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Abstract

In the middle of the 1980s, David Poole introduced a seman-
tical, model-theoretic notion of specificity to the artificial-
intelligence community. Since then it has found further appli-
cations in non-monotonic reasoning, in particular in defeasi-
ble reasoning. Poole’s notion, however, turns out to be intri-
cate and problematic, which — as we show — can be over-
come to some extent by a closer approximation of the intu-
itive human concept of specificity. Besides the intuitive ad-
vantages of our novel specificity ordering over Poole’s speci-
ficity relation in the classical examples of the literature, we
also report some hard mathematical facts: Contrary to what
was claimed before, we show that Poole’s relation is not tran-
sitive. Our new notion of specificity is transitive and also
monotonic w.r.t. conjunction.

Keywords: specificity, defeasible reasoning, argumentation.

1 Introduction

A possible explanation of how humans manage to inter-
act with reality — in spite of the fact that their informa-
tion on the world is partial and inconsistent — mainly con-
sists of the following two points: Humans use a certain
amount of rules for default reasoning and are aware that
some arguments relying on these rules may be defeasible.
In case of the frequent conflicting or even contradictory re-
sults of their reasoning, they prefer more specific arguments
to less specific ones. An intuitive concept of specificity
plays an essential rôle in this explanation, which seems to be
highly successful in practice. On the long way approaching
this proven intuitive human concept of specificity, the first
milestone marks the development of a semantical, model-
theoretic notion of specificity having passed first tests of its
usefulness and empirical validity. Indeed, at least as the first
step, a semantical, model-theoretic notion will probably of-
fer a broader and better basis for applications in systems
for common sense reasoning than notions of specificity that
depend on peculiarities of special calculi or even on extra-
logical procedures. This holds in particular if the results of
these systems are to be accepted by humans.
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David Poole (1985) has sketched such a notion as a bi-
nary relation on arguments and evaluated its intuitive valid-
ity with some examples. Poole’s notion of specificity was
given a more appropriate formalization in (Simari and Loui
1992). The properties of this formalization were examined
in detail in (Stolzenburg et al. 2003).

In this paper, before we give a specification of the for-
mal requirements on any reasonably conceivable relation of
specificity in Sect. 4, we present a detailed analysis of the in-
tentional motivation of our intuition that Poole’s specificity
is a first step on the right way (Sect. 3). Moreover, in Sect. 5,
we clearly disambiguate Poole’s specificity from slightly
improved versions such as the one in (Simari and Loui
1992), and introduce a novel specificity relation (.CP1),
which presents a major correction of Poole’s specificity be-
cause it removes a crucial shortcoming of Poole’s origi-
nal relation (.P1) and its slight improvements (.P2, .P3),
namely their lack of transitivity. Finally, in Sect. 6, we
present several examples that will convince every carefully
contemplating reader of the superiority of our novel speci-
ficity relation .CP1 w.r.t. human intuition, including mono-
tonicity w.r.t. conjunction. We briefly discuss related works
in Sect. 7, and conclude with Sect. 8.

2 Basic Notions and Notation

Let us narrow the general logical setting of specificity down
to the concrete framework of defeasible logic with the re-
strictions of logic programming, as found e.g. in (Stolzen-
burg et al. 2003; Chesñevar et al. 2003).

A literal is an atom, possibly prefixed with the sym-
bol “¬” for negation. A rule is a literal, but possibly suffixed
with a reverse implication symbol “⇐” that is followed by
a conjunction of literals, consisting of one literal at least.
Let Π be a set of rules. The theory of Π is the set TΠ in-
ductively defined to contain all instances of literals from Π
and all literals L for which there is a conjunction C of lit-
erals from TΠ such that L ⇐ C is an instance of a rule
in Π. For L ⊆ TΠ , we also say that Π derives L, and write
Π ⊢ L. Π is contradictory if there is an atom A such that
Π ⊢ {A,¬A}; otherwise Π is non-contradictory.
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Throughout this paper, we will assume a set of literals and
two sets of rules to be given: A set ΠF of literals meant to
describe the Facts of the concrete situation under considera-
tion, a set ΠG of General rules meant to hold in all possible
worlds, and a set ∆ of defeasible (or default) rules meant to
hold in most situations. The set Π := ΠF ∪ ΠG is the set
of strict rules that — contrary to the defeasible rules — are
considered to be safe and are not doubted in any concrete
situation. There is no difference in derivations between the
strict rules from Π and the defeasible rules from ∆. If a
contradiction occurs, however, we will narrow the defeasi-
ble rules from ∆ down to a subsetA of its ground instances,
i.e. instances without free variables, such that no further in-
stantiation can occur. Such a subset, together with the literal
whose derivation is in focus, is called an argument. With
implicit reference to the fixed sets of rules Π and ∆, we for-
mally define:

Definition 2.1 (Argument)
(A, L) is an argument if A is a set of ground instances of
rules from ∆ and A ∪Π ⊢ {L}.

For ease of distinction, we will use the special symbol “←”
as a syntactical sugar in concrete examples of defeasible
rules from ∆, instead of the symbol “⇐”, which — in our
concrete examples — will be used only in strict rules.

Example 2.2 (Poole 1985, Example 1)
ΠF

2.2 := { bird(tweety), emu(edna) } ,

ΠG
2.2 :=

{

bird(x)⇐ emu(x),
¬flies(x)⇐ emu(x)

}

,

∆2.2 := { flies(x)← bird(x) } ,
A2 := { flies(edna)← bird(edna) } .
We have TΠ2.2

={bird(tweety), emu(edna), bird(edna),
¬flies(edna)}, TΠ2.2∪∆2.2

={flies(edna), flies(tweety)}
∪TΠ2.2

. It is intuitively clear here that we prefer the argu-
ment (∅,¬flies(edna)) to the argument (A2, flies(edna)),
simply because the former is more specific. We will further
discuss this in Example 5.17.

We will use several binary relations comparing arguments
according to their specificity. For any relation written
as .N (“being more or equivalently specific w.r.t. N”), we
set

(

“less or equiva-
lently specific”

)

,&N := { (X,Y ) | Y .N X }

≈N := .N ∩&N (“equivalently specific”),
<N := .N \&N (“properly more specific”),
≤N := <N ∪ { (X,X) | X is an argument }

(“more specific or equal”),

△N :=

{

(X,Y )
X,Y are arguments with
X 6.N Y and X 6&N Y

}

(“incomparable w.r.t. specificity”).
A quasi-ordering is a reflexive transitive relation. An
(irreflexive) ordering is an irreflexive transitive relation. A
reflexive ordering (also called: “partial ordering”) is an anti-
symmetric quasi-ordering. An equivalence is a symmetric
quasi-ordering.

Corollary 2.3
If .N is a quasi-ordering, then ≈N is an equivalence, <N

is an ordering, and ≤N is a reflexive ordering.

