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Abstract

We solve the problem of kissing an angel e�ectively and more e�ciently than voodoo

man. Some reading of Immanuël Kant, however, is required as a precondition.
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1 Introduction

We want to improve the arithmetical power of the higher-order resolution prover Leo-II.
Adding the second-order axioms of the speci�cation of the natural numbers either by Peano
or by Pieri leads to an explosion of the search space which guarantees that even the most
trivial theorems cannot be proved automatically. Thus it is wise to proceed in a similar
fashion as in the �rst-order inductive theorem provers. As the full strength of the heuristics
of the school of explicit induction is applicable in the descente in�nie framework of the
inductive theorem prover QuodLibet [Avenhaus &al., 2003], but the historical restrictions
of the explicit induction approach are overcome, we want to start by �nding out how the
fully automated part of QuodLibet can be reimplemented in a framework of refutation
resolution and paramodulation.

The P & Q example of [Wirth, 2004, � 3.2.2] is a challenge for the power of mutual
induction. Moreover, as it is a toy example, it serves well as a �rst test case.
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2 The P & Q Example in QuodLibet

The toy example of this � 2 illustrates how mutual induction works in the descente in-
�nie framework of QuodLibet. As the proof requires mutual induction with non-trivial
weights, it cannot be performed in many inductive theorem proving systems, nor in the
lean induction calculus of [Baaz &al., 1997].

We use zero 0 : nat and successor s : nat → nat as constructors for the type nat. In
QuodLibet we would declare the two symbols as constructors of the sort nat. In our
more general context here, we explicitly have to provide the de�nition of the de�nedness
predicate that singles out those elements of the sort nat that actually are natural numbers
and no error elements.

(Defnat1) Def(0)
(Defnat2) ∀X.

(
Def(s(X)) ⇐ Def(X)

)
(nat1) ∀X.

(
(X=0 ∨ ∃Y. (X=s(Y) ∧ Def(Y))) ⇐ Def(X)

)
This basic signature is enriched with the predicates P : nat → bool and Q : nat → nat → bool.
We have the following axioms, de�ning the special predicates of our example.

(P1) P(0)
(P2) ∀X.

(
P(s(X)) ⇐

(
P(X) ∧ Q(X, s(X)) ∧ Def(X)

) )
(Q1) ∀X.

(
Q(X, 0) ⇐ Def(X)

)
(Q2) ∀X, Y.

(
Q(X, s(Y)) ⇐

(
Q(X, Y) ∧ P(X) ∧ Def(X) ∧ Def(Y)

) )
We want to show that both predicates are tautological on the actual natural numbers:

(1) P(Xδ
0 ), ¬Def(Xδ

0 ); wγ

1(X
δ
0 )

(2) Q(Y δ
0 , Zδ

0 ), ¬Def(Y δ
0 ), ¬Def(Zδ

0 ); wγ

2(Y
δ
0 , Zδ

0 )

Note that weights consist only of weight terms (such as wγ

1(X
δ
0 ) in (1)), but not of additional

induction orderings and quasi-orderings, because we �x these orderings to be the single ones
of the QuodLibet system, as discussed in [Wirth, 2004, � 3.2.1]. Therefore � as discussed
in [Wirth, 2004, � 2.5] � the items (3)�(6) of Theorem2.51 of [Wirth, 2004] can be omitted
in the following.

In the Hypothesizing steps for (1) and (2) we introduce the variable-condition

R :=

(
Vγδ+((1))× Vδ ((1))

∪ Vγδ+((2))× Vδ ((2))

)
=

(
{wγ

1} × {Xδ
0 }

∪ {wγ

3} × {Y δ
0 , Zδ

0 }

)
to have all free δ−-variables of (1) or (2) in the set Y of Theorem2.51 of [Wirth, 2004],
so that we can locally instantiate all of them with whatever we want in each application of
(1) or (2) as a lemma or as an induction hypothesis.
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After several inference steps, QuodLibet presents a sequent tree for (1), which is
� mutandis mutatis � similar to following:

(1) P(Xδ
0 ), ¬Def(Xδ

0 ); wγ

1(X
δ
0 )

