
How to Prove Inductive Theorems? QuodLibet!

Jürgen Avenhaus1, Ulrich Kühler2, Tobias Schmidt-Samoa1, Claus-Peter Wirth3

1 FB Informatik, Univ. Kaiserslautern {avenhaus,schmidt}@informatik.uni-kl.de
2 sd&m AG, D-40880 Ratingen Ulrich.Kuehler@t-systems.com
3 FR Informatik, Saarland Univ., 66123 Saarbrücken wirth@logic.at

1 Why Another Inductive Theorem Prover?

QuodLibet is a tactic-based inductive theorem proving system that meets to-
day’s standard requirements for theorem provers such as a command interpreter,
a sophisticated graphical user interface, and a carefully programmed inference
machine kernel that guarantees soundness. In essence, it is the synergetic combi-
nation of the features presented in the following sections that makesQuodLibet
a system quite useful in practice; and we hope that it is actually as you like it ,
which is the Latin “quod libet” translated into English. We start by presenting
some of the design goals that have guided the development of QuodLibet. Note
that the system is not intended to pursue the push bottom technology for in-
ductive theorem proving, but to manage more complicated proofs by an effective
interplay between interaction and automation.

1.1 Design Goals for Specifications

Given algebraic specifications of algorithms in the style of abstract data types,
we want to prove theorems even if the specification is not (yet) sufficiently com-
plete. As an example, consider the incomplete specification of the subtraction
on the natural numbers E = {∀x. x− 0 = x, ∀x, y. s(x)− s(y)= x− y} and the
conjecture ∀x, y. (x− y = 0 ∧ y−x= 0 ⇒ x= y). Note that this is indeed an
inductive theorem with respect to all consistent extensions of the given specifi-
cation.

For a more complicated example, assume we want to prove that the lexico-
graphic path order lpo is totally defined on ground terms and is indeed an order.
QuodLibet admits the natural definition of lpo by mutual recursion.

All in all, we propose a specification formalism for our inductive theorem
prover that admits partial definitions of operators over free constructors us-
ing (possibly non-terminating) positive/negative-conditional equations as well
as destructor recursion or mutual recursion. A conjecture may be any (univer-
sally quantified) clause. If it is inductively valid with respect to a specification
it should also be valid in all consistent extensions of the given specification,
i.e. in our approach inductive validity is monotonic with respect to consistent
extensions.

1.2 Design Goals for Proving Theorems

QuodLibet’s inference system is intended to formalize techniques commonly
used by mathematicians, especially when applying induction hypotheses. In ex-
plicit induction (cf. [7]) as found e.g. in Nqthm [2], an induction rule is provided



whose addition turns a deductive into an inductive inference system without fur-
ther changes on the deductive part. Roughly speaking, explicit induction “hides”
several (applications of) induction hypotheses in a single inference step. Contrary
to this, however, many mathematicians perform inductive proofs as follows:

They begin with the conjecture and simplify it by case analysis. Realizing
that subgoals have become similar to different instances of the conjecture, they
apply the conjecture just like a lemma, but keep in mind that they actually
applied some induction hypothesis. Finally, they search for a wellfounded order
with respect to which all the instances of the conjecture applied as induction
hypotheses are smaller than the original conjecture itself.

In this way (besides simulating explicit induction) we intend to construct in-
ductive proofs with QuodLibet; for more details cf. [4]. In [8] this aspect of
implicit induction is called descente infinie, a name already coined by Fermat.
Another motivation for descente infinie is to overcome the limitations of recur-
sion analysis as described in [6], where descente infinie is called the lazy method .

Besides, mathematicians often make different proof attempts, switching from
one attempt to another if they get stuck, until they succeed. They introduce
lemmas which they only prove if they turn out to be useful. QuodLibet is to
support this (tentative) style of proof engineering . However, it also needs to be
capable of proving simpler theorems and subgoals without any user interaction.

2 QuodLibet Specifications

Given a QuodLibet specification spec = (sig, E) that comprises a signature
sig = (S, C, F ) where S is the set of sorts and C ⊆ F the set of free constructors,
we need to fix the intended semantics of spec. We begin by defining E-equality.
This is not trivial since E may contain equations (or rewrite rules) with positive
and negative conditions of the form t1 6= t2. A term t is called defined if it is E-
equal to a constructor ground term tC ∈ T (C). To define E-equality as for Horn-
clause specifications we evaluate the negative conditions t1 6= t2 constructively:
This condition is satisfied if t1 and t2 are defined and tC1 , tC2 are not equal. We
now define =E as usual and consider the quotient algebra given by T (F )/=E .
In our approach, partiality of a function f ∈ F relates to the data of spec as
given by T (C). In this view the quotient algebra T (F )/=E contains a partial
algebra M = M(spec) with T (C) as its universe and partially defined functions
fM for the f ∈ F . We call M(spec) the standard model of spec. Technically, for
each undefined term, T (F )/=E contains an error element. Two undefined terms
t and t′ represent the same error element only if t =E t′.

