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Abstract

We investigate the elimination of quantifiers in first-order formulas via
Hilbert’s epsilon-operator (or -binder), following Bernays’ explicit defi-
nitions of the existential and the universal quantifier symbol by means of
epsilon-terms. This elimination has its first explicit occurrence in the proof
of the first epsilon-theorem in Hilbert–Bernays in 1939. We think that
there is a lacuna in this proof w.r.t. this elimination, related to the erroneous
assumption that explicit definitions always terminate. Surprisingly, to the best
of our knowledge, nobody ever published a confluence or termination proof for
this elimination procedure. Even myths on non-confluence and the openness of
the termination problem are circulating. We show confluence and termination
of this elimination procedure by means of a direct, straightforward, and easily
verifiable proof, based on a theorem on how to obtain termination from weak
normalization.

Keywords: Hilbert–Bernays Proof Theory, History of Proof Theory, Hilbert’s
epsilon, Quantifier Elimination, (Weak) Normalization, (Strong) Termination, (Local)
Confluence.

1 Introduction

1.1 The Explicit Historical Source of the Problem

With “Hilbert–Bernays” we will designate the “bible of proof theory”, i.e. the
two-volume monograph Grundlagen der Mathematik (Foundations of Mathematics)
in its two editions [Hilbert & Bernays, 1934; 1939] and [Hilbert & Bernays,
1968; 1970].

On p.19f. of [Hilbert & Bernays, 1939], as well as on p. 20 of the second
edition [Hilbert & Bernays, 1970], we read:

Vol. \jvolume No. \jnumber \jyear
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“Unser zweiter vorbereitender Schritt besteht in der Ausschaltung der
All- und Seinszeichen. Wie im vorigen Abschnitt gezeigt wurde, können
wir die Anwendung der Grundformeln (a), (b) und der Schemata (α), (β)
des Prädikatenkalkuls mit Hilfe der ε-Formel und der expliziten Defini-
tionen (ε1), (ε2) entbehrlich machen1. Führen wir diese Ausschaltung
der Grundformeln und Schemata für die Quantoren an der zu betra-
chtenden Ableitung der Formel E aus und ersetzen wir hernach jeden
Ausdruck (v)A(v) durch A

(
εv A(v)

)
, jeden Ausdruck (E v)A(v) durch

A
(
εv A(v)

)
, so gehen die aus (ε1), (ε2) durch Einsetzung gewonnenen

Formeln in solche über, die durch Einsetzung aus der Formel A∼A
entstehen. Die Quantoren werden durch dieses Verfahren gänzlich aus-
geschaltet, so daß nunmehr gebundene Variablen ausschließlich in Ver-
bindung mit dem ε-Symbol auftreten, und der Beweiszusammenhang nur
durch Wiederholungen, Einsetzungen, Umbenennung gebundener Vari-
ablen und Schlußschemata stattfindet.”

“Our second preparatory step consists in the elimination of the univer-
sal and existential quantifier symbols. As shown in the previous sec-
tion, we can dispense with the application of Formulas (a), (b) and
Schemata (α), (β) of the predicate calculus if we use the ε-formula and
the explicit definitions (ε1), (ε2). If we apply this elimination of basic
formulas und schemata for the quantifiers to the formula E under consid-
eration, and afterwards replace every expression (v)A(v) with A

(
εv A(v)

)
,

every expression (E v)A(v) with A
(
εv A(v)

)
, then the formulas obtained

from (ε1), (ε2) by substitution are turned into formulas obtained by sub-
stitution from the formula A∼A. By this procedure, the quantifiers are
completely eliminated, so that bound variables may occur only in com-
bination with the ε-symbol, and the interconnections of the proof may
consist only of repetitions, substitutions, renaming of bound variables,
and inference schemata.”

Note that the “A” is not a meta-variable here (such as “A” is a meta-variable for
a formula, and “v” for a bound individual variable), but a concrete object-level
formula variable. In a proof step called substitution either such a formula variable
(which is always free) or a free individual variable is replaced everywhere in a formula
with an arbitrary formula or term, respectively. Furthermore, note that “Schluß-
schema” (“inference schema”) is nothing but a short name for the inference schema
of modus ponens.
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Moreover, note that Note 1 actually occurs only in the second edition and reads
“1Vgl. S.15.” (“1Cf. p.15.”). Neither on Page 15 — nor anywhere else in the vol-
umes — can we find any further information, however, regarding the following
immediate questions:

• In which order are the final replacements of the two explicitly mentioned forms
of expressions to be applied in the elimination of quantifiers?

• Or are such eliminations independent of the order of the replacements in the
sense that they always yield unique normal forms?

