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Abstract In the middle of the 1980s, David Poole introduced a semantic, model-theoretic
notion of specificity to the artificial-intelligence community. Since then it has found further
applications in non-monotonic reasoning, in particular in defeasible reasoning. Poole tried
to approximate the intuitive human concept of specificity, which seems to be essential for
reasoning in everyday life with its partial and inconsistent information. His notion, however,
turns out to be intricate and problematic, which — as we show — can be overcome to
some extent by a closer approximation of the intuitive human concept of specificity. Besides
the intuitive advantages of our novel specificity orderings over Poole’s specificity relation
in the classical examples of the literature, we also report some hard mathematical facts:
Contrary to what was claimed before, we show that Poole’s relation is not transitive in
general. The first of our specificity orderings (CP1) captures Poole’s original intuition as
close as we could get after the correction of its technical flaws. The second one (CP2) is
a variation of CP1 and presents a step toward similar notions that may eventually solve
the intractability problem of Poole-style specificity relations. The present means toward
deciding our novel specificity relations, however, show only slight improvements over the
known ones for Poole’s relation; therefore, we suggest a more efficient workaround for
applications in practice.
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1 Introduction

A possible explanation of how humans manage to interact with reality — in spite of the
fact that their information on the world is partial and inconsistent — mainly consists of the
following two points:

1. Humans use a certain amount of rules for default reasoning and are aware that some
arguments relying on these rules may be defeasible.

2. In case of the frequent conflicting or even contradictory results of their reasoning, they
prefer more specific arguments to less specific ones.

An intuitive concept of specificity plays an essential rôle in this explanation, which is inter-
esting because it seems to be highly successful in practice, even if it were just an epi-
phenomenon providing an ex eventu explanation of human behavior.

On the long way approaching the proven intuitive human concept of specificity,
the first milestone marks the development of a semantic, model-theoretic notion of
specificity having passed first tests of its usefulness and empirical validity. Indeed,
at least as the first step, a semantic, model-theoretic notion will probably offer a
broader and better basis for applications in systems for common-sense reasoning than
notions that depend on peculiarities of special calculi or even on extra-logical proce-
dures. This holds in particular if the results of these systems are to be accepted by
humans.

David Poole has sketched such a notion as a binary relation on arguments and evaluated
its intuitive validity with some examples in [22]. Poole’s notion of specificity was given a
more appropriate formalization in [26]. The properties of this formalization were examined
in detail in [27].

In Sections 2 and 3, we recall basic notions and notation and the elementary motivating
examples.

In Section 4, we present a detailed analysis of the reasons behind our intuition that
Poole’s specificity is a first step on the right way.

We expect that the results of this detailed analysis will carry us even beyond this paper to
future improved concepts of specificity, especially w.r.t. efficiency, but also w.r.t. intuitive
adequacy. We hope that the closer we get to human intuition, the more efficiently our con-
cepts can be implemented, simply because they seem to run so well on the human hardware,
which — by all that we know today — is pretty slow.

In Section 5, we specify formal requirements on any reasonably conceivable relation of
specificity.

In Section 6, we disambiguate Poole’s specificity relation from slightly improved
versions, such as the one in [26], and introduce a novel specificity ordering (CP1), a
correction of Poole’s specificity in the sense that it removes a crucial shortcoming of
Poole’s original relation (P1) and its slight improvements (P2, P3), namely their lack of
transitivity.

In Section 7, we present several examples that are to convince the carefully con-
templating reader of the superiority of our novel specificity relation CP1 w.r.t. human
intuition.

In Section 8, we discuss efficiency issues. We introduce a further novel specificity order-
ing (CP2) (a variation of CP1) as a first step toward similar notions that may finally solve the
intractability problem of Poole-style specificity relations. The present means toward decid-
ing our novel specificity relations, however, show only slight improvements over the known
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A series of revisions of David Poole’s specificity 207

ones for Poole’s relation; therefore, we suggest a more efficient workaround for applications
in practice.

In Section 9, we draw some first conclusions.

2 Basic notions and notation

Definition 1 (Term, Atom)
A term is inductively defined to be either a function symbol applied to a (possibly empty)
list of terms or a symbol for a free variable.

An atom consists of a predicate symbol applied to a (possibly empty) list of terms.

In what follows, we will mainly use nullary function symbols (“constants”), such as
tweety, and singulary predicate symbols, such as bird, forming atoms such as bird(tweety),
which states that tweety is a bird.

2.1 Specifying rules and their theories

For the remainder of this paper, let us narrow the general logical setting of specificity down
to the concrete framework of defeasible logic with the restrictions of positive-conditional
specification with an inactive negation symbol, as found e.g. in [27] and [5].

In effect, these restrictions give us the standard “definite rules” of positive-conditional
specification (or Horn-clause logic). Positive-conditional specification differs from logic
programming in PROLOG (cf. e.g. [6, 18]) insofar as termination issues and the order of the
definite clauses are irrelevant for the semantics, and insofar as there is no cut predicate (‘!’)
and no negation as failure.

Such definite rules are implications of the following form: The conclusion is an atom;
the condition is a (possibly empty) conjunction of (positive) atoms which may contain
extra variables (i.e. free variables not occurring in the conclusion). This is can be seen
as quantifier-free first-order logic with specifications restricted to implications of the
mentioned form.

We ask the reader not to get confused on the mentioned effective form of our rules
by the fact that — in place of the atoms — literals resulting from an inactive negation
symbol are actually admitted in the rules of Definition 2 (see below). This special form of
negation is standard in defeasible logic for convenience in the application context (such as
an argumentation framework). In this paper, however, we can consider this negation just as
a form of syntactic sugar (cf. Definition 3, Remark 1).

Definition 2 (Literal, Rule)
A literal is an atom, possibly prefixed with the symbol “¬” for negation.

A rule is a literal, but possibly suffixed with a reverse implication symbol “⇐” that is
followed by a conjunction of literals, consisting of one literal at least.

Definition 3 (Theory, Derivation)
Let Π be a set of rules. The theory of Π is the set TΠ inductively defined to contain
– all instances of literals from Π and
– all literals L for which there is a conjunction C of literals from TΠ such that

L ⇐ C is an instance of a rule in Π .

For L ⊆ TΠ , we also say that Π derives L, and write Π � L.
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208 C.-P. Wirth, F. Stolzenburg

2.2 Secondary aspects of our logic

Remark 1 (Negation Symbol “¬”)
The negation symbol “¬”, which occurs in Definition 2 and which seemingly gets us
beyond the definite rules of positive-conditional specifications by admitting literals instead
of just atoms, does not have any effect on the derivations and theories considered in this
paper (cf. Definition 3). For instance, the literal ¬flies(edna) may actually be consid-
ered as the atom resulting from application of the predicate ¬flies to the constant symbol
edna.

On the other hand, if we write an atom A as A = true, and a negated atom ¬A as
the equational atom A = false, for the data type Boolean given by the constructors true
and false, then the rules of our specification can be seen as positive-conditional equational
specifications in the framework for positive/negative-conditional equational specification
found in [33] and [28, 29].

In the application context, of course, the literals ¬flies(edna) and flies(edna) will be
considered to be contradictory (cf. Definition 4), but this is a secondary and non-essential
notion built on top of our derivations and theories, which do not rely on this notion.

As a consequence, none of the results in this paper relies on this special negation sym-
bol. To the contrary, in the weakness of our logical theories we see an indication for the
generality of our results (cf. Remark 2).

To distinguish the inactive negation here from negation as failure and from any other
form of negation playing an active rôle in derivation, the symbol “∼” is sometimes used in
the literature of defeasible logic in place of our more standard symbol “¬”.

Definition 4 (Contradictory Sets of Rules)
A set of rules Π is called contradictory if there is an atom A such that Π � {A,¬A};
otherwise � is non-contradictory.

Remark 2 (Weakness of Our Logical Theories)
On the one hand, {A, ¬A ⇐ A} is contradictory according to Definitions 3 and 4. On
the other hand, {A⇐¬A, ¬A ⇐ A} is non-contradictory according to these definitions,
although we can infer both A and ¬A from {A ⇐ ¬A, ¬A ⇐ A} in classical (i.e. two-
valued) logic. For the case of our very limited formal language, our notions of consequence
and contradiction are equivalent both to intuitionistic logic and to the three-valued logic
where ¬ and ∧ are given as usual, but (following neither Kleene nor Łukasiewicz) implica-
tion has to be defined via (A ⇐ TRUE) = A, (A ⇐ FALSE) = TRUE, (A ⇐ UNDEF) =
TRUE.

2.3 Global parameters for the given specification

Throughout this paper, we will assume a set of literals �F and two sets of rules �G, � (cf.
Definition 2) to be given:

– A set �F of literals meant to describe the facts of the concrete situation under
consideration,

– a set �G of general rules meant to hold in all possible worlds,1 and
– a set � of defeasible (or default) rules meant to hold in most situations.
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The set � := �F ∪ �G is the set of strict rules that — contrary to the defeasible rules —
are considered to be safe and are not doubted in the concrete situation.

2.4 Formalization of arguments

Whether a rule is a strict one from � or a defeasible one from � has no effect on theories
and derivations (cf. Definition 3). If a contradiction occurs, however, we will narrow the
defeasible rules from � down to a subset A of its ground instances (i.e. instances without
free variables) — such that no further instantiation can occur. Such a subset, together with
the literal whose derivation is in focus, is called an argument. With implicit reference to the
given sets of rules � and �, the formal definition is as simple as follows.

Definition 5 ([Contradictory] [Minimal] Argument)
(A , L) is an argument if A is a set of ground instances of rules from � and A ∪� � {L}.
(A , L) is a minimal argument if A is an argument, but (A ′, L) is not an argument for any
proper subset A ′ � A .
An argument (A , L) is contradictory if A ∪ � is a contradictory set of rules.

Remark 3 (Non-Ground Arguments)
From a refined standpoint, what we actually need is not exactly a set A of ground instances,
but just of the instances applied in the derivation. Then, however, we have to freeze the
variables in A because they must not be instantiated in the derivation A ∪ � � {L}. We
avoid this refinement here until we come to Section 8.3, because it does not play an essential
rôle before and because we want to stay within the traditional framework as long as possible
to facilitate a more direct comparison.

Remark 4 (Minimality and Non-Contradiction of Arguments)
Some authors (cf. e.g. [5, 27]) require all arguments

1. to be minimal arguments, and
2. to be non-contradictory.

Because non-minimal as well as contradictory arguments often occur in practical situations,
there is no use-oriented justification for any of these requirements.

For requirement 1 there is no conceptual justification, because the non-minimal argu-
ments become inessential by our preference on specific arguments, in the sense that for
every argument there must be a minimal sub-argument that is at least as specific, cf. Corol-
laries 3, 5, and 8. Because being contradictory is only a secondary aspect of our logic (cf.
Section 2.2), there is no conceptual justification for requirement 2, either.

To obtain a more general setting in the comparison of arguments, we omit these restric-
tions in the context of this paper, where they turned out to be completely superfluous.
In particular, the omission of these requirements has no effect on the results of this paper.

1In the approach of [27], the set �G must not contain mere literals (without suffixed condition), also called
presumptions. To obtain a more general setting, we omit this additional restriction in the context of this paper,
simply because it is neither intuitive nor required for our framework here. For the actual occurrence of a
literal in �G, see the discussion of Example 18 in Section 7.4.
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2.5 Quasi-Orderings

We will use several binary relations comparing arguments according to their specificity. For
any relation written as �N (“being more or equivalently specific w.r.t. N”), we set

�N := {(X, Y ) | Y �N X} (“less or equivalently specific”),

≈N := �N ∩ �N (“equivalently specific”),

<N := �N \ �N (“properly more specific”),

≤N := <N ∪ {(X,X) | X is an argument} (“more specific or equal”),

�N :=
{
(X, Y )

∣∣∣∣ X, Y are arguments with
X ��N Y and X ��N Y

}
(“incomparable w.r.t. specificity”).

A quasi-ordering is a reflexive transitive relation. An (irreflexive) ordering is an irreflexive
transitive relation. A reflexive ordering (also called: “partial ordering”) is an anti-symmetric
quasi-ordering. An equivalence is a symmetric quasi-ordering.

Corollary 1 If �N is a quasi-ordering, then ≈N is an equivalence, <N is an ordering, and
≤N is a reflexive ordering.

3 Motivating Examples

For ease of distinction, we will use the special symbol “←” as a syntactic sugar in concrete
examples of defeasible rules from �, instead of the symbol “⇐”, which — in our concrete
examples — will be used only in strict rules.

Moreover, in our graphical illustrations we will indicate membership in �F by double
underlining.

Example 1 (Example 1 of [22])

We have T�1 = {bird(tweety), emu(edna), bird(edna), ¬flies(edna)},
T�1∪�1 = {flies(edna), flies(tweety)} ∪ T�1 .

It is intuitively clear that we prefer the argument (∅, ¬flies(edna)) to the argument
(A2, flies(edna)), simply because the former does not use any defeasible rules. We will
further discuss this in Example 7.
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Let us see what happens to Example 1 if we are not so certain anymore that no emu
can fly and turn the general rule (¬flies(x) ⇐ emu(x)) ∈ �G

1 into a defeasible one in the
following example.

Example 2 (Example 2 of [22])

We have T�2 = {bird(tweety), emu(edna), bird(edna)},
T�2 ∪ �2 = {¬flies(edna), flies(edna), flies(tweety)} ∪ T�2 .

It is intuitively clear that we prefer the argument (A1, ¬flies(edna)) to the argument
(A2, flies(edna)), simply because the defeasible derivation of the former is based on
emu(edna), and because this is more specific than bird(edna), on which the derivation of
the latter argument is based. We will further discuss this in Example 8.

Let us see what happens to Example 2 if we doubt that emus are birds.

Example 3 (Renamed Subsystem of Example 3 of [22])

We have

T�3 = {emu(edna)}, T�3∪�3 = {bird(edna), flies(edna), ¬flies(edna)} ∪ T�3 .

Now it is not clear anymore whether we should prefer (A1, ¬flies(edna)) to
(A2, flies(edna)). Both arguments are now based on emu(edna), but it is not clear whether
the less specific bird(edna) — because it has dropped out of T�3 now — can still be
considered as a basis for (A2, flies(edna)). We will further discuss this in Example 9.

Now suppose that we have a lovely grandma and a grouchy and noisy grandpa, stay at
their house and hear that somebody is coming into the house noisily, but cannot see yet who
it is.
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212 C.-P. Wirth, F. Stolzenburg

Example 4

Let us compare the specificity of the arguments (A1, ¬lovely) and (A2, lovely). We have

T�4 = {somebody, noisy}, T�4∪�4 = {grandma, grandpa, lovely, ¬lovely} ∪ T�4 .

Now, because there is somebody who is noisy according to the current situation given
by �F

4, it is probably grandpa because his characterization is more specific. Thus, it is
intuitively clear that we would prefer (A1,¬lovely) as the more specific argument to
(A2, lovely). We will further discuss this in Example 10.

4 Toward an intuitive notion of specificity

4.1 The common-sense concept of specificity

It is part of general knowledge that a criterion is [properly] more specific than another one
if the “class of candidates that satisfy it” is a [proper] subclass of that of the other one.
Analogously — taking logical formulas as the criteria — a formula A is [properly] more
specific than a formula B, if the model class of A is a [proper] subclass of the model class
of B, i.e. if A |= B [and B �|= A].

If we consider a formula as a predicate on model-theoretic structures, its model class
becomes the extension of this predicate. From this viewpoint, we can state A |= B also as
the syllogism “every A is B”, and also as the following Lambert diagram [19, Dianoiologie,
§§173–194].

4.2 Arguments as an abstraction

To enable a closer investigation of the critical parts of a defeasible derivation, we have
to isolate the defeasible parts in the derivation. From a concrete derivation of a literal L,
let us abstract the set A of the ground instances of the defeasible rules that are actually
applied in the derivation, and form the pair (A , L), which we already called an argument
in Definition 2 of Section 2.4.

4.3 The intuitive rôle of activation sets in the definition of specificity

If we want to classify a derivation with defeasible rules according to its specificity, then we
have to isolate the defeasible part of the derivation and look at its input formulas, so that
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we can see how specific these input formulas are. The input formulas are the set of those
literals on which the defeasible part of the derivation is based, called the activation set for
the defeasible part of the derivation. In our framework of defeasible positive-conditional
specification, the only relevant property of an activation set can be the conjunction of its
literals which we can represent by the set itself.2

For instance, in Example 2 of Section 3, the argument (A1, ¬flies(edna)) is based only
on the activation set {emu(edna)}, whereas the argument (A2, flies(edna)) can also be based
on the activation set {bird(edna)}, or on the union of these sets.