(nat1), γ, β, δ−,Rewrite+

(1.1) P(0), ¬Def(0); wγ

1(0)
(1.2) P(s(Xδ

1 )), ¬Def(Xδ
1 ),

¬Def(s(Xδ
1 )); wγ

1(s(X
δ
1 ))

(P1) (P2), γ, β, β

(1.2.1) P(Xδ
1 ),

P(s(Xδ
1 )), ¬Def(Xδ

1 ),
¬Def(s(Xδ

1 )); wγ

1(s(X
δ
1 ))

(1.2.2) Q(Xδ
1 , s(Xδ

1 )), ¬P(Xδ
1 ),

P(s(Xδ
1 )), ¬Def(Xδ

1 ),
¬Def(s(Xδ

1 )); wγ

1(s(X
δ
1 ))

induction-hypothesis appl. of
(1){Xδ

0 7→Xδ
1 }

induction hypothesis application of
(2){Y δ

0 7→Xδ
1 , Zδ

0 7→s(Xδ
1 )}

(1.2.1.1) wγ

1(X
δ
1 )<wγ

1(s(X
δ
1 )),

P(s(Xδ
1 )), ¬Def(Xδ

1 ),
¬Def(s(Xδ

1 )); wγ

1(s(X
δ
1 ))

(1.2.2.1) wγ

2(X
δ
1 , s(Xδ

1 ))<wγ

1(s(X
δ
1 )),

Q(Xδ
1 , s(Xδ

1 )), ¬P(Xδ
1 ),

P(s(Xδ
1 )), ¬Def(Xδ

1 ),
¬Def(s(Xδ

1 )); wγ

1(s(X
δ
1 ))

The square boxes are the nodes of the proof tree, whereas the round-edged boxes show
applications of inference rules of Theorem2.49 and Theorem2.51 of [Wirth, 2004], which
are more elementary than the inference rules in QuodLibet. We can check whether the
tree is closed simply by checkeing whether all leaves are round-edged nodes. This is not
only useful for implementation purposes (where we have to record somewhere why a branch
is closed) but also immediately realizes the explicit representation of leaves required by
De�nition 2.42 of [Wirth, 2004].

For example, � (nat1), γ, β, δ−,Rewrite+ � in the �rst round-edged box means that we
use the axiom (nat1) as a lemma in Theorem2.51 of [Wirth, 2004], and then apply a γ-, a β-,
and a δ−-step and several Rewrite-steps of Theorem2.49 to get the nodes (1.1) and (1.2).
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This means that, by application of (nat1),

(1) P(Xδ
0 ), ¬Def(Xδ

0 ); wγ

1(X
δ
0 )

reduces to the following two sequences1

(1.1) P(0), ¬Def(0); wγ

1(0)
(1.2) P(s(Xδ

1 )), ¬Def(Xδ
1 ), ¬Def(s(Xδ

1 )); wγ

1(s(X
δ
1 ))

with the additional variable-condition of {(Xδ
0 , Xδ

1 )}. (1.1) is subsumed by (P1). Applying
(P2) to (1.2) we get the following two clauses:

(1.2.1) P(Xδ
1 ), P(s(Xδ

1 )), ¬Def(Xδ
1 ), ¬Def(s(Xδ

1 )); wγ

1(s(X
δ
1 ))

(1.2.2) Q(Xδ
1 , s(Xδ

1 )), ¬P(Xδ
1 ), P(s(Xδ

1 )), ¬Def(Xδ
1 ), ¬Def(s(Xδ

1 )); wγ

1(s(X
δ
1 ))

Applying (1) to (1.2.1) as an induction hypothesis, instantiated via {Xδ
0 7→Xδ

1 }, results in
(1.2.1.1) wγ

1(X
δ
1 )<wγ

1(s(X
δ
1 )), P(Xδ

1 ), P(s(Xδ
1 )), ¬Def(Xδ

1 ), ¬Def(s(Xδ
1 )); wγ

1(s(X
δ
1 ))

Applying (2) to (1.2.2) as an induction hypothesis, instantiated via {Y δ+

0 7→Xδ+

1 , Zδ+

0 7→s(Xδ+

1 )},
results in3

(1.2.2.1) wγ

2(X
δ
1 , s(Xδ

1 ))<wγ

1(s(X
δ
1 )),

Q(Xδ
1 , s(Xδ

1 )), ¬P(Xδ
1 ), P(s(Xδ

1 )), ¬Def(Xδ
1 ), ¬Def(s(Xδ

1 )); wγ

1(s(X
δ
1 ))

