we see the pro-
cedure only as a step in a further development toward a tractability that is sufficient in
practice. Therefore, we will give some examples here on how the procedure

immediate-activation-sets(L)
works for certain literals L ¢ £, namely by

listing all calls of the auziliary procedure immediate-activation-sets-helper.

Example 8.23 (continuing Ezample 7.7 of §7.4)
Let us start with Example7.7 of §7.4, which we recently reconsidered in Example8.17.
A call of immediate-activation-sets(—p(a)) results in a call of immediate-activation-sets-helper
with the argument quintuple ( {(=p(a),2)}, 0, @, @, -p(a) ), where the only rule
whose conclusion is unifiable with the only goal literal is a defeasible one, namely
—p(x)—q(z)As(z) from Ar77;. We can take £ and o as the identity and {z+—a}, respectively.
The program variable B’ will be set to 1, and the tail-recursive call will have the argument

tuple

(0, 0, {a@).s@} {-p@a)—a@rs@} ~p(@) ).
This call immediately terminates by outputting the immediate activation set {q(a),s(a)} for
the argument ( {—-p(a)«q(a)As(a)}, —p(a) ). As all calls are terminated now and there
was no output of "breach", this means that we have enumerated all immediate activation
sets for the input literal.

Example 8.24 (continuing Ezample 3.8 of §8)
Let us now come to Example 3.3 of §3. A call of immediate-activation-sets(flies(y)) results
in a call of immediate-activation-sets-helper with the argument quintuple

( {(flies(y),2)}, 0, @, 0, flies(y) ),

where the only rule whose conclusion is unifiable with the only goal literal is a defeasible
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We see no straightforward procedure to decide Scre- Even worse, we see neither a proce-

dure to semi-decide it, nor a procedure to co-semi-decide it. A positive answer can be given
if the procedure of Figure2 terminates for the first argument of Scpy without outputting
"breach". A negative answer can be given if, for an immediate activation set enumerated
for the first argument, the derivation for testing the property of being a weakly imme-
diate activation set for the second argument terminates with failure. In general, even if
we assume 2y to be decidable, none of these terminations is guaranteed.5

8.3.4 A Specificity Relation Based on Given And-Trees

In such a situation it is clearly appropriate to relax our requirement of a model-theoretical
specificity relation a bit. So we replace the fancied decision procedure for £ with the test
whether the literal has a derivation from those instances of IT which can be found in some
and-tree occurring in a finite set of and-trees fived in advance. For the solution we are
aiming at, it is crucial that this given finite set of and-trees cannot be further extended
during related specificity considerations. A good candidate may be the set of those and-
trees that our derivation procedure has been able to construct within a certain time limit.

Then we can replace each of the three elements of our specification (ITF, TI€, A) with the

sets of those instances of their elements that are actually applied in our finite set of and-

trees, resulting in the new specification (I, I1§, Ag). The further considerations must use
these three finite sets without any further instantiation. This means that the Tules are glo.F =
E{fﬁw@* 5 |

be considered to be ground and this is what the lower index t’iG”)stands for. LT ol

e’ Ir/‘r'-’ w /} r' fjr
We again abbreviate Ilg := II§ UIIE, and also replace the typically undecidable sét i
with finite set $p,.

Note that hardly anything has changed for our set of defeasible rules, because arguments
work anyway with instances that are ground, or are at least treated as if they were ground
(cf. Remark 2.7 in § 2.4), and we can hardly consider an argument that is not contained in
some and-tree we have constructed in advance.

There is a major change, however, for the set II of strict rules. The situation here is
similar to an expansion w.r.t. a champ fini in HERBRAND’s Fundamental Theorem,! and we
have reason to hope that the effect of this change can be neglected in practice, provided that
a sufficient number of the proper instances is considered. Note that, for first-order logic,
the depth limit n for terms required for HERBRAND'S Property C to establish a sentential
tautology (i.e. the natural number n for the champ fini of order n) is not computable in
the sense of a total recursive function. Even if we knew the smallest such n, however, the
number of terms of depth smaller than n would still be too high for practical feasibility in
general. This means that it is crucial to chose the instances of our rules in a clever way,
say from the successful proofs delivered by a theorem-proving system within a sufficient
time limit.

one that the conclusions of every defeasible rule from II® U A with a non-empty condition are ground
(cf. Remark 8.21).