What we can actually find on Page 15 are the mentioned “explicit definitions (ε1),
(ε2)”, which describe the rewrite relation of these replacements. In the more
modern notation we prefer for this paper, these explicit definitions read:

∃x. A ⇔ A{x 7→ εx. A} (ε1)

∀x. A ⇔ A{x 7→ εx. ¬A} (ε2)

Note that x is a meta-variable for individual variables (in the original: a concrete
object-level, bound individual variable), and A is a meta-variable for formulas (in the
original: a concrete object-level, singulary formula variable). The original version
of (ε1) literally reads: (Ex) A(x) ∼ A

(
εx A(x)

)
.

Note that the formulas considered here and in what follows are always first-order
formulas, extended with ε-terms and possibly also with free (second-order) formula
variables. For our considerations in this paper, it does not matter whether we
include such formula variables into our first-order formulas or not.

1.2 Subject Matter

What we will study in this paper is the question how the elimination of first-order
quantifiers via their explicit definitions can take place.

Here we should recall that, in explicit definitions (contrary to recursive defini-
tions), the symbol to be defined (here: ∃ or ∀), occurring on the left-hand side of
an equation (the definiendum) must not re-occur in the term on the right-hand side
(definiens).

In this standard terminology, (ε1) and (ε2) classify as explicit definitions, be-
cause ∃ and ∀ do not occur on the right-hand sides — at least not explicitly.

It is commonplace knowledge that (contrary to recursive or implicit definitions)
explicit definitions are analytic (i.e. not synthetic) in the sense that they cannot
contribute anything essential to our knowledge base — simply because any notion
introduced by an explicit definition can be eliminated from any language (at least
in principle) after replacing all definienda with their respective definientia.
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For first-order terms the eliminability is indeed trivial, even for non-right-linear
equations such as

russell(x) = mbp(x, x),
where the number of occurrences of defined symbols in x is doubled when rewriting
with this equation; i.e., if n(t) denotes the number of explicitly defined symbols in
the term t, then n(russell(t)) = n(t) + 1, whereas n(mbp(t, t)) ≥ 2 ∗ n(t).

The termination of a stepwise elimination by applying one equation after the
other — until no defined symbols remain — does not crucially depend on whether
we rewrite the defined symbols in t before we apply the equation for the defined
term russell(t) or after. Indeed, the difference this alternative can make is only a
duplication of the rewrite steps required for the normalization of t.

This argumentation, however, does not straightforwardly apply to our definitions
(ε1), (ε2). Indeed, the instance of the first occurrence of the meta-variable A on
the right-hand side is modified by a substitution that may introduce an arbitrarily
large number of copies of the instance of A.

We will show in this paper, however, that rewriting of an arbitrary formula F
with (ε1), (ε2) is always confluent and terminating. This means that, no matter
in which order we eliminate the quantifiers, a resulting quantifier-free formula will
always be obtained, and that this formula is a unique normal form for F .

1.3 A Lacuna in Hilbert–Bernays?

The fact that this rewriting is innermost terminating has been well known be-
fore, but none of the experts on Hilbert’s ε we consulted knew about the strong
termination (i.e. termination independent of any rewriting strategy), and one of
them even claimed that the rewriting would not be confluent.

As the proofs of the ε-theorems of [Hilbert & Bernays, 1939] show, Paul
Bernays (1888–1977) was well aware of the influence of strategies on elimination
procedures. The mathematical technology of the 1930s, however, makes it most
unlikely that he could easily show the strong termination — let alone consider it to
be trivial in the context of a textbook (such as Hilbert–Bernays).

Moreover, the actual formula language of Hilbert–Bernays strongly suggests
an outermost strategy: A non-outermost rewriting typically requires the instantia-
tion of A to formulas containing variables that are bound by the outer quantifiers and
epsilons. Such an instantiation is not permitted in Hilbert–Bernays, however,
because these additional variables must come from a set of variables different from
the free individual variables, which are called bound individual variables and which
are not permitted to occur free in a substitution for A. Thus, for an innermost
rewriting in the predicate calculus of Hilbert–Bernays, we have to resort to mul-
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tiple tacit applications of Rule (δ′) for a complete reconstruction of the whole outer
part of the formula in each innermost rewrite step; for Rule (δ′) see e.g. Page 109 in
[Hilbert & Bernays, 1968; 2016b].

All in all, the fact that neither the innermost rewriting strategy nor Rule (δ′) is
mentioned in this context in [Hilbert & Bernays, 1939] makes it most likely that
Bernays just relied here on his learning that explicit definitions always admit an
elimination, which is actually not the case in general for higher-order definitions.

1.4 Alternative Proofs by Applying Theories of First- or Higher-
Order Rewriting?

In this paper, we will approach our results directly, without applying the theory
of first- or higher-order rewrite systems. Other options for obtaining the crucial
termination result could be:

1. To map the first-order terms with quantifiers and epsilons to quantifier- and
epsilon-free first-order terms, to find a first-order term rewriting system that
admits the transitive reduction of the images of any original reduction, and
to prove the termination of the first-order term rewriting system, using the
powerful theorems and methods to establish termination of first-order term
rewriting systems (or even some of the software systems that may show first-
order termination automatically, cf. e.g. [Winkler &al., 2013]).