1Let us have a look at this step in more detail. After applying the substitution {X 7→Xδ
0 } in a γ-step;

a β-step and a δ−-step (introducing Xδ
1 ) leave us with the following two cases:

(1.1′) Xδ
0 6= 0, P(Xδ

0 ), ¬Def(Xδ
0 ); wγ

1(X
δ
0 )

(1.2′) Xδ
0 6= s(Xδ

1 ), P(Xδ
0 ), ¬Def(Xδ

1 ), ¬Def(Xδ
0 ); wγ

1(X
δ
0 )

and the additional variable-condition of {(Xδ
0 , Xδ

1 )}. Contextual rewriting with the head literals results in
(1.1′′) Xδ

0 6= 0, P(0), ¬Def(0); wγ

1(0)
(1.2′′) Xδ

0 6= s(Xδ
1 ), P(s(Xδ

1 )), ¬Def(Xδ
1 ), ¬Def(s(Xδ

1 )); wγ

1(s(X
δ
1 ))

Now Xδ
0 is in solved form2 in both clauses, so that removing the literal containing it is an equivalence

transformation.
2xδ ∈ Vδ is in solved form in the weighted sequent Γ (xδ 6=t) Π; i if

xδ /∈ V(t, ΓΠ, i) and Vγδ+(t, ΓΠ, i) ⊆ R+〈{xδ }〉.
3Let us have a closer look on what happens below (1.2.2). We instantiate the meta-variables of Theo-

rem2.51 of [Wirth, 2004] as follows:
Φ := Q(Y δ

0 , Zδ
0 )

k := wγ

2(Y
δ
0 , Zδ

0 )
Y := {Y δ

0 , Zδ
0 }

% := {Y δ
0 7→Xδ

1 , Zδ
0 7→s(Xδ

1 )}
M := {¬Q(Xδ

1 , s(Xδ
1 )), Def(Xδ

1 ), Def(s(Xδ
1 )), wγ

2(X
δ
1 , s(Xδ

1 ))<wγ

1(s(X
δ
1 ))}
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For (2) we get a sequent tree very similar to that of (1):

(2) Q(Y δ
0 , Zδ

0 ), ¬Def(Y δ
0 ),

¬Def(Zδ
0 ); wγ

2(Y
δ
0 , Zδ

0 )

(nat1), γ, β, δ,Rewrite+

(2.1) Q(Y δ
0 , 0), ¬Def(Y δ

0 ),
¬Def(0); wγ

2(Y
δ
0 , 0)

(2.2) Q(Y δ
0 , s(Zδ

1 )), ¬Def(Zδ
1 ),

¬Def(Y δ
0 ), ¬Def(s(Zδ

1 ));
wγ

2(Y
δ
0 , s(Zδ

1 ))

(Q1) (Q2), γ, β, β, β

(2.2.1) Q(Y δ
0 , Zδ

1 ),
Q(Y δ

0 , s(Zδ
1 )), ¬Def(Zδ

1 ),
¬Def(Y δ

0 ), ¬Def(s(Zδ
1 ));

wγ

2(Y
δ
0 , s(Zδ

1 ))

(2.2.2) P(Y δ
0 ), ¬Q(Y δ

0 , Zδ
1 ),

Q(Y δ
0 , s(Zδ

1 )), ¬Def(Zδ
1 ),

¬Def(Y δ
0 ), ¬Def(s(Zδ

1 ));
wγ

2(Y
δ
0 , s(Zδ

1 ))

ind.-hyp. appl. of (2){Zδ
0 7→Zδ

1 } ind.-hyp. appl. of (1){Xδ
0 7→Y δ

0 }

(2.2.1.1) wγ

2(Y
δ
0 , Zδ

1 )<wγ

2(Y
δ
0 , s(Zδ

1 )),
Q(Y δ

0 , Zδ
1 ),

Q(Y δ
0 , s(Zδ

1 )), ¬Def(Zδ
1 ),

¬Def(Y δ
0 ), ¬Def(s(Zδ

1 ));
wγ

2(Y
δ
0 , s(Zδ

1 ))

