
Mandatory versus Forbidden Literals in Simplification
with Conditional Lemmas

Tobias Schmidt-Samoa

FB Informatik, Tech. Univ. Kaiserslautern, Germany
schmidt@informatik.uni-kl.de

Abstract. Due to its practical importance, context-dependent simplification with conditional lem-
mas has been studied for three decades, mostly under the label “contextual rewriting”. We develop
novel heuristics restricting the relief of conditions with mandatory literals in the goals and obliga-
tory literals in the lemmas. Our case studies in the field of rewrite-based inductive theorem proving
are encouraging.

1 Introduction

We are concerned with equality-based inductive theorem proving in clausal first-order
logic with implicitly universally quantified variables using atoms over the following
predefined predicate symbols: equality atoms (symbol �), definedness atoms (def) to
establish the domain of partially defined operators, and order atoms (�) to explicitly
represent order constraints in a fixed wellfounded order.

When performing (mutual) inductive proofs for lemmas ϕ1 ��������� ϕn with a rewrite-
based theorem prover, there are at least three important tasks:

1. finding appropriate inductive case splits;
2. speculating appropriate auxiliary lemmas;
3. simplifying the goals from Task 1 to valid formulas using the lemmas from Task

2 and possibly smaller instances of ϕ1 ��������� ϕn as induction hypotheses.

Task 3 provides the best chances for automation. Since the simplification process may
be very time-consuming, automation has to be done carefully. Most work during the
simplification process is caused by the application of (conditional) lemmas. In our
case studies, they cause at least 50% of all successful proof steps. The process for
applying a lemma can be divided into two steps: choosing a lemma; and checking the
lemma for applicability and relieving its conditions. The first step can be supported
by rippling techniques [5]. The relief test during the second step has to be done by
recursively calling the simplification process. We will present a novel extensive but
efficient relief test. By “extensive”, we mean that the test should not fail too often if
the lemma application may contribute to the proof (see Section 3).

To perform proofs of lemmas, we use a sequent calculus, where the sequents
are just lists of literals, i.e. just clauses. We apply the inference rules reductively:
Each inference rule reduces a goal (conclusion) to a (possibly empty) list of subgoals
(premises). Roughly speaking, a goal consists of a clause. Consider the application

of a lemma to rewrite a subterm of a goal literal by replacing the left-hand side of an
equation in the lemma by its right-hand side. More precisely, a clause

�
l1 ��������� ln 	 can

be interpreted as an implication l1
�������
 ln
 1 � ln, where l is the conjugate (classical
negation) of l. A lemma is called conditional if n � 1. As in [11], we fix one literal
in the lemma clause by calling it the head literal; the conjugates of the other literals
are called condition literals. For each inference step, we also fix one literal in the
goal clause, called focus literal; the conjugates of the other literals are called context
literals.

Rewriting of a goal clause with a lemma clause instantiated by a substitution σ is
only possible if the head literal of the lemma is an equation s � t (or t � s) and sσ is
equal to a subterm of the focus literal of the goal clause. The subterm is then replaced
with tσ resulting in a rewrite subgoal. Furthermore, the instantiated condition literals
have to be fulfilled in the “context”: For each instantiated condition literal, a condition
subgoal is created that essentially extends the original goal by the instantiated con-
dition literal.1 If an instantiated condition literal is equal to a context literal2 we say
that it is directly fulfilled in the goal and the context literal is called a cut-off literal
as it cuts off the subgoal that otherwise would have to be created for the condition
literal. A lemma is directly applicable to a goal if all condition literals are directly
fulfilled in the goal. Following [6], literals of a goal clause are called principal in an
application of an inference rule if their presence (in the conclusion) is required for
the applicability of this inference rule. In a rewrite step, the principal literals are the
focus literal and the cut-off literals.

In general, the relief test for a condition subgoal is performed by a recursive call
of the simplification process. Thus, the extent and efficiency of the test depend on the
simplification process. Various simplification processes differ e.g. in the way they use
equality information. NQTHM [4] and ACL2 [8] use the cross fertilization technique
while RRL [11] uses a constant congruence closure algorithm. In RDL[1], decision
procedures can be used by the simplification process.

The literals that can be used during the relief test have to be restricted since the
condition subgoals contain the original goal. Thus, without restrictions the relief test
may result in an infinite process: the lemma can be applied to the condition subgoals
over and over again. We will concentrate on the question which literals can be used
during the relief test.

Practically, there are two major ways to restrict the literals in the relief test by
marking literals in the goal clause:

1. In previous approaches known from the literature such as Contextual Rewriting in
[11] and Case Rewriting in [3], literals are excluded from certain condition sub-
goals. This can be modeled by marking these literals as forbidden. The meaning

1 If we use partially defined operators or apply a lemma as induction hypothesis, additional definedness and
order subgoals have to be created. A lemma may also be applied for subsumption if the head literal matches
the focus literal, resulting in the same subgoals without the rewrite subgoal.

2 Instead of pure syntactic equality, we first perform some additional normalizing transformations on the literals.

is that a forbidden literal of a goal must not be principal in the application of an
inference rule (unless it is a cut-off literal).

2. We, however, will mark subgoal literals as mandatory: If we apply an inference
rule to a goal, one of the mandatory literals must be principal.