Moreover, in Example 4 of Section 3, the argument (A1,¬lovely) is based only on the
activation set {somebody, noisy}, whereas the argument (A2, lovely) can also be based on
the less specific activation set {somebody}.

4.3.1 Modulo which theory are activation sets to be compared?

Because all literals of an activation set have been derived from the given specification, it
does not make sense to compare activation sets w.r.t. the models of the entire specification.
Indeed, only a comparison w.r.t. the models of a sub-specification can show any differences
between them.

Therefore, we have to find out which parts of a specification (�F,�G, �) are to be
excluded from the comparison of activation sets.

We want to have the entire set �G available for our comparison of activation sets, for the
following reasons: The general and strict part �G of our specification represents the neces-
sary and stable kernel of our rules, independent of the concrete situation under consideration
given by �F, and independent of the uncertainty of our default rules �. Moreover, it is
hardly meaningful to exclude any proper rule from �G (i.e. any rule from �G that is not just
a literal); the technical reason for this will be given right at the beginning of Section 4.4.3.

We have to exclude �F from this comparison, however. This exclusion makes sense
because the defeasible rules are typically default rules not written in particular for the given
concrete situation that is formalized by �F. Moreover, as indicated before, the inclusion of
�F would typically eliminate all differences between activation sets, such as it is the case
in all examples of Section 3.

Finally, as we want to compare the defeasible parts of derivations, we should exclude the
set � of the defeasible rules when we compare activation sets. Thus, on the one hand, all
we can take into account from our specification is a subset of the general rules �G, and, on
the other hand, we do not want to exclude any of these general rules.

All in all, we conclude that �G is that part of our specification modulo which activation
sets are to be compared.

4.3.2 A first sketch of a notion of specificity

Very roughly speaking, if we have fewer activation sets for the defeasible part of a deriva-
tion, then these activation sets describe fewer models (i.e. their disjunction has fewer
models), which again means that the defeasible part of the derivation is more specific.
Accordingly, a first sketch of a notion of specificity can now be given as follows:

2A formal definition of an activation set is not needed here and would be harmful to intuition. Several
different formal notions of activation sets will be found in Definition 7 of Section 6.1 and also in Definition 16
of Section 8.3.1.
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214 C.-P. Wirth, F. Stolzenburg

An argument (A1, L1) is [properly] more specific than an argument (A2, L2) if, for
each activation set H1 for (A1, L1), there is an activation set H2 ⊆ TH1∪ �G for
(A2, L2) [but not vice versa].

Note that this notion of specificity is preliminary, and that the notion of an activation set for
an argument has not been properly defined yet.

4.4 Isolation of the defeasible parts of a derivation

If (A , L) is an argument (cf. Section 4.2), then there is a derivation of L which is based only
on those instances of defeasible rules which are contained in A . Such an argument ignores
the concrete derivation, and therefore suits our model-theoretic intentions (cf. Section 1).
With such an argument as an abstraction of a derivation, however, we lose the possibility to
isolate the actual defeasible parts of the derivation. Such a loss is typical for abstractions in
general; in our case, however, the discussion of this loss in Section 4.4.1 will turn out to be
conceptually crucial and result in several different formal notions of activation sets.3

4.4.1 Isolation of actual defeasible parts in and-trees

Let us compare the set A with an and-tree of the derivation. Every node in such a tree is
labeled with the conclusion of an instance of a rule, such that its children are labeled exactly
with the elements of the conjunction in the condition of this instance.

Definition 6 (And-Tree)
Let (�F,�G,�) be a defeasible specification (cf. Section 2.3), and let L be a literal.

An and-tree T for L [and for the derivation of � � {L}] w.r.t. (�F, �G,�) is a finite,
rooted tree, where every node is labeled with a literal, satisfying the following conditions:

1. The root node of T is labeled with L.
2. For each node N in T labeled with a literal L′, there is a strict or defeasible rule (L′′

0 ⇐
L′′

1 ∧ . . . ∧ L′′
k ) ∈ � ∪ �, such that L′ = L′′

0σ for some substitution σ [with (L′′
0σ ⇐

L′′
1σ ∧ . . . ∧ L′′

kσ ) ∈ � ]. Moreover, the node N has exactly k child nodes, which are
labeled with L′′

1σ, . . . , L′′
kσ , respectively.

This standard and very simple formal notion of an and-tree is meant to capture a single
derivation for a single argument. It must not be confused with the compact multi-graphs that
come as a synopsis with our examples (such as the ones in Section 3).4

An isolation of the defeasible parts of an and-tree of the derivation may now proceed as
follows:

– Starting from the root of the tree, we iteratively erase all applications of strict rules. This
gives us a set of trees, each of which has the application of a defeasible rule at the root.

– Starting now from the leaves of these trees, we again erase all applications of strict
rules. This gives us a set of trees with the following property holding for every node:

3See Definition 7 of Section 6.1 and also Definition 16 of Section 8.3.1.
4These sophisticated multi-graphs illustrate several derivations for several arguments in parallel, share sub-
graphs, and may have =-edges between occurrences of the same literal L to represent alternative derivations
of L (cf. Example 6 in Section 6.2 as well as Example 15 and 16 in Section 7.2). Because these synopses are
redundant in all examples, we do not provide a formalization for these multi-graphs.
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If all children of a node (if there are any) are leaves, then this node results from an
application of a defeasible rule.

4.4.2 A first approximation of activation sets

In a first approximation, we may now take the activation set for the original derivation
to be the set of all labels L of all leaves of all resulting trees, unless the literal L is an
unconditional rule from A .

The motivation for this notion of an activation set is that the conjunction of its liter-
als is a weakest precondition for all defeasible parts of the concrete original derivation. If
such a logically weakest precondition satisfies the specificity notion of Section 4.3.2 as
an activation set for an argument (A1, L1) w.r.t. a second argument (A2, L2), then any
other precondition for all defeasible parts of the given and-tree will satisfy this notion w.r.t.
(A2, L2) a fortiori.5

4.4.3 Growth of the defeasible parts toward the leaves

Note that in the set of trees resulting from the procedure described at the end of Sec-
tion 4.4.1, there may well have remained instances of rules from �G connecting a defeasible
root application with the defeasible applications right at the leaves. Thus — to cover the
whole defeasible part of the derivation in our abstraction — we have to consider the set
A ∪ �G instead of just the set A .

More precisely, we have to include all proper rules (i.e. those with non-empty con-
ditions) from �G, and may also include the literals in �G because they cannot do any
harm.6

As a consequence, in the modeling via our abstraction A , we cannot prevent the iso-
lated defeasible sub-trees resulting from the procedure described in Section 4.4.1 from
using the rules from �G to grow toward the root and toward the leaves again. Only the
growth toward the leaves, however, can affect our activation sets (which are still taken
to be the labels of all leaves of all resulting trees) and thereby our notion of specificity.
Indeed, a growth toward the root can add to the conjunction of the given leaves only its
super-conjunctions, which are irrelevant because of our focus on weakest preconditions
(explained in Section 4.4.2).

Let us have a closer look at the effects of such a growth toward the leaves in the most
simple case. In addition to a given activation set {Q(a)}, in the presence of a general rule

Q(x) ⇐ P0(x) ∧ · · · ∧ Pn−1(x)

from �G, we will also have to consider the activation set {Pi (a) | i ∈ {0, . . . , n − 1}}.
This has two effects, which we will discuss in Sections 4.4.4 and 4.4.5.

5Note that a further dissection of the isolated defeasible parts would not in general result in activation sets
that can be inferred from the strict rules in �. Where this inference is possible, however, a further dissection
leads to the special notion of activation sets given in Definition 16 of Section 8.3.1.
6The need to include all proper rules and to exclude the literals from �F provides a motivation for simply
defining �G to contain exactly the proper rules of �, such as found in [27].
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4.4.4 First effect: simplified second sketch of a notion of specificity

The first effect is that we immediately realize that every model of �G in the model class
that is represented by the activation set {Pi (a) | i ∈ {0, . . . , n−1}} is also in the model class
represented by the activation set {Q(a)}.

Indeed, this growth toward the leaves will immediately add {Pi (a) | i ∈ {0, . . . , n − 1}}
as a further activation set for every argument with the activation set {Q(a)}. By this effect
it is just made explicit that an argument that can be based on the activation set {Q(a)} can
also be based on the activation set {Pi (a) | i ∈ {0, . . . , n − 1}}. Thus — provided that there
are no other activation sets — an argument that can be based on the activation set {Q(a)}
is less or equivalently specific compared to any argument that can be based on {Pi (a) | i ∈
{0, . . . , n − 1}}.

Therefore — if we admit the effect of a growth toward the leaves on our activation
sets — we may simplify7 the comparison of activation sets in our first sketch of a notion of
specificity of Section 4.3.2 as follows:

An argument (A1, L1) is [properly] more specific than an argument (A2, L2) if, for
each activation set H1 for (A1, L1), this set H1 is also an activation set for (A2, L2)

[but not vice versa].

4.4.5 Second effect: preference of the “more concise”

The second effect, however, is that an argument (A2, L2) that gets along with {Q(a)}
becomes even properly less specific than an argument (A1, L1) that actually requires
{Pi (a) | i ∈ {0, . . . , n − 1}}. and does not get along with {Q(a)}, simply because (A2, L2)

has the additional activation set {Q(a)}.
The resulting preference of (A1, L1) to (A2, L2) as being properly more specific is usu-

ally called preference of the “more concise”, cf. e.g. [27, p. 94] and [13, p. 108]. Although
— to the best of our knowledge — this notion has never been formally defined, roughly
speaking it is — for an instantiated rule Q(a) ⇐ P0(a) ∧ · · · ∧ Pn−1(a) of the spec-
ification — the preference of an argument that gets along with the conclusion {Q(a)}
of the instantiated rule as an activation set, instead of actually requiring the condition
{Pi (a) | i ∈ {0, . . . , n−1}}.

For instance, in Example 2 of Section 3, an argument that gets along with {bird(edna)}
is properly less specific than one that actually requires {emu(edna)}, in the sense that
emu(edna) is more concise than bird(edna).

The problem now is that the statement Q(a) �|= P0(a)∧· · ·∧Pn−1(a) — which is required
to justify this preference — is not explicitly given by the specification (�F,�G,�).

Nevertheless — if we do not just want to see it as a matter-of-fact property of notions of
specificity in the style of Poole — we could justify the preference of the “more concise” by
imposing the following best practice on positive-conditional specification:

If we write an implication in form of a rule

Q(x) ⇐ P0(x) ∧ · · · ∧ Pn−1(x)

7Note that we have replaced here the option to choose some activation set H2 ⊆ TH1∪ �G of the first sketch
with the restrictive determination H2 := H1. This simplifying restriction applies here for the following
reason: If H2 ⊆ TH1∪ �G is an activation set for (A2, L2), then H1 is an activation set for (A2, L2) as well,

provided that we admit the first effect of a growth toward the leaves via �G on our activation sets.
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into a positive-conditional specification � of strict (i.e. non-defeasible) knowledge, and if
we do not intend that the implication is proper in the sense that its converse does not hold
in general, then we ought to specify the full equivalence by adding the rules Pi (x) ⇐ Q(x)

(i ∈ {0, . . . , n − 1}) to the specification.8

Under this best practice of specification, if we find such a rule without the specification
of its full equivalence, then it is not intended to exclude models where Q holds for some
object a, but not all of the Pi do. This means that if we find such a rule in the strict and
general part �G of a specification, then it is reasonable to assume that the implication is
proper w.r.t. the intuition captured in the defeasible rules in �.

As a consequence, it makes sense to consider a defeasible argument based on
{ Pi (a) | i ∈ {0, . . . , n − 1} } to be properly more specific than an argument that can get
along with Q(a).

Remark 5 (Justification for Preference of the “More Concise” Not Valid for Defeasible
Rules)
Note that our justification for the preference of the “more concise” does not apply, how-
ever, if Q(x) ⇐ P0(x) ∧ · · · ∧ Pn−1(x) is a defeasible rule instead of a strict one,
because we then have the following three problems when trying to justify preference of the
“more concise”:

– The implication given by the rule is not generally intended (otherwise the rule should
be a strict one).

– Moreover, we cannot easily describe the actual instances to which the default rule is
meant to apply (otherwise this more concrete description of the defeasible rule should
be stated as strict rules).

– The direct treatment of a defeasible equivalence neither has to be appropriate as a
default rule in the given situation, nor do we have any means to express a defeasible
equivalence in the current setting.

Accordingly, there is, for instance, no clear reason to prefer the first argument of Example 3
in Section 3 to the second one. This will be discussed in more detail in Example 9.

8There is one exception to this justification, however, in the practice of logic programming: If Q(x) ⇐
P0(x) ∧ · · · ∧ Pn−1(x) is the only rule of the specification with Q as the predicate symbol of the conclusion,
then it is standard in PROLOG to consider this implication as an implementation of a full equivalence defining
the predicate Q.

This is different in our context of positive-conditional specification here, however, where we can add and
ought to add the rules Pi (x) ⇐ Q(x) (i ∈ {0, . . . , n − 1}) to our specification, simply because we are not
concerned with the non-termination problem of logic programming resulting from such a specification of the
full equivalence (cf. Section 2.1).

An alternative which is given also in logic programming is to omit the rule indicated above and to replace
each occurrence of each Q(t) with P0(t) ∧ · · · ∧ Pn−1(t), respectively.

Moreover, in the frequent case that several cases of the definition of a predicate are spread over several
rules, the implications definitely tend to be proper also in logic programming, because, roughly speaking, the
defined predicate is given as the proper disjunction of the conditions of the several rules.
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4.4.6 Preference of the “more precise”

If we consider an argument requiring an activation set { Pi (a) | i ∈ {0, . . . , n} } to be prop-
erly more specific than an argument that gets along with a proper subset { Pi (a) | i ∈ I } for
some index set I � {0, . . . , n}, then the resulting preference is usually called preference of
the “more precise”, cf. e.g. [27, p. 94] and [13, p.108]. An example for the preference of
the “more precise” is Example 4 of Section 3.

There is, however, an exception from this preference to be observed, namely the case
that we can actually derive the set from its subset with the help of �G. In this case,
the above-mentioned growth toward the leaves with rules from �G again implements the
approximation of the subclass relation among model classes via the one among activation
sets.9

Apart from this exception, there is again a problem, namely that it is not the case that
∧
i∈I

Pi (a) �|=
∧

i∈{0,...,n}Pi (a)

would be explicitly given by the specification via (�F,�G,�).
Nevertheless — if we do not just want to see it as a matter-of-fact property of notions of

specificity in the style of Poole — we could justify also the preference of the “more precise”
by imposing the following best practice on positive-conditional specification:

If we want to exclude the above non-consequence, then we ought to specify, for each
j ∈ {0, . . . , n} \ I , a rule like Pj (x) ⇐ ∧

i∈I Pi (x).

4.4.7 Conclusion on the preferences

Let us finally point out that an acceptance of our justifications of the preferences of the
“more concise” and the “more precise” is not at all a prerequisite for following our investi-
gations on Poole’s model-theoretic notion of specificity and our correction of this notion in
the following sections.

5 Requirements specification of specificity in positive-conditional
specification

With implicit reference to a defeasible specification (�F, �G,�) (cf. Section 2.3), let us
designate Poole’s relation of being more (or equivalently) specific by “�P1”. Here, “P1”
stands for “Poole’s original version”.

9This approximation was discussed in Section 4.4.4 and will be demonstrated in Example 18 of Section 7.
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The standard usage of the symbol “�” is to denote a quasi-ordering (cf. Section 2.5).
Instead of the symbol “�”, however, [22] uses the symbol “≤”. The standard usage of the
symbol “≤” is to denote a reflexive ordering (cf. Section 2.5). We cannot conclude from this,
however, that Poole intended the additional property of anti-symmetry; indeed, Poole gives
a concrete example specification where the lack of anti-symmetry of �P1 is made explicit.10

The possible lack of anti-symmetry of quasi-orderings — i.e. that different arguments
may have an equivalent specificity — cannot be a problem because any quasi-ordering �N

immediately provides us with its equivalence ≈N , its ordering <N , and its reflexive ordering
≤N (cf. Corollary 1 of Section 2.5).

