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Abstract Higher-level cognition includes logical rea-

soning and the ability of question answering with common

sense. The RatioLog project addresses the problem of

rational reasoning in deep question answering by methods

from automated deduction and cognitive computing. In a

first phase, we combine techniques from information

retrieval and machine learning to find appropriate answer

candidates from the huge amount of text in the German

version of the free encyclopedia ‘‘Wikipedia’’. In a second

phase, an automated theorem prover tries to verify the

answer candidates on the basis of their logical representa-

tions. In a third phase—because the knowledge may be

incomplete and inconsistent—we consider extensions of

logical reasoning to improve the results. In this context, we

work toward the application of techniques from human

reasoning: We employ defeasible reasoning to compare the

answers w.r.t. specificity, deontic logic, normative rea-

soning, and model construction. Moreover, we use

integrated case-based reasoning and machine learning

techniques on the basis of the semantic structure of the

questions and answer candidates to learn giving the right

answers.

Keywords Automated deduction � Case-based
reasoning � Common-sense reasoning � Defeasible
reasoning � Deontic logic � Question answering �
Specificity

1 Rational Reasoning and Question Answering

The development of formal logic played a big role in the

field of automated reasoning, which led to the development

of the field of artificial intelligence (AI). Applications of

automated deduction in mathematics have been investi-

gated from the early years on. Nowadays automated

deduction techniques are successfully applied in hard- and

software verification and many other areas (for an over-

view see [2]).

In contrast to formal logical reasoning, however, human

reasoning does not strictly follow the rules of classical

logic. Reasons may be incomplete knowledge, incorrect

beliefs, and inconsistent norms. From the very beginning of

AI research, there has been a strong emphasis on incor-

porating mechanisms for rationality, such as abductive or

defeasible reasoning. From these efforts, as part of the field

of knowledge representation, common-sense reasoning has

emerged as a branching discipline with many applications

in AI [17].

Nowadays there is a chance to join automated deduction

and common-sense reasoning within the paradigm of

cognitive computing, which allows the implementation of

rational reasoning [16]. The general motivation for the
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development of cognitive systems is that computers can

solve well-defined mathematical problems with enormous

precision at a reasonably sufficient speed in practice. It

remains difficult, however, to solve problems that are only

vaguely outlined. One important characteristic of cognitive

computing is that many different knowledge formats and

many different information processing methods are used in

a combined fashion. Also the amount of knowledge is huge

and, even worse, it is even increasing steadily. For the

logical reasoning, a similar argument holds: Different

reasoning mechanisms have to be employed and combined,

such as classical deduction (forward reasoning) on the one

hand, and abduction or other non-monotonic reasoning

mechanisms on the other hand.

Let us illustrate this with a well-known example from

the literature:

1. Tom is an emu.

2. Emus are birds.

3. Birds normally fly.

4. Emus do not fly.

The question is: Can emus fly or not? Forward reasoning

allows us to infer that emus are birds and hence can nor-

mally fly. This is in conflict, however, with the strict

background knowledge that emus do not fly. The conflict

can be solved by assuming certain knowledge as default or

defeasible, which only holds normally. Hence we may

conclude here that emus and therefore Tom does not fly.

We will come back to this example later (namely in Sects.

2.2 and 2.3).

Rational reasoning must be able to deal with incomplete

as well as conflicting (or even inconsistent) knowledge.

Moreover, huge knowledge bases with inconsistent con-

tents must be handled. Therefore, it seems to be a good idea

to combine and thus enhance rational reasoning by infor-

mation retrieval techniques, e.g. techniques from machine

learning. This holds especially for the domain of deep

question answering, where communication with patterns of

human reasoning is desirable.

1.1 Deep Question Answering and the LogAnswer

System

Typically, question answering systems, including applica-

tion programs such as Okay Google r or Appler’s Siri,

communicate with the user in natural language. They

accept properly formulated questions and return concise

answers. These automatically generated answers are usu-

ally not extracted directly from the web, but, in addition,

the system operates on an extensive (background) knowl-

edge base, which has been derived from textual sources in

advance.

