Flexible heuristics for simplification
with conditional lemmas by marking
formulas as forbidden, mandatory,
obligatory, and generous

Tobias Schmidt-Samoa

FB Informatik

Technische Universitat Kaiserslautern
Postfach 3049

67653 Kaiserslautern (Germany)

schmidt@informatik.uni-kl.de

ABSTRACTDUE to its practical importance, context-dependent sifigaliion of goals witlcon-
ditional lemmas has been studied for three decades, mostly undealieé of “contextual
rewriting”. We present a flexible framework for controllinbe recursive relief of conditions
by marking formulas in goals and lemmas. Within this franméwby marking goal formulas
asforbidden we can simulate and improve the well-known approachesaofextual rewriting
and case rewriting Furthermore, we develop novel heuristics which may mag fpmulas
as mandatoryand lemma formulas agbligatoryor generous Our case studies in the field of
rewrite-based inductive theorem proving are encouraging.

KEYwoRDSconditional lemmas, case rewriting, contextual rewritihguristics, markings.

1. Introduction

In this paper, we present a flexible framework for guidinggbisearch with mark-
ings. Because of the novelty of our approach, we present mmentiyating examples
and skip some of the technical details. We concentrate onspaeial application
domain, namely, equality-based inductive theorem proinradausal first-order logic
with implicitly universally quantified variables using ats over the following pre-
defined predicate symbolgquality atomgsymbol=), definedness aton{gef) to
establish the domain of partially defined operators, amiér atomg <) to explicitly
represent order constraints in a fixed wellfounded order. pvésent the examples
within our inductive theorem prover @ DLIBET [AVE 03]. Nevertheless, our ap-
proach is in principle widely applicable. We will commentitiis topic in Section 5.

Journal of Applied Non-Classical Logics.Volume 16 — No./2aD6, pages 209 to 239



210 JANCL - 16/2006. Implementation of logics

When performing (mutual) inductive proofs for lemmas . . . , ¢, with a rewrite-
based theorem prover, there are at least three importst tas

1) finding appropriate inductive case splits;
2) speculating appropriate auxiliary lemmas;

3) simplifying the goals from Task 1 to valid formulas usirdgetlemmas from
Task 2 and possibly smaller instancesgf . . . , ¢, as induction hypotheses.

Task 3 provides the best chances for automation. Sincertipgiication process may
be very time-consuming, automation has to be done carefdibst work during the
simplification process is caused by the application of (tttohl) lemmas. In our
case studies, they cause at least 50% of all proof steps. fboegs for applying a
lemma can be divided into two steps: choosing a lemma; anckaigethe lemma for
applicability and relieving its conditions. The first stegndbe supported by rippling
techniques [BUN 93]. Theelief testduring the second step has to be done by recur-
sively calling the simplification process. We will presemicavelextensivéutefficient
relief test. By “extensive”, we mean that the test shouldfaibtoo often if the lemma
application may contribute to the proof (cf. Section 3).

1.1. Simplification with conditional lemmas

To perform proofs of lemmas, we use a sequent calculus, wiheresequents
are just lists of literals, i.e. justlauses We apply the inference rules reductively:
Each inference rule reduces a gaaiiclusion to a (possibly empty) list of subgoals
(premises Roughly speaking, a goal consists of a clause. Consigeapiplication
of a lemma to rewrite a subterm of a goal literal by replachngleft-hand side of an
equation in the lemma by its right-hand side. More precjsalglause{i,...,1,}
can be interpreted as an implicationA - -- A l,,_, = 1,,, wherel is the conjugate
(classical negation) df. A lemma is callecconditionalif n>1. As in [ZHA 95],
we fix one literal in the lemma clause by calling it thead literal the conjugates of
the other literals are callezbndition literals For each inference step, we also fix one
literal in the goal clause, calledcus literal the conjugates of the other literals are
calledcontext literals The head literal of a lemma may be applied for proving a goal
if the condition literals can be proved valid in the “contexccording to [BOY 88],
we have to relieve the conditions.

More preciselyrewriting of a goal clause with a lemma clause instantiated by a
substitutiono is only possible if the head literal of the lemma is an equmatie- ¢
(ort = s) andso is equal to a subterm of the focus literal of the goal claus$e Jub-
term is then replaced witly resulting in arewrite subgoal To relieve the conditions,
for each instantiated condition literal,candition subgoals created that essentially
extends the original goal by the instantiated conditiceréit® If an instantiated con-

1. If we use partially defined operators or apply a lemma asdtidn hypothesis, additional
definednesandorder subgoalfave to be created.



Heuristics for conditional lemmas 211

dition literal is equal to a context litefale say that it igdirectly fulfilledin the goal
and the context literal is calledcat-off literal as it cuts off the subgoal that otherwise
would have to be created for the condition literal. A lemmadiiectly applicableto a
goal if all condition literals are directly fulfilled in theogl. Following [GEN 35], lit-
erals of a goal clause are callpdncipal in an application of an inference rule if their
presence (in the conclusion) is required for the appliésf this inference rule. In a
rewrite step, the principal literals are the focus literad ¢he cut-off literals. A lemma
may also be applied faubsumptiomprovided that the head literal matches the focus
literal. The application results in the same subgoals withioe rewrite subgoal.

In general, the relief test for a condition subgoal is perfed by a recursive call
of the simplification process. Thus, the extent and effigiari¢he test depend on the
simplification process. Various simplification processfede.g. in the way they use
equality informationNQTHM [BOY 88] andACL2 [KAU 00] use the cross fertilization
technique while&RRL [ZHA 95] uses a constant congruence closure algorithnDIn
[ARM 03], decision procedures can be used by the simplificagirocess.

1.2. Flexible control with markings

The elements in the goals that can be used during the redigidgee to be restricted
since the condition subgoals contain the original goal. sThithout restrictions the
relief test may result in an infinite process: the lemma caagpgied to the condition
subgoals over and over again. We concentrate on the quegtichelements can be
used during the relief test.

Practically, there are two major ways to restrict proof stigat may be used during
the relief test by marking elements in the goals:

1) In previous approaches known from the literature suchcageXtual Rewriting
in [ZHA 95] and Case Rewriting in [BOU 93], elements are exidd from certain
condition subgoals. In the original approaches, excludethents are completely
eliminated from the subgoals resultingunsafeapplications, i.e. we may derive in-
valid goals by applying valid lemmas to valid goals. We maydelahese approaches
in a safe way by jusmarkingexcluded elements dsrbidden instead of eliminating
them from the subgoals. The meaning is that a forbidden eleimex goal must not
be principal in the application of an inference rule.

2) We propose a novel, alternative approach by marking eigsmi@ goals as
mandatory If we apply an inference rule to a goal, one of the mandattegnents
must be principal. With a mandatory marking we may favor ¢hpeoof steps that
locally contribute to the proof.

By marking elements as mandatory instead of forbidden, veeamme some difficul-
ties of previous approaches [ZHA 95, BOU 93]: As we can useyegkement dur-

2. Instead of using only pure syntactic equality, we first perf some additional normalizing
transformations on the literals.



212 JANCL - 16/2006. Implementation of logics

ing the relief test provided that there is also one mandattament involved, we can
achieve a more extensive relief test. Furthermore, we dpvethniques to restrict the
relief test in a user-defined way witibligatoryandgenerousnarkings in the lemmas
to achieve the right balance between efficiency and extent. flexible framework
allows us to combine the different markings in an arbitraayw

For our heuristics, we assume that a goal can be dividedlimée tparts w.r.t. the
inference rule applied as presented for rewriting in Secfidl: An inference rule
is applicable to a goal if it contains thincipal part for the application. The other
elements form theontext® Whereas the principal part may be modified in an arbitrary
way—hnew elements may be added, old elements may be changethoved—the
context is passively inherited to the new subgoals. Withaprincipal part we may
identify some elements azut-off elements. These elements are passively inherited
just like the context but they may cut-off some of the subgdiaht otherwise would
have to be created. Therefore, the number of subgoalsiregsiridm the application
depends on the cut-off part. Instead of confusing the readerformal definitions of
these concepts, we will exemplify this partitioning of goel Section 2.1 with further
inference rules.

The influence of the markings in the goals on proof search easteffined in two
steps:

1) we restrict the proof stepsthat can be applied to a go&! according to the
markings and the partitioning of goél into principal part, cut-off part and context
w.r.t. I,

2) we define the markings for the new subgoals.

Whereas we fix Step 1, the inheritance procedure in Step 2 magdlized in dif-
ferent ways. Step 2 may also be influenced manually. Thexefoe get a flexible
mechanism to restrict proof search.

1.3. Organization of the paper

In Section 2, we exemplify the partitioning of goals w.rttetinference rule ap-
plied and present a simple example illustrating the adgg#af our novel heuristics
based on a mandatory marking in comparison to previous appes based on a for-
bidden marking. In Section 3, we motivate, describe andtilate our heuristics based
on markings. For each heuristics, we identify proof patehat cannot be handled
with this heuristics. For our novel heuristics based on adatory marking, we can
solve these problems at the expense of additional auxiksmnas or by using a gen-
erous marking which extends proof search. We compare tlferelift heuristics in
Section 4. There, we also provide evidence for the adequamyranodeling of Con-
textual Rewriting with a forbidden marking. We conclude &c8on 5.