A first attempt to define the semantics of spec is validity inM(spec). However,
this semantics is not monotonic with respect to consistent extensions. Hence we
propose another semantics (cf. [5, 9]): A first-order model of spec (with partial
functions) is a data model of spec if its C-reduct is isomorphic to the free term
algebra T (C). A clause is an inductive theorem of spec if it is valid in all data
models of spec. Given this semantics, inductive validity is monotonic with respect
to consistent extensions. For example, the claim

∀x, y. (x≥ y = true ∧ y≥x= true ⇒ x= y)



in the specification E = {∀x. x≥ 0= true, ∀x, y. s(x)≥ s(y) =x≥ y} looks very
similar to the one in § 1.1, but—contrariwise—is not an inductive theorem as
∀y. 0≥ y = true (which makes ≥ trivial) is a consistent extension of E.

QuodLibet provides easily testable admissibility conditions which guarantee
that the semantics outlined above is well-defined. These conditions do not require
termination of E; instead they essentially require that E fulfills a simple syntactic
confluence criterion (cf. [4, 5]).

Finally, QuodLibet supports two kinds of mutual dependencies. Firstly, the
data types represented by the sorts S do not have to be hierarchically ordered
so that we can define e.g. terms and term lists which mutually depend on each
other. Secondly, operators can be defined by mutual recursion. Of course, mutual
recursion can be encoded by non-mutual recursion. But that leads to unnatural
definitions and, more importantly, to technically more complex proofs.

3 Proving Theorems with QuodLibet

Descente Infinie To realize descente infinie, QuodLibet supplies the user
with inference rules for inductive case analysis, inductive rewriting and inductive
subsumption. Thus, clauses can be used inductively provided they are somehow
smaller than the clause they are applied to. In QuodLibet the size of a clause
is measured by a so-called weight which is an n-tuple of terms associated with
the clause. The pair consisting of a clause and a weight is called a goal .

To compare goals, QuodLibet uses on the one hand a fixed order on defined
terms and on the other hand a flexible scheme to define the induction order: Any
admissible specification defines the “semantic length” for any defined ground term
t as the length of the unique constructor ground term tC equal to t. The defined
terms are ordered by their semantic length; the lexicographic extension of this
order is used to compare weights. The flexibility of the scheme is achieved by
the fact that the weights can be composed of any tuple of defined terms.

Using QuodLibet the choice of an appropriate induction order can be de-
layed until it has to be made. This is done in the following way: Any conjecture
is initially equipped with a weight term of the form w(x1, . . . , xk), where w is a
new free (existential) variable and x1, . . . , xk are the (universal) variables in the
conjecture. Whenever the conjecture is instantiated (e.g. by a cover set of sub-
stitutions) the weight is instantiated accordingly. Any inductive application of
a clause to the actual conjecture creates a proof obligation of the form w1 < w2

where w1 and w2 are the weights of the applied clause and the conjecture, respec-
tively. During the proof process the function variables w have to be instantiated
by functions evaluating to n-tuples of defined terms so that the proof obliga-
tions can be fulfilled where < is interpreted as the lexicographic extension of the
semantic order given by the specification. As an example, consider the natural
specification of mergesort by destructor recursion. Here a list l is split into even(l)
and odd(l), the lists of elements at even and odd positions in l. If one defines
length(l) as the length of l, then one can prove length(even(l)) < length(l) and
length(odd(l)) < length(l) for lists l of length greater than 1. This will solve all
proof obligations created in the inductive proof for correctness of mergesort.



Note that almost all automated inductive theorem provers derive the induc-
tion order from the order used for the termination proof of the specified oper-
ators. QuodLibet does not require termination of the specified operators, and
the induction order can be constructed more flexibly so that it satisfies the order
constraints that arise in the proof. Moreover, no special inference rule is needed
to cope with mutual recursion.

Representation of Proof Attempts and Open Lemmas QuodLibet has
a sophisticated graphical user interface which enables the user to easily create
specifications, manages the already proved lemmas, and substantially supports
proof engineering by visualizing proof constructions (cf. [4]).

In the simplest case a proof attempt is represented graphically by a proof
(state) tree consisting of inference and goal nodes. An inference node represents
the inference applied to its parent which is a goal node. Its n children (n ≥ 0) are
again goal nodes and represent the new goals created by the inference. A goal
node is marked with a clause which is to be proved inductively valid, and a
weight. Extending the proof attempt means to apply an inference to one leaf
which is a goal node. If there is no such open leaf any more then the (proof) tree
represents a proof of all the clauses in the goal nodes.