By contrast to the non-intended anti-symmetry, transitivity is obviously a conditio sine
qua non for any useful notion of specificity. Indeed, if we have to make a quick choice
among the three mutually exclusive actions Propose, Kiss, Smile, and if we already have
an argument (A2,Kiss) that is more specific than another argument (A3,Smile), and if
we come up with yet another argument (A1,Propose) that is even more specific than
(A2,Kiss), then, by all means, (A1,Propose) should be more specific than the argument
(A3,Smile) as well. It is obvious that a notion of specificity without transitivity could hardly
be helpful in practice.

A further conditio sine qua non for any useful notion of specificity is that the con-
junctive combination of respectively more specific arguments results in a more specific
argument. Indeed, if a square is more specific than a rectangle and a circle is more specific
than an ellipse, then a square inscribed into a circle should be more specific than a rect-
angle inscribed into an ellipse. This property is called monotonicity of conjunction, which
we will discuss in Section 7.1. Already in [22], we find an example11 where �P1 vio-
lates this monotonicity property of the conjunction, which is described there as “seemingly
unintuitive”.12

Further intricacies of computing Poole’s specificity in concrete examples are described
in [27],13 which will make it hard to implement �P1 or its minor corrections as effi-
ciently as required in the practice of answer computation and SLD-resolution w.r.t.
positive-conditional specifications.

6 Formalizations of specificity

6.1 Activation sets

A derivation from the leaves to the root can now be split into three phases of derivation of
literals from literals. This splitting follows the discussion in Section 4.4.1 on how to isolate

10Here we refer to the last three sentences of Section 3.2 on Page 145 of [22].
11Here we refer to Example 6 of [22, Section 3.5, p. 146], see our Example 12 in Section 7.1.
12See our Example 12 in Section 7.1 and the references there.
13Here we refer to Section 3.2ff. of [27], where it is demonstrated that, for deciding Poole’s specificity
relation (actually �P2 instead of �P1, but this does not make any difference here) for two input arguments,
we sometimes have to consider even those defeasible rules which are not part of any of these arguments. See
also our Example 15 in Section 7.2.
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the defeasible parts of a derivation (phase 2) from strict parts that may occur toward the
root (phase 3) and toward the leaves (phase 1):

(phase 1) First we derive the literals that provide the basis for specificity considerations.
In our approach we derive the set T� here. Poole takes the set T�∪� instead.

(phase 2) On the basis of

– a subset H of the literals derived in phase 1,
– the first item A of a given argument (A , L), and
– the general rules �G,

we derive a further set of literals L: H ∪ A ∪ �G � L.

(phase 3) Finally, on the basis of L, the literal of the given argument (A , L) is derived:
L ∪ � � {L}.
In Poole’s approach, phase 3 is empty and we simply have L = {L}. In our approach,
however, it is admitted to use the facts from �F in phase 3, in addition to the general
rules from �G, which were already admitted in phase 2.

With implicit reference to our sets � = �F ∪ �G and �, the phases 2 and 3 can be more
easily expressed with the help of the following notions.

Definition 7 ([Minimal] [Simplified] Activation Set)
Let A be a set of ground instances of rules from �, and let L be a literal.
H is a simplified activation set for (A , L) if L ∈ TH ∪ A ∪ �G .
H is an activation set for (A , L) if L ∈ TL∪� for some L ⊆ TH ∪ A ∪ �G .
H is a minimal [simplified] activation set for (A , L) if H is an [simplified] activation set
for (A , L), but no proper subset of H is an [simplified] activation set for (A , L).

Corollary 2 Let A be a set of ground instances of rules from �, and let L be a literal.
Every simplified activation set for (A , L) is an activation set for (A , L).

Roughly speaking, an argument is now more (or equivalently) specific than another one
if each of its activation sets is also an activation set for the other argument. Note that this
follows the simplified second sketch of a notion of specificity displayed in Section 4.4.4,
not the first one displayed in Section 4.3.2.

Activation sets that are not simplified differ from simplified ones by the admission of
facts from �F (in addition to the general rules �G) after the defeasible part of the derivation
is completed.14

Our introduction of activation sets that are not simplified is a conceptually important cor-
rection of Poole’s approach: It must be admitted to use the facts besides the general rules
in a purely strict derivation that is based on literals resulting from completed defeasible
arguments, simply because the defeasible parts of a derivation (as isolated in Section 4.4.1)
should not get more specific by the later use of additional facts that do not provide input to

14This can be seen in Example 16 of Section 7, and in Example 19 of Section 8.2.2. See also the variable F

in Fig. 1.
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17

16

Fig. 1 And-tree with phases 1, 2, 3 18

the defeasible parts.15 Note that the difference between simplified and non-simplified acti-
vation sets typically occurs in real applications, but — except Example 16 in Section 7.2 —
not in our toy examples of Section 7, which mainly exemplify the differences in phase 1.

6.2 Poole’s specificity relation P1 and its minor corrections P2, P3

In this section we will define the binary relations �P1, �P2, �P3 of “being more or equiva-
lently specific according to David Poole” with implicit reference to our sets of facts and of
general and defeasible rules (i.e. to �F, �G, and �, respectively).

The relation �P1 of the following definition is precisely Poole’s original relation ≥ as
defined at the bottom of the left column on Page 145 of [22]. See Section 5 for our reasons
to write “�” instead of “≥” as a first change. Moreover, as a second change required by
mathematical standards, we have replaced the symbol “�” with the symbol “�” (such that
the smaller argument becomes the more specific one), so that the relevant well-foundedness
becomes the one of its ordering < instead of the reverse >.

Definition 8 (�P1: David Poole’s Original Specificity)
(A1, L1) �P1 (A2, L2) if (A1, L1) and (A2, L2) are arguments, and if, for every H ⊆

15We do not further discuss this obviously appropriate correction here and leave the construction of examples
that make the conceptual necessity of this correction intuitively clear as an exercise. Hint: Have a look at
the proof of Theorem 3 in Section 6.5. Then present two different sets of strict rules with equal derivability,
where only one needs the facts in phase 3 and where the additional specificity gained by these facts violates
the intuition.
16Look at Note 30 of Example 15 in Section 7.2 to see that it may really matter for the definition of P1, P2,
P3 that we do not have F ⊆ T�F∪�G in general in Poole’s approach.
17Although we do not have H ⊆ �F in general in our approach, the replacement of �F with H in this table
would result in fewer derivable roots for our approach, simply because we always have TH∪�G ⊆ T�F∪�G

in our approach.
18From the leaves to the root: phase 1 (H ), phase 2 (sub-trees of the defeasible parts of a derivation, with
explicit defeasible root steps), phase 3 (root sub-tree). For Poole’s approach, however, the root sub-tree is still
part of phase 2, whereas phase 3 is empty.
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T�∪� that is a simplified activation set for (A1, L1) but not a simplified activation set for
(A2, L1), H is also a simplified activation set for (A2, L2).

The relation �P2 of the following definition is the relation � of [27, Definition 10, p.
94] (attributed to Poole’s [22]). Moreover, the relation >spec of [26, Definition 2.12, p. 132]
(attributed to Poole’s [22] as well) is the relation <P2 := �P2 \ �P2.

Definition 9 (�P2: Standard Version of David Poole’s Specificity)
(A1, L1) �P2 (A2, L2) if (A1, L1) and (A2, L2) are arguments, and if, for every H ⊆
T�∪� that is a simplified activation set for (A1, L1) but not a simplified activation set for
(∅, L1), H is also a simplified activation set for (A2, L2).

The only change in Definition 9 as compared to Definition 8 is that “(A2, L1)” is
replaced with “(∅, L1)”. We did not yet encounter any example where any difference results
from this correction toward “(∅, L1)”, which is standard in the publications of the last two
decades and which is intuitively more appropriate in the sense of a weight or measure
function.

The relations �P1 and �P2 were not meant to compare arguments for literals that do
not need any defeasible rules — or at least they do not show an intuitive behavior on such
arguments, as shown in Example 5.

Example 5 (Minor Flaw of �P1 and �P2)

Let us compare the specificity of the arguments (A2, beer) and (∅, drink), meaning that we
should have a beer or else an arbitrary drink at our own choice, respectively.

We have T�5 = {thirst, drink},T�5∪�5 = {beer} ∪ T�5 .
We have (A2, beer) �P2 (∅, drink) because for every H ⊆ T�5∪�5 that is a simplified

activation set for (A2, beer), but not a simplified activation set for (∅, beer), we have thirst ∈
H , so H is a simplified activation set also for (∅, drink).

We have (∅, drink) �P2 (A2, beer) because there cannot be a simplified activation set
for (∅, drink) that is not a simplified activation set for (∅, drink).

All in all, we get19 (A2, beer) ≈P2 (∅, drink), although (∅, drink) should be strictly
preferred to (A2, beer) according to intuition, simply because an argument that does not
require any defeasible rules should always be strictly preferred to a comparable argument
that does actually require defeasible rules.

To overcome this minor flaw, which consists in the inconvenience of not in general
preferring a non-defeasible argument to a comparable defeasible one, we finally add an
implication as an additional requirement in Definition 10. This implication guarantees that
no argument that requires defeasible rules can be more or equivalently specific than an
argument that does not require any defeasible rules at all.

19Note that by Corollary 4, we will get (A2, beer) ≈P1 (∅, drink) as well. Moreover, note that this problem
does not occur in the similar Example 1 of Section 3.
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Definition 10 (�P3: Rather Unflawed Version of David Poole’s Specificity)
(A1, L1) �P3 (A2, L2) if (A1, L1) and (A2, L2) are arguments, L2 ∈ T� implies
L1 ∈ T�, and if, for every H ⊆ T�∪� that is a [minimal]20 simplified activation set for
(A1, L1) but not a simplified activation set for (∅, L1), H is also a simplified activation set
for (A2, L2).

Corollary 3 If (A1, L1), (A2, L2) are arguments with A1 ⊆ A2, then any of the following
conditions is sufficient for (A1, L1) �P3 (A2, L2):

1. L1 = L2.
2. L2 ∈ T� ⇒ L1 ∈ T� and {L1} ∪ A2 ∪ �G � {L2},
3. A1 = ∅ (which implies L1 ∈ T� by Definition 5).21

As every simplified activation set that passes the condition of Definition 8 also passes
the one of Definitions 9 and 10, we get the following corollary of these three definitions.

Corollary 4 �P3 ⊆ �P2 ⊆ �P1.

By Corollaries 3 and 4, �P1, �P2, and �P3 are reflexive relations on arguments, but
— as we will show in Example 6 and state in Theorem 1 — not quasi-orderings in
general.

Example 6 (Counterexample to the Transitivities: “Choose one action!”)
Suppose you meet the sexy girl Jo in a lift for a very short time, you smile at her, and
she smiles back with a head akimbo. Since smiling, kissing, and proposing are mutually
exclusive actions of your mouth, you have to make up your mind quickly what to do next,
depending on your current level of boldness.22

�F
6 := {Bold,HAkimbo(Jo),Smiles(Jo),Sexy(Jo)} ,

�G
6 := {Kiss ⇐ Promising(G)} ,

�6 :=

⎧⎪⎪⎨
⎪⎪⎩

Smile ← Sexy(G),

Kiss ← Bold ∧ Smiles(G) ∧ Sexy(G),

Promising(G) ← HAkimbo(G) ∧ Smiles(G) ∧ Sexy(G),

Propose ← Promising(G) ∧ Bold

⎫⎪⎪⎬
⎪⎪⎭

.

A1 :=
{
Promising(Jo) ← HAkimbo(Jo) ∧ Smiles(Jo) ∧ Sexy(Jo)
Propose ← Promising(Jo) ∧ Bold

}
,

A2 := {Kiss ← Bold ∧ Smiles(Jo) ∧ Sexy(Jo)} ,

A3 := {Smile ← Sexy(Jo)} .

Compare the specificity of the arguments (A1,Propose), (A2,Kiss), (A3,Smile)!

20Note that the omission of the optional restriction to minimal simplified activation sets for (A1, L1) in
Definition 10 has no effect on the extension of the defined notion, simply because the additional non-minimal
simplified activation sets (A1, L1) will then be simplified activation sets for (A2, L2) a fortiori.
21Exercise: Find a counterexample, however, for the conjecture that L1 ∈ T� implies (A , L1) �P3 (A , L2).
22The nullary predicate Bold could actually be removed from all rules and facts of this example, which
would still remain a counterexample to the transitivities; to the contrary, it would even improve its status by
becoming a minimal counterexample. A renaming of the resulting minimal counterexample was presented as
Example 5.8 in [34, 35].
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Lemma 1 There are

– a specification (�F
6,�G

6 ,�6)without any negative literals (i.e., a fortiori,�F
6∪�G

6 ∪�6
is non-contradictory), and

– minimal arguments (A1, L1), (A2, L2), (A3, L3),

such that (A1, L1) �P3 (A2, L2) �P3 (A3, L3) ��P1 (A1, L1) and (A1, L1) ��P1
(A2, L2) ��P1 (A3, L3).

Proof of Lemma 1 Looking at Example 6, we see that only the quasi-ordering properties in
the last two lines of Lemma 1 are non-trivial. We have

T�6 = {Bold,HAkimbo(Jo),Smiles(Jo),Sexy(Jo)},
T�6∪�6 = {Promising(Jo),Propose,Kiss,Smile} ∪ T�6 .

Thus, regarding the arguments (A1,Propose), (A2,Kiss), (A3,Smile), the implication
added in Definition 10 as compared to Definitions 8 and 9 is always satisfied, simply
because its condition is always false.

(A3,Smile) ��P1 (A1,Propose) �P3 (A2,Kiss): The minimal simplified activation sets
for (A1,Propose) that are subsets of T�6∪�6 and no simplified activation sets for
(∅,Propose) (or, without any difference, no simplified activation sets for (A3,Propose))
are {Bold,HAkimbo(Jo),Smiles(Jo),Sexy(Jo)} and {Bold,Promising(Jo)}, which are
simplified activation sets for (A2,Kiss) — but {Bold,Promising(Jo)} is no simplified
activation set for (A3,Smile).

(A1,Propose) ��P1 (A2,Kiss) �P3 (A3,Smile): The only simplified activation set for
(A2,Kiss) that is a subset of T�6∪�6 and no simplified activation set for (∅,Kiss)
(such as {Promising(Jo)}) (or, without any difference, no simplified activation set for
(A1,Kiss)) is {Bold,Smiles(Jo),Sexy(Jo)}, which is a simplified activation set for
(A3,Smile), but not for (A1,Propose).

(A2,Kiss) ��P1 (A3,Smile): The only minimal simplified activation set for (A3,Smile)
that is a subset of T�6∪�6 and no simplified activation set for (A2,Smile) is {Sexy(Jo)},
which is not a simplified activation set for (A2,Kiss).

6.3 Main negative result: not transitive!

The relations stated in Lemma 1 hold not only for the given indices, but — by
Corollary 4 — actually for all of P1, P2, P3; and so we immediately get:
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Theorem 1
There is a specification (�F

6,�G
6 ,�6), such that �F

6 ∪ �G
6 ∪ �6 is non-contradictory, but

none of �P1, �P2, �P3, <P1, <P2, <P3 is transitive. Moreover, the counterexamples to the
transitivity of all these relations can be restricted to minimal arguments.

As a consequence of Theorem 1, the respective relations in [22, 27] and [26] are
not transitive. This means that these relations are not quasi-orderings, let alone reflexive
orderings.

This consequence is immediate for the relation ≥ at the bottom of the left column on
Page 145 of [22]. Moreover, note that the consequence does not depend on the contentious
question on whether our interpretation of the negation symbol ¬ essentially differs from its
interpretation in [22]. Indeed, our counterexample to transitivity occurs in the negation-free
definite-rule fragment of Poole’s original language.

Moreover, this consequence is also immediate for the relation � [27, Definition 10, p.
94] and for the relation >spec [26, Definition 2.12, p.132], simply because we can replace
� and >spec with �P2 and <P2 in the context of Example 6, respectively.

Although transitivity of these relations is strongly suggested by the special choice of
their symbols and seems to be taken for granted in general, we found an actual statement of
such a transitivity only for the relation � of [26, Definition 2.22, p.134], namely in “Lemma
2.23” [26, p. 134].23

Finally, note that those readers who do not see a proper conflict in our coun-
terexample just should add to Example 6 some general rules such as Execute ⇐ Kiss,
Execute ⇐ Smile, ¬Execute ⇐ Propose, say to model the situation in one of the areas of
today’s planet Earth where an unmarried woman who raises the wish to smile or kiss has to
be executed.

6.4 Our novel specificity ordering CP1

In the previous section, we have seen that minor corrections of Poole’s original relation P1
(such as P2, P3) do not cure the (up to our finding of Example 6) hidden or even denied defi-
ciency of these relations, namely their lack of transitivity. Our true motivation for a major
correction of P3 was not this formal deficiency, but actually an informal one, namely that it
failed to get sufficiently close to human intuition, which will become clear in Section 7.

