
Automation of Mathematical Induction 29

4 RECURSION AND TERMINATION

Recursion is a form of programming or definition where a newly defined notion
may even occur in its definientia. Contrary to explicit definitions, where we can
always get rid of the new notions by reduction (i.e. by rewriting the definienda
(left-hand sides of the defining equations) to the definientia (right-hand sides)),
reduction with recursive definitions may run forever.

We have already seen some recursive function definitions in §§ 3.4 and 3.5, such
as the ones of +, lessp, length, and count, where these function symbols occurred in
some of the right-hand sides of the equations of their own definitions; for instance,
the function symbol + occurs in the right-hand side of (+2) in § 3.4.

4.1 Confluence

The restriction that is to be required for every recursive function definition is
the confluence71 of the rewrite relation that results from reading the defining
equations as reduction rules, in the sense that they allow us to replace occurrences
of left-hand sides of instantiated equations with their respective right-hand sides,
provided that their conditions are fulfilled.72

The confluence restriction guarantees that no distinct objects of the data types
can be equated by the recursive function definitions.73 This restriction is essential
for consistency if we assume axioms such as (nat2–3) (cf. § 3.4) or (list(nat)2–3)
(cf. § 3.5). Indeed, without confluence, a definition of a recursive function could
destroy the data type in the sense that the specification has no model anymore;
for example, if we added p(x) = 0 as a further defining equation to (p1), then
we would get s(0) = p(s(s(0))) = 0, in contradiction to the axiom (nat2) of § 3.4.

For the recursive function definitions admissible in the Boyer–Moore theorem
provers, confluence results from the restrictions that there is only one (uncondi-
tional) defining equation for each new function symbol,74 and that all variables
occurring on the right-hand side of the definition also occur on the left-hand side
of the defining equation.75

These two restrictions are an immediate consequence of the general definition

71A relation −→ is confluent (or has the “Church–Rosser property”) if two sequences of steps
with −→, starting from the same element, can always be joined by an arbitrary number of further

steps on each side; formally:
+←− ◦ +−→ ⊆ ∗−→ ◦ ∗←−. Here ◦ denotes the concatenation of

binary relations; for the further notation see § 3.1.
72For the technical meaning of fulfilledness in the recursive definition of the rewrite relation see

[Wirth, 2009], where it is also explained why the rewrite relation respects the straightforward
purely logical, model-theoretic semantics of positive/negative-conditional equation equations,
provided that the given admissibility conditions are satisfied (as is the case for all our examples).

73As constructor terms are irreducible w.r.t. this rewrite relation, if the application of a defined
function symbol rewrites to two constructor terms, these constructor terms must be identical in
case of confluence.

74Cf. item (a) of the “definition principle” of [Boyer and Moore, 1979, p. 44f.]. Confluence is
also discussed under the label “uniqueness” on Page 87ff. of [Moore, 1973].

75Cf. item (c) of the “definition principle” of [Boyer and Moore, 1979, p. 44f.].

30 J Strother Moore, Claus-Peter Wirth

style of the list-programming language LISP. More precisely, recursive functions
are to be defined in all Boyer–Moore theorem provers in the more restrictive style
of applicative LISP.76

EXAMPLE 6 (A Recursive Function Definition in Applicative LISP).
To avoid the association of routine knowledge, let us not consider a function defini-
tion over lists (as standard in LISP), but over the natural numbers. For example,
instead of our two equations (+1), (+2) for +, we find the following single equa-
tion on Page 53 of the standard reference for the Boyer–Moore heuristics [Boyer
and Moore, 1979]:

(PLUS X Y) = (IF (ZEROP X)
(FIX Y)
(ADD1 (PLUS (SUB1 X) Y)))

Note that (IF x y z) is nothing but the conditional “IF z then y else z”, that
ZEROP is a Boolean function checking for being zero, that (FIX Y) returns Y
if Y is a natural number, and that ADD1 is the successor function s.

The primary difference to (+1), (+2) is that PLUS is defined in destructor
style instead of the constructor style of our equations (+1), (+2) in § 3.4. As a
constructor-style definition can always be transformed into an equivalent destructor-
style definition, let us do so for our definition of + via (+1), (+2).

In place of the untyped destructor SUB1, let us use the typed destructor p
defined by either by (p1) or by (p1′) of § 3.4, which — just as SUB1 — returns
the predecessor of a positive natural number. Now our destructor-style definition
of + consists of the following two positive/negative-conditional equations:
(+1′) x+ y = y ⇐ x= 0
(+2′) x+ y = s(p(x)+ y) ⇐ x 6= 0

If we compare this definition of + to the one via the equations (+1), (+2), then
we find that the constructors 0 and s have been removed from the left-hand sides of
the defining equations; they are replaced with the destructor p on the right-hand
side and with some conditions.

Now it is easy to see that (+1′), (+2′) represent the above definition of PLUS
in positive/negative-conditional equations, provided that we ignore that Boyer–
Moore theorem provers have no types and no typed variables. ¤

If we considered the recursive equation (+2) together with the alternative recursive
equation (+2′), then we could rewrite s(x) + y on the one hand with (+2) into
s(x + y), and, on the other hand, with (+2′) into s(p(s(x))+ y). This does not
seem to be problematic, because the latter result can be rewritten to the former
one by (p1). In general, however, confluence is undecidable and criteria sufficient
for confluence are extremely hard to develop.

76See [McCarthy et al., 1965] for the definition of LISP. The “‘applicative” subset of LISP
lacks side effects via global variables and the imperative commands of LISP, such as variants of
PROG, SET, GO, and RETURN, as well as all functions or special forms that depend on the concrete
allocation on the system heap, such as EQ, RPLACA, and RPLACD, which can be used in LISP to
realize circular structures or to save space on the system heap.

bundy
Highlight
What does this mean?
THE FIRST TWO LINES OF THIS EXAMPLE HAVE BEEN REMOVED, BECAUSE I WAS NOT ABLE TO EXPLAIN THIS BRIEFLY AND PROPERLY. :-(

Automation of Mathematical Induction 31

The only decidable criterion that is sufficient for confluence of conditional equa-
tions and applies to all our example specifications, but does not require termina-
tion, is found in [Wirth, 2009].77 It can be more easily tested than the admissibility
conditions of the Boyer–Moore theorem provers and avoids divergence even in case
of non-termination; the proof that it indeed guarantees confluence is very involved.

4.2 Termination and Reducibility

There are two restrictions that are additionally required for any function definition
in the Boyer–Moore theorem provers, namely termination of the rewrite relation
and reducibility of all ground terms w.r.t. the rewrite relation.

The requirement of termination should be intuitively clear; we will further
discuss it in § 4.4.

To understand the requirement of reducibility, note that it is not only so that we
can check the soundness of (+1′) and (+2′) independently from each other, we can
even omit one of the equations, resulting in a partial definition of the function +.
Indeed, for the function p we did not specify any value for p(0); so p(0) is not
reducible in the rewrite relation that results from reading the specifying equations
as reduction rules.

A function defined in a Boyer–Moore theorem prover, however, must always
be specified completely, in the sense that every application of such a function
to (constructor) ground terms must be reducible. This reducibility immediately
results from the LISP definition style, which requires all arguments of the function
symbol on the left-hand side of its defining equation to be distinct variables.78

4.3 Constructor Variables

The two further restrictions of the Boyer–Moore theorem provers, namely reducibi-
lity and termination of the rewrite relation that results from reading the specifying
equations as reduction rules, are not essential; neither for the semantics of recur-
sive function definitions with data types given by constructors,79 nor for confluence
and consistency.80

Note that these two additional restrictions imply that only total recursive func-
tions81 are admissible in the Boyer–Moore theorem provers.