By marking literals as mandatory instead of forbidden, we overcome some difficul-
ties of previous approaches [11, 3]: As we can use every literal during the relief test
provided that there is also one mandatory literal involved, we can achieve a more ex-
tensive relief test. Furthermore, we develop techniques to restrict the relief test in a
user-defined way with obligatory literals to gain efficiency.

2 A Simple Example

The following example presents a proof pattern that can be handled by our novel
heuristics but cannot be proved by previous approaches summarized in Section 3.2.
It is taken from our case study that the greatest common divisor (gcd) of two nat-
ural numbers is idempotent, commutative and associative (at least if the numbers
are unequal to zero). We present our examples in the style of our inductive theorem
prover QUODLIBET [2]. It admits partial definitions of operators over free construc-
tors using (possibly non-terminating) positive/negative-conditional equations as well
as constructor, destructor, and mutual recursion. Inductive validity is defined as valid-
ity in the class of so-called data models, the models that do not equalize any different
constructor ground terms.

Example 1. Let the specification consist of two sorts: Bool for the boolean values
with constructors true and false; Nat representing the natural numbers with con-
structors 0 for zero and s for the successor function. We consider the defined opera-
tors +, *, -, div, gcd, leq and div-p that represent the corresponding arithmetic
operations on natural numbers, a less-or-equal and a divisibility predicate on natu-
ral numbers. Due to lack of space we only consider the formal specification of gcd
given by Axioms (1) to (4). The gcd of two natural numbers is defined iff one of its
arguments is unequal to zero. If exactly one of the arguments is unequal to zero this
argument is the result of the operation. Otherwise, we recursively call gcd with the
smaller argument and the difference of greater and smaller argument which ensures
that the definition is terminating.
�
1 ��� gcd � x � y ��� x � y �� 0 � x � 0 ��
2 ��� gcd � x � y ��� y � x �� 0 � y � 0 ��
3 ��� gcd � x � y ��� gcd

�
x � - � y � x ����� leq � x � y ���� true � x � 0 � y � 0 ��

4 ��� gcd � x � y ��� gcd
�
-
�
x � y ��� y ��� leq � x � y ��� true ��� def leq � x � y ��� x � 0 � y � 0 �

As auxiliary lemma for the associativity of gcd, we want to prove:
�
5 ��� div-p � gcd � x � y ��� z ��� true � div-p � x � z ���� true � x � 0 �

We assume that the following lemmas are activated for automatic applications:

�
div-p � gcd � x y !" z ! # true div-p � x z !�$# true x # 0 %

lemma-rewrite (8)

�
def gcd � x y !
div-p � gcd � x y !" z !&# true
div-p � x z !�$# true
x # 0 %

lemma-subs (6)

�
div-p � gcd � x y !" x ! # true ' def gcd � x y !(
div-p � gcd � x y !" z !&# true
div-p � x z !�$# true
x # 0 %

lemma-rewrite (7)

�
y $# 0 div-p � gcd � x y ! x !&# true ' def gcd � x y !"
div-p � gcd � x y !" z !�# true div-p � x z !�$# true x # 0 %

axiom-rewrite (1)

�
y $# 0 div-p � x x !)# true ' def gcd � x y !"
div-p � gcd � x y ! z !�# true div-p � x z !�$# true x # 0 %

axiom-rewrite (1)

�
y $# 0 div-p � x x !�# true ' def gcd � x y !"
div-p � x z !�# true div-p � x z !�$# true x # 0 %

compl-lit

�
y # 0 true # true ' def gcd � x y !(div-p � gcd � x y !" z !&# true
div-p � x z !�$# true x # 0 %

-decomp

�
div-p � gcd � x y !" x !�$# true ' def gcd � x y !(
true # true
div-p � x z !�$# true
x # 0 %

-decomp

Fig. 1. Proof State Tree for Goal (5) of Example 1

*
6 +�, def gcd * x - y +�- x . 0 /*
7 +�, div-p * gcd * x - y +�- x +�. true - y . 0 /*
8 +�, div-p * x - z +�. true - div-p * x - y +�0. true - div-p * y - z +�0. true /

For each of the axioms and lemmas, we choose the first literal as head literal for the
following reasons: The axioms define operator gcd using the first literal as rewrite
rule from left to right. Lemma (6) contains a definedness atom as first literal. In
Lemma (7), the left-hand side of the first literal is the only term that binds all variables
of the lemma. In Lemma (8), the first literal is the positive atom in a Horn clause.

Figure 1 contains the whole proof state tree for Goal (5) as it is created by our
novel heuristics. A proof state tree consists of goal and inference nodes representing
the application of inference rules. The root goal node consists of the conjecture to be
proved and is displayed at the top of the proof state tree. The root goal node is rewrit-
ten by the conditional Lemma (8) using the substitution 1 x 2 gcd 3 x 4 y 564 z 2 z 4 y 2 x 7 .
The substitution can be determined by using the first literal of the root goal as focus
literal and matching the head literal to the focus literal. The uninstantiated extra vari-
able y can be bound by matching the third lemma literal to the second goal literal (see
Section 3.3). Then, the third lemma literal is directly fulfilled by the second goal literal
which itself is a cut-off literal. Thus, the first two goal literals are principal for the
application. In Figure 1, principal literals are underlined and mandatory literals are

framed. Our novel heuristics applies an inference rule automatically only if one of the
principal literals is also mandatory, i.e. if one of the underlined literals is also framed.
The application results in three new subgoals (from left to right):3 one definedness
subgoal (since the substitution binds a variable to a non-constructor term), one con-
dition subgoal and one rewrite subgoal. As there is a condition subgoal, the lemma is
not directly applicable. The definedness subgoal is proved by a direct application of
Lemma (6) for subsumption. Rewriting the condition subgoal with Lemma (7) leads
to another condition subgoal. For its proof we rewrite the second and fourth literal
with Axiom (1). Note that these literals have been the focus literals of the previous
lemma applications that have generated the considered condition subgoal. Thus, these
applications are only possible with our novel heuristics (see Section 3). Altogether,
we get a closed proof state tree, i.e. a proof state tree whose leaves are inference
nodes. Therefore, Lemma (5) is inductively valid provided that this holds true for the
applied lemmas. 8