3 An Intuitive Notion of Specificity

It is part of general knowledge that a criterion is [properly]
more specific than another one if the class of candidates
that satisfy it is a [proper] subclass of that of the other one.
Analogously — taking logical formulas as the criteria —
a formula A is [properly] more specific than a formula B,
if the model class of A is a [proper] subclass of the model
class of B, i.e. if A |= B [and B 6|=A].

To enable a closer investigation of the critical parts of a
defeasible derivation, we have to isolate its defeasible parts.
Abstracting from the concrete derivation of a literal L, let
us take the set A of the ground instances of the defeasible
rules that are actually applied in the derivation, and form the
pair (A, L), which we already called an argument in Defini-
tion 2.1.

If we want to classify a derivation with defeasible rules
according to its specificity, then we have to isolate the de-
feasible part of the derivation and look at its input. In our
setting, the input consists of the set of those literals on which
the defeasible part of the derivation is based, called the ac-
tivation set for the defeasible part of the derivation. In our
framework of defeasible logic programming, the only rele-
vant property of an activation set can be the conjunction of
its literals which is immediately represented by the set itself.

Because all literals of an activation set have been derived
from the given specification, it does not make sense to com-
pare activation sets w.r.t. the models of the entire specifi-
cation. Indeed, only a comparison w.r.t. the models of a
sub-specification can show any differences between them.

It is clear that we want to have the entire set ΠG for
our comparison of activation sets, simply because we want
to base our specificity classification on our specification,
namely on its general and strict part. We have to exclude ΠF

from this comparison, however. This exclusion makes sense
because the defeasible rules are typically default rules not
written in particular for the given concrete situation that is
formalized by ΠF, and because the inclusion of ΠF would
trivially admit every activation set. Moreover, as we want to
compare the defeasible parts of derivations, we should ex-
clude the defeasible rules from ∆ from this comparison. We
conclude that ΠG is that part of our specification according
to which activation sets are to be compared.

Very roughly speaking, if we have fewer activation sets,
then we have fewer models, which again means to have a
higher specificity. Accordingly, a first sketch of a notion of
specificity can now be given as follows:

An argument (A1, L1) is [properly] more specific than
an argument (A2, L2) if, for each activation set H1

for (A1, L1), there is an activation set H2 ⊆ TH1∪ΠG

for (A2, L2) [but not vice versa].

Note that this notion of specificity is preliminary, and that
the notion of an activation set for argument has not been
properly defined yet.
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On the one hand, the argument (A, L) is a nice abstrac-
tion from the derivation of L, because it perfectly suits our
model-theoretic intentions described in Sect. 1. By this ab-
straction, on the other hand, we lose the possibility to isolate
the defeasible parts of the derivation more precisely.

Let us compare this set A with an and-tree of the deriva-
tion. Every node in such a tree is labeled with the conclusion
of an instance of a rule, such that its children are labeled ex-
actly with the elements of the conjunction in the condition
of this instance.

An isolation of the defeasible parts of an and-tree of the
derivation may proceed as follows:

• Starting from the root of the tree, we iteratively erase all
applications of strict rules. This results in a set of trees,
each of which has the application of a defeasible rule at
the root.

• Starting now from the leaves of these trees, we again erase
all applications of strict rules. This results in a set of trees
where all nodes all of whose children are leaves result
from an application of a defeasible rule.

In a first approximation, we may now take all leaves of all
resulting trees as the activation set for the original derivation.

Note that in the set of trees resulting from the described
procedure, there may well have remained instances of
rules from ΠG connecting a defeasible root application
with the defeasible applications right at the leaves. Thus
— to cover the whole defeasible part of the derivation in
our abstraction — we have to consider the set A ∪ ΠG

instead of just the set A.

More precisely, we have to include all proper rules (i.e.
those with non-empty conditions) from ΠG, and may also
include the literals in ΠG because they cannot do any harm.
As a consequence, in the modeling via our abstraction A,
we cannot prevent the precisely isolated defeasible sub-trees
resulting from the described procedure from using the rules
from ΠG to grow toward the root and toward the leaves
again. It is clear, however, that only the growth toward the
leaves can affect our activation sets and our notion of speci-
ficity.

Let us have a closer look at the effects of such a growth
toward the leaves in the most simple case. In addition to
a given activation set {Q(a)}, in the presence of a general
rule

Q(x)⇐ P0(x)∧ · · · ∧Pn−1(x)
from ΠG, we will also have to consider the activation
set { Pi(a) | i∈{0, . . . , n−1} }. This has two effects.

The first effect is that we immediately realize that
every model of ΠG that is represented by the activation
set { Pi(a) | i∈{0, . . . , n−1} } is also represented by
the activation set {Q(a)}; simply because { Pi(a) |
i∈{0, . . . , n−1} } is added to the activation sets by the
growth toward the leaves, such that an argument based
on {Q(a)} becomes obviously less (or equivalently)
specific than any argument that gets along with
{ Pi(a) | i∈{0, . . . , n−1} }.

3.1 Preference of the “More Concise”

The second effect is that an argument that gets along
with {Q(a)} becomes even properly less specific than one
that actually requires { Pi(a) | i∈{0, . . . , n−1} } and does
not get along with {Q(a)}, simply because the former argu-
ment has the additional activation set {Q(a)}. This effect is
called preference of the “more concise”, cf. e.g. (Stolzen-
burg et al. 2003, p. 94), (Garcı́a and Simari 2004, p. 108).
The standard example for the preference of the “more con-
cise” is the following minor variation of Example 2.2.

Example 3.1 (Poole 1985, Example 2)
ΠF

3.1 := ΠF
2.2 ΠG

3.1 := { bird(x)⇐ emu(x) } ,

∆3.1 :=

{

¬flies(x)← emu(x),
flies(x)← bird(x)

}

,

A1 := { ¬flies(edna)← emu(edna) } ,
A2 := { flies(edna)← bird(edna) } .
The argument (A2, flies(edna)) gets along with the acti-
vation set {bird(edna)}, and thus it is properly less spe-
cific than the argument (A1,¬flies(edna)), which actually
requires the stronger {emu(edna)}.

The problem now is that the statement
Q(a) 6|= P0(a)∧ · · · ∧Pn−1(a),

which is required to justify the the appropriateness of
this effect, is not explicitly given by the specification
via (ΠF,ΠG,∆).