As a termination restriction is not in the spirit of the LISP logic of the Boyer–
Moore theorem provers, we have to ask why Boyer and Moore brought up this
additional restriction.

77The effective confluence test of [Wirth, 2009] requires binding-triviality or -complementary of
every critical peak, and effective weak-quasi-normality, i.e. that each equation in the condition
must be restricted to constructor variables (cf. § 4.3), or that one of its top terms either is a
constructor term or occurs as the argument of a definedness literal in the same condition.

78Cf. item (b) of the “definition principle” of [Boyer and Moore, 1979, p. 44f.].
79Cf. [Wirth and Gramlich, 1994b].
80Cf. [Wirth, 2009].
81You may follow the explicit reference to [Schoenfield, 1967] as the basis for the logic of the

Pure LISP Theorem Prover on Page 93 of [Moore, 1973].

bundy
Highlight
How do you know it is unique?;-)
THE SENTENCE NOW READS:
The only
k n o w n decidable criterion ...

bundy
Highlight
I could not understand this explanation. Please reword.THE EXPLANATION COMES ONLY IN THE FOLLOWING PARAGRAPH. THE TEXT NOW READS: Let us now discuss the requirement of reducibility.First of all, note that it is not only so that ...

bundy
Highlight
These restrictions are not 'further'. You just discussed them in the last para.

NOW READS: These restrictions of reducibility and termination of the rewrite relation are not essential.

bundy
Highlight
Why not?

IT IS NOT OUR SUBJECT TO EXPLAIN THIS, WHICH WOULD NEED OVER 50 PAGES. SO WE JUST POINT TO THE MATHEMATICALLY VERY INVOLVED PAPERS IN THE TWO FOOTNOTES. WHAT IS WRONG WITH THAT?

32 J Strother Moore, Claus-Peter Wirth

When both reducibility and termination are given, then — similar to the clas-
sical case of explicitly defined notions — we can get rid of all recursively defined
function symbols by rewriting, but in general only for terms without variables.

A better potential answer is found on Page 87ff. of [Moore, 1973], where con-
fluence of the rewrite relation is discussed and a reference to Russell’s Paradox
serves as an argument that confluence alone would not be sufficient for consistency.
The argumentation is essentially the following: First, a Boolean function russell
is recursively defined by
(russell1) russell(b) = false ⇐ russell(b)= true
(russell2) russell(b) = true ⇐ russell(b)= false

Then it is claimed that this function definition would result in an inconsistent
specification on the basis of the axioms (bool1–2) of § 3.5.

This inconsistency, however, arises only if the variable b of the axiom (bool1)
can be instantiated with the term russell(b), which is actually not our intention
and which we do not have to permit: If all variables we have introduced so far
are constructor variables82 in the sense that they can only be instantiated with
terms formed from constructor function symbols (incl. constructor constants) and
constructor variables, then irreducible terms such as russell(b) can denote junk
objects different from true and false, and no inconsistency arises.83

Note that these constructor variables are implicitly part of the LISP semantics
with its innermost evaluation strategy. For instance, in Example 6 of § 4.1, neither
the LISP definition of PLUS nor its representation via the positive/negative-condi-
tional equations (+1′), (+2′) is intended to be applied to a non-constructor term
in the sense that X or x should be instantiated to a term that is a function call of
a (partially) defined function symbol that may denote a junk object.

Moreover, there is evidence that Moore considered the variables already in 1973
as constructor variables: On Page 87 in [Moore, 1973], we find formulas on defined-
ness and confluence, which make sense only for constructor variables; the one on de-
finedness of the Boolean function AND reads84 ∃Z (IF X (IF Y T NIL) NIL) = Z,
which is trivial for a general variable Z and makes sense only if Z is taken to be a
constructor variable.

Finally, the way termination is established via induction templates in Boyer–
Moore theorem provers and as we will describe it in § 4.4, is sound for the rewrite
relation of the defining equations only if we consider the variables of these equations
to be constructor variables (or if we restrict the termination result to an innermost
rewriting strategy and require that all function definitions are total).

82Such constructor variables were formally introduced in [Wirth et al., 1993] and became an
essential part of the frameworks found in [Wirth and Gramlich, 1994a; 1994b], [Kühler and Wirth,
1996; 1997], [Wirth, 1997; 2009] [Kühler, 2000], [Avenhaus et al., 2003], and in [Schmidt-Samoa,
2006a; 2006b; 2006c].

83For the appropriate semantics see [Wirth and Gramlich, 1994b], [Kühler and Wirth, 1997].
84In the logic of the Pure LISP Theorem Prover, the special form IF is actually called

“COND”. This is most confusing because COND is a standard special form in LISP, different
from IF. Therefore, we will ignore this peculiarity and write “IF” here for every “COND” of the
Pure LISP Theorem Prover.

Automation of Mathematical Induction 33

4.4 Termination and General Induction Templates

In addition to a LISP-like definition style, the theorem provers for explicit induc-
tion require termination of the rewrite relation that results from reading the spec-
ifying equations as reduction rules. More precisely, in all Boyer–Moore theorem
provers except the Pure LISP Theorem Prover,85 before a new function sym-
bol fk is admitted to the specification, a “valid induction template” — which
immediately implies termination — has to be constructed from the defining equa-
tion of fk.86

Induction templates were first used in Thm and received their name when they
were first described in [Boyer and Moore, 1979].

Every time a new recursive function fk is defined, a system for explicit reduction
immediately tries to construct valid induction templates; if it does not find any,
then the new function symbol is rejected w.r.t. the given definition; otherwise the
system links the function name with its definition and its valid induction templates.

The induction templates serve actually two purposes: as witnesses for termina-
tion and as the basic tools of the induction rule of explicit induction for generating
the step cases.

For a finite number of mutually recursive functions fk with arity nk (k∈K),
an induction template in the most general form consists of the following:

1. A relational description87 of the changes in the argument pattern of these
recursive functions as found in their recursive defining equations:

For each k ∈ K and for each positive/negative-conditional equation with
a left-hand side of the form fk(t1, . . . , tnk

), we take the set R of recursive
function calls of the fk′ (k′ ∈K) occurring in the right-hand side or the con-
dition, and some case condition C, which must be a subset of the conjunctive
condition literals of the defining equation. Typically, C is empty (i.e. always
true) in case of constructor-style definitions, and just sufficient to guarantee
proper destructor applications in case of destructor-style definitions.

Together they form the triple (fk(t1, . . . , tnk
), R, C), and a set containing

such a triple for each such defining equation forms the relational description.

For our definition of + via (+1), (+2) in § 3.4, there is only one recursive
equation and only one relevant relational description, namely the following
one with an empty case condition:{ (

s(x)+ y, {x + y}, ∅) }
.

Also for our definition of + with (+1′), (+2′) in Example 6, there is only
one recursive equation and only one relevant relational description, namely{ (

x+ y, {p(x)+ y}, {x 6= 0}) }
.

85Note that termination is not proved in the Pure LISP Theorem Prover; instead, the sound-
ness of the induction proofs comes with the proviso that the rewrite relation of all defined function
symbols terminate.

86See also item (d) of the “definition principle” of [Boyer and Moore, 1979, p. 44f.] for a for-
mulation that avoids the technical term “induction template”.

87The name “relational description” comes from [Walther, 1992; 1993].

Josie
Highlight
LISP-like representation is not a requirement for explicit induction, just an option. Most LCF provers use type theory, for instance. Termination is a requirement and LCF provers like Isabelle, have an equivalent check.