LogAnswer [8, 9] is an open-domain question answering

system, accessible via a web interface (www.loganswer.de)

similar to that of a search engine. The knowledge used to

answer the question is gained from 29.1 million natural-

language sentences of a snapshot of the German Wikipedia.

Furthermore, a background knowledge consisting of

12,000 logical facts and rules is used. The LogAnswer

system was developed in the DFG-funded LogAnswer

project, a cooperation between the groups on Intelligent

Information and Communication Systems at the

FernUniversität Hagen and the AI research group at the

University of Koblenz-Landau. The project aimed at the

development of efficient and robust methods for logic-

based question answering. The user enters a question and

LogAnswer presents the five best answers from a snapshot

of the German ‘‘Wikipedia’’, highlighted in the context of

the relevant textual sources.

Most question answering systems rely on shallow lin-

guistic methods for answer derivation, and there is only

little effort to include semantics and logical reasoning. This

may make it impossible for the system to find any answers:

A superficial word matching algorithm is bound to fail if

the textual sources use synonyms of the words in the

question. Therefore, the LogAnswer system models some

form of background knowledge, and combines cognitive

aspects of linguistic analysis, such as semantic nets in a

logical representation, with machine learning techniques

for determining the most appropriate answer candidate.

Contrary to other systems, LogAnswer uses an auto-

mated theorem prover to compute the replies, namely

Hyper [3], an implementation of the hypertableaux calculus

[1], extended with equality among others. It has demon-

strated its strength in particular for reasoning problems

with a large number of irrelevant axioms, as they are

characteristic for the setting of question answering. The

logical reasoning is done on the basis of a logical repre-

sentation of the semantics of the entire text contained in the

Wikipedia snapshot. This is computed beforehand with a

system developed by computational linguists [13] which

employs the MultiNet graph formalism (Multilayered

Extended Semantic Networks) [15].

Since methods from natural-language processing are

often confronted with flawed textual data, they strive

toward robustness and speed, but often lack the ability to

perform more complex inferences. By contrast, a theorem

prover uses a sound calculus to derive precise proofs of a

higher complexity; even minor flaws or omissions in the

data, however, lead to a failure of the entire derivation

process. Thus, additional techniques from machine learn-

ing, defeasible and normative reasoning etc. should be

applied to improve the quality of the answers—as done in

the RatioLog project.
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For this, the reasoning in classical logic is extended by

various forms of non-monotonic aspects, such as defeasible

argumentation. By these extensions, the open-domain

question answering system LogAnswer is turned into a

system for rational question answering, which offers a

testbed for the evaluation of rational reasoning.

1.2 The LogAnswer System and its Modules

When processing a question, the LogAnswer system

performs several different steps. Figure 1 presents details

on these steps. At first, information retrieval (IR), i.e.

pattern matching, is used to filter text passages suitable

for the given question from the textual representation of

the Wikipedia. For this, the text sources are segmented

into sentence-sized passages. The corresponding repre-

sentation can be enriched by the descriptors of other

sentences that result from a coreference solution of pro-

nouns, where the referred phrase is added to the

description, if e.g. the pronoun ’he’ refers to the indi-

vidual ’Ian Fleming’. Then decision tree learning ranks

the text passages and chooses a set of answer candidates

from these text passages (Ranking step in Fig. 1). Here,

features like the number of matching lexemes between

passages and the question or the occurrences of proper

names in the passage are computed. Up to 200 text pas-

sages are extracted from the knowledge base according to

this ranking.

In the next step (Reasoning), the Hyper theorem prover

is used to check if these text passages provide an answer to

the question. For every answer candidate, a first-order logic

representation of both the question and the answer candi-

date is combined with a huge background knowledge.

These proofs provide the answer to the question by means

of variable assignments. The proofs for the answer candi-

dates are then ranked again using decision tree learning (in

the answer validation phase). For the five best answers, text

passages providing the answer are highlighted and pre-

sented to the user. This is done by a natural language (NL)

answer generation module, which eventually yields the

final answer candidates, in our case that Ian Fleming is a

British author.

