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2 Basic Notions and Notation

2.1 Specifying Rules and their Theories

For the remainder of this paper, let us narrow the general logical setting of specificity down

to the concrete framework of defeasible logic with the restrictions of positive-conditional

specification with an inactive negation symbol, as found e.g. in [STOLZENBURG &AL., 2003]
and [CHESNEVAR &AL., 2003].

In effect, these restrictions give us the standard “definite rules” of positive-conditional
specification (or HORN-clause logic). Positive-conditional specification differs from logic
programming in PROLOG (cf. e.g. [KOWALSKI, 1974], [CLOCKSIN & MELLISH, 2003]) inso-
far as termination issues and the order of the definite clauses are irrelevant for the semantics,
and insofar as there is no cut predicate{ @nd no negation as failure.

Such definite rules are implication Dt the following form: The conclusion is an atom;
the condition is a (possibly empty) conjunction of (positive) atoms which may contain
extra variables (i.e. free variables not occurring in the conclusion). This is can be seen as
quantifier-free first-order logic with specifications restricted to implications of the mentioned
form.

We ask the reader not to get confused on the mentioned effective form of our rules by the
fact that — in place of the atoms — literals resulting from an inactive negation symbol are
actually admitted in the rules of Definition2.1. This special form of negation is standard
in defeasible logic for convenience in the application context (such as an argumentation
framework). In this paper, however, we can consider this negation just as a form of
syntactical sugar (cf. Definition 2.2, Remark 2.3).

Definition 2.1 (Literal, Rule)

A term is inductively defined to be either a s mbol for a free variable or a function symbo 1 \Lae@
applied to a (possibly empty) list of terms. Y j 2 W!f@ e
An atom consists of a predicate symbol apphed to a ( 0ssl1 ly empM 1st of terr 5) 0 g/ﬂ}{ (m&, )
A literal is an atom, possibly prefixed with the symbol “~” for negation. - Vit Lo @(EL

L AT //*
A rule is a literal, but possibly suffixed with a reverse implication symbol “<=” that is
followed by a conjunction of literals, consisting of one literal at least. va O bi rd

Definition 2.2 (Theory, Derivation)
Let IT be a set of rules. The theory of IT is the set ¥y inductively defined to contain

e all instances of literals from I7 and

e all literals L for which there is a conjunction C of literals from £ such that
L < (' is an instance of a rule in I7.

For ¢ C £y, we also say that IT derives &, and write IT - £
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2.3 Global Parameters for the Given Specification

Throughout this paper, we will assume a set of literals II¥ and two sets of rules II¢, A
to be given:

o [Acet TIF of literals meant to describe the facts of the concrete situation under con-

Q pration,
| A

e a set IIC of general rulesfmeant to hold in all possible worlds,? and

e aset A of defeasible (or default) rules meant to hold in most situations.

The set IT := II¥ U IIC is the set of strict rules that — contrary to the defeasible rules —
are considered to be safe and are not doubted in the concrete situation.

2.4 Formalization of Arguments

There is no difference in derivationf><gween the strict rules from II and the defeasible
rules from A. If a contradiction Qrs, however, we will narrow the defeasible rules
from A down to a subset A of its ground instances (i.e. instances without free variables)
— such that no further instantiation can occur. Such a subset, together with the literal
whose derivation is in focus, is called an argument. With implicit reference to the given
sets of rules Il and A, the formal definition is as simple as follows.

Definition 2.6 ([Contradictory| [Minimal| Argument)

(A, L) is az’néma!] argument if A is a set of ground instances of rules from A and
AUT F {&[and A/ UIL ¥ {L} for any proper subset A" C A|.

An argument (A, L) is contradictory if AUII is a contradictory set of rules.

Remark 2.7 (Non-Ground Arguments) | o ot biaekela dum .

What we would actually need is not exactly a set A of ground instances, but just of the
instances in the derivation. Then, however, we have to freeze the variables in A
because they must not be instantiated in the derivation AUII + {L}. We avoid this
novel complication here j_&ﬁf@because it does not play an essential réle before §8.3.

3In the approach of [STOLZENBURG &AL., 2003], the set II® must not contain mere literals (without
suffixed condition). To obtain a more general setting, we omit this additional restriction in the context
of this paper, simply because it is neither intuitive nor required for our framework here. For the actual
occurrence of a literal in ITS, see the discussion of Example 7.7 in § 7.4.
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3 Motivating 'I/‘ef Examples [5 W“l

For ease of distinction, we will use the special symbol “«” as a syntactical sugar in concrete
examples of defeasible rules from A, instead of the symbol “<=”, which — in our concrete
examples — will be used only in strict rules. |

l_oreover in our graphical illustrations we w111 1ndlcate membership in ITI¥ by double

underlining. [ /me{,fm DW&( Wi A 9%@ Ll WMT

Example 3.1 (Example1 of [POOLE, 1985])

N bird (tweety), —flies(edna)  flies(edna)  flies(tweety)

I, = ) :
emu(edna) T,x_, T

s, = blf(ii(ﬁ:) < emu(2), _ bird(edna) bird (tweety)

Bl —flies(z) < emu(zx) —_—
Asy = { flies(z) « bird(z) }," /
A; = { flies(edna) < bird(edna) }. emu(edna)
We have 2p,, = {bird(tweety), emu(edna), bird(edna), —flies(edna)},

r,,uns, = {flies(edna), flies(tweety)} U 2y, , .

It is intuitively clear that we prefer the argument (0, —flies(edna)) to the argument
(Ao, flies(edna)), simply because the former does not use any defeasible rules. We will
further discuss this in Example6.17.

Let us see what happens to Example3.1 if —returning home from-a-tent-show with-pigs—
ridingbieyeles, we are not so certain anymore that no emu can fly and turn the general
rule (—flies(z) < emu(z)) € [I$, into a defeasible one in the following example.

Example 3.2 (Example 2 of [POOLE, 1985])

e, . [ bird(tweety), | | ~flies(edna)  flies(edna) flies(tweety)
3.2 emu(edna) ’
II§, == { bird(z) < emu(z) }, - [ T
B —flies(z) < emu(z), A1 bird(edna) bird (tweety)
3277 flies(z) « bird(x) ' /
A; = { —flies(edna) «— emu(edna) }.
: . : emu(edna)
./42 i ﬂles(edna) — blrd(edna) } ————
We have 2, = {bird(tweety), emu(edna), bird(edna)},
Sa.uns, = {—flies(edna), flies(edna), flies(tweety)} U 2p, , .

It is intuitively clear that we prefer the argument (.A;, —flies(edna)) to the argument
(Asg, flies(edna)), simply because the defeasible derivation of the former is based on
emu(edna), and because this is more specific than bird(edna), on which the derivation
of the latter argument is based. We will further discuss this in Example 6.19.
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4 Toward an Intuitive Notion of Specificity

4.1 The CommonJrSense Concept of Specificity [ Wf Uﬁ o m‘&ﬂ@ M?‘j”g“/
L

It is part of general knowledge that a criterion is [properly| more spemﬁ(‘ than another on_e
if the “class of candidates that satisfy it” is a [proper| subclass of that of the other one. |

malogously — taking logical formulas as the criteria — a formula A is [properly| more

specific than a formula B, if the model class of A is a [proper| subclass of the model class
of B, ie.if AE B [and B £ A].

If we consider a formula as a predicate on model-theoretic structures, its model class
becomes the extension of this predicate. From this viewpoint, we can state A = B also
as the syllogism “every A is B”, and also as the LAMBERT diagran

wr fortuct,
| B | | byl
I ‘ A :

4.2 Arguments as an Intuitive Abstraction

To enable a closer investigation of the critical parts of a defeasible derivation, we have to
isolate the defeasible parts in the derivation. From a concrete derivation of a literal L,
let us abstract the set A of the ground instances of the defeasible rules that are actually
applied in the derivation, and form the pair (A, L), which we already called an argument
in Definition 2.6 of §2.4. ' '

4Cf. [LAMBERT, 1764, Dianoiologie, §§ 173—1941/
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We have to exclude ITF from this comparison, however. This exclusion makes sense
because the defeasible rules are typically default rules not written in particular for the given
concrete situation that is formalized by II¥. Moreover, as indicated before, the inclusion
of II¥ would typically eliminate all differences between activation sets, such as it is the case
in all examples of § 3.