3 Controlling the Application of Conditional Lemmas

Lemmas are provided to guide the proof process. On the one hand, they should be
checked for their contribution to a proof intensively to free the user from routine
work. On the other hand, heuristics have to control the applications to guarantee the
termination of the process within a reasonable amount of time. Thus, we have to
find the right balance between extent and efficiency. Note that in our domain neither
confluence nor termination properties can be assumed for rewriting with lemmas.

3.1 The Mandatory Literals Heuristics

Analyzing a performed proof, a proof step (i.e. the application of an inference rule)
may contribute to a proof for a goal in two ways: Firstly, no new subgoals are created
at all; thus, the goal is proved. Secondly, each subgoal contains new information in
the form of new (i.e. added or changed) literals that are needed for the proof (i.e.
become principal in a further contributing proof step). Otherwise, the proof step is
non-contributing and can be eliminated: If one subgoal can be proved without using
one of the new literals, this proof can also be used for the original goal. We aim at
avoiding non-contributing proof steps.

Definition 1 (Contribution of a Proof Step / Literal).
A proof step S of proof P for goal G contributes to P if every direct subgoal G 9 created
by S contains a new literal that contributes to the proof for G 9 in P. A literal of a goal
G contributes to proof P for G if it becomes principal for one contributing proof step
S of P.

3 This order is relevant insofar as we maximally downfold the definedness literals, the condition literals, and the
rewrite literal sσ :; tσ to the right, i.e. enhance the subgoals to the right with the negation of these literals to
the left.

In Example 1, the only non-contributing proof step is the first application of Ax-
iom (1) to rewrite the second literal. Indeed, this literal—the only new one—does not
contribute to the proof for its subgoal.

The notion of contribution captures what we want but is too inefficient: As con-
tribution of a proof step depends on the proof performed, it can only be checked after
the proof has been completed. But we can easily ensure that we perform only con-
tributing proof steps by using one of the new literals as principal literal in the next
proof step. To be able to define local restrictions on proof steps in a flexible way, we
introduce a mandatory marking on goal literals.

Restriction 1 (Caused by Mandatory Literals)
An inference rule may only be applied to a goal G with mandatory literals if one of
the mandatory literals is principal in this proof step.

If we mark only new literals in a subgoal as mandatory in a proof, it is ensured that
all proof steps contribute to that proof. But then, the proof search is too restrictive. It
will only find “linear” proofs: We can only apply those inference rules that also use
new literals introduced by the previous proof step. For a successful proof, however, it
may be necessary to apply inference rules “in parallel” that are not linearizable. Such
proofs are impossible with this strict usage of mandatory literals as the following
example illustrates.

Example 2. Given three boolean valued constants p1 � p2 � p3, we assume the activa-
tion of the following lemmas
�
9 ��� p1 � p3 � �

10 ��� p2 � p3 �
and want to prove goal
�
11 ��� p1 � true � p2 �� true �

The only way to prove Goal (11) is to rewrite p1 and p2 to p3. Then the resulting
subgoal is tautological as it contains complementary literals. But if we mark only new
literals as mandatory, this proof is prohibited since the second rewrite step does not
use a new literal. 8
Alternatively, if all literals are mandatory, the search space contains too many proof
steps that do not contribute to the proof. Our compromise is the following:

Heuristics 1 (Marking Mandatory Literals)
At the beginning of a proof attempt for a lemma every literal in the clause is marked
as mandatory. Thus, there are no restrictions for performing proof steps. For applica-
bility subgoals—i.e. definedness or condition subgoals—the literals of the parent goal
are not marked in the subgoal, but a new set of mandatory literals is introduced that
consists exactly of the new literals of the subgoal. For order subgoals, we mark only
the single new order atom as mandatory. For all other subgoals—i.e. rewrite subgoals
or subgoals created by other inference rules—however, the mandatory literals of the

parent goal stay mandatory in the subgoal and are supplemented with all new literals
of the subgoal.

With this heuristics we can perform rewrite steps even if they do not contribute to the
proof. This is also helpful for the speculation of auxiliary lemmas.