Nevertheless — if we do not just want to see it as a
matter-of-fact property of notions of specificity in the style
of Poole — the preference of the “more concise” can be
justified by the habits of human specifiers as follows: If
human specifiers write an implication in form of a rule
Q(x) ⇐ P0(x)∧ · · · ∧Pn−1(x) into a specification Π of
strict (i.e. non-defeasible) knowledge, then they typically in-
tend that the implication is proper in the sense that its con-
verse does not hold in general; otherwise they would have
used an equivalence or equality symbol instead of the im-
plication symbol, or replaced each occurrence of each Q(t)
with P0(t)∧ · · · ∧Pn−1(t), respectively. In particular, in
our setting of logic programming — where disjunctive prop-
erties of the definition of a predicate are spread over several
rules — the implications definitely tend to be proper. There-
fore, if seasoned specifiers write down such a rule, then they
do not want to exclude models where Q holds for some
object a, but not all of the Pi do. This means that if we find
such a rule in the strict and general part ΠG of a specifi-
cation, then it is reasonable to assume that the implication
is proper w.r.t. the intuition captured in the defeasible rules
in ∆.

Thus, it makes sense to consider a defeasible argument
based on {Pi(a) | i∈{0, . . . , n−1}} to be properly more
specific than an argument that can get along with Q(a).

Finally, let us remark that our justification for the prefer-
ence of the “more concise” does not apply if

Q(x)⇐ P0(x)∧ · · · ∧Pn−1(x)
is a defeasible rule instead of a strict one, because we then
have the following three problems:
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• the inclusion given by the rule is not generally intended
(otherwise the rule should be a strict one),

• we cannot easily describe the actual instances to which the
default rule is meant to apply (otherwise this more con-
crete description of the defeasible rule should be stated as
a strict rule), and

• the direct treatment of a defeasible equivalence neither
has to be appropriate as a default rule in the given situ-
ation, nor do we have any means to express a defeasible
equivalence in the current setting.

Example 3.2 (Poole 1985, Example 3, renamed)
ΠF

3.2 := { emu(edna) } , ΠG
3.2 := ∅,

∆3.2 :=

{

¬flies(x)← emu(x),
flies(x)← bird(x),
bird(x)← emu(x)

}

,

A1 := { ¬flies(edna)← emu(edna) } ,

A2 :=

{

flies(edna)← bird(edna),
bird(edna)← emu(edna)

}

.

According to the above discussion, there is no
clear reason why we should consider the argument
(A2, flies(edna)) to be properly less specific than the
argument (A1,¬flies(edna)).

3.2 Preference of the “More Precise”

By an analogous argumentation, we can say that an argu-
ment that essentially requires an activation set { Pi(a) |
i∈{0, . . . , n} } is properly more specific than an argument
that gets along with a proper subset { Pi(a) | i∈ I } for
some index set I ( {0, . . . , n}. The effect of the assump-
tion of this intention is called preference of the “more pre-
cise”.

There is, however, an exception to be observed where this
analogy does not apply, namely the case that we actually can
derive the set from its subset with the help of ΠG. In this
case, the before-mentioned growth toward the leaves with
rules from ΠG again implements the approximation of the
subclass relation among model classes via the one among
activation sets. This is demonstrated in the following ex-
ample, which also nicely shows that a notion of specificity
based only on single defeasible rules (without considering
the context of the strict rules as a whole) cannot be intu-
itively adequate.

Example 3.3 (Stolzenburg et al. 2003, p. 95)
ΠF

3.3 := { q(a) } , ΠG
3.3 := { s(x)⇐ q(x) } ,

∆3.3 :=

{

p(x)← q(x),
¬p(x)← q(x)∧s(x)

}

,

A1 := { ¬p(a)← q(a)∧s(a) } ,
A2 := { p(a)← q(a) }
The arguments (A1,¬p(a)) and (A2, p(a)) are equivalently
specific because the minimal activation set of each of them
is {q(a)}.

Apart from this exception, however, there is again a prob-
lem, namely that it is not the case that

∧

i∈I Pi(a) 6|=
∧

i∈{0,...,n} Pi(a)

would be explicitly given by the specification via
(ΠF,ΠG,∆).

Nevertheless — if we do not just want to see preference of
the “more precise” as a matter-of-fact property of notions of
specificity in the style of Poole — we can again justify that
it is unlikely that a seasoned specifier would not have in-
tended this non-consequence statement, namely by an argu-
mentation analogous to the one we gave for the preference of
the “more concise”. Indeed, a seasoned specifier who wants
to exclude the above non-consequence would just specify a
rule like Pj(x)⇐

∧

i∈I Pi(x), for each j ∈{0, . . . , n}\I .

Example 3.4 (continuing Example 3.3)
For an example of preference of the “more precise” let us
modify Example 3.3 by setting ΠF

3.3 := {q(a), s(a)} and
ΠG

3.3 := ∅. Then (A1,¬p(a)) becomes properly more spe-
cific than (A2, p(a)), because the latter argument has the
additional activation set {q(a)}.

4 Requirements Specification

With implicit reference to specification via (ΠF,ΠG,∆),
let us designate Poole’s relation of being more (or equiva-
lently) specific by “.P1”. Here, “P1” stands for “Poole’s
original version”.

The standard usage of the symbol “.” is to denote a
quasi-ordering (cf. Sect. 2). Instead of the symbol “.”,
however, Poole (1985) uses the symbol “≤”. The standard
usage of the symbol “≤” is to denote a reflexive ordering
(cf. Sect. 2). We cannot conclude from this, however, that
Poole intended the additional property of anti-symmetry;
indeed, we find a concrete example specification in (Poole
1985) where the lack of anti-symmetry of .P1 is made ex-
plicit (see last three sentences of Sect. 3.2 in (Poole 1985,
p.145)).

The possible lack of anti-symmetry of quasi-orderings
— i.e. that different arguments may have an equivalent
specificity — cannot be a problem because any quasi-
ordering .N immediately provides us with its equi-
valence≈N , its ordering <N , and its reflexive ordering≤N

(cf. Corollary 2.3).

By contrast to the non-intended anti-symmetry, transi-
tivity is obviously a conditio sine qua non for any useful
notion of specificity. Indeed, if we already have an argu-
ment (A2,wine) that is more specific than another argu-
ment (A3, vodka), and if we come up with yet another argu-
ment (A1, beer) that is even more specific than (A2,wine),
then, by all means, (A1, beer) should be more specific than
the argument (A3, vodka) as well. It is obvious that a notion
of specificity without transitivity could hardly be helpful in
practice.

A further conditio sine qua non for any useful notion of
specificity is that the conjunctive combination of respec-
tively more specific arguments results in a more specific
argument. Indeed, if a square is more specific than a rect-
angle and a circle is more specific than an ellipse, then a
square inscribed into a circle should be more specific than
a rectangle inscribed into an ellipse. This property is called
monotonicity of conjunction, which we discuss in Sect. 6.2.
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5 Formalizations of Specificity

A generative, bottom-up (i.e. from the leaves to the root)
derivation with defeasible rules can now be split into three
phases of derivation of literals from literals. This splitting
follows the discussion in Sect. 3 on how to isolate the de-
feasible parts of a derivation (phase 2) from strict parts that
may occur toward the root (phase 3) and toward the leaves
(phase 1):

(phase 1) First we derive the literals that provide the basis
for specificity considerations.