Finally, as we want to compare the defeasible parts of derivations, we should exclude
the set A of the defeasible rules when we compare activation sets. | f

m the one hand, all we can take into account from our specification is a subset
of the general rules II and, on the other hand, we do not want to exclude any of these

general rules. ]
All in all, we conclude that II¢ is that part of our specification modulo which activation
sets are to be compared.

4.3.2 A first Sketch of a Notion of Specificity

Very roughly speaking, if we have fewer activation sets for the defeasible part of a derivation,
then these activation sets describe fewer models (i.e. their disjunction has fewer models),
which again means that the defeasible part of the derivation is more specific. Accordingly,
a first sketch of a notion of specificity can now be given as follows:

An argument (A;, L) is [properly| more specific than an argument (As, Ls) if,
for each activation set Hy for (A;, Ly), there is an activation set Hy C Tp,yne
for (As, Ly) [but not vice versa).

Note that this notion of specificity is preliminary, and that the notion of an activation set
for an argument has not been properly defined yet.
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4.4.2 A first approximation of Activation Sets

In a first approximation, we may now take the labels of all leaves of all resulting trees as
the activation set for the original derivation.

The motivation for this notion of an activation set is that the conjunction of its literals
is a weakest precondition for all defeasible parts of the concrete original derivation. If such
a logically weakest precondition satisfies the specificity notion of §4.3.2 as an activation set
for an argument (A;, L;) w.r.t. a second argument (As, L), then any other precondition
for all defeasible parts of the given and-tree will satisfy this notion w.r.t. (A2, L) a fortiori.”

4.4.3 Growth of the Defeasible Parts toward the Leaves

Note that in the set of trees resulting from the procedure described in §4.4.1, there may well
have remained instances of rules from II¢ connecting a defeasible root application with the
defeasible applications right at the leaves. Thus — to cover the whole defeasible part of the
derivation in our abstraction — we have to consider the set AUIIC instead of just the set .A.

More precisely, we have to include all proper rules (i.e. those with non-empty conditions)
from 16, and may also include the literals in II® because they cannot do any harm.®

As a consequence, in the modeling via our abstraction A, we cannot prevent the isolated
defeasible sub-trees resulting from the procedure described in §4.4.1 from using the rules
from II¢ to grow toward the root and toward the leaves again.® Only the growth toward
the leaves, however, can affect our activation sets (which are still taken to be the labels
of all leaves of all resulting trees) and thereby our notion of specificity. Indeed, a growth
toward the root can add to the conjunction of the given leaves only its super-conjunctions,
which are irrelevant because of our focus on weakest preconditions explained in §4.4.2> !

Let us have a closer look at the effects of such a growth toward the lea@in the most
simple case. In addition to a given activation set {Q(a)}, in the presence of a general rule

Q(&.") <= Pg(ﬁl)/\ v /\P-,L_l(ﬂ?)

from II%, we will also have to consider the activation set { P;(a) | 1€{0,...,n—1} }.

This has two effects, which we will discuss in §§ 4.4.4 and 4.4.5.

"Note that a further dissection of the isolated defeasible parts would not in general result in activation
sets that can be inferred from the strict rules in II. Where this inference is possible, however, a further
dissection leads to the special notion of activation sets given in Definition 8.7 of §8.3.1.

8The need to include all proper rules and to exclude the literals from IT¥ provides a motivation for
simply defining II¢ to contain exactly the proper rules of II, such as found in [STOLZENBURG &AL., 2003].

90f course, our abstraction admits even different defeasible parts of a different and-tree that derives
the same literal in focus from the same set A of instances of defeasible rules, i.e. different derivations of L
from AUII for the same argument (A, L). The admission of these multiple derivations is actually intended
in our model-theoretic treatment. The only effect on our current discussion, however, is that we would
have to treat several trees disjunctively, which actually makes no difference for the ideas we are currently

| iy wadpbnid, Voot o %]
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The problem now is that the statement
- Q(a) K~ Po(a)A--- APpa(a),

— which is required to justify this preference — is not explicitly given by the specifica-
tion (IIF,II€, A).
Nevertheless — if we do not just want to see it as a matter-of-fact property of notions

of specificity in the style of POOLE — we could justify the preference of the “more concise”
by imposing the following best practice on positive-conditional specification:

If we write an implication in form of a rule
Q(z) < Po(z)A--- AP, _1(x)

into a positive-conditional specification II of strict (i.e. non-defeasible) knowledge, and if
we do not intend that the implication is proper in the sense that its converse does not hold
in general, then we ought to specify the full equivalence by adding the rules P;(z) < Q(z)
(:€{0,...,n—1}) to the specification.'?

Under this best practice of specification, if we find such a rule without the specification
of its full equivalence, then it is not intended to exclude models where Q holds for some
object a, but not all of the P; do. This means that if we find such a rule in the strict and
general part II¢ of a specification, then it is reasonable to assume that the implication is
proper w.r.t. the intuition captured in the defeasible rules in A.

As a consequence, it makes sense to consider a defeasible argument based on { P;(a) |

i€{0,...,mn—1} } to be properly more specific than an argument that can get along
with Q(a).

i Q(a) |

—A,; Pi(a)—-—>l

Pk(a) >I

Remark 4.2 (Justification for Preference of the “More Concise”

Mot Valid for Defeasible Rules)
Note that our justification for the preference of the “mo ncise” does not apply, however,
if Q(z) < Po(z)A---APp_1(z) is a defeasible rule instead of a strict one, because we then
have the following three problems when trying to justify preference of the “more concise™

e The implication given by the rule is not generally intended (otherwise the rule should
be a strict one).

e Moreover, we cannot easily describe the actual instances to which the default rule is
meant to apply (otherwise this more concrete description of the defeasible rule should
be stated as strict rules).

e The direct treatment of a defeasible equivalence neither has to be appropriate as a
default rule in the given situation, nor do we have any means to express a defeasible
equivalence in the current setting.

Accordingly, there is, for instance, no clear reason to prefer the first argument of Exam-
ple3.3 in §3 to the second one. This will be discussed in more detail in Example 6.20.
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5 Requirements Specification of
Specificity in Positive-Conditional Specification

With implicit reference to a defeasible specification (IIF, II¢, A)-(cf. §2.3), let us designate
POOLE’s relation of being more (or equivalently) specific by “Spy”  Here, “P1” stands for
“POOLE’s original version”.

The standard usage of the symbol “<” is to denote a quasi-ordering (cf. §2.5). Instead
of the symbol “<” however, |[POOLE, 1985] uses the symbol “<” The standard usage of
the symbol “<” is to denote a reflezive ordering (cf. §2.5). We cannot conclude from this,
however, that POOLE intended the additional property of anti-symmetry; indeed, we find
a concrete example specification in [POOLE, 1985] where the lack of anti-symmetry of <p;
is made explicit.'* ' '

The possible lack of anti-symmetry of quasi-orderings — i.e. that different arguments
may have an equivalent specificity — cannot be a problem because any quasi-ordering <y
immediately provides us with its equivalence /2, its ordering <, and its reflexive order-
ing <y (cf. Corollary 2.9 of §2.5).

By contrast to the non-intended anti-symmetry, transitivity is obviously a conditio sine
qua non for any useful notion of specificity. Indeed, if we have to make a quick choice
among the three mutually exclusive actions Propose, Kiss, Smile, and if we already have
an argument (A,, Kiss) that is more specific than another argument (.43, Smile), and if we
come up with yet another argument (.A;, Propose) that is even more specific than (As, Kiss),
then, by all means, (A;, Propose) should be more specific than the argument (A, Smile)
as well. It is obvious that a notion of specificity without transitivity could hardly be helpful
in practice.

A further conditio sine qua non for any useful notion of specificity is that the conjunctive
combination of respectively more specific arguments results in a more specific argument.
Indeed, if a square is more specific than a rectangle and a circle is more specific than
an ellipse, then a square inscribed into a circle should be more specific than a rectangle
inscribed into an ellipse. This property is calleddmo nicity of co_rgunc@ which we will \‘%Mf"gz
discuss in §7.1. Already in [POOLE, 1985], we an example’ where <p; violates
this monotonicity property of the conjunction, which is described there as “seemingly un-

intuitive” 16

Further intricacies of computing POOLE’s specificity in concrete examples are described
in [STOLZENBURG &AL., 2003|!" which will make it hard to implement <p; or its minor cor-
rections as efficiently as required in the practice of answer computation and SLD-resolution
w.r.t. positive-conditional specifications.

MHere we refer to the last three sentences of §3.2 on Page 145 of [PooLE, 1985].