Example 1 (continued). In Figure 1, mandatory literals are framed, principal literals
are underlined. Thus, we can only apply an inference rule if at least one of the un-
derlined literals is also framed. The proof starts at the root goal node with all literals
marked as mandatory. After applying Lemma (8), the resulting definedness subgoal
has one mandatory literal—the first one—that is handled by the following subsump-
tion with Lemma (6). The mandatory literals of the condition subgoal—the second
subgoal—are the first two literals. Note that the repeated application of Lemma (8)
is prevented as none of its principal literals is mandatory anymore. Instead, the first
literal is handled by the following rewrite step with Lemma (7), that introduces the
first literal as the only mandatory literal for the new condition subgoal. This single
mandatory literal is used in the rewrite step with Axiom (1). As this inference rule
modifies the second literal of the resulting rewrite subgoal, it is added to the set of
mandatory literals. Analogously, literal four is added to this set after the next rewrite
step with Axiom (1). Finally, the inference rule compl-lit can be applied to the
rewritten subgoal although not both literals are mandatory. It suffices that one manda-
tory literal is principal for the application. Note that all literals in the rewrite subgoal
of the application of Lemma (8) are mandatory since the goal is not an applicability
subgoal (see Heuristics 1). This is justified by the fact that an infinite loop of the same
lemma application is already avoided because the original goal is not contained in the
new subgoal. 8
Example 3 extracts the proof pattern from Example 1 that cannot be proved with
Contextual Rewriting (see Section 3.2) but with our novel heuristics.

Example 3 ([11], simplified). Given three boolean valued constants q1 � q2 � q3, we
assume the activation of the following lemmas
�
12 ��� q1 � true �

q2 �� true �
�
13 �<� q1 � true �

q3 �� true �
�
14 �<� q2 � true �

q3 � true �
and want to prove goal
�
15 ��� q1 � true �

As Lemmas (12) and (13) are Horn clauses we use the first literal as head literal.
Lemma (14) does not suggest a head literal itself. We may use an arbitrary one or
both literals. Due to efficiency considerations and as the lemmas are symmetric in q2
and q3, we decide to activate just the first one.

Using mandatory literals, the proof is found automatically (see Figure 2a). In
the condition subgoal after applying Lemma (14), literal q1 � true can be used
as focus literal to rewrite q1 to true although this literal is not mandatory. This can
be done since the condition literal of the applied lemma is mandatory. 8

a) Rewriting with Mandatory Literals=
q1 > true ?

lemma-rewrite (12)

=
q2 > true @
q1 > true ?

lemma-rewrite (14)

=
q3 A> true @
q2 > true @
q1 > true ?

lemma-rewrite (13)

=
q3 A> true @
q2 > true @
true > true ?
> -decomp

=
q3 > true @
true > true @
q1 > true ?
> -decomp

=
q2 A> true @
true > true ?
> -decomp

b) Modeling Contextual Rewriting=
q1 > true ?

lemma-rewrite (12)

=
q2 > true @
q1 > true ?

lemma-rewrite (14)

=
q3 A> true @
q2 > true @
q1 > true ?

=
q3 > true @
true > true @
q1 > true ?
> -decomp

=
q2 A> true @
true > true ?
> -decomp

c) Modeling Case Rewriting of [3]=
q1 > true ?

lemma-rewrite (12)

=
q2 > true @
q1 > true ?

lemma-rewrite (13)

=
q3 > true @
q2 > true @
q1 > true ?

lemma-subs (14)

=
q3 A> true @
q2 > true @
true > true ?
> -decomp

=
q2 A> true @
true > true ?
> -decomp

Fig. 2. Proof State Trees for Example 3

For an extensive relief test, the following property would be useful: If a goal can be
proved by simplification without any restrictions on literals then it can also be proved
obeying the restrictions caused by mandatory literals. Unfortunately, this strong prop-
erty does not hold as will be shown in Example 4, a simple generalization of Exam-
ple 3.

The interaction of head literals in lemma clauses and mandatory literals in goal
clauses restricts the search space of the simplification process drastically: In most
cases, a lemma will only be applied to a goal if the head literal of the lemma is
mandatory in the goal. The proof step then transfers the mandatory marking from the
head literal to its condition literals. This direction can only be inverted automatically
if the gap between the head literal and one of the condition literals can be closed in
one step within the goal clause, i.e. if one condition literal is a mandatory literal of the
goal clause as in Example 3. Otherwise, we have to use auxiliary lemmas to bridge
the gap.

Example 4. Given five boolean valued constants r1 ��������� r5, we assume the activa-
tion of the following lemmas

�
16 ��� r1 � true �

r2 �� true ��
17 ��� r1 � true �

r3 �� true �

�
18 ��� r2 � true �

r4 �� true ��
19 ��� r3 � true �

r5 �� true �

�
20 ��� r4 � true �

r5 � true �

r1 B true

r2 B true r3 B true

r4 B true r5 B true

C
C

and want to prove the goal
�
21 ��� r1 � true �

The specification is illustrated in the diagram by solid lines. We assume that the first
literal is used as head literal for each lemma. There is a gap of two steps e.g. between
r1 � true and r4 � true that cannot be closed automatically. We can overcome
this situation by introducing e.g. one of the following auxiliary lemmas (illustrated in
the diagram by dashed lines):
�
22 ��� r2 � true � r3 � true � �

23 ��� r1 � true � r4 �� true �
Each of these lemmas as well as Lemma (21) (after activating one of (22), (23)) can
be proved automatically. Thus, we can bridge the gap. 8
Theorem 1 states that we can always close gaps with auxiliary lemmas.

Theorem 1. If a goal can be proved by simplification without any restrictions on
literals then it can also be proved with mandatory literals with the help of some auxil-
iary lemmas which themselves can be proved with mandatory literals. More precisely,
if a proof violates the restrictions at n goal nodes then we need at most n auxiliary
lemmas.