3. Note that the partitioning of goals into principal part arwhtext here slightly differs from
the classification into focus and context literals in Sectidl.



Heuristics for conditional lemmas 213

2. A simple example

Originally, we have developed our heuristics for the induectheorem prover
QuoDLIBET [AVE 03]. Therefore, we illustrate our approach withUQDLIBET.
Nevertheless, it can be easily applied to other sequentiliheerem provers as well.

QuobDLIBET admitspartial definitions of operators ovdree constructoraising
(possibly non-terminating positive/negativeonditional equations as well aon-
structor, destructor and mutualrecursion. Inductive validityis defined as validity
in the class of so-calledata modelsthe models that do not equalize any different
constructor ground terms.

2.1. Partitioning of goals into principal part, cut-off part, ad context

We illustrate the partitioning of goals into principal pastit-off part, and context
with those inference rules of @DLIBET that are used in the examples within this
paper. A formal treatment of these concepts in connectitmpyuning proof trees and
reusing proofs can be found in [SCH 06]. We identify the pipatand cut-off part of
the goals. The context is given as those elements in the lgatdite not principal. We
do not present a formal definition of the inference rules iy give some intuition
about their typical usage and semantics.

compl-1it can be applied to a godl if G contains a literal and its conjugaté In
this case, no new subgoals are created as the goal is valid damplementary
literals. The complementary literalsndl are principal for the application. For
this inference rule, there exist no cut-off literals.

=-decomp can be applied to a god¥ if G contains an equation = ¢ such that
the toplevel symbols of andt are identical. Therefore, the equatier= ¢ is
principal for the application. Let,...,s, (resp.t1,...,t,) be the subterms
of s (resp. t) at the minimal positions whereandt differ.* To proves = t,
it suffices to proves; = t; for eachi € {1,...,n}. Therefore, we apply the
following for eachi € {1,...,n}: If s; # t; is presentinG, thens; # ¢; is a
cut-off literal for the application as it prevents the cieatof the new subgoal
for s; = t; (due to complementary literals). Otherwise, we generatermaw
subgoal adding; = t; to the original goal.

If s andt are identical, no new subgoals will be created. This is thpécty
usage of the inference rule.

#-unif can be applied to a god if G contains a negated equatien# ¢t ands
andt are unifiable constructor terms. Therefore, the equatignt is principal
for the application. For this inference rule, there existcnt-off literals. Let

4. We may restrict the depth of the difference positions abergid with a parameter of the
inference rule.



214 JANCL - 16/2006. Implementation of logics

o be the most general unifier efandt. The inference rule generates one new
subgoal removing the principal literal# ¢ from G and instantiating all other
literals with substitutiorr. The validity of the new subgoal entails the validity
of the original goalG because for the instances that are not covered, lije
negated equatiofn# t holds true.

Note that we only classify # t as principal for the application. All other
literals are modified in a uniform way with substitutierbut the applicability
of the inference rule does not depend on these literals.

2.2. An example proof

The following example presents a proof pattern that can inelled by our novel
heuristics but cannot be proved by previous approachesasi€lontextual and Case
Rewriting summarized in Section 3.3. It is taken from ourecssidy that the great-
est common divisorgdcd) of two natural numbers is idempotent, commutative and
associative (at least if the numbers are not zero).

ExAmMPLE 1. — Let the specification consist of two sortBool for the boolean
values with constructorsrue andfalse; Nat representing the natural numbers with
constructors) for zero ands for the successor function. We consider the defined
operators, *, -, div, gcd, leq anddiv-p that representthe corresponding arithmetic
operations on natural numbers, a less-or-equal and aldlitispredicate on natural
numbers. We consider the formal specificationgefi only, given by Axioms (1)

to (4). Thegcd of two natural numbers is defined if at least one of its argumen
is not zero. If exactly one of the arguments is not zero thigiarent is the result
of the operation. Otherwise, we recursively gadld with the smaller argument and
the difference of greater and smaller argument which esstiva the definition is
terminating.

(1) {ged(z,y) =2, y#0, 2 =0}

(2) {ged(z,y) =y, #0,y=0}

(3) {gcd(z,y) = ged(z, -(y, 7)), leq(z,y) # true, z =0, y =0}

(4) {gcd(z,y) = ged(-(z,y),y), leq(z,y) = true, ~def leq(z,y), =0, y =0}

As auxiliary lemma for the associativity ged, we want to prove the following lemma
on divisibility:

(5) {div-p(gcd(z,y), z) = true, div-p(z,z) # true, =0 }

We assume that the following lemmas are activated for auiorapplications:

(6) {def ged(z,y), z=0}

(7) {div-p(gcd(z,y),z) = true, y =0}
(8) {div-p(z, z) = true, div-p(z, y) # true, div-p(y, z) # true }

For each of the axioms and lemmas, we choose the first literakad literal for the
following reasons:



Heuristics for conditional lemmas 215

— The axioms define operatged using the first literal as rewrite rule from left to
right.

— Lemma (6) contains a definedness atom as first literal. Duweitenonotonic
semantics based on data models, we cannot prove negatesthhefss literals as focus
literals. Therefore, the definedness atom should be prasémé goal the lemma is
applied to. Such a lemma is calledlamainlemma as it establishes the domain of a
(partial) operator.

—In Lemma (7), the left-hand side of the first literal is théyaierm that binds all
variables of the lemma.

— In Lemma (8), the first literal is the positive literal in a Halause.

| {l div-p(ged(z,y), z) = true | |div—p(z, z) # true | ,Hl} |

| | ]
{[aet gcd(a. )] {{div-plgcd(s.y).2) = true] {{div-pleca(z, y). 2) # true],

div-p(ged(z,y), z) = true, —def ged(z, y) |, —def gcd(z,y) |,

dlZ*éJ(fL', z) # true, e Toae ), ) = rue,
2=0} div-p(z,z) # true,

div-p(z, z) # truel,

z=0}
)
]

{‘ div-p(ged(z, y), ) = true, —def gcd(z,y), {

div-p(ged(z,y), z) = true, div-p(z,z) # true, z =0}

—def ged(z,y) |, div-p(ged(z,y),z) = true,

div-p(z,z) # true, =0}

axiom-rewrite (1)

{| y#0 | |div—p(z, ) = true | ~def ged(z,y),
div-p(ged(z,y), 2) = true, div-p(z,z) # true, z =0}

I

axiom-rewrite (1)

{{ly#0 |A, | div-p(z,z) = true |, —def gcd(z, y),

div-p(z,z) = true| div-p(z,z)# true, =0}

)

compl-lit

Figure 1. Proof state tree for God5) of Example 1

Figure 1 contains the whole proof state tree for Goal (5) &sdteated by our novel
heuristics. A proof state tree consists of goal and infezerades representing the ap-
plication of inference rules. The root goal node consisthefconjecture to be proved
and is displayed at the top of the proof state tree. The roalk gade is rewritten by
the conditional Lemma (8) using the substitution— gecd(z, y),z «— 2,y « z].
The substitution can be determined by using the first litefdhe root goal as focus
literal and matching the head literal to the focus literdie uninstantiatedxtravari-



216 JANCL - 16/2006. Implementation of logics

able y can be bound by matching the third lemma literal to the seaual literal
(cf. Section 3.6). Then, the third lemma literaldisectly fulfilled by the second goal
literal which itself is acut-off literal. Thus, the first two goal literals apincipal

for the application. In Figure 1, principal literals are eniihed and mandatory lit-
erals are framed. Our novel heuristics applies an inferenleeautomatically only

if one of the principal literals is also mandatory, i.e. ifeoof the underlined literals
is also framed. The application results in three new sulsg@iedm left to right)®
onedefinedness subgo@ince the substitution binds a constructor variable tora no
constructor term), oneondition subgoaind onaewrite subgoal As there is a condi-
tion subgoal, the lemma is ndirectly applicable The definedness subgoal is proved
by a direct application of Lemma (6) for subsumption. Rewgthe condition sub-
goal with Lemma (7) leads to another condition subgoal. Boprioof we rewrite the
second and fourth literal with Axiom (1). Note that theserkitls have been the focus
literals of the previous lemma applications that have gateelrthe considered condi-
tion subgoal. Thus, these applications are possible ortly @ir novel heuristics (cf.
Section 3). Altogether, we getdosedproof state tree, i.e. a proof state tree whose
leaves are inference nodes. Therefore, Lemma (5) is indigtvalid provided that
this holds true for the applied lemmas. We call such a closedfistate tree just a
proof. O

3. Controlling the application of conditional lemmas

Lemmas are provided to guide the proof process. On the ong tiagy should
be applied automatically as far as possilile free the user from routine work. On
the other hand, heuristics have to control the applicatiogsiarantee the termination
of the process within a reasonable amount of time. Thus, we tafind the right
balance between extent and efficiency.

We essentially restrict proof search with markings in g@ald lemmas (cf. Sec-
tions 3.2 to 3.5). Our novel heuristics based on a mandatamking is inspired by
the contribution of proof steps which we define in Section 34 get a practicable
method, we adapt additional heuristics known from thediiere—in particular those
presented in [BOY 88]. We summarize these heuristics ini@est6.

Note that, in general, in our domain neither confluence noniteation properties
can be assumed for rewriting with lemmas (cf. Example 21)er&fore, heuristics
based on wellfounded orders are not always applicable plicable, these heuristics
may be combined with our marking techniques.

