How to Prove Inductive Theorems? QUODLIBET!

Jiirgen AvenhadsUIrich Kiihler, Tobias Schmidt-SamdaClaus-Peter Wirth

1 FB Informatik, Univ. Kaiserslautern
{avenhaus, schmi dt} @ nf or mati k. uni - kl . de
2 sd&m AG, D-40880 Ratingen ul ri ch. kuehl er @dm de
3 FR Informatik, Saarland Univ., D—-66123 Saarbriicken wi rth@ ogi c. at

1 Why Another Inductive Theorem Prover?

QUODLIBET is a tactic-based inductive theorem proving system thattsneelay’s
standard requirements for theorem provers such as a comimiznpreter, a sophisti-
cated graphical user interface, and a carefully programimfedence machine kernel
that guarantees soundness. In essence, it is the synezgetimnation of the features
presented in the following sections that makesd@LIBET a system quite useful in
practice; and we hope that it is actuallg you like it which is the Latin “quod li-
bet” translated into English. We start by presenting somi@idesign goals that have
guided the development of UDDLIBET. Note that the system is not intended to pur-
sue the push bottom technology for inductive theorem pgvibut to manage more
complicated proofs by an effective interplay between extdon and automation.

1.1 Design Goals for Specifications

Given algebraic specifications of algorithms in the stylaldtract data types, we want
to prove theorems even if the specification is not (yet) seffity complete. As an ex-
ample, consider the incomplete specification of the sutitraon the natural numbers
E ={¥x.x—0=X, VX,y.s(x) —s(y)=x—y} and the conjectur&x,y. (x—y=0 A y—x=0 = x=Y).
Note that this is indeed an inductive theorem with respeetlitoonsistent extensions
of the given specification.

For a more complicated example, assume we want to provehdexicographic
path ordedpo is totally defined on ground terms and is indeed an ordeoQL IBET
admits the natural definition ¢&ffo by mutual recursion.

All in all, we propose a specification formalism for our indiue theorem prover
that admitspartial definitions of operators over free constructors using (ibbsson-
terminating positive/negativeonditional equations as well destructorrecursion or
mutualrecursion. A conjecture may be any (universally quantifiddyse. If it is in-
ductively valid with respect to a specification it shouldaakse valid in all consistent
extensions of the given specification, i.e. in our approachudtive validity is mono-
tonic with respect to consistent extensions.

1.2 Design Goals for Proving Theorems

QuobDLIBET's inference system is intended to formalize techniqueswonly used by
mathematicians, especially when applying induction higpsés. Irexplicit induction
(cf. [7]) as found e.g. in BTHM [2], aninduction ruleis provided whose addition turns

a deductive into an inductive inference system withoutfeirchanges on the deductive
part. Roughly speaking, explicit induction “hides” sevdggpplications of) induction
hypotheses in a single inference step. Contrary to thisghiewy many mathematicians
perform inductive proofs as follows:

They begin with the conjecture and simplify it by case analyRealizing that sub-
goals have become similar to different instances of theemtuaje, they apply the con-
jecture just like a lemma, but keep in mind that they actuapiplied some induction
hypothesis. Finally, they search for a wellfounded ordehwespect to which all the
instances of the conjecture applied as induction hypoth&sesmaller than the original
conjecture itself.

In this way (besides simulating explicit induction) we imtieto construct in-
ductive proofs with @ODLIBET; for more details cf. [4]. In [8] this aspect of im-
plicit induction is calleddescente infiniea name already coined by Fermat. Another
motivation fordescente infiniés to overcome the limitations of recursion analysis as
described in [6], wherdescente infinies called thdazy method

Besides, mathematicians often make different proof attepgwitching from one
attempt to another if they get stuck, until they succeedyThioduce lemmas which
they only prove if they turn out to be usefulUQDLIBET is to support this (tentative)
style of proof engineeringHowever, it also needs to be capable of proving simpler
theorems and subgoals without any user interaction.

2 QUODLIBET Specifications

Given a QUOoDLIBET specificationspec= (sig,E) that comprises a sighatustg =
(SC,F) whereSis the set of sorts an@ C F the set of free constructors, we need to
fix the intended semantics epec We begin by defininde-equality. This is not trivial
sinceE may contain equations (or rewrite rules) with positive aredativeconditions

of the formt; #to. A termt is calleddefined if it is E-equal to a constructor ground
termt® € 7 (C). To defineE-equality as for Horn-clause specifications we evaluate the
negative conditions; # ty constructively: This condition is satisfied if andt, are
defined and, tS are not equal. We now defires as usual and consider the quotient
algebra given by (F)/=g. In our approach, partiality of a functiohe F relates to the
dataof specas given byr (C). In this view the quotient algebra (F)/=g contains a
partial algebravr = a (speg with 7 (C) as its universe and partially defined functions
£ for the f € F. We calla (speg the standard modebf spec Technically, for each
undefined termg (F)/=g contains an error element. Two undefined tetnadt’
represent the same error element only=Hg t'.