In the LogAnswer system, various techniques work

interlocked. See Fig. 2 for an overview of the different

techniques together with the modules in which they are

used. Extraction of text passages for a certain question is

performed in the candidate selection module. In this

module, both information retrieval and decision tree

learning work hand in hand to find a list of answer can-

didates for the current question. For each answer candidate,

the reasoning module is invoked. This module consists of

the Hyper theorem prover, which is used to check if the

answer candidate provides an answer for the question.

Since Hyper is able to handle first-order logic with equality

and knowledge bases given in description logic, it is pos-

sible to incorporate background knowledge given in vari-

ous (formal) languages.

An interesting extension of usual background knowl-

edge is the use of a knowledge base containing normative

statements formalized in deontic logic. These normative

statements enable the system to reason in a rational way.

Since deontic logic can be translated into description log-

ics, Hyper can be used to reason on such knowledge bases.

Reasoning in defeasible logic is another technique con-

tained in the reasoning module of the LogAnswer system.

With the help of defeasible logic reasoning, different

proofs produced by Hyper are compared. The proofs found

by Hyper provide answers to the given question by means

Fig. 1 The LogAnswer system uses information retrieval (IR), decision tree learning in a ranking phase, reasoning, and natural language answer

generation to compute answers

Fig. 2 Techniques used in the different modules of the LogAnswer

system
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of variable assignments. Comparing the proofs for different

answer candidates therefore is used to determine the best

answer. Hence defeasible logic is contained in the answer

validation module. In addition to that, the answer valida-

tion module contains decision tree learning to rank differ-

ent proofs found by Hyper and case-based reasoning.

Details on the use of case-based reasoning and reasoning in

defeasible logic, that can both be used in the answer vali-

dation phase (see Fig. 1), can be found in the Sect. 2.

2 Searching for Good Answers

As depicted before, the reasoning component of the

LogAnswer system delivers proofs, which represent the

possible answers to the given question. The proofs are

ranked by decision trees which take into account several

attributes of the reasoning process together with the attri-

bute from the previous information retrieval step.

In addition to this ranking, we experiment with different

other techniques to improve the evaluation of answers.

These are case-based reasoning (CBR) (Sect. 2.1), defea-

sible reasoning (Sect. 2.2), and normative (deontic) rea-

soning (Sect. 2.3). To perform systematic and extensive

tests with LogAnswer, we used the CLEF database, strictly

speaking, its question answering part. CLEF stands for

cross-language evaluation forum, see www.clef-campaign.

org. It is an international campaign providing language

data in different languages, e.g. from newspaper articles.

Its workshop and competition series contains a track on

question answering. We used data from CLEF-2007 and

CLEF-2008 [12, 18].

2.1 CBR Similarity Measures and Machine

Learning

Answer validation can be enhanced by using experience

knowledge in form of cases in a case base. The resulting

system module is designed as a learning system and based

on a dedicated CBR control structure. Contrary to common

procedures in natural-language processing, however, we do

not follow the textual approach, where experiences are

available in unstructured or semi-structured text form, but

use a structured approach along the lines of [4]. This is

possible because the knowledge source is available not

only in textual but also in a logical format. The semantics

of the natural-language text is given basically by first-order

predicate logic formulae, which are represented by Mul-

tiNet graphs [15]. Our basis is a manually achieved clas-

sification for each pair of question (from the CLEF 2007

and 2008 data) and answer candidate (from the LogAnswer

system) whether the answer candidate is a good one for the

question. In order to compare and to define a similarity

measure of the MultiNet graphs, we have developed a new

graph similarity measure [14, 22] which improves other

existing measures, e.g. [4, 6].

We measured the CBR system classification accuracy by

running tests with a case base from the CLEF 2007 and

2008 data. Our overall test set had 254 very heterogeneous

questions and ca. 15,000 cases. For instance, in one of the

evaluations, namely the user interaction simulation (see

Fig. 3), we examined the development of the results for a

growing knowledge base. We simulated users that give

reliable feedback to new, heterogeneous questions for

which the LogAnswer system provides answers candidates.