5. This order is relevant insofar as we maximally downfold dedinedness literals, the con-
dition literals, and the rewrite literato # ¢to to the right, i.e. enhance the subgoals to the right
with the negation of these literals to the left.

6. atleast if they may contribute to the proof (cf. Section) 3.1



Heuristics for conditional lemmas 217

3.1. Contributing proof steps and elements

Analyzing a performed proof,roof ste(i.e. the application of an inference rule)
may contributeto a proof for a goal in two ways: Firstly, no new subgoals aeated
at all; thus, the goal is proved. Secondly, each subgoabamnhew information in
the form of new (i.e. added or changed) literals that are needed for thef fre@o
become principal in a further contributing proof step). @thise, the proof step is
non-contributingand can be eliminated: If one subgoal can be proved withdogus
one of the new literals, this proof can also be used for thgiral goal.

DEFINITION 2 (CONTRIBUTING PROOF STEPS/ ELEMENTS). — A proof step/
of a proof P for goal G contributesto P if every direct subgoabG created byl
contains a new element that contributes to the proof§6fin P. An element of a
goal G contributego proof P for G if it becomes principal for one contributing proof
stepl of P.

In Example 1, the only non-contributing proof step is thet fagplication of Ax-
iom (1) to rewrite the second literal. Indeed, this literdhe-only new one—does not
contribute to the proof for its subgoal.

The notion of contribution can be used for pruning proofdreg eliminating non-
contributing proof steps. Thereby, we can

— get simpler proofs;
— determine superfluous literals in a goal that do not coumtiito the proof;
— enhance the reusability of a proof by focusing on contiitgiiterals.

For a detailed discussion on these topics and a more invblotdm-up definition of
a logically stronger notion of contribution, we refer to [[306].

The notion of contribution captures what we want but canealibectly exploited
for proof search: As contribution of a proof step dependshenproof performed, it
can becheckedonly after the proof has been completed. But we can easilure
that we perform only contributing proof steps by using one¢hef new elements as
principal element in thaextproof step.

DEFINITION 3 (LOCALLY CONTRIBUTING PROOF STEPS/ ELEMENTS). — A
proof step!l in a proof P for a goal G locally contributego P if every direct sub-
goal SG created byl contains a new element that becomes principal in the pregf st
performed forSG in P.

LEmmMA 4. — If every proof step in a proaP locally contributes toP, then every
proof step contributes t&.

PrROOF. — This is proved immediately by structural induction ongirtrees. =

Note that, in general, a proof step does not have to be catitriipeven if it is
locally contributing, because the new elements may becaineipal only in non-
contributing proof steps.



218 JANCL - 16/2006. Implementation of logics

As we will see, this strict usage of local contribution is testrictive for guiding
proof search. It excludes too many proofs in which all praeps are contributing but
some of them do not contribute locally.

3.2. Novel heuristics based on mandatory markings in goals

We aim at avoiding non-contributing proof steps. To be ablddfine local restric-
tions on proof steps in a flexible way, we introduce a mangataarking in goals.

RESTRICTIONS (CAUSED BY MANDATORY MARKING). — An inference rule may
be applied to a goalr with a mandatory markingnly if one of the mandatory ele-
ments is principal in the proof step applied®o a

If we mark only new elements in a subgoal as mandatory in afpitde ensured
that all proof steps (locally) contribute to that proof. Blén, the proof search is too
restricted. It will find only “linear” proofs: We can apply bnthose inference rules
that also use new elements introduced by the previous ptepf $-or a successful
proof, however, it may be necessary to apply inference tigsarallel” that are not
linearizable. Such proofs are impossible with this strggge of a mandatory marking
as the following example illustrates.

EXAMPLE 6. — Given three boolean valued constapisp2, p3, we assume the
activation of Lemmas (9) and (10) and want to prove Goal (11)
(9) {pt =p3} (10) {p2=p3} (11) {pt = true, p2 # true }

To preventtrivial loops we use equations for rewriting jnstne direction. We present
our examples in such a way that equations are always applig@writing from left
to right. Therefore, the only way to prove Goal (11) is to résvp1l andp2 to p3.
Then the resulting subgoal is tautological as it contaimamementary literals. But
if we mark only new elements as mandatory, this proof is goitdd since the second
rewrite step does not use a new element. O

Alternatively, if all elements of subgoals are marked as dadory, the marking
has no effect and the search space contains too many prpeftbtg do not contribute
to the proof. Our compromise results in the following deféuguristics which can be
fine-tuned with agenerousnarking in the lemmas as explained in Section 3.5:

HEURISTICS7 (FORMARKING ELEMENTS ASMANDATORY). — At the beginning
of a proof attempt for a lemma every element in the clause iketbas mandatory.
Thus, there are no restrictions for performing proof steps.

For applicability subgoals-i.e. definedness or condition subgoals of applicative
inference rules—the marking of the parent goal is not inthdrio the subgoal, but a
new set of mandatory elements is introduced that consisislgrof the new elements
of the subgoal. With thistrict marking heuristics, it is guaranteed that one of the new
definedness or condition literals is used in the next prad.st



Heuristics for conditional lemmas 219

For order subgoals, we mark only the single new order atomaaslatory. In this
case, the proof has to proceed by treating the order atom.

For all other subgoals—i.e. rewrite subgoals or subgoaated by other infer-
ence rules—the mandatory elements of the parent goal stagiat@ry in the subgoal
(unless they are deleted) and are supplemented with all lesneats of the subgoal.
Thus, we use gelaxedmarking heuristics. We can perform rewrite steps even i the
do not contribute to the proof. This is helpful for the spetialn of auxiliary lemmas.

O

ExXAMPLE 8 (1 CONTINUED). — In Figure 1, mandatory literals are framed, princi-
pal literals are underlined. Thus, we can apply an inferealgeonly if at least one of
the underlined literals is also framed.

The proof starts at the root goal node with all literals mdrike mandatory. After
applying Lemma (8), the resulting definedness subgoal hasr@andatory literal—
the first one—that is handled by the following subsumptiothviiemma (6). The
mandatory literals of the condition subgoal—the secondyeab—are the first two
literals. Note that the repeated application of Lemma (§revented as none of its
principal literals is mandatory anymore. Instead, the fitstal is handled by the
following rewrite step with Lemma (7), that introduces thesftfiliteral as the only
mandatory literal for the new condition subgoal. This singlandatory literal is used
in the rewrite step with Axiom (1). As this inference rule nifges the second literal of
the resulting rewrite subgoal, it is added to the set of mtorglditerals. Analogously,
literal four is added to this set after the next rewrite stafhwhxiom (1). Finally,
the inference ruleompl-1it can be applied to the rewritten subgoal although not
both literals are mandatory. It suffices that one mandaitesal is principal for the
application. Note that all literals in the rewrite subgodiahe application of Lemma (8)
are mandatory since the goal is not an applicability sub{efaHeuristics 7). This
is justified by the fact that an infinite loop of the same lemrpgligation is already
avoided because the original goal is not contained in the ndwgoal. The relaxed
mandatory markings heuristics for rewrite subgoals is,ristance, required for the
second application of Axiom (1): Otherwisg,# 0 would not stay mandatory after
the first rewrite step with Axiom (1) and the second applmativould not obey the
restrictions caused by the mandatory marking. O

ExXAMPLE 9. — As another example, we consider the defined operatars and+,
given by the following axioms:

(12) {1ess(0,s(y)) = true } (15) {+(z,0) ==z}

(13) {less(z,0) = false } (16) { +(z,s(y)) = s(+(z,y)) }
(14) { less(s(z),s(y)) = less(z,y) }

Given the additional lemmas

(17) {def +(z,y) } (19) {less(z,z) = true,

(18) {less(z,+(z,y)) = true, less(z,y) # true,

y=0} less(y, z) # true }



220 JANCL - 16/2006. Implementation of logics

we want to prove the inductive validity of the following gdaf simplification:

(20) {1ess(z,+(y,z)) = true, less(z,y) # true }

For each of the axioms and lemmas, we choose the first literakad literal for the
following reasons: The axioms define operatbeéss and+ using the first literal as
rewrite rule from left to right. In Lemma (18), the left-hasidle of the first literal is
the only term that binds all variables of the lemma. In Lema®)(the first literal is
the positive literal in a Horn clause.

{| 1ess(z,+(y,2)) = true|

less(z, 7./ # true |}

lemma-rewrite (19)

Il

{| def +(y,2) |, {| Less(y. +(z/ z)) = true|, {| 1ess(y, +(y, 2)) # true|,
less(z,+(y, 2)) = true, —def +(y, 2) |, ~def +(y, 2) |,
less(z,y) # t ——
ess(z,y) # true} less(z, +(y,2)) = true, true = true |,

1 Y t:
lemma-subs (17) ess(z,y) # true} less(z,y) # true |}

lemma-rewrite (18) C_lﬁ/
=-decomp
[

1
less(y, +(y,z)) = true, —def +(y,z) {z=0] [true=true| [—def+(y.2)

less( (y z)) = true, less(z,y) # true} less(z,+(y, z)) = true, less(z,y) # true }

| {| 1ess(y,+(y,0)) = true}|, | —def +(y,0) | |less(z,+(y,0)) = true | less(z,y) # true } |

| {l less(y,y) = true | |ﬁdef +(y,0) | less(z,+(y,0)) = true|, less(z,y) # true } |
| {l less(y,y) = true | | —def +(y,0) | less(z,y) = true|, less(z,y) # true} |

I

Figure 2. Proof state tree for Goa20) of Example 9

Figure 2 contains the whole proof state tree for Goal (20} &sdreated by our
novel heuristics with a mandatory marking. Again, mandatiterals are framed,
principal literals are underlined.