For these reasons, we now define our major correction of Poole’s specificity — the binary
relation �CP1 — with implicit reference to our sets of facts and of general and defeasible
rules (i.e. to �F, �G, and �, respectively) as follows.

23According to the rules of good scientific and historiographic practice, we pinpoint the violation of this
“lemma” now as follows. Non-transitivity of � follows here immediately from the non-transitivity of the
relation ≥spec of Definition 2.15, which, however, is not identical to the above-mentioned relation �, but actu-
ally a subset of �, because it is defined via a peculiar additional equivalence ≈spec introduced in Definition
2.14, [26, p. 132], namely via ≥spec:=>spec ∪ ≈spec [26, Definition 2.15, p.132f.]. Directly from Defini-
tion 2.14 of [26], we get ≈spec⊆≈P2. Thus, by Corollary 4, we get ≥spec⊆�P2⊆�P1; and so (recollecting
<P2⊆>spec⊆≥spec) the result

(A1, L1) <P2 (A2, L2) <P2 (A3L3) ��P1 (A1, L1)

of Lemma 1 gives us the following counterexample to transitivity:

(A1, L1) ≥spec (A2, L2) ≥spec (A3L3) �≤spec (A1, L1).
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Definition 11 (�CP1: 1st Version of our Specificity Relation)
(A1, L1) �CP1 (A2, L2) if (A1, L1) and (A2, L2) are arguments, and we have

1. L1 ∈ T� or
2. L2 /∈ T� and every H ⊆ T� that is an [minimal]24 activation set for (A1, L1) is also

an activation set for (A2, L2).

Corollary 5 If (A1, L1), (A2, L2) are arguments withA1 ⊆ A2, then any of the following
conditions is sufficient for (A1, L1) �CP1 (A2, L2):

1. L1 = L2.
2. L2 ∈ T� ⇒ L1 ∈ T� and {L1} ∪ � � {L2}.25

3. L1 ∈ T� (which is implied by A1 = ∅ by Definition 5).

The crucial change in Definition 11 as compared to Definition 10 is not the technically
required emphasis it puts on the case “L1 ∈ T�”, which will be discussed in Remark 6 of
Section 6.6. The crucial changes actually are

(A) the replacement of “H ⊆ T�∪�” with “H ⊆ T�” (as explained already in phase 1 of
Section 6.1), and the thereby enabled

(B) omission of the previously technically required,26 but unintuitive negative condition
on derivability (of the form “but not a simplified activation set for (∅, L1)”).

An additional minor change, which we have already discussed in Section 6.1, is the one
from simplified activation sets to (non-simplified) activation sets.

Theorem 2 �CP1 is a quasi-ordering on arguments.

Proof of Theorem 2
�CP1 is a reflexive relation on arguments because of Corollary 5.

To show transitivity, let us assume (A1, L1) �CP1 (A2, L2) and (A2, L2) �CP1 (A3,
L3). According to Definition 11, because of (A1, L1) �CP1 (A2, L2), we have L1 ∈ T�

— and then immediately the desired (A1, L1) �CP1 (A3, L3) — or we have L2 /∈ T�

and every H ⊆ T� that is an activation set for (A1, L1) is also an activation set for
(A2, L2). The latter case excludes the first option in Definition 11 as a justification for
(A2, L2) �CP1 (A3, L3), and thus we have L3 /∈ T� and every H ⊆ T� that is an acti-
vation set for (A2, L2) is also an activation set for (A3, L3). All in all, we get that every
H ⊆ T� that is an activation set for (A1, L1) is also an activation set for (A3, L3). Thus,
we get the desired (A1, L1) �CP1 (A3, L3) also in this case.

24Note that the omission of the optional restriction to minimal activation sets for (A1, L1) in Definition 11
has no effect on the extension of the defined notion, simply because the additional non-minimal activation
sets for (A1, L1) will then be activation sets for (A2, L2) a fortiori.
25Note that, in general — contrary to Corollary 3(2) — A2 must not participate in the derivation of L2 from
L1, say in the form that there is a set of literals L with {L1} ∪ A2 ∪ �G � L and L ∪ � � {L2}, because rules
from �F may have participated in the derivation of L1 from an activation set. The source of this difference
between P3 and CP1 is the replacement of simplified activation sets in Definition 10 with (non-simplified)
activation sets in Definition 11.
26See the discussion in Example 10 in Section 6.6 on why this condition is technically required for P1, P2,
and P3.
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Obviously, an argument is ranked by �CP1 firstly on whether its literal is in T�, and, if
not, secondly on the set of its activation sets, which is an element of the power set of the
power set of T�. So we get:

Corollary 6 If T� is finite, then <CP1 is well-founded.

6.5 Relation between the specificity relations P3 and CP1

Theorem 3 Let �<2 be the set of rules from � that are unconditional or have exactly one
literal in the conjunction of their condition.

Let �≥2 be the set of rules from � with more than one literal in their condition.
�P3 ⊆ �CP1 holds if one (or more) of the following conditions hold:

1. For every H ⊆ T� and for every set A of ground instances of rules from �, and for
L := TH∪A ∪�G , we have TL∪� ⊆ L ∪ T�.

2. For each instance L ⇐ L′
0 ∧ . . . ∧ L′

n+1 of each rule in �≥2 with L /∈ T�<2 ,
we have L′

j /∈ T�<2 for all j ∈ {0, . . . , n + 1}.
3. For each instance L ⇐ L′

0 ∧ . . . ∧ L′
n+1 of each rule in �≥2,

we have L′
j /∈ T� for all j ∈ {0, . . . , n + 1}.

4. We have �≥2 = ∅.

Note that if we had improved �P3 only w.r.t. phase 1 of Section 6.1, but not w.r.t.
phase 3 in addition, then Theorem 3 would not require any condition at all (see the
proof!). This means that a condition becomes necessary by our correction of simplified
activation sets to non-simplified ones, but not because of the major changes (A) and (B)
of Section 6.4.

Proof of Theorem 3
First let us show that condition 2 implies condition 1. To this end, let H ⊆ T�,
let A be a set of ground instances of rules from �, and set L := TH∪A ∪�G .
For an argumentum ad absurdum, let us assume TL∪� � L ∪ T�. Because of
�F ⊆ T�<2 , we have L ∪ � = L ∪ �F ∪ �G ⊆ L ∪ T�<2 ∪ �G, and thus
TL∪� ⊆ TL∪T

�<2 ∪ �G , and thus TL∪T
�<2 ∪ �G � L ∪ T�<2 (because otherwise

TL∪� ⊆ TL∪T
�<2 ∪ �G ⊆ L ∪ T�<2 ⊆ L ∪ T�). Now L is closed under �G by defini-

tion. Moreover, T�<2 is closed under �<2 by definition and under �≥2 by condition 2.
Because both of the sets of literals L and T�<2 are closed under �G — but nevertheless
their union is not closed under �G according to TL∪T

�<2 ∪ �G � L ∪ T�<2 — there
must be an inference step essentially based on both sets in parallel. More precisely,
this means that there must be an instance L ⇐ L′

1 ∧ . . . ∧ L′
n of a rule from �G with

L /∈ L ∪ T�<2 , and some i, j ∈ {1, . . . , n} with L′
i ∈ L \ T�<2 and L′

j ∈ T�<2 \ L. Then

L ⇐ L′
1 ∧ . . . ∧ L′

n must actually be an instance of a rule from �≥2, and L /∈ T�<2 , but
L′

j ∈ T�<2 in contradiction to condition 2.
As condition 2 implies condition 1, condition 3 trivially implies condition 2, and condi-

tion 4 trivially implies condition 3, it now suffices to show the claim that (A1, L1) �CP1
(A2, L2) holds under condition 1 and the assumption of (A1, L1) �P3 (A2, L2). By
this assumption, (A1, L1) and (A2, L2) are arguments and L2 ∈ T� implies L1 ∈ T�.
If L1 ∈ T� holds, then our claim holds as well. Otherwise, we have L1, L2 /∈ T�, and
it suffices to show the sub-claim that H is an activation set for (A2, L2) under the
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additional sub-assumption that H ⊆ T� is an activation set for (A1, L1). Under the sub-
assumption we also have H ⊆ T�∪� because of T� ⊆ T�∪�, and, for L := TH∪A1∪�G ,
we have L1 ∈ TL∪ �, and then, by condition 1, L1 ∈ L ∪ T�. Then, by our current case of
L1, L2 /∈ T�, we have L1 ∈ L. Thus, H is a simplified activation set for (A1, L1).

Let us now provide an argumentum ad absurdum for the assumption that H is a sim-
plified activation set also for (∅, L1): Then we would have L1 ∈ TH∪�G , and because of
H ⊆ T� and �G ⊆ � we get L1 ∈ TT�∪� = T� — a contradiction to our current case
of L1, L2 /∈ T�. All in all, by our initial assumption, H must now be a simplified activation
set for (A2, L2) and, a fortiori by Corollary 2, an activation set for (A2, L2), as was to be
shown for our only remaining sub-claim.

6.6 Checking up the previous examples

With the help of Theorem 3, we can now analyze the examples of Section 3, and also
check how our relation CP1 behaves in case of our counterexample to transitivity. Note that
condition 4 of Theorem 3 is satisfied for all of these examples.

Example 7 (continuing Example 1 of Section 3)
We have (A2, flies(edna)) ��CP1 (∅, ¬flies(edna)) because flies(edna) /∈ T�1 and
¬flies(edna) ∈ T�1 .

We have (∅, ¬flies(edna)) �P3 (A2, flies(edna)) by Corollary 3(3).
All in all, by Theorem 3, we get (∅, ¬flies(edna)) <CP1 (A2, flies(edna))

and (∅, ¬flies(edna)) <P3 (A2, flies(edna)).

Remark 6 One may ask why we did not define an additional quasi-ordering, say �CP0,
simply by replacing the two conditions of Definition 11 with the single condition

“L2 ∈ T� implies L1 ∈ T�, and every H ⊆ T� that is an [minimal] activation set
for (A1, L1) is also an activation set for (A2, L2).”

This would be more in the style of Definition 10 for �P3, and would also avoid the singular
behavior of the first alternative condition of Definition 11, and so offer continuity advan-
tages.27 Moreover, for �CP0 instead of �CP1, items 1 and 2 (but not item 3) of Corollary 5
still hold, as well as Theorem 2 and its Corollary 6. Furthermore, we get �CP0 ⊆ �CP1. It
is fatal for �CP0, however, that this subset relation may be proper. For instance, �CP0 does
not in general satisfy Theorem 3. Even worse, �CP0 does not show the proper behavior of
�CP1 in Example 1 of Section 3, as discussed in Example 7 of Section 6.6:

We get (∅,¬flies(edna)) �CP0 (A2, flies(edna)) instead of

(∅, ¬flies(edna)) <CP1 (A2, flies(edna)).

This can be seen by considering the activation set ∅ for (∅, ¬flies(edna)), which is not
an activation set for (A2, flies(edna)).

Such a behavior is obviously unacceptable in practice, and so we do not think that it
makes sense to consider �CP0 any further.

Example 8 (continuing Example 2 of Section 3)
We have (A2, flies(edna)) ��CP1 (A1,¬flies(edna)) because flies(edna) /∈ T�2 and

27Cf. the discussion of such a continuity advantage in Section 7.1 for the monotonicity w.r.t. conjunction.
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because {bird(edna)} ⊆ T�2 is an activation set for (A2, flies(edna)), but not for
(A1,¬flies(edna)).

We have (A1,¬flies(edna)) �P3 (A2, flies(edna)), because flies(edna) /∈ T�2 and
because, if H ⊆ T�2∪�2 is a simplified activation set for (A1,¬flies(edna)), but not for
(∅, ¬flies(edna)), then we have emu(edna) ∈ H , and thus H is a simplified activation set
also for (A2, flies(edna)).

All in all, by Theorem 3, we get

(A1,¬flies(edna)) <CP1 (A2, flies(edna))

and
(A1, ¬flies(edna)) <P3 (A2, flies(edna)).

Example 9 (continuing Example 3 of Section 3)
We have (A2, flies(edna)) �CP1 (A1, ¬flies(edna)) because ¬flies(edna) /∈ T�3 and, for
every activation set H ⊆ T�3 for (A2, flies(edna)), we get emu(edna) ∈ H , and so H is an
activation set also for (A1,¬flies(edna)).

Nevertheless, we have (A2, flies(edna)) ��P3 (A1,¬flies(edna)), because {bird(edna)}
⊆ T�3∪�3 is a simplified activation set for (A2, flies(edna)), but neither for (∅, flies(edna)),
nor for (A1, ¬flies(edna)).

We have (A1,¬flies(edna)) �P3 (A2, flies(edna)), because of flies(edna) /∈ T�3 and
because, if H ⊆ T�3∪�3 is a simplified activation set for (A1,¬flies(edna)), but not for
(∅, ¬flies(edna)), then we have emu(edna) ∈ H and thus H is a simplified activation set
also for (A2, flies(edna)).

All in all, by Theorem 3, we get

(A1,¬flies(edna)) ≈CP1 (A2, flies(edna))

and
(A1, ¬flies(edna)) <P3 (A2, flies(edna)).

From a conceptual point of view, we have to ask ourselves, whether we would like the two
defeasible rule instances in A2 = {flies(edna)← bird(edna), bird(edna) ← emu(edna)}
to reduce the specificity of (A2, flies(edna)) as compared to a system that
seems equivalent for the given argument for flies(edna), namely the argument
({flies(edna) ← emu(edna)}, flies(edna)).

Does the specificity of a defeasible reasoning step really reduce if we introduce
intermediate literals (such as bird(edna) between flies(edna) and emu(edna))?

According to human intuition, this question has a negative answer, as we have already
explained in Remark 5 at the end of Section 4.4.5.28

Example 10 (continuing Example 4 of Section 3)
We have (A2, lovely) ��CP1 (A1,¬lovely) because lovely /∈ T�4 and because
{somebody} ⊆ T�4 is an activation set for (A2, lovely), but not for (A1, ¬lovely).

We have (A1, ¬lovely) �P3 (A2, lovely) because of lovely /∈ T�4 and because, if
H ⊆ T�4∪�4 is a simplified activation set for (A1,¬lovely), but not for (∅, ¬lovely),

28Moreover, Examples 12 and 13 will exhibit a strong reason to deny this question: the requirement of
monotonicity w.r.t. conjunction. Furthermore, see Example 14 for another example that makes even clearer
why defeasible rules should be considered for their global semantic effect instead of their syntactic fine
structure.
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then we have {somebody, noisy} ⊆ H , and so H is also a simplified activation set for
(A2, lovely).

All in all, by Theorem 3, we get

(A1,¬lovely) <CP1 (A2, lovely)

and
(A1, ¬lovely) <P3 (A2, lovely).

Note that we can nicely see here that the condition that H is not a simplified activation
set for (∅, ¬lovely) is relevant in Definition 10. Without this condition we would have to
consider the simplified activation set {grandpa} for (A1, ¬lovely), which is not an activation
set for (A2, lovely); and so, contrary to our intuition, (A1,¬lovely) would not be more
specific than (A2, lovely) w.r.t. �P3 anymore.

Example 11 (continuing Example 6 of Section 6.2)
The following holds for our specification of Example 6 by Lemma 1 and Corollary 4:

(A1,Propose) <P3 (A2,Kiss) <P3 (A3,Smile) ��P3 (A1,Propose).

For our corrected relation CP1 we have:

(A1,Propose) <CP1 (A2,Kiss) <CP1 (A3,Smile) >CP1 (A1,Propose)

simply because the trouble-making set {Bold,Promising(Jo)} is not to be considered here.
Indeed, this set is not a subset of T�6 . The checking of the details is left to the reader. Note
that, because of Lemma 1, Theorem 3, Theorem 2, and Corollary 1, all that is actually left
to show is (A1,Propose) ��CP1 (A2,Kiss) ��CP1 (A3,Smile).

7 Putting specificity to test w.r.t. human intuition

Before we will go on with further conceptual material and efficiency considerations in Sec-
tion 8, let us put our two main notions of specificity — as formalized in the two binary
relations �P3 and �CP1 — to test w.r.t. our changed phase 1 of Section 6.1 in a series of
further examples.

Note that we can freely draw the consequence �P3⊆�CP1 of Theorem 3 because at least
one29 of its conditions is satisfied in all the following examples except Example 16, which
is the only example in Section 7 with an activation set that actually is not a simplified one.

Besides freely applying Theorem 3 — to enable the reader to make his own selection of
interesting examples — we are pretty explicit in all of the following examples.