In our approach we derive the set TΠ here. Poole takes
the set TΠ∪∆ instead.

(phase 2) On the basis of

• a subset H of the literals derived in phase 1,

• the first item A of a given argument (A, L), and

• the general rules ΠG,

we derive a further set of literals L: H∪A∪ΠG⊢L.

(phase 3) Finally, on the basis of L, the literal of the argu-
ment is derived: L ∪Π ⊢ {L}.

In Poole’s approach, phase 3 is empty and we simply have
L= {L}. In our approach, however, it is admitted to use
the facts from ΠF in phase 3, in addition to the general
rules from ΠG, which were already admitted in phase 2.

With implicit reference to our sets Π = ΠF ∪ ΠG and ∆,
the phases 2 and 3 can be more easily expressed with the
help of the following notions.

Definition 5.1 (Activation Set)
Let A be a set of ground instances of rules from ∆, and let
L be a literal. H is a simplified activation set for (A, L)
if L ∈ TH ∪A∪ΠG . H is an activation set for (A, L) if
L ∈ TL∪Π for some L ⊆ TH ∪A∪ΠG . H is a minimal
[simplified] activation set for (A, L) if H is an [simplified]
activation set for (A, L), but no proper subset of H is an
[simplified] activation set for (A, L).

Roughly speaking, an argument is now more (or equiva-
lently) specific than another one if, for each of its activa-
tion sets H1, the same set H1 is also an activation set for
the other argument. Note that we have replaced here the
option of some H2 ⊆ TH1∪ΠG of the first straightforward
sketch for a notion of specificity displayed in Sect. 3 with
the more restrictive H2 =H1. Indeed, this simplification
applies here because all we consider from any activation
set H in Definition 5.1 (such as H2 in this case) is just the
closure TH ∪A∪ΠG = TT

H∪ΠG ∪A∪ΠG .
Activation sets that are not simplified differ from simpli-

fied ones by the admission of facts from ΠF (in addition to
the general rules ΠG) after the defeasible part of the deriva-
tion is completed (cf. Example 6.6 for an occurrence of this
difference).

Our introduction of activation sets that are not simplified
is a conceptually important correction of Poole’s approach:
It must be admitted to use the facts besides the general rules
in a purely strict derivation that is based on literals resulting
from completed defeasible arguments, simply because the
defeasible parts of a derivation (cf. Sect. 3) should not get

more specific by the later use of additional facts that do not
provide input to the defeasible parts.

5.1 Poole’s Specificity Relations P1, P2, P3

In this section we will define the binary relations .P1,
.P2, .P3 of “being more or equivalently specific
according to David Poole” with implicit reference to
our sets of facts and of general and defeasible rules
(i.e. to ΠF, ΠG, and ∆, respectively).

The relation .P1 of the following definition is precisely
Poole’s original relation ≥ as defined at the bottom of the
left column on page 145 of (Poole 1985). See Sect. 4 for
our reasons to write “&” instead of “≥” as a first change.
Moreover, as a second change required by mathematical
standards, we have replaced the symbol “&” with the sym-
bol “.” (such that the smaller argument becomes the more
specific one), so that the relevant well-foundedness be-
comes the one of its ordering < instead of the reverse >.

Definition 5.2 (A1, L1) .P1 (A2, L2) if (A1, L1) and
(A2, L2) are arguments, and if, for every H ⊆ TΠ∪∆ that
is a simplified activation set for (A1, L1) but not a simplified
activation set for (A2, L1), H is also a simplified activation
set for (A2, L2).

The relation .P2 of the following definition is the
relation � of Definition 10 on page 94 of (Stolzenburg
et al. 2003) (attributed to Poole 1985). Moreover, the
relation >spec of Definition 2.12 on page 132 of (Simari
and Loui 1992) (attributed to (Poole 1985) as well) is the
relation <P2 := .P2 \&P2.

Definition 5.3 (A1, L1) .P2 (A2, L2) if (A1, L1) and
(A2, L2) are arguments, and if, for every H ⊆ TΠ∪∆ that
is a simplified activation set for (A1, L1) but not a simplified
activation set for (∅, L1), H is also a simplified activation
set for (A2, L2).

The only change in Definition 5.3 as compared to Defini-
tion 5.2 is that “(A2, L1)” is replaced with “(∅, L1)”. We
did not encounter any example yet where this most appro-
priate correction of the counter-intuitive variant “(A2, L1)”
of Definition 5.2 makes any difference to today’s standard
“(∅, L1)” in Definition 5.3.

The relations .P1 and .P2 were not meant to compare
arguments for literals that do not need any defeasible rules
— or at least they do not show an intuitive behavior on such
arguments, as shown in Example 5.6 (right after the next
definition and its corollary).

To overcome this minor flaw, we finally add an implica-
tion as an additional requirement in Definition 5.4. This im-
plication guarantees that no argument that requires defeasi-
ble rules can be more specific than an argument not requiring
any defeasible rules at all.
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Definition 5.4 (A1, L1) .P3 (A2, L2) if (A1, L1) and
(A2, L2) are arguments, L2 ∈TΠ implies L1 ∈TΠ, and
if, for every H ⊆ TΠ∪∆ that is a [minimal] simpli-
fied activation set for (A1, L1) but not a simplified activa-
tion set for (∅, L1), H is also a simplified activation set
for (A2, L2).

Trivially, .P3 ⊆ .P2. As every simplified activation set
that passes the condition of Definition 5.2 passes the one of
Definition 5.3, we have:

Corollary 5.5 .P3 ⊆ .P2 ⊆ .P1.

Example 5.6 (Minor Flaw of .P1 and .P2)
ΠF

5.6 := { thirst } , ΠG
5.6 := { drink⇐ thirst } ,

∆5.6 := { beer← thirst } , A1 := ∆5.6.
Let us compare the specificity of the arguments (A1, beer)
and (∅, drink). TΠ5.6

= {thirst, drink}, TΠ5.6∪∆5.6
=

{beer} ∪ TΠ5.6
.

We have (A1, beer) .P2 (∅, drink) because for every H ⊆
TΠ5.6∪∆5.6

that is a simplified activation set for (A1, beer),
but not a simplified activation set for (∅, beer), we have
H = {thirst}, which is a simplified activation set also
for (∅, drink).
We have (∅, drink) .P2 (A1, beer) because there cannot
be a simplified activation set for (∅, drink) that is not a sim-
plified activation set for (∅, drink).
All in all, we get (A1, beer) ≈P2 (∅, drink), although
(∅, drink) <P3 (A1, beer) should be given according to in-
tuition, because, if beer produces a conflict with our drink-
ing habits, there is no reason to prefer it to another drink.
Finally note that by Corollary 5.5, we get (A1, beer) ≈P1

(∅, drink) as well.