(2.2.2.1) wγ

2(Y
δ
0 )<wγ

2(Y
δ
0 , s(Zδ

1 )),
P(Y δ

0 ), ¬Q(Y δ
0 , Zδ

1 ),
Q(Y δ

0 , s(Zδ
1 )), ¬Def(Zδ

1 ),
¬Def(Y δ

0 ), ¬Def(s(Zδ
1 ));

wγ

2(Y
δ
0 , s(Zδ

1 ))

We have applied each of the two weighted sequents (1) and (2) in each of their two proof
trees. Luckily we used induction hypothesis application instead of lemma application. The
latter would have resulted in a lemma application relation of {1, 2} × {1, 2} which is
not well-founded and our proof trees would have been useless because we would never
be able to apply Theorem2.45 of [Wirth, 2004]. As we have used induction hypothesis
application instead of lemma application, we have produced the four additional leaves
(1.2.1.1), (1.2.2.1), (2.2.1.1), and (2.2.2.1), which are still open. We choose our 2nd order
weight functions according to wγ

1(X) := (X) and wγ

2(X, Y ) := (X, Y ), or � more
precisely � by applying the substitution { wγ

1 7→λX. (X), wγ

2 7→λX, Y. (X, Y ) } and by
λβ-reduction, using the lexicographic combination of [Wirth, 2004, � 3.2.1], explained
below.
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Now the proof attempt can be successfully completed: For example, the weighted se-
quent (1.2.1.1) turns into

(1.2.1.1) (Xδ
1 )<(s(Xδ

1 )), P(Xδ
1 ), P(s(Xδ

1 )), ¬Def(Xδ
1 ), ¬Def(s(Xδ

1 )); wγ

1(s(X
δ
1 ))

which is equivalent to

(1.2.1.1.1) Xδ
1 <s(Xδ

1 ), P(Xδ
1 ), P(s(Xδ

1 )), ¬Def(Xδ
1 ), ¬Def(s(Xδ

1 )); wγ

1(s(X
δ
1 ))

which again is subsumed by one of QuodLibet's ordering axioms.

QuodLibet realizes a version of the semantic length ordering. Thus, any clause of the
form

t<t′, Γ

is a valid axiom provided that all the following items hold:

1. Each constant symbol in t or t′ is a constructor.

2. Each variable X in t or t′ satis�es the following:

(a) X is of a basic type inductively de�ned via constructors, and

(b) Γ contains a literal of the form ¬Def(X).

3. No variable occurs more often in t than in t′.

4. The number of symbol occurrences in t is less than the number of symbols in t′.

Besides that QuodLibet has an additional sort for the lexicographic combination of this
ordering. Note that as any completed proof will be a �nite object, there is a maximum
length of the ordering tuples occurring in it, so that the lexicographic combination of the
well-founded semantic length ordering is well-founded indeed. Also note, that this is not
generally the case: (s(0)) > (0, s(0)) > (0, 0, s(0)) > . . . . All in all, this means that term
formation over this additional sort for the lexicographic combination must be restricted;
for instance, the formation of the term 0n s(0) of the above example must be excluded.

The axioms of the lexicographic combination can then easily be formalized, although
special heuristic treatment might be necessary for e�ciency.

()<(X, L)

(X, L)<(X ′, L′) ⇔ if X=X ′ then L<L′ else X<X ′ �

L 6<()

Which steps in this proof were typical for inductive theorem proving in the sense that their
soundness relies on notions of inductive validity instead of the stronger notion of validity
in all models?

Besides the four induction hypothesis applications, the �nal branch closure rules
for <-literals are typical for induction because they require that, in all models
in K, the class of models to be considered for inductive validity, the successor
of each natural number is di�erent from that natural number and each natural
number is built-up from zero by a �nite number of successor steps (i.e. there
are neither cycles nor Z-chains in the models, cf. [Enderton, 1972]).
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3 How we cannot automate this proof in Leo-II

Why adding the second-order axioms of Peano and Pieri fails w.r.t. automation.