7.1 Monotonicity of the specificity relations w.r.t. conjunction

Monotonicity w.r.t. conjunction is the following property for a binary relation R on
arguments:

In case of (A i
1 , Li

1) R (A i
2 , Li

2) for i ∈ {1, 2},
we always have (A 1

1 ∪ A 2
1 , L′

1) R (A 1
2 ∪ A 2

2 , L′
2)

29Condition 4 of Theorem 3 is satisfied for Examples 2, 3, 4, and 18. Condition 3 (but not condition 4) is
satisfied for Examples 12, 13, 14, 15 and 17.
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for fresh constant literals L′
j with rules L′

j ⇐ L1
j ∧ L2

j added to the general rules �G

(j ∈ {1, 2}). In this case, we will call (A 1
j ∪ A 2

j , L′
1) the conjunction of the arguments

(A 1
j , L1

j ) and (A 2
j , L2

j ).

This property is obviously given for �CP1 in case of L1
1, L

2
1 ∈ T� (which implies

L′
1 ∈ T�) and also in case of L1

1, L
2
1 /∈ T� (where we get L1

2, L
2
2, L

′
1, L

′
2 /∈ T�). Note that

the latter case — where both arguments are defeasible — is certainly the most important
one.

For the remaining borderline case of Li
1 /∈ T� � L3−i

1 (for some i ∈ {1, 2}), how-
ever, monotonicity cannot be expected in general for �CP1, simply because then we get
L′

1 /∈ T�, but do not necessarily have any activation set for L3−i
2 . This non-monotonicity,

however, is part and parcel of our decision to prefer arguments whose literals are ele-
ments of T�, as expressed in item 1 of Definition 11 of Section 6.4. As explained in
Remark 6 of Section 6.6, there does not seem to be an alternative to this technically required
preference.

For �P1, however, monotonicity is not even given for the case we just realized
to be the most important one. This was already noted in [22], using the following
example.

Example 12 (Example 6 of [22])

Let us compare the specificity of the arguments (A1, g1) and (A2, g2).
We have (A1, g1) ≈CP1 (A2, g2) because H ⊆ T�12 = {a, d} is an activation set for

(Ai , gi ) if and only if H = {a, d}.
We have (A1, g1) �P3 (A2, g2) for the following reasons: {a, ¬f} ⊆ T�12∪�12 is a sim-

plified activation set for (A1, g1), but neither for (∅, g1), nor for (A2, g2). {a, f} ⊆ T�12∪�12

is a simplified activation set for (A2, g2), but neither for (∅, g2), nor for (A1, g1).
Poole [22] considers the same result for �P1 as for �P3 to be “seemingly unintuitive”,

because, as we have seen for the isomorphic sub-specification in Example 3 of Section 3,
we have both (A1,¬c) <P3 (A2, c) and (A1, ¬f) <P3 (A2, f).

Indeed, as already listed as an essential requirement in Section 5, the conjunction of two
respectively more specific arguments should be more specific.

On the other hand, considering �CP1 instead of �P3, the conjunctions of two respective
arguments that are pairwise equivalently specific are equivalently specific — exactly as one
intuitively expects. Indeed, from the isomorphic sub-specifications in Example 3, we know
that (A1,¬c) ≈CP1 (A2, c) and (A1,¬f) ≈CP1 (A2, f).
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By turning the defeasible rule b ← a of Example 12 into a strict general rule, we obtain
the following example.

Example 13 (1st Variation of Example 12)

Let us compare the specificity of the arguments (A1, g1) and (A2, g2).
We have (A2, g2) ��CP1 (A1, g1) because {b, d} ⊆ T�13 = {a, b, d} is an activation set

for (A2, g2), but not for (A1, g1).
We have (A1, g1) �CP1 (A2, g2) because, for every activation set H ⊆ T�13 for

(A1, g1), we have {a, d} ⊆ H ; and so H is also an activation set for (A2, g2).
We again have (A1, g1) �P3 (A2, g2), for the same reason as in Example 12. Thus, the

situation for �P3 is just as in Example 12, and just as “seemingly unintuitive” for exactly
the same reason.

We have (A1, g1) <CP1 (A2, g2), which is intuitively correct because the conjunction of
a more specific and an equivalently specific argument, respectively, should be more spe-
cific. Indeed, from the isomorphic sub-specifications in Examples 2 and 3, we know that
(A1,¬c) <CP1 (A2, c) and (A1, ¬f) ≈CP1 (A2, f), respectively.

All in all, the relation �P3 fails in this example again, whereas the quasi-ordering �CP1
works according to human intuition and satisfies monotonicity w.r.t. conjunction.

7.2 Implementation of the preference of the “more precise”

As primary sources of differences in specificity, all previous examples — except Example 4
of Section 3, continued in Example 10 of Section 6.6 — illustrate only the effect of chains
of implications. According to our motivating discussion of Section 4.4.5, we should con-
sider also examples where the primary source of differences in specificity is an essentially
required condition that is a super-conjunction of the condition triggering another rule. We
will do so in the following examples.

As we have already shown in Example 10, both relations �P3 and �CP1 produce the
intuitive result if the “more precise” super-conjunction is directly the condition of a rule.
Let us see whether this is also the case if the condition of the rule is derived from a super-
conjunction.
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By removing the second condition literal ¬f in the strict general rule g1 ⇐ ¬c ∧ ¬f of
Example 12, we obtain the following example.

Example 14 (2nd Variation of Example 12)

Let us compare the specificity of the arguments (A1, g1) and (A2, g2).
We have (A1, g1) ��CP1 (A2, g2) because {a} ⊆ T�14 = {a, d} is an activation set for

(A1, g1), but not for (A2, g2).
We have (A2, g2) �CP1 (A1g1) because any activation set for (A2, g2) that is a subset

of T�14 includes a, and so is also an activation set for (A1, g1).
Considering Theorem 3 as well as the the activation set {b, d} for (A2, g2), we get

(A1, g1) �P3 (A2, g2),

contrary to

(A1, g1) >CP1 (A2, g2).

Thus, �CP1 realizes the intuition that the super-conjunction a ∧ d — which is essential
to derive c ∧ f according to A2 — is more specific than the “less precise” a.

Just like Example 9 of Section 6.6, this example shows again that �P3 does not properly
implement the intuition that — in a model-theoretic approach to specificity — defeasible
rules should be considered for their global semantic effect instead of their syntactic fine
structure.

Example 15 (Example 11 from [27, p. 96])

Compare the specificity of the arguments (A 1 ∪ A 4 ∪ A 5, x), (A 2 ∪ A 4 ∪ A 5,¬x),
(A 3 ∪ A 4, x)!
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We have (A 1 ∪ A 4 ∪ A 5, x) <CP1 (A 2 ∪ A 4 ∪ A 5,¬x) ≈CP1 (A 3 ∪ A 4, x),
because of x,¬x /∈ T�15 , and because any activation set H ⊆ T�15 = {c, d, e} for any of
(A 1 ∪ A 4 ∪ A 5, x), (A 2 ∪ A 4 ∪ A 5, ¬x), (A 3 ∪ A 4, x) contains {d, e}, which is an
activation set only for the latter two.

This matches our intuition well, because the first of these arguments essentially requires
the “more precise” c ∧ d ∧ e instead of the less specific d ∧ e.

We have (A 1 ∪ A 4 ∪ A 5, x) �P3 (A 2 ∪ A 4 ∪ A 5,¬x) �P3 (A 3 ∪ A 4, x) �P3
(A 1 ∪ A 4 ∪ A 5, x), however. This means that �P3 cannot compare these counterargu-
ments and cannot help us to pick the more specific argument.

What is most interesting under the computational aspect is that, for realizing

(A 1 ∪ A 4 ∪ A 5, x) ��P3 (A 2 ∪ A 4 ∪ A 5,¬x),

we have to consider the simplified activation set {d, f} ⊆ T�15∪�15 for
(A 1 ∪ A 4 ∪ A 5, x). This means that here — to realize that f ∈ T�15∪�15 — we have to
take into account the defeasible rule of A 3, which is not part of any of the two arguments
under comparison.30

Note that such considerations are not required, however, for realizing the properties of
�CP1, because defeasible rules not in the given argument can be completely ignored when
calculating the minimal activation sets as subsets of T� instead of T�∪�. In particular, the
complication of pruning — as discussed in detail in [27, Section 3.3] — does not have to
be considered for the operationalization of �CP1.

By turning the defeasible rule f ← e of Example 15 into a strict general rule, we obtain
the following example.

Example 16 (Variation of Example 15)

Compare the specificity of the arguments (A 1 ∪ A 4 ∪ A 5, x), (A 2 ∪ A 4 ∪ A 5,¬x),
(A 4, x)!

Obviously, x,¬x /∈ T�16 = {c, d, e, f}. Moreover, {d} ⊆ T�16 is an activation set
for (A 4, x) (but not a simplified one!) and, a fortiori (by Corollary 5(1)), for

30Have a look at Fig. 1 in Section 6.1 to see that the effect of f proceeds here only via the set F , but not via
the usage of the set H at the bottom of Fig. 1.
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(A 1 ∪ A 4 ∪ A 5, x), but not for (A 2 ∪ A 4 ∪ A 5,¬x). Furthermore, every activa-
tion set H ⊆ T�16 for (A 2 ∪ A 4 ∪ A 5,¬x) satisfies {d, e} ⊆ H , which is an
activation set for (A 4, x) and (A 1 ∪ A 4 ∪ A 5, x). Finally, every activation set
H ⊆ T�16 for (A 1 ∪ A 4 ∪ A 5, x) satisfies {d} ⊆ H which is an activation set for
(A 4, x).

All in all, we have (A 4, x) ≈CP1 (A 1 ∪ A 4 ∪ A 5, x) >CP1 (A 2 ∪ A 4 ∪ A 5,¬x).
This is intuitively sound because (A 2 ∪ A 4 ∪ A 5,¬x) is activated only by the more

specific d ∧ e, whereas (A 4, x) is activated also by the “less precise” d.
Moreover, c ∧ d ∧ e is not essentially required for (A 1 ∪ A 4 ∪ A 5, x), and so

this argument is tantamount to (A 4, x). The reason for this remarkable effect is
not the lack of minimality of the argument (A 1 ∪ A 4 ∪ A 5, x), but our semantic,
model-theoretic approach, which simply ignores the fact that the derivation via A 1

requires the more precise activation set. Indeed, we primarily consider consequence,
not derivation.

We have (A 4, x) <P3 (A 1 ∪ A 4 ∪ A 5, x) �P3 (A 2 ∪ A 4 ∪ A 5,¬x) �P3 (A 4, x),
however. This means that �P3 fails here completely w.r.t. Poole’s intuition, as actually in
most non-trivial examples.

7.3 Conflict between the “more concise” and the “more precise”

By removing the second condition literal ¬f in the strict general rule g1 ⇐ ¬c ∧ ¬f of
Example 13, we obtain the following example.

Example 17 (Variation of Example 13)

T�17 = {a, b, d}. Let us compare the specificity of the arguments (A1, g1) and (A2, g2).
We have (A1, g1) �CP1 (A2, g2) for the following reasons: {a} ⊆ T�17 is an activation

set for for (A1, g1), but not for (A2, g2); {b, d} ⊆ T�17 is an activation set for (A2, g2), but
not for (A1, g1).

By Theorem 3 we also get (A1, g1) �P3 (A2, g2).
In this example the two intuitive reasons for specificity — super-conjunction (preference

of the “more precise”) and implication via a strict rule (preference of the “more concise”)
— are in an irresolvable conflict, which goes well together with the fact that neither �CP1
nor �P3 can compare the two arguments.
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7.4 Global effect matters more than fine structure

The following example nicely shows that any notion of specificity based only on single
defeasible rules (without considering the context of the general strict rules as a whole)
cannot be intuitively adequate.

Example 18 (Example from Page 95 of [27])

Let us compare the specificity of the arguments (A1, ¬p(a)) and (A2, p(a)).
We have (A1, ¬p(a)) ≈P3 (A2, p(a)), because of p(a), ¬p(a) /∈ T�18 = {q(a), s(a)},

and because, for H ⊆ T�18∪�18 , i ∈ {1, 2}, L1 := ¬p(a), and L2 := p(a), we have the log-
ical equivalence of H = {q(a)} on the one hand, and of H being a minimal simplified
activation set for (Ai , Li) but not for (∅, Li), on the other hand.

By Theorem 3, we also get (A1,¬p(a)) ≈CP1 (A2, p(a)).
This makes perfect sense because q(a) ∧ s(a) is not at all strictly “more precise” than

q(a) in the context of �G
18.

Note that nothing is changed here if s(x) ⇐ q(x) is replaced by setting �G
18 := {s(a)}.

If s(x) ⇐ q(x) is replaced by setting �G
18 := ∅ and �F

18 := {q(a), s(a)}, however, then we
get both (A1, ¬p(a)) <P3 (A2, p(a)) and (A1, ¬p(a)) <CP1 (A2, p(a)).

This also speaks for our admission of literals (i.e. unconditional rules) to �G.31

8 Efficiency considerations and the specificity ordering CP2

The specificity relations P1, P2, P3, and CP132 share several efficiency features, which we
will highlight in this section. Moreover, we will introduce the specificity ordering CP2,
a minor variation of CP1 toward more efficiency and intuitive adequacy. Finally, we will
discuss further steps toward more efficiency following Herbrand’s Fundamental Theorem.

8.1 A slight gain in efficiency

A straightforward procedure toward deciding the specificity relations �CP1 and �P3
between two arguments is to consider all possible activation sets from the literals in the
sets T� and T�∪�, respectively. The effort for computing �CP1 is lower than that of �P3
because of T� ⊆ T�∪�, though not w.r.t. asymptotic complexity: In both cases already the

31Cf. Note 1 of Section 2.3.
32P1 follows [22] and can be found in this paper in Definition 8 of Section 6.2. P2 follows [26] and can be
found in Definition 9 of Section 6.2. P3 respects non-defeasible arguments and can be found in Definition 10
of Section 6.2. CP1 is our transitive relation found in Definition 11 of Section 6.4.
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number of possible (simplified) activation sets is exponential in the number of literals in the
respective sets T� and T�∪�, because each possible subset has to be tested.

8.2 Comparing derivations

To lower the computational complexity, more syntactic criteria for computing specificity
were introduced in [27]. These criteria refer to the derivations for the given arguments.
More precisely, they refer to the and-trees of Definition 6 in Section 4.4.1.

8.2.1 No pruning required

The concept of pruning and-trees is introduced in [27, Definition 12] in this context,
because, for the case of �P2, attention cannot be restricted to derivations which make use
only of the instances of defeasible rules given in the arguments. The reason for this is that
the specificity notions according to [22] and [26] admit literals L in activation sets that can-
not be derived solely by strict rules, i.e. L ∈ T�∪� \ T�. Since this is not possible with the
relation �CP1, this problem vanishes with our corrected version of specificity. This problem
and its vanishing are discussed in Example 15 of Section 7.2.

8.2.2 Sets of derivations have to be compared

Yet still, the specificity relation �CP1 inherits several properties from �P3. For instance, the
syntactic criteria of their definitions require us in general to compare two sets of derivations
element by element. This is true for both specificity relations:

Example 19 (Minimal argument with two minimal and-trees/activation sets)

The argument (A1,¬h) has {b, d} as the only minimal activation set that is a subset of
T�19 = �F

19. {b, d} is also a minimal activation set for (A2, h). On the other hand, {b, c} is
an activation set for (A2, h), but not for (A1, ¬h). Thus, we get (A1, ¬h) <CP1 (A2, h).

Because either d or c is in an and-tree of the argument (A2, h) (but never both!), a
comparison of two fixed and-trees does not suffice.

Moreover note that we have (A1, ¬h) �P3 (A2, h), because of the simplified activation
sets {g} and {f}, respectively.

Furthermore note that the only minimal activation set for the minimal argument
({e ← b}, f) is {b}, which, however, is not a simplified activation set for that argument.
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The reason for the complication of an element-by-element comparison of and-trees
is that we consider a very general setting of defeasible reasoning in this paper. Indeed,
we admit

1. more than one condition literal in rules (conditions containing more than one literal)
and

2. non-empty sets of background knowledge, i.e. general rules, not only facts.

Typically, only restricted cases are considered: Conditions have always to be singletons
in [14], no background knowledge is allowed in [8], and both restrictions are present
in [2].

8.2.3 Path criteria?

Before we come to the computation of activations sets via goal-directed derivations in
Section 8.3, let us have a closer look here at the path criterion of [27, Section 3.4].