Corollary 5.7 If (A1, L1), (A2, L2) are arguments
and we have A1⊆A2 and L1 =L2, then we have
(A1, L1) .P3 (A2, L2) .

By Corollaries 5.5 and 5.7, .P1,.P2,.P3 are reflexive re-
lations, but — as we will show in Example 5.8 and state in
Theorem 5.10 — not quasi-orderings in general.

Example 5.8 (Counterexample to Transitivities)
ΠF

5.8 := { alcohol, blessing, thirst } ,
ΠG

5.8 := { wine⇐ e } , ∆5.8 := A1 ∪ A2 ∪ A3,

A1 :=

{

e← alcohol∧blessing∧thirst,
beer← e

}

,

A2 := { wine← alcohol∧blessing } ,
A3 := { vodka← alcohol } .
Compare the arguments (A1, beer), (A2,wine), and
(A3, vodka) !

Lemma 5.9 There are a specification (ΠF,ΠG,∆) without
any negative literals (i.e. ΠF∪ΠG∪∆ is non-contradictory),
and arguments (A1, L1), (A2, L2), (A3, L3) with respective
minimal sets A1, A2, A3 (i.e. (A′

i, Li) is not an argument
for any proper subset A′

i ( Ai), such that

(A1, L1).P3(A2, L2).P3(A3, L3) 6&P1(A1, L1) and
(A1, L1) 6&P1(A2, L2) 6&P1(A3, L3).

Proof of Lemma 5.9 Looking at Example 5.8, we see that
only the quasi-ordering properties in the last two lines of
Lemma 5.9 are non-trivial.
TΠ5.8

= {alcohol, blessing, thirst}, TΠ5.8∪∆5.8
=

{e, beer,wine, vodka} ∪ TΠ5.8
. Thus, regarding the argu-

ments (A1, beer), (A2,wine), (A3, vodka), the additional
implication condition of Definition 5.4 as compared to
Definitions 5.2 and 5.3 is always satisfied, simply because
its condition is always false.
(A3, vodka) 6&P1 (A1, beer) .P3 (A2,wine) : The min-

imal simplified activation sets for (A1, beer) that are
subsets of TΠ5.8∪∆5.8

and no simplified activation sets
for (∅, beer) (or, without any difference, for (A3, beer))
are {alcohol, blessing, thirst} and {e}, which are simplified
activation sets for (A2,wine) — but {e} is no simplified
activation set for (A3, vodka).
(A1, beer) 6&P1 (A2,wine) .P3 (A3, vodka) : The only

minimal simplified activation set for (A2,wine) that is a
subset of TΠ5.8∪∆5.8

and no simplified activation set for
(∅,wine) (such as {e}) (or, without any difference, for
(A1,wine)) is {alcohol, blessing}, which is a simplified
activation set for (A3, vodka), but not for (A2, beer).
(A2,wine) 6&P1 (A3, vodka) : The only minimal simplified

activation set for (A3, vodka) that is a subset of TΠ5.8∪∆5.8

and no simplified activation set for (A2, vodka) is
{alcohol}, which is not a simplified activation set for
(A2,wine). Q.e.d. (Lemma 5.9)

The relations stated in Lemma 5.9 hold not only for the
given indices, but — by Corollary 5.5 — actually for all of
P1, P2, P3; and so we immediately get:

Theorem 5.10 There is a specification (ΠF,ΠG,∆), such
that ΠF ∪ ΠG ∪ ∆ is non-contradictory, but none of .P1,
.P2, .P3, <P1, <P2, <P3 is transitive.

Note that in the given counterexample to transitivity (Exam-
ple 5.8) all arguments have minimal sets of ground instances
of defeasible rules.

As a consequence of Theorem 5.10, the respective rela-
tions in (Simari and Loui 1992) and (Stolzenburg et al. 2003)
are not transitive. This means that these relations are not
quasi-orderings, let alone reflexive orderings. See (Wirth
and Stolzenburg 2013, Sect. 5.2) for details.

5.2 Our Novel Specificity Ordering CP1

In the previous section, we have seen that minor corrections
of Poole’s original specificity relation P1 (such as P2, P3)
do not cure the (up to our finding of Example 5.8) hid-
den and even denied formal deficiency of these relations,
namely their lack of transitivity. Therefore, in this sec-
tion, we now define our major correction of Poole’s speci-
ficity — the binary relation .CP1 — with implicit refer-
ence to our sets of facts and of general and defeasible rules
(i.e. to ΠF, ΠG, and ∆, respectively) as follows.
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Definition 5.11 (Our Version of Specificity .CP1)

(A1, L1) .CP1 (A2, L2) if (A1, L1) and (A2, L2) are ar-
guments, and we have

1. L1 ∈TΠ or
2. L2 6∈TΠ and every H ⊆ TΠ that is an [minimal] activa-

tion set for (A1, L1) is also an activation set for (A2, L2).

The crucial change in Definition 5.11 as compared to Defi-
nition 5.4 is not the merely technical emphasis it puts on the
case “L1 ∈TΠ”, which has no effect on the extension of the
relation as compared to .P3. The crucial changes actually
are

• the replacement of “H⊆TΠ∪∆” with “H⊆TΠ”, and the
thereby enabled

• omission of the previously technically required, but unin-
tuitive negative condition on derivability (“but not a sim-
plified activation set for (∅, L1)”).

An additional minor change, which we have already dis-
cussed in Sect. 5, is the one from simplified to (non-
simplified) activation sets.

Corollary 5.12 If (A1, L1), (A2, L2) are arguments
and we have A1⊆A2 and L1 =L2, then we have
(A1, L1) .CP1 (A2, L2) .

Theorem 5.13
.CP1 is a quasi-ordering on arguments.

The proof of Theorem 5.13 is straightforward and can be
found in (Wirth and Stolzenburg 2013, Sect. 5.3, Proof of
Theorem 5.13).

Example 5.14 (continuing Example 5.8)
The following holds for our specification of Example 5.8 by
Lemma 5.9 and Corollary 5.5:
(A1, beer) <P3 (A2,wine) <P3 (A3, vodka) 6&P3

(A1, beer). We have now:
(A1, beer) <CP1 (A2,wine) <CP1 (A3, vodka) >CP1

(A1, beer), simply because the trouble-making set {e} is
not to be considered: it is not a subset of TΠ5.8

!

Obviously, an argument is ranked by .CP1 firstly on
whether its literal is in TΠ, and, if not, secondly on the set
of its activation sets, which is an element of the power set of
the power set of TΠ. So we get:

Corollary 5.15
If TΠ is finite, then <CP1 is well-founded.