A first attempt to define the semanticsspleds validity in ¢ (speg. However, this
semantics is not monotonic with respect to consistent ektes. Hence we propose an-
other semantics (cf. [5, 9]): A first-order model oépec (with partial
functions) is adata modelof spec if its C-reduct is isomorphic to the free term
algebra7 (C). A clause is annductive theorerof spec if it is valid in all data
models ofspec Given this semantics, inductive validity is monotonic lwitespect
to consistent extensions. For example, the claim

VX, Y. (X>y=true A y>x=true = XxX=Y)
in the specificationE = {¥x.x>0=true, VX,y.s(X) >s(y)=x>y} looks very

similar to the one in § 1.1, but—contrariwise—is not an indectheorem asry. 0 > y=true
(which makes> trivial) is a consistent extension &f.

QuoDLIBET provides easily testable admissibility conditions whickagntee that
the semantics outlined above is well-defined. These camditiio not require termina-
tion of E; instead they essentially require tHafulfills a simple syntactic confluence
criterion (cf. [4, 5]).

Finally, QuobLIBET supports two kinds of mutual dependencies. Firstly, tha dat
types represented by the soBdo not have to be hierarchically ordered so that we can
define e.g. terms and term lists which mutually depend on etiwr. Secondly, oper-
ators can be defined by mutual recursion. Of course, mutaats®n can be encoded
by non-mutual recursion. But that leads to unnatural dédimstand, more importantly,
to technically more complex proofs.

3 Proving Theorems withQUODLIBET

Descente Infinie To realizedescente infiniefQUODLIBET supplies the user with in-
ference rules for inductive case analysis, inductive riwgiand inductive subsump-
tion. Thus, clauses can be used inductively provided theg@amehow smaller than the
clause they are applied to. INQDLIBET the size of a clause is measured by a so-called
weightwhich is ann-tuple of terms associated with the clause. The pair cangisf a
clause and a weight is callecyaal.

To compare goals, @QODLIBET uses on the one hand a fixed order on defined terms
and on the other hand a flexible scheme to define the inductaer:0Any admissible
specification defines the “semantic length” for any definedigd ternt as the length of
the unique constructor ground tetmequal tat. The defined terms are ordered by their
semantic length; the lexicographic extension of this oigl@&rsed to compare weights.
The flexibility of the scheme is achieved by the fact that thegghts can be composed
of any tuple of defined terms.

Using QUODLIBET the choice of an appropriate induction order can be delayed
until it has to be made. This is done in the following way: Arongecture is initially
equipped with a weight term of the form(xg, ..., X«), wherew is a new free (existen-
tial) variable andky, ..., X are the (universal) variables in the conjecture. Whendneer t
conjecture is instantiated (e.g. by a cover set of subgtitg} the weight is instantiated
accordingly. Any inductive application of a clause to théuat conjecture creates a
proof obligation of the fornw; < w, wherew; andws, are the weights of the applied
clause and the conjecture, respectively. During the promfgss the function variables
w have to be instantiated by functions evaluatingittuples of defined terms so that
the proof obligations can be fulfilled where is interpreted as the lexicographic ex-
tension of the semantic order given by the specification. example, consider the
natural specification ofnergesort by destructor recursionHere a listl is split into
even(l) andodd(l), the lists of elements at even and odd positions. iti one de-
fineslength(l) as the length of, then one can proMength(even(l)) < length(l) and
length(odd(l)) < length(l) for lists| of length greater than 1. This will solve all proof
obligations created in the inductive proof for correctnegfssiergesort.

Note that almost all automated inductive theorem provers@ée induction order
from the order used for the termination proof of the specifipdrators. QODLIBET
does not require termination of the specified operators taméhduction order can be
constructed more flexibly so that it satisfies the order caimds that arise in the proof.
Moreover, no special inference rule is needed to cope wittuatuecursion.

Representation of Proof Attempts and Open LemmasQUODLIBET has a sophis-
ticated graphical user interface which enables the useasdyecreate specifications,
manages the already proved lemmas, and substantially gaggoof engineering by
visualizing proof constructions (cf. [4]).

In the simplest case a proof attempt is represented grdjyhimaa proof (state)
tree consisting of inference and goal nodes. An inferende mepresents the inference
applied to its parent which is a goal node.rtshildren(n > 0) are again goal nodes and
represent the new goals created by the inference. A goalisadarked with a clause
which is to be proved inductively valid, and a weight. Extegdthe proof attempt
means to apply an inference to one leaf which is a goal nodkelt is no such open
leaf any more then the (proof) tree represents a proof dialttauses in the goal nodes.

