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1 Introduction24

A possible explanation of how humans manage to interact with reality — in spite of the25

fact that their information on the world is partial and inconsistent — mainly consists of the26

following two points:27

1. Humans use a certain amount of rules for default reasoning and are aware that some28

arguments relying on these rules may be defeasible.29

2. In case of the frequent conflicting or even contradictory results of their reasoning, they30

prefer more specific arguments to less specific ones.31

An intuitive concept of specificity plays an essential rôle in this explanation, which is inter-32

esting because it seems to be highly successful in practice, even if it were just an epi-33

phenomenon providing an ex eventu explanation of human behavior.34

On the long way approaching the proven intuitive human concept of specificity, the first35

milestone marks the development of a semantic, model-theoretic notion of specificity hav-36

ing passed first tests of its usefulness and empirical validity. Indeed, at least as the first step,37

a semantic, model-theoretic notion will probably offer a broader and better basis for appli-38

cations in systems for common-sense reasoning than notions that depend on peculiarities of39

special calculi or even on extra-logical procedures. This holds in particular if the results of40

these systems are to be accepted by humans.41

David Poole has sketched such a notion as a binary relation on arguments and evaluated42

its intuitive validity with some examples in [22]. Poole’s notion of specificity was given a43

more appropriate formalization in [26]. The properties of this formalization were examined44

in detail in [27].45

In Sections 2 and 3, we recall basic notions and notation and the elementary motivating46

examples.47

In Section 4, we present a detailed analysis of the reasons behind our intuition that48

Poole’s specificity is a first step on the right way.49

We expect that the results of this detailed analysis will carry us even beyond this paper to50

future improved concepts of specificity, especially w.r.t. efficiency, but also w.r.t. intuitive51

adequacy. We hope that the closer we get to human intuition, the more efficiently our con-52

cepts can be implemented, simply because they seem to run so well on the human hardware,53

which — by all that we know today — is pretty slow.54

In Section 5, we specify formal requirements on any reasonably conceivable relation of55

specificity.56

In Section 6, we disambiguate Poole’s specificity relation from slightly improved ver-57

sions, such as the one in [26], and introduce a novel specificity ordering (CP1), a correction58

of Poole’s specificity in the sense that it removes a crucial shortcoming of Poole’s original59

relation (P1) and its slight improvements (P2, P3), namely their lack of transitivity.60

In Section 7, we present several examples that are to convince the carefully contemplating61

reader of the superiority of our novel specificity relation CP1 w.r.t. human intuition.62

In Section 8, we discuss efficiency issues. We introduce a further novel specificity order-63

ing (CP2) (a variation of CP1) as a first step toward similar notions that may finally solve the64

intractability problem of Poole-style specificity relations. The present means toward decid-65

ing our novel specificity relations, however, show only slight improvements over the known66



AUTHOR'S PROOF JrnlID 10472 ArtID 9471 Proof#1 - 26/08/2015

UNCORRECTED
PROOF

A series of revisions of David Poole’s specificity

ones for Poole’s relation; therefore, we suggest a more efficient workaround for applications 67

in practice. 68

In Section 9, we draw some first conclusions. 69

2 Basic notions and notation 70

Definition 1 (Term, Atom) 71

A term is inductively defined to be either a function symbol applied to a (possibly empty)

Q4

72

list of terms or a symbol for a free variable. 73

An atom consists of a predicate symbol applied to a (possibly empty) list of terms. 74

In what follows, we will mainly use nullary function symbols (“constants”), such as 75

tweety, and singulary predicate symbols, such as bird, forming atoms such as bird(tweety), 76

which states that tweety is a bird. 77

2.1 Specifying rules and their theories 78

For the remainder of this paper, let us narrow the general logical setting of specificity down 79

to the concrete framework of defeasible logic with the restrictions of positive-conditional 80

specification with an inactive negation symbol, as found e.g. in [27] and [5]. 81

In effect, these restrictions give us the standard “definite rules” of positive-conditional 82

specification (or Horn-clause logic). Positive-conditional specification differs from logic 83

programming in PROLOG (cf. e.g. [6, 18]) insofar as termination issues and the order of the 84

definite clauses are irrelevant for the semantics, and insofar as there is no cut predicate (‘!’) 85

and no negation as failure. 86

Such definite rules are implications of the following form: The conclusion is an atom; 87

the condition is a (possibly empty) conjunction of (positive) atoms which may contain 88

extra variables (i.e. free variables not occurring in the conclusion). This is can be seen 89

as quantifier-free first-order logic with specifications restricted to implications of the 90

mentioned form. 91
We ask the reader not to get confused on the mentioned effective form of our rules 92

by the fact that — in place of the atoms — literals resulting from an inactive negation 93

symbol are actually admitted in the rules of Definition 2 (see below). This special form of 94

negation is standard in defeasible logic for convenience in the application context (such as 95

an argumentation framework). In this paper, however, we can consider this negation just as 96

a form of syntactic sugar (cf. Definition 3, Remark 1). 97

Definition 2 (Literal, Rule) 98

A literal is an atom, possibly prefixed with the symbol “¬” for negation. 99
A rule is a literal, but possibly suffixed with a reverse implication symbol “⇐” that is 100

followed by a conjunction of literals, consisting of one literal at least. 101

Definition 3 (Theory, Derivation) 102

Let Π be a set of rules. The theory of Π is the set TΠ inductively defined to contain 103

– all instances of literals from Π and 104
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– all literals L for which there is a conjunction C of literals from TΠ such that105

L ⇐ C is an instance of a rule in Π .106

For L ⊆ TΠ , we also say that Π derives L, and write Π � L.107

2.2 Secondary aspects of our logic108

Remark 1 (Negation Symbol “¬”)109

The negation symbol “¬, which occurs in Definition 2 and which seemingly gets us beyond110

the definite rules of positive-conditional specification s by admitting literals instead of111

just atoms, does not have any effect on the derivations and theories considered in this112

paper (cf. Definition 3). For instance, the literal ¬flies(edna) may actually be consid-113

ered as the atom resulting from application of the predicate ¬flies to the constant symbol114

edna.115

On the other hand, if we write an atom A as A = true, and a negated atom ¬A as116

the equational atom A = false, for the data type Boolean given by the constructors true117

and false, then the rules of our specification can be seen as positive-conditional equational118

specifications in the framework for positive/negative-conditional equational specification119

found in [33], and [28, 29].120

In the application context, of course, the literals ¬flies(edna) and flies(edna) will be121

considered to be contradictory (cf. Definition 4), but this is a secondary and non-essential122

notion built on top of our derivations and theories, which do not rely on this notion.123

As a consequence, none of the results in this paper relies on this special negation sym-124

bol. To the contrary, in the weakness of our logical theories we see an indication for the125

generality of our results (cf. Remark 2).126

To distinguish the inactive negation here from negation as failure and from any other127

form of negation playing an active rôle in derivation, the symbol “∼” is sometimes used in128

the literature of defeasible logic in place of our more standard symbol “¬”.129

Definition 4 (Contradictory Sets of Rules)130

A set of rules Π is called contradictory if there is an atom A such that Π � {A,¬A};131

otherwise � is non-contradictory.132

Remark 2 (Weakness of Our Logical Theories)133

On the one hand, {A, ¬A ⇐ A} is contradictory according to Definitions 3 and 4. On the134

other hand, {A ⇐ ¬A,¬A ⇐ A} is non-contradictory according to these definitions,135

although we can infer both A and ¬A from {A ⇐ ¬A,¬A ⇐ A} in classical (i.e. two-136

valued) logic. For the case of our very limited formal language, our notions of consequence137

and contradiction are equivalent both to intuitionistic logic and to the three-valued logic138

where ¬ and ∧ are given as usual, but (following neither Kleene nor Łukasiewicz) implica-139

tion has to be defined via (A ⇐ TRUE) = A, (A ⇐ FALSE) = TRUE, (A ⇐ UNDEF) =140

TRUE.141

2.3 Global parameters for the given specification142

Throughout this paper, we will assume a set of literals �F and two sets of rules �G, � (cf.143

Definition 2) to be given:144

– A set �F of literals meant to describe the facts of the concrete situation under145

consideration,146
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– a set �G of general rules meant to hold in all possible worlds,1 and 147

– a set � of defeasible (or default) rules meant to hold in most situations. 148

The set � := �F ∪ �G is the set of strict rules that — contrary to the defeasible rules — 149

are considered to be safe and are not doubted in the concrete situation. 150

2.4 Formalization of arguments 151

Whether a rule is a strict one from � or a defeasible one from � has no effect on theories 152

and derivations (cf. Definition 3). If a contradiction occurs, however, we will narrow the 153

defeasible rules from � down to a subset A of its ground instances (i.e. instances without 154

free variables) — such that no further instantiation can occur. Such a subset, together with 155

the literal whose derivation is in focus, is called an argument. With implicit reference to the 156

given sets of rules � and �, the formal definition is as simple as follows. 157

Definition 5 ([Contradictory] [Minimal] Argument) 158

(A , L) is an argument if A is a set of ground instances of rules from � and A ∪� � {L}. 159

(A , L) is a minimal argument if A is an argument, but (A ′, L) is not an argument for any 160

proper subset A ′ � A . 161

An argument (A , L) is contradictory if A ∪ � is a contradictory set of rules. 162

Remark 3 (Non-Ground Arguments) 163

From a refined standpoint, what we actually need is not exactly a set A of ground instances, 164

but just of the instances applied in the derivation. Then, however, we have to freeze the 165

variables in A because they must not be instantiated in the derivation A ∪ � � {L}. We 166

avoid this refinement here until we come to Section 8.3, because it does not play an essential 167

rôle before and because we want to stay within the traditional framework as long as possible 168

to facilitate a more direct comparison. 169

Remark 4 (Minimality and Non-Contradiction of Arguments) 170

Some authors (cf. e.g. [5, 27]) require all arguments 171

1. to be minimal arguments, and 172

2. to be non-contradictory. 173

Because non-minimal as well as contradictory arguments often occur in practical situations, 174

there is no use-oriented justification for any of these requirements. 175

For requirement 1 there is no conceptual justification, either, because the non-minimal 176

arguments become inessential by our preference on specific arguments, in the sense that 177

for every argument there must be a minimal sub-argument that is at least as specific, cf. 178

Corollaries 3, 5, and 8. Because being contradictory is only a secondary aspect of our logic 179

(cf. Section 2.2), there is no conceptual justification for requirement 2, either. 180

To obtain a more general setting in the comparison of arguments, we omit these restric- 181

tions in the context of this paper, where they turned out to be completely superfluous. 182

In particular, the omission of these requirements has no effect on the results of this paper. 183

1In the approach of [27], the set �G must not contain mere literals (without suffixed condition), also called
presumptions. To obtain a more general setting, we omit this additional restriction in the context of this paper,
simply because it is neither intuitive nor required for our framework here. For the actual occurrence of a
literal in �G, see the discussion of Example 18 in Section 7.4.
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2.5 Quasi-Orderings184

We will use several binary relations comparing arguments according to their specificity. For185

any relation written as �N (“being more or equivalently specific w.r.t. N”), we set186

�N := {(X, Y )|Y �N X} (“less or equivalently specific”),

≈N := �N ∩ �N (“equivalently specific”),

<N := �N \ �N (“properly more specific”),

≤N := <N ∪{(X,X)|X is an argument} (“more specific or equal”),

�N :=
{
(X, Y )

∣∣∣∣ X, Y are arguments with
X ��N Y and X ��N Y

}
(“incomparable w.r.t. specificity”).

A quasi-ordering is a reflexive transitive relation. An (irreflexive) ordering is an irreflexive187

transitive relation. A reflexive ordering (also called: “partial ordering”) is an anti-symmetric188

quasi-ordering. An equivalence is a symmetric quasi-ordering.189

Corollary 1 If �N is a quasi-ordering, then ≈N is an equivalence, <N is an ordering, and190

≤N is a reflexive ordering.191

3 Motivating Examples192

For ease of distinction, we will use the special symbol “←” as a syntactic sugar in concrete193

examples of defeasible rules from �, instead of the symbol “⇐”, which — in our concrete194

examples — will be used only in strict rules.195

Moreover, in our graphical illustrations we will indicate membership in �F by double196

underlining.197

Example 1 (Example 1 of [22])198

199

200

We have T�1 = {bird(tweety), emu(edna), bird(edna),¬flies(edna)},
T�1∪�1 = {flies(edna), flies(tweety)} ∪ T�1 .

201

It is intuitively clear that we prefer the argument (∅,¬flies(edna)) to the argument202

(A2, flies(edna)), simply because the former does not use any defeasible rules. We will

Q5

203

further discuss this in Example 7.204
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Let us see what happens to Example 1 if we are not so certain anymore that no emu 205

can fly and turn the general rule (¬flies(x) ⇐ emu(x)) ∈ �G
1 into a defeasible one in the 206

following example. 207

Example 2 (Example 2 of [22]) 208

209

210

211

We have T�2 = {bird(tweety), emu(edna), bird(edna)},
T�2 ∪ �2 = {¬flies(edna), flies(edna), flies(tweety)} ∪ T�2 .

212

It is intuitively clear that we prefer the argument (A1, ¬flies(edna)) to the argument 213

(A2, flies(edna)), simply because the defeasible derivation of the former is based on 214

emu(edna), and because this is more specific than bird(edna), on which the derivation of 215

the latter argument is based. We will further discuss this in Example 8. 216

Let us see what happens to Example 2 if we doubt that emus are birds. 217

Example 3 (Renamed Subsystem of Example 3 of [22]) 218

219

220

221

We have 222

T�3 = {emu(edna)}, T�3∪�3 = {bird(edna), flies(edna), ¬flies(edna)} ∪ T¶3 .

Now it is not clear anymore whether we should prefer (A1, ¬flies(edna)) to 223

(A2, flies(edna)). Both arguments are now based on emu(edna), but it is not clear whether 224

the less specific bird(edna) — because it has dropped out of T�3 now — can still be 225

considered as a basis for (A2, flies(edna)). We will further discuss this in Example 9. 226

Now suppose that we have a lovely grandma and a grouchy and noisy grandpa, stay at 227

their house and hear that somebody is coming into the house noisily, but cannot see yet who 228

it is. 229
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Example 4230

231

232

Let us compare the specificity of the arguments (A1, ¬lovely) and (A2, lovely). We have233

T�4 = {somebody, noisy}, T�4∪�4 = {grandma, grandpa, lovely, ¬lovely} ∪ T�4 .

Now, because there is somebody who is noisy according to the current situation given234

by �F
4, it is probably grandpa because his characterization is more specific. Thus, it is235

intuitively clear that we would prefer (A1,¬lovely) as the more specific argument to236

(A2, lovely). We will further discuss this in Example 10.237

4 Toward an intuitive notion of specificity238

4.1 The common-sense concept of specificity239

It is part of general knowledge that a criterion is [properly] more specific than another one240

if the “class of candidates that satisfy it” is a [proper] subclass of that of the other one.241

Analogously — taking logical formulas as the criteria — a formula A is [properly] more242

specific than a formula B, if the model class of A is a [proper] subclass of the model class243

of B, i.e. if A |= B [and B �|= A].244

If we consider a formula as a predicate on model-theoretic structures, its model class245

becomes the extension of this predicate. From this viewpoint, we can state A |= B also as246

the syllogism “every A is B”, and also as the following Lambert diagram [19, Dianoiologie,247

§§173–194].248

249

4.2 Arguments as an abstraction250

To enable a closer investigation of the critical parts of a defeasible derivation, we have251

to isolate the defeasible parts in the derivation. From a concrete derivation of a literal L,252

let us abstract the set A of the ground instances of the defeasible rules that are actually253

applied in the derivation, and form the pair (A , L), which we already called an argument254

in Definition 2 of Section 2.4.255

4.3 The intuitive rôle of activation sets in the definition of specificity256

If we want to classify a derivation with defeasible rules according to its specificity, then we257

have to isolate the defeasible part of the derivation and look at its input formulas, so that258



AUTHOR'S PROOF JrnlID 10472 ArtID 9471 Proof#1 - 26/08/2015

UNCORRECTED
PROOF

A series of revisions of David Poole’s specificity

we can see how specific these input formulas are. The input formulas are the set of those 259

literals on which the defeasible part of the derivation is based, called the activation set for 260

the defeasible part of the derivation. In our framework of defeasible positive-conditional 261

specification, the only relevant property of an activation set can be the conjunction of its 262

literals which we can represent by the set itself.2 263

For instance, in Example 2 of Section 3, the argument (A1, ¬flies(edna)) is based only 264

on the activation set {emu(edna)}, whereas the argument (A2, flies(edna)) can also be based 265

on the activation set {bird(edna)}, or on the union of these sets. 266

Moreover, in Example 4 of Section 3, the argument (A1,¬lovely) is based only on the 267

activation set {somebody, noisy}, whereas the argument (A2, lovely) can also be based on 268

the less specific activation set {somebody}. 269

4.3.1 Modulo which theory are activation sets to be compared? 270

Because all literals of an activation set have been derived from the given specification, it 271

does not make sense to compare activation sets w.r.t. the models of the entire specification. 272