TEXT NOW READS: In addition to the restricted style of recursive definition that is found in LISP and that
guarantees reducibility of terms with defined function symbols and confluence as described
in §§ 5.3 and 5.4, the theorem provers for explicit induction require termination of the
rewrite relation that results from reading the specifying equations as reduction rules.

Josie
Inserted Text
the

Josie
Inserted Text
the

34 J Strother Moore, Claus-Peter Wirth

2. For each k ∈ K, a variable-free weight term wfk
in which the position

numbers (1), . . . , (nk) are used in place of variables. The position numbers
actually occurring in the term are called the measured positions.
For our two relational descriptions, only the weight term (1) (consisting just
of a position number) makes sense as w+, resulting in the set of measured
positions {1}. Indeed, + terminates in both definitions because the argu-
ment in the first position gets smaller.

3. A binary predicate < that is known to represent a well-founded relation.
For our two relational descriptions, the predicate λx, y. (lessp(x, y) = true),
is appropriate.

Now, an induction template is valid if for each element of the relational description
as given above, and for each fk′(t′1, . . . , t

′
nk′

) ∈ R, the following conjecture is valid:
wfk′{(1) 7→t′1, . . . , (nk′)7→t′nk′

} < wfk
{(1) 7→t1, . . . , (nk)7→tnk

} ⇐ ∧
C.

For our two relational descriptions, this amounts to showing lessp(x, s(x))= true
and lessp(p(x), x)= true ⇐ x 6= 0, respectively; so their templates are both valid
by lemma (lessp4) and axioms (nat1–2) and (p1).

EXAMPLE 7 (Two Induction Templates with different Measured Positions).
For the ordering predicate lessp as defined by (lessp1–3) of § 3.4, we get two ap-
propriate induction templates with the sets of measured positions {1} and {2},
respectively, both with the relational description{ (

lessp(s(x), s(y)), {lessp(x, y)}, ∅) }
,

and both with the well-founded ordering λx, y. (lessp(x, y)= true). The first tem-
plate has the weight term (1) and the second one has the weight term (2). The
validity of both templates is given by lemma (lessp4) of § 3.4. ¤

EXAMPLE 8 (One Induction Template with Two Measured Positions).
For the Ackermann function ack as defined by (ack1–3) of § 3.4, we get only one
appropriate induction template. The set of its measured positions is {1, 2}, be-
cause of the weight function cons((1), cons((2), nil)), which we will abbreviate in
the following with [(1), (2)]. The well-founded relation is the lexicographic order-
ing λl, k. (lexlimless(l, k, s(s(s(0))))= true). The relational description has two
elements: For the equation (ack2) we get(

ack(s(x), 0), {ack(x, s(0))}, ∅)
,

and for the equation (ack3) we get(
ack(s(x), s(y)), {ack(s(x), y), ack(x, ack(s(x), y))}, ∅)

.
The validity of the template is expressed in the three equations

lexlimless([x, s(0)], [s(x), 0], s(s(s(0)))) = true;
lexlimless([s(x), y], [s(x), s(y)], s(s(s(0)))) = true;
lexlimless([x, ack(s(x), y)], [s(x), s(y)], s(s(s(0)))) = true;

which follow deductively from (lessp4), (lexlimless1), (lexless2–4), (length1–2). ¤
For valid induction templates of destructor-style definitions see Examples 18 and 19
in § 5.3.7.

Automation of Mathematical Induction 35

4.5 Termination of the Rewrite Relation on Ground Terms

The proof that the existence of a valid induction template for a new set of recursive
functions fk (k∈K) actually implies termination of the rewrite relation on ground
terms given after addition of the new equations for the fk can be executed in any
model of the old specification as follows:

For an argumentum ad absurdum, suppose that there is an infinite sequence of
rewrite steps on ground terms. Let us now consider each term to be replaced with
the multiset of the weight terms of its function calls for fk with k∈K. Then the
rewrite steps with the old equations of previous function definitions (of symbols
not among the fk) can only change the multiset by deleting some elements for the
following two reasons:

1. The new function symbols do not occur in the old equations.

2. We consider all our variables to be constructor variables as explained in § 4.3.
Moreover, a rewrite step with a new equation reduces the multiset in the well-
founded relation given by the multiset extension of the well-founded relation of the
template in the assumed model of the old specification because of the fulfilledness
of the conditions of the equation and the validity of the template. Thus, in each
rewrite step, the the multiset gets smaller in a well-founded ordering or does not
change. Moreover, if we assume that rewriting with the old equations terminates,
then the new equations must be applied infinitely often in this sequence, and so the
multiset gets smaller in infinitely many steps, which is impossible in a well-founded
ordering.

4.6 Applicable Induction Templates for Explicit Induction

We restrict the discussion in this section to recursive functions that are not mu-
tually recursive, partly for simplicity and partly because explicit induction is
hardly helpful for finding proofs involving mutually recursive functions. Moreover,
in principle, users can always encode mutually recursive functions fk(. . .) by means
of a single recursive function f(k, . . .), and tend to provide relevant additional
heuristic information via such an encoding, namely by the way they standardize
the argument list w.r.t. length and position (cf. the “changeable positions” below).

Thus, all the fk with arity nk of § 4.4 simplify to one symbol f with arity n.
Moreover, under this restriction it is easy to partition the measured positions of a
template into “changeable” and “unchangeable” ones.88

Changeable are those measured positions i of the template which sometimes
change in the recursion, i.e. for which there is a triple (f(t1, . . . , tn), R, C) in
the relational description of the template, and an f(t′1, . . . , t

′
n) ∈ R such that

t′i 6= ti. The remaining measured positions of the template are called unchangeable.
Unchangeable positions typically result from the inclusion of a global variable into
the argument list of a function (to observe an applicative programming style).

88This partition into changeable and unchangeable positions (actually: variables) originates in
[Boyer and Moore, 1979, p. 185f.].

Josie
Sticky Note
This sentence would be more readable if split into two.

REARRANGED: Let us prove that the existence of a valid induction template for a new set of recursive
functions fk (k ∈K) actually implies termination of the rewrite relation after addition of the
new positive/negative-conditional equations for the fk, assuming any arbitrary model M of all (positive/negative-conditional) equations with free constructors to be given.94

Josie
Sticky Note
again, please split sentence.WHOLE SECTION WAS REWRITTEN: Moreover, a rewrite step with a new equation reduces only a single innermost occurrence
of a new function symbol, because only a single new function symbol occurs on the left-hand
side of the equation and because we consider all our variables to be constructor variables.
The other occurrences in the multiset are not affected because M is a model of the new
equations. Thus, such a rewrite step reduces the multiset in a well-founded relation, namely
the multiset extension of the well-founded relation of the template in the assumed modelM.
Indeed, this follows from the fulfilledness of the conditions of the equation and the validity
of the template.
Thus, in each rewrite step, the multiset gets smaller in a well-founded ordering or does
not change. Moreover, if we assume that rewriting with the old equations terminates, then
the new equations must be applied infinitely often in this sequence, and so the multiset
gets smaller in infinitely many steps, which is impossible in a well-founded ordering.

Josie
Highlight
I don't understand this remark. Explicit induction is often successfully applied to mutually recursive functions.REWRITTEN AS FOLLOWS: partly because induction templates are hardly helpful forfinding proofs involving non-trivially mutually recursive functions.MOREOVER WE ADDED THE FOOTNOTE: See, however, [Kapur & Subramaniam, 1996] for explicit-induction heuristics applicable to simple
forms of mutual recursion.