Furthermore, it is also possible to start several proof attempts in parallel
as described in [3]. To do so, a goal node may have several inference nodes as
children. Any of these subtrees represents a proof attempt. Hence in general one
can construct an and/or-tree to represent the proof construction so far. One
can work on the different proof attempts independently, just as it seems most
promising to achieve a complete proof. So neither replay nor backtracking is
needed. All the proof attempts are at the disposal of the user.

As already explained in § 1.2 it is sometimes very useful to conjecture a
lemma and to try to get the proof completed by using this lemma. Quod-
Libet supports this way of constructing proofs. Using the assume-command a
yet unproved lemma can be introduced for constructing a proof. But this proof
is complete only if all assumed lemmas are finally proved. This is controlled by
managing the proof dependencies among all used lemmas.

Tactics We have already mentioned thatQuodLibet can be used as an interac-
tive theorem prover. However, it would be extremely tedious to determine every
proof step manually. Therefore, QuodLibet provides proof tactics to automate
proof constructions. A tactic is a routine formulated in QML, a new proof control
language, which controls QuodLibet’s sound inference machine kernel. Quod-
Libet provides a variety of tactics that perform routine proof constructions. We
give some examples.

Provided the definition analysis of the functions is already done, a tactic
may start the proof of a conjecture by performing an appropriate case analysis,
simplify the clauses with defining equations and lemmas and also apply induc-
tive inferences. There is a tactic to guess an appropriate instantiation of the
weight variable (i.e. to define an appropriate induction order) and to solve the
order-goals. This tactic is in almost all cases successful where the subterm order
is enough to prove the order goals. Otherwise, the user is asked to define the



induction order by instantiating the weights. The so-called standard tactic com-
bines these aspects into one tactic. If it gets stuck it generates a new proof tree
and tries to solve the goal by another inductive proof. QuodLibet is an open
proof system in the sense that more tactics can be written in QML and easily
integrated by the user in order to reduce the need of human interaction.

4 Development History

Looking for a formal inductive calculus for descente infinie, the “implicit induc-
tion” of [1] (as implemented in Unicom) was a starting point because it included
induction hypothesis application; but it was restricted to first-order universally
quantified unconditional equations and was not human-oriented. These limita-
tions were so severe in practice that we decided to stop the development of
Unicom and use the gained experience for the development of QuodLibet as
a system based on a human-oriented inductive calculus for first-order univer-
sally quantified clausal logic. So far, the main focus of QuodLibet has been
to provide a natural style for specifications and proof techniques. We have used
QuodLibet for proofs on natural numbers (e.g. non-terminating specification of
division), sorting algorithms on lists (bubblesort, insertionsort, mergesort, quick-
sort), binary search trees (cf. [4]) and orders (lpo). For some more elaborated
examples the underlying tactics will have to be improved in combination with
the use of decision procedures. A further development along [8] is planned.

In [4] the concepts and the implementation of the whole QuodLibet system
are described in detail. The current version of QuodLibet can be obtained from
http://agent.informatik.uni-kl.de/quodlibet.html.

References
[1] Leo Bachmair (1988). Proof By Consistency in Equational Theories. 3rd Annual

IEEE Symposium on Logic In Computer Sci. (LICS), pp. 228–233, IEEE Press.
[2] Robert S. Boyer, J Strother Moore (1988). A Computational Logic Handbook. Aca-

demic Press.
[3] Deepak Kapur, David R.Musser, and X. Nie (1994). An Overview of the Tecton

Proof System. Theoretical Computer Sci. 133, pp. 307–339, Elsevier, Amsterdam.
[4] Ulrich Kühler (2000). A Tactic-Based Inductive Theorem Prover for Data Types

with Partial Operations. PhD thesis, Infix, Akademische Verlagsgesellschaft Aka
GmbH, Sankt Augustin, Berlin.

[5] Ulrich Kühler, Claus-Peter Wirth (1996). Conditional Equational Specifications of
Data Types with Partial Operations for Inductive Theorem Proving. 8thRTA1997,
LNCS1232, pp. 38–52, Springer, Berlin.

[6] Martin Protzen (1994). Lazy Generation of Induction Hypotheses.
12thCADE1994, LNAI 814, pp. 42–56, Springer, Berlin.

[7] Christoph Walther (1994).Mathematical Induction. In: Dov Gabbay, C. J. Hogger,
J. Alan Robinson (eds.). Handbook of Logic in Artificial Intelligence and Logic
Programming, Clarendon Press, Oxford, 1993ff., Vol. 2, pp. 127–228.

[8] Claus-Peter Wirth (2004). Descente Infinie + Deduction. Logic J. of the IGPL 12,
pp. 1–96, Oxford Univ. Press. http://www.ags.uni-sb.de/~cp/p/d (Sept. 12,
2003).

[9] Claus-Peter Wirth, Bernhard Gramlich (1994). A Constructor-Based Approach
for Positive/Negative-Conditional Equational Specifications. J. Symbolic Compu-
tation 17, pp. 51–90, Academic Press (Elsevier), San Diego (CA).