Indeed, only a comparison w.r.t. the models of a sub-specification can show any differences 273

between them. 274

Therefore, we have to find out which parts of a specification (�F,�G, �) are to be 275

excluded from the comparison of activation sets. 276

We want to have the entire set �G available for our comparison of activation sets, for the 277

following reasons: The general and strict part �G of our specification represents the neces- 278

sary and stable kernel of our rules, independent of the concrete situation under consideration 279

given by �F, and independent of the uncertainty of our default rules �. Moreover, it is 280

hardly meaningful to exclude any proper rule from �G (i.e. any rule from �G that is not just 281

a literal); the technical reason for this will be given right at the beginning of Section 4.4.3. 282

We have to exclude �F from this comparison, however. This exclusion makes sense 283

because the defeasible rules are typically default rules not written in particular for the given 284

concrete situation that is formalized by �F. Moreover, as indicated before, the inclusion of 285

�F would typically eliminate all differences between activation sets, such as it is the case 286

in all examples of Section 3. 287

Finally, as we want to compare the defeasible parts of derivations, we should exclude the 288

set � of the defeasible rules when we compare activation sets. Thus, on the one hand, all 289

we can take into account from our specification is a subset of the general rules �G, and, on 290

the other hand, we do not want to exclude any of these general rules. 291

All in all, we conclude that �G is that part of our specification modulo which activation 292

sets are to be compared. 293

4.3.2 A first sketch of a notion of specificity 294

Very roughly speaking, if we have fewer activation sets for the defeasible part of a deriva- 295

tion, then these activation sets describe fewer models (i.e. their disjunction has fewer 296

models), which again means that the defeasible part of the derivation is more specific. 297

Accordingly, a first sketch of a notion of specificity can now be given as follows: 298

2 A formal definition of an activation set is not needed here and would be harmful to intuition. Several
different formal notions of activation sets will be found in Definition 7 of Section 6.1 and also in Definition 16
of Section 8.3.1.
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An argument (A1, L1) is [properly] more specific than an argument (A2, L2) if, for299

each activation set H1 for (A1, L1), there is an activation set H2 ⊆ TH1∪ �G for300

(A2, L2) [but not vice versa].301

Note that this notion of specificity is preliminary, and that the notion of an activation set for302

an argument has not been properly defined yet.303

4.4 Isolation of the defeasible parts of a derivation304

If (A , L) is an argument (cf. Section 4.2), then there is a derivation of L which is based only305

on those instances of defeasible rules which are contained in A . Such an argument ignores306

the concrete derivation, and therefore suits our model-theoretic intentions (cf. Section 1).307

With such an argument as an abstraction of a derivation, however, we lose the possibility to308

isolate the actual defeasible parts of the derivation. Such a loss is typical for abstractions in309

general; in our case, however, the discussion of this loss in Section 4.4.1 will turn out to be310

conceptually crucial and result in several different formal notions of activation sets.3311

4.4.1 Isolation of actual defeasible parts in and-trees312

Let us compare this set A with an and-tree of the derivation. Every node in such a tree is313

labeled with the conclusion of an instance of a rule, such that its children are labeled exactly314

with the elements of the conjunction in the condition of this instance.315

Definition 6 (And-Tree)316

Let (�F,�G,�) be a defeasible specification (cf. Section 2.3), and let L be a literal.317

An and-tree T for L [and for the derivation of � � {L}] w.r.t. (�F, �G,�) is a finite,318

rooted tree, where every node is labeled with a literal, satisfying the following conditions:319

1. The root node of T is labeled with L.320

2. For each node N in T labeled with a literal L′, there is a strict or defeasible rule (L′′
0 ⇐321

L′′
1 ∧ . . . ∧ L′′

k ) ∈ � ∪ �, such that L′ = L′′
0σ for some substitution σ [with (L′′

0σ ⇐322

L′′
1σ ∧ . . . ∧ L′′

kσ ) ∈ � ]. Moreover, the node N has exactly k child nodes, which are323

labeled with L′′
1σ, . . . , L′′

kσ , respectively.324

This standard and very simple formal notion of an and-tree is meant to capture a single325

derivation for a single argument. It must not be confused with the compact multi-graphs that326

come as a synopsis with our examples (such as the ones in Section 3).4327

An isolation of the defeasible parts of an and-tree of the derivation may now proceed as328

follows:329

– Starting from the root of the tree, we iteratively erase all applications of strict rules. This330

gives us a set of trees, each of which has the application of a defeasible rule at the root.331

– Starting now from the leaves of these trees, we again erase all applications of strict332

rules. This gives us a set of trees with the following property holding for every node:333

3See Definition 7 of Section 6.1 and also Definition 16 of Section 8.3.1.
4These sophisticated multi-graphs illustrate several derivations for several arguments in parallel, share sub-
graphs, and may have =-edges between occurrences of the same literal L to represent alternative derivations
of L (cf. Example 6 in Section 6.2 as well as Example 15 and 16 in Section 7.2). Because these synopses are
redundant in all examples, we do not provide a formalization for these multi-graphs.
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If all children of a node (if there are any) are leaves, then this node results from an 334

application of a defeasible rule. 335

4.4.2 A first approximation of activation sets 336

In a first approximation, we may now take the activation set for the original derivation 337

to be the set of all labels L of all leaves of all resulting trees, unless the literal L is an 338

unconditional rule from A . 339

The motivation for this notion of an activation set is that the conjunction of its liter- 340

als is a weakest precondition for all defeasible parts of the concrete original derivation. If 341

such a logically weakest precondition satisfies the specificity notion of Section 4.3.2 as 342

an activation set for an argument (A1, L1) w.r.t. a second argument (A2, L2), then any 343

other precondition for all defeasible parts of the given and-tree will satisfy this notion w.r.t. 344

(A2, L2) a fortiori.5 345

4.4.3 Growth of the defeasible parts toward the leaves 346

Note that in the set of trees resulting from the procedure described at the end of Sec- 347

tion 4.4.1, there may well have remained instances of rules from �G connecting a defeasible 348

root application with the defeasible applications right at the leaves. Thus — to cover the 349

whole defeasible part of the derivation in our abstraction — we have to consider the set 350

A ∪ �G instead of just the set A . 351

More precisely, we have to include all proper rules (i.e. those with non-empty con- 352

ditions) from �G, and may also include the literals in �G because they cannot do any 353

harm.6 354

As a consequence, in the modeling via our abstraction A , we cannot prevent the iso- 355

lated defeasible sub-trees resulting from the procedure described in Section 4.4.1 from 356

using the rules from �G to grow toward the root and toward the leaves again. Only the 357

growth toward the leaves, however, can affect our activation sets (which are still taken 358

to be the labels of all leaves of all resulting trees) and thereby our notion of specificity. 359

Indeed, a growth toward the root can add to the conjunction of the given leaves only its 360

super-conjunctions, which are irrelevant because of our focus on weakest preconditions 361

(explained in Section 4.4.2). 362

Let us have a closer look at the effects of such a growth toward the leaves in the most 363

simple case. In addition to a given activation set {Q(a)}, in the presence of a general rule 364

Q(x) ⇐ P0(x) ∧ · · · ∧ Pn−1(x)

from �G, we will also have to consider the activation set {Pi (a)|i ∈ {0, . . . , n − 1}}. 365

This has two effects, which we will discuss in Sections 4.4.4 and 4.4.5. 366

5Note that a further dissection of the isolated defeasible parts would not in general result in activation sets
that can be inferred from the strict rules in �. Where this inference is possible, however, a further dissection
leads to the special notion of activation sets given in Definition 16 of Section 8.3.1.
6The need to include all proper rules and to exclude the literals from �F provides a motivation for simply
defining �G to contain exactly the proper rules of �, such as found in [27].
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4.4.4 First effect: simplified second sketch of a notion of specificity367

The first effect is that we immediately realize that every model of �G in the model class368

that is represented by the activation set {Pi (a)|i ∈ {0, . . . , n − 1}} is also in the model class369

represented by the activation set {Q(a)}.370

Indeed, this growth toward the leaves will immediately add {Pi (a)|i ∈ {0, . . . , n − 1}}371

as a further activation set for every argument with the activation set {Q(a)}. By this effect372

it is just made explicit that an argument that can be based on the activation set {Q(a)} can373

also be based on the activation set {Pi (a)|i ∈ {0, . . . , n − 1}}. Thus — provided that there374

are no other activation sets — an argument that can be based on the activation set {Q(a)}375

is less or equivalently specific compared to any argument that can be based on {Pi (a)|i ∈376

{0, . . . , n − 1}}.377

Therefore — if we admit the effect of a growth toward the leaves on our activation378

sets — we may simplify7 the comparison of activation sets in our first sketch of a notion of379

specificity of Section 4.3.2 as follows:380

An argument (A1, L1) is [properly] more specific than an argument (A2, L2) if, for381

each activation set H1 for (A1, L1), this set H1 is also an activation set for (A2, L2)382

[but not vice versa].383

4.4.5 Second effect: preference of the “more concise”384

The second effect, however, is that an argument (A2, L2) that gets along with {Q(a)}385

becomes even properly less specific than an argument (A1, L1) that actually requires386

{Pi (a)|i ∈ {0, . . . , n − 1}}. and does not get along with {Q(a)}, simply because (A2, L2)387

has the additional activation set {Q(a)}.388

The resulting preference of (A1, L1) to (A2, L2) as being properly more specific is389

usually called preference of the “more concise”, cf. e.g. [27, p. 94], [13, p. 108]. Although390

— to the best of our knowledge — this notion has never been formally defined, roughly391

speaking it is — for an instantiated rule Q(a) ⇐ P0(a)∧· · ·∧Pn−1(a) of the specification —392

the preference of an argument that gets along with the conclusion {Q(a)} of the instantiated393

rule as an activation set, instead of actually requiring the condition {Pi (a)|i ∈ {0, . . . , n −394

1}}.395

For instance, in Example 2 of Section 3, an argument that gets along with {bird(edna)}396

is properly less specific than one that actually requires {emu(edna)}, in the sense that397

emu(edna) is more concise than bird(edna).398

The problem now is that the statement Q(a) �|= P0(a)∧· · ·∧Pn−1(a) — which is required399

to justify this preference — is not explicitly given by the specification (�F,�G,�).400

Nevertheless — if we do not just want to see it as a matter-of-fact property of notions of401

specificity in the style of Poole — we could justify the preference of the “more concise” by402

imposing the following best practice on positive-conditional specification:403

If we write an implication in form of a rule404

Q(x) ⇐ P0(x) ∧ · · · ∧ Pn−1(x)

7Note that we have replaced here the option to choose some activation set H2 ⊆ TH1∪ �G of the first sketch
with the restrictive determination H2 := H1. This simplifying restriction applies here for the following
reason: If H2 ⊆ TH1∪ �G is an activation set for (A2, L2), then H1 is an activation set for (A2, L2) as well,

provided that we admit the first effect of a growth toward the leaves via �G on our activation sets.
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into a positive-conditional specification � of strict (i.e. non-defeasible) knowledge, and if 405

we do not intend that the implication is proper in the sense that its converse does not hold 406

in general, then we ought to specify the full equivalence by adding the rules Pi (x) ⇐ Q(x) 407

(i ∈ {0, . . . , n − 1}) to the specification.8 408

Under this best practice of specification, if we find such a rule without the specification 409

of its full equivalence, then it is not intended to exclude models where Q holds for some 410

object a, but not all of the Pi do. This means that if we find such a rule in the strict and 411

general part �G of a specification, then it is reasonable to assume that the implication is 412

proper w.r.t. the intuition captured in the defeasible rules in �. 413

As a consequence, it makes sense to consider a defeasible argument based on 414

{ Pi (a)|i ∈ {0, . . . , n − 1} } to be properly more specific than an argument that can get along 415

with Q(a). 416

417

Remark 5 (Justification for Preference of the “More Concise” Not Valid for Defeasible 418

Rules) 419

Note that our justification for the preference of the “more concise” does not apply, how- 420

ever, if Q(x) ⇐ P0(x) ∧ · · · ∧ Pn−1(x) is a defeasible rule instead of a strict one, 421

because we then have the following three problems when trying to justify preference of the 422

“more concise”: 423

– The implication given by the rule is not generally intended (otherwise the rule should 424

be a strict one). 425

– Moreover, we cannot easily describe the actual instances to which the default rule is 426

meant to apply (otherwise this more concrete description of the defeasible rule should 427

be stated as strict rules). 428

– The direct treatment of a defeasible equivalence neither has to be appropriate as a 429

default rule in the given situation, nor do we have any means to express a defeasible 430

equivalence in the current setting. 431

Accordingly, there is, for instance, no clear reason to prefer the first argument of Example 3 432

in Section 3 to the second one. This will be discussed in more detail in Example 9. 433

8There is one exception to this justification, however, in the practice of logic programming: If Q(x) ⇐
P0(x) ∧ · · · ∧ Pn−1(x) is the only rule of the specification with Q as the predicate symbol of the conclusion,
then it is standard in PROLOG to consider this implication as an implementation of a full equivalence defining
the predicate Q.

This is different in our context of positive-conditional specification here, however, where we can add and
ought to add the rules Pi (x) ⇐ Q(x) (i ∈ {0, . . . , n − 1}) to our specification, simply because we are not
concerned with the non-termination problem of logic programming resulting from such a specification of the
full equivalence (cf. Section 2.1).

An alternative which is given also in logic programming is to omit the rule indicated above and to replace
each occurrence of each Q(t) with P0(t) ∧ · · · ∧ Pn−1(t), respectively.

Moreover, in the frequent case that several cases of the definition of a predicate are spread over several
rules, the implications definitely tend to be proper also in logic programming, because, roughly speaking, the
defined predicate is given as the proper disjunction of the conditions of the several rules.
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4.4.6 Preference of the “more precise”434

If we consider an argument requiring an activation set { Pi (a)|i ∈ {0, . . . , n − 1} } to be435

properly more specific than an argument that gets along with a proper subset { Pi (a)|i ∈ I }436

for some index set I � {0, . . . , n}, then the resulting preference is usually called preference437

of the “more precise”, cf. e.g. [27, p. 94], [13, p. 108]. An example for the preference of the438

“more precise” is Example 4 of Section 3.439

There is, however, an exception from this preference to be observed, namely the case440

that we can actually derive the set from its subset with the help of �G. In this case,441

the above-mentioned growth toward the leaves with rules from �G again implements the442

approximation of the subclass relation among model classes via the one among activation443

sets.9444

Apart from this exception, there is again a problem, namely that it is not the case that445 ∧
i∈I

Pi (a) �|=
∧

i∈{0,...,n}Pi (a)

would be explicitly given by the specification via (�F,�G,�).446

Nevertheless — if we do not just want to see it as a matter-of-fact property of notions of447

specificity in the style of Poole — we could justify also the preference of the “more precise”448

by imposing the following best practice on positive-conditional specification:449

If we want to exclude the above non-consequence, then we ought to specify, for each450

j ∈ {0, . . . , n} \ I , a rule like Pj (x) ⇐ ∧
i∈I Pi (x).451

452

4.4.7 Conclusion on the preferences453

Let us finally point out that an acceptance of our justifications of the preferences of the454

“more concise” and the “more precise” is not at all a prerequisite for following our investi-455

gations on Poole’s model-theoretic notion of specificity and our correction of this notion in456

the following sections.457

5 Requirements specification of specificity in positive-conditional458

specification459

With implicit reference to a defeasible specification (�F, �G,�) (cf. Section 2.3), let us460

designate Poole’s relation of being more (or equivalently) specific by “�P1”. Here, “P1”461

stands for “Poole’s original version”.462

The standard usage of the symbol “�” is to denote a quasi-ordering (cf. Section 2.5).463

Instead of the symbol “�”, however, [22] uses the symbol “≤”. The standard usage of the464

symbol “≤” is to denote a reflexive ordering (cf. Section 2.5). We cannot conclude from465

this, however, that Poole intended the additional property of anti-symmetry; indeed, we find466

9This approximation was discussed in Section 4.4.4 and will be demonstrated in Example 18 of Section 7.
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a concrete example specification in Poole [22] where the lack of anti-symmetry of �P1 is 467

made explicit.10 468

The possible lack of anti-symmetry of quasi-orderings — i.e. that different arguments 469

may have an equivalent specificity — cannot be a problem because any quasi-ordering �N 470

immediately provides us with its equivalence ≈N , its ordering <N , and its reflexive ordering 471

≤N (cf. Corollary 1 of Section 2.5). 472

By contrast to the non-intended anti-symmetry, transitivity is obviously a conditio sine 473

qua non for any useful notion of specificity. Indeed, if we have to make a quick choice 474

among the three mutually exclusive actions Propose, Kiss, Smile, and if we already have 475

an argument (A2,Kiss) that is more specific than another argument (A3,Smile), and if 476

we come up with yet another argument (A1,Propose) that is even more specific than 477

(A2,Kiss), then, by all means, (A1,Propose) should be more specific than the argument 478

(A3,Smile) as well. It is obvious that a notion of specificity without transitivity could hardly 479

be helpful in practice. 480

A further conditio sine qua non for any useful notion of specificity is that the con- 481

junctive combination of respectively more specific arguments results in a more specific 482

argument. Indeed, if a square is more specific than a rectangle and a circle is more specific 483

than an ellipse, then a square inscribed into a circle should be more specific than a rect- 484

angle inscribed into an ellipse. This property is called monotonicity of conjunction, which 485

we will discuss in Section 7.1. Already in [22], we find an example11 where �P1 vio- 486

lates this monotonicity property of the conjunction, which is described there as “seemingly 487

unintuitive”.12 488

Further intricacies of computing Poole’s specificity in concrete examples are described 489

in [27],13 which will make it hard to implement �P1 or its minor corrections as effi- 490

ciently as required in the practice of answer computation and SLD-resolution w.r.t. 491

positive-conditional specification s. 492

6 Formalizations of specificity 493

6.1 Activation sets 494

A derivation from the leaves to the root can now be split into three phases of derivation of 495

literals from literals. This splitting follows the discussion in Section 4.4.1 on how to isolate 496

the defeasible parts of a derivation (phase 2) from strict parts that may occur toward the 497

root (phase 3) and toward the leaves (phase 1): 498

(phase 1) First we derive the literals that provide the basis for specificity considerations. 499