K
51 > UJM
Cf. [HERBRAND, 1930} WIRTH &AL., 2009; 2014k WirTH, 2012; 2014]. /g/
llpue, ¢

0Both of these terminations can be guaranteed, however, under most restrictive conditions, such as the /



99

With the modifications described above, let us now come back to our procedure of Figure 2.
As noted before, there cannot be any output of "breach" anymore, because our new sets of
general strict and defeasible rules, i.e. the sets II§ and Ag, are now ground by definition.
After the resulting simplifications, the procedure immediate-activation-sets-helper now may
be replaced with the procedure ground-immediate-activation-sets-helper sketched in Figure 3.

To ensure termination of ground-immediate-activation-sets-helper we additionally have to
store the path of the and-tree and exit without further output if we encounter a literal for
a second time on the same path.

Remark 8.28 (Considerations on Complexity)

Regarding time complexity of the procedure of Figure3 extended with the storage of the
and-tree for ensuring termination mentioned above, only the foll?wing prel_i{minary remarks .
apply in this early state of development. [ »Cm,- Oil Bt Uitee c.r/z;-;If:fg % | Aty

From practical experience, complexity is not relevant yet: Our straightforward PROLOG © Wy
(cf. e.g. [CLOCKSIN & MELLISH, 2003])) implementation/(which prefers simplicity of cod- a%i{@;
ing over efficiency) computes, compares, and sorts — without any noticeable delay in the
answer — all minimal immediate activation sets for all minimal arguments for all literals
of euas\Sne, for a specification (11§, 1§, Ag) of all instances required for a superset of
all examples in this paper.

Regarding the theoretical worst case, which will hardly ever occur in practice, the fol-
lowing first estimate may be not completely irrelevant. Let n be the number of different
literals in all conclusions of all rules of IIg U Ag. With our mentioned mechanism for
ensuring termination, it is obvious that n limits the maximal depth of the SLD-like search
tree. Let m be the maximal number of all condition literals of all rules with an identical
conclusion. It is obvious that m limits the maximal number of children of any node in the
SLD-like search tree, cumulated over the whole run. This means that the maximal size
of the cumulated search tree is m"~'—1, i.e. O(m"). Luckily, this LANDAU-O limits also
the size of the theory 2r, (which we pre-compute in our PROLOG implementation) and all
other efforts at each node. Therefore, the whole algorithm is O(m™).

Now we can compute the finite set of all minimal®® immediate activation sets of all minimal
arguments for a given input literal w.r.t. our ground specification (II&, 1§, Ag). All what
is left for deciding <cgps is to check whether each of the computed immediate activation
sets whose defeasible rules are part of the first argument is a weakly immediate activation
set for the second argument. This is straightforward, although it is not clear yet which
implementation will be optimal.

We should not forget, however, that the specification (I, IIE, Ag) is only a reason-
ably constructed sub-specification of our original specification (IT¥, II¢, A), which actually
stands for (ITF, [16, A). Practical tests have to show whether such an omission of infinitely
many instances can be viable without deteriorating our specificity ordering. Theoretically,
such a viability can only be guaranteed for the special case that the number of instances of
the rules of the specification is finite (up to renaming of variables).

53First we filter the immediate activations sets from Figure3 by removing all elements from S, and
then, for each minimal argument, we compare them w.r.t. C and remove all supersets.
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Moreover, we have to distinguish between orderings for comparing conflicting arguments
w.r.t. specificity and orderings for comparing arguments w.r.t. a form of subsumption,
such as the quasi-ordering of being “more conservative” found in [BESNARD & HUNTER,
2001, Definition 3.3, p. 206|, [BESNARD &AL., 2013, Definition 6, p.50]). There, roughly
speaking, an argument (A;, L) is more conservative than an argument (A, Lo) if A; C Ay
and {Ly} F{Li}. So if our opponent accepts the argument (Asg, Ly), then he also has
to accept our more conservative argument (4, L;), because we need less presupposi-
tions and our result follows from our opponent’s result. In many practical situations,
however, the less conservative argument will be preferred. For instance, when we ask a
question-answering system (such as LogAnswer [FURBACH &AL., 2010]) for the mother
of PIERRE FERMAT, then — as an answer — we prefer®® the less conservative argument
(A, Mother(CLAIRE DE LONG, PIERRE FERMAT)) to

(A, 3z. Mother(z, PIERRE FERMAT)).
Moreover, the arguments (A, Mother(FRANCOISE CAZENEUVE, PIERRE FERMAT)) and
(A, Mother(CLAIRE DE LONG, PIERRE FERMAT)),
are incomparable in the “more conservative’-quasi-ordering. Even worse, for a non-trivial
derivability relation, i.e. in a non-contradictory theory, this quasi-ordering cannot compare
arguments with conflicting results L, Ly by definition, and none of the arguments of our
examples can be compared by this quasi-ordering.