Josie
Highlight
What does mean? That they can and often do? It would be clearer to make these two points separately. WE HAVE NOW TWO SEPARATE SENTENCES. I HAVE NO IDEA HOW TO EXPRESS THIS MORE CLEARLY IN A CONCISE WAY. THE PAPER IN THE NEW ABOVE FOOTNOTE WILL HELP HERE A BIT. MAYBE MARVIN SCHILLER COULD PUT THIS INTO SCIENTIFIC TERMS IN A BIGGER STUDY. BUT I AM NOT A COGNITIVE PSYCHOLOGIST. MATHEMATICIANS, HOWEVER, TEACH BY DOING PROOFS BECAUSE THEY DO NOT MANAGE TO EXPRESS THIS COGNITIVELY DIFFICULT EFFECTS OF HUMAN SPECIFICATION, WHOSE OCCURRENCE, HOWEVER, CANNOT BE DOUBTED. THUS, WE REALLY HAVE TO STATE IT HERE, EVEN IF WE CANNOT FURTHER DEVELOP IT.

36 J Strother Moore, Claus-Peter Wirth

To improve the applicability of the induction hypotheses of the step cases pro-
duced by the induction rule, these induction hypotheses should mirror the recursive
calls of the unfolding of the definition of a function f occurring in the induction
rule’s input formula, say

A[f(t′′1 , . . . , t′′n)].

An induction template is applicable to the indicated occurrence of its function
symbol f if the terms t′′i at the changeable positions i of the template are dis-
tinct variables and none of these variables occurs in the terms t′′i′ that fill the
unchangeable positions i′ of the template.89 For templates of constructor-style
equations we additionally have to require here that the first element f(t1, . . . , tn)
of each triple of the relational description of the template matches (f(t′′1 , . . . , t′′n))ξ
for some constructor substitution ξ that may replace the variables of f(t′′1 , . . . , t′′n)
with constructor terms, i.e. terms consisting of constructor symbols and variables,
such that t′′i ξ = t′′i for each unchangeable position i of the template.

EXAMPLE 9 (Applicable Induction Templates).
Let us consider the conjecture (ack4) from § 3.4. From the three induction tem-
plates of Examples 7 and 8, only the one of Example 8 is applicable. The two
of Example 7 are not applicable because lessp(s(x), s(y)) cannot be matched to
(lessp(y, ack(x, y)))ξ for any constructor substitution ξ. ¤

4.7 Induction Schemes

Let us recall that for every recursive call f(t′j′,1, . . . , t
′
j′,n) in a positive/negative-

conditional equation with left-hand side f(t1, . . . , tn), the relational description
of an induction template for f contains a triple(

f(t1, . . . , tn), { f(t′j,1, . . . , t
′
j,n) | j ∈J }, C

)
,

such that j′ ∈ J (by definition of an induction template).
Let us assume that the induction template is valid and applicable to the occur-

rence indicated in the input formula A[f(t′′1 , . . . , t′′n)] to the induction rule of ex-
plicit induction. Let σ be the substitution whose domain are the variables of
f(t1, . . . , tn) and which matches the first element f(t1, . . . , tn) of the triple to
(f(t′′1 , . . . , t′′n))ξ for some constructor substitution ξ whose domain are the vari-
ables of f(t′′1 , . . . , t′′n), such that t′′i ξ = t′′i for each unchangeable position i of the
template. Then we have tiσ = t′′i ξ for i ∈ {1, . . . , n}.

Now, for the well-foundedness of the generic step-case formula((
A[f(t′′1 , . . . , t′′n)]

)
ξ ⇐ ∧

j∈J

(
A[f(t′′1 , . . . , t′′n)]

)
µj

)
⇐ ∧

Cσ

to be implied by the validity of the induction template, it suffices to take substitu-
tions µj whose domain dom(µj) is the set of variables of f(t′′1 , . . . , t′′n), such that
the constraint t′′i µj = t′j,iσ is satisfied for each measured position i of the template
and for each j ∈ J (because of t′′i ξ = tiσ).

89This definition of applicability originates in [Boyer and Moore, 1979, p. 185f.].

Automation of Mathematical Induction 37

If i is an unchangeable position of the template, then we have ti = t′j,i and
t′′i ξ = t′′i . Therefore, we can satisfy the constraint by requiring µj to be the identity
on the variables of t′′i , simply because then we have t′′i µj = t′′i = t′′i ξ = tiσ = t′j,iσ.

If i is a changeable position, then we know by the applicability of the template
that t′′i is a variable not occurring in another changeable or unchangeable position
in f(t′′1 , . . . , t′′n), and we can satisfy the constraint simply by defining t′′i µj := t′j,iσ.

On the remaining variables of f(t′′1 , . . . , t′′n), we define µj in a way that we
get t′′i µj = t′j,iσ for as many unmeasured positions i as possible, and otherwise as
the identity. This is not required for well-foundedness, but it improves the likeli-
ness of applicability of the induction hypothesis (A[f(t′′1 , . . . , t′′n)])µj after unfold-
ing f(t′′1 , . . . , t′′n)ξ in (A[f(t′′1 , . . . , t′′n)])ξ. Note that such an eager instantiation is
required in explicit induction unless the logic admits one of the following: existen-
tial quantification, existential variables,90 lazy induction-hypothesis generation.

An induction scheme for the given input formula consists of the following items:

1. The position set contains the position of f(t′′1 , . . . , t′′n) in A[f(t′′1 , . . . , t′′n)].
Merging of induction schemes may lead to non-singleton position sets later.

2. The set of the induction variables, which are defined as the variables at the
changeable positions of the induction template in f(t′′1 , . . . , t′′n).

3. To obtain a step-case description for all step cases by means of the generic
step-case formula displayed above, each triple in the relational description
of the considered form is replaced with the new triple(

ξ, {µj | j ∈ J }, Cσ
)
.

To make as many induction hypotheses available as possible in each case,
we assume that step-case descriptions are implicitly kept normalized by the
following associative commutative operation: If two triples are identical in
their first elements and in their last elements, we replace them with the single
triple that has the same first and last elements and the union of the middle
elements as new middle element.

4. We also add the hitting ratio of all substitutions µj with j ∈ J :
|{ (j, i) ∈ J×{1, . . . , n} | t′′i µj = t′j,iσ }|

|J×{1, . . . , n}| ,

where J actually has to be the disjoint sum over all the J occurring as index
sets of second elements of triples like the one displayed above.

Note that the resulting step-case description is a set describing all step cases of
an induction scheme; these step cases are guaranteed to be well-founded,91 but
— for providing a sound induction formula — they still have to be complemented
by base cases, which may be analogously described by triples (ξ, ∅, C), such that
all substitutions in the first elements of the triples together describe a distinction
of cases that is complete for constructor terms and, for each of these substitutions,
its case conditions describe a complete distinction of cases again.

Josie
Highlight
This is a bit cryptic unless you explain why eager instantiation is not required in these cases.

WE POINT OUT THAT EAGER INSTANTIATION IS TYPICALLY REQUIRED
IN EXPLICIT INDUCTION. FOR THE REST WE CAN ONLY POINT TO THE LITERATURE.

Josie
Highlight
define? If this is not the definition what is?WE MADE CLEAR THAT THIS IS A DEFINITION BY ADDING "given by"Why is this needed, i.e., what is its role?NEW EXPANATION COMES WITH THE EXAMPLE THAT FOLLOWS. SEE NEXT OF YOUR NOTES.

38 J Strother Moore, Claus-Peter Wirth

EXAMPLE 10 (Induction Scheme).
The template for ack of Example 8 is the only one that is applicable to (ack4)
according to Example 9. It yields the following induction scheme.

The position set is {1.1.2}. It describes the occurrence of ack in the second
subterm of the left-hand side of the first literal of the formula (ack4) as input to
the induction rule of explicit induction: (ack4) / 1.1.2 = ack(x, y).