In our approach we derive the set T� here. Poole takes the set T�∪� instead. 500

(phase 2) On the basis of 501

10Here we refer to the last three sentences of Section 3.2 on Page 145 of [22].
11Here we refer to Example 6 of [22, Section 3.5, p. 146], see our Example 12 in Section 7.1.
12See our Example 12 in Section 7.1 and the references there.
13Here we refer to Section 3.2ff of [27], where it is demonstrated that, for deciding Poole’s specificity relation
(actually �P2 instead of �P1, but this does not make any difference here) for two input arguments, we
sometimes have to consider even those defeasible rules which are not part of any of these arguments. See
also our Example 15 in Section 7.2.
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Fig. 1 And-tree Q6with phases 1, 2, 316,17,18

– a subset H of the literals derived in phase 1,502

– the first item A of a given argument (A , L), and503

– the general rules �G,504

we derive a further set of literals L: H ∪ A ∪ �G � L.505

(phase 3) Finally, on the basis of L, the literal of the given argument (A , L) is derived:506

L ∪ � � {L}.507

In Poole’s approach, phase 3 is empty and we simply have L = {L}. In our approach,508

however, it is admitted to use the facts from �F in phase 3, in addition to the general509

rules from �G, which were already admitted in phase 2.510

With implicit reference to our sets � = �F ∪ �G and �, the phases 2 and 3 can be more511

easily expressed with the help of the following notions.512

Definition 7 ([Minimal] [Simplified] Activation Set)513

Let A be a set of ground instances of rules from �, and let L be a literal.514

H is a simplified activation set for (A , L) if L ∈ TH ∪ A ∪ �G .515

H is an activation set for (A , L) if L ∈ TL∪� for some L ⊆ TH ∪ A ∪ �G .516

H is a minimal [simplified] activation set for (A , L) if H is an [simplified] activation set517

for (A , L), but no proper subset of H is an [simplified] activation set for (A , L).518

Corollary 2 Let A be a set of ground instances of rules from �, and let L be a literal.519

Every simplified activation set for (A , L) is an activation set for (A , L).520

Roughly speaking, an argument is now more (or equivalently) specific than another one521

if each of its activation sets is also an activation set for the other argument. Note that this522

follows the simplified second sketch of a notion of specificity displayed in Section 4.4.4,523

not the first one displayed in Section 4.3.2.524
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Activation sets that are not simplified differ from simplified ones by the admission of 525

facts from �F (in addition to the general rules �G) after the defeasible part of the derivation 526

is completed.14 527

Our introduction of activation sets that are not simplified is a conceptually important cor- 528

rection of Poole’s approach: It must be admitted to use the facts besides the general rules 529

in a purely strict derivation that is based on literals resulting from completed defeasible 530

arguments, simply because the defeasible parts of a derivation (as isolated in Section 4.4.1) 531

should not get more specific by the later use of additional facts that do not provide input to 532

the defeasible parts.15 Note that the difference between simplified and non-simplified acti- 533

vation sets typically occurs in real applications, but — except Example 16 in Section 7.2 — 534

not in our toy examples of Section 7, which mainly exemplify the differences in phase 1. 535

6.2 Poole’s specificity relation P1 and its minor corrections P2, P3 536

In this section we will define the binary relations �P1, �P2, �P3 of “being more or equiva- 537

lently specific according to David Poole” with implicit reference to our sets of facts and of 538

general and defeasible rules (i.e. to �F, �G, and �, respectively). 539

The relation �P1 of the following definition is precisely Poole’s original relation ≥ as 540

defined at the bottom of the left column on Page 145 of [22]. See Section 5 for our reasons 541

to write “�” instead of “≥” as a first change. Moreover, as a second change required by 542

mathematical standards, we have replaced the symbol “�” with the symbol “�” (such that 543

the smaller argument becomes the more specific one), so that the relevant well-foundedness 544

becomes the one of its ordering < instead of the reverse >. 545

Definition 8 (�P1: David Poole’s Original Specificity) 546

(A1, L1) �P1 (A2, L2) if (A1, L1) and (A2, L2) are arguments, and if, for every H ⊆ 547

T�∪� that is a simplified activation set for (A1, L1) but not a simplified activation set for 548

(A2, L1), H is also a simplified activation set for (A2, L2). 549

The relation �P2 of the following definition is the relation � of [27, Definition 10, p. 94] 550

(attributed to [22]). Moreover, the relation >spec of [26, Definition 2.12, p. 132] (attributed 551

to [22] as well) is the relation <P2:=�P2 \ �P2. 552

14This can be seen in Example 16 of Section 7, and in Example 19 of Section 8.2.2. See also the variable F

in Fig. 1.
15 We do not further discuss this obviously appropriate correction here and leave the construction of examples
that make the conceptual necessity of this correction intuitively clear as an exercise. Hint: Have a look at
the proof of Theorem 3 in Section 6.5. Then present two different sets of strict rules with equal derivability,
where only one needs the facts in phase 3 and where the additional specificity gained by these facts violates
the intuition.
16Look at Note 30 of Example 15 in Section 7.2 to see that it may really matter for the definition of P1, P2,
P3 that we do not have F ⊆ T�F∪�G in general in Poole’s approach.
17Although we do not have H ⊆ �F in general in our approach, the replacement of �F with H in this table
would result in fewer derivable roots for our approach, simply because we always have TH∪�G ⊆ T�F∪�G

in our approach.
18From the leaves to the root: phase 1 (H ), phase 2 (sub-trees of the defeasible parts of a derivation, with
explicit defeasible root steps), phase 3 (root sub-tree). For Poole’s approach, however, the root sub-tree is still
part of phase 2, whereas phase 3 is empty.
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Definition 9 (�P2: Standard Version of David Poole’s Specificity)553

(A1, L1) �P2 (A2, L2) if (A1, L1) and (A2, L2) are arguments, and if, for every H ⊆554

T�∪� that is a simplified activation set for (A1, L1) but not a simplified activation set for555

(∅, L1), H is also a simplified activation set for (A2, L2).556

The only change in Definition 9 as compared to Definition 8 is that “(A2, L1)” is557

replaced with “(∅, L1)”. We did not yet encounter any example where any difference results558

from this correction toward “(∅, L1)”, which is standard in the publications of the last two559

decades and which is intuitively more appropriate in the sense of a weight or measure560

function.561

The relations �P1 and �P2 were not meant to compare arguments for literals that do562

not need any defeasible rules — or at least they do not show an intuitive behavior on such563

arguments, as shown in Example 5.564

Example 5 (Minor Flaw of �P1 and �P2)565

566

567

Let us compare the specificity of the arguments (A2, beer) and (∅, drink), meaning that we568

should have a beer or else an arbitrary drink at our own choice, respectively.569

We have T�5 = {thirst, drink},T�5∪�5 = {beer} ∪ T�5 .570

We have (A2, beer) �P2 (∅, drink) because for every H ⊆ T�5∪�5 that is a simplified571

activation set for (A2, beer), but not a simplified activation set for (∅, beer), we have thirst ∈572

H , so H is a simplified activation set also for (∅, drink).573

We have (∅, drink) �P2 (A2, beer) because there cannot be a simplified activation set574

for (∅, drink) that is not a simplified activation set for (∅, drink).575

All in all, we get19 (A2, beer) ≈P2 (∅, drink), although (∅, drink) should be strictly576

preferred to (A2, beer) according to intuition, simply because an argument that does not577

require any defeasible rules should always be strictly preferred to a comparable argument578

that does actually require defeasible rules.579

To overcome this minor flaw, which consists in the inconvenience of not in580

general preferring a non-defeasible argument to a comparable defeasible one, we581

finally add an implication as an additional requirement in Definition 10. This impli-582

cation guarantees that no argument that requires defeasible rules can be more583

or equivalently specific than an argument that does not require any defeasible584

rules at all.585

Definition 10 (�P3: Rather Unflawed Version of David Poole’s Specificity)586

(A1, L1) �P3 (A2, L2) if (A1, L1) and (A2, L2) are arguments, L2 ∈ T� implies587

19Note that by Corollary 4, we will get (A2, beer) ≈P1 (∅, drink) as well. Moreover, note that this problem
does not occur in the similar Example 1 of Section 3.
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L1 ∈ T�, and if, for every H ⊆ T�∪� that is a [minimal]20 simplified activation set for 588

(A1, L1) but not a simplified activation set for (∅, L1), H is also a simplified activation set 589

for (A2, L2). 590

Corollary 3 If (A1, L1), (A2, L2) are arguments with A1 ⊆ A2, then any of the following 591

conditions is sufficient for (A1, L1) �P3 (A2, L2): 592

1. L1 = L2. 593

2. L2 ∈ T� =⇒ L1 ∈ T� and {L1} ∪ A2 ∪ �G � {L2}, 594

3. A1 = ∅ (which implies L1 ∈ T� by Definition 5).21 595

As every simplified activation set that passes the condition of Definition 8 also 596

passes the one of Definitions 9 and 10,, we get the following corollary of these three 597

definitions. 598

Corollary 4 �P3⊆�P2⊆�P1. 599

By Corollaries 3 and 4, �P1, �P2, and �P3 are reflexive relations on arguments, but 600

— as we will show in Example 6 and state in Theorem 1 — not quasi-orderings in 601

general. 602

Example 6 (Counterexample to the Transitivities: “Choose one action!”) 603

Suppose you meet the sexy girl Jo in a lift for a very short time, you smile at her, and 604

she smiles back with a head akimbo. Since smiling, kissing, and proposing are mutually 605

exclusive actions of your mouth, you have to make up your mind quickly what to do next, 606

depending on your current level of boldness.22 607

�F
6 := {Bold,HAkimbo(Jo),Smiles(Jo),Sexy(Jo)} ,

�G
6 := {Kiss ⇐ Promising(G)} ,

�6 :=

⎧⎪⎪⎨
⎪⎪⎩

Smile ← Sexy(G),

Kiss ← Bold ∧ Smiles(G) ∧ Sexy(G),

Promising(G) ← HAkimbo(G) ∧ Smiles(G) ∧ Sexy(G),

Propose ← Promising(G) ∧ Bold

⎫⎪⎪⎬
⎪⎪⎭

.

A1 :=
{
Promising(Jo) ← HAkimbo(Jo) ∧ Smiles(Jo) ∧ Sexy(Jo)
Propose ← Promising(Jo) ∧ Bold

}
,

A2 := {Kiss ← Bold ∧ Smiles(Jo) ∧ Sexy(Jo)} ,

A3 := {Smile ← Sexy(Jo)} .

Compare the specificity of the arguments (A1,Propose), (A2,Kiss), (A3,Smile)! 608

20Note that the omission of the optional restriction to minimal simplified activation sets for (A1, L1) in
Definition 10 has no effect on the extension of the defined notion, simply because the additional non-minimal
simplified activation sets (A1, L1) will then be simplified activation sets for (A2, L2) a fortiori.
21Exercise: Find a counterexample, however, for the conjecture that L1 ∈ T� implies (A , L1) �P3 (A , L2).
22 The nullary predicate Bold could actually be removed from all rules and facts of this example, which
would still remain a counterexample to the transitivities; to the contrary, it would even improve its status by
becoming a minimal counterexample. A renaming of the resulting minimal counterexample was presented as
Example 5.8 in [34, 35].
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609

Lemma 1 There are610

– a specification (�F
6,�G

6 ,�6) without any negative literals (i.e., a fortiori, �F
6∪�G

6 ∪�6611

is non-contradictory), and612

– minimal arguments (A1, L1), (A2, L2), (A3, L3),613

such that (A1, L1) �P3 (A2, L2) �P3 (A3, L3) ��P1 (A1, L1) and (A1, L1) ��P1614

(A2, L2) ��P1 (A3, L3).615

Proof of Lemma 1 Looking at Example 6, we see that only the quasi-ordering properties in616

the last two lines of Lemma 1 are non-trivial. We have617

T�6 = {Bold,HAkimbo(Jo),Smiles(Jo),Sexy(Jo)},
T�6∪�6 = {Promising(Jo),Propose,Kiss,Smile} ∪ T�6 .

Thus, regarding the arguments (A1,Propose), (A2,Kiss), (A3,Smile), the implication618

added in Definition 10 as compared to Definitions 8 and 9 is always satisfied, simply619

because its condition is always false.620

(A3,Smile) ��P1 (A1,Propose) �P3 (A2,Kiss): The minimal simplified activation sets621

for (A1,Propose) that are subsets of T�6∪�6 and no simplified activation sets for622

(∅,Propose) (or, without any difference, no simplified activation sets for (A3,Propose))623

are {Bold,HAkimbo(Jo),Smiles(Jo),Sexy(Jo)} and {Bold,Promising(Jo)}, which are624

simplified activation sets for (A2,Kiss) — but {Bold,Promising(Jo)} is no simplified625

activation set for (A3,Smile).626

(A1,Propose) ��P1 (A2,Kiss) �P3 (A3,Smile): The only simplified activation set for627

(A2,Kiss) that is a subset of T�6∪�6 and no simplified activation set for (∅,Kiss)628

(such as {Promising(Jo)}) (or, without any difference, no simplified activation set for629

(A1,Kiss)) is {Bold,Smiles(Jo),Sexy(Jo)}, which is a simplified activation set for630

(A3,Smile), but not for (A1,Propose).631

(A2,Kiss) ��P1 (A3,Smile): The only minimal simplified activation set for (A3,Smile)632

that is a subset of T�6∪�6 and no simplified activation set for (A2,Smile) is {Sexy(Jo)},633

which is not a simplified activation set for (A2,Kiss).634

635

6.3 Main negative result: not transitive!636

The relations stated in Lemma 1 hold not only for the given indices, but — by Corollary637

4 — actually for all of P1, P2, P3; and so we immediately get:638
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Theorem 1 639

There is a specification (�F
6,�G

6 ,�6), such that �F
6 ∪ �G

6 ∪ �6 is non-contradictory, but 640

none of �P1, �P2, �P3, <P1, <P2, <P3 is transitive. Moreover, the counterexamples to the 641

transitivity of all these relations can be restricted to minimal arguments. 642

As a consequence of Theorem 1, the respective relations in [22, 27], and [26] are 643

not transitive. This means that these relations are not quasi-orderings, let alone reflexive 644

orderings. 645

This consequence is immediate for the relation ≥ at the bottom of the left column on 646

Page 145 of [22]. Moreover, note that the consequence does not depend on the contentious 647

question on whether our interpretation of the negation symbol ¬ essentially differs from its 648

interpretation in [22]. Indeed, our counterexample to transitivity occurs in the negation-free 649

definite-rule fragment of Poole’s original language. 650

Moreover, this consequence is also immediate for the relation � [27, Definition 10, p. 651

94] and for the relation >spec [26, Definition 2.12, p.132], simply because we can replace 652

� and >spec with �P2 and <P2 in the context of Example 6, respectively. 653

Although transitivity of these relations is strongly suggested by the special choice of 654

their symbols and seems to be taken for granted in general, we found an actual statement of 655

such a transitivity only for the relation � of [26, Definition 2.22, p.134], namely in “Lemma 656

2.23” [26, p. 134].23 657

Finally, note that those readers who do not see a proper conflict in our coun- 658

terexample just should add to Example 6 some general rules such as Execute ⇐ Kiss, 659

Execute ⇐ Smile, ¬Execute ⇐ Propose, say to model the situation in one of the areas of 660

today’s planet Earth where an unmarried woman who raises the wish to smile or kiss has to 661

be executed. 662

6.4 Our novel specificity ordering CP1 663

In the previous section, we have seen that minor corrections of Poole’s original relation P1 664

(such as P2, P3) do not cure the (up to our finding of Example 6) hidden or even denied defi- 665

ciency of these relations, namely their lack of transitivity. Our true motivation for a major 666

correction of P3 was not this formal deficiency, but actually an informal one, namely that it 667

failed to get sufficiently close to human intuition, which will become clear in Section 7. 668

For these reasons, we now define our major correction of Poole’s specificity — the binary 669

relation �CP1 — with implicit reference to our sets of facts and of general and defeasible 670

rules (i.e. to �F, �G, and �, respectively) as follows. 671

23According to the rules of good scientific and historiographic practice, we pinpoint the violation of this
“lemma” now as follows. Non-transitivity of � follows here immediately from the non-transitivity of the
relation ≥spec of Definition 2.15, which, however, is not identical to the above-mentioned relation �, but actu-
ally a subset of �, because it is defined via a peculiar additional equivalence ≈spec introduced in Definition
2.14, [26, p. 132], namely via ≥spec:=>spec ∪ ≈spec [26, Definition 2.15, p.132f.]. Directly from Defini-
tion 2.14 of [26], we get ≈spec⊆≈P2. Thus, by Corollary 4, we get ≥spec⊆�P2⊆�P1; and so (recollecting
<P2⊆>spec⊆≥spec) the result