4 How we hope to be able to automate such proofs in

Leo-II

First, just as in QuodLibet, we have to apply a heuristics called recursion analysis, going
back to the school of explicit induction, cf. [Boyer & Moore, 1979], [Walther, 1994], [Bundy,
1999]. We will take the code for this out of the code for recursion analysis in Qml (Quod-
Libet Meta Language).

This will tell us that it is a good idea

• to prove (1.2.1), (1.2.2) and that the proof of this is su�cient for the validity of (1);
and

• to prove (2.2.1), (2.2.2) and that the proof of this is su�cient for the validity of (2).

Such a proof cannot be found without (1) and (2) available as induction hypotheses. Thus,
we need something like

(1hyp) P(Xδ
0 ), ¬Def(Xδ

0 ), wγ

1(X
δ
0 )6<W δ

0 ; W δ
0

and

(2hyp) Q(Y δ
0 , Zδ

0 ), ¬Def(Y δ
0 ), ¬Def(Zδ

0 ), wγ

2(Y
δ
0 , Zδ

0 )6<W δ
1 ; W δ

1

where the � ; W δ
i � now does not stand for a weight term, but for a clausal constraint in

Leo-II. In any resolution or paramodulation step, where one such constraint is present,
this constraint must be inherited. In any step where several such constraints are present,
these constraints must be uni�ed and inherited.

This problem solved, to prove the four above goals, Leo-II has to negate them and
to derive a refutation. Let us see, how (1.2.1) would look like negated: Luckily, we have
wγ

1R
+Xδ

1 . This means that (1.2.1) is logically equivalent to

(1.2.1)' P(Xδ+

1 ) ∨ P(s(Xδ+

1 )) ∨ ¬Def(Xδ+

1 ) ∨ ¬Def(s(Xδ+

1 )); wγ

1(s(X
δ+

1 ))

with choice-condition

C(Xδ+

1 ) := ¬
(

P(Xδ+

1 ) ∨ P(s(Xδ+

1 )) ∨ ¬Def(Xδ+

1 ) ∨ ¬Def(s(Xδ+

1 ))
)

Note that the free δ−-variable Xδ
1 has been replace with the fresh free δ+-variable Xδ+

1 in a
δ+-step, which can either be seen as Skolemization or better as an application of Hilbert's ε
[Wirth, 2008].

Now (1.2.1)' can be easily negated, resulting in the clauses:

¬P(Xδ+

1 ); wγ

1(s(X
δ+

1 ))

¬P(s(Xδ+

1 )); wγ

1(s(X
δ+

1 ))

Def(Xδ+

1 ); wγ

1(s(X
δ+

1 ))

Def(s(Xδ+

1 )); wγ

1(s(X
δ+

1 ))
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Resolving the �rst one with (1hyp) results in

¬Def(Xδ+

0 ), wγ

1(X
δ+

0 )6<wγ

1(s(X
δ+

1 )); wγ

1(s(X
δ+

1 ))

and resolving this with the third one results in

wγ

1(X
δ+

0 )6<wγ

1(s(X
δ+

1 )); wγ

1(s(X
δ+

1 ))

5 Important Aspects

Why does this work? Induction always takes place only on the outermost universal variables.
In the free variable framework of [Wirth, 2004; 2008], these are those free δ−-variables Xδ

of a sequent Γ that satisfy wγR+Xδ for each wγ ∈ Vγ(Γ ), where R denotes the current vari-
able-condition. These replacing these variables with free δ+-variables with the appropriate
variable-condition and choice-condition is an equivalence transformation. Assuming that no
other free δ+-variables occur in γ, we can negate this easily. Note that our negation of the
conjecture does not take place on top level, i.e. we do not state that the conjecture is (C, R)-
invalid in all structures A ∈ K, but only that, for some A ∈ K and some (A, R)-valuation e
and for some π that is (e,A)-compatible with (C, R), the conjecture is not (π, e,A)-valid.
Thus, if we can derive the empty clause by resolution, we know that this cannot be the
case w.r.t. to the information gathered in the meanwhile in the variable-condition R, the
choice-condition C, via instantiation of rigid variables.

Thus, although it is a good idea for heuristic propagation to let the several refutations
run in parallel, they communicate their results via the rigid variables.

Thus, if one refutation instantiates wγ

1, this will become visible to all the other refutations
carrying the proof dept for our mutual induction.
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