Proof. A proof step that creates a subgoal that does not possess any new literals can-
not contribute to a proof. Hence, it can be eliminated from the proof. Thus, we can
assume that a proof contains at least one new literal in each subgoal. As we mark
at least every new literal as mandatory (unless the goal is an order subgoal), each
subgoal contains at least one mandatory literal. If a goal in the proof violates the re-
strictions caused by mandatory literals we can introduce a new lemma consisting of
this goal clause. As each proof attempt for a new lemma starts with all literals marked
as mandatory, the proof of the lemma succeeds with mandatory literals. Whatever
head literal is chosen for this lemma, it can be applied to prove the goal that formerly
violated the restrictions caused by mandatory literals. 8
Although the required auxiliary lemmas cannot be calculated automatically, they may
be manually extracted from failed proof attempts. In contrast to this, Contextual
Rewriting may not even be able to make use of auxiliary lemmas simply because
you cannot build a bridge when a bank is forbidden.

3.2 Alternative Approaches in the Literature

In our setting, it is possible to model alternative approaches known from the literature
to perform the relief test by marking literals as forbidden.

Restriction 2 (Caused by Forbidden Literals)
An inference rule may only be applied to goal G with forbidden literals if all forbid-
den literals that are principal in this proof step are cut-off literals.

Once a literal is marked as forbidden in a goal G, it remains forbidden in the whole
proof attempt for G. In fact, the approaches in the literature do not even create these
literals in the corresponding subgoals. Thus our modeling with forbidden literals im-
proves the versions in the literature insofar as forbidden literals may serve as cut-off
literals.

Contextual Rewriting in the narrower sense is used e.g. in NQTHM [4], ACL2 [8],
RRL [11], and more recently in RDL [1]. As explained in Section 1, these approaches
vastly differ in their simplification process. Nevertheless, they use the same literals to
do the relief test: The focus literal in the applicability subgoals as well as all down-
folded literals are marked as forbidden. On the one hand, Contextual Rewriting is not
very restrictive because it admits non-contributing proof steps. On the other hand, it
is often too restrictive as can be seen in our examples:

Example 3 (continued). Two lemmas have to be applied to the same goal literal to
perform a successful proof. But after applying one lemma, the focus literal is forbid-
den for the rest of the proof attempt. This situation is depicted for one proof attempt
in Figure 2b where forbidden literals are marked by crossing them out. The proof
attempt fails at the left-most leaf as q1 � true cannot be used any more. It is not
possible to overcome this situation with auxiliary lemmas. 8
Example 1 (continued). The second application of Axiom (1) rewrites a literal ini-
tially used as focus literal. Thus, Contextual Rewriting fails. 8
Case Rewriting tries to overcome the difficulties of Contextual Rewriting by a special
treatment of lemmas that can be applied in parallel to rewrite a term, such as e.g.
Lemmas (12) and (13) in Example 3. In this sense, our approach with mandatory
literals is a novel form of Case Rewriting. There are at least two further approaches
known from the literature [3, 9].

The approach for Case Rewriting proposed in [9] restricts the relief test by or-
der constraints which we cannot use for our application domain as we allow non-
terminating operator definitions.

In the approach of Case Rewriting in [3], a term is rewritten by a set of n lemmas
resulting in n D 1 new subgoals: For each lemma one rewrite subgoal is created; addi-
tionally one well-coveredness subgoal is produced. This last subgoal is to guarantee
the completeness of the case split w.r.t. the given lemmas.

Example 3 (continued). For the specification of Example 3, this Case Rewriting ap-
proach can be modeled by applying the two lemmas in succession as depicted in
Figure 2c. In the well-coveredness goal—i.e. the left-most goal—only the condition
literals may be used. As the case split for Lemmas (12) and (13) is complete according
to Lemma (14), the proof can be completed. 8

The approach of [3] seems to have the following limitations: The set of lemmas
applied depends only on the focus literal but not on the context. A single well-
coveredness goal is only sufficient if all lemmas differ only in a single condition
literal. The well-coveredness goal cannot be proved if the case split is incomplete.

Example 1 (continued). The applications of the lemmas and axioms do not form a
complete case split. Actually, they even do not rewrite the same subterm. Thus, the
proof fails. In contrast to this approach, our approach with mandatory literals can
make use of other goal literals to prove the well-coveredness subgoal. 8

3.3 Getting Fit for Practice: Obligatory Literals and Other Pretests

On the one hand, the use of mandatory literals as explained in Section 3.1 results
in an extensive relief test. But as we call the simplification process recursively for
any condition subgoal whose condition literal is not directly fulfilled in the goal,
it may be very time-consuming. On the other hand, using only directly applicable
lemmas is a very efficient relief test because it is only syntactical. As a compromise,
we introduce an obligatory marking on lemma literals that restricts the relief test for
obligatory literals to the efficient syntactic test. This guides the proof search in a user-
defined way, manually controlling the degree of extent and efficiency for each lemma
separately.

Restriction 3 (Caused by Obligatory Literals)
A lemma with obligatory literals may only be applied to a goal G if all obligatory
literals are directly fulfilled in the goal clause.

Using obligatory literals may prevent the automatic derivation of proofs. Thus, literals
are automatically marked as obligatory only if the head literal of the lemma is an
equation that is used as rewrite rule with a general term as left-hand side, i.e. a term
of the form f E x1 ��������� xn F in which the xi are pairwise different variables. Without
obligatory literals, the relief test would be invoked too often in this case, most of the
time unsuccessfully.

Heuristics 2 (Marking Obligatory Literals)
Our automatic default heuristics chooses one obligatory literal if the lemma is used
as rewrite rule with a general term as left-hand side.