(A1, L1) <P2 (A2, L2) <P2 (A3L3) ��P1 (A1, L1)

of Lemma 1 gives us the following counterexample to transitivity:

(A1, L1) ≥spec (A2, L2) ≥spec (A3L3) �≤spec (A1, L1).
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Definition 11 (�CP1: 1st Version of our Specificity Relation)672

(A1, L1) �CP1 (A2, L2) if (A1, L1) and (A2, L2) are arguments, and we have673

1. L1 ∈ T� or674

2. L2 /∈ T� and every H ⊆ T� that is an [minimal]24 activation set for (A1, L1) is also675

an activation set for (A2, L2).676

Corollary 5 If (A1, L1), (A2, L2) are arguments with A1 ⊆ A2, then any of the following677

conditions is sufficient for (A1, L1) �CP1 (A2, L2):678

1. L1 = L2.679

2. L2 ∈ T� =⇒ L1 ∈ T� and {L1} ∪ � � {L2}.25680

3. L1 ∈ T� (which is implied by A1 = ∅ by Definition 5).681

The crucial change in Definition 11 as compared to Definition 10 is not the technically682

required emphasis it puts on the case “L1 ∈ T�”, which will be discussed in Remark 6 of683

Section 6.6. The crucial changes actually are684

(A) the replacement of “H ⊆ T�∪�” with “H ⊆ T�” (as explained already in phase 1 of685

Section 6.1), and the thereby enabled686

(B) omission of the previously technically required,26 but unintuitive negative condition687

on derivability (of the form “but not a simplified activation set for (∅, L1)”).688

An additional minor change, which we have already discussed in Section 6.1, is the one689

from simplified activation sets to (non-simplified) activation sets.690

Theorem 2 �CP1 is a quasi-ordering on arguments.691

Proof of Theorem 2692

�CP1 is a reflexive relation on arguments because of Corollary 5.693

To show transitivity, let us assume (A1, L1) �CP1 (A2, L2) and (A2, L2) �CP1 (A3,694

L3). According to Definition 11, because of (A1, L1) �CP1 (A2, L2), we have L1 ∈ T�695

— and then immediately the desired (A1, L1) �CP1 (A3, L3) — or we have L2 /∈ T�696

and every H ⊆ T� that is an activation set for (A1, L1) is also an activation set for697

(A2, L2). The latter case excludes the first option in Definition 11 as a justification for698

(A2, L2) �CP1 (A3, L3), and thus we have L3 /∈ T� and every H ⊆ T� that is an acti-699

vation set for (A2, L2) is also an activation set for (A3, L3). All in all, we get that every700

H ⊆ T� that is an activation set for (A1, L1) is also an activation set for (A3, L3). Thus,701

we get the desired (A1, L1) �CP1 (A3, L3) also in this case.702

24Note that the omission of the optional restriction to minimal activation sets for (A1, L1) in Definition 11
has no effect on the extension of the defined notion, simply because the additional non-minimal activation
sets for (A1, L1) will then be activation sets for (A2, L2) a fortiori.
25Note that, in general — contrary to Corollary 3(2) — A2 must not participate in the derivation of L2 from
L1, say in the form that there is a set of literals L with {L1} ∪ A2 ∪ �G � L and L ∪ � � {L2}, because rules
from �F may have participated in the derivation of L1 from an activation set. The source of this difference
between P3 and CP1 is the replacement of simplified activation sets in Definition 10 with (non-simplified)
activation sets in Definition 11.
26See the discussion in Example 10 in Section 6.6 on why this condition is technically required for P1, P2,
and P3.
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Obviously, an argument is ranked by �CP1 firstly on whether its literal is in T�, and, if 703

not, secondly on the set of its activation sets, which is an element of the power set of the 704

power set of T�. So we get: 705

Corollary 6 If T� is finite, then <CP1 is well-founded. 706

6.5 Relation between the specificity relations P3 and CP1 707

Theorem 3 Let �<2 be the set of rules from � that are unconditional or have exactly one 708

literal in the conjunction of their condition. 709

Let �≥2 be the set of rules from � with more than one literal in their condition. 710

�P3⊆�CP1 holds if one (or more) of the following conditions hold: 711

1. For every H ⊆ T� and for every set A of ground instances of rules from �, and for 712

L := TH∪A ∪�G , we have TL∪� ⊆ L ∪ T�. 713

2. For each instance L ⇐ L′
0 ∧ . . . ∧ L′

n+1 of each rule in �≥2 with L /∈ T�<2 , 714

we have L′
j /∈ T�<2 for all j ∈ {0, . . . , n + 1}. 715

3. For each instance L ⇐ L′
0 ∧ . . . ∧ L′

n+1 of each rule in �≥2, 716

we have L′
j /∈ T� for all j ∈ {0, . . . , n + 1}. 717

4. We have �≥2 = ∅. 718

Note that if we had improved �P3 only w.r.t. phase 1 of Section 6.1, but not w.r.t. 719

phase 3 in addition, then Theorem 3 would not require any condition at all. (See the 720

proof!) This means that a condition becomes necessary by our correction of simplified 721

activation sets to non-simplified ones, but not because of the major changes (A) and (B) 722

of Section 6.4. 723

Proof of Theorem 3 724

First let us show that condition 2 implies condition 1. To this end, let H ⊆ T�, 725

let A be a set of ground instances of rules from �, and set L := TH∪A ∪�G . 726

For an argumentum ad absurdum, let us assume TL∪� � L ∪ T�. Because of 727

�F ⊆ T�<2 , we have L ∪ � = L ∪ �F ∪ �G ⊆ L ∪ T�<2 ∪ �G, and thus 728

TL∪� ⊆ TL∪T
�<2 ∪ �G , and thus TL∪T

�<2 ∪ �G � L ∪ T�<2 (because otherwise 729

TL∪� ⊆ TL∪T
�<2 ∪ �G ⊆ L ∪ T�<2 ⊆ L ∪ T�). Now L is closed under �G by defini- 730

tion. Moreover, T�<2 is closed under �<2 by definition and under �≥2 by condition 2. 731

Because both of the sets of literals L and T�<2 are closed under �G — but nevertheless 732

their union is not closed under �G according to TL∪T
�<2 ∪ �G � L ∪ T�<2 — there 733

must be an inference step essentially based on both sets in parallel. More precisely, 734

this means that there must be an instance L ⇐ L′
1 ∧ . . . ∧ L′

n of a rule from �G with 735

L /∈ L ∪ T�<2 , and some i, j ∈ {1, . . . , n} with L′
i ∈ L \ T�<2 and L′

j ∈ T�<2 \ L. Then 736

L ⇐ L′
1 ∧ . . . ∧ L′

n must actually be an instance of a rule from �≥2, and L /∈ T�<2 , but 737

L′
j ∈ T�<2 in contradiction to condition 2. 738

As condition 2 implies condition 1, condition 3 trivially implies condition 2, and condi- 739

tion 4 trivially implies condition 3, it now suffices to show the claim that (A1, L1) �CP1 740

(A2, L2) holds under condition 1 and the assumption of (A1, L1) �P3 (A2, L2). By 741

this assumption, (A1, L1) and (A2, L2) are arguments and L2 ∈ T� implies L1 ∈ T�. 742

If L1 ∈ T� holds, then our claim holds as well. Otherwise, we have L1, L2 /∈ T�, and 743

it suffices to show the sub-claim that H is an activation set for (A2, L2) under the 744
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additional sub-assumption that H ⊆ T� is an activation set for (A1, L1). Under the sub-745

assumption we also have H ⊆ T�∪� because of T� ⊆ T�∪�, and, for L := TH∪A1∪�G ,746

we have L1 ∈ TL∪ �, and then, by condition 1, L1 ∈ L ∪ T�. Then, by our current case of747

L1, L2 /∈ T�, we have L1 ∈ L. Thus, H is a simplified activation set for (A1, L1).748

Let us now provide an argumentum ad absurdum for the assumption that H is a sim-749

plified activation set also for (∅, L1): Then we would have L1 ∈ TH∪�G , and because of750

H ⊆ T� and �G ⊆ � we get L1 ∈ TT�∪� = T� — a contradiction to our current case751

of L1, L2 /∈ T�. All in all, by our initial assumption, H must now be a simplified activation752

set for (A2, L2) and, a fortiori by Corollary 2, an activation set for (A2, L2), as was to be753

shown for our only remaining sub-claim.754

6.6 Checking up the previous examples755

With the help of Theorem 3, we can now analyze the examples of Section 3, and also756

check how our relation CP1 behaves in case of our counterexample to transitivity. Note that757

condition 4 of Theorem 3 is satisfied for all of these examples.758

Example 7 (continuing Example 1 of Section 3)759

We have (A2, flies(edna)) ��CP1 (∅,¬flies(edna)) because flies(edna) /∈ T�1 and

Q7

760

¬flies(edna) ∈ T�1 .761

We have (∅,¬flies(edna)) �P3 (A2, flies(edna)) by Corollary 3(3).762

All in all, by Theorem 3, we get (∅,¬flies(edna)) <CP1 (A2, flies(edna)) and763

(∅,¬flies(edna)) <P3 (A2, flies(edna)).764

Remark 6 One may ask why we did not define an additional quasi-ordering, say �CP0,765

simply by replacing the two conditions of Definition 11 with the single condition766

“L2 ∈ T� implies L1 ∈ T�, and every H ⊆ T� that is an [minimal] activation set767

for (A1, L1) is also an activation set for (A2, L2).”768

This would be more in the style of Definition 10 for �P3, and would also avoid the singular769

behavior of the first alternative condition of Definition 11, and so offer continuity advan-770

tages.27 Moreover, for �CP0 instead of �CP1, items 1 and 2 (but not item 3) of Corollary771

5 still hold, as well as Theorem 2 and its Corollary 6. Furthermore, we get �CP0⊆�CP1. It772

is fatal for �CP0, however, that this subset relation may be proper. For instance, �CP0 does773

not in general satisfy Theorem 3. Even worse, �CP0 does not show the proper behavior of774

�CP1 in Example 1 of Section 3, as discussed in Example 7 of Section 6.6:775

We get (∅,¬flies(edna)) �CP0 (A2, flies(edna)) instead of776

(∅,¬flies(edna)) <CP1 (A2, flies(edna)).

This can be seen by considering the activation set ∅ for (∅,¬flies(edna)), which is not777

an activation set for (A2, flies(edna)).778

Such a behavior is obviously unacceptable in practice, and so we do not think that it779

makes sense to consider �CP0 any further.780

Example 8 (continuing Example 2 of Section 3)781

We have (A2, flies(edna)) ��CP1 (A1,¬flies(edna)) because flies(edna) /∈ T�2 and782

27Cf. the discussion of such a continuity advantage in Section 7.1 for the monotonicity w.r.t. conjunction.
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because {bird(edna)} ⊆ T�2 is an activation set for (A2, flies(edna)), but not for 783

(A1,¬flies(edna)). 784

We have (A1,¬flies(edna)) �P3 (A2, flies(edna)), because flies(edna) /∈ T�2 and 785

because, if H ⊆ T�2∪�2 is a simplified activation set for (A1,¬flies(edna)), but not for 786

(∅,¬flies(edna)), then we have emu(edna) ∈ H , and thus H is a simplified activation set 787

also for (A2, flies(edna)). 788

All in all, by Theorem 3, we get (A1,¬flies(edna)) <CP1 (A2, flies(edna)) 789

and(A1, ¬flies(edna)) <P3 (A2, flies(edna)).

Example 9 (continuing Example 3 of Section 3) 790

We have (A2, flies(edna)) �CP1 (A1, ¬flies(edna)) because ¬flies(edna) /∈ T�3 and, for 791

every activation set H ⊆ T�3 for (A2, flies(edna)), we get emu(edna) ∈ H , and so H is an 792

activation set also for (A1,¬flies(edna)). 793

Nevertheless, we have (A2, flies(edna)) ��P3 (A1,¬flies(edna)), because {bird(edna)} 794

⊆ T�3∪�3 is a simplified activation set for (A2, flies(edna)), but neither for (∅, flies(edna)), 795

nor for (A1, ¬flies(edna)). 796

We have (A1,¬flies(edna)) �P3 (A2, flies(edna)), because of flies(edna) /∈ T�3 and 797

because, if H ⊆ T�3∪�3 is a simplified activation set for (A1,¬flies(edna)), but not for 798

(∅,¬flies(edna)), then we have emu(edna) ∈ H and thus H is a simplified activation set 799

also for (A2, flies(edna)). 800

All in all, by Theorem 3, we get (A1,¬flies(edna)) ≈CP1 (A2, flies(edna)) 801

and(A1, ¬flies(edna)) <P3 (A2, flies(edna)).

From a conceptual point of view, we have to ask ourselves, whether we would like 802

the two defeasible rule instances in A2 = {flies(edna) ← bird(edna), bird(edna) ← 803

emu(edna)} to reduce the specificity of (A2, flies(edna)) as compared to a system 804

that seems equivalent for the given argument for flies(edna), namely the argument 805

({flies(edna) ← emu(edna)}, flies(edna)). 806

Does the specificity of a defeasible reasoning step really reduce if we introduce 807

intermediate literals (such as bird(edna) between flies(edna) and emu(edna))? 808

According to human intuition, this question has a negative answer, as we have already 809

explained in Remark 5 at the end of Section 4.4.5.28 810

Example 10 (continuing Example 4 of Section 3) 811

We have (A2, lovely) ��CP1 (A1,¬lovely) because lovely /∈ T�4 and because 812

{somebody} ⊆ T�4 is an activation set for (A2, lovely), but not for (A1, ¬lovely). 813

We have (A1, ¬lovely) �P3 (A2, lovely) because of lovely /∈ T�4 and because, if 814

H ⊆ T�4∪�4 is a simplified activation set for (A1,¬lovely), but not for (∅,¬lovely), 815

then we have {somebody, noisy} ⊆ H , and so H is also a simplified activation set for 816

(A2, lovely). 817

All in all, by Theorem 3, we get (A1,¬lovely) <CP1 (A2, lovely) 818

and (A1, ¬lovely) <P3 (A2, lovely).

28Moreover, Examples 12 and 13 will exhibit a strong reason to deny this question: the requirement of
monotonicity w.r.t. conjunction. Furthermore, see Examples 14 for another example that makes even clearer
why defeasible rules should be considered for their global semantic effect instead of their syntactic fine
structure.
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Note that we can nicely see here that the condition that H is not a simplified activation819

set for (∅,¬lovely) is relevant in Definition 10. Without this condition we would have to820

consider the simplified activation set {grandpa} for (A1, ¬lovely), which is not an activation821

set for (A2, lovely); and so, contrary to our intuition, (A1,¬lovely) would not be more822

specific than (A2, lovely) w.r.t. �P3 anymore.823

Example 11 (continuing Example 6 of Section 6.2)824

The following holds for our specification of Example 6 by Lemma 1 and Corollary 4:825

(A1,Propose) <P3 (A2,Kiss) <P3 (A3,Smile) ��P3 (A1,Propose).