The test setting was to guess the classification of questions

and answer candidates the system does not have in the

knowledge base. The results show the increase of the

classification accuracy with a growing number of correct

cases in the case base. We performed a number of other

evaluation experiments, e.g. 3- and 10-fold cross valida-

tions. For more information about the integrated CBR/

Machine learning evaluation and test settings, please refer

to [14, 22].

We further integrated case-based reasoning into the

already existing answer selection techniques in LogAnswer

(answer validation phase, see Fig. 1). For this, the results of

the CBR stage were turned into numeric features. A

ranking model determined by a supervised learning-to-rank

approach combined these CBR-based features with other

answer selection features determined by shallow linguistic

processing and logical answer validation The final machine

learning ranker is an ensemble of ten rank-optimizing

decision trees, obtained by stratified bagging, whose indi-

vidual probability estimates are combined by averaging.

Fig. 3 The x axis is the number of cases in the case base. The y axis is

the classification accuracy in percent, for correct and incorrect answer

candidates, as well as the overall classification accuracy for the user

interaction simulation
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When training the machine learning ranker on a case base

optimized for perfect treatment of correct answer candi-

dates, we get the best overall result in our tests with a mean

reciprocal rank (MRR) of 0.74 (0.72 without CBR) and a

correct top-ranked answer chosen in 61 % (58 % without

CBR) of the cases. It is instructive to consider the usage of

CBR features in the machine learning ranker, by inspecting

all branching conditions in the generated trees and counting

the frequency of occurrence of each feature in such a

branching condition, since 10 bags of 10 decision trees

were generated in the 10 cross-validation runs, there is a

total of 100 trees to base results on [14, 22]. In total, 42.5 %

of all split conditions in the learned trees involve one of the

CBR attributes. This further demonstrates the strong

impact of CBR results on answer re-ranking.

2.2 The Specificity Criterion

More specific answer candidates are to be preferred to less

specific ones, and we can compare them according to their

specificity as follows. To obtain what argumentation the-

ories call an argument, we form a pair of an answer can-

didate and its derivation. The derivation can be based on

positive-conditional rules, generated from Hyper’s verifi-

cations and capturing the Wikipedia page of the answer

candidate and the linguistic knowledge actually applied.

Now we find ourselves in the setting of defeasible rea-

soning and can sort the arguments according to their

specificity.

In defeasible reasoning, certain knowledge is assumed to

be defeasible. Strict knowledge, however, is specified by

contingent facts (e.g., in the emu example from Sect. 1,

‘‘Tom is an emu’’) and general rules holding in all possible

worlds without exception (e.g. ‘‘emus do not fly’’). Strict

knowledge is always preferred to knowledge depending

also on defeasible rules (e.g. ‘‘Birds normally fly’’).

Already in 1985, David Poole had the idea to prefer

more specific arguments in case of conflicting results as

follows [19]: For any derivation of a given result, repre-

sented as a tree, consider the sets of all leaves that con-

tribute to the applications of defeasible rules. An activation

set is a set of literals from which all literals labeling such a

set of leaves is derivable. Thereby, an activation set is

sufficient to activate the defeasible parts of a derivation in

the sense of a presupposition, without using any additional

contingent facts.

One argument is now more specific than another one if

all its activation sets are activation sets of the other one.

This means that each activation set of the more specific

argument (seen as the conjunction of its literals) must be

more specific than an activation set of the other one. Note

that the meaning of the latter usage of the word ‘‘specific’’

is just the traditional common-sense concept of specificity,

according to which a criterion (here: conjunction of liter-

als) is more specific than another one if it entails the other

one.

We discovered several weaknesses of Poole’s relation,

such as its non-transitivity: Contrary to what is obviously

intended in [19] and ‘‘proved’’ in [20], Poole’s relation is

not a quasi-ordering and cannot generate an ordering. We

were able to cure all the discovered weaknesses by defining

a quasi-ordering [23, 24] (i.e. a reflexive and transitive

binary relation), which can be seen as a correction of

Poole’s relation, maintaining and clarifying Poole’s origi-

nal intuition.