2. To apply some results on termination of higher-order rewriting systems.

3. To map the first-order terms with quantifiers and epsilons to Church’s simply-
typed λ-calculus (which is known to be terminating), such that the images
of each original reduction admit the transitive reduction in simply-typed λ-
calculus.

Let us look at second-order formulations of (ε1), partly because the original formu-
lation of Hilbert’s ε as found in [Ackermann, 1925] and [Hilbert, 1926; 1928] is
already a second-order one without binders, and partly to develop options 2 and 3
a bit further.

If we use i to designate the sort (basic type) of individuals and o to designate
the sort of formulas (as standard in Church’s simply-typed λ-calculus), then the ε
gets the typing of ε : (i→ o)→ i, and for a second-order variable A : i→ o and
the existential operator Σ : (i→ o)→ o, we get

ΣA = A(εA),
or in η-expanded form

Σλx.(Ax) = A(ελx.(Ax)).
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To implement these equations according to option 2, we have to pick one of the
three competing higher-order rewriting frameworks, namely combinatory reduction
systems (CRSs) [Klop, 1980], [Klop &al., 1993], higher-order rewrite systems
[Nipkow, 1991], [Raamsdonk, 1999], and algebraic-functional systems [Jouan-
naud & Okada, 1991]. We pick the CRS framework because it is the oldest
and most popular one (also admitting extension to conditional rewriting straight-
forwardly, cf. [Wirth, 2009, Note 9]).

In CRS syntax (cf. e.g. [Klop &al., 1993, § 11]), the η-expanded rule reads

Σ[x](A(x)) = A(ε[x](A(x))),

where x is a variable, A is a singulary meta-variable (not only a top-level one,
but also w.r.t. the special technical terms used for CRSs, i.e. a meta-variable for
a special variable that must not occur in the terms in the range of the rewrite
relation), Σ and ε are singulary function symbols (i.e. 1-ary constant symbols), and
[x] is an abstraction operator, binding the variable x. In this notation, we indeed
have a CRS rewrite rule with the intended rewrite relation. We can formulate (ε2)
in a similar way, resulting in a two-rule CRS that is orthogonal (called “regular”
in [Klop, 1980]), i.e. non-overlapping (“non-ambiguous”) and left-linear. Thus,
according to [Klop &al., 1993, Corollary 13.6] ([Klop, 1980, Theorem II.3.11]),
the rewrite relation is confluent.

As it is obvious that this rewrite relation is weakly normalizing (as it is innermost
terminating), its termination (strong normalization) follows from Theorem II.5.9.3
of [Klop, 1980, p.168], provided that we can show our rewrite relation to be non-
erasing. This means that we have to show that the set of free variables is invariant
under rewrite steps. Note that the instance of A may contain free variables (such as
y), but even if the instance of A is, say, λ[x](y = y) (i.e. the quantifier is vacuous,
binding a variable that does not occur in its scope), it seems that the deletion
of the second occurrence of A in the right-hand side does not matter, because all
occurrences of free variables are preserved by the first occurrence of A in the right-
hand side.

This argumentation, however, forgets that CRSs come without β-reduction. So
we may need the rule (λ[x](A(x)))B = A(B) in addition, which would render
the CRS erasing. On the other hand, λ is different from λ (although some crucial
underlining of λ is missing in [Klop &al., 1993]) and part and parcel of the substi-
tution framework for “meta-variables” in [Klop &al., 1993]; this means we should
get along without the β-rule for λ, provided that we write existential quantification
in our formulas as, say, “Σ[x]” instead of “Σλx.”.
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If the latter is indeed the case, and if our understanding of [Klop, 1980] is
the right one, then confluence and termination can be established by applying the
theory of CRSs.

As the contacted experts on higher-order rewriting did not want to help settling
these questions (and no answer was found in [Raamsdonk, 2001], [Ketema &
Raamsdonk, 2004] either), and as the effort to familiarize oneself (again) with the
most fascinating and outstanding work documented in the PhD thesis [Klop, 1980]
is considerable and disproportionate for our subject matter, we will present here a
straightforward and efficiently verifiable proof of termination and confluence of the
reduction relation defined directly on first-order terms with quantifiers and epsilons.

