
How to Prove Inductive Theorems? QUODL IBET!

Jürgen Avenhaus1, Ulrich Kühler2, Tobias Schmidt-Samoa1, Claus-Peter Wirth3

1 FB Informatik, Univ. Kaiserslautern
{avenhaus,schmidt}@informatik.uni-kl.de

2 sd&m AG, D-40880 Ratingen ulrich.kuehler@sdm.de
3 FR Informatik, Saarland Univ., D–66123 Saarbrücken wirth@logic.at

1 Why Another Inductive Theorem Prover?

QUODL IBET is a tactic-based inductive theorem proving system that meets today’s
standard requirements for theorem provers such as a commandinterpreter, a sophisti-
cated graphical user interface, and a carefully programmedinference machine kernel
that guarantees soundness. In essence, it is the synergeticcombination of the features
presented in the following sections that makes QUODL IBET a system quite useful in
practice; and we hope that it is actuallyas you like it, which is the Latin “quod li-
bet” translated into English. We start by presenting some ofthe design goals that have
guided the development of QUODL IBET. Note that the system is not intended to pur-
sue the push bottom technology for inductive theorem proving, but to manage more
complicated proofs by an effective interplay between interaction and automation.

1.1 Design Goals for Specifications

Given algebraic specifications of algorithms in the style ofabstract data types, we want
to prove theorems even if the specification is not (yet) sufficiently complete. As an ex-
ample, consider the incomplete specification of the subtraction on the natural numbers
E = {∀x. x−0=x, ∀x,y. s(x)−s(y)=x−y} and the conjecture∀x,y. (x−y=0 ∧ y−x=0 ⇒ x=y).
Note that this is indeed an inductive theorem with respect toall consistent extensions
of the given specification.

For a more complicated example, assume we want to prove that the lexicographic
path orderlpo is totally defined on ground terms and is indeed an order. QUODL IBET

admits the natural definition oflpo by mutual recursion.
All in all, we propose a specification formalism for our inductive theorem prover

that admitspartial definitions of operators over free constructors using (possibly non-
terminating) positive/negative-conditional equations as well asdestructorrecursion or
mutual recursion. A conjecture may be any (universally quantified)clause. If it is in-
ductively valid with respect to a specification it should also be valid in all consistent
extensions of the given specification, i.e. in our approach inductive validity is mono-
tonic with respect to consistent extensions.

1.2 Design Goals for Proving Theorems

QUODL IBET’s inference system is intended to formalize techniques commonly used by
mathematicians, especially when applying induction hypotheses. Inexplicit induction
(cf. [7]) as found e.g. in NQTHM [2], an induction ruleis provided whose addition turns



a deductive into an inductive inference system without further changes on the deductive
part. Roughly speaking, explicit induction “hides” several (applications of) induction
hypotheses in a single inference step. Contrary to this, however, many mathematicians
perform inductive proofs as follows:

They begin with the conjecture and simplify it by case analysis. Realizing that sub-
goals have become similar to different instances of the conjecture, they apply the con-
jecture just like a lemma, but keep in mind that they actuallyapplied some induction
hypothesis. Finally, they search for a wellfounded order with respect to which all the
instances of the conjecture applied as induction hypotheses are smaller than the original
conjecture itself.

In this way (besides simulating explicit induction) we intend to construct in-
ductive proofs with QUODL IBET; for more details cf. [4]. In [8] this aspect of im-
plicit induction is calleddescente infinie, a name already coined by Fermat. Another
motivation fordescente infinieis to overcome the limitations of recursion analysis as
described in [6], wheredescente infinieis called thelazy method.

Besides, mathematicians often make different proof attempts, switching from one
attempt to another if they get stuck, until they succeed. They introduce lemmas which
they only prove if they turn out to be useful. QUODL IBET is to support this (tentative)
style of proof engineering. However, it also needs to be capable of proving simpler
theorems and subgoals without any user interaction.

2 QUODL IBET Specifications

Given a QUODL IBET specificationspec= (sig,E) that comprises a signaturesig =
(S,C,F) whereS is the set of sorts andC ⊆ F the set of free constructors, we need to
fix the intended semantics ofspec. We begin by definingE-equality. This is not trivial
sinceE may contain equations (or rewrite rules) with positive andnegativeconditions
of the formt1 6= t2. A term t is calleddefined if it is E-equal to a constructor ground
termtC ∈ T (C). To defineE-equality as for Horn-clause specifications we evaluate the
negative conditionst1 6= t2 constructively: This condition is satisfied ift1 andt2 are
defined andtC1 , tC2 are not equal. We now define=E as usual and consider the quotient
algebra given byT (F)/=E. In our approach, partiality of a functionf ∈ F relates to the
dataof specas given byT (C). In this view the quotient algebraT (F)/=E contains a
partial algebraM =M (spec) with T (C) as its universe and partially defined functions
fM for the f ∈ F. We callM (spec) thestandard modelof spec. Technically, for each
undefined term,T (F)/=E contains an error element. Two undefined termst and t ′

represent the same error element only ift =E t ′.
A first attempt to define the semantics ofspecis validity inM (spec). However, this

semantics is not monotonic with respect to consistent extensions. Hence we propose an-
other semantics (cf. [5, 9]): A first-order model ofspec (with partial
functions) is adata modelof spec if its C-reduct is isomorphic to the free term
algebraT (C). A clause is aninductive theoremof spec if it is valid in all data
models ofspec. Given this semantics, inductive validity is monotonic with respect
to consistent extensions. For example, the claim