15Here we refer to Example 6 of [PooLE, 1985, §3.5, p.146], which we present here as our Example 7.1
in §7.1.

168ee our Example 7.1 in § 7.1 and the references there.

1"Here we refer to §3.2ff. of [STOLZENBURG &AL., 2003, where it is demonstrated that, for deciding
POOLE’s specificity relation (actually Sps instead of <p;, but this does not make any difference here)
for two input arguments, we sometimes have to consider even those defeasible rules which are not part of
any of these arguments. See also our Example 7.4 in §7.2.
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Activation sets that are not simplified differ from simplified ones by the admission of
facts from ITF (in addition to the general rules I1¢) after the defeasible part of the derivation
is completed.'®

Our introduction of activation sets that are not simplified is a conceptually important
correction of POOLE’s approach: It must be admitted to use the facts besides the general
rules in a purely strict derivation that is based on literals resulting from completed defeasible
arguments, simply because the defeasible parts of a derivation (as isolated in § 4.4.1) should
not get more specific by the later use of additional facts that do not provide input to the
defeasible parts.'® Note that the difference between simplified and non-simplified activation
sets typically occurs in real applications, but — except Example 7.5 in § 7.2 — not in our
toy examples of § 7, which mainly exemplify the differences in phase 1.

FUTI®

H
| B | B=u
POOLE’s Approach (P1, P2, P3) Snruncua H %
Our Approach (CP1, CP2) Srune |

Figure 1: And-Tree with Phases 1, 2, 3.22

18This can be seen in Example 7.5 of § 7, and in Example 8.1 of § 8.2.2. See also the variable F in Figure 1.

19We do not further discuss this obviously appropriate correction here and leave the construction of
examples that make the conceptual necessity of this correction intuitively clear as an exercise. Hint: Have
a look at the proof of Theorem6.16 in §6.5. Then present two different sets of strict rules with equal
derivability, where only one needs the facts in phase 3 and where the additional specificity gained by these
facts violates the intuition.

20Look at Note 35 of Example 7.4 in §7.2 to see that it may really matter for the definition of P1, P2,
P3 that we do not have H C Z;r e in general in POOLE’s approach.

21 Although we do not have H CII¥ in general in our approach, the replacement of IT" with / in this table
would result in fewer derivable roots for our approach, simply because we always have Ty ne C2Zpryne
in our approach.

22From leaves to the root: phasel (H), phase2 (sub-trees of the defeasible parts of a derivation, with
explicit defeasible root steps), phase3 (root sub-tree).
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We have &g, = {thirst,drink}, 2, unes = {beer} U Rp,.

We have (Aj, beer) Spo (,drink) because for every H C 2y, jua,s that is a simplified
activation set for (As.beer), but not a simplified activation set for (0, beer), we have
H = {thirst}, which is a simplified activation set also for (f,drink).

We have (0, drink) <py (As, beer) because there cannot be a simplified activation set
for (@,drink) that is not a simplified activation set for (@, drink). i

Allin all, we get?® (A, beer) ~py (0, drink), although (,drink) <@3)(As, beer) should ]:w ,
be given according to intuition, because an argument that does not require any defeasible Y Mmféj
rules should be strictly preferred to an argument that does: If beer produces a conflict @ Lo
with our drinking habits, there is no reason to prefer it to any other drink. ' ?1 M»:l

To overcome this minor flaw, which consists in the inconvenience of not in general preferring

~ a non-defeasible argument to a comparable defeasible one, we finally add an implication as
an additional requirement in Definition 6.6. This implication guarantees that no argument
that requires defeasible rules can be more or equivalently specific than an argument that
does not require any defeasible rules at all.

Definition 6.6 (Sps: Rather Unflawed Version of DAVID POOLE’s Specificity)

(A1, L) Sp3 (As, Le) if (A, L1) and (Ay, Lo) are arguments, L, € Ty implies L; € 2y,
and if, for every H C Spua that is a [minimal]?* simplified activation set for (A, L;) but
not a simplified activation set for (#,L,), H is also a simplified activation set for (As, Lo).

Corollary 6.7 If (A1, L), (Ag, Ly) are arguments with .211 CA,,

then any of the following conditions is sufficient for (Ay, L1) Sps (As, Lo):
1. Li=Ls.
2. Lyel = L, € o and {Ll} U As UTIG | {Lg},
3. A1 =0 (which implies L, € T by Definition 2.6).%°

As every simplified activation set that passes the condition of Definition 6.3 also passes the
one of Definitions 6.4 and 6.6, we get the following corollary of these three definitions.

Corollary 6.8 <pz3 C <ps C <p;.

o~

By Corollaries 6.7 and 6.8, <p1, Sp2, Sps are reflexive relations on arguments, but

— as we will show in Example6.9 and state in Theorem6.11 — not quasi-orderings
in general.

YiwH
23Note that by Corollary 6.8, we will get (A, beer) ~p; (0,drink) as well. Finally note that this [M#f 3 ﬁl
problem does not occur in the similar Example 3.1 of § 3. wudli¥OL

24Note that the omission of the optional restriction to minimal simplified activation sets for (A, L1) JZM{ ‘vW{L U
in Definition 6.6 has no effect on the extension of the defined notion, simply because the additional non-
minimal simplified activation sets (A1, L;) will then be simplified activation sets for (As, Lz) a fortiori.

F‘r’ Exercise: Find a counterexample, however, for the conjecture that L, € £ry implies (A, L1) Spa (A, La).
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Proof of Lemma6.10

Looking at Example 6.9, we see that only the quasi-ordering properties in the last two lines
of Lemma 6.10 are non-trivial. We have

50, = {Bold, HAkimbo(Jo), Smiles(Jo), Sexy(Jo)},
rgounss = {Promising(Jo), Propose, Kiss, Smile} U2, ,.

Thus, regarding the arguments (A;, Propose), (As, Kiss), (A3, Smile), the implication added
in Definition 6.6 as compared to Definitions 6.3 and 6.4 is always satisfied, simply because
its condition is always false. '

(Asz, Smile) Zp1 (A1, Propose) <ps (A, Kiss) : The minimal simplified activation sets for -

(Ay, Propose) that are subsets of S, quags
and no simplified activation sets for (@, Propose) (or, without any difference, no sim-
plified activation sets for (.Aj, Propose)) are {Bold, HAkimbo(Jo), Smiles(Jo), Sexy(Jo)}
and {Bold, Promising(Jo)}, which are simplified activation sets for (A, Kiss) — but
{Bold, Promising(Jo)} is no simplified activation set for (A3, Smile).

(A, Propose) Zp1 (As, Kiss) Sps (Asz, Smile) : The only simplified activation set for

(As, Kiss) that is a subset of 2, guns, and
no simplified activation set for (@, Kiss) (such as {Promising(Jo)}) (or, without any differ-
ence, no simplified activation sets for (A, Kiss)) is {Bold, Smiles(Jo), Sexy(Jo)}, which is a
simplified activation set for (A3, Smile), but not for (\A;, Propose).

(As, Kiss) Zp1 (Asz,Smile) : The only minimal simplified activation set for (A3, Smile) that
is a subset of T, uas, and no simplified activation set for
(As, Smile) is {Sexy(Jo)}, which is not a simplified activation set for (As, Kiss).

Q.e.d. (Lemma 6.10)

6.3 Main Negative Result: Not Transitive!

The relations stated in Lemma6.10 hold not only for the given indices, but — by Corol-
lary 6.8 — actually for all of P1, P2, P3; and so we immediately get:

Theorem 6.11

There is a specification (II§ o, 1ISg, Asg), such that IIE g UTIS, U Agg is mon-contradictory,
but none of Sp1, Sp2, Sps, <p1, <p2, <ps 1S transitive. Mo'reover,' the counterezamples
to the transitivity of all these relations can be restricted to minimal arguments.

As a consequence of Theorem6.11, the respective relations in [POOLE, 1985],-|STOLZEN-
BURG &AL., 2003], and{SIMARI & Lour, 1992] are not transitive. This means that these
. relations are not quasi-orderings, let alone reflexive orderings.J

fThis consequence is immediate for the relation > at the bottom of the left column
on Page 145 of [POOLE, 1985]. Moreover, note that the consequence does not depend on
the contentious question on whether our interpretation of the negation symbol — essentially
differs from its interpretation in [POOLE, 1985]. Indeed, our counterexample to transitivity
occurs in the negation-free definite-rule fragment of POOLE’s original language.
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Corollary 6.13 If (A, L1), (Ag, L) are arqguments with A; C As,

then any of the following conditions is sufficient for (A1, L1) Scpi (Aa, L) :
1. Li=Ls.
2 Lye®; = Lie%n and {L}UILF {L,}&®
8. Ly € ¥ (which is implied by A1 =0 by Definition 2.6).