To implement option 3, however, we could to take ε as a constant with the
above typing and the mapping to Church’s simply-typed λ-calculus could replace
the previous constant Σ with the λ-term λA. (A(εA)) of the same type as Σ
before. Then reduction by the first of the above equations could be done by a first
β-reduction, and a second β-reduction on the λ-term A could be used to reduce
A(εA), such that an original reduction step with (ε1) results in two β-reduction
steps after the mapping to simply-typed λ-calculus. Although this proof plan is
most promising, it is not easily accessible in the sense that a mathematician could
verify it without a careful formalization of lots of technical and syntactic details.
Moreover, as Bernays in the 1930s could not have known about the termination
of simply-typed λ-calculus — first shown by Tait [1967] — this is not a proof plan
he could have followed (though he was in correspondence with Church and visiting
the Institute for Advanced Study in Princeton during session 1935/36).

Finally, note that — compared to options 1–3 — our direct and efficiently
verifiable procedure is not only more informative on the concrete structure of the
particular subject matter, but also the stronger, more concise, and historiograph-
ically more relevant evidence against myths on Hilbert–Bernays with regard to
non-confluence and openness of the termination question.

2 Background and Tools

2.1 Basic Notions and Notation

We follow standard mathematical writing style, cf. [Gillman, 1987].
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We try to be self-contained in this this paper. In case we should omit some re-
quired information, we refer the reader to the survey [Klop, 1980, § I.5] on abstract
rewrite systems.

Let ‘N’ denote the set of natural numbers, and ‘<’ the ordering on N. Let
N+ := { n∈N | 0 6=n }.
For classes R, A, and B we define:
dom(R) := { a | ∃b. (a, b)∈R } domain
A�R := { (a, b)∈R | a∈A } (domain-) restriction to A
〈A〉R := { b | ∃a∈A. (a, b)∈R } image of A, i.e. 〈A〉R = ran(A�R)

And the dual ones:
ran(R) := { b | ∃a. (a, b)∈R } range
R�B := { (a, b)∈R | b∈B } range-restriction to B
R〈B〉 := { a | ∃b∈B. (a, b)∈R } reverse-image of B, i.e. R〈B〉 = dom(R�B)

We use ‘id’ for the identity function, and ‘◦’ for the composition of binary relations.
Functions are (right-) unique relations, and so the meaning of “f◦g ” is extensionally
given by (f◦g)(x) = g(f(x)).

Let −→ be a binary relation. −→ is a relation on A if
dom(−→) ∪ ran(−→) ⊆ A.

−→ is irreflexive if id∩−→ = ∅. It is A-reflexive if A�id ⊆ −→. Speaking of a
reflexive relation we refer to the largest A that is appropriate in the local context,
and referring to this A we write 0−→ to ambiguously denote A�id. With 1−→ := −→,
and n+1−→ := n−→◦−→ for n ∈ N+, m−→ denotes the m-step relation for −→. The
transitive closure of −→ is +−→ :=

⋃
n∈N+

n−→. The reflexive closure of −→ is
=−→ :=

⋃
n∈{0,1}

n−→. The reflexive transitive closure of −→ is ∗−→ :=
⋃

n∈N
n−→.

The reverse of −→ is ←− := { (b, a) | (a, b)∈−→ }.
v and w are called joinable w.r.t. −→ if v↓w, i.e. if v

∗−→ ◦ ∗←−w. −→ is
locally confluent if v↓w for any v, w with v←−◦−→w; it is confluent if v↓w for
any v, w with v

∗←−◦ ∗−→w. a′ is an −→-normal form of a if a
∗−→a′ /∈ dom(−→).

A sequence (si)i∈N is non-terminating in −→ if si−→si+1 for all i ∈ N. −→ is
terminating if there are no non-terminating sequences in −→. A relation R (on A)
is well-founded if any non-empty class B (⊆A) has an R-minimal element, i.e.
∃a∈B. ¬∃a′ ∈B. a′R a. Note that well-foundedness of ←− immediately entails
termination of −→ (via the range of the non-terminating sequence), but the con-
verse requires a weak form of the Axiom of Choice to construct the non-terminating
sequence, cf. e.g. [Moore & Wirth, 2014, § 4.1].

Corollary 2.1 If a binary relation is well-founded, so is its transitive closure.
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2.2 A Generalized Theorem as the Main Tool

The following Theorem 2.2 is a generalization of Jan Willem Klop’s Theorem
I.5.18 [Klop, 1980, p. 53], which can be obtained again from Theorem 2.2 by the
specialization −→0 := ∅.

Theorem 2.2
Let −→0 and −→1 be two binary relations.
Set −→2 := ∗−→0 ◦ −→1 .
Set −→3 := −→0 ∪ −→1 .

Let a ∈ dom(−→3). Let a′ be an −→3-normal form of a. Set A := 〈{a}〉 ∗−→3.
Set −→4 := A�−→3 . If

1. ←−0�A is well-founded;

2. there is an upper bound n ∈ N on the length of −→2-derivations starting
from a and reaching a′ by ∗−→0; more formally, this means that we have
m ≤ n for any m∈N and any sequence b0, . . . , bm with a= b0, bi−→2bi+1 for
each i ∈ {0, . . . ,m−1}, and bm

∗−→0a
′;

3. for all b1, b2 with b1←−4 ◦ −→1b2, we have b1
∗−→4 ◦

∗←−4b2; and

4. for all b1, b2 with b1←−4 ◦ −→0b2, we have b1
∗−→4 ◦

=←−4b2;

then ←−4 is well-founded.