Definition 12 (Path)
For a leaf node N in an and-tree T , we define the path in T through N as the empty set if
N is the root, and otherwise as the set consisting of the literal labeling N , together with all
literals labeling its ancestors except the root node. Let Paths(T ) be the set of all paths in T

through all leaf nodes N .

With this notion of paths, the quasi-ordering � on and-trees can be given as follows:

Definition 13 ([27, Definition 23])
T1 � T2 if T1 and T2 are two and-trees, and for each t2 ∈ Paths(T2) there is a path t1 ∈
Paths(T1) such that t1 ⊆ t2.

Two and-trees can be compared w.r.t. � efficiently. This requires the subset comparison
of all paths of the two trees, respectively. Hence, the respective complexity is polynomial,
at most O(n3), where n is the overall number of nodes in the and-trees. This made the
relation � attractive for practical use in the context of [27] compared to the exponential
comparison mention in Section 8.1. As stated in the following definition, for a comparison
of specificity we have to consider all and-trees, however, and so we still remain with an
overall exponential time complexity, which is not better than the one we will describe in
Remark 14 of Section 8.3.4.

Definition 14 ([27, Definition 24])
(A1, h1) ≤ (A2, h2) if (A1, h1) and (A2, h2) are two arguments in the given specification
and for each and-tree T1 for h1 there is an and-tree T2 for h2 such that T1 � T2.

It is shown in [27, Theorem 25] that ≤ and �P2 are equal in special cases, namely if
the arguments involved in the comparison correspond to exactly one and-tree. Let us try to
adapt this result to our new relation �CP1, in the sense that we try to establish a mutual
subset relation between ≤ and �CP1.

The forward direction is pretty straightforward, but comes with the restriction to be
expected: From [27, Theorem 25] we get ≤⊆�P2. By looking at the empty path, we easily
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see that ≤ satisfies the additional restriction of Definition 10 as compared to Definition 9;
so we also get ≤⊆�P3. Finally, we can apply Theorem 3 and get the intended ≤⊆�CP1, but
only with the strong restriction of the condition of Theorem 3. We see no way yet to relax
this restriction resulting from phase 3 of Section 6.1.

It is even more unfortunate that the backward direction does not hold at all because of
our change in phase 1 of Section 6.1. In particular, as shown in the following example, it
does not hold for the special case where it holds for �P2, i.e. in the case that there are no
general rules and hence each minimal argument corresponds to exactly one derivation (cf.
the proof of Theorem 25 in [27]).

Example 20

We have (A1, d) �P3 (A2, ¬d) and (A1, d) <CP1 (A2,¬d).
Both arguments (A1, d) and (A2,¬d) correspond to exactly one and-tree, say T1 and T2,

respectively. All paths in Paths(T1) contain c1, but not c2, and all paths in Paths(T2) contain
c2, but not c1. Hence, (A1, d) ≤ (A2,¬d) does not hold.

8.3 Toward a more efficiently realizable notion of Poole-style specificity

Contrary to our small examples in the previous sections, examples of a practically relevant
size require notions of specificity that can be decided efficiently.

As we are mainly interested in the more specific arguments, i.e. in the minimal elements
of our specificity ordering, we may admit variations of our specificity ordering CP1 that
offer better chances for an efficient implementation, but do not relevantly differ w.r.t. these
minimal elements.

Therefore, in this section, we will introduce another correction (CP2) of Poole’s speci-
ficity relation, which offers some advantages for the computation of the respective activation
sets, whereas our specificity ordering CP1 offers only the minor advantages over P1, P2, P3
we have already described in Sections 8.1 and 8.2.1.

More precisely, our plan for this section is to obtain another quasi-ordering �CP2 by
slight modification of our quasi-ordering �CP1, such that the two do not differ in any of our
previous examples, and such that �CP2 may mirror our intuition on specificity according to
the analysis in Section 4 even more closely in some aspects. Finally, we will try to develop a
more efficient procedure for deciding the specificity quasi-ordering �CP2 than those known
for any of �P1, �P2, �P3, �CP1.

The crucial step in such a procedure is the computation of activation sets. For a goal-
directed, SLD-resolution-like computation of activation sets we cannot keep our restriction
to arguments that are ground. For this reason, we now have to modify our notion of a
derivation by disallowing the instantiation of variables in our definition of T� and � (cf.
Definition 3) as already hinted at in Remark 3 at the end of Section 2.4. As a compensation,
we then may add a hat over a set of rules �, such that �̂ denotes the set of all instances
of �.
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8.3.1 Immediate activation sets

As a first step — since the workaround via path criteria failed in Section 8.2.3 — we now
have to find a new notion of an immediate activation set such that there are fewer33 and more
easily computable immediate activation sets for a given argument than (non-immediate)
activation sets according to Definition 7 of Section 6.1. Our idea here is to avoid SLD-
resolution steps that expand a goal clause by inessential applications of rules in the sense of
the following definition, where we again apply the simple concept of an and-tree given in
Definition 6 of Section 4.4.1.

Definition 15 (Inessential Application of an Instance of a Rule)
The application of the instance L ⇐ C of a rule in an and-tree is inessential (in the and-
tree) if there is a node between the root (inclusively) and the application (including the node
labeled with L) that is labeled with an element of T

�̂
.

As a step toward a more efficiently realizable notion of Poole-style specificity, we will
now eliminate those activation sets from our considerations that rely on and-trees with an
inessential application of the instance of a defeasible rule.34

As a side effect, this step will also eliminate all redundant activation sets that result from
what was called “growth of the defeasible parts toward the leaves” in Section 4.4.3. This
growth results from inessential application not of defeasible rules, but of general rules only.
Contrary to the inessential application of instances of defeasible rules, this elimination of
inessential applications of general rules will not change our specificity relation.

The positive effect, however, of cutting off this growth is the following. When the leaves
of the defeasible part of an and-tree are included in T

�̂
for the first time in a root-to-leaves

traversal, we immediately stop and obtain one single immediate activation set, and that’s it!
The further enumeration of subsumed activation sets is no longer required.

This reduction of the number of activation sets to one single immediate activation set
for each and-tree is most helpful for the computation related to the first argument of the
relation �CP2 when trying to decide it. For the computation related to the second argument,
however, it re-introduces the complication we already had in our first sketch of a notion
of specificity in Section 4.3.2, as compared to the simplified, second version of this sketch
in Section 4.4.4, which was the basis for our first formal definition of activation sets in
Definition 7 of Section 6.1.

This complication is only a notational one. It requires the notion of weakly immediate
activation sets in addition to (non-weakly) immediate ones. This complication does not
mean any extra-computation, not even for the second argument in the test for �CP2: It
is just so that the test whether every activation set of the first argument is subsumed by
some activation set for the second argument becomes independent from the computation
of activation sets. This independence has the advantage that we can optimize it in several
directions: First of all, we must omit all rules from �F and �, which play some minor
rôles in the computation of non-immediate activation sets (namely �F for acceptance as
an activation set, and the instances of � that form the first element of the argument for

33There are indeed never more (cf. Corollary 7(4)), and typically much less immediate activation sets than
activation sets.
34The first idea could be to take only activation sets all of whose literals occur in the condition of a rule in
A , for the respective argument (A , L). This idea, however, is too restrictive because also general rules may
play a rôle in the defeasible parts of the derivations, cf. Section 4.4.1.
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expansion of activation sets). It is more important, however, that we may also add some
forward reasoning from the activation set computed for the first argument in the test for
�CP2.

All in all, this means for our operationalization that the computation of activation sets (cf.
Definition 7) has to be replaced with the computation of immediate activation sets according
to the following definition, which also mirrors our isolation of defeasible parts of derivations
in Section 4.4.1 more directly than before, namely in the sense that a growth toward the
leaves is avoided and the further dissection described in Note 5 of Section 4.4.2 takes place.

It may be helpful for an intuitive understanding of the following definition to have a look
at Fig. 1 in Section 6.1: The root tree depicted there is captured in item 2 of the following
definition, its sub-trees in item 1.

Definition 16 ([Minimal/Weakly] Immediate Activation Set)
Let A be a set of instances of rules from �, and let L be a literal.

H is an immediate activation set for (A , L) if H ⊆ T
�̂

and there is a (possibly empty)
set of literals L, such that both of the following two items hold:

1. For each L′ ∈ L there is an and-tree for the derivation of H ∪ A ∪ �̂G � {L′} in which
(a) the root is labeled with L′ and generated by an element of A , and
(b) every literal L′′ that labels a non-leaf node or the root satisfies L′′ /∈ T

�̂
, and

(c) every literal L′′ /∈ A that labels a leaf node satisfies L′′ ∈ T
�̂

,35

such that the set of literals labeling the leaves of these trees is a subset of
H ∪ T

�̂G ∪ A .

2. There is an and-tree for the derivation of L ∪ �̂ � {L}, such that each literal L′′ label-
ing a node in a path from the root to a leaf labeled with an element from L satisfies
L′′ /∈ T

�̂
.

H is a minimal immediate activation set for (A , L) if H is an immediate activation set for
(A , L), but no proper subset of H is an immediate activation set for (A , L).

H is a weakly immediate activation set for (A , L) if H ⊆ T
�̂

and there is an immediate
activation set H ′ for (A , L) with H ′ ⊆ T

H∪�̂G .

Corollary 7 Let A be a set of instances of rules from �, and let L be a literal.

1. If H is an [weakly] immediate activation set for (A , L), then we have H ⊆ T
�̂
.

2. If H is a minimal immediate activation set for (A , L), then we have
H ⊆ T

�̂
\ (T

�̂G ∪ A ).
3. Every immediate activation set for (A , L) is a weakly immediate activation set for

(A , L).
4. Every [weakly] immediate activation set for (A , L) is an activation set 36 for (A , L).
5. Every minimal activation set for (A , L) that is an immediate activation set for (A , L)

is a minimal immediate activation set for (A , L).

35Here “literal L′′ /∈ A ” means that L′′ is a literal that is not a literal in A , i.e. no conclusion of an uncon-
ditional rule from A . Note that, by (a), this excludes any overlap of (b) and (c) (which would result in
contradictory requirements): If the root is a leaf, then, by (a), it is labeled with a literal from A .
36Instead of the otherwise required condition that A is ground, we assume here — and will do so in what
follows without further mentioning — that the definition of an activation set in Definition 7 of Section 6.1
refers (just as Definition 16 of immediate ones and just as we have changed arguments and derivations in this
section) to sets also of non-ground instances of defeasible rules in the first element of arguments, but with
non-instantiating derivations and theories.
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Remark 7 (Difference between an Activation Set and an Immediate one)
Regarding the respective specificity orderings, an immediate activation set crucially differs
from an activation set as follows: Certain defeasible parts may no longer participate in the
derivation, namely those parts that derive a node labeled with an element of T

�̂
. This means

that those deviations which contain inessential (in the sense of Definition 15) applications
of instances of defeasible rules can no longer increase the number of activation sets, i.e. can
no longer reduce the specificity of an argument.

We cannot see any reason why the fact that the first element of the argument may also
be re-used to re-derive a literal of T

�̂
from T

�̂
should be relevant for the specificity of the

argument. Therefore we think that this crucial difference (besides the omission of subsumed
activation sets, which effects efficiency only) is in line with common intuition.

Moreover, note that the crucial difference also admits the omission of all defeasible rules
whose conclusion is part of the theory T

�̂
when computing immediate activations sets,

which does not seem to be possible for (non-immediate) activation sets.

Definition 17 (�CP2: 2nd Version of our Specificity Relation)
(A1, L1) �CP2 (A2, L2) if (A1, L1) and (A2, L2) are arguments, and we have

1. L1 ∈ T
�̂

or
2. L2 /∈ T

�̂
and every H ⊆ T

�̂
that is an [minimal] immediate activation set for (A1, L1)

is a weakly immediate activation set for (A2, L2).

To see that nothing essential has changed, compare the following Corollary 8 to
Corollary 5 of Section 6.4.

Corollary 8 If (A1, L1), (A2, L2) are arguments withA1 ⊆ A2, then any of the following
conditions is sufficient for (A1, L1) �CP2 (A2, L2):

1. L1 = L2.
2. L2 ∈ T

�̂
⇒ L1 ∈ T

�̂
and {L1} ∪ �̂ � {L2}.

3. L1 ∈ T
�̂
(which is implied by A1 = ∅ by Definition 5).

Remark 8 (Optional Minimality Restriction has No Effect)
Note that the omission of the optional restriction to minimal immediate activation sets for
(A1, L1) in Definition 17 has no effect on the extension of the defined notion.

Proof Suppose that L1, L2 /∈ T
�̂

, and that H ′′ is an immediate activation set for (A1, L1).
Because the related derivation is finite, we may assume that H ′′ is finite w.l.o.g. Thus,
there is a minimal immediate activation set H ⊆ H ′′ for (A1, L1). If we now assume
(A1, L1) �CP2 (A2, L2) with respect to a definition with the optional minimality restric-
tion, then H is a weakly immediate activation set for (A2, L2), i.e. there is an immediate
activation set H ′ ⊆ T

H∪�̂G for (A2, L2), which (because of the monotonicity of our logic)
implies H ′ ⊆ T

H ′′∪�̂G , i.e. H ′′ is a weakly immediate activation set for (A2, L2) as well,
as was to be shown.

Remark 9 (Relaxation to a Weakly immediate activation set is crucial)
Note that we cannot straightforwardly require H to be a (non-weakly) immediate acti-
vation set for (A2, L2) in Definition 17, because otherwise our new relation CP2 would

Author's personal copy



A series of revisions of David Poole’s specificity 243

already fail to pass Example 2 of Section 3, in the sense that both arguments there would be
incomparable.37

Theorem 4 �CP2 is a quasi-ordering on arguments.

Proof of Theorem 4
�CP2 is a reflexive relation on arguments because of Corollary 8.

To show transitivity, let us assume (A1, L1) �CP2 (A2, L2) and (A2, L2) �CP2 (A3,
L3).

According to Definition 17, because of (A1, L1) �CP2 (A2, L2), we have L1 ∈ T
�̂

— and then immediately the desired (A1, L1) �CP2 (A3, L3) — or we have L2 /∈ T
�̂

.
The latter case excludes the first option in Definition 17 as a justification for
(A2, L2) �CP2 (A3, L3). Thus, it now suffices to consider the case that Li /∈ T

�̂
for all

i ∈ {1, 2, 3}.
Suppose that H is an immediate activation set for (A1, L1). It suffices to show that

H is a weakly immediate activation set for (A3, L3), i.e. to find an immediate activation
set H ′′ ⊆ T

H∪�̂G for (A3, L3). Because of our supposition, the first step of our original
assumption, and the case considered, H is a weakly immediate activation set for (A2, L2),
i.e. there is an immediate activation set H ′ ⊆ T

H∪�̂G for (A2, L2). Then, because of the
second step of our original assumption and the case considered, there is an immediate
activation set H ′′ ⊆ T

H ′∪�̂G for (A3, L3). Because of the monotonicity of our logic and
the closedness of our theories, we now have H ′′ ⊆ T

H ′∪�̂G ⊆ T
T

H∪�̂G ∪�̂G = T
H∪�̂G , i.e.

H ′′ ⊆ T
H∪�̂G , as was to be shown.

Example 21 (�CP1 vs. �CP2)

First note that — because of �G
21 = ∅ — the two notions of an immediate and a weakly

immediate activation set coincide here.
We have T

�̂21
= �F

21. Moreover, we have

(A2, alarm) <CP1 (A3, alarm) ≈CP2 (A2, alarm) :
There is only one minimal activation set for (A2, alarm) that is a subset of T

�̂21
, namely

{danger}. It is also a minimal immediate activation set for (A2, alarm); to see this, take
L := {alarm} in Definition 16. There are only two minimal activation sets for (A3, alarm)

37See the discussion at the end of Example 21. It might also be interesting to see that the slight modification
(via “weakly”), which we need here, occurred already in our first intuitive sketch of a notion of specificity in
Section 4.3 — long before the development of the CP2 notion, cf. [34, Section 3.2].

Author's personal copy



244 C.-P. Wirth, F. Stolzenburg

that are subsets of T
�̂21

, namely {danger} and {thirst}, but only the first one is an imme-
diate activation set for (A3, alarm). Note that (A2, alarm) is strictly more specific than
(A3, alarm) in the sense of (A2, alarm) ��CP1 (A3, alarm) by the inessential38 application
of the rule danger ← thirst of A3, which is not admitted in the definition of immediate
activation sets and which can be completely ignored in their computation.