The proof starts at the root goal node with all literals mdriee mandatory. The
root goal node is rewritten by the conditional Lemma (19)ngsihe substitution
[z < +(y,2)]. The substitution can be determined by using the first litefahe
root goal as focus literal and matching the head literal &fticus literal. The second
lemma literal is directly fulfilled by the second goal lite(ainding the extra variable
y to itself). The application results in three new subgoalsn(f left to right): one
definedness subgoal, one condition subgoal and one rewhtmal. The definedness



Heuristics for conditional lemmas 221

subgoal has one mandatory literal—the first one—that is leanlly the following
subsumption with Lemma (17). The mandatory literals of thiedition subgoal are
the first two literals. Note that these mandatory literalsvpnt the repeated appli-
cation of Lemma (19). Instead, the first literal is handledthy following rewrite
step with Lemma (18), that introduces the first literal asdhfy mandatory literal
for the new condition subgoal. This single mandatory litesaised by the inference
rule #-unif. As this inference rule modifies the first three literals af tlesulting
subgoal, they become the mandatory literals. The followawgrite steps do not al-
ter the sets of mandatory literals as we do not start new setefrite goals. This
results in one rewrite step that does not contribute to tbefpiinally, the inference
rule compl-1it can be applied to the rewritten subgoal although not boghelis are
mandatory. It suffices that one mandatory literal is printfpr the application. O

Examples 8 and 9 contain a basic proof pattern that cannatvegwith Contex-
tual Rewriting (cf. Section 3.3.1) but with our novel hetids. This proof pattern is
illustrated in Example 10 in an abstract way. We use it for paring our novel heuris-
tics (cf. Figure 3a described in Example 10) with ContexRelriting (cf. Figure 3b
described in Example 15) and Case Rewriting according taJB3] (cf. Figure 3c
described in Example 17).

ExampPLE 10 ([ZHA 95], sIMPLIFIED). — Given three boolean valued constants
ql, 92, g3, we assume the activation of the following lemmas
(21) {q1 = true, (22) {q1 = true, (23) {q2 = true,

q2 # true } q3 # true } q3 = true }

and want to prove the goal
(24) {q1 = true}

As Lemmas (21) and (22) are Horn clauses we use the firstllidasr&ead literal.
Lemma (23) does not suggest a head literal itself. We may nseldtrary one or
both literals. Due to efficiency considerations and as theras are symmetric iq2
andq3, we decide to choose just the first one.

Using a mandatory marking, the proof is found automaticg@fy Figure 3a). In
the condition subgoal after applying Lemma (23), litetal= true can be used as
focus literal to rewritey1 to true although this literal is not mandatory. This can be
done since the condition literal of the applied lemma is na&oiy. O

For an extensive relief test, the following property woutuseful: If a goal can
be proved by simplification without any restrictions on thengents that can be used
then it can also be proved obeying the restrictions causeal fagndatory marking.
Unfortunately, this strong property does not hold as willshewn in Example 11, a
simple generalization of Example 10.

The interaction of head literals in lemma clauses and mangéiterals in goal
clauses restricts the search space of the simplificatiooggsovery much: In most
cases, alemma will be applied to a goal only if the head litgfrthe lemma is manda-
tory in the goal. The proof step then transfers the mandatamking from the head



222  JANCL - 16/2006. Implementation of logics

a) Rewriting with Mandatory Literals

lemma-rewrite (21)

{l q2 = true |, {| 92 # true |,

ql = true } true = true|}

lemma-rewrite (23)

| [

q2 = true, true = true|,
ql = true } ql =true }

I I
( lemma—re‘lqrn:e (22)) ( :—decomp)
Gz

g2 = true,

b) Modeling Contextual Rewriting

{q2 = true, {g2~true,
gt —true } true = true }

I I
( lemma-rewrite (23)) ( :—decomp>
—— —1

{q3 # true, {g8—+¢=xue,
g2—=true, true = true,

¢) Modeling Case Rewriting of [BOU 93]

lemma-rewrite (21)

2 = true, 2 # true,
q: q:
ql = true } true = true }

( 1emmafre:.lrite (22)) ( :—d;comp )

{g3 = true, {q3 # true,
92 = true, g =—trae,
gi—true } true = true }

I I
( lemma-subs (23)) ( :—decomp>

Figure 3. Proof state trees for Example 10



Heuristics for conditional lemmas 223

literal to its condition literals. This direction can be éned automatically only if the
gap between the head literal and one of the condition lgerah be closed in one step
within the goal clause, i.e. if one condition literal is a rdatory literal of the goal
clause as in Example 10. Otherwise, we have to use auxikanyrnas to bridge the

gap.

ExamMPLE 11. — Given five boolean valued constamts ..., r5, we assume the
activation of the following lemmas

(25) {r1 = true, (27) {r2 = true, (29) {r4 = true,
r2 # true } 4 # true } 5 = true }
(26) {r1 = true, (28) {r3 = true,
r3 # true } 5 # true }

and want to prove the goal
(30) {r1 =true}

Figure 4. lllustration of Example 11

The specification is illustrated in Figure 4 by solid linese Wssume that the first
literal is used as head literal for each lemma. There is a §apoosteps e.g. between
r1 = true andr5 = true that cannot be closed automatically. Using the mandatory
markings heuristics, our automatic proof control perfotms proof attempts which
are illustrated in Figure 5. None of the lemmas can be appbedne of the two
open goals without violating the restrictions caused byntlaadatory marking. In the
open goal of the first proof attempt, for instance, only étet5s = true is marked as
mandatory. Therefore, the only way to obey the restrictiansed by the mandatory
marking would be to apply Lemma (29). Butisis not presentin the goal, we cannot
apply the lemma for rewriting4 as required by the activation. The same argument
holds true for the open goal of the second proof attempt, Larf#8) and operatar3
which is not present in the goal.

We can overcome this situation by introducing e.g. one ofeHewing auxiliary
lemmas (illustrated in Figure 4 by dashed lines):
(31) {r2=true, r3 =true} (32) {rl1=true, r5# true}

Each of these lemmas as well as Goal (30) (after activatirgodi31), (32)) can be
proved automatically. Goal (30), for instance, can be pid@malogously to Goal (24)
in Example 10 if we activate Lemma (31) (cf. Figure 3a replgaii with ri). If



224  JANCL - 16/2006. Implementation of logics

lemma-rewrite (26) lemma-rewrite (25)

{. {|r3 # true|, {|r2 = true|, {{|r2 # true|
rl=true} true = true|} rl=true} true = true|}

( lemma-rewrite (28) ( lemma-rewrite(27) )

{{|x5 = true|, {| 5 # true|, {, {| 4 # true|,
r3 = true, true = true, r2 = true, true = true|,
rl=true} rl =true} ri = true} rl=true}

o i

Gz | [l
true = true|,

r4 = true,
r2 = true, r2 = true,
rl=true} rl = true}

Figure 5. Two failed proof attempts for GoéB0) of Example 11

we activate Lemma (32) we can prove the open goal of the sepaad attempt in
Figure 5. Thus, we can bridge the gap. ]

Theorem 12 states that we can always close gaps with ayxdiammas.

THEOREM 12. — If a goal can be proved by simplification without any restdos
on the elements that can be used then it can also be provedwidgmdatory marking
with the help of some auxiliary lemmas which themselves eqndved with a manda-
tory marking. More precisely, if a proof violates the restibns atn goal nodes then
we need at most auxiliary lemmas.

PROOF. — A proof step that creates a subgoal that does not possgseaniteral
cannot contribute to a proof. Hence, it can be eliminatethftbe proof. Thus, we
can assume that a proof contains at least one new literaldh sabgoal. As we
mark at least one of the new literals as mandatory, each slibgotains at least one
mandatory literal. If a goal in the proof violates the redtans caused by a mandatory
marking we can introduce a new lemma consisting of this glaaise. As each proof
attempt for a new lemma starts with all literals marked as datory, the proof of
the lemma succeeds with a mandatory marking. Whatever litegal is chosen for
this lemma, it can be applied to prove the goal that formeidyated the restrictions
caused by a mandatory marking. The lemma is applicable Beatueast one literal
in the goal is mandatory. [ |



Heuristics for conditional lemmas 225

Unfortunately, the required auxiliary lemmas cannot bewated automatically.
In fact, the automatic generation of lemmas according tdakeproof would coun-
teract the mandatory marking because proof search woulihcenfor the auxiliary
lemmas with all elements marked as mandatory again. Nealed$, the auxiliary
lemmas may be manually extracted from failed proof attemfriscontrast to this,
Contextual Rewriting may not even be able to make use of imamxilemmas simply
because one cannot build a bridge when a bank is forbidden.