JLhasJaec@me_deauﬂ_semr-al—dlqcmmom_that_theil.bﬁw—éﬁr obstacle for an acceptance of

one of our relations <cpy or Scpa as a replacement for Sps 4n-the-seientifieconmmmumity- [

~is"the change this brings to Example3.3 of §3: Some scientists working in the field for

a longer time have become used to the preference given by <ps in this most popular tey [ue

example — so much that they now consider that preference a must. Note that the situatio
in Example 3.3 is actually most unstable under the two following aspects:

1. The preference chosen by Sps in Example3.3 has justifications that are-intuitive
and valid, but are in general uncorrelated to specificity, such as the preference of
conservativeness or even the non-model-theoretic preference of defeasible derivations
of shorter length. In particular in this example, such intuitive justifications easily
contaminate the readers’ intuition w.r.t. specificity. Moreover, as the arguments in
Example 3.3 are not incomparable, but just equivalent according to Scp1, we can
easily combine <cp; lexicographically with another ordering, say “minimum in the
ordering of the natural numbers, for all and-trees, of the maximal length of defeasible
paths”, and so recover the traditional preference of Example 3.3.

2. The situation of the example is chaotic in the sense that different preferences result
from minor changes that may escape the readers’ disambiguation. For instance, if
we add the general rule of the example that precedes Example 3.3 (i.e. of Example 3.2),
then the preference chosen by <ps is chosen by Scp1 and Scp, as well. Moreover, if
we alternatively add bird(edna) as a fact, then we can embed the example injectively
into Example 8.15 of §8.3.1, and then the preference chosen by Sps IS again chosen
by Scp1, whereas the arguments become incomparable w.r.t. Scpe.

Already the examples in §7 show, however, that <ps almost always fails to prefer any
argument in slightly bigger examples, not to speak of big ones. Indeed, <ps can be consid-
ered a reasonable choice only if we restrict our considerations to t}ny examples. Moreover,

(D
ff/&f(i[({l i 1


cp
Sticky Note
Deleted.


59

[BESNARD &AL., 2013] Philippe Besnard, Eric Grégoire, and Badran Raddaoui. A con-
" ditional logic-based argumentation framework. 2013. In [L1U &AL., 2013, pp.44-56].
http://dx.doi.org/10.1007/978-3-642-40381-1_4.

[CHESNEVAR &AL., 2003] Carlos 1. Chesfievar, Jiirgen Dix, Frieder Stolzenburg, and
Guillermo R. Simari. Relating defeasible and normal logic programming through trans-
formation properties. Theoretical Computer Sci., 290:499-529, 2003. Received Jan. 8,
2001; rev. Nov. 9, 2001. http://dx.doi.org/10.1016/50304-3975(02)00033-6.

[CLOCKSIN & MELLISH, 2003] William F. Clocksin and Christopher S. Mellish. Program-
ming in PROLOG. Springer, 2003. 5t edn. (1stedn. 1981).

[DunG & SoN, 1996] Phan Minh Dung and Tran Cao Son. An argumentation-theoretic
approach to reasoning with specificity. 1996. In [AIELLO &AL., 1996, pp. 506-517].

[DungG, 1995] Phan Minh Dung. On the acceptability of arguments and its fundamen-
tal role in nonmonotonic reasoning, logic programming and n-person games. Artificial
Intelligence, 77:321-358, 1995. http://dx.doi.org/10.1016/0004-3702(94)00041-X.

[FurBacH &AL., 2010] Ulrich Furbach, Ingo Gléckner, and Bjérn Pelzer. An application
of automated reasoning in natural-language question answering. AI Comm., 23:241-265,

2010.

[GABBAY & WooDSs, 2004ff.] Dov Gabbay and John Woods, editors. Handbook of the
History of Logic. North-Holland (Elsevier), 20041f..

|GABBAY &AL., 1997 Dov Gabbay, Rudolf Kruse, Andreas Nonnengart, and Hans-Jiirgen
Ohlbach, editors. Proc. It Int. Joint Conf. on Qualitative and Quantitative Practical
Reasoning, 1997, June 9-12, Bad Honnef (Germany), number 1244 in Lecture Notes in
Computer Science. Springer, 1997.

[GABBAY, 2002] Dov Gabbay, editor. Handbook of Phiiosophz’cd.! Logic. Kluwer (Springer
Science+Business Media), 2002. 2= edny

[GARCIA & SIMARI, 2004] Alejandro J. Garcia and Guillermo R. Simari. Defeasible logic
programming: An argumentative approach. Theory and Practice of Logic Programming,
Cambridge Univ. Press, 4:95-138, 2004.