Proof of Theorem 2.2
Claim 1: For all b1, b2 and n ∈ N with b1←−4 ◦

n−→0b2, we have b1
∗−→4 ◦

=←−4b2.

Proof of Claim 1: By induction on n. In case of b1←−4 ◦
0−→0b2, we have b1←−4b2.

In case of b1←−4 ◦
n−→0b2−→0b3, by induction hypothesis we have

b1
∗−→4b4

=←−4b2 for some b4 ∈ A. In case of b4 = b2, we have b1
∗−→4b4−→0b3, and

thus b1
∗−→4b3. Otherwise, we have b4←−4b2, and thus b4

∗−→4b5
=←−4b3 for some

b5 by item 4, i.e. the desired b1
∗−→4b5

=←−4b3. Q.e.d. (Claim 1)

Set B := { b∈A | b
∗−→4a

′ }.
By item 2, we can define a function l : B → { m∈N | m ≤ n } via

l(b) := max { m ∈ N | b
m−→2 ◦

∗−→0a
′ }.



Claus-Peter Wirth

Claim 2: For all b ∈ B with b
∗−→4b

′, we have b′ ∈ B.

Proof of Claim 2: By induction on k := l(b) in <. The induction hypothesis is that
for all b′′ ∈ B with b′′

∗−→4b
′′′ and l(b′′) < k, we have b′′′ ∈ B.

Note that (for b′′ ∈ B) b′′−→4b
′′′ implies l(b′′′) ≤ l(b′′). Thus, by another

induction on the length of derivations, the induction conclusion follows from the
induction hypothesis and the proposition that for all b′′ ∈ B with b′′−→4b

′′′ and
l(b′′) = k, we have b′′′ ∈ B.
So let us assume b ∈ B and b−→4b

′. Then, using the induction hypothesis, we
have to show b′ ∈B, for which it suffices to show b′

∗−→4a
′.

By our assumption, we have b
∗−→4a

′, which falls into at least one of the following
two cases:

b
∗−→0a

′ : By Claim 1: b′
∗−→4 ◦

=←−4a
′. Because a′ 6∈dom(−→3), and a fortiori also

a′ 6∈dom(−→4), we actually have b′
∗−→4a

′.

b
∗−→0 b̂−→1b

′′′ ∗−→4a
′ for some b̂, b′′′ : Again by Claim 1, we get b′

∗−→4b
′′′′ =←−4 b̂ for

some b′′′′ ∈ A.
In case of b′′′′ = b̂, we have b′

∗−→4b
′′′′−→1b

′′′ ∗−→4a
′, i.e. the desired

b′
∗−→4b

′′′′−→4b
′′′ ∗−→4a

′.
Otherwise we have b′′′′←−4 b̂. Thus, by item 3, there is some b′′ with
b′′′′

∗−→4b
′′ ∗←−4b

′′′. Because of b
∗−→0 b̂−→1b

′′′ ∗−→4a
′ we have b′′′ ∈B and l(b′′′) <

l(b). Thus, by the induction hypothesis, we get b′′ ∈B, and then the desired
b′

∗−→4b
′′′′ ∗−→4b

′′ ∗−→4a
′. Q.e.d. (Claim 2)

Claim 3: A =B.

Proof of Claim 3: By a
∗−→3a

′, we also have a
∗−→4a

′, and so a∈B.
Thus, by Claim 2, we get 〈{a}〉 ∗−→4 ⊆ B.

All in all, we get: A = 〈{a}〉 ∗−→3 = 〈{a}〉 ∗−→4 ⊆ B ⊆ A. Q.e.d. (Claim 3)

By Claim 4, we get l : A→ { m∈N | m ≤ n }. Now for every b1, b2 with
b1←−4b2, we have b1, b2 ∈A and, moreover, (l(b1), b1) is strictly smaller than
(l(b2), b2) in the lexicographic combination of < and ←−0�A, which is well-founded
by item 1. Indeed, in case of b1←−0b2, we have l(b1) ≤ l(b2) and b1←−0�Ab2,
and in case of b1←−1b2, we have l(b1) < l(b2).

Q.e.d. (Theorem 2.2)
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2.3 Terms, Formulas, Substitutions, Contexts

A straightforward intuitive understanding of terms, formulas, substitutions, and
contexts will actually suffice for most working mathematicians to understand the
remainder of this paper. For the others, we give an example formalization of these
notions here.