Example 5. If we use the first literal of the trichotomy of less
�
24 ��� less � x � y ��� true � less � y � x ��� true � x � y �

as head literal then it is activated as rewrite rule for operator less with a general
term as left-hand side. When applying this lemma, the relief test reduces the question
whether x is less than y to the question whether y is not less than x and whether they
are unequal. But this relief test is in most cases not simpler than the original problem.

This usually increases the number of useless inference steps. On the other hand, if
the context says that neither x is less than y nor y is less than x then we can derive
that x is equal to y by Lemma (24). Thus, we may prove the remaining literals of the
clause in the possibly very useful context that x is equal to y. Therefore, the automatic
application of the lemma should be restricted by marking the second lemma literal as
obligatory. 8
Example 6. Another example is given by the axioms of a division operator:
�
25 ��� div1 � x � y � u � v ��� u �

x �� v �
�
26 ��� div1 � x � y � u � v �G� div1

�
x � y � s � u ��� + � v � y �����

x � v �
Without using obligatory literals the following relief test does not terminate:

H
div1 I x J y J 0 J 0 K LNMOMPMRQ
axiom-rewrite (25)

H
x L 0 J div1 I x J y J 0 J 0 K LSMOMOMTQ
axiom-rewrite (26)

H
x L 0 J div1 I x J y J s I 0 KUJ + I 0 J y KPK LSMOMOMVQ

axiom-rewrite (25)

...

H
x WL 0 J 0 LXMOMOMRQ

During the relief test for Axiom (25), Axiom (26) can be applied for rewriting because
the mandatory literal directly fulfills the condition literal of Axiom (26). Since the
rewriting changes the second goal literal it becomes mandatory and thus can be used
for further rewrite steps with the axioms. If the conditions of the axioms are marked
as obligatory, already the first relief test is prevented. Y
To increase the performance of our proof control we use further pretests:

– We prevent repeated applications of the same inference rule with the same princi-
pal literals within one proof attempt (disregarding cut-off literals).

– We do not apply lemmas that apparently do not support the proof of the goal.
There may be two reasons for this: Firstly, the conditions of the lemma and the
context of the goal are inconsistent, i.e. the context contains the negation of one
condition. Secondly, the focus literal of the goal is rewritten to an obviously un-
satisfiable literal as e.g. t Z[t.

– During an automatic proof attempt, we do not want to guess any instantiations
of lemma variables. Thus, extra variables—i.e. variables that are not bound by
matching the head literal to the focus literal—must be instantiated by matching
condition literals to context literals.

– Permutative lemmas as e.g. the commutativity of + are only applied w.r.t. a fixed
wellfounded total term order. By this, we hope to prevent infinite rewrite chains
with permutative lemmas.

– To prevent infinite loops when proving applicability subgoals, the maximal recur-
sion depth can be restricted.

4 Case Studies

In this paper, we have presented novel heuristics to restrict the relief test for condi-
tional lemmas. To validate our novel heuristics on some real case studies, we have to
integrate them into an inductive proof process. Instead of comparing different systems
that implement the various heuristics, we isolate their effects by using the same proof
process as well as the same specifications within a single system. Thus, we realize
Contextual Rewriting as explained in Section 3.2. At the end of this section we will
also point out how the results obtained by our simulations carry over to other provers.

We choose our inductive theorem prover QUODLIBET [2] to perform our sim-
ulations. It provides the following advantages: QUODLIBET strictly separates the
automatic proof control implemented by tactics from the logic engine given by an
inference system. The flexibility of the inference rules allows the simulation of the
different heuristics easily. Note that systems based on Contextual Rewriting eliminate
the focus literal from the condition subgoals. Thus, their underlying inference system
has to be changed to simulate our novel heuristics. Last but not least, QUODLIBET

provides various statistics to compare the different heuristics.
We summarize our inductive proof process that is influenced by [4]: The whole

proof process is controlled by a so-called database. It stores information about the
analysis of defined operators and the activated lemmas. The analysis of a defined
operator is used for performing an inductive case split automatically; instead of gen-
erating induction hypotheses at the beginning of the proof as in explicit induction, we
may apply lemmas as induction hypotheses. These applications create an additional
order subgoal to guarantee the wellfoundedness of the induction scheme. Only acti-
vated lemmas may be used within the simplification process. During the activation of
a lemma the user may provide the head and obligatory literals of the lemma. Other-
wise, they are determined by some heuristics (see Section 3.3 for obligatory and [10]
for head literals).

The simplification process is divided into phases: The first phase proves simple
tautologies, the second removes redundant literals, the third applies directly applica-
ble lemmas, the fourth decomposes literals and applies lemmas even if they are not
directly applicable, the fifth uses equalities for cross-fertilization [4]. During each
phase the tactics use each literal successively as focus literal. This is justified since all
inference rules add literals only to the front of the goal. Lemmas are tested in reverse
activation order, which may be changed to influence the proof search. If a head literal
is an equation (whose left-hand side is not a variable), it is used for rewriting; other-

wise, for subsumption. Subsumption is checked for first; then the subterms of the fo-
cus literal are tested for rewriting, using an innermost left-to-right strategy. If a lemma
can be applied and all its applicability subgoals can be proved, its application will not
be deleted anymore. Thus, no alternative proof attempts for successful applications
will be tried out during this tactic execution. Contrariwise, a lemma application—
together with all proof attempts of the applicability subgoals—is deleted if the relief
test fails. This results in a backtracking step. Further details can be found in [10].