The crucial change in Definition 6.12 as compared to Definition 6.6 is not the technicall
required emphasis it puts on the case “L; € SH”.& be discussed in Remark 6.18 of §6.6

The crucial changes actually are [ ity ke e%a%m’j Yoy aeduy F&W@( y,gfamz/m—f

the replacement o C Tqua’ wit C %11’ (as explained already in phasel o d),
A) th | f“H C Tya” with “H C 8" 1 d already in phase 1 of §6.1
and the thereby enabled

(B) omission of the previously technically required,3® but unintuitive negative condition
on derivability (of the form “but not a simplified activation set for (0, L1)”).

An additional minor change, which we have already discussed in §6.1, is the one from
simplified activation sets to (non-simplified) activation sets.

Theorem 6.14 <cp; is a quasi-ordering on arguments.

Proof of Theorem 6.14

<cp1 is a reflexive relation on arguments because of Corollary 6.13.

To show transitivity, let us assume \9‘/"”&”‘_69{2&12
(A1, L1) Scei (A, Le)( Scpr (As, Ls).

According to Definition 6.12, because of (A3, L1) Scp1 (A2, Ls), we have L; €y — and
then immediately the desired (A, 1) <cp1 (A3, L3) — or we have Ly €3 and every
H C 2y that is an activation set for (A1, L1) is also an activation set for (As, Ls). The latter
case excludes the first option in Definition 6.12 as a justification for (As, La) Scp1 (As, L3),
and thus we have Ly &2 and every H C 2y that is an activation set for (Ajg, Lo)
is also an activation set for (As, Ls). All in all, we get that every H C ¥y that is an
activation set for (A;, L1) is also an activation set for (As, L3). Thus, we get the desired

(A1, L1) <cp1 (Asz, L) also in this case. Q.e.d. (Theorem 6.14)

Obviously, an argument is ranked by Scp; firstly on whether its literal is in £, and, if not,

secondly on the set of its activation sets, which is an-element-ef-thepower-set of the power
set of . So we get: a s

Corollary 6.15 If Ty is finite, then <cpi is well-founded.

2Note that, in general — contrary to Corollary 6.7(2) — A must not participate in the derivation of L
from Li, say in the form that there is a set of literals ¢ with {L;}UA;UII® ¢ and SUIIF {Lo},
because rules from II¥ may have participated in the derivation of L; from an activation set. The source
of this difference between P3 and CP1 is the replacement of simplified activation sets in Definition 6.6 with
(non-simplified) activation sets in Definition 6.12.

308ee the discussion in Example6.21 in §6.6 on why this condition is technically required for P1, P2,
and P3. :
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Let us now provide an argumentum ad absurdum for the assumption that H is a simplified
activation set also for (0, L;): Then we would have L; € £ e, and because of H C 31 and
M6 CII weget L€ fequn ==n —. a contradiction to our current case of Ly, Lo & 2.

All in all, by our initial assumption, H must now be a simplified activation set for (\Ag, Lg)
and, a fortiori by Corollary 6.2, an activation set for (As, Ly), as was to be shown for our
only remaining sub-claim. Q.e.d. (Theorem 6.16)

6.6 Checking Up the Previous Examples

With the help of Theorem 6.16, we can now analyze the examples of § 3, and also check
how our relation CP1 behaves in case of our counterexample to transitivity. Note that
condition4 of Theorem6.16 is satisfied for all of these examples.

Example 6.17 (continuing Ezample 8.1 of § 3)
We have (A, flies(edna)) Lcpy (0, —flies(edna))
because flies(edna) € £, and —flies(edna) € 2y, ;.
We have (0, ~flies(edna)) <ps (A, flies(edna)) by Corollary 6.7(3).
All in all, by Theorem 6.16, we get (0, —flies(edna))<cp;(As, flies(edna))
and (0, —flies(edna)) <ps (As, flies(edna)).

Remark 6.18 One may ask why we did not define an additional quasi-ordering, say <cpo,
simply by replacing the two conditions of Definition 6.12 with the single condition

“Ly €2 -implies L; € ¥y, and every H C 2y that is an [minimal] activation
set for (Aq, L) is also an activation set for (As, Ls).”

This would be more in the style of Definition 6.6 for Spz, and would also avoid the sin-
gular behavior of the first alternative condition of Definition6.12, and so offer continuity
advantages.3! Moreover, for <cpg instead of Scpy, items 1 and 2 (but not item 3) of Corol-
lary 6.13 still hold, as well as Theorem 6.14 and its Corollary 6.15. Furthermore, we get
Scro € Scei. It is fatal for Scpo, however, that this subset relation may be proper. For
instance, Scpo does not in general satisfy Theorem 6.16. Even worse, Scpo does not show
the proper behavior of <cp; in Example3.1 of §3, as discussed in Example 6.17 of §6.6:
We get (0, —flies(edna)) Acpo (As, flies(edna)) instead of
(0, —flies(edna)) <cpi (As, flies(edna)).

This can be seen by considering the activation set () for (@, —flies(edna)), which is not
an activation set for (Ay, flies(edna)).

Such a behavior is obviously unacceptable in practice, and so we do not think that it,J

| _makes sense to consider Scpo any further. [‘“‘”’A Y m&m{j

Example 6.19 (continuing Example 3.2 of §3)
We have (As, flies(edna)) Zcp1 (A1, —flies(edna)) because flies(edna) € $p,, and because
{bird(edna)} C 2y, is an activation set for (Ay, flies(edna)), but not for (A;, —flies(edna)).

We have (A, —flies(edna)) Sps (As, flies(edna)), because flies(edna) € <,, and be-
cause, if H C 2, ,ua,, is a simplified activation set for (A, —flies(edna)}, but not for

31Cf. the discussion of such a continuity advantage in § 7.1 for the monotonicity w.r.t. conjunction.
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Example 6.22 (continuing Ezample 6.9 of §6.2)
The following holds for our specification of Example 6.9 by Lemma 6.10 and Corollary 6.8:
(A1, Propose) <p3 (As, Kiss) <p3 (Asz, Smile) Zps (A;, Propose).

For our corrected relation CP1 we have:

(Aj, Propose) <cp1 (As, Kiss) <cp1 (Ajz, Smile) >cp1 (Ai, Propose)
simply because the trouble-making set { Bold, Promising(Jo) } is not to be considered here.
Indeed, this set is not a subset of ®p,,. The checking of the details is left to the reader.
Note that, because of Lemma6.10, Theorem6.16, Theorem6.14, and Corollary 2.9, all
that is actually left to show is

(A;, Propose) Zcp1 (As, Kiss) Zcp1 (Asz, Smile).

7 Putting Specificity to Test w.r.t. Human Intuition

Before we will go on with further conceptual material and efficiency considerations in §8,
let us put our two main notions of specificity — as formalized in the two binary relations
<pz and Scgp1 — to test w.r.t. our changed phase 1 of §6.1 in a series of further examples.

Note that we can freely draw the consequence <ps C Scp1 of Theorem6.16 because

at least one®® of its conditions is satisfied in all the following examples except Example 7.5,
which is the only example in § 7 with an activation set that actually is not a simplified one.

Besides freely applying Theorem 6.16 — to enable the reader to make his own selection
of interesting examples — we are pretty explicit in all of the following examples.

7.1 Monotonicity of the Specificity Relations w.r.t. Conjunction

Monotonicity w.r.t. conjunction is the following property for a binary relation R on argu-
ments: In case of (AL, LY R (A4, L) for i € {1, 2},

we always have (AJUAZ, L1) R (AJUA3, L)
for fresh constant literals L, with rules L} <=LIAL? added to the general rules I1° (j € {1,2}).
In this case, we will call (AJUAZ, L}) the conjunction of the arguments (A}, L}) and (A%, L3).

This property is obviously given for Sgp; in case of Li, L3 € ¥; (which implies L} € %)
and also in case of L}, L2¢ % (where we get L1, L3, L}, L, ¢ ¥ and just take the union
of the two activation sets). Note that the latter case — where both arguments are defea-
sible — is certainly the most important one.