Terms and formulas are defined inductively as follows:

• An individual variable is a term.

• If A is an n-ary formula variable (n∈N) and t1, . . . , tn are terms,
then A(t1, . . . , tn) is a formula.

• If f is an n-ary constant function or predicate symbol (n∈N) and t1, . . . , tn
are terms,
then f(t1, . . . , tn) is a term or formula, respectively.
In case of n =0, we simply write “f” instead of “f()”.

• If F is a formula, then ¬F is a formula. If F1 and F2 are formulas, then
(F1∨F2), (F1∧F2), (F1⇒F2), . . . are formulas.

• If x is an individual variable and F is a formula,
then εx. F is a term and ∃x. F and ∀x. F are formulas.
In these terms and formulas, all occurrences of x are bound ; non-bound occur-
rences of variables in terms and formulas are called free, such as each occur-
rence of any formula variable, and also of any individual variable y that is not
in the scope of a binder on y, such as “εy.”, “∃y.”, or “∀y.”.

In our definition of terms and formulas we deviate from Hilbert–Bernays in not
having an extra set of individual variables for bound occurrences, disjoint from the
set to be used for free occurrences. So we have only one set of individual variables,
but this does not really make any difference here, in particular because we ignore
the variable names in the bound occurrences by the following stipulation:

We equate formulas modulo the renaming of bound variables.
A substitution is a mapping of individual variables to terms and of n-ary formula

variables to expressions of the form λ(x1, · · · , xn). F , respectively, where x1, · · · , xn

are mutually distinct individual variables and F is a formula. For n =0, we just
write “F ” instead of “λ(). F ”.

Presupposing the above stipulation of considering formulas only up to renaming
of bound variables, we now define the result of an application of a substitution σ
to terms and formulas inductively as follows. We use postfix notation with highest
operator precedence.
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• Let x be an individual variable.
If x 6∈dom(σ), then xσ = x; otherwise xσ = σ(x), i.e. the value of x
under σ.

• Let A be an n-ary formula variable, and let t1, . . . , tn be terms. If A 6∈dom(σ),
then (A(t1, . . . , tn))σ = A(t1σ, . . . , tnσ). Otherwise (A(t1, . . . , tn))σ is the
result of the β-reduction of σ(A)(t1σ, . . . , tnσ), i.e., for σ(A) = λ(x1, · · · , xn).
F , the formula Fσ′, where σ′ is the substitution {x1 7→ t1σ, . . . , xn 7→ tnσ}.

• If f is an n-ary constant function or predicate symbol and t1, . . . , tn are terms,
then (f(t1, . . . , tn))σ = f(t1σ, . . . , tnσ).

• If F is a formula, then (¬F )σ = ¬Fσ. If F1 and F2 are formulas,
then (F1∨F2)σ = (F1σ∨F2σ), (F1∧F2)σ = (F1σ∧F2σ), (F1⇒F2)σ =
(F1σ⇒F2σ), . . . .

• If x is an individual variable
— w.l.o.g. neither an element of dom(σ), nor occurring (free) in ran(σ) —
and F is a formula,
then (εx. F )σ = εx. Fσ, (∃x. F )σ = ∃x. Fσ, (∀x. F )σ = ∀x. Fσ.

Corollary 2.3 If X is an individual variable or a nullary formula variable, and
σ is a substitution, then for any formula or term G whose free variables are in A:

Gσ = G(A�σ).

By induction on the construction of G1 we easily get:

Corollary 2.4
For any term or variable G1, any X and G2 being either an individual variable and
a term, or a nullary formula variable and a formula, and any substitution σ where
X 6∈dom(σ) and X does not occur (free) in ran(σ) :

(G1{X 7→G2})σ = (G1σ){X 7→G2σ}.

Finally, let H0, . . . ,Hn (n∈N) be mutually distinct, nullary formula variables,
reserved for the following definition: A context written “G[· · · ]” (a formula or
term with holes) is actually a formula or term G with one single (free) occurrence
of each of the formula variables H1, . . . ,Hn. Moreover, “G[F1, . . . , Fn]” denotes
G{H1 7→F1, . . . , Hn 7→Fn}, for formulas F1, . . . , Fn.

Corollary 2.5
For any context G[· · · ], and any formula F, and any substitution σ :

(G[F ])σ = Gσ[Fσ].
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3 The Concrete Rewrite Relation

By writing “¬∀” for “¬” and “¬∃” for the empty string “ ”, we can unify the two
formulas (ε1) and (ε2) to the single formula

Qx. A ⇔ A{x 7→ εx. ¬QA} (εQ)

for Q ∈ {∃,∀}, and x a meta-variable for an individual variable, and A a meta-
variable for a formula.