For our corrected relation CP1 we have:826

(A1,Propose) <CP1 (A2,Kiss) <CP1 (A3,Smile) >CP1 (A1,Propose)

simply because the trouble-making set {Bold,Promising(Jo)} is not to be considered here.827

Indeed, this set is not a subset of T�6 . The checking of the details is left to the reader. Note828

that, because of Lemma 1, Theorem 3, Theorem 2, and Corollary 1, all that is actually left829

to show is (A1,Propose) ��CP1 (A2,Kiss) ��CP1 (A3,Smile).830

7 Putting specificity to test w.r.t. human intuition831

Before we will go on with further conceptual material and efficiency considerations in Sec-832

tion 8, let us put our two main notions of specificity — as formalized in the two binary833

relations �P3 and �CP1 — to test w.r.t. our changed phase 1 of Section 6.1 in a series of834

further examples.835

Note that we can freely draw the consequence �P3⊆�CP1 of Theorem 3 because at least836

one29 of its conditions is satisfied in all the following examples except Example 16, which837

is the only example in Section 7 with an activation set that actually is not a simplified one.838

Besides freely applying Theorem 3 — to enable the reader to make his own selection of839

interesting examples — we are pretty explicit in all of the following examples.840

7.1 Monotonicity of the specificity relations w.r.t. conjunction841

Monotonicity w.r.t. conjunction is the following property for a binary relation R on842

arguments:843

In case of (A i
1 , Li

1)R(A i
2 , Li

2) for i ∈ {1, 2},
we always have (A 1

1 ∪ A 2
1 , L′

1)R(A 1
2 ∪ A 2

2 , L′
2)

29Condition 4 of Theorem 3 is satisfied for Examples 2, 3, 4, and 18. Condition 3 (but not condition 4) is
satisfied for Examples 12, 13, 14, 15 and 17.
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for fresh constant literals L′
j with rules L′

j ⇐ L1
j ∧ L2

j added to the general rules �G 844

(j ∈ {1, 2}). In this case, we will call (A 1
j ∪ A 2

j , L′
1) the conjunction of the arguments 845

(A 1
j , L1

j ) and (A 2
j , L2

j ). 846

This property is obviously given for �CP1 in case of L1
1, L

2
1 ∈ T� (which implies 847

L′
1 ∈ T�) and also in case of L1

1, L
2
1 /∈ T� (where we get L1

2, L
2
2, L

′
1, L

′
2 /∈ T�). Note that 848

the latter case — where both arguments are defeasible — is certainly the most important 849

one. 850

For the remaining borderline case of Li
1 /∈ T� � L3−i

1 (for some i ∈ {1, 2}), however, 851

monotonicity cannot be expected in general for �CP1, simply because then we get L′
1 /∈ T�, 852

but do not necessarily have any activation set for L3−i
2 . This non-monotonicity, how- 853

ever, is part and parcel of our decision to prefer arguments whose literals are elements 854

of T�, as expressed in item 1 of Definition 11 of Section 6.4. As explained in Remark 855

6 of Section 6.6, there does not seem to be an alternative to this technically required 856

preference. 857

For �P1, however, monotonicity is not even given for the case we just realized 858

to be the most important one. This was already noted in [22], using the following 859

example. 860

Example 12 (Example 6 of [22])

Let us compare the specificity of the arguments (A1, g1) and (A2, g2). 861

We have (A1, g1) ≈CP1 (A2, g2) because H ⊆ T�12 = {a, d} is an activation set for 862

(Ai , gi ) if and only if H = {a, d}. 863

We have (A1, g1) �P3 (A2, g2) for the following reasons: {a, ¬f} ⊆ T�12∪�12 is a sim- 864

plified activation set for (A1, g1), but neither for (∅, g1), nor for (A2, g2). {a, f} ⊆ T�12∪�12 865

is a simplified activation set for (A2, g2), but neither for (∅, g2), nor for (A1, g1). 866

Poole [22] considers the same result for �P1 as for �P3 to be “seemingly unintuitive”, 867

because, as we have seen for the isomorphic sub-specification in Example 3 of Section 3, 868

we have both (A1,¬c) <P3 (A2, c) and (A1, ¬f) <P3 (A2, f). 869

Indeed, as already listed as an essential requirement in Section 5, the conjunction of two 870

respectively more specific arguments should be more specific. 871
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On the other hand, considering �CP1 instead of �P3, the conjunctions of two respective872

arguments that are pairwise equivalently specific are equivalently specific — exactly as one873

intuitively expects. Indeed, from the isomorphic sub-specifications in Example 3, we know874

that (A1,¬c) ≈CP1 (A2, c) and (A1,¬f) ≈CP1 (A2, f).875

By turning the defeasible rule b ← a of Example 12 into a strict general rule, we obtain876

the following example.877

Example 13 (1st Variation of Example 12)

Let us compare the specificity of the arguments (A1, g1) and (A2, g2).878

We have (A2, g2) ��CP1 (A1, g1) because {b, d} ⊆ T�13 = {a, b, d} is an activation set879

for (A2, g2), but not for (A1, g1).880

We have (A1, g1) �CP1 (A2, g2) because, for every activation set H ⊆ T�13 for881

(A1, g1), we have {a, d} ⊆ H ; and so H is also an activation set for (A2, g2).882

We again have (A1, g1) �P3 (A2, g2), for the same reason as in Example 12. Thus, the883

situation for �P3 is just as in Example 12, and just as “seemingly unintuitive” for exactly884

the same reason.885

We have (A1, g1) <CP1 (A2, g2), which is intuitively correct because the conjunction of886

a more specific and an equivalently specific argument, respectively, should be more spe-887

cific. Indeed, from the isomorphic sub-specifications in Examples 2 and 3, we know that888

(A1,¬c) <CP1 (A2, c) and (A1, ¬f) ≈CP1 (A2, f), respectively.889

All in all, the relation �P3 fails in this example again, whereas the quasi-ordering �CP1890

works according to human intuition and satisfies monotonicity w.r.t. conjunction.891

7.2 Implementation of the preference of the “more precise”892

As primary sources of differences in specificity, all previous examples — except Example893

4 of Section 3, continued in Example 10 of Section 6.6 — illustrate only the effect of chains894

of implications. According to our motivating discussion of Section 4.4.5, we should con-895

sider also examples where the primary source of differences in specificity is an essentially896

required condition that is a super-conjunction of the condition triggering another rule. We897

will do so in the following examples.898

As we have already shown in Example 10, both relations �P3 and �CP1 produce the899

intuitive result if the “more precise” super-conjunction is directly the condition of a rule.900

Let us see whether this is also the case if the condition of the rule is derived from a super-901

conjunction.902
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By removing the second condition literal ¬f in the strict general rule g1 ⇐ ¬c ∧ ¬f of 903

Example 12, we obtain the following example. 904

Example 14 (2nd Variation of Example 12)

Let us compare the specificity of the arguments (A1, g1) and (A2, g2). 905

We have (A1, g1) ��CP1 (A2, g2) because {a} ⊆ T�14 = {a, d} is an activation set for 906

(A1, g1), but not for (A2, g2). 907

We have (A2, g2) �CP1 (A1g1) because any activation set for (A2, g2) that is a subset 908

of T�14 includes a, and so is also an activation set for (A1, g1). 909

Considering Theorem 3 as well as the the activation set {b, d} for (A2, g2), 910

we get (A1, g1) �P3 (A2, g2),

contrary to (A1, g1) >CP1 (A2, g2).

Thus, �CP1 realizes the intuition that the super-conjunction a ∧ d — which is essential 911

to derive c ∧ f according to A2 — is more specific than the “less precise” a. 912

Just like Example 9 of Section 6.6, this example shows again that �P3 does not properly 913

implement the intuition that — in a model-theoretic approach to specificity — defeasible 914

rules should be considered for their global semantic effect instead of their syntactic fine 915

structure. 916

Example 15 (Example 11 from [27, p. 96])

Compare the specificity of the arguments (A 1 ∪ A 4 ∪ A 5, x), (A 2 ∪ A 4 ∪ A 5,¬x), 917

(A 3 ∪ A 4, x)! 918

We have (A 1 ∪ A 4 ∪ A 5, x) <CP1 (A 2 ∪ A 4 ∪ A 5,¬x) ≈CP1 (A 3 ∪ A 4, x), 919

because of x,¬x /∈ T�15 , and because any activation set H ⊆ T�15 = {c, d, e} for any of 920
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(A 1 ∪ A 4 ∪ A 5, x), (A 2 ∪ A 4 ∪ A 5, ¬x), (A 3 ∪ A 4, x) contains {d, e}, which is an921

activation set only for the latter two.922

This matches our intuition well, because the first of these arguments essentially requires923

the “more precise” c ∧ d ∧ e instead of the less specific d ∧ e.924

We have (A 1 ∪ A 4 ∪ A 5, x) �P3 (A 2 ∪ A 4 ∪ A 5,¬x) �P3 (A 3 ∪ A 4, x) �P3925

(A 1 ∪ A 4 ∪ A 5, x), however. This means that �P3 cannot compare these counterargu-926

ments and cannot help us to pick the more specific argument.927

What is most interesting under the computational aspect is that, for realizing928

(A 1 ∪ A 4 ∪ A 5, x) ��P3 (A 2 ∪ A 4 ∪ A 5,¬x),
we have to consider the simplified activation set {d, f} ⊆ T�15∪�15 for929

(A 1 ∪ A 4 ∪ A 5, x). This means that here — to realize that f ∈ T�15∪�15 — we have to930

take into account the defeasible rule of A 3, which is not part of any of the two arguments931

under comparison.30932

Note that such considerations are not required, however, for realizing the properties of933

�CP1, because defeasible rules not in the given argument can be completely ignored when934

calculating the minimal activation sets as subsets of T� instead of T�∪�. In particular, the935

complication of pruning — as discussed in detail in [27, Section 3.3] — does not have to936

be considered for the operationalization of �CP1.937

By turning the defeasible rule f ← e of Example 15 into a strict general rule, we obtain938

the following example.939

Example 16 (Variation of Example 15)

Compare the specificity of the arguments (A 1 ∪ A 4 ∪ A 5, x), (A 2 ∪ A 4 ∪ A 5,¬x),940

(A 4, x)!941

Obviously, x,¬x /∈ T�16 = {c, d, e, f}. Moreover, {d} ⊆ T�16 is an activation set942

for (A 4, x) (but not a simplified one!) and, a fortiori (by Corollary 5(1)), for943

(A 1 ∪ A 4 ∪ A 5, x), but not for (A 2 ∪ A 4 ∪ A 5,¬x). Furthermore, every activation944

set H ⊆ T�16 for (A 2 ∪ A 4 ∪ A 5,¬x) satisfies {d, e} ⊆ H , which is an activation945

30Have a look at Fig. 1 in Section 6.1 to see that the effect of f proceeds here only via the set F , but not via
the usage of the set H at the bottom of Fig. 1.
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set for A 4x and (A 1 ∪ A 4 ∪ A 5, x). Finally, every activation set H ⊆ T�16 for 946

(A 1 ∪ A 4 ∪ A 5, x) satisfies {d} ⊆ H which is an activation set for (A 4, x). 947

All in all, we have (A 4, x) ≈CP1 (A 1 ∪ A 4 ∪ A 5, x) >CP1 (A 2 ∪ A 4 ∪ A 5,¬x). 948

This is intuitively sound because (A 2 ∪ A 4 ∪ A 5,¬x) is activated only by the more 949

specific d ∧ e, whereas (A 4, x) is activated also by the “less precise” d. 950

Moreover, c ∧ d ∧ e is not essentially required for (A 1 ∪ A 4 ∪ A 5, x), and so 951

this argument is tantamount to (A 4, x). The reason for this remarkable effect is 952

not the lack of minimality of the argument (A 1 ∪ A 4 ∪ A 5, x), but our semantic, 953

model-theoretic approach, which simply ignores the fact that the derivation via A 1 954

requires the more precise activation set. Indeed, we primarily consider consequence, 955

not derivation. 956

We have (A 4, x) <P3 (A 1 ∪ A 4 ∪ A 5, x) �P3 (A 2 ∪ A 4 ∪ A 5,¬x) �P3 (A 4, x), 957

however. This means that �P3 fails here completely w.r.t. Poole’s intuition, as actually in 958

most non-trivial examples. 959

7.3 Conflict between the “more concise” and the “more precise” 960

By removing the second condition literal ¬f in the strict general rule g1 ⇐ ¬c ∧ ¬f of 961

Example 13, we obtain the following example. 962

Example 17 (Variation of Example 13)

T�17 = {a, b, d}. Let us compare the specificity of the arguments (A1, g1) and (A2, g2). 963

We have (A1, g1) �CP1 (A2, g2) for the following reasons: {a} ⊆ T�17 is an activation 964

set for for (A1, g1), but not for (A2, g2); {b, d} ⊆ T�17 is an activation set for (A2, g2), but 965

not for (A1, g1). 966

By Theorem 3 we also get (A1, g1) �P3 (A2, g2). 967

In this example the two intuitive reasons for specificity — super-conjunction (preference 968

of the “more precise”) and implication via a strict rule (preference of the “more concise”) 969

— are in an irresolvable conflict, which goes well together with the fact that neither �CP1 970

nor �P3 can compare the two arguments. 971
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7.4 Global effect matters more than fine structure972

The following example nicely shows that any notion of specificity based only on single973

defeasible rules (without considering the context of the general strict rules as a whole)974

cannot be intuitively adequate.975

Example 18 (Example from Page 95 of [27])

Let us compare the specificity of the arguments (A1, ¬p(a)) and (A2, p(a)).976

We have (A1, ¬p(a)) ≈P3 (A2, p(a)), because of p(a),¬p(a) /∈ T�18 = {q(a), s(a)},977

and because, for H ⊆ T�18∪�18 , i ∈ {1, 2}, L1 := ¬p(a), and L2 := p(a), we have the log-978

ical equivalence of H = {q(a)} on the one hand, and of H being a minimal simplified979

activation set for (Ai , Li) but not for (∅, Li), on the other hand.980

By Theorem 3, we also get (A1,¬p(a)) ≈CP1 (A2, p(a)).981

This makes perfect sense because q(a) ∧ s(a) is not at all strictly “more precise” than982

q(a) in the context of �G
18.983

Note that nothing is changed here if s(x) ⇐ q(x) is replaced by setting �G
18 := {s(a)}.984

If s(x) ⇐ q(x) is replaced by setting �G
18 := ∅ and �F

18 := {q(a), s(a)}, however, then we985

get both (A1, ¬p(a)) <P3 (A2, p(a)) and (A1, ¬p(a)) <CP1 (A2, p(a)).986

This also speaks for our admission of literals (i.e. unconditional rules) to �G.31987

8 Efficiency considerations and the specificity ordering CP2988

The specificity relations P1, P2, P3, and CP132 share several efficiency features, which we989

will highlight in this section. Moreover, we will introduce the specificity ordering CP2,990

a minor variation of CP1 toward more efficiency and intuitive adequacy. Finally, we will991

discuss further steps toward more efficiency following Herbrand?s Fundamental Theorem.992

8.1 A slight gain in efficiency993

A straightforward procedure toward deciding the specificity relations �CP1 and �P3994

between two arguments is to consider all possible activation sets from the literals in the995

sets T� and T�∪�, respectively. The effort for computing �CP1 is lower than that of �P3996

because of T� ⊆ T�∪�, though not w.r.t. asymptotic complexity: In both cases already the997

31Cf. Note 1 of Section 2.3.
32P1 follows [22] and can be found in this paper in Definition 8 of Section 6.2. P2 follows [26] and can be
found in Definition 9 of Section 6.2. P3 respects non-defeasible arguments and can be found in Definition 10
of Section 6.2. CP1 is our transitive relation found in Definition 11 of Section 6.4.
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number of possible (simplified) activation sets is exponential in the number of literals in the 998

respective sets T� and T�∪�, because each possible subset has to be tested. 999

8.2 Comparing derivations 1000

To lower the computational complexity, more syntactic criteria for computing specificity 1001

were introduced in [27]. These criteria refer to the derivations for the given arguments. 1002

More precisely, they refer to the and-trees of Definition 6 in Section 4.4.1. 1003

8.2.1 No pruning required 1004

The concept of pruning and-trees is introduced in [27, Definition 12] in this context, 1005

because, for the case of �P2, attention cannot be restricted to derivations which make use 1006

only of the instances of defeasible rules given in the arguments. The reason for this is that 1007

the specificity notions according to [22] and [26] admit literals L in activation sets that can- 1008

not be derived solely by strict rules, i.e. L ∈ T�∪� \ T�. Since this is not possible with the 1009

relation �CP1, this problem vanishes with our corrected version of specificity. This problem 1010

and its vanishing are discussed in Example 15 of Section 7.2. 1011

8.2.2 Sets of derivations have to be compared 1012

Yet still, the specificity relation �CP1 inherits several properties from �P3. For instance, the 1013

syntactic criteria of their definitions require us in general to compare two sets of derivations 1014

element by element. This is true for both specificity relations: 1015

Example 19 (Minimal argument with two minimal and-trees/activation sets)

The argument (A1,¬h) has {b, d} as the only minimal activation set that is a subset of 1016

T�19 = �F
19. {b, d} is also a minimal activation set for (A2, h). On the other hand, {b, c} is 1017

an activation set for (A2, h), but not for (A1, ¬h). Thus, we get (A1, ¬h) <CP1 (A2, h). 1018

Because either d or c is in an and-tree of the argument (A2, h) (but never both!), a 1019

comparison of two fixed and-trees does not suffice. 1020

Moreover note that we have (A1, ¬h) �P3 (A2, h), because of the simplified activation 1021

sets {g} and {f}, respectively. 1022

Furthermore note that the only minimal activation set for the minimal argument 1023

({e ← b}, f) is {b}, which, however, is not a simplified activation set for that argument. 1024
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The reason for the complication of an element-by-element comparison of and-trees is that1025

we consider a very general setting of defeasible reasoning in this paper. Indeed, we admit1026

1. more than one condition literal in rules (conditions containing more than one literal)1027

and1028

2. non-empty sets of background knowledge, i.e. general rules, not only facts.1029

Typically, only restricted cases are considered: Conditions have always to be singletons in1030

[14], no background knowledge is allowed in [8], and both restrictions are present in [2].1031

8.2.3 Path criteria?1032

Before we come to the computation of activations sets via goal-directed derivations in1033

Section 8.3, let us have a closer look here at the path criterion of [27, Section 3.4].1034

Definition 12 (Path)1035

For a leaf node N in an and-tree T , we define the path in T through N as the empty set if1036

N is the root, and otherwise as the set consisting of the literal labeling N , together with all1037

literals labeling its ancestors except the root node. Let Paths(T ) be the set of all paths in T1038

through all leaf nodes N .1039

With this notion of paths, the quasi-ordering � on and-trees can be given as follows:1040

Definition 13 ([27, Definition 23])1041

T1 � T2 if T1 and T2 are two and-trees, and for each t2 ∈ Paths(T2) there is a path t1 ∈1042

Paths(T1) such that t1 ⊆ t2.1043

Two and-trees can be compared w.r.t. � efficiently. This requires the subset comparison1044

of all paths of the two trees, respectively. Hence, the respective complexity is polynomial,1045

at most O(n3), where n is the overall number of nodes in the and-trees. This made the1046

relation � attractive for practical use in the context of [27] compared to the exponential1047

comparison mention in Section 8.1. As stated in the following definition, for a comparison1048

of specificity we have to consider all and-trees, however, and so we still remain with an1049

overall exponential time complexity, which is not better than the one we will describe in1050