[GELFOND & PRZYMUSINSKA, 1990] Michael Gelfond and Halina Przymusinska. For-

malization of inheritance reasoning in autoepistemic logic. Fundamenta Informaticae,
XTII1:403-443, 1990. :

[GILLMAN, 1987] Leonard Gillman. Writing Mathematics Well. The Mathematical Asso-
ciation of America, 1987.

[GOLDFARB, 1970] Warren Goldfarb. Review of [HERBRAND, 1968|. The Philosophical
Review, 79:576-578, 1970.

[HEIJENOORT, 1971] Jean van Heijenoort. From FREGE to G@DEL: A Source Book in
Mathematical Logic, 1879-1931. Harvard Univ. Press, 1971. 2=drev. edn. (Istedn. 1967).

NN



61

Irrthum und Schein. Johann Wendler, Leipzig, 1764. Vol.I (Dianoiolo-
gie oder die Lehre von den Gesetzen des Denkens, Alethiologie oder Lehre
von der Wahrheit) (http://books.google.de/books/about/Neues_Urganon_oder_
Gedanken Uber_die Frf.html?id=ViS3XCuJEw8C) & Vol.II (Semiotik oder Lehre
von der Bezeichnung der Gedanken und Dinge, Phénomenologie oder Lehre
von dem Schein) (http://books.google.de/books/about/Neues_Drganon_oder_
Gedanken %C3%BCber_die_Er.html?id=X8UAAAAAcAAj). Facsimile reprint by Georg
Olms Verlag, Hildesheim (Germany), 1965, with a German introduction by HANS WER-
NER ARNDT.

[L1U &AL., 2013] Weiru Liu, V. S. Subrahmanian, and Jef Wijsen, editors. Proc. 7+ Int.
Conf. on Scalable Uncertainty Management (SUM 2013), Washington (DC), Sept. 16-18,
2013, number 8078 in Lecture Notes in Computer Science. Springer, 2013.

" [MODGIL & PRAKKEN, 2014] Sanjay Modgil and Henry Prakken. The ASPIC* framework
for structured argumentation: a tutorial. Argument & Computation, 5:31-62, 2014.
http://dx.doi.org/10.1080/19462166.2013.869766.

[POOLE, 1985] David L. Poole. On the comparison of theories: Preferring the most specific
explanation. 1985. In [JOsHI, 1985, pp. 144-147].

[PRAKKEN & VREESWILIK, 2002] Henry Prakken and Gerhard Vreeswijk. Logics for de-
feasible argumentation. 2002. In [GABBAY, 2002, pp. 218-319). 2

[RAEDT &AL., 2012] Luc De Raedt, Christian Bessiére, Didier Dubois, Patrick Doherty,
Paolo Frasconi, Fredrik Heintz, and Peter J. F. Lucas, editors. Proc. 20 European Conf.
on Artificial Intelligence (ECAI), Aug. 27-31, 2012, Montepellier, France, number 242 in
Frontiers in Artificial Intelligence and Applications. I0S Press, 2012. http://ebooks.
iospress.nl/volume/ecai-2012.

[ROSENFELD, 1974] Jack L. Rosenfeld, editor. Proc. of the Congress of the Int. Federation
for Information Processing (IFIP), Stockholm (Sweden ), Aug. 5-10, 1974. North-Holland
(Elsevier), 1974.

[StmARI & Lout, 1992] Guillermo R. Simari and Ronald P. Loui. A mathematical treat-
ment of defeasible reasoning and its implementation. Artificial Intelligence, 53:125-157,
1992. Received Feb. 1990, rev. April 1991.

[STOLZENBURG &AL., 2003] Frieder Stolzenburg, Alejandro J. Garcia, Carlos I. Chesiievar,
and Guillermo R. Simari. Computing generalized specificity. J. Applied Non-Classical
Logices, 13:87-113, 2003. http://www.tandfonline.com/doi/abs/10.3166/jancl.13.
87-113.

[WIRTH & GRAMLICH, 1994]. Claus-Peter Wirth and Bernhard Gramlich. A constructor-
based approach to positive/negative-conditional equational specifications. J. Symbolic
Computation, 17:51-90, 1994. http://dx.doi.org/10.1006/jsco.1994.1004, http:
//wirth.bplaced.net/p/jsc94.

[WIRTH & STOLZENBURG, 2013] Claus-Peter Wirth and Frieder Stolzenburg. DAvID
POOLE’s Specificity Revised. SEKI-Report SR-2013-01 (ISSN 1437-4447). SEKI Publi-

cations, DFKI Bremen GmbH, Safe_and Secure Gngnins_,_(lam;esiumﬂnﬁqu.e_



cp
Sticky Note
Done.