Let −→ be the rewrite relation resulting from rewriting with the equivalence
(εQ) as a rewrite rule from left to right. Explicitly, this means that F1−→F2 if
there are a context G[· · · ], a quantifier symbol Q, an individual variable x, and a
formula A, such that F1 = G[Qx. A] and F2 = G[A{x 7→ εx. ¬QA}].

Let −→0 and −→1 be the partition of −→ for the case of a vacuous quantifier
(i.e. for the case that x does not occur in the formula A in (εQ)), and for the case
that the quantifier is not vacuous.

Let −→I be the innermost rewrite relation given by rewriting with the equi-
valence (εQ).

Let −→q be the version of −→ for the rewriting of parallel redexes. Explicitly,
this means that F1−→q F2 if there are a context G[· · · ] with n ∈ N holes, quantifier
symbols Q1, . . . , Qn, individual variables x1, . . . , xn, and formulas A1, . . . , An, such
that

F1 = G[Q1x1. A1, . . . , Qnxn. An],
F2 = G[A1{x1 7→ εx1. ¬Q1A1}, . . . , An{xn 7→ εxn. ¬QnAn}].

From these definitions, we immediately get the following corollaries.

Corollary 3.1 −→I ⊆ −→.

Corollary 3.2 −→q ⊆ ∗−→.

3.1 Local Confluence

Note that the technical terms of the following lemma are clarified and formalized in
its proof.
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Lemma 3.3 If we have a peak F1←−F0−→F2 of local divergence and the redex
of the rewrite step to F1 is properly inside the one of the rewrite step to F2 (which
is on top of F0), then there are formulas F3, F4 satisfying all the following items:

1. F1−→F4←−F3←−q F2.

2. If the initial step to the left is actually applied to a non-vacuous quantifier
(i.e. if F1←−1F0), then we have F4←−1F3←−q 1F2.

3. If the initial step to the right is actually applied to a non-vacuous quantifier
(i.e. if F0−→1F2), then we have F1−→1F4.

4. If the initial step to the right is actually applied to a vacuous quantifier
(i.e. if F0−→0F2), then we have F3 = F2.

Proof of Lemma 3.3
Suppose we have a peak F1←−F0−→F2 of local divergence and the redex of the
rewrite step to F1 is properly inside the one of the rewrite step to F2, which is on
top of F0. Then F0 has the form

Q1x1. G1[Q2x2. G2]. (F0)
We may in particular assume here that x2 is different from x1 and does not occur
free in the context G1[· · · ] if we consider the dots “· · ·” to be empty. Moreover we
may assume that the formulas F1 and F2 are the following:

Q1x1. G1[G2{x2 7→ εx2. ¬Q2G2}]. (F1)(
G1[Q2x2. G2]

){
x1 7→ εx1. ¬Q1G1[Q2x2. G2]

}
. (F2)

If we rewrite the outermost redex in F1, we obtain the formula(
G1[G2{x2 7→ εx2. ¬Q2G2}]

)
σ

written with the help of the substitution σ given as{
x1 7→ εx1. ¬Q1G1[G2{x2 7→ εx2. ¬Q2G2}]

}
. (σ)

If we propagate this substitution, by Corollary 2.5 we obtain a formula given by the
context

G1σ[· · · ] (C)
where we read the dots “· · ·” as

(G2{x2 7→ εx2. ¬Q2G2})σ.
Because x2 occurs free in none of dom(σ), G1[· · · ], G1[G2{x2 7→ εx2. ¬Q2G2}],
ran(σ), by Corollary 2.4 we can propagate σ further to write the inner formula as

G2σ{x2 7→ εx2. ¬Q2G2σ}. (I)
Putting (C) and (I) together again, we can choose formula F4 with the property
F1−→F4 as follows:

G1σ
[

G2σ{x2 7→ εx2. ¬Q2G2σ}
]
. (F4)
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If we now rewrite all occurrences of the redex mentioned at the end of the notation
of the formula F2 in parallel, then we obtain the formula(

G1[Q2x2. G2]
)
σ.

Before we can rewrite the remaining redex, we have to propagate σ to obtain a clear
description of it. By Corollary 2.5, this results again in a context as given in (C)
above, where, however, we now read the “· · ·” as

Q2x2. G2σ.
Note that, in this formula, the substitution σ has passed the quantifier “Q2x2.”
soundly. Indeed, as mentioned above, x1 is different from x2, and x2 cannot occur
free in ran(σ). Putting this formula and its context together again, we can choose
as F3 with the property F3←−q F2 as follows:

G1σ
[

Q2x2. G2σ
]
. (F3)

If we now rewrite the remaining redex, we again obtain the formula F4, as was to
be shown for item 1.
For item 2, it suffices to note that, if x2 occurs free in G2, then x2 also occurs free
in G2σ because x1 and x2 are different.
For item 3, it suffices to note that, if x1 occurs free in G1[Q2x2. G2], then x1 also
occurs free in G1[G2{x2 7→ εx2. ¬Q2G2}].
For item 4, it suffices to note that, if x1 does not occur free in G1[Q2x2. G2], then
both F2 and F3 are actually G1[Q2x2. G2]. Q.e.d. (Lemma 3.3)

As overlaps are trivial and as peaks of local divergence with parallel redexes are
joinable in one step at each side trivially, we get as a corollaries of Lemma 3.3(1,4)
and Corollary 3.2:

Corollary 3.4 −→ is locally confluent.