Furthermore, it is also possible to start several proofgtts in parallel as described
in [3]. To do so, a goal node may have several inference nadelil@ren. Any of these
subtrees represents a proof attempt. Hence in general oneoatruct an and/or-tree
to represent the proof construction so far. One can work emliffierent proof attempts
independently, just as it seems most promising to achiewrglete proof. So neither
replay nor backtracking is needed. All the proof attempgsadithe disposal of the user.

As already explained in 8 1.2 it is sometimes very useful tgecture a lemma and
to try to get the proof completed by using this lemmaldpL IBET supports this way
of constructing proofs. Using thessumecommand a yet unproved lemma can be intro-
duced for constructing a proof. But this proof is completé/ghall assumed lemmas
are finally proved. This is controlled by managing the proepehdencies among all
used lemmas.

Tactics We have already mentioned thatuQDLIBET can be used as an interactive
theorem prover. However, it would be extremely tedious teicheine every proof step
manually. Therefore, QODLIBET provides prootacticsto automate proof construc-
tions. A tactic is a routine formulated in QML, a new proof tmh language, which
controls QIODLIBET’s soundinference machine kernel. UpDLIBET provides a vari-
ety of tactics that perform routine proof constructions. e some examples.

Provided the definition analysis of the functions is alreddge, a tactic may start
the proof of a conjecture by performing an appropriate cassyais, simplify the
clauses with defining equations and lemmas and also applgiine inferences. There
is a tactic to guess an appropriate instantiation of the keigriable (i.e. to define
an appropriate induction order) and to solve the ordersgyddlis tactic is in almost all
cases successful where the subterm order is enough to peweder goals. Otherwise,
the user is asked to define the induction order by instangjakie weights. The so-called

standard tacticombines these aspects into one tactic. If it gets stucki¢igges a new
proof tree and tries to solve the goal by another inductie@fpiQUODLIBET is an open

proof system in the sense that more tactics can be writteMh gnd easily integrated
by the user in order to reduce the need of human interaction.

4 Development History

Looking for a formal inductive calculus fatescente infiniethe “implicit induction”
of [1] (as implemented in NicoM) was a starting point because it included induction
hypothesis application; but it was restricted to first-ongdieiversally quantified uncon-
ditional equations and was not human-oriented. Thesedtioits were so severe in
practice that we decided to stop the development pfddm and use the gained ex-
perience for the development ofU@DLIBET as a system based on a human-oriented
inductive calculus for first-order universally quantifidduesal logic. So far, the main fo-
cus of QUODLIBET has been to provide a natural style for specifications anof pech-
niques. We have usedd@DL IBET for proofs on natural numbers (e.g. non-terminating
specification of division), sorting algorithms on lists (lesort, insertionsort, merge-
sort, quicksort), binary search trees (cf. [4]) and ordirs)(For some more elaborated
examples the underlying tactics will have to be improvedambination with the use
of decision procedures. A further development along [8]ésped.

In [4] the concepts and the implementation of the wholeo@L IBET system are de-
scribed in detail. The current version obQDLIBET can be obtained fromt t p: / / agent

References

[1] Leo Bachmair (1988)Proof By Consistency in Equational Theori8s.IEEE Symposium
on Logic In Computer Sci., pp. 228-233, IEEE Press.

[2] Robert S. Boyer, J S. Moore (1988).Computational Logic HandbooRcademic Press.

[3] Deepak Kapur, David R. Musser, and X. Nie (199Ah Overview of the Tecton Proof
SystemTheoretical Computer Sc33 pp. 307-339, Elsevier.

[4] Ulrich Kuhler (2000).A Tactic-Based Inductive Theorem Prover for Data Types Rattial
Operations.Ph.D. thesis, Infix, Akademische Verlagsgesellschaft Akab8&, Sankt Au-
gustin, Berlin.

[5] Ulrich Kihler, Claus-Peter Wirth (1996onditional Equational Specifications of Data
Types with Partial Operations for Inductive Theorem Prgyir8t RTA 1997, LNCS 1232,
pp. 38-52, Springer.

[6] Martin Protzen (1994).Lazy Generation of Induction Hypothesek2h CADE 1994,
LNAI 814, pp. 42-56, Springer.

[7] Christoph Walther (1994)Mathematical Inductionin: Dov M. Gabbay, C. J. Hogger, J.
Alan Robinson (eds.Handbook of Logic in Artificial Intelligence and Logic Pragnming
Clarendon Press, 1993ff., Vol. 2, pp. 127-228.

[8] Claus-Peter Wirth (2004Descente Infinie + Deductioriogic J. of the IGPL12, pp. 1-
96, Oxford Univ. Press. http://ww. ags. uni - sb. de/ ~cp/ p/d (Sept. 12,
2003).

[9] Claus-Peter Wirth, Bernhard Gramlich (1994).Constructor-Based Approach for Posi-
tive/Negative-Conditional Equational SpecificatiodsSymbolic Computatioh?, pp. 51—
90, Academic Press (Elsevier).

.informatik. uni -