Theorem 5.16 .P3 ⊆ .CP1 holds if, for each instance
L⇐ L′

0∧ . . .∧L
′
n with n≥ 1 of each rule in ΠG, we have

L′
j 6∈TΠ for all j ∈ {0, . . . , n}.

Please find the lengthy proof of Theorem 5.16 in (Wirth and
Stolzenburg 2013, Sect. 5.4, Theorem 5.15). Here, however,
is a typical application of it:

Example 5.17 (continuing Example 2.2)
We have (A2, flies(edna)) 6.CP1 (∅,¬flies(edna)) because
flies(edna) 6∈TΠ2.2

and ¬flies(edna)∈TΠ2.2
.

We have (∅,¬flies(edna)) .P3 (A2, flies(edna)), because
¬flies(edna)∈TΠ2.2

and because the premise of the last
condition in Definition 5.4 is contradictory forA1 := ∅, and
cannot be satisfied by any set H ⊆ TΠ2.2∪∆2.2

. All in all,

by Theorem 5.16
we get (∅,¬flies(edna))<CP1(A2, flies(edna))

and (∅,¬flies(edna)) <P3 (A2, flies(edna)).

6 Specificity and Human Intuition

Let us now put the two notions of specificity — as formal-
ized in the two binary relations .P3 and .CP1 — to test
w.r.t. our changed phase 1 of Sect. 5 in a series of classical
examples.

6.1 Preference of the “More Concise”

Example 6.1 (continuing Example 3.1)
Let us compare the arguments (A1,¬flies(edna)) and
(A2, flies(edna)). TΠ3.1

={bird(tweety), emu(edna),
bird(edna)}, TΠ3.1∪∆3.1

={¬flies(edna), flies(edna),
flies(tweety)} ∪ TΠ3.1

. We have
(A2, flies(edna)) 6.CP1(A1,¬flies(edna))

because flies(edna) 6∈TΠ3.1
and because {bird(edna)} ⊆

TΠ3.1
is an activation set for (A2, flies(edna)), but not for

(A1,¬flies(edna)). We have
(A1,¬flies(edna)).P3(A2, flies(edna)),

because flies(edna)/∈TΠ3.1
and, if H ⊆ TΠ3.1∪∆3.1

is a simplified activation set for (A1,¬flies(edna)),
but not for (∅,¬flies(edna)), then we have
emu(edna)∈H, and thus H is a simplified activa-
tion set also for (A2, flies(edna)). By Theorem 5.16,
we get (A1,¬flies(edna))<CP1(A2, flies(edna))

and (A1,¬flies(edna)) <P3 (A2, flies(edna)).

Example 6.2 (continuing Example 3.2)
Let us compare the arguments (A1,¬flies(edna)) and
(A2, flies(edna)). TΠ3.2

={emu(edna)}, TΠ3.2∪∆3.2
=

{bird(edna), flies(edna),¬flies(edna)} ∪ TΠ3.2
.

We have (A2, flies(edna)) .CP1 (A1,¬flies(edna))
because ¬flies(edna) 6∈TΠ3.2

and, for every activation
set H ⊆ TΠ3.2

for (A2, flies(edna)), we get
emu(edna)∈H, so H is an activation set also for
(A1,¬flies(edna)).
(A2, flies(edna)) 6.P3 (A1,¬flies(edna)) is still the
case because {bird(edna)} ⊆ TΠ3.2∪∆3.2

is a simpli-
fied activation set for (A2, flies(edna)), but neither for
(∅, flies(edna)), nor for (A1,¬flies(edna)).
We have (A1,¬flies(edna)) .P3 (A2, flies(edna)),
because of flies(edna) 6∈TΠ3.2

and because, if
H ⊆ TΠ3.2∪∆3.2

is a simplified activation set for
(A1,¬flies(edna)), but not for (∅,¬flies(edna)), then
we have emu(edna)∈H and thus H is a simplified
activation set also for (A2, flies(edna)).
All in all, by Theorem 5.16, this time
we get (A1,¬flies(edna))≈CP1(A2, flies(edna))

and (A1,¬flies(edna)) <P3 (A2, flies(edna)).
From a conceptual point of view, we have to ask ourselves,
whether we would like a defeasible rule instance such as
bird(edna) ← emu(edna) to reduce the specificity of A2

as compared to a system that seems equivalent for the given
argument for flies(edna), namely the argument

({flies(edna)← emu(edna)}, flies(edna)) ?
Does the specificity of a defeasible reasoning step really
reduce if we introduce intermediate literals?
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According to human intuition, this question has a negative
answer, as we have already explained at the end of Sect. 3.1.
Moreover, Example 6.3 will exhibit a strong reason to deny
it.
Finally, see Example 6.5 for another example that makes
even clearer why defeasible rules should be considered for
their global semantical effect instead of their syntactical
fine structure.

6.2 Monotonicity w.r.t. Conjunction

Monotonicity w.r.t. conjunction means for a quasi-
ordering .N that, in case of (Ai

1, L
i
1) .N (Ai

2, L
i
2) for

i∈{1, 2}, we always have (A1
1∪A

2
1, L

′
1) .N (Ai

2∪A
i
2, L

′
2)

for fresh constant literals L′
j with additional general rules

L′
j⇐L1

j∧L
2
j ∈ ΠG (j ∈{1, 2}). For .CP1, this property

is trivially given in case of L1
1, L

2
1 ∈TΠ, but cannot be ex-

pected in case of Li
1 6∈TΠ ∋L

3−i
1 (for some i∈{1, 2}), sim-

ply because then we get L′
1 6∈TΠ. Also for the only remain-

ing and most interesting case of L1
1, L

2
1 6∈TΠ, this property

is obviously given. For .P1, however, monotonicity is not
even given in this most interesting case, as already noted in
(Poole 1985):

Example 6.3 (Poole 1985, Example 6)

ΠF
6.3 :=

{

a,
d

}

, ΠG
6.3 :=

{

g1 ⇐ ¬c∧¬f,
g2 ⇐ c∧f

}

,

∆6.3 := A1∪A2, A1 := { ¬c← a, ¬f ← d } ,
A2 := { b← a, c← b, e← d, f ← e }
Let us compare the specificity of the arguments (A1, g1) and
(A2, g2). TΠ6.3

= {a, d}. TΠ6.3∪∆6.3
=

{b,c,e,f, g1, g2,¬c,¬f}∪TΠ6.3
. (A1, g1)≈CP1(A2, g2) be-

cause H⊆TΠ6.3
is an activation set for (Ai, gi) if

and only if H = {a, d}. We have (A1, g1)△P3(A2, g2):
{a,¬f}⊆TΠ6.3∪∆6.3

is a simplified activation set for
(A1, g1), but neither for (∅, g1), nor for (A2, g2). {a, f} ⊆
TΠ6.3∪∆6.3

is a simplified activation set for (A2, g2), but nei-
ther for (∅, g2), nor for (A1, g1).
In (Poole 1985), the same result for .P1 is described as
“seemingly unintuitive”, because, as we have seen in the
isomorphic sub-specification of Example 3.2, we have both
(A1,¬c)<P3(A2, c) and (A1,¬f)<P3(A2, f). Indeed, as
already listed as an essential requirement in Sect. 4, the con-
junction of two respectively more specific derivations should
be more specific. On the other hand, considering .CP1 in-
stead of .P3, the conjunction of two equivalently specific
derivations results in an equivalently specific derivation —
exactly as one intuitively expects.

