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Abstract

Using a human-oriented formal example proof of the (lim+) theorem, i.e. that the sum of
limits is the limit of the sum, which is of value for referenceon its own, we exhibit a non-
permutability ofβ-steps andδ+-steps (according to Smullyan’s classification), which is not
visible with non-liberalizedδ-rules and not serious with further liberalizedδ-rules, such as
theδ++

-rule. Besides a careful presentation of the search for a proof of (lim+) with several
pedagogical intentions, the main subject is to explain why the order ofβ-steps plays such a
practically important role in some calculi.
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1 Motivation

In December 2004, in the theoretical part of an advanced senior-level lecture course [4] on mathe-
matics assistance systems, I presented a formal example proof in a human-oriented sequent
calculus that the sum of limits is the limit of the sum (lim +). Mathematics assistance sys-
temsare human-oriented interactive theorem provers with strong automation support, aiming
at a synergetic interplay between mathematician and machine. PVS [26],ΩMEGA [35], ISA-
BELLE/HOL [23, 27], and QUODL IBET [6] are some of the systems approaching this long term
goal.

Consideringreductive calculisuch as sequent, tableau, or matrix calculi, one of the functions
of my lectures within the course was to show that—althoughsequentsare easier to understand
due to their locality—matrixes(or indexed formula trees[2, 37]) are not only a clever implemen-
tation, but—more importantly for us—also needed to follow the proof organization of a working
mathematician. To this end, I tried to give the students an idea of the premature commitments
forced by sequent and tableau calculi, which require a mathematician to deviate from his intended
proof plans and proof-search heuristics.

In his fascinating book [37], Lincoln A. Wallen had criticized the non-permutability ofγ-
andδ-steps in sequent calculi, according to Raymond M. Smullyan’s classification and uniform
notation of reductive inference rules asα, β, γ, andδ [36]. I explained how this non-permu-
tability can be overcome by replacing the (non-liberalized) δ-rule (which we will callδ−-rule)
with the liberalizedδ+-rule [18]. Along the(lim +) proof, I then showed that with theδ+-rule,
however, another non-permutability becomes visible, now of the β- andδ+-steps. Before the
liberalization took place to make logicians glad,this non-permutability was hidden behind the
non-permutability of theγ- andδ−-steps.1

At that moment, the best logician among my co-lecturers contradicted the occurrence of this
non-permutability, and insisted on his opinion when I repeated the material for an introduction in
the next lecture. Thus, the non-permutability problems ofβ-steps deserve publication. A referee
of a previous version of this paper called this “an interesting but not too surprising result”. Besides
this hard result, following the lecture, in this paper we will address some soft aspects of formal
calculi for human–machine interaction and publish (for thefirst time?) a more or less readable,
complete, and human-oriented proof of a mathematical standard theorem in a standard general-
purpose formal calculus in § 4. We discuss the non-permutabilities of this example proof in § 5,
prove the non-permutability of its crucialβ- andδ+-step in § 6, and conclude with an emphasis
on open problems in § 7. Zuer� werden die Leute eine Sa�e leugnen; dann werden sie sie verharmlosen;dann werden sie bes�lie�en, sie sei seit langem bekannt.

— ALEXANDER VON HUMBOLDT (cited according to [34], p. x)
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2 Introduction to Non-Permutabilities &c.

As explained in [37], the search space of sequent or tableau calculi may suffer from the following
weaknesses in design:Irrelevance, Notational Redundancy, andNon-Permutability. Unless ex-
plicitly stated otherwise, the weaknesses described in thefollowing apply to sequent and tableau
calculi alike.

Irrelevance means, e.g., that when proving the sequent

A, ¬(B ∧ Loves(Romeo, yγ

0)), Loves(Romeo, Juliet)

with A and B some big formulas, we may try to proveA or ¬B for a long time,
although this is not relevant if they are false. Note that in this papersequentsare just lists
of formulas, i.e. the simplest form that will do for two-valued logics. We callfree γ-vari-
ables(after theγ-steps, which may introduce new ones) (written asyγ

0) what has the standard
names of “meta” [23] or “free” [14] variables. Indeed, freeγ-variables must be distinguished
from the true meta-variables and the other kinds of free variables we will need. The means to
avoid irrelevance is focusing onconnections, just as the one between¬Loves(Romeo, yγ

0) and
Loves(Romeo, Juliet). In practice of mathematics assistance systems, however, it is often nec-
essary to expand connectionless parts to support the speculation of lemmas, which then provide
a “connection” that is not syntactically obvious, but closes the branch nevertheless. This is es-
pecially the case for inductive theorem proving for theoretical [20] and practical [30, 31, 32]
reasons.

Notational Redundancymeans in a sequent-calculus proof that the offspring sequents repeat the
formulas of their ancestor sequents again and again. This ispartly overcome in the corresponding
tableau calculi. But even tableau proofs repeat the subformulas of theirprincipal formulasasside
formulas[15] again and again. Structure sharingcan overcome this redundancy and does not
differ much for sequent, tableau, or matrix calculi becauseinformation on branch,γ-multiplicity,
and fairness has to be stored anyway. As mathematics assistance systems are still far from de-
livering what they once promised to achieve, this optimization is, however, not of top priority,
especially because structure sharing is not trivial, but likely to block other improvements: Note
thatγ-step multiplicityrequires variable renaming and that different rewrite steps may be applied
to the multiple occurrences of subformulas.2

Non-Permutability is the subject of this paper. Very roughly speaking, it meansthat theorder
of inferencesteps(i.e. applications of reductive inference rules) may be crucial for a proof to
succeed. Roughly speaking, permutability of two stepsS1 andS0 simply means the following:
In a closed proof tree whereS0 precedesS1 and whereS1 was already applicable beforeS0, we
can do the stepS1 beforeS0 and find a closed proof tree nevertheless.When several formulas in
a sequent classify as principal formulas ofα-, β-, γ-, or δ-steps, the search space is typically non-
confluent. Therefore, a bad order of application of these inference steps may require the search
procedure to backtrack or to construct a proof on a higher level ofγ-multiplicity than necessary or
than a mathematician would expect. Notice that the latter gives a human user hardly any chance
to cooperate in proof construction: Who would tell the system to apply a lemma twice when he
knows that one application suffices?

When we do aγ-step first and aδ-step second, a proof may fail on the given level ofγ-
multiplicity, whereas it succeeds when we apply theδ-step first and theγ-step second. For
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sequent calculi without free variables (cf. e.g. [15]) thisis exemplified in [37, Chapter 1, § 4.3.2].
The reason for this non-permutability is simply that, for the first alternative, due to the eigenvari-
able condition, theγ-step cannot instantiate its side formula with the parameter introduced by the
δ-step.

This non-permutability is not overcome with the introduction of freeγ-variables, resulting in
the so-called “free-variable” calculi [14, 42]: The reasonnow is that, for the first alternative, the
variable-conditionblocks the freeγ-variableyγ introduced by theγ-step against the instantiation
of any term containing thefreeδ−-variablexδ introduced by theδ−-step. In Skolemizing infer-
ence systems, however, we would have to say thatyγ becomes an argument of the Skolem term
xδ (. . . yγ . . .) introduced by theδ−-step, which causes unification ofyγ andxδ (. . . yγ . . .) to fail
by the occur check.

This non-permutability is overcome in [37, Chapter 2] with amatrix calculus which generates
variable-conditions equivalent toOuter Skolemization. As aδ+-step [18] extends the variable-
condition only equivalently toInner Skolemization(which is an improvement over Outer Sko-
lemization, i.e. less blockings, or less occurrences in Skolem-terms [24]), this non-permutability
is a fortiori overcome by the replacement of theδ−-steps withδ+-steps.

Optimization Problems where a badly chosen order of inference steps does not cause afailure
of the proof (at the current level ofγ-multiplicity) but only an increase in proof size, are not
subsumed under the notion of non-permutability. A typical optimization problem is the follow-
ing: The size of a proof crucially depends on theβ-steps being applied not too early and in the
right order. This is obvious from a working mathematician’spoint of view: Do not start a case
analysis before it is needed and make the nested case assumptions in an order that unifies identical
argumentations!

Thus, assuming an any-time behavior of a semi-decision procedure for closedness running in
parallel (simultaneous rigidE-unification is not co-semi-decidable [13]), thefolklore heuristics
is somewhat as follows:

Step 1: Apply all α- andδ-steps, guaranteeing termination by deleting their principal formulas
from the child sequents (either directly syntactically in sequent calculi, or indirectly by some
bookkeeping for search control in tableau calculi).

Step 2: If a γ-rule is applicable to a principal formula that has not reached the current threshold
for γ-multiplicity in some branch, do such aγ-step, namely the one with the most promising
connections, and then go to Step 1.