For the remaining borderline case of Li@$p > L3 (for some i € {1,2}), however,
monotonicity cannot be expected in general for <gp;, simply because then we get L & 2,
but do not necessarily have any activation set for Lg_é. This non-monotonicity, however,
is part and parcel of our decision to prefer arguments whose literals are elements of £n, as
expressed in item 1 of Definition6.12 of §6.4. As explained in Remark 6.18 of §6.6, there
does not seem to be an alternative to this technically required preference. :

For <p;, however, monotonicity is not even given for the case we just realized to be the
most important one. This was already noted in [POOLE, 1985], using the following example;

33Condition4 of Theorem6.16 is satisfied for Examples 3.2, 3.3, 3.4, and 7.7. Condition3 (but not
condition 4) is satisfied for Examples 7.1, 7.2, 7.3, 7.4 and 7.6.
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the same reason.

We have (Aj,81) <cp1 (A2,82), which is intuitively correct because the conjunction
of a more specific and an equivalently specific argument, respectively, should be more spe-
cific. Indeed, from the isomorphic sub-specifications in Examples 3.2 and 3.3, we know
that (A, —c) <cp1 (As,c) and (A, —f) =cp1 (As, ), respectively.

All in all, the relation Spj fails in this example again, whereas the quasi-ordering Scp1

works according to human intuition and satisfies the required monotonicity w.r.t. conjunc-
tion of §5. '

7.2 Implementation of the Preference of the “More Precise”

As primary sources of differences in specificity, all previous examples — except Exam-
ple3.4 of §3, continued in Example6.21 of §6.6 — illustrate only the effect of chains of
implications. According to our motivating discussion of §4.4.5, we should consider also
examples where the primary source of differences in specificity is an essentially required
condition that is a super-conjunction of the condition triggering another rule. We will do
so in the following examples.

As we have already shown in Example6.21, both relations <pz and Scp; produce the
intuitive result if the “more precise” super-conjunction is directly the condition of a rule.
Let us see whether this is also the case if the condition of the rule is derived from a super-
conjunction.

By removing the second condition literal —f in the strict general rule gj<=—cA—f of
Example 7.1, we obtain the following example.

Example 7.3 (2'41 Variation of Example 7.1)
e, %= { a, d },

é . g1 < ¢, | / \
1_'[7.3 == {g2<=c/\f}’ /

A7A3 = Aj U ./42. A
A, = {-c—al} .
b+ a, ¢
L Cc+ b, / As
Ay = g,

fee

|[«B

Let us compare the specificity of the arguments (A;,g;) and (As, g2).

We have (A1, g1) Lop1 (A2,82) because {a} C 2y, , = {a,d} is an activation set for
(A1,g1), but not for (As, gs).

We have (As, g2) Scp1 (A1, 81) because any activation set for (A, g2) that is a subset
of 211, , includes a, and so is also an activation set for (A, g1).

Considering Theorem 6.16 as well as the the activation set {b,d} for (A2, g2),
we get (Al;gl) Ap3 (A’a EQ),
contrary to (A, 81) >cp1 (As, 82).

Thus, S<cp; realizes the intuition that the super- COI).JUIlCthIl aAd — which is essential
to derive cAf according to A; — is more specific than the “less precise” a.

Just like Example6.20 of §6.6, this example shows again that Sps does not properly
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By turning the defeasible rule f«—e of Example 7.4 into a strict general rule, we obtain
the following example.

Example 7.5 (Variation of Example 7.4)
nf, = {& d, =},

c X < aAf,
HT.E L f = e y
Nrs = A'UA? U AU AP,
Al = { x+« aAbAc }. ' : b f
A? = { -x«aAb }.
AF = a«—d }, k “‘5] /
A = { b«e i d c g

Compare the specificity of the arguments (A'UA*UAS, x), (AUAUAS, —x), (A% x)!

Obviously, x,—x ¢ Zm,, = {c,d,e,f}. Moreover, {d} C Zp,, is an activa-
‘tion set for (A%,x) (but not a simplified one!) and, @ fortiori (by Corollary6.13(1)),
for (A'UA*UA®, x), but not for (A*UA'UA®,—x). Furthermore, every activation set
H C &, for (A2UA*UA®, —x) satisfies {d,e} C H, which is an activation set for (A*,x)
and (A'UA%UA® x). Finally, every activation set H C 2y, for (A'UATUAS, x) satisfies
{d} € H which is an activation set for (A%, x).

All in all, we have (A% x) ~cp1 (A'UA*UA®, x) >cp1 (A2UA*UA®, —x).

This is intuitively sound because (A*UA*UAS, —x) is activated only by the more specific
dAe, whereas (A%, x) is activated also by the “less precise” d.

Moreover, cAdAe is not essentially required for (A'UA*UA®, x), and so this argument
is tantamount to (A*,x). The reason for this remarkable effect is not the lack of minimal-
ity of the argument (A'UA*UA®, x), but our semantical, model-theoretic approach, which
simply ignores the fact that the derivation via A’ requires the more precise activation set.
Indeed, we primarily consider consequence, not derivation. '

We have (A% x) <ps (A'UA*UAS x) Aps (A2UATUA®, —x) Aps (A%, %), however.®

This means that <pj fails here completely w.r.t. POOLE’s intuition, as actually in most
non-trivial examples.

M&wﬁ@(] el

7.3 Conflict between the “More Concise” and the “More Precise”

By removing the second condition literal —f in the strict general rule g;<=—cA—f of Exam-
ple 7.2, we obtain the following example:

36The minimal simplified activation sets for (A*,x) that are no simplified activation sets for (0,x) are
{d,e} and {d,f}. The minimal simplified activation sets for (A'UA%UA®, x) that are no simplified acti-
vation sets for (,x) are {d,e}, {d,f}, {a,b,c}, and {b,c,d}. The minimal simplified activation sets for
(A2UA*UA®, —x) that are no simplified activation sets for (), —x) are {a, b}, {a,e}, {b,d}, and {d,e}.
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8 Efficiency Considerations and
the Specificity Ordering CP2

The specificity relations P1, P2, P3, and CP1% share several efficiency features, which
we will highlight in this section. Moreover, we will introduce the specificity ordering CP2,
a minor variation of CP1 toward more efficiency and intuitive adequacy. Finally, we will
discuss further steps toward more efficiency following HERBRAND’s Fundamental Theorem.

8.1 A Slight Gain in Efficiency

A straightforward procedure toward deciding the specificity relations <cp1 and <p3 be-
tween two arguments is to consider all possible activation sets from the literals in the
sets £p and Tqua, respectively. The effort for computing <cp; is lower than that of <ps
because of ¥ C $yua, though not w.r.t. asymptotic complexity: In both cases already the
number of possible (simplified) activation sets is exponential in the number of literals in the
respective sets T and Tqua, because each possible subset has to be tested in principle.

8.2 Comparing Derivations

To lower the computational complexity, more syntactic criteria for computing specificity
were introduced in [STOLZENBURG &AL., 2003]. These criteria refer to the derivations for
the given arguments. More precisely, they refer to the and-trees of Definition4.1 in §4.4.1.

8.2.1 No Pruning Required

The concept of pruning and-trees is introduced in [STOLZENBURG &AL., 2003, Definition 12]
in this context, because, for the case of <ps, attention cannot be restricted to derivations
which make use only of the instances of defeasible rules given in the arguments. The
reason for this is that the specificity notions according to [POOLE, 1985 and [SIMARI &
Lout, 1992] admit literals L in activation sets that cannot be derived solely by strict rules,
i.e. L € qua\%n. Since this is not possible with the relation <cpy, this problem vanishes
with our corrected version of specificity. This problem and its vanishing are discussed in
Example7.4. of §7.2.

8.2.2 Sets of Derivations have to be Compared

Yet still, the specificity relation Scpy inherits several properties from <pz. For instance,
the syntactic criteria of their definitions require us in general to compare two sets of deriva-
tions element by element. This is true for both specificity relations, as shown in the
following example.

37Cf. Note 3 of §2.3.