The set of induction variables is {x, y}, because both positions of the induction
template are changeable.

The relational description of the induction template is replaced with the
step-case description{ (

ξ1, {µ1,1}, ∅)
,

(
ξ2, {µ2,1, µ2,2}, ∅) }

.
that is given as follows.

The first triple of the relational description, namely(
ack(s(x), 0), {ack(x, s(0))}, ∅)

(obtained from the equation (ack2)) is replaced with
(

ξ1, {µ1,1}, ∅)
, where

ξ1 = {x7→s(x′), y 7→0} and µ1,1 = {x 7→x′, y 7→s(0)}. This can be seen as follows.
The substitution called σ in the above discussion — which has to match the first
element of the triple to ((ack4)/1.1.2)ξ1 — has to satisfy (ack(s(x), 0))σ =
(ack(x, y))ξ1. Taking ξ1 as the minimal constructor substitution given above,
this determines σ = {x 7→x′}. Moreover, as both positions of the template are
changeable, µ1,1 has to match (ack4)/1.1.2 to the σ-instance of the single element
of the second element of the triple, which determines µ1,1 as given.

The second triple of the relational description, namely(
ack(s(x), s(y)), {ack(s(x), y), ack(x, ack(s(x), y))}, ∅)

(obtained from the equation (ack3)) is replaced with
(

ξ2, {µ2,1, µ2,2}, ∅)
,

where ξ2 = {x7→s(x′), y 7→s(y′)}, µ2,1 = {x7→s(x′), y 7→y′}, and
µ2,2 = {x7→x′, y 7→ack(s(x′), y′)}. This can be seen as follows. The substitution
called σ in the above discussion has to satisfy (ack(s(x), s(y)))σ = (ack(x, y))ξ2.
Taking ξ2 as the minimal constructor substitution given above, this deter-
mines σ = {x 7→x′, y 7→y′}. Moreover, we get the constraints (ack(x, y))µ2,1 =
(ack(s(x), y))σ and (ack(x, y))µ2,2 = (ack(x, ack(s(x), y)))σ, which determine
µ2,1 and µ2,2 as given above.

The hitting ratio for the three constraints on the two arguments of (ack4)/1.1.2
is 6

6 = 1.
To achieve completeness of the substitutions ξk for constructor terms we have to

add the base case (ξ0, ∅, ∅) with ξ0 = {x7→0, y 7→y} to the step-case description.
The three new triples now describe exactly the three formulas displayed at the

beginning of Example 5 in § 3.9. ¤
90Well-foundedness is indeed guaranteed according to the above discussion. As a consequence,

the induction scheme does not need the weight term and the well-founded relation of the induction
template anymore.

91Existential variables are called “free variables” in modern tableau systems (see the
2nd rev. edn. [Fitting, 1996], but not its 1st edn. [Fitting, 1990]) and occur with extended func-
tionality under different names in the inference systems of [Wirth, 2004; 2012b; 2013].

Josie
Highlight
Is this good? Why?YES. AND WE SAY SO NOW:
This is optimal: the induction hypotheses are 100% identical to the expected recursive calls.

Josie
Highlight
I think this is what Isabelle calls free variables too. Universal variables it calls meta-variables. Confusing, isn't it?

YES. THIS IS MOST CONFUSING. SMULLYANS UNIFORM NOTATION AND HIS ALPHA BETA GAMMA DELTA CLASSIFICATION IS THE ONLY WAY OUT, BUT NOT VERY READABLE IN A HANDBOOK ARTICLE.

Automation of Mathematical Induction 39

5 AUTOMATED EXPLICIT INDUCTION

5.1 The Application Context of Automated Explicit Induction

Since the development of programmable computing machinery in the middle of
the 20th century, a major problem of hard- and software has been and still is the
uncertainty that they actually always do what they should do. The only viable
solution to this problem seems to be:

Specify the intended functionality in a language of formal logic, and
then supply a formal mechanically checked proof that the program
actually satisfies the specification!

Such an approach also requires formalizing the platforms on which the system is
implemented. This may include the hardware, operating system, programming
language, sensory input, etc. One may additionally formalize and prove that the
underlying platforms are implemented correctly and this may ultimately involve
proving, for example, that a network of logical gates and wires implements a given
abstract machine. Eventually, however, one must make an engineering judgment
that certain physical objects (e.g. printed circuit boards, gold plated pins, power
supplies, etc.) reliably behave as specified. To be complete, such an approach
would also require a verification that the verification system is sound and correctly
implemented.92

A crucial problem, however, is the cost — in time and money — of doing the
many proofs required, given the huge amounts of application hard- and software
in our modern economies. Thus, we can expect formal verification only in areas
where the managers expect that mere testing does not suffice, that the costs of
the verification process are lower than the costs of bugs in the hard- or software,
and that the competitive situation admits the verification investment. A good
candidate is the area of central processing units (CPUs) in standard processors.

To reduce the costs of verification, we can hope to automate it with automated
theorem-proving systems; this has to include an automation of mathematical in-
duction because most data types used in digital design, such as natural numbers,
arrays, lists, and trees, require induction for the verification of their properties.
Decision methods (many of them exploiting finiteness, e.g. the use of 32-bit data
paths) allow automatic verification of some modules, but — barring a completely
unexpected breakthrough in the future — the verification of a new hard- or soft-
ware system will always require human users who help the theorem-proving sys-
tems to explore and develop the notions and theories that properly match the new
system. Already today, however, ACL2 often achieves complete automation in
verifying minor modifications of previously verified modules — an activity called
proof maintenance which is increasingly important in the microprocessor-design
industry.

92See, for example, [Davis, 2009].

Josie
Highlight
Since most of industry seems to think that testing is sufficient, you should briefly explain why it isn't.

WE DO SO NOW: It is almost never the case that the product of the possible initial states, input threads,
and schedulings of a computing system is a small number. Otherwise, however, even the
most carefully chosen test series cannot cover the often very huge or even infinite number
of possible cases; and then, no matter how many bugs have been found by testing, there
can never be certainty that none remain.
Therefore, the only viable solution to this problem seems to be:

Josie
Highlight
Most of industry uses model checking for this. I think this is also proving, but you might want a footnote on it.

THERE IS A NEW EXPLANATION NOW ACCORDING TO YOUR SUGGESTION. PLEASE FIND IT AT THE END OF THE PREVIOUS NOTE.

Josie
Highlight
security protocols is another such area, and concurrency will become a 3rd, I believe.

SENTENCE READS NOW:
Good candidates are the areas of central processing units (CPUs)in standard processors and of security protocols.

I DO NOT KNOW WHETHER THE PROGRAMMING LANGUAGES OF TODAY WILL EVER ADMIT COST EFFICIENT VERIFICATION OF CONCURRENCY AT THE CODE LEVEL.

Josie
Highlight
There's also repetition in the processing, e.g. loops, and parameterized systems, e.g., a generic proof of an n-bit adder.

SPLENDID. PARAGRAPH READS NOW: To reduce the costs of verification, we can hope to automate it with automated theorem-proving
systems. This automation has to include mathematical induction because induction
is essential for the verification of the properties of most data types used in digital design
(such as natural numbers, arrays, lists, and trees), for the repetition in processing (such as
loops), and for parameterized systems (such as a generic n-bit adder).

40 J Strother Moore, Claus-Peter Wirth

5.2 The Pure LISP Theorem Prover

Our overall task is to answer — from a historical perspective — the question:

How could Robert S. Boyer and J Strother Moore — starting virtually
from zero93 in the middle of 1972 — actually invent their long-lived
solutions to the hard heuristic problems in the automation of induc-
tion and implement them in the sophisticated theorem prover Thm as
described [Boyer and Moore, 1979]?