Step 3: If a β-rule is applicable, then apply the most promising one, deleting its principal formula
from the sequents of the side formulas, and then go to Step 1. Otherwise, if aγ-rule is applicable,
then increase the threshold forγ-multiplicity, and then go to Step 2.
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3 Background Required for the Example Proof

Before we go on with this abstract expert-style discussion in § 5, we do the proof of(lim+) in
§ 4. To this end, we now present a sub-calculus of the calculusof [42], whose development
was driven by the integration of Fermat’sdescente infinieinto state-of-the-art deduction, with
human-orientedness as the second design goal. The calculususes variable-conditions instead of
Skolemization. Variable-conditions are isomorphic to Skolemizaton in the relevant aspects of this
paper, but admit the usage of simple variables instead of huge Skolem terms. This improves the
readability of our formal proof significantly. We assume thefollowing sets ofvariablesto be
disjoint:

Vγ freeγ-variables, i.e. the free variables of [14]
Vδ freeδ-variables, i.e. nullary parameters, instead of Skolem functions
Vbound bound variables, i.e. variables to be bound, cf. below

We use ‘⊎’ for the union of disjoint classes. We partition the freeδ-variables intofreeδ−-vari-
ablesand free δ+-variables: Vδ = Vδ ⊎ Vδ+. We define thefree variablesby Vfree := Vγ ⊎ Vδ

and thevariablesby V := Vbound ⊎ Vfree. Finally, therigid variables byVγδ+ := Vγ ⊎ Vδ+. We
use Vk(Γ ) to denote the set of variables fromVk occurring inΓ . We do not permit binding of
variables that already occur bound in a term or formula; thatis: ∀x. A is only a formula if no
binder onx already occurs inA. The simple effect is that our formulas are easier to read and
our γ- andδ-rules can replaceall occurrences ofx. Moreover, we assume that all binders have
minimal scope.

Let σ be asubstitution. We say thatσ is asubstitution onX if dom(σ) ⊆ X. We denote
with ‘Γσ’ the result of replacing each occurrence of a variablex ∈ dom(σ) in Γ with σ(x).
Unless otherwise stated, we tacitly assume that all occurrences of variables fromVbound in a term
or formula or in the range of a substitution arebound occurrences(i.e. that a variablex ∈ Vbound

occurs only in the scope of a binder onx) and that each substitutionσ satisfiesdom(σ) ⊆ Vfree,
so that no bound occurrences of variables can be replaced andno additional variable occurrences
can become bound (i.e. captured) when applyingσ.

Definition 3.1 (Variable-Condition, σ-Update,R-Substitution)
A variable-conditionis a subset ofVfree × Vfree.

Let R be a variable-condition andσ be a substitution. Theσ-update ofR is

R ∪ { (zfree, xfree) | xfree ∈ dom(σ) ∧ zfree ∈Vfree(σ(xfree)) }.

σ is anR-substitution if σ is a substitution and theσ-updateR′ of R is wellfounded, i.e. for any
nonempty setB, there is ab ∈ B such that there is noa ∈ B with a R′ b.

Note that, regarding syntax,(xfree, yfree)∈R is intended to mean that anR-substitutionσ must
not replacexfree with a term in whichyfree could ever occur. This is guaranteed when theσ-
updatesR′ of R are always required to be wellfounded. Indeed, forzfree ∈ Vfree(σ(xfree)), we get
zfree R′ xfree R′ yfree, blockingzfree against terms containingyfree. In practice, aσ-update ofR can
always be chosen to be finite. In this case, it is wellfounded iff it is acyclic.



6

Let A andB be formulas. LetΓ andΠ be sequents, i.e. disjunctive lists of formulas. Let
x ∈ Vbound be a bound variable, and letF be the current proof forest, such thatV(F) contains
all variables already in use, especially those fromΓ , Π, andA. Note thatA is theconjugateof
the formulaA, i.e.B if A is of the form¬B, and¬A otherwise.

α-rules α
α0

: Γ ¬¬A Π

A Γ Π

Γ (A∨B) Π

A B Γ Π

Γ ¬(A∧B) Π

A B Γ Π

Γ (A⇒B) Π

A B Γ Π

Γ (A⇐B) Π

A B Γ Π

β-rules β
β1
β2

: Γ (A∧B) Π

A Γ Π

B Γ Π

Γ ¬(A∨B) Π

A Γ Π

B Γ Π

Γ ¬(A⇒B) Π

A Γ Π

B Γ Π

Γ ¬(A⇐B) Π

A Γ Π

B Γ Π

γ-rules γ

γ0(t)
: Let t be any term (by default a new freeγ-variable):

Γ ∃x.A Π

A{x7→t} Γ ∃x.A Π

Γ ¬∀x.A Π

A{x7→t} Γ ¬∀x.A Π

δ−-rules δ

δ−
0

(xδ )
: Let xδ ∈ Vδ \ V(F) be a new freeδ−-variable:

Γ ∀x.A Π

A{x 7→xδ } Γ Π Vγδ+(Γ ∀x.A Π) × {xδ }

Γ ¬∃x.A Π

A{x 7→xδ } Γ Π Vγδ+(Γ ¬∃x.A Π) × {xδ }

δ+-rules δ

δ+
0

(xδ+)
: Let xδ+ ∈ Vδ+ \ V(F) be a new freeδ+-variable:

Γ ∀x.A Π {(xδ+

, A{x 7→xδ+} )}

A{x 7→xδ+} Γ Π Vfree(∀x.A) × {xδ+}

Γ ¬∃x.A Π {(xδ+

, A{x 7→xδ+})}

A{x 7→xδ+} Γ Π Vfree(¬∃x.A) × {xδ+}

Figure 1: The reductive rules of our calculus

3.1 Inference Rules for Reduction Within a Proof Tree

In Figure 1, the inference rules for reductive reasoning within a tree are presented in sequent
style. Note that in the good old days when trees grew upwards,Gentzen would have inverted the
inference rules such that passing the line means consequence. In our case, passing the line means
reduction, and trees grow downwards.

All rules aresoundandsolution preservingfor the rigid variables in the sense of [42, § 2.4].
Thus, updating a global variable-conditionR, we can globally apply anyR-substitution on any
subset ofVγ without destroying the soundness of the instantiated proofsteps.

Instead of an eigenvariable condition, theδ−-rules come with a binary relation on variables to
the lower right, which must be added to the current variable-conditionR. Theδ+-rules come with
an additional relation to the upper right, which has to be added to theR-choice-conditionC. This
choice-condition is an optional part of the calculus. It maystore a structure-sharing representation
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of an ε-term [19, 16, 41] for a freeδ+-variable, which may restrict the possible values of this
variable. As they play only a marginal role in the example proof of § 4, we do not have to discuss
choice-conditions here. Note, however, that without a choice-condition, theδ+-rules would only
be sound but not solution preserving, cf. Example 5.1.

Indeed, the calculus containsdifferent kinds ofδ-rules in parallel. Therefore—to be sound—
theδ−-rules have to refer to the the freeδ+-variables introduced by theδ+-rules in their variable-
conditions, and vice versa.

3.2 Lemma Application Between Proof Trees

The reason why we spoke of a proofforestF in Figure 1 is that a proof may be spread over
several trees that are connected by generative applicationof the root of one tree in the reductive
proof of another tree, either as a lemma or as an induction hypothesis. While the application of
lemmas must be wellfounded, induction hypotheses may be applied to the proof of themselves
and mutually. In this paper, we only need lemma application.

Lemma application works as follows. When a lemmaA1, . . . , Am is a subsequent of a leaf
sequentΓ to be proved (i.e. if, for alli ∈ {1, . . . ,m}, the formulaAi is listed inΓ ), its application
closes the branch of this sequent (subsumption). Otherwise, the conjugates of the missing for-
mulasCi are added to the child sequents (premises), one child per missing formula. This can be
seen as Cuts onCi plus subsumption. More precisely—modulo associativity, commutativity, and
idempotency—a sequentA1, . . . , Am, B1, . . . , Bn can be reduced by application of the lemma
A1, . . . , Am, C1, . . . , Cp to the sequents

C1, A1, . . . , Am, B1, . . . , Bn · · · Cp, A1, . . . , Am, B1, . . . , Bn.

In addition, any time we apply a lemma, we can replace its freeδ−-variables locally and arbi-
trarily, except those freeδ−-variables that depend on rigid variables which (in rare cases) may
already occur in the input lemma. More precisely, the set of freeδ−-variables of a lemmaΦ we
may instantiate is exactly

{

yδ ∈Vδ (Φ) Vγδ+(Φ) × {yδ } ⊆ R
}

.

TypicallyVγδ+(Φ) is empty and no restrictions apply. Note that we also may extend this set of free
δ−-variables by extending the variable-conditionR. This instantiation of outermostδ−-variables
mirrors mathematical practice, saves repetition of initial δ-steps, and is essential for induction,
where the weights depend on these freeδ−-variables to guarantee wellfoundedness. There will be
a sufficient number of self-explanatory examples of application of open lemmas(i.e. yet unproved
lemmas) in § 4.
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In the proof below, (2), (3), (4), (5), (6), (7), (8), (9) (where the boxes around the formulas just
indicate the matching in the lemma application) andΓ , Ξ, Θ, Ω andσ and t abbreviate the
following lemmas and sequents and substitution and term, respectively:

(2): min(yδ , zδ ) ≤ yδ

(3): zδ

4 <zδ

6 , zδ

4 ≮zδ

5 , zδ

5 �zδ

6

(4): zδ

9 < min(zδ

10, z
δ

11), zδ

9 ≮zδ

10, zδ

9 ≮zδ

11

(5): |(zδ

0 +zδ

1 )−(zδ

2 +zδ

3 )| ≤ |zδ

0 −zδ

2 | + |zδ

1 −zδ

3 |

(6): zδ

4 <zδ

6 , zδ

4 �zδ

5 , zδ

5 ≮zδ

6

(7): zδ

12+zδ

13<zδ

14+zδ

15, zδ

12≮zδ

14 , zδ

13≮zδ

15

(8): εδ

2
+ εδ

2
≤ εδ

(9): 0<εδ

2
, 0≮εδ

Γ : ¬∀εf .

(

0<εf ⇒ ∃δf>0. ∀xf 6=xδ

0 .

(

|f δ (xf) − yδ

f | < εf

⇐ |xf−xδ

0 | < δf

) )

,

¬∀εg.

(

0<εg ⇒ ∃δg>0. ∀xg 6=xδ

0 .