Remark 14 of Section 8.3.4.1051

Definition 14 ([27, Definition 24])1052

(A1, h1) ≤ (A2, h2) if (A1, h1) and (A2, h2) are two arguments in the given specification1053

and for each and-tree T1 for h1 there is an and-tree T2 for h2 such that T1 � T2.1054

It is shown in [27, Theorem 25] that ≤ and �P2 are equal in special cases, namely if1055

the arguments involved in the comparison correspond to exactly one and-tree. Let us try to1056

adapt this result to our new relation �CP1, in the sense that we try to establish a mutual1057

subset relation between ≤ and �CP1.1058

The forward direction is pretty straightforward, but comes with the restriction to be1059
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expected: From [27, Theorem 25] we get ≤⊆�P2. By looking at the empty path, we easily 1060

see that ≤ satisfies the additional restriction of Definition 10 as compared to Definition 9; 1061

so we also get ≤⊆�P3. Finally, we can apply Theorem 3 and get the intended ≤⊆�CP1, but 1062

only with the strong restriction of the condition of Theorem 3. We see no way yet to relax 1063

this restriction resulting from phase 3 of Section 6.1. 1064

It is even more unfortunate that the backward direction does not hold at all because of 1065

our change in phase 1 of Section 6.1. In particular, as shown in the following example, it 1066

does not hold for the special case where it holds for �P2, i.e. in the case that there are no 1067

general rules and hence each minimal argument corresponds to exactly one derivation (cf. 1068

the proof of Theorem 25 in [27]). 1069

Example 20

We have (A1, d) �P3 (A2,¬d) and (A1, d) <CP1 (A2,¬d). 1070

Both arguments (A1, d) and (A2,¬d) correspond to exactly one and-tree, say T1 and T2, 1071

respectively. All paths in Paths(T1) contain c1, but not c2, and all paths in Paths(T2) contain 1072

c2, but not c1. Hence, (A1, d) ≤ (A2,¬d) does not hold. 1073

8.3 Toward a more efficiently realizable notion of Poole-style specificity 1074

Contrary to our small examples in the previous sections, examples of a practically relevant 1075

size require notions of specificity that can be decided efficiently. 1076

As we are mainly interested in the more specific arguments, i.e. in the minimal elements 1077

of our specificity ordering, we may admit variations of our specificity ordering CP1 that 1078

offer better chances for an efficient implementation, but do not relevantly differ w.r.t. these 1079

minimal elements. 1080

Therefore, in this section, we will introduce another correction (CP2) of Poole’s speci- 1081

ficity relation, which offers some advantages for the computation of the respective activation 1082

sets, whereas our specificity ordering CP1 offers only the minor advantages over P1, P2, P3 1083

we have already described in Section 8.1 and 8.2.1. 1084

More precisely, our plan for this section is to obtain another quasi-ordering �CP2 by 1085

slight modification of our quasi-ordering �CP1, such that the two do not differ in any of our 1086

previous examples, and such that �CP2 may mirror our intuition on specificity according to 1087

the analysis in Section 4 even more closely in some aspects. Finally, we will try to develop a 1088

more efficient procedure for deciding the specificity quasi-ordering �CP2 than those known 1089

for any of �P1, �P2, �P3, �CP1. 1090

The crucial step in such a procedure is the computation of activation sets. For a goal- 1091

directed, SLD-resolution-like computation of activation sets we cannot keep our restriction 1092

to arguments that are ground. For this reason, we now have to modify our notion of a 1093

derivation by disallowing the instantiation of variables in our definition of T� and � (cf. 1094
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Definition 3) as already hinted at in Remark 3 at the end of Section 2.4. As a compensation,1095

we then may add a hat over a set of rules �, such that �̂ denotes the set of all instances of �.1096

8.3.1 Immediate activation sets1097

As a first step — since the workaround via path criteria failed in Section 8.2.3 — we now1098

have to find a new notion of an immediate activation set such that there are fewer33 and more1099

easily computable immediate activation sets for a given argument than (non-immediate)1100

activation sets according to Definition 7 of Section 6.1. Our idea here is to avoid SLD-1101

resolution steps that expand a goal clause by inessential applications of rules in the sense of1102

the following definition, where we again apply the simple concept of an and-tree given in1103

Definition 6 of Section 4.4.1.1104

Definition 15 (Inessential Application of an Instance of a Rule)1105

The application of the instance L ⇐ C of a rule in an and-tree is inessential (in the and-1106

tree) if there is a node between the root (inclusively) and the application (including the node1107

labeled with L) that is labeled with an element of T
�̂

.1108

As a step toward a more efficiently realizable notion of Poole-style specificity, we will1109

now eliminate those activation sets from our considerations that rely on and-trees with an1110

inessential application of the instance of a defeasible rule.341111

As a side effect, this step will also eliminate all redundant activation sets that result from1112

what was called “growth of the defeasible parts toward the leaves” in Section 4.4.3. This1113

growth results from inessential application not of defeasible rules, but of general rules only.1114

Contrary to the inessential application of instances of defeasible rules, this elimination of1115

inessential applications of general rules will not change our specificity relation.1116

The positive effect, however, of cutting off this growth is the following. When the leaves1117

of the defeasible part of an and-tree are included in T
�̂

for the first time in a root-to-leaves1118

traversal, we immediately stop and obtain one single immediate activation set, and that’s it!1119

The further enumeration of subsumed activation sets is no longer required.1120

While this reduction of the number of activation sets to one single immediate activa-1121

tion set for each and-tree is most helpful for the computation related to the first argument1122

of the relation �CP2 when trying to decide it, for the computation related to the second1123

argument it re-introduces the complication we already had in our first sketch of a notion1124

of specificity in Section 4.3.2, as compared to the simplified, second version of this sketch1125

in Section 4.4.4, which was the basis for our first formal definition of activation sets in1126

Definition 7 of Section 6.1.1127

This complication is only a notational one. It requires the notion of weakly immediate1128

activation sets in addition to (non-weakly) immediate ones. This complication does not1129

mean any extra-computation, not even for the second argument in the test for �CP2: It1130

is just so that the test whether every activation set of the first argument is subsumed by1131

some activation set for the second argument becomes independent from the computation1132

33There are indeed never more (cf. Corollary 7(4)), and typically much less immediate activation sets than
activation sets.
34The first idea could be to take only activation sets all of whose literals occur in the condition of a rule in
A , for the respective argument (A , L). This idea, however, is too restrictive because also general rules may
play a rôle in the defeasible parts of the derivations, cf. Section 4.4.1.
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of activation sets. This independence has the advantage that we can optimize it in several 1133

directions: First of all, we must omit all rules from �F and �, which play some minor 1134

rôles in the computation of non-immediate activation sets (namely �F for acceptance as 1135

an activation set, and the instances of � that form the first element of the argument for 1136

expansion of activation sets). It is more important, however, that we may also add some 1137

forward reasoning from the activation set computed for the first argument in the test for 1138

�CP2. 1139

All in all, this means for our operationalization that the computation of activation sets (cf. 1140

Definition 7) has to be replaced with the computation of immediate activation sets according 1141

to the following definition, which also mirrors our isolation of defeasible parts of derivations 1142

in Section 4.4.1 more directly than before, namely in the sense that a growth towards the 1143

leaves is avoided and the further dissection described in Note 5 of Section 4.4.2 takes place. 1144

It may be helpful for an intuitive understanding of the following definition to have a look 1145

at Fig. 1 in Section 6.1: The root tree depicted there is captured in item 2 of the following 1146

definition, its sub-trees in item 1. 1147

Definition 16 ([Minimal/Weakly] Immediate Activation Set) 1148

Let A be a set of instances of rules from �, and let L be a literal. 1149

H is an immediate activation set for (A , L) if H ⊆ T
�̂

and there is a (possibly empty) 1150

set of literals L, such that both of the following two items hold: 1151

1. For each L′ ∈ L there is an and-tree for the derivation of H ∪ A ∪ �̂G � {L′} in which 1152

(a) the root is labeled with L′ and generated by an element of A , and 1153

(b) every literal L′′ that labels a non-leaf node or the root satisfies L′′ /∈ T
�̂

, and 1154

(c) every literal L′′ /∈ A that labels a leaf node satisfies L′′ ∈ T
�̂

,35 1155

such that the set of literals labeling the leaves of these trees is a subset of 1156

H ∪ T
�̂G ∪ A . 1157

2. There is an and-tree for the derivation of L ∪ �̂ � {L}, such that each literal L′′ label- 1158

ing a node in a path from the root to a leaf labeled with an element from L satisfies 1159

L′′ /∈ T
�̂

. 1160

H is a minimal immediate activation set for (A , L) if H is an immediate activation set for 1161

(A , L), but no proper subset of H is an immediate activation set for (A , L). 1162

H is a weakly immediate activation set for (A , L) if H ⊆ T
�̂

and there is an immediate 1163

activation set H ′ for (A , L) with H ′ ⊆ T
H∪�̂G . 1164

Corollary 7 Let A be a set of instances of rules from �, and let L be a literal. 1165

1. If H is an [weakly] immediate activation set for (A , L), then we have H ⊆ T
�̂

. 1166

2. If H is a minimal immediate activation set for (A , L), then we have 1167

H ⊆ T
�̂

\ (T
�̂G ∪ A ). 1168

3. Every immediate activation set for (A , L) is a weakly immediate activation set for 1169

(A , L). 1170

4. Every [weakly] immediate activation set for (A , L) is an activation set36 for (A , L). 1171

35Here “literal L′′ /∈ A ” means that L′′ is a literal that is not a literal in A , i.e. no conclusion of an uncon-
ditional rule from A . Note that, by (a), this excludes any overlap of (b) and (c) (which would result in
contradictory requirements): If the root is a leaf, then, by (a), it is labeled with a literal from A .
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5. Every minimal activation set for (A , L) that is an immediate activation set for (A , L)1172

is a minimal immediate activation set for (A , L).1173

Remark 7 (Difference between an Activation Set and an Immediate one)1174

Regarding the respective specificity orderings, an immediate activation set crucially differs1175

from an activation set as follows: Certain defeasible parts may no longer participate in the1176

derivation, namely those parts that derive a node labeled with an element of T
�̂

. This means1177

that those deviations which contain inessential (in the sense of Definition 15) applications1178

of instances of defeasible rules can no longer increase the number of activation sets, i.e. can1179

no longer reduce the specificity of an argument.1180

We cannot see any reason why the fact that the first element of the argument may also1181

be re-used to re-derive a literal of T
�̂

from T
�̂

should be relevant for the specificity of the1182

argument. Therefore we think that this crucial difference (besides the omission of subsumed1183

activation sets, which effects efficiency only) is in line with common intuition.1184

Moreover, note that the crucial difference also admits the omission of all defeasible rules1185

whose conclusion is part of the theory T
�̂

when computing immediate activations sets,1186

which does not seem to be possible for (non-immediate) activation sets.1187

Definition 17 (�CP2: 2nd Version of our Specificity Relation)1188

(A1, L1) �CP2 (A2, L2) if (A1, L1) and (A2, L2) are arguments, and we have1189

1. L1 ∈ T
�̂

or1190

2. L2 /∈ T
�̂

and every H ⊆ T
�̂

that is an [minimal] immediate activation set for (A1, L1)1191

is a weakly immediate activation set for (A2, L2).1192

To see that nothing essential has changed, compare the following Corollary 8 to1193

Corollary 5 of Section 6.4.1194

Corollary 8 If (A1, L1), (A2, L2) are arguments with A1 ⊆ A2, then any of the following1195

conditions is sufficient for (A1, L1) �CP2 (A2, L2):1196

1. L1 = L2.1197

2. L2 ∈ T
�̂

⇒ L1 ∈ T
�̂

and {L1} ∪ �̂ � {L2}.1198

3. L1 ∈ T
�̂

(which is implied by A1 = ∅ by Definition 5).1199

Remark 8 (Optional Minimality Restriction has No Effect)1200

Note that the omission of the optional restriction to minimal immediate activation sets for1201

(A1, L1) in Definition 17 has no effect on the extension of the defined notion.1202

Proof Suppose that L1, L2 /∈ T
�̂

, and that H ′′ is an immediate activation set for (A1, L1).1203

Because the related derivation is finite, we may assume that H ′′ is finite w.l.o.g. Thus,1204

there is a minimal immediate activation set H ⊆ H ′′ for (A1, L1). If we now assume1205

36Instead of the otherwise required condition that A is ground, we assume here — and will do so in what
follows without further mentioning — that the definition of an activation set in Definition 7 of Section 6.1
refers (just as Definition 16 of immediate ones and just as we have changed arguments and derivations in this
section) to sets also of non-ground instances of defeasible rules in the first element of arguments, but with
non-instantiating derivations and theories.
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(A1, L1) �CP2 (A2, L2) with respect to a definition with the optional minimality restric- 1206

tion, then H is a weakly immediate activation set for (A2, L2), i.e. there is an immediate 1207

activation set H ′ ⊆ T
H∪�̂G for (A2, L2), which (because of the monotonicity of our logic) 1208

implies H ′ ⊆ T
H ′′∪�̂G , i.e. H ′′ is a weakly immediate activation set for (A2, L2) as well, 1209

as was to be shown. 1210

Remark 9 (Relaxation to a Weakly immediate activation set is crucial) 1211

Note that we cannot straightforwardly require H to be a (non-weakly) immediate acti- 1212

vation set for (A2, L2) in Definition 17, because otherwise our new relation CP2 would 1213

already fail to pass Example 2 of Section 3, in the sense that both arguments there would be 1214

incomparable.37 1215

Theorem 4 �CP2 is a quasi-ordering on arguments. 1216

Proof of Theorem 4 1217

�CP2 is a reflexive relation on arguments because of Corollary 8. 1218

To show transitivity, let us assume (A1, L1) �CP2 (A2, L2) and (A2, L2) �CP2 (A3, 1219

L3). 1220

According to Definition 17, because of (A1, L1) �CP2 (A2, L2), we have L1 ∈ T
�̂

1221

— and then immediately the desired (A1, L1) �CP2 (A3, L3) — or we have L2 /∈ T
�̂

. 1222

The latter case excludes the first option in Definition 17 as a justification for 1223

(A2, L2) �CP2 (A3, L3). Thus, it now suffices to consider the case that Li /∈ T
�̂

for all 1224

i ∈ {1, 2, 3}. 1225

Suppose that H is an immediate activation set for (A1, L1). It suffices to show that 1226

H is a weakly immediate activation set for (A3, L3), i.e. to find an immediate activation 1227

set H ′′ ⊆ T
H∪�̂G for (A3, L3). Because of our supposition, the first step of our original 1228

assumption, and the case considered, H is a weakly immediate activation set for (A2, L2), 1229

i.e. there is an immediate activation set H ′ ⊆ T
H∪�̂G for (A2, L2). Then, because of the 1230

second step of our original assumption and the case considered, there is an immediate 1231

activation set H ′′ ⊆ T
H ′∪�̂G for (A3, L3). Because of the monotonicity of our logic and 1232

the closedness of our theories, we now have H ′′ ⊆ T
H ′∪�̂G ⊆ T

T
H∪�̂G ∪�̂G = T

H∪�̂G , i.e. 1233

H ′′ ⊆ T
H∪�̂G , as was to be shown. 1234

Example 21 (�CP1 vs. �CP2) 1235

1236

First note that — because of �G
21 = ∅ — the two notions of an immediate and a weakly 1237

immediate activation set coincide here. 1238

37See the discussion at the end of Example 21. It might also be interesting to see that the slight modification
(via “weakly”), which we need here, occurred already in our first intuitive sketch of a notion of specificity in
Section 4.3 — long before the development of the CP2 notion, cf. [34, Section 3.2].
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We have T
�̂21

= �F
21. Moreover, we have1239

(A2, alarm) <CP1 (A3, alarm) ≈CP2 (A2, alarm) :
There is only one minimal activation set for (A2, alarm) that is a subset of T

�̂21
, namely1240

{danger}. It is also a minimal immediate activation set for (A2, alarm); to see this, take1241

L := {alarm} in Definition 16. There are only two minimal activation sets for (A3, alarm)1242

that are subsets of T
�̂21

, namely {danger} and {thirst}, but only the first one is an imme-1243

diate activation set for (A3, alarm). Note that (A2, alarm) is strictly more specific than1244

(A3, alarm) in the sense of (A2, alarm) ��CP1 (A3, alarm) by the inessential38 application1245

of the rule danger ← thirst of A3, which is not admitted in the definition of immediate1246

activation sets and which can be completely ignored in their computation.1247

Furthermore, we have1248

(A1, drink) <CP1 (A3, alarm) �CP2 (A1, drink) :
The minimal [immediate] activation set {danger} for (A3, alarm) is not an activation set1249

for (A1, drink). The only [immediate] activation set for (A1, drink) that is a subset of1250

T
�̂21

is {thirst}, which is an activation set for (A3, alarm), but not a weakly immediate1251

one. Note that (A1, drink) is no longer more or equivalently specific than (A3, alarm) in1252

the sense of (A1, drink) ��CP2 (A3, alarm), because the inessential application of the rule1253

danger ← thirst of A3 is not admitted for immediate activation sets.1254

In spite of these minor but noticeable differences, however, nothing has actually changed1255

by stepping from CP1 to CP2, except the positioning of the argument (A3, alarm), which is1256

non-minimal as an argument (and therefore practically irrelevant and not even considered1257

in many frameworks, cf. Remark 4 of Section 2.4) and also non-minimal in �CP1 (and1258

therefore less specific and not really relevant either). What is crucial, however, is that a most1259

specific argument cannot be found in either case. Indeed, we have both1260

(A1, drink) �CP1 (A2, alarm)

and (A1, drink) �CP2 (A2, alarm).