Corollary 3.5 For all F1, F2 with F1←− ◦ −→0F2, we have F1
+−→ ◦←−F2.

3.2 Well-Foundedness

As every −→0-step (vacuous quantifiers) and every −→I -step (innermost quantifiers)
reduces the number occurrences of quantifiers by 1, we have:

Corollary 3.6 ←−0 ∪←−I is well-founded.
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Theorem 3.7 ←− is well-founded.

Proof of Theorem 3.7
Assume that B is a non-empty class. Then there is some a ∈ B. We just have to
find an ←−-minimal element in B.

If a is ←−-minimal in B, then we have succeeded. Thus suppose that a is not
←−-minimal in B. Then a ∈ dom(−→).

Set A := 〈{a}〉 ∗−→. Set −→4 := A�−→. It now suffices to show that ←−4 is well-
founded (because an ←−4-minimal element of A∩B is also an ←−-minimal element
of B).
By Corollary 3.6, A has an ←−I -minimal element a′. As a′ 6∈dom(−→) by Corol-
lary 3.1, a′ is an −→-normal form of a. To obtain the well-foundedness of←−4 , we
are now going to apply Theorem 2.2.
Set −→2 := ∗−→0 ◦ −→1 . Set −→3 := −→0 ∪ −→1 . Then −→ = −→3 .
It now suffices to show items 1 to 4 of Theorem 2.2. Item 1 holds by Corollary 3.6.
Item 3 holds by Corollary 3.4. Item 4 holds by Corollary 3.5. As the number of
occurrences of the ε is invariant under −→0 and is increased at least by 1 by every
−→1-step, it increases at least by 1 by every −→2-step. Thus, to satisfy item 2, we
can choose the upper bound n to be the number of occurrences of ε in a′ (minus the
number in a). Q.e.d. (Theorem 3.7)

3.3 Confluence

By the Newman Lemma (cf. [Newman, 1942] or, for a formal proof, [Wirth, 2004,
§ 3.4]), we obtain from Corollary 3.4 and Theorem 3.7:

Theorem 3.8 −→ is confluent.

3.4 On the Length of Derivations

By Theorems 3.7 and 3.8, we now know for certain that the rewrite relation is
confluent and terminating (as its reverse is even well-founded), which means that
we can eliminate the quantifiers in any order — but this does not mean that this is
efficient.
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Here is a serious warning to the contrary: The nesting depth of the occurrences
of the ε-symbols introduced by the normalization can be exponential in the num-
ber of quantifiers in the input formula, and the number of steps of an outermost
normalization is even higher and seems to be non-elementary, cf. [Wirth, 2015,
Example 4.7], [Wirth, 2008, Example 8].

As any innermost rewrite step reduces the number of quantifiers exactly by 1,
and as no rewrite step can reduce the number of quantifiers by more than 1, we
immediately get:

Theorem 3.9
Let F be a formula with n quantifiers. Innermost rewriting of F by −→I obtains
the (unique) −→-normal form F ′ of F in exactly n steps, which is the minimal
number of steps to reach F ′ by −→ from F.

4 Conclusion

With Theorems 3.7 and 3.8, we have shown confluence and termination of the
elimination of quantifiers via their explicit definition via Hilbert’s ε. This means
in particular that any first-order term with quantifiers and epsilons (and formula
variables), has a unique normal form w.r.t. this elimination of quantifiers, which
has its first explicit occurrence in [Hilbert & Bernays, 1939], namely in the proof
of the 1st ε-theorem on Page 19f.

Moreover, the directness, self-containedness, and easy verifiability of the proofs
should settle the questions on confluence and termination here once and for all
— at least for working mathematicians. Formalists and rewriters, however, may
see the need to develop a more formal verification of our proof and write a short
paper that our results are all trivial in some higher-order rewriting theory. Writing
or helping to find a good textbook on higher-order rewriting, however, seems to be
in more urgent demand.

Furthermore, we hope that some philosophers will be stimulated by this paper
to pick up the subject of the non-triviality of higher-order explicit definition and
write or help to find a book on that subject.

Finally, the starting point of our interest in the subject, namely the question
whether there is a lacuna in Hilbert–Bernays as discussed in § 1.3, needs further
discussion by the experts on Hilbert’s ε and the history of mathematical logic in
the 20th century. On basis of our current knowledge, we would clearly answer this
question positively.
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