(

|gδ (xg) − yδ

g | < εg

⇐ |xg−xδ

0 | < δg

) )

,

∃δ.

(

0<δ ∧ ∀x 6=xδ

0 .

(

|(f δ (x)+gδ (x)) − (yδ

f +yδ

g )| < εδ

⇐ |x−xδ

0 | < δ

) )

Ξ: 0<δγ ∧ ∀x 6=xδ

0 .

(

|(f δ (x)+gδ (x))−(yδ

f +yδ

g )| < εδ

⇐ |x−xδ

0 | < δγ

)

,

0≮εδ , Γ

Θ: ¬

(

0<δδ+

f ∧ ∀xf 6=xδ

0 .

(

|f δ (xf )−yδ

f | < εγ

f

⇐ |xf−xδ

0 | < δδ+

f

) )

,

¬∃δg.

(

0<δg ∧ ∀xg 6=xδ

0 .

(

|gδ (xg)−yδ

g | < εγ

g

⇐ |xg−xδ

0 | < δg

) )

,

0≮εδ , Γ

Ω: 0≮δδ+

f , ¬∀xf 6=xδ

0 .

(

|f δ (xf)−yδ

f | < εγ

f

⇐ |xf−xδ

0 | < δδ+

f

)

,

0≮δδ+

g , ¬∀xg 6=xδ

0 .

(

|gδ (xg)−yδ

g | < εγ

g

⇐ |xg−xδ

0 | < δδ+

g

)

,

0≮εδ , Γ

σ: {xγ

f 7→xδ+

, xγ

g 7→xδ+

, δγ 7→min(δδ+

f , δδ+

g )}

t: | (f δ (xδ+)+gδ (xδ+)) − (yδ

f +yδ

g ) |

Figure 2: Global abbreviations for the proof of § 4
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4 The (lim +) Proof: Limit Theorem on Sums in R

4.1 Explanation and Initialization

Compared to the proof of(lim+) as presented in the lecture courses, the version we present
here admits a more rigorous argumentation for non-permutability of β andδ+ in the following
sections.3

By standard mathematical abuse of notation, we want to provethe theorem

(lim +) lim
x→xδ

0

(

f δ (x) + gδ (x)
)

= lim
x→xδ

0

f δ (x) + lim
x→xδ

0

gδ (x)

Before we start the formal proof, we expand(lim+) into a better notation:

(1):





lim
x→xδ

0

f δ (x) = yδ

f

∧ lim
x→xδ

0

gδ (x) = yδ

g



 ⇒ lim
x→xδ

0

(

f δ (x)+gδ (x)
)

= yδ

f +yδ

g

Warning: The “=” here is still no real equality symbol! What is it, then? Something like
lim
x→0

(

x2 sin 1
x

)

= 0, formally say lim
x→z

tx = t′ (definiendum), is defined by the formula

(definiens)
∀ε>0. ∃δ>0. ∀x 6=z.

(

|tx−t′| < ε ⇐ |x−z| < δ
)

Note that ∀ε>0. A and ∃δ>0. B and ∀x 6=z. C (definienda) abbreviate∀ε. (0<ε ⇒ A) and
∃δ. (0<δ ∧ B) and ∀x. (x 6=z ⇒ C) (definientia), respectively. Thus, if—in what follows—
we speak of anexpansion of “∀ε>0. . . .” (from definiendumto definiens) or simply of an
expansion of∀, we mean the replacement of∀ε>0. A with ∀ε. (0<ε ⇒ A) for some formulaA
in a reductive proof step. Analogous proof steps are meant byexpansion of∃ andexpansion
of lim, respectively. We will often reorder the formulas in the sequents without mentioning it.

We initialize our global variable-conditionR by R := ∅, and our globalR-choice-conditionC
by C := ∅.

4.2 Expanding the Proof Tree with Root(1)

By two α-steps and expansion oflim from definiendumto definiens, we reduce(1) to its single
child (1.1), writing (12) for (1.1):

(12): ∀ε>0. ∃δ>0. ∀x 6=xδ

0 .

(

|(f δ (x)+gδ (x)) − (yδ

f +yδ

g )| < ε

⇐ |x−xδ

0 | < δ

)

,

lim
x→xδ

0

f δ (x) 6= yδ

f , lim
x→xδ

0

gδ (x) 6= yδ

g

By expansion of “∀ε>0. . . .” from definiendumto definiens, then aδ−- and anα-step, and
finally expansion of∃ and some reordering of the listed formulas we reduce this to:

(13): ∃δ.

(

0<δ ∧ ∀x 6=xδ

0 .

(

|(f δ (x)+gδ (x)) − (yδ

f +yδ

g )| < εδ

⇐ |x−xδ

0 | < δ

) )

,

0≮εδ , lim
x→xδ

0

f δ (x) 6= yδ

f , lim
x→xδ

0

gδ (x) 6= yδ

g

A γ-step yields:
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(14): 0<δγ ∧ ∀x 6=xδ

0 .

(

|(f δ (x)+gδ (x))−(yδ

f +yδ

g )| < εδ

⇐ |x−xδ

0 | < δγ

)

, (13)

Note that the(13) at the end of the sequent(14) means that the whole parent sequent is part of the
child sequent.

Expandinglim and∀, plus aγ-step, each twice, we get (cf. Figure 2 forΞ):

(15): ¬

(

0<εγ

f ⇒ ∃δf>0. ∀xf 6=xδ

0 .

(

|f δ (xf )−yδ

f | < εγ

f

⇐ |xf−xδ

0 | < δf

) )

,

¬

(

0<εγ

g ⇒ ∃δg>0. ∀xg 6=xδ

0 .

(

|gδ (xg)−yδ

g | < εγ

g

⇐ |xg−xδ

0 | < δg

) )

, Ξ

A β-step and an expansion of∃, each twice, yield:

(15.1): 0<εγ

f , ¬

(

0<εγ

g ⇒ ∃δg>0. ∀xg 6=xδ

0 .

(

|gδ (xg)−yδ

g | < εγ

g

⇐ |xg−xδ

0 | < δg

) )

, Ξ

(15.2): 0<εγ

g, ¬∃δf>0. ∀xf 6=xδ

0 .

(

|f δ (xf)−yδ

f | < εγ

f

⇐ |xf−xδ

0 | < δf

)

, Ξ

(15.3): ¬∃δf .

(

0<δf ∧ ∀xf 6=xδ

0 .

(

|f δ (xf )−yδ

f | < εγ

f

⇐ |xf−xδ

0 | < δf

) )

,

¬∃δg.

(

0<δg ∧ ∀xg 6=xδ

0 .

(

|gδ (xg)−yδ

g | < εγ

g

⇐ |xg−xδ

0 | < δg

) )

, Ξ

A δ+-step applied to the first formula at(15.3) yields:

(15.3.1): 0<δγ ∧ ∀x 6=xδ

0 .

(

|(f δ (x)+gδ (x))−(yδ

f +yδ

g )| < εδ

⇐ |x−xδ

0 | < δγ

)

, Θ

whereR is extended with {xδ

0 , f δ , yδ

f , εγ

f} × {δδ+

f }, and the choice-conditionC with:
{

δδ+

f 7→

(

0<δδ+

f ∧ ∀xf 6=xδ

0 .

(

|f δ (xf)−yδ

f | < εγ

f

⇐ |xf−xδ

0 | < δδ+

f

) ) }

4.3 A Bad Turn

Now we do an earlyβ-step against the folklore heuristics presented in § 2. Thiswill make the
whole following subproof fail! A reader who is interested only in a successful example proof
may continue reading with § 4.6.

(15.3.1.1): 0<δγ, Θ

(15.3.1.2): ∀x 6=xδ

0 .

(

|(f δ (x)+gδ (x)) − (yδ

f +yδ

g )| < εδ

⇐ |x−xδ

0 | < δγ

)

, Θ
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A δ+-step, twoα-steps, and expansion of∀, applied to(15.3.1.2), yield:

(15.3.1.2.1): ∀x.

(

x 6=xδ

0 ⇒

(

|(f δ (x)+gδ (x)) − (yδ

f +yδ

g )| < εδ

⇐ |x−xδ

0 | < δγ

) )

, Ω

whereR is extended with {xδ

0 , gδ , yδ

g , εγ

g} × {δδ+

g }, andC with:
{

δδ+

g 7→

(

0<δδ+

g ∧ ∀xg 6=xδ

0 .

(

|gδ (xg)−yδ

g | < εγ

g

⇐ |xg−xδ

0 | < δδ+

g

) ) }

A δ+-step and twoα-steps yield (cf. Figure 2 fort):

(15.3.1.2.12): xδ+=xδ

0 , t < εδ , |xδ+−xδ

0 | ≮ δγ, Ω

whereR is extended with{xδ

0 , f δ , gδ , yδ

f , yδ

g , εδ , δγ} × {xδ+}
and ourR-choice-conditionC with

{

xδ+ 7→ ¬
(

xδ+ 6=xδ

0 ⇒
(

t < εδ ⇐ |xδ+−xδ

0 | < δγ
) ) }

Expansion of∀ and aγ-step, each twice, yield:

(15.3.1.2.13): ¬

(

xγ

f 6=xδ

0 ⇒

(

|f δ (xγ

f)−yδ

f | < εγ

f

⇐ |xγ

f−xδ

0 | < δδ+

f

) )

,

¬

(

xγ

g 6=xδ

0 ⇒

(

|gδ (xγ

g)−yδ

g | < εγ

g

⇐ |xγ

g−xδ

0 | < δδ+

g

) )

,

xδ+=xδ

0 , t < εδ , |xδ+−xδ

0 | ≮ δγ, Ω

4.4 Partial Success

2 β-steps, each twice, yield:

(15.3.1.2.13.1): xγ

f 6=xδ

0 , xδ+=xδ

0 , . . .