∀x,y. (x≥y= true ∧ y≥x=true ⇒ x=y)
in the specification E = {∀x. x≥0=true, ∀x,y. s(x)≥s(y)=x≥y} looks very



similar to the one in § 1.1, but—contrariwise—is not an inductive theorem as∀y. 0≥y= true

(which makes≥ trivial) is a consistent extension ofE.
QUODL IBET provides easily testable admissibility conditions which guarantee that

the semantics outlined above is well-defined. These conditions do not require termina-
tion of E; instead they essentially require thatE fulfills a simple syntactic confluence
criterion (cf. [4, 5]).

Finally, QUODL IBET supports two kinds of mutual dependencies. Firstly, the data
types represented by the sortsSdo not have to be hierarchically ordered so that we can
define e.g. terms and term lists which mutually depend on eachother. Secondly, oper-
ators can be defined by mutual recursion. Of course, mutual recursion can be encoded
by non-mutual recursion. But that leads to unnatural definitions and, more importantly,
to technically more complex proofs.

3 Proving Theorems withQUODL IBET

Descente Infinie To realizedescente infinie, QUODL IBET supplies the user with in-
ference rules for inductive case analysis, inductive rewriting and inductive subsump-
tion. Thus, clauses can be used inductively provided they are somehow smaller than the
clause they are applied to. In QUODL IBET the size of a clause is measured by a so-called
weightwhich is ann-tuple of terms associated with the clause. The pair consisting of a
clause and a weight is called agoal.

To compare goals, QUODL IBET uses on the one hand a fixed order on defined terms
and on the other hand a flexible scheme to define the induction order: Any admissible
specification defines the “semantic length” for any defined ground termt as the length of
the unique constructor ground termtC equal tot. The defined terms are ordered by their
semantic length; the lexicographic extension of this orderis used to compare weights.
The flexibility of the scheme is achieved by the fact that the weights can be composed
of any tuple of defined terms.

Using QUODL IBET the choice of an appropriate induction order can be delayed
until it has to be made. This is done in the following way: Any conjecture is initially
equipped with a weight term of the formw(x1, . . . ,xk), wherew is a new free (existen-
tial) variable andx1, . . . ,xk are the (universal) variables in the conjecture. Whenever the
conjecture is instantiated (e.g. by a cover set of substitutions) the weight is instantiated
accordingly. Any inductive application of a clause to the actual conjecture creates a
proof obligation of the formw1 < w2 wherew1 andw2 are the weights of the applied
clause and the conjecture, respectively. During the proof process the function variables
w have to be instantiated by functions evaluating ton-tuples of defined terms so that
the proof obligations can be fulfilled where< is interpreted as the lexicographic ex-
tension of the semantic order given by the specification. As an example, consider the
natural specification ofmergesort by destructor recursion. Here a listl is split into
even(l) and odd(l), the lists of elements at even and odd positions inl . If one de-
fineslength(l) as the length ofl , then one can provelength(even(l)) < length(l) and
length(odd(l)) < length(l) for lists l of length greater than 1. This will solve all proof
obligations created in the inductive proof for correctnessof mergesort.



Note that almost all automated inductive theorem provers derive the induction order
from the order used for the termination proof of the specifiedoperators. QUODL IBET

does not require termination of the specified operators, andthe induction order can be
constructed more flexibly so that it satisfies the order constraints that arise in the proof.
Moreover, no special inference rule is needed to cope with mutual recursion.

Representation of Proof Attempts and Open LemmasQUODL IBET has a sophis-
ticated graphical user interface which enables the user to easily create specifications,
manages the already proved lemmas, and substantially supports proof engineering by
visualizing proof constructions (cf. [4]).

In the simplest case a proof attempt is represented graphically by a proof (state)
tree consisting of inference and goal nodes. An inference node represents the inference
applied to its parent which is a goal node. Itsn children(n≥ 0) are again goal nodes and
represent the new goals created by the inference. A goal nodeis marked with a clause
which is to be proved inductively valid, and a weight. Extending the proof attempt
means to apply an inference to one leaf which is a goal node. Ifthere is no such open
leaf any more then the (proof) tree represents a proof of all the clauses in the goal nodes.