As already described in § 1, the breakthrough in the heuristics for automated in-
ductive theorem proving was achieved with the “Pure LISP Theorem Prover”,
developed and implemented by Boyer and Moore. It was presented by Moore at
the third IJCAI, which took place in Stanford (CA) in August 1973,94 but it is best
documented in Part II of Moore’s PhD thesis [1973], defended in November 1973.

The Pure LISP Theorem Prover is given no name in the before-mentioned
publications. The only occurrence of the name in publication seems to be in
[Moore, 1975a, p. 1], where it is actually called “the Boyer–Moore Pure LISP
Theorem Prover”.

To make a long story short, the fundamental insights were

• to exploit the duality of recursion and induction to formulate explicit induc-
tion hypotheses,

• to abandon “random” search and focus on simplifying the goal by rewriting
and normalization techniques to lead to opportunities to use the induction
hypotheses, and

• to support generalization to prepare subgoals for subsequent inductions.

Thus, it is not enough for us to focus here just on the induction heuristics per se,
but it is necessary to place them in the context of the development of the Boyer–
Moore waterfall (cf. Figure 1).

93No heuristics at all were explicitly described, for instance, in Burstall’s 1968 work on program
verification by induction over recursive functions in [Burstall, 1969], where the proofs were not
even formal, and an implementation seemed to be more or less utopian:

“The proofs presented will be mathematically rigorous but not formalised to the point
where each inference is presented as a mechanical application of elementary rules of
symbol manipulation. This is deliberate since I feel that our first aim should be to
devise methods of proof which will prove the validity of non-trivial programs in a
natural and intelligible manner. Obviously we will wish at some stage to formalise the
reasoning to a point where it can be performed by a computer to give a mechanised
debugging service.” [Burstall, 1969, p. 41]

As far as we are aware, the only implementation of an automatically invoked mathematical
induction heuristic prior to 1972 is in a set-theory prover by Bledsoe [1971], which uses structural
induction over 0 and s (cf. § 3.4) on a randomly picked, universally quantified variable of type nat.

94Cf. [Boyer and Moore, 1973].

Josie
Cross-Out

Josie
Replacement Text
was

Automation of Mathematical Induction 41

To understand the achievements a bit better, let us now discuss the material of
Part II of Moore’s PhD thesis in some detail, because it provides some explanation
on how Boyer and Moore could be so surprisingly successful. Especially helpful
for understanding the process of creation are those procedures of the Pure LISP
Theorem Prover that are provisional w.r.t. to their refinement in later Boyer–
Moore theorem provers. Indeed, these provisional procedures help to decompose
the giant leap from nothing to Thm, which was achieved by only two men in less
than eight years of work.

As W.W. Bledsoe (1921–1995) was Boyer’s PhD advisor, it is no surprise that
the Pure LISP Theorem Prover shares many design features with Bledsoe’s
provers.95

Boyer and Moore report that in late 1972 and early 1973 they were doing proofs
about list data structures on the blackboard and verbalizing to each other the
heuristics behind their choices on how to proceed with the proof.96 This means
that, although explicit induction is not the approach humans would choose for
non-trivial induction tasks, the heuristics of the Pure LISP Theorem Prover
are learned from human heuristics after all.

Note that Boyer’s and Moore’s method of learning computer heuristics from
their own human behavior in mathematical logic was a step of two young men
against the spirit of the time: the use of vast amounts of computational power to
search an even more enormous space of possibilities. Boyer’s and Moore’s goal,
however, was in a sense more modest:

“The program was designed to behave properly on simple functions.
The overriding consideration was that it should be automatically able
to prove theorems about simple LISP functions in the straightforward
way we prove them.” [Moore, 1973, p. 205]

It may be that the orientation toward human-like or “intelligible” methods and
heuristics in the automation of theorem proving had also some tradition in Edin-
burgh at the time,97 but here the major influence on Boyer and Moore is again
W.W. Bledsoe.98

The source code of the Pure LISP Theorem Prover was written in the
programming language POP–2.99 Boyer and Moore were the only programmers
involved in the implementation. The average time in the central processing unit
(CPU) of the ICL–4130 for the proof of a theorem is reported to be about ten sec-
onds.100 This was considered fast at the time, compared to the search-dominated
proofs by resolution systems. Moore explains the speed:

95On Page 172 of [Moore, 1973] we read on the Pure LISP Theorem Prover:

“The design of the program, especially the straightforward approach of ‘hitting’ the
theorem over and over again with rewrite rules until it can no longer be changed,
is largely due to the influence of W. W. Bledsoe.”

96Cf. [Wirth, 2012d].
97Cf. e.g. the quotation from [Burstall, 1969] in Note 93.
98Cf. e.g. [Bledsoe et al., 1972].
99Cf. [Burstall et al., 1971].

Josie
Cross-Out

Josie
Replacement Text
f

42 J Strother Moore, Claus-Peter Wirth

“Finally, it should be pointed out that the program uses no search.
At no time does it ‘undo’ a decision or back up. This is both the
primary reason it is a fast theorem prover, and strong evidence that
its methods allow the theorem to be proved in the way a programmer
might ‘observe’ it. The program is designed to make the right guess
the first time, and then pursue one goal with power and perseverance.”

[Moore, 1973, p. 208]

One remarkable omission in the Pure LISP Theorem Prover is lemma appli-
cation. As a consequence, the success of proving a set of theorems cannot depend
on the order of their presentation to the theorem prover. Indeed, just as the reso-
lution theorem provers of the time, the Pure LISP Theorem Prover starts
every proof right from scratch and does not improve its behavior with the help of
previously proved lemmas. This was a design decision; one of the reasons was:

“Finally, one of the primary aims of this project has been to demon-
strate clearly that it is possible to prove program properties entirely
automatically. A total ban on all built-in information about user de-
fined functions thus removes any taint of user supplied information.”

[Moore, 1973, p. 203]

Moreover, all induction orderings in the Pure LISP Theorem Prover are re-
combinations of constructor relations, such that all inductions it can do are struc-
tural inductions over combinations of constructors. As a consequence, contrary to
later Boyer–Moore theorem provers, the well-foundedness of the induction order-
ings does not depend on the termination of the recursive function definitions.101

Nevertheless, the soundness of the Pure LISP Theorem Prover depends
on the termination of the recursive function definitions, but only in one aspect:
It simplifies and evaluates expressions under the assumption of termination. For
instance, both (IF102 a d d) and (CDR (CONS a d)) simplify to d, no matter
whether a terminates; and it is admitted to rewrite with a recursive function
definition even if an argument of the function call does not terminate.

The termination of the recursively defined functions, however, is not checked
by the Pure LISP Theorem Prover, but comes as a proviso for its soundness.

The logic of the Pure LISP Theorem Prover is an applicative103 subset of
the logic of LISP. The only destructors in this logic are CAR and CDR. They are
overspecified on the only constructors NIL and CONS by the following equations:
100Here is the actual wording of the timing result found on Page 171f. of [Moore, 1973]:

“Despite theses inefficiencies, the ‘typical’ theorem proved requires only 8 to 10
seconds of CPU time. For comparison purposes, it should be noted that the
time for CONS in 4130 POP–2 is 400microseconds, and CAR and CDR are about
50microseconds each. The hardest theorems solved, such as those involving SORT,
require 40 to 50 seconds each.”

101Note that the well-foundedness of the constructor relations depends on distinctness of the
constructor ground terms in the models, but this does not really depend on the termination of
the recursive functions because (as discussed in § 4.1) confluence is sufficient here.

102Cf. Note 84.