(15.3.1.2.13.2): xγ

g 6=xδ

0 , xδ+=xδ

0 , . . .

(15.3.1.2.13.3): |xγ

f−xδ

0 | < δδ+

f , |xδ+−xδ

0 | ≮ δγ, . . .

(15.3.1.2.13.4): |xγ

g−xδ

0 | < δδ+

g , |xδ+−xδ

0 | ≮ δγ, . . .

(15.3.1.2.13.5): |f δ (xγ

f) − yδ

f | ≮ εγ

f , |gδ (xγ

g) − yδ

g | ≮ εγ

g,

xδ+=xδ

0 , t < εδ , |xδ+−xδ

0 | ≮ δγ, Ω

And now? By formula unification and some basic knowledge of the domain, we can easily see
that global application of the substitutionσ from § 4.1 admits to close the branches of the first
four sequents. According to Definition 3.1, this adds

{(xδ+

, xγ

f ), (x
δ+

, xγ

g), (δ
δ+

f , δγ), (δδ+

g , δγ)}
to our variable-conditionR, which, luckily, stays acyclic, cf. the acyclic graph of Figure 5 in
§ 4.8. (15.3.1.2.13.1) and(15.3.1.2.13.2) become logical axioms. Applying lemma(2) of Figure 2
instantiated via{yδ 7→δδ+

f , zδ 7→δδ+

g } we reduce(15.3.1.2.13.3) to:

(15.3.1.2.13.3.1): min(δδ+

f , δδ+

g ) � δδ+

f , |xδ+−xδ

0 | < δδ+

f , |xδ+−xδ

0 | ≮ min(δδ+

f , δδ+

g ), . . .

which is subsumed by the transitivity lemma(3) of Figure 2.
(15.3.1.2.13.4) can be closed analogously to(15.3.1.2.13.3).
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(1)

12 α2
0, lim, ∀, δ−

0
(εδ ), α0, ∃

(13)

1 γ0(min(δδ+

f
,δδ+

g ))

(14)

1 lim2, ∀2, γ0(ε
γ
f
), γ0(ε

γ
g)

(15)
1

β1

2 β2, β1
3

β2
2 , ∃2

(15.1) (15.2) (15.3)

1 δ+
0

(δδ+

f )

(15.3.1)
1

β1

2 β2

(15.3.1.1) (15.3.1.2)

1 δ+
0

(δδ+

g ), α2
0, ∀

(15.3.1.2.1)

1 δ+
0

(xδ+

), α2
0

(15.3.1.2.12)

1 ∀2, γ0(xδ+

)
2

(15.3.1.2.13)

Figure 3: Non-Permutability ofβ at (15.3.1) andδ+ at (15.3.1.2):
No chance to prove0< min(δδ+

f , δδ+

g ) at (15.3.1.1)

4.5 Total Failure

Abstractly, our proof tree looks as in Figure 3. By the application ofσ, (15.3.1.1) has become
0<min(δδ+

f , δδ+

g ), Θ

If the first formula—which is the only new one as compared to its parent sequent—is irrelevant
for the proof of(15.3.1.1) (in the sense that it is not contributing as a principal formula, cf. [15,
30, 32]), then we had better prove(15.3.1) instead, because this saves us the proof of the whole
β2-subtree of(15.3.1). But look: δδ+

g is not introduced before(15.3.1.2.1), which in (15.3.1.2.12)
results in the context0≮δδ+

f , 0≮δδ+

g (as listed inΩ of Figure 2) with which we could prove
0<min(δδ+

f , δδ+

g ) by lemma(4) of Figure 2. Thus, theβ-step applied to(15.3.1) does not have
any benefit unless it is donebelow(15.3.1.2.1).
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Now, we have three possibilities in principle:

1. We can backtrack to(15.3.1), deleting all its sub-trees.

2. We could try to use the choice-condition ofδδ+

g to find out that it is positive. C(δδ+

g ) is

0<δδ+

g ∧ ∀xg 6=xδ

0 .
(

|gδ (xg)−yδ

g | < εγ

g ⇐ |xg−xδ

0 | < δδ+

g

)

.

But this guarantees0<δδ+

g only if also the second part of the conjunction can be shown to
be satisfiable, for which we again lack the context.

3. We can prove(15.3.1.1) by proving its subsequentΘ. As Θ is already a subsequent
of (15.3.1), this means that we could prove already(15.3.1) this way. Thus, the whole
subproof below(15.3.1.2) could be pruned. Moreover, as we would have to expand the
principalγ-formula of(13) a second time, resulting in a higher maximum ofγ-multiplicity
than necessary, the following lemma holds.

Lemma 4.1 Using the reductive rules of Figure 1 with aγ-multiplicity threshold of1, the cur-
rent proof tree (with the partial instantiationσ) cannot be expanded and instantiated to a closed
proof tree at(15.1), (15.2), and(15.3.1.1) in parallel.

For a proof of Lemma 4.1 cf. § 6.1. Note that the validity of Lemma 4.1 depends on theδ−-
andδ+-rules being the onlyδ-rules available. Withδ++

-rules the situation would be different,
cf. § 5.4. Moreover, as our proof trees are customary AND-trees (and no AND/OR-trees that
admit alternative proof attempts as in [5, 6]), Lemma 4.1 means that the whole proof attempt is
failed for aγ-multiplicity of 1.

4.6 Backtracking to the Path of Virtue

Item 1 in the above list is the only reasonable alternative. Therefore, let us restart from(15.3.1)
—not without storingσ and its connections before.

Applied to (15.3.1), oneδ+-step, twoα-steps, two expansions of∀, and twoγ-steps yield as in
§ 4.3 and with the same extensions ofR andC:

(15.3.12): ¬

(

xγ

f 6=xδ

0 ⇒

(

|f δ (xγ

f )−yδ

f | < εγ

f

⇐ |xγ

f−xδ

0 | < δδ+

f

) )

,

¬

(

xγ

g 6=xδ

0 ⇒

(

|gδ (xγ

g)−yδ

g | < εγ

g

⇐ |xγ

g−xδ

0 | < δδ+

g

) )

,

0<δγ ∧ ∀x 6=xδ

0 .

(

|(f δ (x)+gδ (x))−(yδ

f +yδ

g )| < εδ

⇐ |x−xδ

0 | < δγ

)

, Ω



14

(15.3.12)

β1

β2

xγ

f 6=xδ

0 , B, C, Ω A, B, C, Ω

β1

β2

A, B, 0<δγ, Ω A, B, ∀x 6=xδ

0 .

(

| . . .−(yδ

f +yδ

g )| < εδ

⇐ |x−xδ

0 | < δγ

)

, Ω

∀, δ+
0

(xδ+

), α2
0

A, B, xδ+=xδ

0 , |xδ+−xδ

0 | ≮ δγ ,

t < εδ , Ω

HereA denotes the formula¬
(

|f δ (xγ

f )−yδ

f | < εγ

f ⇐ |xγ

f−xδ

0 | < δδ+

f

)

. B andC denote

the second and thirdβ-formula of the sequent(15.3.12), respectively. AndΠ the sequent at the
second (β2-) child of the root without the secondβ-formula, i.e. without the thirdβ-formula
of (15.3.12).

Figure 4: Non-Permutability ofβ at (15.3.12) and
β at theβ2-child of (15.3.12):
No chance to provexγ

f 6=xδ

0 at leftmost leaf

Now we have toexpand one of the three firstβ-formulas of(15.3.12). Note that the third one
is the one whose expansion made our proof fail before. We havelearned that the path of virtue
is narrow! What about taking the firstβ-formula? This would result in the subtree depicted in
Figure 4 above! Its firstβ-step can represent progress only if the first (β1-) child is easier to prove

than the root itself. But the only reasonable connection of its single new formula xγ

f 6=xδ

0 is to

the third formula xδ+=xδ

0 of the rightmost leaf; viaσ. Thus, we would have to copy the proof

starting below the second (β2-) child of the root to its first (β1-) child. But, if we do so, this proof
will fail again, due to the following reason: To close the copied subproof we need the connection
between the fourth formula|xδ+−xδ

0 | ≮ δγ of the rightmost leaf and the positive subformula

|xγ

f−xδ

0 | < δδ+

f of the formulaA; via σ, (2), and(3) as at the end of § 4.4. But this connection

is only available at the original position and not at the position the subproof is copied to, because
the positive subformula is part of theβ2-side formulaA of theβ-step at the root. All in all, this
shows that expanding the firstβ-formula of(15.3.12) leads to a failure of the proof on the current
threshold forγ-multiplicity again. By symmetry, the same holds for the second. Thus, we take
the third. Notice that theβ-step wehave todo now is the one whose too early application made
us backtrack before.
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A β-step to the thirdβ-formula of(15.3.12), and expansion of∀ yield:

(15.3.12.1): 0<δγ, 0≮δδ+

f , 0≮δδ+

g , . . .

(15.3.12.2): ¬

(

xγ

f 6=xδ

0 ⇒

(

|f δ (xγ

f )−yδ

f | < εγ

f

⇐ |xγ

f−xδ

0 | < δδ+

f

) )

,

¬

(

xγ

g 6=xδ

0 ⇒

(

|gδ (xγ

g)−yδ

g | < εγ

g

⇐ |xγ

g−xδ

0 | < δδ+

g

) )

,

∀x.