For a fair evaluation of forbidden literals, we have slightly modified the automatic
application of axioms during our simplification process when using forbidden literals:
If axioms can be applied in parallel (such as axioms of the gcd in Example 1) a
Cut with the condition literal(s) will be performed automatically. This then enables
the application of all axioms. Otherwise, already the second application would be
prevented because the rewrite literal becomes forbidden after the first application.
This simulates the operator unfolding operation in systems like NQTHM where all
axioms are given in one operator definition. Together with the additional admission
of forbidden literals as cut-off literals, this results in a modeling where Contextual
Rewriting can display its full power.

We compare the different heuristics in the following case studies whose details
can be found at [13]: a bunch of sorting algorithms (sortalgos); properties of
the gcd such as associativity; two proofs that \ 2 is irrational, based on the ideas
of Hippasos of Metapont (H) and Euclid of Alexandria (E), respectively; a proof
that the lexicographic path order Lpo is a simplification order; an example exp-
exhelp taken from [7] stating the equivalence of call-by-value and call-by-name
evaluations for simple arithmetic expressions containing function calls. The last two
examples contain mutually recursive operators. Table 1 illustrates the complexity of
the examples. It contains the number of lemmas (constant for all heuristics), and, for
our novel heuristics with mandatory and obligatory literals, the number of manual
interactions (manually applied inference rules D manually chosen induction order),
the number of automatically applied inference rules (including the later deleted ones),
the number of deleted inference rules due to a failed relief test and the runtime in
seconds measured by a CMU COMMON LISP system on a machine with a 1330 MHz
AMD processor and 512 MB RAM.

Example Lemmas Man. Interact. Autom. Appl. Deletions Runtime
sortalgos

gcd]
2 (H)]
2 (E)
Lpo

exp-exhelp

111
85
51
38

147
27

1 + 0
8 + 2

11 + 1
2 + 0
5 + 67
0 + 6

2213
1118
1004

535
5950
1368

57
18
27
11

1087
276

4.65
2.26
5.05
1.13

37.47
10.81

Table 1. Complexity of the Case Studies

Table 2 contains for each example and each heuristics based on a combination of
obligatory, mandatory and forbidden literals the following statistics: in column “Open
Lemmas”, the number p of proof state trees that cannot be closed with this heuristics;
and for all proof state trees that are closed with all heuristics:

i: in column “Autom. Appl.”, the number i of inference steps applied automatically;
d: in column “Deletions”, the number d of deleted inference steps;
f : in column “Fin. Proof”, the number f of inference steps in the final proof, i.e.

i ^ d;
r: and in column “Runtime”, the runtime r in seconds.

Example Heur. Open Lemmas Autom. Appl. Deletions Fin. Proof Runtime
sortalgos _`

o a`
m a`

m,o a`
f a`

f,o a

2
0
0
0
0
0

2425
2222
2106
2031
2398
2238

48
28

137
57

208
55

2377
2194
1969
1974
2190
2183

5.66
4.59
4.43
4.10
4.99
4.25

gcd _`
o a`
m a`

m,o a`
f a`

f,o a

—
0
—
0
—
9

—
914
—

902
—

961

—
8

—
14
—
18

—
906

—
888

—
943

—
1.68

—
1.63

—
1.63]

2 (H) _`
o a`
m a`

m,o a`
f a`

f,o a

1
0
0
0
0
0

2291
1294
1014

988
1026

985

1038
47
52
26
62
27

1253
1247

962
962
964
958

19.75
7.46
5.80
5.00
4.80
4.48]

2 (E) _`
o a`
m a`

m,o a`
f a`

f,o a

0
0
0
0
3
3

521
501
497
477
496
480

18
0

27
9

16
0

503
501
470
468
480
480

1.08
1.00
1.05
0.97
0.97
0.91

Lpo _`
o a`
m a`

m,o a`
f a`

f,o a

5
2
2
0
2
1

22835
10931
5907
5263

10750
7484

10879
3395
1430
924

3668
876

11956
7536
4477
4339
7082
6608

472.37
184.78
44.78
30.25
64.59
39.03

exp-exhelp _`
o a`
m a`

m,o a`
f a`

f,o a

1
1
0
0
0
0

2620
2620
1122
1122
1051
1051

9
9

232
232
174
174

2611
2611

890
890
877
877

84.49
85.24

8.31
8.32
5.87
5.87

Table 2. Comparison of the Different Heuristics

We do not count applications and deletions of inference steps of open proof state
trees because failed proof attempts tend to create large proof state trees, tampering
our results. Since the specification of gcd contains non-terminating rewrite rules, it
can only be performed with obligatory literals. For the other examples, obligatory
literals restrict the search space without influencing the resulting proofs very much:
The number f of inference steps in the final proof is nearly the same regardless of the
usage of obligatory literals.

The best heuristics w.r.t. i and r (as underlined in the table) use a combination of
mandatory/obligatory `

m,o a and forbidden/obligatory `
f,o a literals, respectively. As the

same simplification process is used, these two heuristics can differ only if a proof step
cannot be applied due to the restrictions caused by mandatory or forbidden literals.
The restrictions caused by forbidden literals can be checked slightly more efficiently
than that caused by mandatory literals: for forbidden literals, we do not have to con-
sider inference rules whose focus literal is forbidden; but for mandatory literals, we
cannot exclude inference rules whose focus literal is not mandatory since there may
be other principal literals which are mandatory. Therefore, a few more inference rules
can be applied and deleted in the some runtime for heuristics

`
f,o a in comparison to

heuristics
`
m,o a in the gcd example. But only for the Lpo example, a major advantage

in efficiency can be determined, favoring our novel
`
m,o a heuristics.