3.3. Simulating approaches from the literature with forbiddenamkings in goals

Other approaches known from the literature perform thefédist in such a way
that certain elements are excluded from the generated ailgda these approaches,
excluded elements are completely eliminated from the salsgoesulting in unsafe
lemma applications. Within our flexible framework, we mottedse approaches in a
safe way by introducing a forbidden marking in goals.

RESTRICTION13 (CAUSED BY FORBIDDEN MARKING). — An inference rule may
be applied to a goalr with a forbidden markingonly if all forbidden elements that
are principal in this proof step are cut-off elements. O

We account for the elimination of forbidden elements in thpraaches known
from the literature in the following way: Once an element iagrked as forbidden in
a goalG, it remains forbidden in the whole proof attempt fér Our modeling with
a forbidden marking improves the versions in the literainsefar as forbidden ele-
ments may serve as cut-off elements. Gebe a goal with a forbidden marking and
G’ be the goal derived fror&' by eliminating all forbidden elements. Roughly speak-
ing, since forbidden elements must not be principal (urtlesg are cut-off elements),
the same inference rules are applicablétandG’. The applications result basically
in the same subgoals. Therefore, proof search is essgritiallsame in both cases
except that the approaches that eliminate forbidden elentewve to prove

— additional subgoals that are cut off by the forbidden eletsie

— stronger goals since conditions in form of forbidden elet®@re missing. This
may even cause a failure of a proof attempt because of a subwpazh is, in fact,
trivial if we do not eliminate forbidden elements.

Thus, we consider the use of a forbidden marking as an adequdtsafe alternative
for modeling previous approaches from the literature. Tdditeonal cut-off elements
do not change the search space, but relax the successocritgrour proof search.
In Section 4, we perform case studies to validate the adgogofacur modeling of
Contextual Rewriting and to demonstrate the additionakbienof using forbidden
elements as cut-off elements.

3.3.1. Contextual rewriting

Contextual Rewriting in the narrower sense is used e JQiM [BOY 88], ACL2
[KAU 00], RRL [ZHA 95], and more recently i®DL [ARM 03]. These approaches



226 JANCL - 16/2006. Implementation of logics

vastly differ in their simplification process e.g. in the wilgy use equality informa-
tion. NQTHM [BOY 88] andACL2 [KAU 00] use the cross fertilization technique while
RRL [ZHA 95] uses a constant congruence closure algorithrRDIN[ARM 03], deci-
sion procedures can be used by the simplification procesgeriteless, they use the
same literals to perform the relief test: The focus litemahie applicability subgoals as
well as all downfolded literals are marked as forbidden. @ndne hand, Contextual
Rewriting is not very restrictive because it admits nontdbnting proof steps. On
the other hand, it is often too restrictive as can be seenriexamples:

EXAMPLE 14 (8 CONTINUED). — The second application of Axiom (1) in Figure 1
rewrites a literal initially used as focus literal. Thus,i@axtual Rewriting fails. O

ExAMPLE 15 (1OCONTINUED). — Two lemmas have to be applied to the same goal
literal to perform a successful proof. But after applyinggdemma, the focus literal

is forbidden for the rest of the proof attempt. This situati® depicted for one proof
attempt in Figure 3b where forbidden literals are markedogsing them out. The
proof attempt fails at the left-most leaf g8 = true cannot be used anymore. It is
not possible to overcome this situation with auxiliary leesn O

Not surprisingly, Example 11—a generalization of Examle-‘annot be proved
with Contextual Rewriting either. Nevertheless, a sligladification changes the ex-
ample in such a way that it can be proved with Contextual Rawyribut not with
our novel heuristics with a mandatory marking (in the sinfplen presented in Sec-
tion 3.2 and without auxiliary lemmas).

EXAMPLE 16. — Given six boolean valued constaats. . ., s6, we assume the ac-
tivation of the following lemmas

(33) {s1 = true, (35) {s3 = true, (37) {s5 = true,
s3 # true } sb # true } s6 = true }
(34) {s2 = true, (36) {s4 = true,
s4 # true } s6 # true }

and want to prove the goal

(38) {s1 =true,
s2 = true }

sl = true, s2 = true

\Y
sb = true

Figure 6. lllustration of Example 16

The specification is illustrated in Figure 6. We assume thafitst literal is used
as head literal for each lemma. Whereas Contextual Reggtm apply Lemmas (33)



Heuristics for conditional lemmas 227

to (37) one after the other, our heuristics based on mandatarkings cannot close
the gap without auxiliary lemmas or generous literals (ettidns 3.2 and 3.5). O

3.3.2. Case rewriting

Case Rewriting tries to overcome the difficulties of ContextRewriting by a
special treatment of lemmas that can be applied to rewitedime redex alternatively,
such as e.g. Lemmas (21) and (22) in Example 10. In this seas@pproach with a
mandatory marking is a novel form of Case Rewriting. Theeeareast two further
approaches known from the literature [BOU 93, KOU 90].

The approach for Case Rewriting proposed in [KOU 90] retstitice relief test by
order constraints which we cannot use in general for ouriegdn domain as we
allow non-terminating operator definitions.

In the approach of Case Rewriting in [BOU 93], a term is reteritby a set of
n lemmas resulting im + 1 new subgoals: For each lemma one rewrite subgoal is
created; additionally oneell-coverednessubgoal is produced. This last subgoal is
to guarantee the completeness of the case split w.r.t. te@ ¢(gmmas.

ExaMPLE 17 (15CONTINUED). — For the specification of Example 10, this Case
Rewriting approach can be modeled by applying the two lemimasiccession as
depicted in Figure 3c. In the well-coveredness goal—i.ele¢ft-most goal—only the
condition literals may be used. As the case split for Lemra#énd (22) is complete
according to Lemma (23), the proof can be completed. O

The approach of [BOU 93] seems to have the following limitas: The set of
lemmas applied depends only on the focus literal but not enctintext. A single
well-coveredness goal is sufficient only if all lemmas difbaly in a single condition
literal. The well-coveredness goal cannot be proved if tiseeplit is incomplete.

ExXAMPLE 18 (14CONTINUED). — The applications of Lemma (8) and Axiom (1) in
Figure 1 do not form a complete case split. Actually, theynedenot rewrite the same
redex. Thus, Case Rewriting according to [BOU 93] cannotg@ied. Moreover, in
contrast to [BOU 93], our approach with a mandatory markiaug make use of other
goal literals to prove the well-coveredness subgoal. O

3.4. Enhancing the efficiency with obligatory markings in lemmas

On the one hand, the use of a mandatory marking as explair®edtion 3.2 re-
sults in anextensiveelief test. But as we call the simplification process reivety
for any condition subgoal whose condition literal is noedity fulfilled in the goal,
it may be very time-consuming. On the other hand, using oirlyctly applicable
lemmas is a vergfficientbut not extensive relief test because it checks only syiotact
equality. As a compromise, we introduce an obligatory nragkin lemmas that re-
stricts the relief test for obligatory elements to the edfitisyntactic test. This guides
the proof search in a user-defined way, manually controtlegdegree of extent and
efficiency for each lemma separately.



228 JANCL - 16/2006. Implementation of logics

RESTRICTION 19 (CAUSED BY OBLIGATORY MARKING). — A lemma with an
obligatory markingmay be applied to a godl only if all obligatory elements are
directly fulfilled in the goal. O

Thus, a lemma with an obligatory marking is only applicalblehe instantiated
obligatory elements are present in the goal. Therefore, ayeimerpret the obligatory
marking as a user-defined means to extend the principal pahei goal w.r.t. the
applied lemma.

By marking elements as obligatory, we restrict proof seahehioing so, we may
prevent the automatic derivation of proofs. Thus, elemargautomaticallymarked
as obligatory only if the head literal of the lemma is an enathat is used as rewrite
rule with ageneral termas left-hand side, i.e. a term of the forfifxy,...,x,) in
which thex; are pairwise different variables. Without obligatory ebats, the relief
test would be invoked too often in this case, most of the timsugcessfully.

HEURISTICS20 (FORMARKING ELEMENTS ASOBLIGATORY). — Our automatic
default heuristics chooses one obligatory element if thera is used as rewrite rule
with a general term as left-hand side. O

ExampLE 21. — If we use the first literal of the trichotomy of less
(39) { less(z,y) = true, less(y,z) =true, z =y}

as head literal then it is activated as rewrite rule for ofmeraess with a general
term as left-hand side. When applying this lemma, the rédigtfreduces the question
whetherz is less thary to the question whetheris not less than: and whether they
are unequal. But this relief test is in most cases not sintpker the original problem.
In Example 9, the activation of Lemma (39) would increaserthmber of inference
steps from 9 to 12. But if the context says that neithés less thany nor y is less
thanz then we can derive thatis equal toy by Lemma (39). Thus, we may prove the
remaining literals of the clause in the possibly very usefuitext that: is equal to
y. Therefore, the automatic application of the lemma shoaldastricted by marking
the second lemma literal as obligatory. O

ExXAMPLE 22. — Another example is given by the axioms of a division apar.