The intractability of Poole’s relation, known at least

since 2003 [21], was attenuated by our quasi-ordering and

then overcome by restricting the rules to instances that

were actually used in the proofs found by Hyper, and by

treating the remaining variables (if any) as constants. With

these restrictions, the intractability did not show up any-

more in any of the hundreds of examples we tested with our

PROLOG implementation.

Running this implementation through the entire CLEF-

2008 database, almost all suggested answer solutions

turned out to be incomparable w.r.t. specificity, although

our quasi-ordering can compare more arguments in prac-

tice than Poole’s original relation. One problem here is that

we have to classify the rules of the CLEF examples as

being either general or defeasible, but there is no obvious

way to classify them. Another problem with the knowledge

encoded in the MultiNet formalism is that it first and

foremost encodes only linguistic knowledge, e.g., who is

the agent of a given sentence. Only little background

knowledge is available, such as on ontology. All data from

the web pages, however, are represented by literals.

To employ more (defeasible) background knowledge we

investigated other examples, such as the emu example from

Sect. 1. Here, the formalization in first-order logic of the

natural-language knowledge on individuals can be achieved

with the Boxer system [5, 7], which is dedicated to large-

scale language processing applications. These examples can

be successfully treated with the specificity criterion and also

with deontic logic (see subsequent section).

2.3 Making Use of Deontic Logic

Normative statements like ‘‘you ought not steal’’ are

omnipresent in our everyday life, and humans are used to

do reason with respect to them. Since norms can be helpful

to model rationality, they constitute an important aspect for

common-sense reasoning. This is why normative reasoning

is investigated in the RatioLog project [10]. Standard

deontic logic (SDL) [11] is a logic which is very suitable

for the formalization of knowledge about norms. SDL

corresponds to the modal logic K together with a seriality
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axiom. In SDL the modal operator h is interpreted as ‘‘it is

obligatory that’’ and the e operator as ‘‘it is permitted

that’’. For example a norm like ‘‘you ought not steal’’ can

be intuitively formalized as h:steal. From a model theo-

retic point of view, the seriality axiom contained in SDL

ensures that, whenever it is obligatory that something

holds, there is always an ideal world fulfilling the

obligation.

In the RatioLog project, we experiment with SDL by

adding normative statements into the background knowl-

edge. The emu example from Sect. 1 contains the norma-

tive assertion

Birds normally fly.

which can be modeled using SDL as

Bird ! hFlies

and is added to the background knowledge. In addition to

normative statements, the background knowledge further-

more contains assertions not containing any modal opera-

tors, e.g. something like the statement that all emus are

birds. Formulae representing contingent facts, like the

assertion

Tom is an emu.

in the emu example, are combined with the background

knowledge containing information about norms. The Hyper

theorem prover [3] can be used to analyze the resulting

knowledge base. For example, it is possible to ask the

prover if the observed world with the emu Tom fulfills the

norm that birds usually are able to fly.

Within the RatioLog project both defeasible logic and

deontic logic are used. There are similarities between

defeasible logic and deontic logic. For example in defea-

sible logic there are rules which are considered to be not

strict but defeasible. These defeasible rules are similar to

normative statements, since norms only describe how the

world ought to be and not how it actually is. This is why we

are also investigating the connection between these two

logics within the RatioLog project.

3 Conclusions

Deep question answering does not only require pattern

matching and indexing techniques, but also rational rea-

soning. This has been investigated within the RatioLog

project as demonstrated in this article. Techniques from

machine learning with similarity measures and case-based

reasoning, defeasible reasoning with (a revision of) the

specificity criterion, and normative reasoning with deontic

logic help to select good answer candidates. If the back-

ground knowledge, however, mainly encodes linguistic

knowledge—without general common-sense world

knowledge—then the effect on finding good answer can-

didates is low. Therefore, future work will concentrate on

employing even more background world knowledge (e.g.

from ontology databases), so that rational reasoning can be

exploited more effectively when applied to this concrete

knowledge.
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