Furthermore, we have

(A1, drink) <CP1 (A3, alarm) �CP2 (A1, drink) :
The minimal [immediate] activation set {danger} for (A3, alarm) is not an activation set
for (A1, drink). The only [immediate] activation set for (A1, drink) that is a subset of
T

�̂21
is {thirst}, which is an activation set for (A3, alarm), but not a weakly immediate

one. Note that (A1, drink) is no longer more or equivalently specific than (A3, alarm) in
the sense of (A1, drink) ��CP2 (A3, alarm), because the inessential application of the rule
danger ← thirst of A3 is not admitted for immediate activation sets.

In spite of these minor but noticeable differences, however, nothing has actually changed
by stepping from CP1 to CP2, except the positioning of the argument (A3, alarm), which is
non-minimal as an argument (and therefore practically irrelevant and not even considered
in many frameworks, cf. Remark 4 of Section 2.4) and also non-minimal in �CP1 (and
therefore less specific and not really relevant either). What is crucial, however, is that a most
specific argument cannot be found in either case. Indeed, we have both

(A1, drink) �CP1 (A2, alarm)

and (A1, drink) �CP2 (A2, alarm).

If we remove danger from �F
21, then (A2, alarm) is no argument anymore, but we can

embed the specification injectively into the one of Example 3 of Section 3 and get both

(A1, drink) ≈CP1 (A3, alarm)

and (A1, drink) ≈CP2 (A3, alarm),

because the activation set {thirst} now becomes an immediate one also for (A3, alarm).
Indeed, the application of the rule danger ← thirst is no longer inessential for deriving
alarm.

Moreover, if we now add the rule danger ⇐ thirst to �G
21, resulting in the specification

({thirst}, {danger ⇐ thirst}, �21), then the situation is essentially the same as in Example 2
of Section 3, and so we get both

(A1, drink) <CP1 (A3, alarm) ≈CP1 (A2, alarm)

and

(A1, drink) <CP2 (A3, alarm) ≈CP2 (A2, alarm),

because — although the application of the rule danger ← thirst becomes inessential again
by danger ∈ T

�̂
— {thirst} now becomes a weakly immediate activation set for (A3, alarm)

and for (A2, alarm), though not an immediate one.

38This means inessential in the sense of Definition 15.
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Corollary 9 (�CP1 and �CP2 are incomparable)
There are a specification (�F

21,�
G
21,�21) (without any negative literals) and arguments

(A1, L1), (A3, L3), (A2, L2), such that

(A1, L1) �CP1 (A3, L3) �CP2 (A2, L2)

and
(A1, L1) ��CP2 (A3, L3) ��CP1 (A2, L2),

i.e. �CP1 � �CP2 � �CP1.

Nevertheless, Example 21 suggests that only some unimportant details make �CP1 and
�CP2 incomparable to each other, but that the most specific minimal arguments seem to
remain most specific and so nothing essential seems to change.

So we may ask ourselves: What changes occur in our previous examples when we switch
from CP1 to CP2? Do any of the relations stated for CP1 change for CP2?

The answer to the latter question is: No! We would like to ask the reader to check this
carefully.

Example 22 (continuing Example 18)
Indeed, the only noticeable change occurs in Example 18, where {q(a)} is a minimal activa-
tion set for (A1,¬p(a)), but not an immediate activation set. Nevertheless, because {q(a)}
is a weakly immediate activation set for (A1,¬p(a)), and because the only immediate acti-
vation set for (A1, ¬p(a)) is {q(a), s(a)}, which is a weakly immediate activation set for
(A2, p(a)) (for which {q(a)} is the only immediate one), we have

(A1, ¬p(a)) ≈CP2 (A2, p(a)) as well as (A1, ¬p(a)) ≈CP1 (A2, p(a)).

Example 23 (Minimal argument with two minimal immediate activation sets)
It is obvious that a minimal argument can easily have two minimal activation sets that are
incomparable w.r.t. ⊆. For instance, already in Example 2 of Section 3, the minimal argu-
ment (A2, flies(edna)) has two minimal [simplified] activation sets, namely {bird(edna)}
and {emu(edna)}, from which, however, only {bird(edna)} is an immediate activation set. In
fact, minimal arguments can have more than one minimal immediate activation set only if
conditions of general rules directly contribute to the leaves of the isolated defeasible part as
described in Section 4.4.1.39 This happens in Example 19 of Section 8.2.2 for the minimal
argument (A2, h) : The general rule f ⇐ c ∧ e contributes the leaf c to the isolated defeasi-
ble part with root h, the inner nodes f and e, and the set of leaves {b, c}, which is one minimal
immediate activation set of (A2, h). Moreover, the general rule f ⇐ d ∧ e contributes the
leaf d to the isolated defeasible part with root h, the inner nodes f and e, and the set of leaves
{b, d}, which is the other minimal immediate activation set of (A2, h), and also the only one
for (A1,¬h). Thus, we get both

(A1,¬h) <CP1 (A2, h)

and
(A1,¬h) <CP2 (A2, h).

39Technically, it is possible to enforce a unique immediate activation set for each minimal argument by
including the instances also of the general rules of the isolated defeasible part into the first element of
the arguments. Intuitively, however, this is not reasonable because it leads to unintendedly incomparable
arguments.
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8.3.2 Special cases with simple activation-set computation

A typical problem in practical application is to classify rules automatically as being facts,
general rules, or defeasible rules. We briefly discuss the trivial forms of such a classification
now.

The first trivial form of classification is to take all proper rules as defeasible rules. Note
that the following lemma (motivated by Example 23 of Section 8.3.1) reduces the task of
computing activation sets to the simpler task of computing minimal arguments.

Theorem 5 Assume that all rules in �G are just literals (i.e. have empty conditions). Let
(A , L) be a minimal argument. Let C be the set of all condition literals of all rules in A .
Then (A , L) has a unique minimal activation set H ; and this H is actually a minimal
immediate activation set for (A , L) and equal to C ∩ �̂F \ �̂G.

Proof of Theorem 5
Let (A , L) be a minimal argument.

In case of L ∈ T
�̂

, there is exactly one minimal activation set for (A , L), namely
the empty set, which is an immediate activation set (choose L := ∅ in Definition 16).
Moreover, because (A , L) is a minimal argument, we have A = ∅, and then C = ∅.
So we get our unique minimal activation set ∅ indeed in the claimed form of
C ∩ �̂F \ �̂G = ∅ ∩ �̂F \ �̂G = ∅.

It now remains to consider the case of L /∈ T
�̂

. Because (A , L) is an argument, there is

an and-tree for the derivation of �̂F ∪ A ∪ �̂G � {L}. As every and-tree is finite, there is
a finite activation set H ′ ⊆ �̂F for (A , L). Then there must be a minimal activation set H

for (A , L) with H ⊆ H ′. Then we have H ⊆ �̂F \ �̂G. Then there is an and-tree T for the
derivation of H ∪ A ∪ �̂G � {L} (which is actually unique, but this does not matter here).
Let D be the set of all conclusions of all rules in A . Let D′ be the set of all literals in A
(i.e. rules with empty conditions). Then D′ ⊆ D. Because (A , L) is a minimal argument,
we know that D ∩ T

�̂
= ∅ and that every rule from A is applied in T . Thus, because of

L /∈ T
�̂

and because all rules in �̂ are just literals, the set of the labels of the leaves of T is

exactly (C ∩ T
�̂

) ∪ D′. Because T is an and-tree for the derivation of H ∪ A ∪ �̂G � {L},
because A ∩ T

�̂
⊆ D′ ∩ T

�̂
⊆ D ∩ T

�̂
= ∅, and because all rules in �̂G are just literals,

we have

(a) C ∩ T
�̂

⊆ (H ∪ A ∪ �̂G) ∩ T
�̂

= H ∪ ∅ ∪ �̂G = H ∪ �̂G,

(b) T
�̂G = �̂G,

(c) T
�̂

= �̂F ∪ �̂G.

Because H is a minimal activation set for (A , L), H must be a subset of the leaves
of T not in D′ : H ⊆ C ∩ T

�̂
. Because of our previous result of H ⊆ �̂F \ �̂G, we

now get H ⊆ C ∩ T
�̂

∩ �̂F \ �̂G ⊆(a) (H ∪ �̂G) ∩ �̂F \ �̂G = H ∪ ∅ = H , i.e. H =
C ∩ T

�̂
∩ �̂F \ �̂G =(c) C ∩ (�̂F ∪ �̂G) ∩ �̂F \ �̂G = C ∩ �̂F \ �̂G. Choos-

ing L := {L} in item 1 of Definition 16, and a proof tree consisting only of a root in
item 2, we see that H is actually an immediate activation set for (A , L); in particular
we have L /∈ T

�̂
and the property required in the last line of item 1 of Definition 16:

(C ∩ T
�̂

) ∪ D′ ⊆(a) H ∪ �̂G ∪ A =(b) H ∪ T
�̂G ∪ A . Finally, H is a minimal immedi-

ate activation set by Corollary 7(5).
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The second trivial form of classification is to take all rules without conditions to be
defeasible. It is not a good idea for comparing arguments w.r.t. specificity, however:

Corollary 10 Assume that �F = ∅ and that �G contains only rules with non-empty condi-
tions. Then we haveT

�̂
= ∅. Moreover, for every argument, there is exactly one [immediate]

activation set H with H ⊆ T
�̂
, namely H = ∅. Furthermore, all arguments are equivalent

w.r.t. ≈CP1 and ≈CP2.

Finally, note that the computation of simplified activation sets that are a subset of T
�̂∪�̂

— as required for P1, P2, P3 instead of CP1, CP2 — is not simplified for the special cases
of this section, contrary to the computation of [immediate] activation sets that are subsets
of T

�̂
.

8.3.3 A step toward operationalization of immediate activation sets

Let us assume that the sets of our predicate and function symbols are enumerable and con-
tain only symbols with finite arities. This assumption does not seem to restrict practical
application.

It is straightforward to enumerate for a given input literal — say in a top-down SLD-
resolution style — the and-trees of all possible derivations of instances of this input literal,
and to interleave this enumeration of and-trees with the enumeration of all ground instances
of each and-tree, and finally to enumerate for each ground instance of an and-tree all activa-
tion sets for all contained arguments and the ground instance of the input literal labeling the
root. Indeed, this is possible because T

�̂
is enumerable (i.e. semi-decidable) by our above

assumption.
To do the same for all immediate activation sets, we have to require the co-semi-decid-

ability of T
�̂

, because, in general, we cannot output an activation set supposed to be an
immediate one before we have established that the literals labeling the ancestors of the nodes
of its literals really do not occur in T

�̂
.

So let us assume the decidability of T
�̂

for the remainder of this section.40

It is much harder, however, to enumerate all activation sets in an SLD-like derivation
style directly, i.e. without storing the intermediate and-trees and their instances. Although
immediate activation sets offer a crucial advantage for a direct enumeration in principle
(because they admit to cut off inessential41 derivations of literals), the imperative, tail-
recursive procedure we will sketch in this section (cf. Fig. 2) still needs further refinement.
This procedure enumerates the immediate activation sets directly, unless it sometimes out-
puts the character string "breach", which indicates that some immediate activation sets
may be missing.

We present the procedure of Fig. 2 here mainly because we want to concretize the
tasks that still remain to be solved for obtaining a Poole-style notion of specificity that
admits a sufficiently efficient operationalization, and because our solution of these tasks in
Section 8.3.4 may not be the only way to solve them.

Let us assume that picking elements from sets satisfies some fairness restriction in the
sense that every element will be picked eventually. Moreover, let us assume that we have a
procedure to decide T

�̂
. Furthermore, let us assume that L is a literal with L /∈ T

�̂
.

40 We will relax this restriction in Section 8.3.4.
41This means inessential in the sense of Definition 15.
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Under these assumptions, the SLD-like procedure immediate-activation-sets(L) of Fig. 2
has the following two properties:

1. If it outputs (H, (A, I)) then I /∈ T
�̂

is an instance of L, we have A �= ∅, and H ⊆ T
�̂

is an immediate activation set for the argument (A, I ).
2. If it never outputs "breach", then, for each instance L� /∈ T

�̂
with a minimal imme-

diate activation set H ′ for an argument (A , L�), it outputs some (H, (A, I)) such that
there is a substitution μ with (Aμ, Iμ) = (A , L�) and H ′ = Hμ \ (T

�̂G ∪ Aμ). As
this is similar to what is called a “most general unifier”, we may speak of all maximally
general, immediate activation sets with arguments here.

Remark 10 (Restriction to Ground Conclusions Prevents "breach")
In the special case that the conclusions of all rules of �G ∪ � with non-empty condition are
ground, however, the call of the procedure immediate-activation-sets(L) is guaranteed not to
output "breach", simply because then only ground literals can enter the set of the program
variable O ′, which are immediately removed again by the line before the tail-recursive call.

Remark 11 (Restriction to Ground Input Literals Does Not Prevent "breach")
Note that a restriction to input literals that are ground does not really solve the crucial
problem (of which the program variables O,O ′ have to take care in Fig. 2) that a literal
with free variables may be not in T

�̂
, whereas some of its instances actually are in T

�̂
.

The main source of the free variables here are the extra-variables, i.e. the free variables that
occur in the condition but not in the conclusion of a rule. Such rules with extra-variables and
non-ground conclusions, however, are standard in positive-conditional specification, just
as in logic programming. A single extra-variable in an arbitrary rule of �G ∪ � can force
SLD-resolution to work on non-ground goals even for a ground input literal.

Some examples may be more appropriate here than a proof of the soundness of the
procedure of Fig. 2 (that enumerates a maximally general, immediate activation set for
each minimal immediate activation set unless it sometimes indicates "breach"), because
we see the procedure only as a step in a further development toward a tractability that is
sufficient in practice. Therefore, we will give some examples here on how the procedure

immediate-activation-sets(L)

works for certain literals L /∈ T
�̂

, namely by

listing all calls of the auxiliary procedure immediate-activation-sets-helper.

Example 24 (continuing Example 3 of Section 3)
Let us consider Example 3 of Section 3. A call of immediate-activation-sets(flies(y)) results
in a call of immediate-activation-sets-helper with the argument quintuple

({(flies(y), 2)},∅, ∅, ∅, flies(y)),

where the only rule whose conclusion is unifiable with the only goal literal is a defeasible
one, namely flies(x) ← bird(x) from �3. We can take ξ and σ as the identity and {x �→ y},
respectively. The program variable B ′ will be set to 1, and the tail-recursive call will have
the argument tuple

({(bird(y), 1)}, {flies(y)},∅, {flies(y) ← bird(y)}, flies(y)).
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Fig. 2 Sketch of immediate-activation-sets and immediate-activation-sets-helper

Again the only rule whose conclusion is unifiable with the only goal literal is a defeasible
one, namely bird(x) ← emu(x) from �3. We can again take ξ and σ as the identity and
{x �→ y}, respectively. The program variable B ′ will be set to 1, and the tail-recursive call
will have the argument tuple

({(emu(y), 1)}, {flies(y), bird(y)}, ∅, {flies(y) ← bird(y), bird(y) ← emu(y)}, flies(y)).
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Fig. 3 Sketch of procedure ground-immediate-activation-sets-helper

Now the only rule whose conclusion is unifiable with the only goal literal is a fact, namely
emu(edna) from �F

3. We can take ξ and σ as the identity and {y �→ edna}, respectively. The
program variable B ′ will be set to 1, and the tail-recursive call will have the argument tuple

(∅, ∅, {emu(edna)}, {flies(edna) ← bird(edna), bird(edna) ← emu(edna)}, flies(edna)).
This call immediately terminates by outputting the immediate activation set {emu(edna)}
for the argument ({flies(edna) ← bird(edna), bird(edna) ← emu(edna)}, flies(edna)). As
all calls are terminated now and there was no output "breach", this means that we have
enumerated all immediate activation sets for all instances of the input literal.

Example 25 (continuing Example 2 of Section 3)
Let us now come to Example 2 of Section 3. We start with the same input as for Example
24 above, and there is no change up to the call with argument tuple

({(bird(y), 1)}, {flies(y)}, ∅, {flies(y) ← bird(y)}, flies(y)),

and the only difference before the next call is that the applied rule is a strict one and is not
recorded in the program variable A′. Thus, we get a call with the argument tuple

({(emu(y), 1)}, {flies(y), bird(y)},∅, {flies(y) ← bird(y)}, flies(y)).

There is still no essential change, except that the test for "breach" becomes positive:
We again have Oσ = {flies(edna), bird(edna)}, but now we have bird(edna) ∈ T

�̂
, and our

procedure outputs "breach". Indeed, it missed to enumerate the immediate activation
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set {bird(edna)} for the argument ({flies(edna) ← bird(edna)}, flies(edna)), simply because
the instantiation came too late to stop us from proper expansion of the and-tree.