If we remove danger from �F
21, then (A2, alarm) is no argument anymore, but we can1261

embed the specification injectively into the one of Example 3 of Section 3 and get both1262

(A1, drink) ≈CP1 (A3, alarm)

and (A1, drink) ≈CP2 (A3, alarm),

because the activation set {thirst} now becomes an immediate one also for (A3, alarm).1263

Indeed, the application of the rule danger ← thirst is no longer inessential for deriving1264

alarm.1265

Moreover, if we now add the rule danger ⇐ thirst to �G
21, resulting in the specification1266

({thirst}, {danger ⇐ thirst}, �21), then the situation is essentially the same as in Example 21267

of Section 3, and so we get both (A1, drink) <CP1 (A3, alarm) ≈CP1 (A2, alarm)1268

and (A1, drink) <CP2 (A3, alarm) ≈CP2 (A2, alarm),

because — although the application of the rule danger ← thirst becomes inessential again1269

by danger ∈ T
�̂

— {thirst} now becomes a weakly immediate activation set for (A3, alarm)1270

and for (A2, alarm), though not an immediate one.1271

38This means inessential in the sense of Definition 15.
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Corollary 9 (�CP1 and �CP2 are incomparable) 1272

There are a specification (�F
21,�

G
21,�21) (without any negative literals) and arguments 1273

(A1, L1), (A3, L3), (A2, L2), such that (A1, L1) �CP1 (A3, L3) �CP2 (A2, L2) 1274

and (A1, L1) ��CP2 (A3, L3) ��CP1 (A2, L2),

i.e. �CP1��CP2��CP1. 1275

Nevertheless, Example 21 suggests that only some unimportant details make �CP1 and 1276

�CP2 incomparable to each other, but that the most specific minimal arguments seem to 1277

remain most specific and so nothing essential seems to change. 1278

So we may ask ourselves: What changes occur in our previous examples when we switch 1279

from CP1 to CP2? Do any of the relations stated for CP1 change for CP2? 1280

The answer to the latter question is: No! We would like to ask the reader to check this 1281

carefully. 1282

Example 22 (continuing Example 18) 1283

Indeed, the only noticeable change occurs in Example 18, where {q(a)} is a minimal activa- 1284

tion set for (A1,¬p(a)), but not an immediate activation set. Nevertheless, because {q(a)} 1285

is a weakly immediate activation set for (A1,¬p(a)), and because the only immediate acti- 1286

vation set for (A1, ¬p(a)) is {q(a), s(a)}, which is a weakly immediate activation set for 1287

(A2, p(a)) (for which {q(a)} is the only immediate one), we have 1288

(A1, ¬p(a)) ≈CP2 (A2, p(a)) as well as (A1, ¬p(a)) ≈CP1 (A2, p(a)).

Example 23 (Minimal argument with two minimal immediate activation sets) 1289

It is obvious that a minimal argument can easily have two minimal activation sets that are 1290

incomparable w.r.t. ⊆. For instance, already in Example 2 of Section 3, the minimal argu- 1291

ment (A2, flies(edna)) has two minimal [simplified] activation sets, namely {bird(edna)} 1292

and {emu(edna)}, from which, however, only {bird(edna)} is an immediate activation set. In 1293

fact, minimal arguments can have more than one minimal immediate activation set only if 1294

conditions of general rules directly contribute to the leaves of the isolated defeasible part as 1295

described in Section 4.4.1.39 This happens in Example 19 of Section 8.2.2 for the minimal 1296

argument (A2, h) : The general rule f ⇐ c ∧ e contributes the leaf c to the isolated defeasi- 1297

ble part with root h, the inner nodes f and e, and the set of leaves {b, c}, which is one minimal 1298

immediate activation set of (A2, h). Moreover, the general rule f ⇐ d ∧ e contributes the 1299

leaf d to the isolated defeasible part with root h, the inner nodes f and e, and the set of leaves 1300

{b, d}, which is the other minimal immediate activation set of (A2, h), and also the only one 1301

for (A1,¬h). Thus, we get both (A1,¬h) <CP1 (A2, h) 1302

and (A1,¬h) <CP2 (A2, h).

39Technically, it is possible to enforce a unique immediate activation set for each minimal argument by
including the instances also of the general rules of the isolated defeasible part into the first element of
the arguments. Intuitively, however, this is not reasonable because it leads to unintendedly incomparable
arguments.
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8.3.2 Special cases with simple activation-set computation1303

A typical problem in practical application is to classify rules automatically as being facts,1304

general rules, or defeasible rules. We briefly discuss the trivial forms of such a classification1305

now.1306

The first trivial form of classification is to take all proper rules as defeasible rules. Note1307

that the following lemma (motivated by Example 23 of Section 8.3.1) reduces the task of1308

computing activation sets to the simpler task of computing minimal arguments.1309

Theorem 5 Assume that all rules in �G are just literals (i.e. have empty conditions). Let1310

(A , L) be a minimal argument. Let C be the set of all condition literals of all rules in A .1311

Then (A , L) has a unique minimal activation set H ; and this H is actually a minimal1312

immediate activation set for (A , L) and equal to C ∩ �̂F \ �̂G.1313

Proof of Theorem 51314

Let (A , L) be a minimal argument.1315

In case of L ∈ T
�̂

, there is exactly one minimal activation set for (A , L), namely1316

the empty set, which is an immediate activation set (choose L := ∅ in Definition 16).1317

Moreover, because (A , L) is a minimal argument, we have A = ∅, and then C = ∅.1318

So we get our unique minimal activation set ∅ indeed in the claimed form of1319

C ∩ �̂F \ �̂G = ∅ ∩ �̂F \ �̂G = ∅.1320

It now remains to consider the case of L /∈ T
�̂

. Because (A , L) is an argument, there is1321

an and-tree for the derivation of �̂F ∪ A ∪ �̂G � {L}. As every and-tree is finite, there is1322

a finite activation set H ′ ⊆ �̂F for (A , L). Then there must be a minimal activation set H1323

for (A , L) with H ⊆ H ′. Then we have H ⊆ �̂F \ �̂G. Then there is an and-tree T for the1324

derivation of H ∪ A ∪ �̂G � {L} (which is actually unique, but this does not matter here).1325

Let D be the set of all conclusions of all rules in A . Let D′ be the set of all literals in A1326

(i.e. rules with empty conditions). Then D′ ⊆ D. Because (A , L) is a minimal argument,1327

we know that D ∩ T
�̂

= ∅ and that every rule from A is applied in T . Thus, because of1328

L /∈ T
�̂

and because all rules in �̂ are just literals, the set of the labels of the leaves of T is1329

exactly (C ∩ T
�̂

) ∪ D′. Because T is an and-tree for the derivation of H ∪ A ∪ �̂G � {L},1330

because A ∩ T
�̂

⊆ D′ ∩ T
�̂

⊆ D ∩ T
�̂

= ∅, and because all rules in �̂G are just literals,1331

we have1332

(a) C ∩ T
�̂

⊆ (H ∪ A ∪ �̂G) ∩ T
�̂

= H ∪ ∅ ∪ �̂G = H ∪ �̂G,

(b) T
�̂G = �̂G,

(c) T
�̂

= �̂F ∪ �̂G.

Because H is a minimal activation set for (A , L), H must be a subset of the leaves1333

of T not in D′ : H ⊆ C ∩ T
�̂

. Because of our previous result of H ⊆ �̂F \ �̂G,1334

we now get H ⊆ C ∩ T
�̂

∩ �̂F \ �̂G ⊆(a) (H ∪ �̂G) ∩ �̂F \ �̂G = H ∪ ∅ = H , i.e.1335

H = C ∩ T
�̂

∩ �̂F \ �̂G =(c) C ∩ (�̂F ∪ �̂G) ∩ �̂F \ �̂G = C ∩ �̂F \ �̂G. Choosing1336

L := {L} in item 1 of Definition 16, and a proof tree consisting only of a root in1337

item 2, we see that H is actually an immediate activation set for (A , L); in particular1338

we have L /∈ T
�̂

and the property required in the last line of item 1 of Defini-1339

tion 16: (C ∩ T
�̂

) ∪ D′ ⊆(a) H ∪ �̂G ∪ A =(b) H ∪ T
�̂G ∪ A . Finally, H is a minimal1340

immediate activation set by Corollary 7(5).1341
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The second trivial form of classification is to take all rules without conditions to be 1342

defeasible. It is not a good idea for comparing arguments w.r.t. specificity, however: 1343

Corollary 10 Assume that �F = ∅ and that �G contains only rules with non-empty condi- 1344

tions. Then we have T
�̂

= ∅. Moreover, for every argument, there is exactly one [immediate] 1345

activation set H with H ⊆ T
�̂

, namely H = ∅. Furthermore, all arguments are equivalent 1346

w.r.t./ ≈CP1 and ≈CP2. 1347

Finally, note that the computation of simplified activation sets that are a subset of T
�̂∪�̂

1348

— as required for P1, P2, P3 instead of CP1, CP2 — is not simplified for the special cases 1349

of this section, contrary to the computation of [immediate] activation sets that are subsets 1350

of T
�̂

. 1351

8.3.3 A step toward operationalization of immediate activation sets 1352

Let us assume that the sets of our predicate and function symbols are enumerable and con- 1353

tain only symbols with finite arities. This assumption does not seem to restrict practical 1354

application. 1355

It is straightforward to enumerate for a given input literal — say in a top-down SLD- 1356

resolution style — the and-trees of all possible derivations of instances of this input literal, 1357

and to interleave this enumeration of and-trees with the enumeration of all ground instances 1358

of each and-tree, and finally to enumerate for each ground instance of an and-tree all activa- 1359

tion sets for all contained arguments and the ground instance of the input literal labeling the 1360

root. Indeed, this is possible because T
�̂

is enumerable (i.e. semi-decidable) by our above 1361

assumption. 1362

To do the same for all immediate activation sets, we have to require the co-semi-decid- 1363

ability of T
�̂

, because, in general, we cannot output an activation set supposed to be an 1364

immediate one before we have established that the literals labeling the ancestors of the nodes 1365

of its literals really do not occur in T
�̂

. 1366

So let us assume the decidability of T
�̂

for the remainder of this section.40 1367

It is much harder, however, to enumerate all activation sets in an SLD-like derivation 1368

style directly, i.e. without storing the intermediate and-trees and their instances. Although 1369

immediate activation sets offer a crucial advantage for a direct enumeration in principle 1370

(because they admit to cut off inessential41 derivations of literals), the imperative, tail- 1371

recursive procedure we will sketch in this section (cf. Fig. 2) still needs further refinement. 1372

This procedure enumerates the immediate activation sets directly, unless it sometimes out- 1373

puts the character string "breach", which indicates that some immediate activation sets 1374

may be missing. 1375

We present the procedure of Fig. 2 here mainly because we want to concretize the 1376

tasks that still remain to be solved for obtaining a Poole-style notion of specificity that 1377

admits a sufficiently efficient operationalization, and because our solution of these tasks in 1378

Section 8.3.4 may not be the only way to solve them. 1379

Let us assume that picking elements from sets satisfies some fairness restriction in the 1380

sense that every element will be picked eventually. Moreover, let us assume that we have a 1381

procedure to decide T
�̂

. Furthermore, let us assume that L is a literal with L /∈ T
�̂

. 1382

40 We will relax this restriction in Section 8.3.4.
41This means inessential in the sense of Definition 15.
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Under these assumptions, the SLD-like procedure immediate-activation-sets(L) of Fig. 21383

has the following two properties:1384

1. If it outputs (H, (A, I)) then I /∈ T
�̂

is an instance of L, we have A �= ∅, and H ⊆ T
�̂

1385

is an immediate activation set for the argument (A, I ).1386

2. If it never outputs "breach", then, for each instance L� /∈ T
�̂

with a minimal imme-1387

diate activation set H ′ for an argument (A , L�), it outputs some (H, (A, I)) such that1388

there is a substitution μ with (Aμ, Iμ) = (A , L�) and H ′ = Hμ \ (T
�̂G ∪ Aμ). As1389

this is similar to what is called a “most general unifier”, we may speak of all maximally1390

general, immediate activation sets with arguments here.1391

Remark 10 (Restriction to Ground Conclusions Prevents "breach")1392

In the special case that the conclusions of all rules of �G ∪ � with non-empty condition are1393

ground, however, the call of the procedure immediate-activation-sets(L) is guaranteed not to1394

output "breach", simply because then only ground literals can enter the set of the program1395

variable O ′, which are immediately removed again by the line before the tail-recursive call.1396

Remark 11 (Restriction to Ground Input Literals Does Not Prevent "breach")1397

Note that a restriction to input literals that are ground does not really solve the crucial1398

problem (of which the program variables O,O ′ have to take care in Fig. 2) that a literal1399

with free variables may be not in T
�̂

, whereas some of its instances actually are in T
�̂

.1400

The main source of the free variables here are the extra-variables, i.e. the free variables that1401

occur in the condition but not in the conclusion of a rule. Such rules with extra-variables and1402

non-ground conclusions, however, are standard in positive-conditional specification, just1403

as in logic programming. A single extra-variable in an arbitrary rule of �G ∪ � can force1404

SLD-resolution to work on non-ground goals even for a ground input literal.1405

Some examples may be more appropriate here than a proof of the soundness of the1406

procedure of Fig. 2 (that enumerates a maximally general, immediate activation set for1407

each minimal immediate activation set unless it sometimes indicates "breach"), because1408

we see the procedure only as a step in a further development toward a tractability that is1409

sufficient in practice. Therefore, we will give some examples here on how the procedure1410

immediate-activation-sets(L)

works for certain literals L /∈ T
�̂

, namely by1411

listing all calls of the auxiliary procedure immediate-activation-sets-helper.

Example 24 (continuing Example 3 of Section 3)1412

Let us consider Example 3 of Section 3. A call of immediate-activation-sets(flies(y)) results1413

in a call of immediate-activation-sets-helper with the argument quintuple1414

({(flies(y), 2)},∅, ∅,∅, flies(y)),

where the only rule whose conclusion is unifiable with the only goal literal is a defeasible1415

one, namely flies(x) ← bird(x) from �3. We can take ξ and σ as the identity and {x �→ y},1416

respectively. The program variable B ′ will be set to 1, and the tail-recursive call will have1417

the argument tuple1418

({(bird(y), 1)}, {flies(y)},∅, {flies(y) ← bird(y)}, flies(y)).
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Fig. 2 Sketch of immediate-activation-sets and immediate-activation-sets-helper

Again the only rule whose conclusion is unifiable with the only goal literal is a defeasible 1419

one, namely bird(x) ← emu(x) from �3. We can again take ξ and σ as the identity and 1420

{x �→ y}, respectively. The program variable B ′ will be set to 1, and the tail-recursive call 1421

will have the argument tuple 1422

({(emu(y), 1)}, {flies(y), bird(y)}, ∅, {flies(y) ← bird(y), bird(y) ← emu(y)}, flies(y)).
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Fig. 3 Sketch of procedure ground-immediate-activation-sets-helper

Now the only rule whose conclusion is unifiable with the only goal literal is a fact, namely1423

emu(edna) from �F
3. We can take ξ and σ as the identity and {y �→ edna}, respectively. The1424

program variable B ′ will be set to 1, and the tail-recursive call will have the argument tuple1425

(∅,∅, {emu(edna)}, {flies(edna) ← bird(edna), bird(edna) ← emu(edna)}, flies(edna)).
This call immediately terminates by outputting the immediate activation set {emu(edna)}1426

for the argument ({flies(edna) ← bird(edna), bird(edna) ← emu(edna)}, flies(edna)). As1427

all calls are terminated now and there was no output "breach", this means that we have1428

enumerated all immediate activation sets for all instances of the input literal.1429

Example 25 (continuing Example 2 of Section 3)1430

Let us now come to Example 2 of Section 3. We start with the same input as for Example1431

24 above, and there is no change up to the call with argument tuple1432

({(bird(y), 1)}, {flies(y)}, ∅, {flies(y) ← bird(y)}, flies(y)),

and the only difference before the next call is that the applied rule is a strict one and is not1433

recorded in the program variable A′. Thus, we get a call with the argument tuple1434

({(emu(y), 1)}, {flies(y), bird(y)},∅, {flies(y) ← bird(y)}, flies(y)).