As printed in bold in the table, of 459 lemmas in total 13 lemmas cannot be proved
with `

f,o a , but our novel ` m,o a heuristics is the only one that proves all of them.
In our modeling of Contextual Rewriting with

`
f,o a , 12761 subgoals are created,

but 1165 definedness and 263 condition subgoals—as well as the proof trees rooted
in them!—are cut-off by using forbidden literals as cut-off literals.

Finally, to answer the question about the adequacy of our simulation of Contex-
tual Rewriting, we converted one of our case studies into a proof script for a prover
based on Contextual Rewriting. We chose the gcd example as it contains most failed
proof attempts with forbidden literals. As prover we used NQTHM [4] because we did
not want to use the decision procedures for linear arithmetics integrated in ACL2.
Instead, we used the shell principle to define our own type for natural numbers. We
applied the following transformations to the original proof script: The specification
style is changed from constructor to destructor recursion. Partial definitions are sim-
ulated using F as undefined value. As NQTHM is untyped, we explicitly restrict all
lemmas to natural numbers only. These transformations were quite easy. Addition-
ally, we added one operator definition just to provide a suitable induction scheme for
the proof of one lemma as well as four auxiliary lemmas to enable the proof of two
lemmas—namely Lemma (7) and a similar lemma that are proved in QUODLIBET

by mutual induction. These are two of the lemmas that failed with our simulation in
QUODLIBET. From the remaining seven lemmas that failed with our simulation in
QUODLIBET only two are not proved automatically. Note that this is not a weakness
of our simulation of Contextual Rewriting. Instead, the difference is caused by dif-
ferent induction principles: NQTHM does not apply lemmas inductively but splits, at

the beginning of a proof, the induction steps of conditional lemmas in different cases
for each hypothesis and the conclusion of the lemma. Therefore, we have to use the
relief test more often in QUODLIBET. Beside the failed proofs in the statistics, two
lemmas proved by our novel heuristics with simplification are proved with induction
in NQTHM. Thus, these proofs are more complicated in NQTHM.

5 Conclusion

We have developed a novel heuristics
`
m,o a for the relief test of conditional lemmas,

based on the orthogonal concepts of mandatory literals in the goals and obligatory
literals in the lemmas. We have identified patterns that can be proved with our novel
heuristics only. For comparison of the heuristics we chose the well established ap-
plication domain of rewrite-based simplification in inductive theorem proving. Our
simulation of Contextual Rewriting

`
f,o a is competitive with our novel heuristics

`
m,o a

regarding efficiency but not regarding extent. Our simulation of Contextual Rewrit-
ing seems to be adequate as demonstrated by carrying over a case study to NQTHM.
Nevertheless, the benefits of our novel heuristics are slightly decreased in theorem
provers using explicit induction because they do not perform a relief test for induc-
tion hypotheses. In the future, we will investigate more flexible, manually controlled
heuristics for marking mandatory literals. In this way, we hope to reduce the number
of auxiliary lemmas and backtracking steps required.

References

1. A. Armando and S. Ranise. Constraint contextual rewriting. J. of Symb. Comp., 36(1-2): 193–216, 2003.
2. J. Avenhaus, U. Kühler, T. Schmidt-Samoa, and C.-P. Wirth. How to prove inductive theorems? QuodLibet!

19th CADE, LNAI 2741, pp. 328–333. Springer, 2003.
3. A. Bouhoula and M. Rusinowitch. Automatic Case Analysis in Proof by Induction. 13th IJCAI, volume 1,

pp. 88–94, August 1993. Morgan Kaufmann.
4. R. S. Boyer and J S. Moore. A Computational Logic Handbook. Academic Press, 1988.
5. A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill. Rippling: A heuristic for guiding inductive

proofs. Artificial Intelligence, 62(2):185–253, 1993.
6. G. Gentzen. Untersuchungen über das logische Schließen. Mathematische Zeitschrift, 39:176–210, 405–431,

1934f.
7. D. Kapur and M. Subramaniam. Automating induction over mutually recursive functions. 5th AMAST, LNCS

1101, pp. 117–131, 1996.
8. M. Kaufmann, and P. Manolios, J S. Moore. Computer-Aided Reasoning: An Approach. Kluwer Academic

Publishers, 2000.
9. E. Kounalis and M. Rusinowitch. Mechanizing inductive reasoning. 8th AAAI, pp. 240–245, 1990.

10. T. Schmidt-Samoa. The new standard tactics of the inductive theorem prover QuodLibet. SEKI Re-
port SR-2004-01, Universität des Saarlandes, 2004. www.ags.uni-sb.de/˜veire/SEKI/2004/
SR-2004-01/

11. H. Zhang. Contextual rewriting in automated reasoning. Fundamenta Informaticae, 24(1/2):107–123, 1995.
12. H. Zhang, D. Kapur, and M. S. Krishnamoorthy. A mechanizable induction principle for equational specifi-

cations. 9th CADE, LNCS 310, pp. 162–181. Springer, 1988.
13. www-avenhaus.informatik.uni-kl.de/quodlibet/