38P1 follows [POOLE, 1985] and can be found in this paper in Definition 6.3 of §6.2. P2 follows [SIMART
& Lout, 1992] and can be found in Definition 6.3 of §6.2. P3 respects non-defeasible arguments and can
be found in Definition 6.6 of §6.2. CP1 is our transitive relation found in Definition 6.12 of § 6.4.
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Two and-trees can be compared w.r.t. < efficiently. This requires the subset comparison
of all paths of the two trees, respectively. Hence, the respective complexi ’@r is polynomial,
at most O(n?), where n is the overall number of nodes in the and-trees” This made the
relation < attractive for practical use in the context of [STOLZENBURG &AL., 2003] com-
pared to the exponential comparison mention in §8.1. As stated in the following definition,
for a comparison of specificity we have to consider all and-trees, however, and so we still
remain with an overall exponential time complexity, which is worse than the one we will

describe in Remark 8.28 in §8.3.4.
!,,)@4“32.
[w% WM

Definition 8.4 ([STOLZENBURG &AL., 2003, Definition 24])
(A1, h) < (Ag,hg) if (A, hy) and (A2, hy) are two arguments in the given specification
and for each and-tree T) for h; there is an and-tree 75 for hs such that 77 < Ts.

It is shown in [STOLZENBURG &AL., 2003, Theorem 25| that < and <p, are equal in special
cases, namely if the arguments 1nvolved in the comparison correspond to exactly one and-
tree. Let us try to adapt this result to our new relation Scpi, in the sense that we try to
establish a mutual subset relation between < and <CP1

The forward direction is pretty straightforward, but comes with the restriction to be
expected: From [STOLZENBURG &AL., 2003, Theorem 25| we get < C <ps. By looking
at the empty path, we easily see that < satisfies the additional restriction of Definition 6.6 as
compared to Definition 6.4; so we also get < C <p3. Finally, we can apply Theorem 6.16
and get the intended < C <cgpj, but only with the strong restriction of the condition of
Theorem 6.16. We see no way yet to relax this restriction resulting from phase 3 of §6.1.

It is even more unfortunate that the backward direction does not hold at all because of
our change in phasel of §6.1. In particular, as shown in the following example, it does not
hold for the special case where it holds for <p,, i.e. in the case that there are no general
rules and hence each minimal argument corresponds to exactly one derivation (cf. the proof
of Theorem 25 in [STOLZENBURG &AL., 2003]).

Example 8.5

Hg.ﬁ = {a: b}} Hg5 = 01 —d d
A8_5 = Aj UAQ AH,[ AJ
A Cy a/b, }

d‘-—Cl
A . Co +— a, } / \

ﬁd‘—Cg

We have (Al,d) Aps (.Ag, _id) and (.Al,d) <cP1 (./4.') _|d )

Both arguments (A;,d) and (As, ~d) correspond to exactly one and-tree, say 17 and T5,
respectively. All paths in Paths(77) contain c;, but not co, and all paths in Paths(75)
contain ¢y, but not ¢;. Hence, (A;,d) < (Ay, —d) does not hold.

% Y ol Vo nelugge Weio LMMM% O, e, Hilstrlo v Vo potla of
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As a step toward a more efficiently realizable notion of POOLE-style specificity, we will now
eliminate those activation sets from our considerations that depend on and-trees with an
inessential application of the instance of a defeasible rule.*

As a side effect, this step will also eliminate all redundant activation sets that result
from what was called “growth of the defeasible parts toward the leaves” in §4.4.3. This
growth results from inessential application not of defeasible rules, but of general rules only.
Contrary to the inessential application of instances of defeasible rules; this elimination of
inessential applications of general rules will not change our specificity relation.

The positive effect, however, of cutting off this growth is the following: When the leaves
of the defeasible part of an and-tree are included in Ty for the first time in a root-to-leaves
traversal, we immediately stop and obtain one single immediate activation set, and that’s it!
The further enumeration of subsumed activation sets is no longer required.

While this reduction of the number of activation sets to one single immediate activation
set for each and-tree is most helpful for the computation related to the first argument of the
relation Scpe when trying to decide it, for the computation related to the second argument
it re-introduces the complication we already had in our first sketch of a notion of specificity
in §4.3.2, as compared to the simplified, second version of this sketch in §4.4.4, which was
the basis for our first formal definition of activation sets in Definition 6.1 of §6.1.

This complication is only a notational one. It requires the notion of weakly immedi-
ate activation sets in addition to (non-weakly) immediate ones. This complication does
not mean any extra-computation, not even for the second argument in the test for Scpo:
It is just so that the test whether every activation set of the first argument is subsumed by
some activation set for the second argument becomes independent from the computation
of activation sets. This independence has the advantage that we can optimize it in several
directions: First of all, we must omit all rules from II¥ and A, which play some minor
réles in the computation of non-immediate activation sets (namely IIF for acceptance as an
activation set, and the instances of A\ that form the first element of the argument for expan-
sion of activation sets). hre ita.nt, however, i¢ that we may also add some forward
reasoning from the activation set computed for the first argument in the test for Scps.

All in all, this means for our operationalization that the computation of activation sets
(cf. Definition 6.1) has to be replaced with the computation of immediate activation sets
according to the following definition, which also mirrors our isolation of defeasible parts of
derivations in §4.4.1 more directly than before, namely in the sense that a growth towards
the leaves is avoided and the further dissection described in Note 7 of §4.4.2 takes place.

It may be helpful for an intuitive understanding of the following definition to have a
look at Figurel in §6.1: The root tree depicted there is captured in item 2 of the following
definition, its sub-trees in item 1.

40The first idea could be to take only activation sets all of whose literals occur in the condition of a rule
in A, for the respective argument (A, L). This idea, however, is too restrictive because also general rules
may play a réle in the defeasible parts of the derivations, cf. §4.4.1.
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Z Remark 8.9 (Difference between an Activation Set and an Immediate ©ne)
An immediate activation set differs from an activation set in that certain defeasible parts
may no longer participate in the derivation, namely those parts that derive a node labeled
?‘with an element of 2. |
. [This means that those dé%ﬁ.‘ations which contain inessential®® applications of instances
of defeasible rules can no longer increase the number of activation sets, i.e. can no longer
[ { reduce the specificity of an E‘Ll‘gll?nent;.‘ Sugl ma’ Wl APyl LWL m{,(&,}g ) bt
| Note—that-such—a-—reduction-is-against-common—intuition—Indeed; we cannot see any
reason why the fact that the first element of the argument may also be re-used to re-derive
a literal of &5 from 5 should be relevant for the specificity of the argument.

I Definition 8.10 (2= ion of our Specificity Relation: Scps)
(A1, L) Scpa (A2, L) A, L) and (As, Ly) are arguments, and we have

1. Le®y or

2. Ly &% and every H C ¥y that is an [minimal] immediate activation set for (A, L1)
is a weakly immediate activation set for (Ag, Ls).

To see that nothing essential has changed, compare the following Corollary 8.11 to Corol-
lary 6.13 of §6.4.

Corollary 8.11 If (A1, L1), (As, Lo) are arguments with A; C Ay,
then any of the following conditions is sufficient for (A1, L1) Scpe (Asg, L2) :

1. Ly=1ULs.
2 LyeS;=>Li€%; and {L}UTF {Ly}.
8. Ly € By (which is implied by A1 =0 by Definition 2.6).

Remark 8.12 (Optional Minimality Restriction has No Effect)
. Note that the omission of the optional restriction to minimal immediate activation sets
wstughytfor (As, L) in Definition 8.10 has no effect on the extension of the defined notion.

R &éProogr Suppose that L, Ly € ¥, and that H” is an immediate activation set for (A, L1).
Because the related derivation is finite, we may assume that H” is finite w.l.o.g. Thus,
there is a minimal immediate activation set H C H” for (A4, L;). If we now assume
(A1, L) Scpa (Ag, Ly) with respect to a definition with the optional minimality restric-
tion, then H is a weakly immediate activation set for (Ag, Ls), i.e. there is an immediate
activation set H' C T e for (As, Ly), which (because of the monotonicity of our logic)
implies H' C £4uc, i.e. H" is a weakly immediate activation set for (As, Ly) as well,

as was to be shown.
e (e e ]

Z 43T e. inessential in the sense of Definition 8.6.


cp
Sticky Note
Done.

cp
Sticky Note
Done.



46

Furthermore, we have
i (Al,drink) <cP1 (A:$$a|arm) Acp2 (Al,drink):

The minimal [immediate| activation set {danger} for (A3, alarm) is not an activation set for
(Aj,drink). The only [immediate| activation set for (A;,drink) that is a subset of 2y, is
{thirst}, which is an activation set for (Aj,alarm), but not a weakly immediate one. Note
that (A;,drink) is no longer more or equivalently specific than (A3, alarm) in the sense of
(A, drink) £cpa (As.alarm), because the inessential application of the rule danger«thirst
of A5 is not admitted for immediate activation sets.