Remark 12 (Closer Matching of Activation Sets to SLD-Resolution Results in Inappropriate
Semantics)
The obvious idea to avoid the possibility that the procedure of Fig. 2 may output "breach"
and miss some maximally general, immediate activation sets is the following.

Just like we obtained CP2 from CP1, it is possible to obtain a notion CP3 from CP2 by a
minor modification of immediate activation sets, resulting in, say, SLD activation sets, such
that the SLD-like computation of Fig. 2 enumerates all maximally general, SLD activation
sets.

We do not see a chance to satisfy the crucial requirement of such a modification, however,
namely that it does not affect any of our previous examples. If we look at the application of
the procedure of Fig. 2 to the specification of Example 2 as described in Example 25, then
we see that all SLD activation sets remaining in Example 2 could be {emu(edna)}, such that
the arguments (A1, ¬flies(edna)) and (A2, flies(edna)) would become equivalently specific
w.r.t. the specification of Example 2, which seems to be absurd.

8.3.4 A specificity relation based on given and-trees

We see no straightforward procedure to decide �CP2. Even worse, we see neither a pro-
cedure to semi-decide it, nor a procedure to co-semi-decide it. A positive answer can be
given if the procedure of Fig. 2 terminates for the first argument of �CP2 without outputting
"breach". A negative answer can be given if, for an immediate activation set enumerated
for the first argument, the derivation for testing the property of being a weakly immediate
activation set for the second argument terminates with failure. In general, even if we assume
T

�̂
to be decidable, none of these terminations is guaranteed.42

In such a situation it is clearly appropriate to relax our requirement of a model-theoretic
specificity relation a bit. So we replace the fancied decision procedure for T

�̂
with the

test whether the literal has a derivation from those instances of � which can be found in
some and-tree occurring in a finite set of and-trees fixed in advance. For the solution we are
aiming at, it is crucial that this given finite set of and-trees cannot be further extended during
related specificity considerations. A good candidate may be the set of those and-trees that
our derivation procedure has been able to construct within a certain time limit. Then we can
replace each of the three elements of our specification (�F,�G,�) with the sets of those
instances of their elements that are actually applied in our finite set of and-trees, resulting in
the new specification (�F

g, �G
g , �g). The further considerations must use these three finite

sets without any further instantiation. This means that their rules are to be considered to be
ground and this is what the lower index “g” stands for.

We again abbreviate �g := �F
g ∪ �G

g , and also replace the typically undecidable set T
�̂

with finite set T�g .
Note that hardly anything has changed for our set of defeasible rules, because arguments

work anyway with instances that are ground, or are at least treated as if they were ground
(cf. Remark 3 in Section 2.4), and we can hardly consider an argument that is not contained
in some and-tree we have constructed in advance.

42Both of these terminations can be guaranteed, however, under most restrictive conditions, such as the one
that the conclusions of every rule from �G ∪ � with a non-empty condition are ground (cf. Remark 10).
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There is a major change, however, for the set � of strict rules. The situation here is
similar to an expansion w.r.t. a champ fini in Herbrand’s Fundamental Theorem,43 and we
have reason to hope that the effect of this change can be neglected in practice, provided that
a sufficient number of the proper instances is considered. Note that, for first-order logic, the
depth limit n for terms required for Herbrand’s Property C to establish a sentential tautology
(i.e. the natural number n for the champ fini of order n) is not computable in the sense of
a total recursive function. Even if we knew the smallest such n, however, the number of
terms of depth smaller than n would still be too high for practical feasibility in general. This
means that it is crucial to choose the instances of our rules in a clever way, say from the
successful proofs delivered by a theorem-proving system within a sufficient time limit.

Remark 13 (Specificity Relation on Arguments Extended with an And-Tree)
A straightforward idea to improve tractability is to attach an and-tree to each argument and
to compute a unique (cf., however, Example 23 in Section 8.3.1) immediate activation set for
each argument as follows: Starting from the root, we traverse the tree, remembering whether
we have passed an application of the instance of a defeasible rule, and stop traversing at
the first node labeled with an element of the finite set T�g , outputting its literal as part of
the single tree-immediate activation set, provided that we have passed an application of the
instance of a defeasible rule.

The problem we see here, however, is that such a fixed and-tree does not make much
sense for the second argument of our relation �CP2, simply because we should not let an
inappropriately chosen and-tree for the second argument produce a failure of the property of
being more specific, cf. Example 19 of Section 8.2.2. This means that we need an existential
quantification over the and-tree of the second argument. If we were able to find a way to
handle this quantification, the same technique would probably admit us to handle a universal
quantification over the and-tree of the first argument, which brings us back to our original
relation �CP2 on arguments without and-trees. So this restriction to concrete and-trees does
not seem to help. We will now show that we do not need it either.

With the modifications described above, let us now come back to our procedure of
Fig. 2. As noted before (cf. Remark 10), there cannot be any output of "breach"
anymore, because our new sets of general strict and defeasible rules, i.e. the sets �G

g
and �g, are now ground by definition. After the resulting simplifications, the proce-
dure immediate-activation-sets-helper now may be replaced with the procedure ground-
immediate-activation-sets-helper sketched in Fig. 3.

To ensure termination of ground-immediate-activation-sets-helper we additionally have
to store the current path of the and-tree and exit without further output if we encounter a
literal for a second time on the same path.

Regarding time complexity of the procedure of Fig. 3 extended with the storage of the
current path of the and-tree for ensuring termination mentioned above, only the following
preliminary remarks apply in this early state of development.

Remark 14 (Considerations on Complexity)
From practical experience, complexity is not relevant yet: Our straightforward PRO-
LOG (cf. e.g. [6]) implementation of this procedure (which prefers simplicity of coding
over efficiency) computes, compares, and sorts — without any noticeable delay in the

43Cf. [16, 30–32, 36, 37].
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answer — all minimal immediate activation sets for all minimal arguments for all literals of
T�g∪�g \ T�g , for a specification (�F

g,�G
g ,�g) of all instances required for a superset of

all examples in this paper.
Regarding the theoretical worst case, which will hardly ever occur in practice, the follow-

ing first estimate may be not completely irrelevant. Let n be the number of different literals
in all conclusions of all rules of �g ∪ �g. With our mentioned mechanism for ensuring ter-
mination, it is obvious that n limits the maximal depth of the SLD-like search tree. Let m

be the maximal number of all condition literals of all rules with an identical conclusion. It
is obvious that m limits the maximal number of children of any node in the SLD-like search
tree, cumulated over the whole run. This means that the maximal size of the cumulated
search tree is mn−1 − 1, i.e. O(mn). Luckily, this Landau-O limits also the size of the theory
T�g (which we pre-compute in our PROLOG implementation) and all other efforts at each
node, such as indexing our rules for obtaining a constant effort at each node. Therefore, the
whole algorithm is O(mn).

Remark 15 (Completeness of the Procedure)
Our procedure is complete in the sense that we can compute the finite set of all minimal44

immediate activation sets of all minimal arguments for a given input literal w.r.t. our ground
specification (�F

g,�G
g ,�g). All what is left for deciding �CP2 is to check whether each

of the computed immediate activation sets whose defeasible rules are part of the first argu-
ment is a weakly immediate activation set for the second argument. This is straightforward,
although it is not clear yet which implementation will be optimal.

We should not forget, however, that the specification (�F
g,�G

g ,�g) is only a reasonably

constructed sub-specification of our original specification (�F, �G, �), which actually
stands for (�̂F, �̂G, �̂). Practical tests have to show whether such an omission of infinitely
many instances can be viable without deteriorating our specificity ordering. Theoretically,
such a viability can only be guaranteed for the special case that the number of instances of
the rules of the specification is finite (up to renaming of variables).

9 Conclusion

9.1 Summary

We would need further discussions on our surprising new findings w.r.t. Poole’s specificity
relation, in particular its lack of transitivity. After all, defeasible reasoning with Poole’s
notion of specificity is being applied now for over a quarter of a century, and it was not to be
expected that our investigations could shake an element of the field to the very foundations.

One remedy for the discovered lack of transitivity of �P3 could be to consider the tran-
sitive closure of the non-transitive relation �P3. This could be an advantage compared to
�CP1 only under the condition that the transitive closure of �P3 is a subset of �CP1, i.e.
only under one of the conditions of Theorem 3. Moreover, this transitive closure still has

44Minimal immediate activation sets are obtained after completion of the procedure of Fig. 3 simply as
follows: For each minimal argument (A , L), we remove all proper supersets among the immediate activation
sets. Note that we do not have to filter the immediate activation sets by removing all elements of A , simply
because, as subsets of T�g , they are disjoint from the literals in A (i.e. the rules in A with empty conditions).
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all the the intuitive shortcomings made obvious for �P3 in Section 7. Furthermore, we do
not see how this transitive closure could be decided efficiently. Finally, the transitive clo-
sure lacks a direct intuitive motivation, and after the first extension step from �P3 to its
transitive closure, we had better take the second extension step to the more intuitive �CP1
immediately.

Contrary to the transitive closure of �P3, our novel relations �CP1 and �CP2 also solve
the problem of non-monotonicity of specificity w.r.t. conjunction (cf. Section 7.1), which
was already realized as a problem of �P1 by [22] (cf. our Example 12 in Section 7.1).

The present means to decide our novel specificity relation �CP1, however, show several
improvements45 and a few setbacks46 compared to the known ones for Poole’s relation.
Further work is needed to improve efficiency.

By a minor restriction of activation sets, resulting in immediate activation sets, we have
come in Section 8.3 to the quasi-ordering �CP2, which does not show any difference com-
pared to �CP1 in any of our examples except Example 21, which was constructed to show
the difference. The new specificity ordering �CP2 has advantages w.r.t. intuition and effi-
ciency. The latter advantage, however, requires decidability of T

�̂
(in addition to the always

given semi-decidability).
To concretize the problems of computing activation sets by SLD-resolution, in Sec-

tion 8.3.3 we have sketched a procedure that indicates "breach" if it may have missed to
output some of the most general immediate activation sets. Then, in Section 8.3.4, we have
shown how to obtain decidability of T

�̂
by restriction to a finite set of instances that are

then treated as if they were ground. We hope that we can find a procedure for generating the
finite set of rule instances such that the effect of this restriction can be neglected in prac-
tice. Without such a restriction, however, we do not know how to decide any of the relations
�P1, �P2, �P3, �CP1, �CP2 in general.

9.2 Application contexts

We can apply the specificity relations to question answering, as attempted in the RatioLog
project [10]. Question answering systems such as LogAnswer [9] usually determine several
possible answer candidates for a given query. For each candidate, a possibly defeasible
derivation of the answer is available. The best answer candidate has to be chosen. One
idea among others is to prefer more specific answers. Thus, specificity is incorporated as a
mechanism of rationality here.

An important part of the application context for specificity orderings consists of
numerous frameworks for argumentation in logic. The overall process usually includes a
dialectical process used for answering queries. Different arguments are pro or contra a cer-
tain answer. By means of an attack relation, conflicts between contradicting arguments can
be determined in abstract argumentation frameworks, such as the ones of [7, 23] and [21].
A concrete specificity ordering or a similar relation helps then to decide among conflicting
arguments.

The ASPIC+ framework [21] combines an (abstract) argumentation system with a con-
crete knowledge base, which may contain strict and defeasible rules. In this context, an
argument can be attacked on a conclusion of a defeasible inference, on a defeasible inference
step itself, or on an ordinary premise. Nonetheless, also ASPIC+ is not a concrete system

45See Sections 8.1, 8.2.1, 8.3.2, 8.3.3, and 8.3.4 for the improvements.
46See Sections 8.2.3 and 8.3.3 for the setbacks.
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but a framework for specifying systems. The choice of the logic is left open in ASPIC+.
Thus, on the basis of the different rule types, the attack or conflict relation may be defined,
e.g. by means of one of our specificity orderings.

As the discussion in this paper demonstrates, however, it is not that easy to find an effec-
tive concrete specificity relation. One of the main problems is that such relations are often
computationally highly complex, such as it is the case in [17].

9.3 More conservative instead of more specific?

Note that we have to distinguish between orderings for comparing conflicting arguments
w.r.t. specificity and orderings for comparing arguments w.r.t. a form of subsumption, such
as the quasi-ordering of being “more conservative” found in [3, Definition 3.3, p. 206],
[4, Definition 6, p. 50]. There, roughly speaking, an argument (A1, L1) is more conservative
than an argument (A2, L2) if A1 ⊆ A2 and {L2} � {L1}. So if our opponent accepts the
argument (A2, L2), then he also has to accept our more conservative argument (A1, L1),
because we need less presuppositions and our result follows from our opponent’s result. In
many practical situations, however, the less conservative argument will be preferred. For
instance, if we ask a question-answering system (such as LogAnswer [9]) for the mother of
Pierre Fermat, then — as an answer — we prefer the less conservative argument

(A ,Mother(Claire de Long, Pierre Fermat)) to
(A , ∃x.Mother(x, Pierre Fermat)).

Moreover, the arguments

(A ,Mother(Françoise Cazeneuve, Pierre Fermat)) and
(A ,Mother(Claire de Long, Pierre Fermat)),

are incomparable in the “more conservative”-quasi-ordering.47

Even worse, for a non-trivial derivability relation, i.e. in a non-contradictory theory, the
quasi-ordering of being “more conservative” cannot compare arguments with contradictory
results L, ¬L by definition.

Moreover, none of the arguments of our examples can be compared by this quasi-
ordering.

9.4 Critical assessment of our novel specificity orderings

It has become clear in several discussions that the main obstacle for an acceptance of one of
our relations �CP1 or �CP2 as a replacement for �P3 is the change this brings to Example 3
of Section 3: Some scientists working in the field have become used to the preference given
by �P3 in this most popular example — so much that they now consider that preference a
must. Note that the situation in Example 3 is actually most unstable under the two following
aspects:

47Let us compare our specificity relations P3, CP1, CP2 with the “more conservative”-quasi-ordering by
looking at our Corollaries 3, 5, and 8 in the context of Corollary 4. So let us assume A1 ⊆ A2. For the trivial
case of L1 = L2, the argument (A1, L1) is quasi-smaller than the argument (A2, L2) for all of P3, CP1,
CP2, and “more conservative”. In case of L2 ∈ T

�̂
⇒ L1 ∈ T

�̂
and {L1} ∪ �̂ � {L2}, again the argument

(A1, L1) is quasi-smaller than the argument (A2, L2) for all of P3, CP1, CP2, but for “more conservative” it
is the other way round, provided that we adopt the straightforward assumption that derivability is derivability
w.r.t. the basic theory of �̂. Thus, P3, CP1, CP2 would all prefer (A ,Mother(Claire de Long, Pierre Fermat))
to (A , ∃x.Mother(x, Pierre Fermat)), provided that we could express existential quantification.
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1. The preference chosen by �P3 in Example 3 has justifications that are intuitive and
valid, but are in general uncorrelated to specificity, such as the preference of conser-
vativeness or the non-model-theoretic preference of defeasible derivations of shorter
length. In particular in this example, such intuitive justifications easily contaminate
the readers’ intuition w.r.t. specificity. Moreover, as the arguments in Example 3 are
not incomparable, but just equivalent according to �CP1, we can easily combine �CP1
lexicographically with another ordering, say “minimum in the ordering of the natural
numbers, for all and-trees, of the maximal length of defeasible paths”, and so recover
the traditional preference of Example 3.

2. The situation of the example is chaotic in the sense that different preferences result
from minor changes that may escape the readers’ disambiguation.

For instance, if we add the general rule of the example that precedes Example 3 (i.e.
of Example 2), then the preference chosen by �P3 is chosen by �CP1 and �CP2 as well.

Moreover, if we alternatively add bird(edna) as a fact, then we can embed the exam-
ple injectively into Example 21 of Section 8.3.1, and then the preference chosen by �P3
is again chosen by �CP1 (whereas the arguments become incomparable w.r.t. �CP2).

Already the examples in Section 7 show, however, that �P3 almost always fails to pre-
fer any argument in slightly bigger examples, not to speak of big ones. Indeed, �P3 can
be considered a reasonable choice only if we restrict our considerations to tiny examples.
Moreover, we presented good intuitive reasons for the failure of the preference of Example
3 in Example 9 of Section 6.6 (see also the pointers to further reasons in Note 28).

It is just too early for a further assessment, and the further implications of the contribu-
tions of this paper and the technical details of the operationalization of our correction of
Poole’s specificity will have to be discussed in future work.
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