Furthermore, it is also possible to start several proof attempts in parallel as described
in [3]. To do so, a goal node may have several inference nodes as children. Any of these
subtrees represents a proof attempt. Hence in general one can construct an and/or-tree
to represent the proof construction so far. One can work on the different proof attempts
independently, just as it seems most promising to achieve a complete proof. So neither
replay nor backtracking is needed. All the proof attempts are at the disposal of the user.

As already explained in § 1.2 it is sometimes very useful to conjecture a lemma and
to try to get the proof completed by using this lemma. QUODL IBET supports this way
of constructing proofs. Using theassume-command a yet unproved lemma can be intro-
duced for constructing a proof. But this proof is complete only if all assumed lemmas
are finally proved. This is controlled by managing the proof dependencies among all
used lemmas.

Tactics We have already mentioned that QUODL IBET can be used as an interactive
theorem prover. However, it would be extremely tedious to determine every proof step
manually. Therefore, QUODL IBET provides prooftactics to automate proof construc-
tions. A tactic is a routine formulated in QML, a new proof control language, which
controls QUODL IBET’s soundinference machine kernel. QUODL IBET provides a vari-
ety of tactics that perform routine proof constructions. Wegive some examples.

Provided the definition analysis of the functions is alreadydone, a tactic may start
the proof of a conjecture by performing an appropriate case analysis, simplify the
clauses with defining equations and lemmas and also apply inductive inferences. There
is a tactic to guess an appropriate instantiation of the weight variable (i.e. to define
an appropriate induction order) and to solve the order-goals. This tactic is in almost all
cases successful where the subterm order is enough to prove the order goals. Otherwise,
the user is asked to define the induction order by instantiating the weights. The so-called



standard tacticcombines these aspects into one tactic. If it gets stuck it generates a new
proof tree and tries to solve the goal by another inductive proof. QUODL IBET is an open
proof system in the sense that more tactics can be written in QML and easily integrated
by the user in order to reduce the need of human interaction.

4 Development History

Looking for a formal inductive calculus fordescente infinie, the “implicit induction”
of [1] (as implemented in UNICOM) was a starting point because it included induction
hypothesis application; but it was restricted to first-order universally quantified uncon-
ditional equations and was not human-oriented. These limitations were so severe in
practice that we decided to stop the development of UNICOM and use the gained ex-
perience for the development of QUODL IBET as a system based on a human-oriented
inductive calculus for first-order universally quantified clausal logic. So far, the main fo-
cus of QUODL IBET has been to provide a natural style for specifications and proof tech-
niques. We have used QUODL IBET for proofs on natural numbers (e.g. non-terminating
specification of division), sorting algorithms on lists (bubblesort, insertionsort, merge-
sort, quicksort), binary search trees (cf. [4]) and orders (lpo). For some more elaborated
examples the underlying tactics will have to be improved in combination with the use
of decision procedures. A further development along [8] is planned.

In [4] the concepts and the implementation of the whole QUODL IBET system are de-
scribed in detail. The current version of QUODL IBET can be obtained fromhttp://agent.informatik.uni-kl

References
[1] Leo Bachmair (1988).Proof By Consistency in Equational Theories.3rd IEEE Symposium

on Logic In Computer Sci., pp. 228–233, IEEE Press.
[2] Robert S. Boyer, J S. Moore (1988).A Computational Logic Handbook.Academic Press.
[3] Deepak Kapur, David R. Musser, and X. Nie (1994).An Overview of the Tecton Proof

System.Theoretical Computer Sci.133, pp. 307–339, Elsevier.
[4] Ulrich Kühler (2000).A Tactic-Based Inductive Theorem Prover for Data Types withPartial

Operations.Ph.D. thesis, Infix, Akademische Verlagsgesellschaft Aka GmbH, Sankt Au-
gustin, Berlin.

[5] Ulrich Kühler, Claus-Peter Wirth (1996).Conditional Equational Specifications of Data
Types with Partial Operations for Inductive Theorem Proving. 8th RTA 1997, LNCS 1232,
pp. 38–52, Springer.

[6] Martin Protzen (1994).Lazy Generation of Induction Hypotheses.12th CADE 1994,
LNAI 814, pp. 42–56, Springer.

[7] Christoph Walther (1994).Mathematical Induction.In: Dov M. Gabbay, C. J. Hogger, J.
Alan Robinson (eds.).Handbook of Logic in Artificial Intelligence and Logic Programming,
Clarendon Press, 1993ff., Vol. 2, pp. 127–228.

[8] Claus-Peter Wirth (2004).Descente Infinie + Deduction.Logic J. of the IGPL12, pp. 1–
96, Oxford Univ. Press. http://www.ags.uni-sb.de/~cp/p/d (Sept.12,
2003).

[9] Claus-Peter Wirth, Bernhard Gramlich (1994).A Constructor-Based Approach for Posi-
tive/Negative-Conditional Equational Specifications.J. Symbolic Computation17, pp. 51–
90, Academic Press (Elsevier).