In spite of these minor but noticeable differences, however, nothing has actually changed
by stepping from CP1 to CP2, except the positioning of the argument (.43, alarm), which is
non-minimal as an argument (and therefore practically irrelevant and not even considered
in many frameworks, cf. Remark 2.8 of § 2.4) and also non-minimal in Scpi (and therefore
less specific and not really relevant either). What is crucial, however, is that a most specific
argument cannot be found in either case. Indeed, we have both

(A,,drink) Acp1 (As,alarm)
and  (Ay,drink) Agpa (Asg,alarm).

If we remove danger from IIf .5, then (As,alarm) is no argument anymore, but we can
embed the specification injectively into the one of Example 3.3 of §3 and get both

(Ay, drink) =~cp1 (Aj, alarm)

and (A, drink) =gps (A, alarm),
because the activation set {thirst} now becomes an immediate one also for (Aj,alarm).
Indeed, the application of the rule danger«thirst is no longer inessential for deriving alarm.

Moreover, if we now add the rule danger<=thirst to II$,5, resulting in the specification
({thirst}, {danger<thirst}, Ag;5), then the situation is essentially the same as in Exam-
ple3.2 of §3, and so we get both (A, drink) <cp1 (A3, alarm) =cpy (As, alarm)

and (A;,drink) <gps (A3, alarm) ~cps (As, alarm),
because — although the application of the rule danger«—thirst becomes inessential again
by danger€£5; — {thirst} now becomes a weakly immediate activation set for (A;, alarm)
and for (A,, alarm), though not a (non-weakly) immediate one.

Corollary 8.16 (,ﬁc_pl and Scp2 are incomparable)
There are a specification (IT5 15, IIS s, Ag1s) (without any negative literals) and arguments
(A1, L1), (As,Ls), (As, Lo), suchthat (Ai,Li) Soer (As Ls) Scee (Az, Lo)

_ and (A1, L) Zeopz (As,Ls) ZLorr (A, La),
ie. Soe1 € Soee € Scrr

Nevertheless, Example8.15 suggests that only some unimportant details make <cpy
and <cp» incomparable to each other, but that the most specific minimal arguments seem
to remain most specific and so nothing essential seems to change.

So we may ask ourselves: What changes occur in our previous examples when we switch
from CP1 to CP2?7 Do any of the relations stated for CP1 change for CFE?/]

m to the latter question is: No! _T_

We would like to ask the reader to check this carefully.
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Proof of Lemma 8.19
Let (A, L) be a minimal argument. :

In case of L €%y, there is exactly one minimal activation set for (A, L), namely the
empty set @), and this an immediate activation set (choose ¢ := ) in Definition8.7). More-
over, because (A, L) is a minimal argument, we have A=, and then €=0. So we get our
unique minimal activation set () indeed in the claimed form of ENITF\II® = PNITF\IIC = 0.

It now remains to consider the case of L € 2. Because (\A, L) is an argument, there is
an and-tree for the derivation of IIF UAUTIC - {L}. As every and-tree is finite, there is
a finite activation set H' C IIF for (A, L). Then there must be a minimal activation set H
for (A, L) with H C H. Then we have H C II'\II®. Then there is an and-tree T for the
. derivation of HUAUIIC - {L} (which is actually unique, but this does not matter here).
Uaw | Let © be the set of all conclusions of all rules in A. Let ©' be the set of all literals in A (i.e.
rules with empty conditions). Then © C ®. Because (A, L) is a minimal argument, we
know that ®N%z =0 and that every rule from A is applied in 7. Thus, because of L & £
and because all rules in 11 are just literals, the set of the labels of the leaves of T is exactly
(EN&5)UD'. Because T is an and-tree for the derivation of HUAUII® - {L}, because
W ANZE CONTy CDNITy =0, and because all rules in T1¢ are just literals, we have
Upnle €Nz € (HUAUTI®)N%; = HUBUII® = HUIS %46 =116 and §; = OF UIIC

Because H is a minimal activation set for (A, L), H must be a subset of the leaves of T
‘not in ®: H C £NTy. Because of our previous result of H C IIF\II® we now get by
W4, two subset properties H C §N &y NIF\II® C (HUIIS)NIF\[I® = HU( = H, ie.
;ﬂ,uf,{g H = gngNIF\IC = N (ITF U TI¢) NITF\II® = ENIIF\IIC®. Choosing ¢ := {L} in item1
and a proof tree consisting only of a root in item 2 of Definition 8.7, we see that H is actually
an immediate activation set for (A, L); in particular we have L € £y and the property re-
quired in the last line of item 1 of Definition8.7: (€NTH)UD C HUT;UA. Finally,
KH is a minimal immediate activation set by Corollary 8.8(5). Q.e.d. (Lemma 8.19)

=
=
5

The second trivial form of classification is to take all rules without conditions to be defea-
sible. It is not a good idea for comparing arguments w.r.t. specificity, however:

Corollary 8.20 Assume that II¥ =0 and that II® contains only rules with non-empty
conditions. Then we have Tz=0. Moreover, for every argument, there is exactly one
[immediate] activation set H with H C Ty, namely H =0. Furthermore, all arguments
are equivalent w.r.t. =cp1 and ~cps.

Finally, note that the computation of simplified activation sets that are a subset of Tz
— as required for P1, P2, P3 instead of CP1, CP2 — is not simplified for the special cases
of this section, contrary to the computation of [immediate| activation sets that are subsets
of @ﬂ.



a0

procedure immediate-activation-sets(L):
(* L must be a literal *)
if L &%y then (call immediate-activation-sets-helper({(L, 2)},0,0,0, L)).

procedure immediate-activation-sets-helper(T, O, H, A, I):

(* T is the current goal. T' must be a set of pairs (L, B) of a literal L ¢ 4 and
a bit B € {1, 2} referring to the two items of Definition 8.7,
such that B=1 indicates that L labels a defeasible part *)

(* O is a set of literals that indicate that our algorithm may have missed
to enumerate a most general immediate activation set in case of O N Zy # 0
because the and-tree has already been properly expanded at their nodes
(which occur in a defeasible part!) *)

(* H is an accumulator for the immediate activation set,

H must always be a set of literals L € £ from the fringes of defeasible parts *)

(* A is an accumulator for the first element of the argument *)

(* I is the possibly instantiated input literal and second element of the argument *)
if =0 then (output "H is immediate activation set for (A4,I)" and exit);
pick some (L, B) from T; T :=T \ {(L, B)};
for each rule (L'<=L{A...AL!) €e IUA do
for some £ that maps all variables in L'<=LjA ... AL} to fresh variables do
if L and L' have the most general unifier o then |

I' :=Io; if I' € ¥y then (output "Instance I' € 5" and exit);
O’ == Oo; if O'NZy # 0 then (output "breach" and exit);
T = { (L”"O', Bm) I (ererm) eT A Lﬂ,fo.esﬁ };
H:=HoU{L" | (L",1)eT A L"o€Zy; };
A = Ao
if Lo € ¥ then (if B=1 then (H' := H' U {Loc}))
else (
Biw=8 -
if (L'<=LiA...ALL) &1l then ( -
(* The applied rule is necessarily a defeasible one! *)
A=A V{(/<LIN.. AL}
B :=1);
i=T"U{ (Le, B | i€fl,....,n} Ao &85 }
if B'=1 A n>1 then (
(* B'=1 means that we are in a defeasible part now,
and so we have to accumulate our activation set! *)
(* n>1 means that we have to expand the and-tree properly
under the crucial assumption that Lo & £j. *)
H =HU{Ls| i€e{l,...,n} A LléceZs };
O =0'U{Le}));
O':={L"eO' | L"” is not ground };
call immediate-activation-sets-helper(T”, O', H', A, I')].

Figure 2: Sketch of immediate-activation-sets and immediate-activation-sets-helper

f |
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one, namely flies(z)«bird(z) from Az3. We can take £ and o as the identity and {z—y},
respectively. The program variable B’ will be set to 1, and the tail-recursive call will have
the argument tuple
( {(bird(y),1)}, {flies(y)}, @, {flies(y)bird(y)}, flies(y) ).

Again the only rule whose conclusion is unifiable with the only goal literal is a defeasible
one, namely bird(z)«emu(z) from As3. We can again take £ and o as the identity
and {z+—y}, respectively. The program variable B’ will be set to 1, and the tail-recursive
call will have the argument tuple

( {(emu(y),1)}, {flies(y),bird(y)}, O, {flies(y)«Dbird(y),bird(y)—emu(y)}, flies(y) ).
Now the only rule whose conclusion is unifiable with the only goal literal is a fact, namely
emu(edna) from ITI§,. We can take £ and o as the identity and {y~—edna}, respectively.
The program variable B’ will be set to 1, and the tail-recursive call will have the argument
tuple

(0, 0, {emu(edna)}, {flies(edna)«Dbird(edna), bird(edna)«emu(edna)}, flies(edna) ).