(40) {divi(z,y,u,v) = u, (41) {divi(z,y,u,v) =divi(z,y,s(u),+(v,y)),
z#v} z=v}

Without marking literals as obligatory the relief test dteated in Figure 7 does not
terminate. During the relief test for Axiom (40), Axiom (4d3n be applied for rewrit-
ing because the mandatory literal directly fulfills the cibiod literal of Axiom (41).
Since the rewriting changes the second goal literal it bexsomandatory and thus can
be used for further rewrite steps with the axioms. If the dtiowls of the axioms are
marked as obligatory, already the first relief test is présen O



Heuristics for conditional lemmas 229

{|divi(z,y,0,0) =...

axiom-rewrite (40)
[

|
| {z=0l, divi(z,y,0,0)=...} | | {, [o=—]» |

{z=0]. |div1(m,y$s(0).+(0, ) :...|}

axiom-rewrite (40)

Figure 7. Non-terminating relief test in Example 22

3.5. Enhancing the extent with generous markings in lemmas

The efficiency of the relief test can be improved and manuadliytrolled with
obligatory markings. To enhance the extent of the relief besed on a mandatory
marking in a user-defined way, we now introduce generousimgshkn lemmas.

The idea of our mandatory markings is to prefer (locally)tdbating proof steps,
and, therefore, to prevent non-contributing proof stepd.a8 explained in Example 6,
applying only those proof steps that locally contribute py@of, restricts proof search
too much and prevents too many proofs where all proof stegpsantributing but some
of them do not locally contribute to the proof. Therefore;, default Heuristics 7 for
marking mandatory elements in subgoals appdtést or relaxedmandatory marking
heuristics depending on the type of the subgoal, i.e. winéthie an applicability
subgoal, an order subgoal or another subgoal. But even gldefault Heuristics 7,
proof search is restricted in such a way that we may requixéiaiy lemmas just to
compensate for the restrictions caused by our mandatoriingasr (cf. Example 11
and Theorem 12). Auxiliary lemmas may be required for twsoes:

1) to find a proof at all (cf. Example 11); or

2) to improve the efficiency of proof search by introducingrsbuts in the search
space. With auxiliary lemmas, proof search may be guided fimeagrained level.
But this burdens the user with having to pick suitable aarflilemmas.

Instead of introducing auxiliary lemmas that just compém&a the restrictions caused
by mandatory markings, we may vary the mandatory markingsistecs. On the one
hand, if we use only the strict mandatory markings heuss@édl proof steps locally
contribute to the proof. On the other hand, if we use only #k@xed mandatory mark-
ings heuristics, we do not pose any restrictions on proafcbeat all. As a compro-
mise, we introduce generous markings. With generous elenties default behavior



230 JANCL - 16/2006. Implementation of logics

for marking mandatory elements in the subgoals as deschibEéuristics 7 can be
changed in a flexible way.

RESTRICTION23 (CAUSED BY GENEROUSMARKING). — If alemma with agen-
erous markings applied to a goals, it causes the following restriction on the manda-
tory marking of a condition or rewrite subgogd::

If SG is generated from a generous element, then the mandatokympaf SG
is inherited fromG and supplemented with all the new elementsS6f. Thus, the
marking is generated with the relaxed marking heuristiesider rewrite subgoals in
Heuristics 7.

If the corresponding elementis not generous, then a new serdatory elements
is introduced forSG consisting exactly of the new elementsSid. In this case, the
marking is generated with the strict marking heuristicsduse condition subgoals in

Heuristics 7. O

HEURISTICS 24 (FOR MARKING ELEMENTS AS GENEROUY. — Our automatic

default heuristics marks exactly the head literal of evexyrite lemma as generous.
O

Note that, with Heuristics 24, the mandatory marking Heioss7 in Section 3.2
now works exactly as without a generous marking before.

Generous elements relax the restrictions caused by a ntapadaarking. There-
fore, we may avoid some auxiliary lemmas.

ExAMPLE 25 (11coNTINUED). — If all literals in Lemmas (25) and (26) are gen-
erous, we may first apply these two lemmas. This results ifoll@ving clause:

(42) {r2 =true, r3 =true, rl =true}

Due to the generous marking, all literals in this clause aaadatory. Therefore, we
can prove this clause in the same way as Lemma (31). O

Using the relaxed mandatory markings heuristics for gameetements clearly ex-
tends the search space. Therefore, one would expect thagtveelgss efficient relief
test. Often, this holds true but, in general, it is not thatyet® analyze the effects of
generous elements on proof search. Generous elementg enatd proof steps that
do not locally contribute to the proof. For these proof steyes do not know whether
they contribute to the proof. Often, they are non-contiiit But, sometimes, they
may enable additional proof steps that introduce shortbutislg proof search. They
may avoid many failed proof attempts resulting in improvétiency. Thus, gener-
ous elements may have similar effects on proof search aBayxémmas: They may
enable a proof at all and they may increase the efficiency @bfpsearch. But they
also extend the search space—just as auxiliary lemmas daekwiay decrease the
efficiency of proof search as well.

In general, the introduction of auxiliary lemmas allows agtiide proof search
on a more fine-grained level than this can be done by markemehts as generous.
In the former case, we may introduce just the lemma instaempeired for closing the



Heuristics for conditional lemmas 231

proof state tree, whereas, in the latter case, many lemmyadawme applicable—
most of them resulting in unsuccessful proof attempts. dloee, auxiliary lemmas
do not extend the search space as much as generous markingadofor efficiency

reasons it is advantageous to use auxiliary lemmas. Burgesenarkings relieve the
user of the burden of picking these auxiliary lemmas. Thiesr@commend their use
in a limited way for complicated proofs.

Often, the coarse-grained extension of the search spaseddy generous ele-
ments introduces too many non-contributing proof stepgkibntain unnecessary
proof obligations in terms of open goal nodes. These additiproof obligations
countervail the benefits of the generous markings in suchyaed, actually, the ef-
ficiency of proof search decreases when using generous mgarkin their own. As
mentioned in Section 3.1, we may analyze and prune a pertbpnoef by eliminating
non-contributing proof steps with hindsight. The combioabf generous markings
with this pruning technique allows us

1) to search for a proof performing proof steps that do natllgcontribute; and
2) to eliminate proof obligations of non-contributing pfeteps.

Only in this combination, generous markings can displayr thél power. As the
pruning techniques are outside the scope of this paper, wetoonsider generous
markings in more detail. Instead, we refer to [SCH 06].

Even in combination with pruning, generous markings sha@dised with cau-
tion. We recommend their use if a lemma (or a literal in a gsBxpected to be
essential for the proof, i.e. a proof cannot be found withaibg the lemma (or the
literal in the goal), and the proof itself is expected to bedaut not necessarily linear.
Usually, we assume that these properties hold true for gmal&ining definedness
atoms which are proved by applying corresponding domaimmas Therefore, we
usually mark as generous:

— negated definedness atoms in all lemmas because they gedefmedness
atoms in the corresponding condition subgoals; and

— all literals in domain lemmas.
Furthermore, if an operatof is defined in terms of other function symbols using
defining rules which are not recursive, we may decide to redaoms containing

operatorf with its defining rules in any case. Then, the literals in teérdng rules of
operatorf should be marked as generous.

3.6. Further heuristics for guiding proof search
To increase the performance of our proof control we applihrheuristics (cf.
[BOY 88)):

— We prevent repeated applications of the same infereneavith the same princi-
pal literals within one proof attempt (disregarding cutdvérals): For the application



232 JANCL - 16/2006. Implementation of logics

of an inference ruld to a goalG;, we inspect all the applications on the branch of the
proof state tree from the root goal (&

In particular, when using generous markings for condititerdls in lemmas, this
mechanism is required for avoiding trivial rewrite loopss #he condition subgoal
generated from a generous condition literal inherits thedatory marking from its
parent goal, the same inference step is applicable again.

— We do not apply lemmas that apparently do not support thef mfothe goal.
There may be two reasons for this: Firstly, the conditiortheflemma and the context
of the goal are inconsistent, i.e. the context contains #gation of one condition.
Secondly, the focus literal of the goal is rewritten to aniobsly unsatisfiable literal
ase.gt #t.

— During an automatic proof attempt, we do not want to guegsremtantiations of
lemma variables. Thugxtravariables—i.e. variables that are not bound by matching
the head literal to the focus literal—must be instantiatethiatching condition literals
to context literals.

— Permutativdemmas as e.g. the commutativity-oére applied only w.r.t. a fixed
wellfounded total term order. By this, we hope to preventiitdi rewrite chains with
permutative lemmas.

— To prevent infinite loops when proving applicability subgg the maximal re-
cursion depth can be restricted.

4. Case studies

In this paper, we have presented novel heuristics to résiecrelief test for con-
ditional lemmas. To validate our novel heuristics on sona case studies, we have
to integrate them into an inductive proof process. We wastudy solely the effects
on proof search caused by the different heuristics basedaskings. Therefore, we
compare the different heuristics with as few differencep@ssible. Instead of com-
paring different systems that implement the various h&osiswe use the same proof
process as well as the same specifications within a singteraysThus, we realize
Contextual Rewriting as explained in Section 3.3.1. At the ef this section we will
also point out how the results obtained by our simulatioms/aaver to other provers.

We choose our inductive theorem provev@pL IBET [AVE 03] to perform our
simulations. It provides the following advantagess@DL IBET strictly separates the
automatic proof control implemented by tactics from theidogngine given by an
inference system. The flexibility of the inference rulestdasa the simulation of the
different heuristics easily. Note that systems based oneXtual Rewriting eliminate
the focus literal from the condition subgoals. Thus, theiderlying inference sys-
tems would have to be changed to simulate our novel hewgistiast but not least,
QUODLIBET provides various statistics to compare the different tstigs.