(

x 6=xδ

0 ⇒

(

|(f δ (x)+gδ (x))−(yδ

f +yδ

g )| < εδ

⇐ |x−xδ

0 | < δγ

) )

, Ω

As aδ−-step with the first formula of the last line of(15.3.12.2) as principal formula would block
the later instantiation ofxγ

f andxγ

g with the newly introduced freeδ-variable, for the proof to
succeed on the current threshold forγ-multiplicity, we have to take aδ+-step instead. Note that
this was not yet a problem for the sequent(15.3.1.2.1) of § 4.3, in whichxγ

f andxγ

g did not occur
yet. Besides theδ+-step extendingR andC as in § 4.3, we do twoα-steps. This results exactly
in what was seen before at the end of § 4.3, with the exception of a different label:

(15.3.12.2.1): ¬

(

xγ

f 6=xδ

0 ⇒

(

|f δ (xγ

f)−yδ

f | < εγ

f

⇐ |xγ

f−xδ

0 | < δδ+

f

) )

,

¬

(

xγ

g 6=xδ

0 ⇒

(

|gδ (xγ

g)−yδ

g | < εγ

g

⇐ |xγ

g−xδ

0 | < δδ+

g

) )

,

xδ+=xδ

0 , t < εδ , |xδ+−xδ

0 | ≮ δγ, Ω

Again, twoβ-steps, each twice, yield:

(15.3.12.2.1.1): xγ

f 6=xδ

0 , xδ+=xδ

0 , . . .

(15.3.12.2.1.2): xγ

g 6=xδ

0 , xδ+=xδ

0 , . . .

(15.3.12.2.1.3): |xγ

f−xδ

0 | < δδ+

f , |xδ+−xδ

0 | ≮ δγ, . . .

(15.3.12.2.1.4): |xγ

g−xδ

0 | < δδ+

g , |xδ+−xδ

0 | ≮ δγ, . . .

(15.3.12.2.1.5): |f δ (xγ

f) − yδ

f | ≮ εγ

f , |gδ (xγ

g) − yδ

g | ≮ εγ

g,

xδ+=xδ

0 , t < εδ , |xδ+−xδ

0 | ≮ δγ, Ω

As before in § 4.4, application ofσ admits the closure of of the four branches of(15.3.12.2.1.[1–4]).
But now, contrary to what made us backtrack before,(15.3.12.1) becomes

0<min(δδ+

f , δδ+

g ), 0≮δδ+

f , 0≮δδ+

g , . . .,

which is subsumed by an instance of lemma(4) of Figure 2.
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4.7 A Working Mathematician’s Immediate Focus

Note that(15.3.12.2.1.5) would have been the immediate focus of a working mathematician. He
would have sequenced all the lousyβ-stepsafterdoing the crucial steps of the proof which we can
do only now.Notice that the matrix (indexed formula tree) versions of our calculus will enable us
to support this human behavior in the follow-up lectures.Let us repeat(15.3.12.2.1.5) with some
omissions and some reordering:

t < εδ , |f δ (xδ+)−yδ

f | ≮ εγ

f , |gδ (xδ+)−yδ

g | ≮ εγ

g, . . .

where t < εδ actually reads (with some added wave-front annotation to beused in § 4.8)

| (f δ (xδ+)+gδ (xδ+)) − (yδ

f +yδ

g ) | < ⌊εδ ⌋

Now the essential idea of the whole proof is to apply the lemma(5) of Figure 2 via
{zδ

0 7→ f δ (xδ+), zδ

1 7→ gδ (xδ+), zδ

2 7→ yδ

f , zδ

3 7→ yδ

g }, by which we get:

(15.3.12.2.1.5.1): t � |f δ (xδ+)−yδ

f | + |gδ (xδ+)−yδ

g | , t < εδ ,

|f δ (xδ+)−yδ

f | ≮ εγ

f , |gδ (xδ+)−yδ

g | ≮ εγ

g, . . .

4.8 Automatic Clean-Up

The rest of the proof is perfectly within the scope of automatic proof search today. When we
apply the other transitivity lemma (6) of Figure 2 to(15.3.12.2.1.5.1) as indicated by the single
and double boxes in the goal and the lemma, via{ zδ

4 7→ t, zδ

6 7→ εδ , zδ

5 7→ |f δ (xδ+)−yδ

f | +
|gδ (xδ+

)−yδ

g | }, we get:

(15.3.12.2.1.5.12): |f δ (xδ+

)−yδ

f | + |gδ (xδ+

)−yδ

g | < εδ ,

|f δ (xδ+)−yδ

f | ≮ εγ

f , |gδ (xδ+)−yδ

g | ≮ εγ

g , . . .

In [44] even the step from(15.3.12.2.1.5) to (15.3.12.2.1.5.12) is automated with the wave-front
annotation oft < εδ as given in § 4.7 (which is generated by the givens of|f δ (xδ+

)−yδ

f | < εγ

f

and |gδ (xδ+)−yδ

g | < εγ

g in the context oft < εδ in (15.3.12.2.1.5)), provided that the following
lemmas (annotated as wave-rules) are in the rippling system:

(zδ

0 +zδ

1 ) − (zδ

2 +zδ

3 ) = (zδ

0 −zδ

2 ) + (zδ

1 −zδ

3 )

| zδ

4 + zδ

5 | < zδ

6 , |zδ

4 | + |zδ

5 | ≮ zδ

6

Applying lemma(7) of Figure 2 (monotonicity of+) in the obvious way, we get:

(15.3.12.2.1.5.13): |f δ (xδ+)−yδ

f | + |gδ (xδ+)−yδ

g | ≮ εγ

f + εγ

g,

|f δ (xδ+)−yδ

f | + |gδ (xδ+)−yδ

g | < εδ , . . .

TheR-substitution{εγ

f 7→
εδ

2
, εγ

g 7→
εδ

2
} closes the remaining open branches of(15.3.12.2.1.5.13)

and (15.[1–2]) with the lemmas(3), (8) and (9), respectively. The final variable-condition is
acyclic indeed. Its graph is depicted in Figure 5 below. The whole proof tree with a minor
permutation of the criticalβ-step is depicted in Figure 7 in § 6.2.
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εγ

f εδ εγ

g

xγ

f xδ+ xγ

g

yδ

f δδ+

f δγ δδ+

g yδ

g

f δ xδ

0 gδ

Figure 5: (Acyclic) Variable-ConditionR.
With dotted edges: Final State in § 4.8.
Without dotted edges:
State after application ofσ, both in § 4.4 and in § 4.6

εγ

f εγ

g

xγ

f xδ xγ

g

δδ

f δγ δδ

g

Figure 6: (Cyclic) State of variable-conditionR
for alternative proof of § 5.2 withδ−-rules only

5 Discussion

Now that the non-permutability ofβ at (15.3.1) andδ+ at (15.3.1.2) (cf. Figure 3) as well as the
non-permutability ofβ at (15.3.12) andβ at (15.3.12.2) (cf. Figure 4) have become practically
evident by the proof of(lim+) in § 4, we may ask:Why did the co-lecturer not believe in what
he saw?

He knew that the only problem with the sequencing ofβ-steps that occurs either with theδ−-
rules or else with theδ++

-rules [9] is that a bad choice makes the proofs suffer from the repetition
of common sub-proofs, which is an optimization problem not subsumed under the notion of non-
permutability, cf. § 2.

Thus, we have to make it even clearer why theδ+-rules are so much in conflict with the
β-steps.
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5.1 Non-Permutability of β and β is only a Secondary Problem

Notice that the non-permutability ofβ andδ+ is the primary problem and the only one we have
to explain. It causes the non-permutability ofβ andβ we have seen in Figure 4 as a secondary
problem: Indeed, the 2nd β-step in Figure 4 must come before the 1st β-step simply because the
2nd β-step generates the principalδ-formula of theδ+

0 (xδ+)-step resulting in the rightmost leaf,
and thisδ+

0 (xδ+)-step must come before the 1st β-step; namely for the leftmost leaf’s first for-
mulaxγ

f 6=xδ

0 to be of any use in the proof. This means that

2ndβ <superformula δ+
0 (xδ+) <β-δ+-non-permutability 1stβ

causes the non-permutability of 1stβ and 2ndβ by transitivity.

5.2 δ− instead ofδ+

Let us see how the proof of(lim+) would look like with theδ−-rules as the onlyδ-rules avail-
able. Roughly speaking, in the proof of § 4, we have to replaceeach freeδ+-variablevδ+

n with a
freeδ−-variablevδ

n and check how the variable-condition changes:δ−0 (δδ

f ) andδ−0 (δδ

g ) applied
to (15.3) of § 4.2 and(15.3.1.2) of § 4.3 (cf. Figure 3) add{εγ

f , ε
γ

g, δ
γ}×{δδ

f } and {εγ

f , ε
γ

g, δ
γ}×

{δδ

g } to the initially empty variable-conditionR, respectively.δ−0 (xδ ) applied roughly at(15.3.1.2.1)
adds {εγ

f , ε
γ

g, δ
γ} × {xδ } later.

Thus, after applying

σ− := {xγ

f 7→xδ , xγ

g 7→xδ , δγ 7→min(δδ

f , δδ

g )}

theσ−-updated variable-condition is extended by

{(xδ , xγ

f ), (x
δ , xγ

g), (δ
δ

f , δγ), (δδ

g , δγ)}

and looks as in Figure 6 above. Compared to the graph of Figure5, it is small but cyclic: Among
others, the two curved edges at the very bottom are new and cause the cycles. Thus,σ− is no
R-substitution at all and cannot be applied.