There is still no essential change, except that the test for "breach" becomes positive:1435

We again have Oσ = {flies(edna), bird(edna)}, but now we have bird(edna) ∈ T
�̂

, and our1436

procedure outputs "breach". Indeed, it missed to enumerate the immediate activation1437
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set {bird(edna)} for the argument ({flies(edna) ← bird(edna)}, flies(edna)), simply because 1438

the instantiation came too late to stop us from proper expansion of the and-tree. 1439

Remark 12 (Closer Matching of Activation Sets to SLD-Resolution Results in Inappropriate 1440

Semantics) 1441

The obvious idea to avoid the possibility that the procedure of Fig. 2 may output "breach" 1442

and miss some maximally general, immediate activation sets is the following. 1443

Just like we obtained CP2 from CP1, it is possible to obtain a notion CP3 from CP2 by a 1444

minor modification of immediate activation sets, resulting in, say, SLD activation sets, such 1445

that the SLD-like computation of Fig. 2 enumerates all maximally general, SLD activation 1446

sets. 1447

We do not see a chance to satisfy the crucial requirement of such a modification, however, 1448

namely that it does not affect any of our previous examples. If we look at the application of 1449

the procedure of Fig. 2 to the specification of Example 2 as described in Example 25, then 1450

we see that all SLD activation sets remaining in Example 2 could be {emu(edna)}, such that 1451

the arguments (A1, ¬flies(edna)) and (A2, flies(edna)) would become equivalently specific 1452

w.r.t. the specification of Example 2, which seems to be absurd. 1453

8.3.4 A specificity relation based on given and-trees 1454

We see no straightforward procedure to decide �CP2. Even worse, we see neither a pro- 1455

cedure to semi-decide it, nor a procedure to co-semi-decide it. A positive answer can be 1456

given if the procedure of Fig. 2 terminates for the first argument of �CP2 without outputting 1457

"breach". A negative answer can be given if, for an immediate activation set enumerated 1458

for the first argument, the derivation for testing the property of being a weakly immediate 1459

activation set for the second argument terminates with failure. In general, even if we assume 1460

T
�̂

to be decidable, none of these terminations is guaranteed.42 1461

In such a situation it is clearly appropriate to relax our requirement of a model-theoretic 1462

specificity relation a bit. So we replace the fancied decision procedure for T
�̂

with the 1463

test whether the literal has a derivation from those instances of � which can be found in 1464

some and-tree occurring in a finite set of and-trees fixed in advance. For the solution we are 1465

aiming at, it is crucial that this given finite set of and-trees cannot be further extended during 1466

related specificity considerations. A good candidate may be the set of those and-trees that 1467

our derivation procedure has been able to construct within a certain time limit. Then we can 1468

replace each of the three elements of our specification (�F,�G,�) with the sets of those 1469

instances of their elements that are actually applied in our finite set of and-trees, resulting in 1470

the new specification (�F
g, �G

g , �g). The further considerations must use these three finite 1471

sets without any further instantiation. This means that their rules are to be considered to be 1472

ground and this is what the lower index “g” stands for. 1473

We again abbreviate �g := �F
g ∪ �G

g , and also replace the typically undecidable set T
�̂

1474

with finite set T�g . 1475

Note that hardly anything has changed for our set of defeasible rules, because arguments 1476

work anyway with instances that are ground, or are at least treated as if they were ground 1477

(cf. Remark 3 in Section 2.4), and we can hardly consider an argument that is not contained 1478

in some and-tree we have constructed in advance. 1479

42Both of these terminations can be guaranteed, however, under most restrictive conditions, such as the one
that the conclusions of every rule from �G ∪ � with a non-empty condition are ground (cf. Remark 10).
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There is a major change, however, for the set � of strict rules. The situation here is1480

similar to an expansion w.r.t. a champ fini in Herbrand?s Fundamental Theorem,43 and we1481

have reason to hope that the effect of this change can be neglected in practice, provided that1482

a sufficient number of the proper instances is considered. Note that, for first-order logic, the1483

depth limit n for terms required for Herbrand’s Property C to establish a sentential tautology1484

(i.e. the natural number n for the champ fini of order n) is not computable in the sense of1485

a total recursive function. Even if we knew the smallest such n, however, the number of1486

terms of depth smaller than n would still be too high for practical feasibility in general. This1487

means that it is crucial to choose the instances of our rules in a clever way, say from the1488

successful proofs delivered by a theorem-proving system within a sufficient time limit.1489

Remark 13 (Specificity Relation on Arguments Extended with an And-Tree)1490

A straightforward idea to improve tractability is to attach an and-tree to each argument and1491

to compute a unique (cf., however, Example 23 in Section 8.3.1) immediate activation set for1492

each argument as follows: Starting from the root, we traverse the tree, remembering whether1493

we have passed an application of the instance of a defeasible rule, and stop traversing at1494

the first node labeled with an element of the finite set T�g , outputting its literal as part of1495

the single tree-immediate activation set, provided that we have passed an application of the1496

instance of a defeasible rule.1497

The problem we see here, however, is that such a fixed and-tree does not make much1498

sense for the second argument of our relation �CP2, simply because we should not let an1499

inappropriately chosen and-tree for the second argument produce a failure of the property of1500

being more specific, cf. Example 19 of Section 8.2.2. This means that we need an existential1501

quantification over the and-tree of the second argument. If we were able to find a way to1502

handle this quantification, the same technique would probably admit us to handle a universal1503

quantification over the and-tree of the first argument, which brings us back to our original1504

relation �CP2 on arguments without and-trees. So this restriction to concrete and-trees does1505

not seem to help. We will now show that we do not need it either.1506

With the modifications described above, let us now come back to our procedure of1507

Fig. 2. As noted before (cf. Remark 10), there cannot be any output of "breach"1508

anymore, because our new sets of general strict and defeasible rules, i.e. the sets �G
g1509

and �g, are now ground by definition. After the resulting simplifications, the proce-1510

dure immediate-activation-sets-helper now may be replaced with the procedure ground-1511

immediate-activation-sets-helper sketched in Fig. 3.1512

To ensure termination of ground-immediate-activation-sets-helper we additionally have1513

to store the current path of the and-tree and exit without further output if we encounter a1514

literal for a second time on the same path.1515

Regarding time complexity of the procedure of Fig. 3 extended with the storage of the1516

current path of the and-tree for ensuring termination mentioned above, only the following1517

preliminary remarks apply in this early state of development.1518

Remark 14 (Considerations on Complexity)1519

From practical experience, complexity is not relevant yet: Our straightforward PRO-1520

LOG (cf. e.g. [6]) implementation of this procedure (which prefers simplicity of coding1521

over efficiency) computes, compares, and sorts — without any noticeable delay in the1522

43Cf. [16, 30–32, 36, 37].
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answer — all minimal immediate activation sets for all minimal arguments for all literals of 1523

T�g∪�g \ T�g , for a specification (�F
g,�G

g ,�g) of all instances required for a superset of 1524

all examples in this paper. 1525

Regarding the theoretical worst case, which will hardly ever occur in practice, the follow- 1526

ing first estimate may be not completely irrelevant. Let n be the number of different literals 1527

in all conclusions of all rules of �g ∪ �g. With our mentioned mechanism for ensuring ter- 1528

mination, it is obvious that n limits the maximal depth of the SLD-like search tree. Let m 1529

be the maximal number of all condition literals of all rules with an identical conclusion. It 1530

is obvious that m limits the maximal number of children of any node in the SLD-like search 1531

tree, cumulated over the whole run. This means that the maximal size of the cumulated 1532

search tree is mn−1 − 1, i.e. O(mn). Luckily, this Landau-O limits also the size of the theory 1533

T�g (which we pre-compute in our PROLOG implementation) and all other efforts at each 1534

node, such as indexing our rules for obtaining a constant effort at each node. Therefore, the 1535

whole algorithm is O(mn). 1536

Remark 15 (Completeness of the Procedure) 1537

Our procedure is complete in the sense that we can compute the finite set of all minimal44 1538

immediate activation sets of all minimal arguments for a given input literal w.r.t. our ground 1539

specification (�F
g,�G

g ,�g). All what is left for deciding �CP2 is to check whether each 1540

of the computed immediate activation sets whose defeasible rules are part of the first argu- 1541

ment is a weakly immediate activation set for the second argument. This is straightforward, 1542

although it is not clear yet which implementation will be optimal. 1543

We should not forget, however, that the specification (�F
g,�G

g ,�g) is only a reasonably 1544

constructed sub-specification of our original specification (�F, �G, �), which actually 1545

stands for (�̂F, �̂G, �̂). Practical tests have to show whether such an omission of infinitely 1546

many instances can be viable without deteriorating our specificity ordering. Theoretically, 1547

such a viability can only be guaranteed for the special case that the number of instances of 1548

the rules of the specification is finite (up to renaming of variables). 1549

9 Conclusion 1550

9.1 Summary 1551

We would need further discussions on our surprising new findings w.r.t. Poole’s specificity 1552

relation, in particular its lack of transitivity. After all, defeasible reasoning with Poole’s 1553

notion of specificity is being applied now for over a quarter of a century, and it was not to be 1554

expected that our investigations could shake an element of the field to the very foundations. 1555

One remedy for the discovered lack of transitivity of �P3 could be to consider the tran- 1556

sitive closure of the non-transitive relation �P3. This could be an advantage compared to 1557

�CP1 only under the condition that the transitive closure of �P3 is a subset of �CP1, i.e. 1558

only under one of the conditions of Theorem 3. Moreover, this transitive closure still has 1559

44Minimal immediate activation sets are obtained after completion of the procedure of Fig. 3 simply as
follows: For each minimal argument (A , L), we remove all proper supersets among the immediate activation
sets. Note that we do not have to filter the immediate activation sets by removing all elements of A , simply
because, as subsets of T�g , they are disjoint from the literals in A (i.e. the rules in A with empty conditions).
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all the the intuitive shortcomings made obvious for �P3 in Section 7. Furthermore, we do1560

not see how this transitive closure could be decided efficiently. Finally, the transitive clo-1561

sure lacks a direct intuitive motivation, and after the first extension step from �P3 to its1562

transitive closure, we had better take the second extension step to the more intuitive �CP11563

immediately.1564

Contrary to the transitive closure of �P3, our novel relations �CP1 and �CP2 also solve1565

the problem of non-monotonicity of specificity w.r.t. conjunction (cf. Section 7.1), which1566

was already realized as a problem of �P1 by [22] (cf. our Example 12 in Section 7.1).1567

The present means to decide our novel specificity relation �CP1, however, show several1568

improvements45 and a few setbacks46 compared to the known ones for Poole’s relation.1569

Further work is needed to improve efficiency.1570

By a minor restriction of activation sets, resulting in immediate activation sets, we have1571

come in Section 8.3 to the quasi-ordering �CP2, which does not show any difference com-1572

pared to �CP1 in any of our examples except Example 21, which was constructed to show1573

the difference. The new specificity ordering �CP2 has advantages w.r.t. intuition and effi-1574

ciency. The latter advantage, however, requires decidability of T
�̂

(in addition to the always1575

given semi-decidability).1576

To concretize the problems of computing activation sets by SLD-resolution, in Sec-1577

tion 8.3.3 we have sketched a procedure that indicates "breach" if it may have missed to1578

output some of the most general immediate activation sets. Then, in Section 8.3.4, we have1579

shown how to obtain decidability of T
�̂

by restriction to a finite set of instances that are1580

then treated as if they were ground. We hope that we can find a procedure for generating the1581

finite set of rule instances such that the effect of this restriction can be neglected in prac-1582

tice. Without such a restriction, however, we do not know how to decide any of the relations1583

�P1, �P2, �P3, �CP1, �CP2 in general.1584

9.2 Application contexts1585

We can apply the specificity relations to question answering, as attempted in the RatioLog1586

project [10]. Question answering systems such as LogAnswer [9] usually determine several1587

possible answer candidates for a given query. For each candidate, a possibly defeasible1588

derivation of the answer is available. The best answer candidate has to be chosen. One1589

idea among others is to prefer more specific answers. Thus, specificity is incorporated as a1590

mechanism of rationality here.1591

An important part of the application context for specificity orderings consists of1592

numerous frameworks for argumentation in logic. The overall process usually includes a1593

dialectical process used for answering queries. Different arguments are pro or contra a cer-1594

tain answer. By means of an attack relation, conflicts between contradicting arguments can1595

be determined in abstract argumentation frameworks, such as the ones of [7, 23], and [21].1596

A concrete specificity ordering or a similar relation helps then to decide among conflicting1597

arguments.1598

The ASPIC+ framework [21] combines an (abstract) argumentation system with a con-1599

crete knowledge base, which may contain strict and defeasible rules. In this context, an1600

argument can be attacked on a conclusion of a defeasible inference, on a defeasible inference1601

step itself, or on an ordinary premise. Nonetheless, also ASPIC+ is not a concrete system1602

45See Section 8.1, 8.2.1, 8.3.2, 8.3.3, and 8.3.4 for the improvements.
46See Section 8.2.3 and 8.3.3 for the setbacks.
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but a framework for specifying systems. The choice of the logic is left open in ASPIC+. 1603

Thus, on the basis of the different rule types, the attack or conflict relation may be defined, 1604

e.g. by means of one of our specificity orderings. 1605

As the discussion in this paper demonstrates, however, it is not that easy to find an effec- 1606

tive concrete specificity relation. One of the main problems is that such relations are often 1607

computationally highly complex, such as it is the case in [17]. 1608

9.3 More conservative instead of more specific? 1609

Note that we have to distinguish between orderings for comparing conflicting arguments 1610

w.r.t. specificity and orderings for comparing arguments w.r.t. a form of subsumption, such 1611

as the quasi-ordering of being “more conservative” found in [3, Definition 3.3, p. 206], 1612

[4, Definition 6, p. 50]. There, roughly speaking, an argument (A1, L1) is more conservative 1613

than an argument (A2, L2) if A1 ⊆ A2 and {L2} � {L1}. So if our opponent accepts the 1614

argument (A2, L2), then he also has to accept our more conservative argument (A1, L1), 1615

because we need less presuppositions and our result follows from our opponent’s result. In 1616

many practical situations, however, the less conservative argument will be preferred. For 1617

instance, if we ask a question-answering system (such as LogAnswer [9]) for the mother of 1618

Pierre Fermat, then — as an answer — we prefer the less conservative argument 1619

(A ,Mother(Claire de Long, Pierre Fermat)) to
(A , ∃x.Mother(x, Pierre Fermat)).

Moreover, the arguments 1620

(A ,Mother(Françoise Cazeneuve, Pierre Fermat)) and
(A ,Mother(Claire de Long, Pierre Fermat)),

are incomparable in the “more conservative”-quasi-ordering.47 1621

Even worse, for a non-trivial derivability relation, i.e. in a non-contradictory theory, the 1622

quasi-ordering of being “more conservative” cannot compare arguments with contradictory 1623

results L, ¬L by definition. 1624

Moreover, none of the arguments of our examples can be compared by this quasi- 1625

ordering. 1626

9.4 Critical assessment of our novel specificity orderings 1627

It has become clear in several discussions that the main obstacle for an acceptance of one of 1628

our relations �CP1 or �CP2 as a replacement for �P3 is the change this brings to Example 3 1629

of Section 3: Some scientists working in the field have become used to the preference given 1630

by �P3 in this most popular example — so much that they now consider that preference a 1631

must. Note that the situation in Example 3 is actually most unstable under the two following 1632

aspects: 1633

47Let us compare our specificity relations P3, CP1, CP2 with the “more conservative”-quasi-ordering by
looking at our Corollaries 3, 5, and 8 in the context of Corollary 4. So let us assume A1 ⊆ A2. For the trivial
case of L1 = L2, the argument (A1, L1) is quasi-smaller than the argument (A2, L2) for all of P3, CP1,
CP2, and “more conservative”. In case of L2 ∈ T

�̂
⇒ L1 ∈ T

�̂
and {L1} ∪ �̂ � {L2}, again the argument

(A1, L1) is quasi-smaller than the argument (A2, L2) for all of P3, CP1, CP2, but for “more conservative” it
is the other way round, provided that we adopt the straightforward assumption that derivability is derivability
w.r.t. the basic theory of �̂. Thus, P3, CP1, CP2 would all prefer (A ,Mother(Claire de Long, Pierre Fermat))
to (A , ∃x.Mother(x, Pierre Fermat)), provided that we could express existential quantification.
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1. The preference chosen by �P3 in Example 3 has justifications that are intuitive and1634

valid, but are in general uncorrelated to specificity, such as the preference of conser-1635

vativeness or the non-model-theoretic preference of defeasible derivations of shorter1636

length. In particular in this example, such intuitive justifications easily contaminate1637

the readers’ intuition w.r.t. specificity. Moreover, as the arguments in Example 3 are1638

not incomparable, but just equivalent according to �CP1, we can easily combine �CP11639

lexicographically with another ordering, say “minimum in the ordering of the natural1640

numbers, for all and-trees, of the maximal length of defeasible paths”, and so recover1641

the traditional preference of Example 3.1642

2. The situation of the example is chaotic in the sense that different preferences result1643

from minor changes that may escape the readers’ disambiguation.1644

For instance, if we add the general rule of the example that precedes Example 3 (i.e.1645

of Example 2), then the preference chosen by �P3 is chosen by �CP1 and �CP2 as well.1646

Moreover, if we alternatively add bird(edna) as a fact, then we can embed the exam-1647

ple injectively into Example 21 of Section 8.3.1, and then the preference chosen by �P31648

is again chosen by �CP1 (whereas the arguments become incomparable w.r.t. �CP2).1649

Already the examples in Section 7 show, however, that �P3 almost always fails to pre-1650

fer any argument in slightly bigger examples, not to speak of big ones. Indeed, �P3 can1651

be considered a reasonable choice only if we restrict our considerations to tiny examples.1652

Moreover, we presented good intuitive reasons for the failure of the preference of Example1653

3 in Example 9 of Section 6.6 (see also the pointers to further reasons in Note 28).1654

It is just too early for a further assessment, and the further implications of the contribu-1655

tions of this paper and the technical details of the operationalization of our correction of1656

Poole’s specificity will have to be discussed in future work.1657
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