We summarize our inductive proof process that is influencefB®Y 88]:. The
whole proof process is controlled by a so-calttedabase It stores information about



Heuristics for conditional lemmas 233

theanalysisof defined operators and tlaetivated lemmasThe analysis of a defined
operator is used for performing an inductive case splitmatacally; instead of gen-
erating induction hypotheses at the beginning of the predaf &xplicit induction, we

may apply lemmas as induction hypotheses. These applhsatieate an additional
order subgoal to guarantee the wellfoundedness of the finiuscheme. Only acti-
vated lemmas may be used within the simplification proceasing the activation

of a lemma the user may provide the head and the obligatorygandrous literals

of the lemma. Otherwise, they are determined by some hsr{gf. Section 3.4 for

obligatory, Section 3.5 for generous, and [SCH 04] for héaddls).

The simplification process is divided into phases: The fitgige proves simple
tautologies, the second removes redundant literals, trebdpplies directly applica-
ble lemmas, the fourth decomposes literals and applies &syeven if they are not
directly applicable, the fifth uses equalities fooss-fertilization[BOY 88]. During
each phase the tactics use each litstadcessivelyas focus literal. This is justified
since all inference rules add literals only to tinent of the goal. Lemmas are tested
in reverse activation order, which may be changed to inflaghe proof search. If
a head literal is an equation (whose left-hand side is notreaba), it is used for
rewriting; otherwise, forsubsumption Subsumption is checked for first; then the
subterms of the focus literal are tested for rewriting, gsan innermost left-to-right
strategy. If a lemma can be applied and all its applicabditpgoals can be proved,
its application will not be deleted anymore. Thus, no aktise proof attempts for
successful applications will be tried out during this taetkecution. Contrariwise, a
lemma application—together with all proof attempts of thelecability subgoals—is
deleted if the relief test fails. This results in a backtiagkstep. Further details can
be found in [SCH 04].

For a fair evaluation of forbidden literals, we have slightiodified the automatic
application of axioms during our simplification process whising forbidden literals:
If axioms can be applied to the same redex alternativelyh(siscthe axioms of the
ged in Example 1) a Cut with the condition literal(s) will be penfned automatically.
This then enables the application of all axioms. Othervaseady the second appli-
cation would be prevented because the rewrite literal besdorbidden after the first
application. This simulates theperator unfoldingoperation in systems likBQTHM
where all axioms are given in one operator definition. Togethith the additional
admission of forbidden literals as cut-off literals, thesults in a modeling where
Contextual Rewriting can display its full power.

We compare the different heuristics in the following caselts whose details can
be found at [SCH 05a]:

sortalgos This case study contains a collection of sorting algoritisonsh as bub-
blesort, insertionsort, mergesort and quicksort. We pthaethe sorting algo-
rithms return an ordered list which is a permutation of thauirist.



234 JANCL - 16/2006. Implementation of logics

Table 1. Complexity of the case studies

Example Lemmas| Man. Interact.| Autom.Appl. | Del. | Fin.P. | Runtime
sortalgos 111 1+ 0 2233 40 | 2193 5.95
ged 85 8+ 2 1114 13 | 1101 2.92
sqrt (H) 51 11+ 1 1062 14 | 1048 5.91
sqrt (E) 38 2+ 0 529 2 527 1.46
exp-exhelp 27 0+ 6 1278 116 | 1162 7.22
Lpo 154 5+ 67 5458 404 | 5054 36.89

gcd In this case study, we prove that the greatest common digktwo natural
numbers is associative, commutative and idempotent. Egrrbofs, we exploit
dependencies between divisibility and order relations.

sqrt We prove that/2 is irrational, based on the ideas of Hippasus of Metapontum
(H) and Euclid of Alexandria (E), respectively. In [WIE 03he proof of the
irrationality of /2 is used as a challenging problem for comparing 15 different
theorem provers w.r.t. their ability to formalize and prowathematics.

exp-exhelp This case study is taken from [KAP 96]. It states the equivedeof
call-by-value and call-by-name evaluations for simpldhamietic expressions
containing function calls.

Lpo In this case study, we prove that the lexicographic pathrgkd&M 80] is a sim-
plification order [DER 87]. Furthermore, we prove the eqglénae of different
implementations of thepo [LOC 04].

The last two examples are challenging as they contain myttedursive operators.
Table 1 illustrates the complexity of the examples. It corg@n column

Lemmas the number of lemmas (constant for all heuristics); and
for our novel heuristics with mandatory and obligatoryrktes, in column

Man. Interact. the number of manual interactions (manually applied infeesrules
+ manually chosen induction order);

Autom. Appl. the number of automatically applied inference rules (including the
later deleted ones);

Del. the numberi of deleted inference rules due to a failed relief test;

Fin. P. the number of inference rules in the final proof, i.e: d; and



Heuristics for conditional lemmas

Table 2. Comparison of the different heuristics

235

Heur. ‘ Open Lemmas| Autom. Appl. ‘ Del. ‘ Fin. P. ‘ Runtime
Examplesortalgos

1) 2 2348 143 2205 6.77
{o} 0 2143 19 2124 5.56
{m} 0 2072 107 1965 5.53
{m,o} 0 2007 40 1967 5.09
{f 0 2354 234 2120 6.31
{f,o} 0 2168 60 2108 5.13

Examplegcd

o — — — — —
{o} 0 911 5 906 2.13
{m} — — — — —
{m,o} 0 893 9 884 2.14
{f} — — — — —
{f.o} 9 974 18 956 2.07

Examplesqrt (H)

1) 1 2008 969 1039 16.11
{o} 0 1059 26 1033 5.98
{m} 0 1064 31 1033 6.22
{m,o} 0 1046 13 1033 5.85
{f 0 1021 60 961 5.40
{f,o} 0 980 25 955 5.28

Examplesqrt (E)

1) 0 477 4 473 1.24
{o} 0 471 0 471 1.18
{m} 0 477 4 473 1.24
{m,o} 0 471 0 471 1.25
{f 3 483 16 467 1.27
{f,o} 3 467 0 467 1.26

Exampleexp-exhelp

1) 0 3290 9 3281 299.28
{o} 0 3290 9 3281 298.90
{m} 0 1278 116 1162 7.26
{m,o} 0 1278 116 1162 7.22
{f 0 1342 204 1138 7.85
{f,o} 0 1342 204 1138 7.77

ExampleLpo

%] 1 11125 1089 | 10036 291.37
{o} 0 7621 848 6773 153.85
{m} 0 5746 971 4775 46.44
{m,o} 0 4988 330 | 4658 31.28
{f 1 32946 26667 6279 370.79
{f,o} 1 8050 2135 5915 50.89




236 JANCL - 16/2006. Implementation of logics

Runtime the runtime in seconds measured by a CMOMMON L ISP system on a
machine with a 1 GHz Intel Ill processor and 4 GB RAM.

Table 2 contains for each example and each heuristics basedcombination of
obligatory, mandatory andorbidden markings the following statistics: in column
“Open Lemmas”, the number of proof state trees that canndtised with this heuris-
tics; the entries in the other columns take into account tdge proof state trees that
are closed withall heuristics. We do not count applications and deletionsfefénce
steps of open proof state trees because failed proof atsetend to create large proof
state trees, tampering our results.

From the statistics in Table 2, we draw the following coniduas:

— Since the specification gfcd contains non-terminating rewrite rules, it can be
performed only with ambligatorymarking. For the other examples, obligatory mark-
ings restrict the search space without influencing the tiegubroofs very much: The
number of inference steps in the final proof is nearly the saagardless of the usage
of obligatory markings.

— Thebest heuristics w.r.t. efficien€gis underlined in the table) use a combination
of mandatory/obligatorym,o} and forbidden/obligator{f,o} markings, respectively.
As the same simplification process is used, these two hesrisan differ only if a
proof step cannot be applied due to the restrictions caugesbindatory or forbidden
markings. Only for the.po example, a major advantage in efficiency can be deter-
mined, favoring our novem,o} heuristics.

— As printed in bold in the table, of 466 lemmas in toi& lemmas cannot be
provedwith {f,o}, but our nove{m,o} heuristics proves all of them.

Note that in our modeling of Contextual Rewriting wifho}, 13528 subgoals are
created, but 1296 definedness and 648 condition subgoalaeHaas the proof trees
rooted in them—are cut-off by using forbidden literals asaffiliterals.

Finally, to answer the question about the adequacy of ourlaiion of Contextual
Rewriting, we converted one of our case studies into a progbtsfor a prover based
on Contextual Rewriting. We chose tged example as it contains most failed proof
attempts with a forbidden marking. As prover we ufi@@tHM [BOY 88] because we
did not want to use the decision procedures for linear aetivs integrated inCL2.”
Instead, we used th&hell principle to define our own type for natural numbers. We
applied the following transformations to the original pfgoript: The specification
style is changed from constructor to destructor recursiRartial definitions are sim-
ulated usingF as undefined value. ASQTHM is untyped, we explicitly restrict all
lemmas to natural numbers only. These transformations g&ite easy. Addition-
ally, we added one operator definition just to provide a dlgtanduction scheme for
the proof of one lemma as well as four auxiliary lemmas to &n#ie proof of two

7. Our marking techniques are also well suited for the intisgmaof decision procedures
[SCH 05b]. But in this paper, we focus on the application afditional lemmas. Therefore,
we have performed our case studies without consideringidecprocedures.