This call immediately terminates by outputting the immediate activation set {emu(edna)}
for the argument ( {flies(edna)«—bird(edna), bird(edna)«—emu(edna)}, flies(edna) ). As all
calls are terminated now and there was no output "breach", this means that we have
enumerated all immediate activation sets for all instances of the input literal.

Example 8.25 (continuing Example 3.2 of §3)
Let us now come to Example 3.2 of §3. We start with the same input as for Example 8.24
above, and there is no change up to the call with argument tuple
_ ( {(bird(y), 1)}, {flies(y)}, @, {flies(y)«bird(y)}, flies(y) ),

and the only difference before the next call is that the applied rule is a strict one and is not
recorded in the program variable A’. Thus, we get a call with the argument tuple

( {(emu(y), 1)}, {flies(y),bird(y)}, 0, {flies(y)«bird(y)}, flies(y) ).

There is still no essential change, except that the test for "breach" becomes positive:
We again have Oo = {flies(edna), bird(edna)}, but now we have bird(edna) € £, and our
procedure outputs "breach". Indeed, it missed to enumerate the immediate activation
set {bird(edna)} for the argument ({flies(edna)«bird(edna)}, flies(edna)), simply because the
instantiation came too late to stop us from proper expansion of the and-tree.

Remark 8.26 (Closer Matching of Activation Sets to SLD-Resolution

Results in Inappropriate Semantics)
The obvious idea to avoid the possibility that the procedure of Figure2 may output
"breach" and miss some maximally general, immediate activation sets is the following.

Just like we obtained CP2 from CP1, it is possible to obtain a notion CP3 from CP2 by
a minor modification of immediate activation sets, resulting in, say, SLD activation sets,
such that the SLD-like computation of Figure2 enumerates all maximally general, SLD
activation sets.

We do not see a chance to satisfy the crucial requirement of such a modification, however,
namely that it does not affect any of our previous examples. If we look at the application of
the procedure of Figure 2 to the specification of Example 3.2 as described in Example 8.25,
then we see that all SLD activation sets remaining in Example 3.2 could be {emu(edna)},
such that the arguments (A;, —flies(edna)) and (A, flies(edna)) would become equivalently
specific w.r.t. the specification of Example 3.2, which seems to be absurd.
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Remark 8.27 (Specificity Relation on Arguments Extended with an And-Tree)
A straightforward idea to improve tractability is to attach an and-tree to each argument
and to compute a unique®® immediate activation set for each argument as follows:

Starting from the root, we traverse the tree, remembering whether we have passed
an application of the instance of a defeasible rule, and stop traversing at the first node
labeled with an element of the finite set p, outputting its literal as part of the single
tree-immediate activation set, provided that we have passed an application of the instance
of a defeasible rule.

The problem we see here, however, is that such a fixed and-tree does not make much
- sense for the second argument of our relation Scps, simply because we should not let an
inappropriately chosen and-tree for the second argument produce a failure of the property of
being more specific. This means that we need an existential quantification over the and-tree
of the second argument. If we were able to find a way to handle this quantification, the
same technique would probably admit us to handle a universal quantification over the and-
tree of the first argument, which brings us back to our original relation Scp2 on arguments
without and-trees.

So this restriction to concrete and-trees does not seem to help. We will now show that
we do not need it either. '

procedure ground-immediate-activation-sets-helper(T, H, A):
(* T is the current goal. T must be a set of pairs (L, B) of a literal L ¢ £, and
a bit B € {1, 2} referring to the two items of Definition 8.7,
such that B =1 indicates that L labels a defeasible part *)
(* H is an accumulator for the immediate activation set,
H must always be a set of literals L € i from the fringes of defeasible parts *)
(* A is an accumulator for the first element of the argument *)
(* note that the input literal I is invariant now; no input, no output *)
if T'=0 then (output (H, A) and exit);
pick some (L, B) from T; T :=T\ {(Z,B)};
(* We do not have to test rules from II§ because of L& %n,. *)
for each rule (L'<LYA...AL") € I U Ag do ‘
if L =L’ then |
H! = H: Alv=4: B =8B
if (L'<LYA...AL") ¢ TIG then (
(* The applied rule is now necessarily a defeasible one. *)
A=A U{L<LiN.. .ALD};

B':=1); |
Te=TUY (1L, BY) | te{l,. .0} AL &8 §:
if B'=1 then ( '

(* B'=1 means that we are in a defeasible part now,
and so we have to accumulate our activation set! *)
H=HU{L!| ie{l,....n} A LIeZn, });
call ground-immediate-activation-sets-helper(7”, H', A’)].

Figure 3: Sketch of procedure ground-immediate-activation-sets-helper

528ee, however, Example 8.18 in §8.3.1.
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9 Conclusion W, Lol M%W}a

We would need further discussions on our surprising new ﬁndings‘l — after all, defeasible
reasoning with POOLE’s notion of specificity is being applied now for over a quarter of
century, and it was not to be expected that our investigations could shake an element of
the field to the very foundations.

One remedy for the discovered lack of transitivity of <ps could be to consider the
transitive closure of the non-transitive relation <pz. This could be an advantage only
under the condition that the transitive closure of <ps is a subset of Scpi, i.e. only under
the condition of Theorem6.16. Moreover, this transitive closure will still have all the
intuitive shortcomings made obvious in § 7. Furthermore, we do not see how this transitive
closure could be decided efficiently. Finally, the transitive closure lacks a direct intuitive
motivation, and after the first extension step from <pj to its transitive closure, we had
better take the second extension step to the more intuitive Scp1 immediately.

Contrary to the transitive closure of <ps, our novel relations Scp1 and Scpe also solve
the problem of non-monotonicity of specificity w.r.t. conjunction (cf. §7.1), which was
already realized as a problem of <p; by [POOLE, 1985] (cf. Example 7.1).

The present means to decide our novel specificity relation Scp1, however, show several
improvements® and a few setbacks®® compared to the known ones for POOLE’s relation.
Further work is needed to improve efficiency.

By a minor restriction of activations sets, resulting in immediate activations sets, we have-
come in §8.3 to the quasi-ordering Scp2, which does not show any difference compared
to Scgp1 in any of our examples except Example8.15, which was constructed to show the
difference. The new specificity ordering Scp2 has advantages w.r.t. intuition and effi-
ciency. The latter advantage, however, requires decidability of £; (in addition to the
always given semi-decidability). To concretize the problems of computing activation sets
by SLD-resolution we have sketched a procedure that may indicate "breach" if it may
have missed some output in §8.3.3. Then, in §8.3.4, we have shown how to obtain de-
cidability of £ by restriction to a finite set of instances that are then treated as if they
were ground. Without such a restriction we do not know how to decide any of the rela-
tions <p1, Sp2, Ses, Scpi1, Scpe; and we hope that we can find a procedure for generating
the finite set of rule instances such that the effect of this restriction can be neglected
in practice.

If we look beyond the very subject of this paper, we see that an important part of
the application context consists of numerous frameworks for argumentation in logic. The
overall process usually includes a dialectical process used for answering queries. Different
arguments are pro or contra a certain answer. By means of an attack relation conflicts
between contradicting arguments can be determined in abstract argumentation frameworks,
such as [DUNG, 1995 PRAKKEN & VREESWIIK, 2002}~[MoODGIL & PRAKKEN, 2014].
A concrete specificity or similar relation helps then to decide among conflicting arguments.
As the discussion in this paper demonstrates, it is not that easy, however, to find an
effective concrete specificity relation. One of the main problems is that such relations are
often computationally highly complex (such as in [KERN-ISBERNER & THIMM, 2012]).

54Gee §§ 8.1, 8.2.1, 8.3.2, 8.3.3, and 8.3.4 for the improvements.
55Gee §§ 8.2.3 and 8.3.3 for the setbacks.
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we presented good intuitive reasons for the failure of the preference of Example 3.3 in Ex-
ample 6.20 of §6.6 (cf. also the pointers to further reasons in Note 32 to Example 6.20).

It is just too early for a further conclusion, and the further implications of the contri-
butions of this paper and the technical details of the operationalization of our correction of
POOLE’s specificity will have to be discussed in future work.
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