Therefore, in our example proof of § 4 as depicted in Figure 3,we have to move theγ-step
applied to(13) down below(15.3.1.2.1). Note that we cannot move it deeper because it has
to preceed the stepδ−0 (xδ ): Indeed, the principal formula of thisδ−-step is a subformula of the
side formula of theγ-step. A fortiori, this movement of theγ-step applied to(13) forces the
problematicβ-step at(15.3.1) to be moved below(15.3.1.2.1), too; simply because its principal
β-formula is the side formula of theγ-step.

Indeed, if we replace theδ+-rules withδ−-rules, the non-permutability of theβ- and theδ+-
steps is hidden behind the well-known non-permutability oftheγ- and theδ−-steps, cf. § 2. Only
when the latter non-permutability is removed by replacing theδ−-rules withδ+-rules, the former
becomes visible.



19

5.3 Freeδ+-Variables can Escape their Quantifiers’ Scopes

The non-permutability of theβ- andδ+-steps is closely related to the following strange aspect
of theδ+-rules, which they share with theδ++

-rules [9], theδ∗-rules [7], and theδ∗
∗

-rules [11],
but not with theδε-rules [16] and theδ−-rules. While soundness of both theδ−- andδ+-rules
and preservation of solutions of theδ−-rules are immediate, the preservation of solutions of the
δ+-rules requires the restriction of the values of the freeδ+-variables by choice-conditions [42,
Theorem 2.49]. Although there is no space here for introducing the semantics of the several kinds
of free variables of [42], the reader may grasp the idea of thefollowing example, namely that a
solution forxγ that makes the lower sequent true, may make the upper sequentfalse:

Example 5.1 (Reduction & Liberalizedδ, [42, Example 2.29])
In [42, Example 2.8], aδ+-step reduces ∀y. ¬P(y), P(xγ), . . .

to ¬P(yδ+), P(xγ), . . .

with the empty variable-conditionR := ∅.

Let us first argue semantically: The lower sequent is(e,S)-valid for the(S, R)-valuatione given
by

e(xγ)(δ) := δ(yδ+

),

which sets the value ofxγ to the value ofyδ+. The upper sequent, however, is not(e,S)-valid
whenPS(a) is TRUE andPS(b) is FALSE for somea, b from the universe of the structureS.
To see this, take some valuationδ with δ(yδ+) := b. Thenxγ andyδ+ both evaluate tob, the lower
sequent toTRUE, FALSE, and the upper sequent toFALSE, FALSE.

No matter whether this semantical argumentation can becomeclear here, the following syn-
tactical variant will do similarly well: After applying theR-substitution

µ+ := {xγ 7→yδ+},

the lower sequent is a tautology, whereas the upper sequent is not.

This cannot happen with theδ−-rules: Their application instead of theδ+-rules adds{(xγ, yδ )}
to the variable-condition, thereby blocking

µ− := {xγ 7→yδ },

simply becauseµ− is no{(xγ, yδ )}-substitution, cf. Definition 3.1.

From a semantical point of view, however, thee displayed above is no(S, R)-valuation for
the extended variable-condition anymore.

Roughly speaking, viaµ+, theδ+-variableyδ+ escapes the scope of the quantifier∀y on the bound
variabley which was eliminated by the introduction ofyδ+. At least with matrix calculi and
indexed formulas trees [2, 37], this “escaping” is a naturalway to talk about this strange liberality
of theδ+-rule. And it also happens in Figure 3 of the proof of(lim+): Taking the tree of Figure 3
to be an indexed formula tree, roughly speaking, the quantifier for δδ+

g is situated at the term
position(15.3.1.2), but, viaσ, it escapes to term position(15.3.1.1).
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5.4 δ++

instead ofδ+

Let us see how the proof of(lim+) would look like with theδ++

-rules [9] as the onlyδ-rules
available. This does not change anything in the proof as given in § 4, but allows us to use the
identical freeδ+-variableδδ+

g again when repeating theδ-step which introduced it. Thus, starting
from (15.3.1.1) of § 4.3, we can repeat some of the steps done in proof of(15.3.1.2), namely
“ δ+

0 (δδ+

g ), α2
0 ” of Figure 3, but now as “δ++

0 (δδ+

g ), α2
0 ”. Note that theδ+-rules would allow

δ+
0 (δδ+

G) only, with newδδ+

G. The resulting sequent is

(15.3.1.1.1): 0<min(δδ+

f , δδ+

g ), Ω

It is like (15.3.1.2.1) of § 4.3, but with theβ2-side formula of the criticalβ-step replaced with the
β1-side formula 0<min(δδ+

f , δδ+

g ). This formula admits to close this branch with the formulas
0≮δδ+

f and 0≮δδ+

g (as listed inΩ of Figure 2), applying lemma(4) of Figure 2 as at the end of
§ 4.6.

Notice that this proof with theδ++

-rules does not have a higher number ofγ-steps than the
proof attempt failing in § 4.5. Also the maximum number ofδ-steps per formula andper pathis
still 1. Nevertheless, the multiple expansion of the sameδ-formula in different paths is somehow
counter-intuitive and nothing a working mathematician would expect. In indexed formula trees
based on theδ++

-rules, allδ-formulas are treated only once. This again means that thesematrix
versions are more human-oriented than the tableau or sequent versions.
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6 Proof of the Non-Permutability of β and δ+

As we have seen in § 5.2, the non-permutableβ-step necessarily follows aγ-step that would be
non-permutable without the liberalization fromδ− to δ+. It follows indeednecessarily, because
the principal formula of theβ-step is the side formula of theγ-step. Although

• theγ-stepγ0(min(δδ+

f , δδ+

g )) is permutable with the liberalizedδ+-stepδ+
0 (δδ+

g ),

• theγ-stepγ0(min(δδ

f , δδ

g )), however, is non-permutable with theδ−-stepδ−0 (δδ

g ),

and even with the liberalization

• theβ-step is still non-permutable with theδ+-stepδ+
0 (δδ+

g ).

As the principal formula of theβ-step can be regenerated by a second expansion of the principal
formula of theγ-step, we cannot prove the non-permutability unless we restrict theγ-multiplicity.
But, according to the description of the notion of non-permutability in § 2, we may indeed restrict
the γ-multiplicity, in which case the crucial step, namely Lemma4.1, admits the following se-
mantical proof.

6.1 Proof of Lemma 4.1 at the end of § 4.5

Let us remove the threeγ-formulas which form the sequentΓ (cf. Figure 2) from the sequents
(15.1), (15.2) (cf. § 4.2), and(15.3.1.1) (cf. § 4.3). As theseγ-formulas were already once ex-
panded at(13) and(14) (cf. Figure 3), this removal represents a restriction of theγ-multiplicity
of the removedγ-formulas to1, and results in the following sequents (after some reordering):

(15.1\Γ+): 0<εγ

f , 0≮εδ ,

¬

(

0<εγ

g ⇒ ∃δg>0. ∀xg 6=xδ

0 .

(

|gδ (xg)−yδ

g | < εγ

g

⇐ |xg−xδ

0 | < δg

) )

,

0< min(δδ+

f , δδ+

g ) ∧ ∀x 6=xδ

0 .

(

|(f δ (x)+gδ (x))−(yδ

f +yδ

g )| < εδ

⇐ |x−xδ

0 | < min(δδ+

f , δδ+

g )

)

(15.2\Γ+): 0<εγ

g, 0≮εδ ,

¬∃δf>0. ∀xf 6=xδ

0 .

(

|f δ (xf )−yδ

f | < εγ

f

⇐ |xf−xδ

0 | < δf

)

,

0< min(δδ+

f , δδ+

g ) ∧ ∀x 6=xδ

0 .

(

|(f δ (x)+gδ (x))−(yδ

f +yδ

g )| < εδ

⇐ |x−xδ

0 | < min(δδ+

f , δδ+

g )

)

(15.3.1.1\Γ+): 0< min(δδ+

f , δδ+

g ), 0≮εδ ,

¬

(

0<δδ+

f ∧ ∀xf 6=xδ

0 .

(

|f δ (xf)−yδ

f | < εγ

f

⇐ |xf−xδ

0 | < δδ+

f

) )

,

¬∃δg.

(

0<δg ∧ ∀xg 6=xδ

0 .

(

|gδ (xg)−yδ

g | < εγ

g

⇐ |xg−xδ

0 | < δg

) )

The related variable-conditionR is shown in Figure 5 (without the dotted edges) and the current
R-choice-conditionC is given as
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xδ+ 7→ ¬

(

xδ+ 6=xδ

0 ⇒

(

|(f δ (xδ+

)+gδ (xδ+

))−(yδ

f +yδ

g )| < εδ

⇐ |xδ+−xδ

0 | < min(δδ+

f , δδ+

g )

))

,

δδ+

f 7→

(

0<δδ+

f ∧ ∀xf 6=xδ

0 .

(

|f δ (xf)−yδ

f | < εγ

f

⇐ |xf−xδ

0 | < δδ+

f

))

,

δδ+

g 7→

(

0<δδ+

g ∧ ∀xg 6=xδ

0 .

(

|gδ (xg)−yδ

g | < εγ

g

⇐ |xg−xδ

0 | < δδ+

g

))































It now suffices to show that there is no proof of(15.1\Γ+), (15.2\Γ+), and(15.3.1.1\Γ+) with
theδ−- andδ+-rules as the onlyδ-rules available.

We do this with a trivial transformation given by the substitution

ν := {δδ+

f 7→δδ

f , δδ+

g 7→δδ

g }

of an assumed proof of(15.1\Γ+), (15.2\Γ+), and(15.3.1.1\Γ+) on the one hand, and with a
deviation over invalidity and soundness on the other hand, as follows:

Instantiating the sequents(15.1\Γ+), (15.2\Γ+), and(15.3.1.1\Γ+) by ν we get the sequents

(15.1\Γ−): 0<εγ

f , 0≮εδ ,

¬

(

0<εγ

g ⇒ ∃δg>0. ∀xg 6=xδ

0 .