Josie
Highlight
So, I assume it used what is now called lazy evaluation. Is this worth mentioning?NO. THERE IS NO EVALUATION HERE --- AT LEAST NO LAZY ONE -- JUST VALIDITY IN MODELS DEFINED BY LISP-LIKE EVALUATION. SAYING THAT THIS HAS NOTHING TO DO WITH LAZY EVALUATION WOULD ONLY CONFUSE THE READERS IMHO.

Automation of Mathematical Induction 43

(CAR (CONS a d)) = a (CAR NIL) = NIL
(CDR (CONS a d)) = d (CDR NIL) = NIL

As standard in LISP, every term of the form (CONS a d) is taken to be true
in the logic of the Pure LISP Theorem Prover if it occurs at an argument
position with Boolean intention. The actual truth values (to be returned by
Boolean functions) are NIL (representing false) and T, which is an abbreviation
for (CONS NIL NIL) and represents true.104 Unlike conventional LISPs (both then
and now), the natural numbers are represented by lists of NILs to keep the logic
simple; the natural number 0 is represented by NIL and the successor function s(d)
is represented by (CONS NIL d).105

Let us now discuss the behavior of the Pure LISP Theorem Prover by de-
scribing the instances of the stages of the Boyer–Moore waterfall (cf. Figure 1)
as they are described in Moore’s PhD thesis.

5.2.1 Simplification in the Pure LISP Theorem Prover

The first stage of the Boyer–Moore waterfall — “simplification” in Figure 1 —
is called “normalation”106 in the Pure LISP Theorem Prover. It applies the
following simplification procedures to LISP expressions until the result does not
change anymore: “evaluation”, “normalization”, and “reduction”.

“Normalization” tries find sufficient conditions for a given expression to have
the soft type “Boolean” and to normalize logical expressions. Contrary to clausal
logic over equational atoms, LISP admits EQUAL and IF to appear not only at the
top level, but in nested terms. To free later tests and heuristics from checking for
their triggers in every equivalent form, such a normalization w.r.t. propositional
logic and equality is part of most theorem provers today.

“Reduction” is a form of what today is called contextual rewriting. It is based
on the fact that — in the logic of the Pure LISP Theorem Prover — in the
conditional expression

(IF c p n)

we can simplify occurrences of c in p to (CONS (CAR c) (CDR c)), and in n to NIL.
The replacement with (CONS (CAR c) (CDR c)) is executed only at positions
with Boolean intention and can be improved in the following two special cases:

1. If we know that c is of soft type “Boolean”, then we rewrite all occurrences
of c in p actually to T.

103Cf. Note 76.
104Cf. 2nd paragraph of Page 86 of [Moore, 1973].
105Cf. 2nd paragraph of Page 87 of [Moore, 1973].
106During the oral defense of the dissertation, Moore’s committee abhorred the non-word and

instructed him to choose a word. Some copies of the dissertation call the process “simplification.”

Josie
Inserted Text

Josie
Inserted Text
to

44 J Strother Moore, Claus-Peter Wirth

2. If c is of the form (EQUAL l r), then we can rewrite occurrences of l in p
to r (or vice versa). Note that we have to treat the variables in l and r as
constants in this rewriting. The Pure LISP Theorem Prover rewrites in
this case only if either l or r is a ground term;107 then the other cannot be
a ground term because the equation would otherwise have been simplified
to T or NIL in the previously applied “evaluation”. So replacing the latter
term with the ground term everywhere in p must terminate, and this is
all the contextual rewriting with equalities that the Pure LISP Theorem
Prover does in “reduction”.108

“Evaluation” is a procedure that evaluates expressions partly by simplification
within the elementary logic as given by Boolean operations and the equality pred-
icate. Moreover, “evaluation” executes some rewrite steps with the equations
defining the recursive functions. Thus, “evaluation” can roughly be seen as nor-
malization with the rewrite relation resulting from the elementary logic and from
the recursive function definitions. The rewrite relation is applied according to the
innermost left-to-right rewriting strategy, which is standard in LISP.

By “evaluation”, ground terms are completely evaluated to their normal forms.
Terms containing (implicitly universally quantified) variables, however, have to be
handled in addition. Surprisingly, the considered rewrite relation is not necessarily
terminating on non-ground terms, although the LISP evaluation of ground terms
terminates because of the assumed termination of recursive function definitions
(cf. § 4.4). The reason for this non-termination is the following: Because of the
LISP definition style via unconditional equations, the positive/negative conditions
are actually part of the right-hand sides of the defining equations, such that the
rewrite step can be executed even if the conditions evaluate neither to false nor
to true. For instance, in Example 6 of § 4.1, a rewrite step with the definition of
PLUS can always be executed, whereas a rewrite step with (+1′) or (+2′) requires
x = 0 to be definitely true or definitely false. This means that non-termination
may result from the rewriting of cases that do not occur in the evaluation of any
ground instance.109

As the final aim of the stages of the Boyer–Moore waterfall is a formula that
provides concise and sufficiently strong induction hypotheses in the last of these

107A ground term is a term without variables. Actually, this ground term here is always a
constructor ground term because the previously applied “evaluation” procedure has reduced any
ground term to a constructor ground term, provided that the termination proviso is satisfied.
108Note, however, that further contextual rewriting with equalities is applied in a later stage of

the Boyer–Moore waterfall, named cross-fertilization.
109It becomes clear in the second paragraph on Page 118 of [Moore, 1973] that the code of both

the positive and the negative case of a conditional will be evaluated, unless one of them can be
canceled by the complete evaluation of the governing condition to true or false. Note that the
evaluation of both cases is necessary indeed and cannot be avoided in practice.

Moreover, note that a stronger termination requirement that guarantees termination indepen-
dent of the governing condition is not feasible for recursive function definitions in practice.

Later Boyer–Moore theorem provers also use lemmas for rewriting during symbolic evaluation,
which is another source of possible non-termination.

Josie
Highlight
This footnote needs to be on the first occurrence of 'ground', which this is not.YES!!!
WE DO SO NOW.

Automation of Mathematical Induction 45

stages, symbolic evaluation must be prevented from unfolding function definitions
unless the context admits us to expect an effect of simplification.110

Because the main function of “evaluation” — only to be found in this first one
of the Boyer–Moore provers — is to collect data on which base and step cases
should be chosen later by the induction rule, the Pure LISP Theorem Prover
applies a unique procedure to stop the unfolding of recursive function definitions:

A rewrite step with an equation defining a recursive function f is canceled
if there is a CAR or a CDR in an argument to an occurrence of f in the right-
hand side of the defining equation that is encountered during the control flow of
“evaluation”, and if this CAR or CDR is not removed by the “evaluation” of the ar-
guments of this occurrence of f under the current environment updated by match-
ing the left-hand side of the equation to the redex. For instance, “evaluation” of
(PLUS (CONS NIL X) Y) returns (CONS NIL (PLUS X Y)); whereas “evaluation”
of (PLUS X Y) returns (PLUS X Y) and informs the induction rule that only
(CDR X) occurred in the recursive call during the trial to rewrite with the defini-
tion of PLUS. In general, such occurrences indicate which induction hypotheses
should be generated by the induction rule.111 112

“Evaluation” provides a link between symbolic evaluation and the induction
rule of explicit induction. The question “Which case distinction on which vari-
ables should be used for the induction proof and how should the step cases look?”
is reduced to the quite different question “Where do destructors like CAR and CDR
heap up during symbolic evaluation?”. This reduction helps to understand by
which intermediate steps it was possible to develop the most surprising, sophisti-
cated recursion analysis of later Boyer–Moore theorem provers.