Heuristics for conditional lemmas 237

lemmas—namely Lemma (7) of Example 1 and a similar lemmadhaproved in
QuobLIBET by mutual induction. These are two of the nine lemmas th&dawith
our simulation off,o} in QUODLIBET. From the remaining seven lemmas, only two
are not proved automatically. Note that this is not a weakméur simulation of
Contextual Rewriting. Instead, the difference is causedifigrent induction princi-
ples: NQTHM uses explicit induction. Thus, it does not apply lemmas atigaly but
splits, at the beginning of a proof, the induction steps efditional lemmas in differ-
ent cases and immediately adds a promising induction hggahln contrast to this,
we use descente infinie (cf. [WIR 04]). Therefore, we havesw®the relief test more
often in QUODL IBET. Beside the failed proofs in the statistics, two lemmas pddwy
our novel heuristics with simplification are proved by inac in NQTHM. Thus, these
proofs are more complex MQTHM.

5. Conclusion

Rewriting with conditional lemmas is at the heart of manyd(intive) theorem
provers. Especially for interactive theorem provers, égsential not only to prove as
many lemmas automatically as possible but also to restrazifsearch in a suitable
way such that the proof process stops within a reasonablemrtobdtime.

In this paper, we have developed a framework that allows testoict proof search
in a flexible way using heuristics based on markings in goatslammas. Within
our framework we can simulate Case Rewriting and ContexRealriting with a for-
bidden marking in goals. The adequacy of our simulation ofit€xtual Rewriting
is demonstrated by carrying over a case study@oHM. Furthermore, we have de-
veloped a novel heuristicen,o} based on the orthogonal concepts of a mandatory
marking in the goals and an obligatory marking in the lemnfas. the comparison
of the heuristics we chose the well established applicatimmain of rewrite-based
simplification in inductive theorem proving. Our simulatiof Contextual Rewriting
{f,0} is competitive with our novel heuristi¢s,o} regarding efficiency but not regard-
ing extent. Nevertheless, the benefits of our novel heasistie slightly decreased in
theorem provers using explicit induction because they dgadorm a relief test for
induction hypotheses.

Neither Case Rewriting nor Contextual Rewriting nor oureldeuristics are per-
fect. For all of them, we have identified proof patterns thetrot be handled with
the basic version of these heuristics. For our novel hécsisive can always over-
come these difficulties using auxiliary lemmas or a genemasking in the lemmas
relaxing the restrictions caused by a mandatory markings iEmot possible e.g. for
Contextual Rewriting. Furthermore, our framework allovesto choose between the
different heuristics and to combine them easily. With ofligy and generous mark-
ings in lemmas we can fine-tune the degree of extent and effigief the proof search
manually.

Our framework depends only on the partitioning of goals jmtiocipal part, cut-
off part and context according to the inference rule appli@the basic distinction



238 JANCL - 16/2006. Implementation of logics

between principal part and context was already introducé&skintzen’s seminal work
on sequent calculi [GEN 35]. Therefore, this partitioniagd also the refinement with
cut-off formulas) should pose no problems for inferenceesys based on sequent
calculi. Indeed, a similar form of lemma application occirall practice-oriented
mathematical assistance systems and the concepts behinthdking as mandatory,
forbidden, obligatory, and generous are all in great denaartapplicable, provided
that we extend the inheritance procedures to the new inferares in a meaningful
way. As explained in Section 4, systems based on Contexmatithg eliminate the
focus literal from the condition subgoals. Thus, their uhdeg inference systems
have to be changed as a prerequisite for the integration ofmawking techniques.
This may require significant technical effort. Then, the kirvag techniques may be
realized using wrapper functions for the inference ruleisiaddone in QUODLIBET.

The partitioning of a goal into a principal part, a cut-offppand a context can be
further exploited to determine the contribution of perfedwproofs. We elaborate on
this topic in [SCH 06]. The information about the contriloutiof a proof can be used
for extracting a pruned proof, determining superfluousditein goals, and enhancing
the reusability of subproofs. In the future, we will invgstie the combination of the
different marking heuristics and the pruning methods inem®tail. The combination
should lead to a more extensive relief test. In this way, wgethto reduce the number
of auxiliary lemmas and backtracking steps required. Thmipg techniques made
available by the contribution of proofs enhance efficiengyeliminating superfluous
proof steps.

Acknowledgements

First of all, I would like to thank Claus-Peter Wirth for encaging me to write
this paper, for his patience and the effort he made by preafling and improving
numerous versions of this paper. | owe more to Claus-Peter ltikan express here.
Furthermore, | would like to thank Jirgen Avenhaus for inyimg the readability
of the paper with his suggestions, Bernd Léchner and the yanous referees for
helpful comments on earlier drafts of this paper, and my W#ga for pointing this
interesting special issue out to me.

6. References

[ARM 03] ARMANDO A., RANISE S., “Constraint contextual rewriting”J. Symb. Comput.
vol. 36, num. 1-2, 2003, p. 193-216.

[AVE 03] AVENHAUS J., KUHLER U., SCHMIDT-SAMOA T., WIRTH C.-P., “How to Prove
Inductive Theorems? QODLIBET!”, BAADER F., Ed.,CADE, vol. 2741 ofLNCS
Springer, 2003, p. 328-333.

[BOU 93] BouHOULA A., RUSINOWITCH M., “Automatic Case Analysis in Proof by Induc-
tion”, 1JCAI, 1993, p. 88-94.



Heuristics for conditional lemmas 239

[BOY 88] BOYERR. S., MOOREJ. S.,A Computational Logic HandbopkAcademic Press
Professional, Inc., 1988.

[BUN 93] BuNnDY A., STEVENSA., VAN HARMELEN F., IRELAND A., SMAILL A., “Rip-
pling: A Heuristic for Guiding Inductive Proofs”Artif. Intell., vol. 62, num. 2, 1993,
p. 185-253.

[DER 87] DErRsHOWITZN., “Termination of Rewriting”,J. Symb. Compytvol. 3, num. 1/2,
1987, p. 69-116.

[GEN 35] GENTZzEN G., “Untersuchungen Uber das logische SchlieRetathematische
Zeitschrift vol. 39, 1934/35, p. 176-210 and 405-431.

[KAM 80] K AMIN S., LEVI J.-J., “Two generalizations of the recursive path ordérirgport
, 1980, Dep. of Computer Science, University of lllinoispdna, IL, Unpublished note.

[KAP 96] KAPURD., SUBRAMANIAM M., “Automating Induction over Mutually Recursive
Functions”, WRSING M., NIVAT M., Eds.,AMAST vol. 1101 ofLNCS Springer, 1996,
p. 117-131.

[KAU 00] KAUFMANN M., MANOLIOS P., MOORE J. S.,Computer-Aided Reasoning: An
Approach Kluwer Academic Publishers, 2000.

[KOU 90] KouNALIs E., RusiINowITCH M., “Mechanizing Inductive Reasoning”,AAAI,
1990, p. 240-245.

[LOC 04] LOCHNERB., “Things to know when implementing LPO”, c$iuLz S., SUT-
CLIFFE G., TAMMET T., Eds.,Proceedings of the 1st Workshop on Empirically Successful
First Order Reasoning (ESFOR '04ENTCS, Elsevier, 2004, Extended version to appear
in International Journal on Atrtificial Intelligence Toals

[SCH 04] SHMIDT-SAMOA T., The New Standard Tactics of the Inductive Theorem Prover
QuobDLIBET, SEKI-Report SR—2004—-01 (ISSN 1437-4447), SEKI, Saarlémid., 2004,
http://www.ags.uni-sb.de/"cp/p/sr200401/welcome.html.

[SCH 05a] HMIDT-SAMOA T., “How to Prove Inductive Theorems? UQDLIBET!",
www-avenhaus.informatik.uni-k1.de/quodlibet/, 1999—2005, Homepage of the
inductive theorem prover QODL IBET.

[SCH 05b] SHMIDT-SAMOA T., “An Even Closer Integration of Linear Arithmetic into-In
ductive Theorem Proving”, ERETTE J., ARMER W. M., Eds.,Calculemus ENTCS,
2005, To appear.

[SCH 06] ScHMIDT-SAMOA T., “Flexible Heuristic Control for Combining Automatiomd
User-Interaction in Inductive Theorem Proving”, PhD tlsedJiech. Univ. Kaiserslautern,
2006, submitted.

[WIE 03] WIEDIJK F., “Comparing Mathematical Provers”, SRERTIA., BUCHBERGERB.,
DAVENPORTJ. H., Eds.MKM, vol. 2594 ofLNCS Springer, 2003, p. 188-202.

[WIR 04] WIRTH C.-P., “Descente Infinie + DeductionLlogic Journal of the IGPLvol. 12,
num. 1, 2004, p. 1-96, Oxford University Prekstp: //wuw.ags.uni-sb.de/~cp/p/
d/welcome.html.

[ZHA 95] ZHANG H., “Contextual Rewriting in Automated ReasoningFundam. Inform.
vol. 24, num. 1/2, 1995, p. 107-123.