(

|gδ (xg)−yδ

g | < εγ

g

⇐ |xg−xδ

0 | < δg

) )

,

0<min(δδ

f , δδ

g ) ∧ ∀x 6=xδ

0 .

(

|(f δ (x)+gδ (x))−(yδ

f +yδ

g )| < εδ

⇐ |x−xδ

0 | < min(δδ

f , δδ

g )

)

(15.2\Γ−): 0<εγ

g, 0≮εδ , ¬∃δf>0. ∀xf 6=xδ

0 .

(

|f δ (xf)−yδ

f | < εγ

f

⇐ |xf−xδ

0 | < δf

)

,

0<min(δδ

f , δδ

g ) ∧ ∀x 6=xδ

0 .

(

|(f δ (x)+gδ (x))−(yδ

f +yδ

g )| < εδ

⇐ |x−xδ

0 | < min(δδ

f , δδ

g )

)

(15.3.1.1\Γ−): 0< min(δδ

f , δδ

g ), 0≮εδ ,

¬
(

0<δδ

f ∧ ∀xf 6=xδ

0 .
(

|f δ (xf )−yδ

f | < εγ

f ⇐ |xf−xδ

0 | < δδ

f

) )

,

¬∃δg.

(

0<δg ∧ ∀xg 6=xδ

0 .

(

|gδ (xg)−yδ

g | < εγ

g

⇐ |xg−xδ

0 | < δg

) )

The conjunction of these sequents is invalid according to the standard semantics for parameters
as well as the semantics of [42]. This can be seen by

{ δδ

f 7→1, δδ

g 7→0, εδ 7→1, xδ

0 7→0, yδ

f 7→0, yδ

g 7→0, f δ 7→ λx.0, gδ 7→ λx.0 }.

Indeed, if we instantiate(15.1\Γ−), (15.2\Γ−), and(15.3.1.1\Γ−) with this substitution and
thenλβ-normalize and simplify these sequents by equivalence transformations in the model of
the real numbersR, we get the three sequents

0<εγ

f , false, ¬

(

0<εγ

g ⇒

(

0<εγ

g

⇐ ∀δg>0. ∃xg 6=0. |xg|<δg

) )

, false
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0<εγ

g, false, ¬

(

0<εγ

f

⇐ ∀δf>0. ∃xf 6=0. |xf |<δf

)

, false

false, false, ¬(0<εγ

f ⇐ ∃xf 6=0. |xf |<1), ¬

(

0<εγ

g

⇐ ∀δg>0. ∃xg 6=0. |xg|<δg

)

Further equivalence transformation inR results in the three contradictory sequents

0<εγ

f

0<εγ

g, 0≮εγ

f

0≮εγ

f , 0≮εγ

g

Thus, as our calculus is sound, it cannot prove(15.1\Γ−), (15.2\Γ−), and(15.3.1.1\Γ−) in
parallel.

As theδ+-rules treat freeδ−- and freeδ+-variables alike, and as theδ−-rules generate a smaller
variable-condition for freeδ−- instead of freeδ+-variables in the principal sequents (cf.Vγδ+(. . .)
in Figure 1), a proof of(15.1\Γ+), (15.2\Γ+), and(15.3.1.1\Γ+) would immediately translate
into a proof of(15.1\Γ−), (15.2\Γ−), and(15.3.1.1\Γ−) with unchanged inference rules, just
by application of the substitutionν.

Thus, we conclude that there is no proof of(15.1\Γ+), (15.2\Γ+), and(15.3.1.1\Γ+). q.e.d.

Note that the above trivial proof transformation does not result in a sound proof if we replace the
δ+-rules with theδ++

-rules: Indeed, theδ++

-rules may re-useδδ+

g , but notδδ

g .
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6.2 Defining Permutability

A reader with a good mathematical intuition can and should directly consider the non-permuta-
bility of β- andδ+-steps as a corollary of Lemma 4.1 proved above. A formalist,however, may
well require some rigorous definition of permutability. There were good reasons not to present a
formal definition of permutability earlier in this paper:

1. The logically weakest reasonable definitions of permutability I can think of, still result in
the non-permutability we want to show. Indeed, we may chooseany definition of per-
mutability that contradicts Lemma 4.1. For instance, as it strengthens our non-permuta-
bility result, we should (and will) use a notion that is weaker than the following standard
one: Two inference stepsS1 andS0 arelocally directly permutableif replacing an occur-
rence of S0

Sl S1 Sr
in a closed proof tree (whereS1 is also applicable instead ofS0) with

S1
S0
Sl

S0
S0
Sr

results—mutatis mutandis—in a closed proof tree.

2. From the viewpoint of philosophy of mathematics it is bad practice to become too con-
crete with intuitively clear notions. For example, we should not say precisely which set
theory we use on the meta-level as long as Zermelo–Fraenkel,Neumann–Bernays–Gödel,
Quine’s NF, Quine’s ML, Tarski–Grothendieck and non-wellfounded set theories [1, 8]
&c. all satisfy our needs. Although the case of permutability is not as self-evident as the
case of set theory, the low rigor of our notion of permutability was sufficient until now.
Indeed, there is no definition of permutability or non-permutability in Wallen’s whole book
[37], although the avoidance of non-permutability is one ofits main subjects, cf. § 2.

3. My formalization of the notion of permutability depends on the notions of aprincipal meta-
variableof aninference ruleand is somewhat technical and difficult, even in the rudimental
form we will present below.

To avoid clutter, we define permutability only for sequent calculi. The definition for tableau
calculi is analogous. Formally, for each inference rule, wehave to define which meta-variables are
principal and which are not. On the one hand, the meta-variables of the principal formulas have
to be principal, and an instantiation of all principal meta-variables must determine the existence
of an instantiation of the other meta-variables such that the inference rule becomes applicable.
On the other hand, it is not appropriate to define all meta-variables of an inference rule to be
principal, because this results in a general non-permutability of inference steps.

Definition 6.1 (Principal Meta-Variables)
In our inference rules of Figure 1 in § 3.1 exactly the meta-variablesA, B, x, t, xδ , andxδ+ are
principal; and the other meta-variables, i.e.Γ , Π, are not principal. In lemma application steps as
explained in § 3.2, theAk andCi are principal, whereas theBj are not. For technical simplicity,
we ignore our definitional expansion steps on∀, ∃, lim, assuming a complete expansion at the
calculus level.
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Definition 6.2 (Inference Step)

A proof treeis a labeled tree whose root is labeled with a sequent and whose paths are labeled
with sequents and inference steps alternately, such that there is a proof history of applicable
inference steps (expansion steps) and global applicationsof R-substitutions on freeγ-variables
(which instantiate the freeγ-variables of their domains in all occurrences in all labelsof the proof
tree, i.e. in all sequentsand in all inference steps), starting from a proof tree consisting only of a
root node. (Of course, the parent and child nodes of a node labeled with an inference step must
be labeled with the conclusion and the premises of this inference step, respectively.)

A proof tree isclosed if all its leaves that are not labeled with inference steps are labeled with
axioms.

An inference stepis a triple(I, π, ̺) labeling a node in a proof tree whereI is an inference rule
andπ and̺ are substitutions of the principal and non-principal meta-variables ofI, respectively;
so that I(π⊎̺) describes the inference step with parent (conclusion) and child (premise) nodes
as an instance of the inference ruleI.

Note that in Definition 6.2 we indeed have to refer to the proofhistory because theδ+-step
δ+
0 (δδ+

g ) applied to(15.3.1) at the beginning of § 4.6 would not be admitted if we applied the
R-substitutionσ before expanding the proof tree by theδ+-step. This is becauseδ+-steps have to
introducenewfreeδ-variables, andσ would already introduceδδ+

g before.

Roughly speaking, permutability of two stepsS1 andS0 simply means the following:In a closed
proof tree whereS0 precedesS1 and whereS1 was already applicable beforeS0, we can do the
stepS1 beforeS0 and find a closed proof tree nevertheless.

Definition 6.3 (Permutability)

Let (I1, π1, ̺1) and(I0, π0, ̺0) be two inference steps.

(I1, π1, ̺1) and(I0, π0, ̺0) arepermutable for a given thresholdm for γ-multiplicity if

for any closed proof treeT with γ-multiplicity m satisfying that

1. ni is an inference node inT labeled with(Ii, πi, ̺i), for i ∈ {0, 1},

2. n0, n1 are, in this order and with only a sequent node in between, on the same path inT
from the root to a leaf, and

3. there is a substitutionφ such that the parent sequents (conclusions) ofI0(π0⊎̺0) and
of I1(π1⊎φ) are identical;

there is a closed proof tree withγ-multiplicity m which differs fromT only in the subtree starting
with n0 and the root label of this subtree is(I1, π1, φ).

(I1, π1, ̺1) and(I0, π0, ̺0) arepermutableif they are permutable for any given thresholdm ∈ N

of γ-multiplicity.

I1 andI0 aregenerally permutableif all inference steps of the forms(I1, π1, ̺1) and(I0, π0, ̺0)
are permutable.
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Figure 7: Closed proof tree with non-permutableβ andδ+-step
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Example 6.4
For inferring the non-permutability ofβ andδ+ from Lemma 4.1, we have to instantiate Defini-
tion 6.3 as follows:

n0 ≈ (15.3.1)−→(15.3.12) (cf. § 4.6)
I0 is (δ+,¬∃) of Figure 1 in § 3.1

π0 =



















x 7→ δg;
xδ+ 7→ δδ+

g ;

A 7→

(

0<δg ∧ ∃xg 6=xδ

0 .