Example 6.4 (1st Variation of Example 6.3)
ΠF

6.4 := ΠF
6.3, A1 := { ¬c← a, ¬f ← d } ,

ΠG
6.4 := { g1 ⇐ ¬c∧¬f, g2 ⇐ c∧f, b⇐ a } ,

∆6.4 := A1∪A2, A2 := {c← b, e← d, f ← e}.
Let us compare the specificity of the arguments (A1, g1) and
(A2, g2). TΠ6.4

={a, b, d}. TΠ6.4∪∆6.4
=

{c, e, f, g1, g2,¬c,¬f} ∪ TΠ6.4
. (A2, g2) 6.CP1(A1, g1) be-

cause {b, d}⊆TΠ6.4
is an activation set for (A2, g2),

but not for (A1, g1). (A1, g1).CP1(A2, g2) because,
for any activation set H⊆TΠ6.4

for (A1, g1), we have
{a, b}⊆H; so H is also an activation set for (A2, g2).

Again (A1, g1) △P3 (A2, g2), for the same reason as in
Example 6.3. Thus, the situation for .P3 is just as in Exam-
ple 6.3, and just as “seemingly unintuitive” for exactly the
same reason.
We have (A1, g1)<CP1(A2, g2), which is intuitive because
the conjunction of a more specific and an equivalently
specific element, respectively, should be more specific.
Indeed, from the isomorphic sub-specifications in Exam-
ples 3.1 and 3.2, we know that (A1,¬c)<CP1(A2, c) and
(A1,¬f)≈CP1(A2, f), resp.
All in all, .P3 fails in this example again, whereas
.CP1 satisfies the monotonicity w.r.t. conjunction required
in Sect. 4.

6.3 Preference of the “More Precise”

As primary sources of differences in specificity, the previous
examples illustrated the effect of a chain of implications. We
now consider examples where the primary source is an es-
sentially required condition that is a super-conjunction of the
condition of another rule.

Example 6.5 (2nd Variation of Example 6.3)
ΠF

6.5 := ΠF
6.3, ΠG

6.5 := { g1 ⇐ ¬c, g2 ⇐ c∧f } ,
∆6.5 := A1∪A2, A1 := { ¬c← a } ,
A2 := { b← a, c← b, e← d, f ← e }
Let us compare the specificity of the argu-
ments (A1, g1) and (A2, g2). TΠ6.5

= {a, d}.
TΠ6.5∪∆6.5

= {b, c, e, f, g1, g2,¬c} ∪ TΠ6.5
. We have

(A1, g1) 6.CP1(A2, g2) because {a} ⊆ TΠ6.5
is an acti-

vation set for (A1, g1), but not for (A2, g2). We have
(A2, g2) .CP1 (A1, g1) because any activation set for
(A2, g2) that is a subset of TΠ6.5

includes a, and so is also
an activation set for (A1, g1). Considering Theorem 5.16
and the the activation set {b, d} for (A2, g2), we see
(A1, g1) △P3 (A2, g2).
All in all, .CP1 realizes the intuition that the super-
conjunction a∧d — which is essential to derive c∧f
according to A2 — is more specific than the “less pre-
cise” a.
Just like Example 3.2, this example shows again that .P3

does not really implement the intuition that defeasible rules
should be considered for their global semantical effect
instead of their syntactical fine structure.

Example 6.6 (Stolzenburg et al. 2003, p. 96)
ΠF

6.6 := { c, d, e } , ΠG
6.6 := { x⇐ a∧f } ,

∆6.6 := A1 ∪ A2 ∪ A3 ∪ A4 ∪ A5,
A1 := { x← a∧b∧c } , A2 := { ¬x← a∧b } ,
A3 := {f ← e}, A4 := {a← d}, A5 := {b← e}.
Let us compare the specificity of the arguments
(A1∪A4∪A5, x), (A2∪A4∪A5,¬x), (A3∪A4, x).
TΠ6.6

={c, d, e}. TΠ6.6∪∆6.6
={a, b, f, x,¬x}∪TΠ6.6

.
We have (A1∪A4∪A5, x) <CP1 (A2∪A4∪A5,¬x)
≈CP1 (A3∪A4, x), because of x,¬x 6∈TΠ6.6

, and because
any activation set H ⊆ TΠ6.6

for any of (A1∪A4∪A5, x),
(A2∪A4∪A5,¬x), (A3∪A4, x) contains {d, e}, which
is an activation set only for the latter two. This matches
our intuition well, because the first of these arguments
essentially requires the “more precise” c∧d∧e instead of
the less specific d∧e.
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We have (A1∪A4∪A5, x)△P3(A
2∪A4∪A5,¬x) △P3

(A3∪A4, x) △P3 (A1∪A4∪A5, x), however. This means
that .P3 cannot compare these counterarguments and
cannot help us to pick the more specific argument. What is
most interesting under the computational aspect is that, for
realizing

(A1∪A4∪A5, x) 6.P3 (A2∪A4∪A5,¬x),
we have to consider the defeasible rule ofA3 (implicitly via
{d, f}⊆TΠ6.6∪∆6.6

), which is not part of any of the two
arguments under comparison. Note that such considera-
tions are not required, however, for realizing the properties
of .CP1, because defeasible rules not in the given argument
can be completely ignored when calculating the minimal
activation sets as subsets of TΠ instead of TΠ∪∆. This
means in particular that the complication of pruning — as
discussed in detail by Stolzenburg et al. (2003, Sect. 3.3) —
does not have to be considered for the operationalization
of .CP1.

Example 6.7 (Variation of Example 6.6)
ΠF

6.7 := { c, d, e } , ΠG
6.7 := { x⇐ a∧f, f ⇐ e } ,

∆6.7 := A1 ∪ A2 ∪ A4 ∪ A5,
A1 := { x← a∧b∧c } , A2 := { ¬x← a∧b } ,
A4 := { a← d } , A5 := { b← e } .
Let us compare the specificity of the arguments
(A1∪A4∪A5, x), (A2∪A4∪A5,¬x), (A4, x). TΠ6.7

=
{c, d, e, f}. TΠ6.7∪∆6.7

= {a, b, x,¬x} ∪ TΠ6.7
.