(

|gδ (xg)−yδ

g | <
εδ

2

⇐ |xg−xδ

0 | < δg

) )



















̺0 =























Γ 7→









0<min(δδ+

f , δδ+

g )

∧ ∀x 6=xδ

0 .





∣

∣

∣

∣

(f δ (x)+gδ (x))
−(yδ

f +yδ

g )

∣

∣

∣

∣

< εδ

⇐ |x−xδ

0 | < min(δδ+

f , δδ+

g )













, . . . ;

Π 7→ . . .























n1 ≈ “a new step of an alternative closed proof tree that results from the closed proof
tree of § 4.6 by permuting theβ-step at(15.3.12) and the stepsα2, γ0(x

δ+)2 applied
to (15.3.1). This alternative proof tree is depicted in Figure 7 above. (For pedagogical
reasons only, we delayed the potentially sinfulβ-step until we were forced to do it.)”

I1 is (β,∧) of Figure 1 in § 3.1

π1 =















A 7→ 0< min(δδ+

f , δδ+

g );

B 7→ ∀x 6=xδ

0 .





∣

∣

∣

∣

(f δ (x)+gδ (x))
−(yδ

f +yδ

g )

∣

∣

∣

∣

< εδ

⇐ |x−xδ

0 | < min(δδ+

f , δδ+

g )



















Now, the non-permutability of the criticalβ- andδ+-steps of Example 6.4 follows from Lem-
ma 4.1, because there is no alternative proof tree which differs only in the subtree starting atn0

and having a new subtree there starting with the criticalβ-step. The deeper reason for this is that
the instantiated freeγ-variables occur outside the subtree of theδ+-step, cf. § 5.3. According
to Lemma 4.1, there is no proof of(15.1), (15.2) and(15.3.1.1) with the instantiation byσ given
by the failed proof attempt. Since the partial instantiation byσ agrees with the full instantiation
in the closed proof tree of the successful proof of Figure 7, we have the required witness for the
non-permutability ofβ andδ+, indeed. Thus, as corollaries we get:

Corollary 6.5 On a threshold forγ-multiplicity of 1, the inference steps

((β,∧), π1, ̺1) and ((δ+,¬∃), π0, ̺0)

(as labels of the nodesn1 andn0, resp.) as given in Example 6.4 are not permutable.

Theorem 6.6 β- andδ+-steps are not generally permutable,

• neither in the sequent calculus of [42] (cf. our Figure 1 in § 3.1),

• nor in standard free-variable tableau calculi withδ+-rules as the onlyδ-rules, such as the
ones in [14, 18].
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7 Conclusion

Even with more liberalizedδ-rules available today (such asδ++

-, δ∗-, δ∗
∗

-, andδε-rules, cf. § 5.3),
the δ+-rules stay important, both conceptually and for stepwise presentation and limitation of
complexity in teaching, research, and publication. For instance, theδ+-rules are the free-variable
tableau rules used in the current edition of Fitting’s excellent textbook [14]. Moreover, until very
recently [12] nobody realized that theδ∗- andδ∗

∗

-rules were unsound in their original publications
(incl. their corrigenda!).

When theδ+-rules occurred first in [18], they seemed so simple and straightforward. Today,
a dozen years later, they are still not completely understood. We have shown that theδ+-rules
have unrealized properties yet, such as the non-permutability of β- andδ+-steps. Indeed, there
are severalopen problems, such as, from theoretical to practical:

7.1 Complexity?

Does the non-elementary reduction in proof size [7] from theδ−- to theδ++

-rules mean a non-
elementary reduction in proof size fromδ− to δ+, or fromδ+ to δ++

(exponential at least [9]), or
both?

7.2 More Non-Permutabilities?

Why was the non-permutability ofβ andδ+ not noticed before? May there be others around?

7.3 Optimization?

Although the non-permutability ofβ- andδ+-steps is not visible with non-liberalizedδ-rules and
not serious in theory with further liberalizedδ-rules, it is always present and of major importance
in practice; both for efficiency of proof search and for human-oriented proof presentation. The
same holds for the optimization problem of finding a good order of application for theβ-steps.

7.4 Are the known notions of Completeness relevant in practice?

The mere existence of a proof is not sufficient for mathematics assistance systems, where we
need the existence of a proof that closely mirrors the proof the mathematician interacting with the
system has in mind, searches for, or plans.

Freshmen who think that theδ−-rules would admit human-oriented proof construction should
try to do the proof of(lim+) with the δ−-rules as the onlyδ-rules. There will be more reasons
and occasions to use the presentation of this complete and interesting example proof for further
reference!

I must admit, however, that I do not know how to grasp a practically relevant notion of com-
pleteness. The sequent calculus of our inductive theorem prover QUODL IBET [6] has been
improved over a dozen years of practical application to admit our proofs; and still needs and gets
further improvement.
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The automatic generation of a non-trivial proof for a given input conjecture is typically not
possible today and probably will never be. Thus, besides some rare exceptions—as the auto-
mation of proof search will always fail on the lowest logic level from time to time—the only
chance for automatic theorem proving to become useful for mathematicians is a synergetic in-
terplay between the mathematician and the machine. For thisinterplay—to give the human user
a chance to interact—the calculusitself must be human-oriented. Indeed, it does not suffice to
compute human-oriented representations; not in the end, and—as the syntactical problems have
to be presented accurately—also not intermediately in a user interface.

Thus, also the possibility to overcome the non-permutability of β andδ+ by replacing the
δ+-rules withδ++

-rules as described in § 5.4 is not adequate for human-oriented reasoning, for
which we need matrix calculi and indexed formula trees [2, 37] to admit a lazy sequencing of
β-steps, so that the connection-driven path construction may tell us in the end, which sequencing
of theβ-steps we need.4

7.5 Is Soundness sufficient in practice?

The notion ofsafeness(soundness of the reverse inference step, for failure detection after gener-
alization, e.g. for induction) seems to become standard [3,23, 38, 42]. And in [39, 42] we have
also added the notion ofpreservation of solutions. This means that the closing substitutions on
the rigid variables of the sub-goals must solve the input theorem’s rigid variables, which make
sense as placeholders for concrete bounds and side conditions of the theorem which only a proof
can tell.

7.6 Conclusion

Although more useful for proof search in classical logic than Hilbert [19] and Natural Deduction
calculi [15], sequent [15] and tableau calculi [14] are still not adequate for a synergetic interplay
of human proof guidance and automatic proof search [42], which we hope to achieve with matrix
calculi such as CORE [2].

As the automation of proof search will always fail on the lowest logic level from time to time,
be aware:The fine structure and human-orientedness of a calculus doesmatter in practice!
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Notes

Note 1 A scornful anonymous referee of a previous version of this paper (who was the only one
to reject it for the 14th Int. Conf. on Tableaus and Related Methods, Koblenz, 2005) wrote:

“For once a positive comment: The first lines of page 12 finallycontain a very inter-
esting insight, namely that different non-permutabilities can hide each other.”

Note 2 Indeed, in [27] we read:

“ ML ’s execution profiler reported that the sharing mechanism, meant to boost effi-
ciency, was consuming most of the run time. The replacement of structure sharing
by copying made ISABELLE simpler and faster. Complex algorithms are often the
problem, not the solution.”
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Note 3 I did not succeed in finding a really satisfying definition of non-local permutability that
fits the non-local situation of the failure of the(lim +) proof as presented in the lecture courses [4, 43].
The problem was to permute the criticalβ-step from below the criticalδ+-steps to a place far up
above theδ+-steps. And on this partial path fromβ down to δ+ there were other inference
steps which may or may not contribute to the non-permutability. Thus, instead of globalizing
the notion of permutability I localized the example proof; although the original version had
pedagogical advantages.

Furthermore, note that it may be possible to demonstrate thepermutability problems of the
β-rule with slightly smaller artificial examples. But we prefer a practical example to demonstrate
the practical difficulties and discuss some less formal softaspects which may be more important
than the hard non-permutability results of this paper. Moreover, because of its many interesting
aspects, this proof will be useful as a standard example for further reference. If you are not in
love with formal proofs, I do apologize for the inconvenience of my decision and ask you to send
me an E-mail of complaint if you will not have learned something that is worth your efforts in
the end. If I receive at least three E-mails seriously stating that these efforts were in vain but the
non-permutability deserves proper publication, I will tryto produce a version of this paper with a
somewhat smaller artificial example.

Note 4 An anonymous referee of a previous version of this paper wrote:

“The arguments against the use ofδ++

(that the proofs found this way are not human-
oriented) are not convincing. It is well-known that improved Skolemization rules can
be simulated with applications of the cut rule. So one could proceed as follows.
Useδ++

for proof generation, for presentation insert the respective cut steps. This
way any forms of sophisticated Skolemization could be replaced by case distinctions,
which are easily understandable by any human user.”

The point that is missed in this critique is the following. The automatic generation of non-
trivial proofs is typically not possible today and probablywill never be. Thus, besides some rare
exceptions—as the automation of proof search will always fail on the lowest logic level from time
to time—the only chance for automatic theorem proving to become useful for mathematicians is
a synergetic interplay between the mathematician and the machine. For this interplay—to give
the human user a chance to interact—the calculusitself must be human-oriented. Thus, it does
not suffice to compute human-oriented representations; notin the end, and—as the syntactical
problems have to be presented accurately—also not intermediately in a user interface.
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