Obviously, x,¬x 6∈TΠ6.7
. Moreover, {d} ⊆ TΠ6.7

is
an activation set for (A4, x) (but not a simplified one)
and, a fortiori (by Corollary 5.12), for (A1∪A4∪A5, x),
but not for (A2∪A4∪A5,¬x). Furthermore, every ac-
tivation set H ⊆ TΠ6.7

for (A2∪A4∪A5,¬x) satisfies
{d, e}⊆H , which is an activation set for (A4, x) and
(A1∪A4∪A5, x). Furthermore, every activation set
H ⊆TΠ6.7

for (A1∪A4∪A5, x) satisfies {d}⊆H which is
an activation set for (A4, x). All in all, we have
(A4, x)≈CP1(A

1∪A4∪A5, x)>CP1(A
2∪A4∪A5,¬x).

This is intuitively sound because (A2∪A4∪A5,¬x) is
activated only by the more specific d∧e, whereas (A4, x) is
activated also by the “less precise” d. Moreover, c∧d∧e is
not essentially required for (A1∪A4∪A5, x), which thus is
equivalent to (A4, x).
We have (A4, x) <P3 (A1∪A4∪A5, x) △P3

(A2∪A4∪A5,¬x)△P3(A
4, x), however. This means

that .P3 fails here completely w.r.t. Poole’s intuition.

Example 6.8 (continuing Example 3.3)
Let us compare the specificity of the arguments (A1,¬p(a))
and (A2, p(a)). TΠ3.3

= {q(a), s(a)}, TΠ3.3∪∆3.3
=

{p(a),¬p(a)} ∪ TΠ3.3
.

We have (A1,¬p(a)) ≈P3 (A2, p(a)), because of
p(a),¬p(a) 6∈TΠ3.3

, and because, for H ⊆ TΠ3.3∪∆3.3
,

i ∈ {1, 2}, L1 := ¬p(a), and L2 := p(a), we have the
logical equivalence of H = {q(a)} on the one hand, and
of H being a minimal simplified activation set for (Ai, Li)
but not for (∅, Li), on the other hand. By Theorem 5.16, we
also get (A1,¬p(a)) ≈CP1 (A2, p(a)). This makes perfect
sense because q(a)∧s(a) is not at all strictly “more precise”
than q(a) in the context of Π3.3.
Note that nothing is changed here if s(x) ⇐ q(x)

is replaced by setting ΠG
3.3 := {s(a)}. If s(x) ⇐

q(x) is replaced, however, by setting ΠG
3.3 := ∅ and

ΠF
3.3 := {q(a), s(a)}, then we get both (A1,¬p(a)) <P3

(A2, p(a)) and (A1,¬p(a)) <CP1 (A2, p(a)).

7 Relation to Other Approaches

Our new notion of specificity .CP1 follows the lines of
Poole (1985). It is a transitive relation that provides us a
quasi-ordering on arguments, which is as monotonic w.r.t.
conjunction as can be expected (cf. Sect. 6.2). In addition,
the effort for computing .CP1 is lower than that of .P3 be-
cause of TΠ ⊆ TΠ∪∆, though not w.r.t. asymptotic com-
plexity: In both cases already the number of possible (sim-
plified) activation sets is exponential in the number of liter-
als in the respective sets TΠ and TΠ∪∆, because in principle
each possible subset has to be tested.

Stolzenburg et al. (2003, Definition 12) introduce the
concept of pruning derivation trees because, for the case
of .P2, attention cannot be restricted to derivations which
make use only of the instances of defeasible rules given in
the arguments. The reason for this is that the specificity no-
tions of (Poole 1985) and (Simari and Loui 1992) admit lit-
erals L in activation sets that cannot be derived solely by
strict rules, i.e. L ∈ TΠ∪∆\TΠ. Since this is not possible
with the relation .CP1, this problem vanishes with our new
version of specificity. See also Example 6.6.

Yet still, the new relation .CP1 inherits several proper-
ties from .P3. For instance, in general the specificity cri-
terion requires us to compare sets of derivations, in princi-
ple all possible derivations for a given argument. This is
true for both versions of the specificity relation. The rea-
son for this complication is that we consider a very general
setting of defeasible reasoning here, because — in con-
trast to other approaches (Gelfond and Przymusinska 1990;
Dung and Son 1996; Benferhat and Garcia 1997) — we ad-
mit more than one antecedent in rules, i.e. bodies containing
more than one literal, and (possibly) non-empty sets of back-
ground knowledge, namely the general rules in ΠG in addi-
tion to the facts in ΠF.

All in all, there are numerous frameworks for argumen-
tation in logic. The overall process usually includes a di-
alectical process used for answering queries. Different argu-
ments are pro or contra a certain answer. By means of an at-
tack relation conflicts between contradicting arguments can
be determined in abstract argumentation frameworks (Dung
1995; Prakken and Vreeswijk 2002). A concrete specificity
or similar relation helps then to decide among conflicting
arguments. There are a lot of works on abstract argumenta-
tion frameworks. However, as the discussion in this paper
demonstrates, it is not that easy to find an effective con-
crete specificity relation. The main problem is that the or-
derings tend to be either computationally highly complex
(Kern-Isberner and Thimm 2012) or not really appropriate
for specificity (Besnard and Hunter 2001).
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8 Conclusion

We would need further discussions on our most surprising
new findings — after all, defeasible reasoning with Poole’s
notion of specificity is being applied now for over a quarter
of century, and it was not to be expected that our investiga-
tions could discover a flaw in its foundations.

One remedy for the discovered lack of transitivity of .P3

could be to consider the transitive closure of the non-
transitive relation .P3. Only under the condition of
Theorem 5.16, the transitive closure of .P3 is a subset
of .CP1, and therefore a possible choice. Moreover, it
will still have all the intuitive shortcomings made obvious
in Sect. 6. We do not see how this transitive closure could
be decided efficiently. Furthermore, this transitive closure
lacks a direct intuitive motivation, and after the first exten-
sion step from .P3 to its transitive closure, we had better
take the second extension step to the more intuitive .CP1

immediately.

Finally, contrary to the transitive closure of .P3, our
novel relation .CP1 also solves the problem of non-
monotonicity of specificity w.r.t. conjunction (cf. Sect. 6.2)
insofar as it was realized as a problem of .P1 in (Poole
1985).

Further work is needed to improve efficiency consider-
ably. As a first step, we have narrowed the concept of .CP1

further down according to Sect. 3, resulting in a similar
(no difference in any of the examples presented in this
paper!), but more tractable relation .CP2. We are cur-
rently developing and testing strong methods for efficient
operationalization of .CP2, which can hardly be found for
any of .P1, .P2, .P3, .CP1.
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