5.2.2 Destructor Elimination in the Pure LISP Theorem Prover

There is no such stage in the Pure LISP Theorem Prover.113

5.2.3 (Cross-) Fertilization in the Pure LISP Theorem Prover

Fertilization is just contextual rewriting with an equality, described before for
the “reduction” that is part of the simplification of the Pure LISP Theorem
Prover, but now with an equation between two non-ground terms.
110In QuodLibet this is achieved by contextual rewriting where evaluation stops when the

governing conditions cannot be established from the context. Cf. [Schmidt-Samoa, 2006b; 2006c].
111Actually, “evaluation” also informs which occurrences of CAR or CDR besides the arguments

of recursive occurrences of PLUS were permanently introduced during that trial to rewrite. Such
occurrences trigger an additional case analysis to be generated by the induction rule, mostly
as a compensation for the omission of the stage of “destructor elimination” in the Pure LISP
Theorem Prover.
112The mechanism for partially enforcing termination of “evaluation” according to this proce-

dure is vaguely described in the last paragraph on Page 118 of Moore’s PhD thesis. As this kind
of “evaluation” is only an intermediate solution on the way to more refined control information
for the induction rule in later Boyer–Moore theorem provers, the rough information given here
may suffice.
113See, however, Note 111 and the discussion of the Pure LISP Theorem Prover in § 5.3.2.

Josie
Inserted Text
,

Josie
Highlight
So, why include this section at all?THREE REASONS:1. TO ENABLE QUICK ANSWER FOR THE READER WHO FOLLOWS THE WATERFALL AND WANTS TO LOOKUP OF THE QUESTION: HOW DOES PURE LISP TP DO DESTRUCTOR ELIMINATION?2. TO LET THE RESP. SECTIONS ON NQTHM HAVE THE RESP. SECTION NUMBERS.3. AS AN ANCHOR FOR THE NOTE.

46 J Strother Moore, Claus-Peter Wirth

The most important case of fertilization is called “cross-fertilization”. It occurs
very often in step cases of induction proofs of equational theorems, and we have
seen it already in Example 4 of § 3.8.1.

Neither Boyer nor Moore ever explicitly explained why cross-fertilization is
“cross”, but in [Moore, 1973, p. 142] we read:

“When two equalities are involved and the fertilization was right-side”
[of the induction hypothesis put] “into left-side” [of the induction con-
clusion,] “or left-side into right-side, it is called ‘cross-fertilization’.”

“Cross-fertilization” is actually a term from genetics referring to the alignment of
haploid genetic code from male and female to a diploid code in the egg cell. This
image may help to recall that only that side (i.e. left- or right-hand side of the equa-
tion) of the induction conclusion which was activated by a successful simplification
is further rewritten during cross-fertilization, namely everywhere where the same
side of the induction hypothesis occurs as a redex — just like two haploid chro-
mosomes have to start at the same (activated) sides for successful recombination.
In [Moore, 1973, p. 139] we find the reason for this: Cross-fertilization frequently
produces a new goal that is easy to prove because its uniform “genre” in the sense
that its subterms uniformly come from just one side of the original equality.

Furthermore — for getting a sufficiently powerful new induction hypothesis in
a follow-up induction — it is crucial to delete the equation used for rewriting
(i.e. the old induction hypothesis), which can be remembered by the fact that
— in the image — only one (diploid) genetic code remains.

The only noteworthy difference between cross-fertilization in the Pure LISP
Theorem Prover and later Boyer–Moore theorem provers is that the generaliza-
tion that consists in the deletion of the used-up equations is done in a halfhearted
way, which admits a later identification of the deleted equation.

5.2.4 Generalization in the Pure LISP Theorem Prover

Generalization in the Pure LISP Theorem Prover works as described in § 3.9.
The only difference to our presentation there is the following: Instead of just re-
placing all occurrences of a non-variable subterm t with a new variable z, the
definition of the top function symbol of t is used to generate the definition of a
new predicate p, such that p(t) holds. Then the generalization of T [t] becomes
T [z] ⇐ p(z) instead of just T [z]. The version of this automated function synthesis
actually implemented in the Pure LISP Theorem Prover is just able to gen-
erate simple type properties, such as being a number or being a Boolean value.114

Note that generalization is essential for the Pure LISP Theorem Prover
because it does not use lemmas, and so it cannot build up a more and more
complex theory successively. It is clear that this limits the complexity of the
theorems it can prove, because a proof can only be successful if the implemented
114See § 3.7 of [Moore, 1973]. As explained on Page 156f. of [Moore, 1973], Boyer and Moore

failed with the trial to improve the implemented version of the function synthesis, so that it
could generate a predicate on a list being ordered from a simple sorting-function.

Josie
Cross-Out

Josie
Replacement Text
c

Josie
Highlight
I don't understand what this means. Can you reword?FOLLOWING NEW TEXT ADDED HERE: the resultingformula is equipped with a link to the deleted equation.

Automation of Mathematical Induction 47

non-backtracking heuristics work out all the way from the theorem down to the
most elementary theory.

5.2.5 Elimination of Irrelevance in the Pure LISP Theorem Prover

There is no such stage in the Pure LISP Theorem Prover.

5.2.6 Induction in the Pure LISP Theorem Prover

This stage of the Pure LISP Theorem Prover applies the induction rule of
explicit induction as described in § 3.8. Induction is tried only after the goal
formula has been maximally simplified and generalized by repeated trips through
the waterfall. The induction heuristic takes a formula as input and returns a
conjunction of base and step cases to which the input formula reduces. Contrary
to later Boyer–Moore theorem provers that gather the relevant information via
induction schemes gleaned by preprocessing recursive definitions,115 the induction
rule of the Pure LISP Theorem Prover is based solely on the information
provided by “evaluation” as described in § 5.2.1.

Instead of trying to describe the general procedure, let us just put the induc-
tion rule of the Pure LISP Theorem Prover to test with two paradigmatic
examples. In these examples we ignore the here irrelevant fact that the Pure
LISP Theorem Prover actually uses a list representation for the natural num-
bers. The only effect of this is that the destructor p takes over the rôle of the
destructor CDR.

EXAMPLE 11 (Induction Rule in the Explicit Induction Proof of (ack4)).
Let us see how the induction rule of the Pure LISP Theorem Prover proceeds
w.r.t. the proof of (ack4) that we have seen in Example 5 of § 3.9. The substi-
tutions ξ1, ξ2 computed as instances for the induction conclusion in Example 10
of § 4.7 suggest an overall case analysis with a base case given by {x 7→ 0}, and two
step cases given by ξ1 = {x 7→ s(x′), y 7→ 0} and ξ2 = {x 7→ s(x′), y 7→ s(y′)}.
The Pure LISP Theorem Prover requires the axioms (ack1), (ack2), (ack3)
to be in destructor instead of constructor style:
(ack1′) ack(x, y) = s(y) ⇐ x= 0
(ack2′) ack(x, y) = ack(p(x), s(0)) ⇐ x 6= 0 ∧ y = 0
(ack3′) ack(x, y) = ack(p(x), ack(x, p(y))) ⇐ x 6= 0 ∧ y 6= 0

“Evaluation” does not rewrite the input conjecture with this definition, but writes
a “fault description” for the permanent occurrences of p as arguments of the three
occurrences of ack on the right-hand sides, essentially consisting of the following
three “pockets”: (p(x)), (p(x), p(y)), and (p(y)), respectively. Similarly, the pock-
ets gained from the fault descriptions of rewriting the input conjecture with the
definition of lessp essentially consists of the pocket (p(y), p(ack(x, y))). Similar to
the non-applicability of the induction template for lessp in Example 9 of § 4.6, this

115Cf. § 4.7.

Josie
Highlight
So why include this section?TWO REASONS:1. TO ENABLE QUICK ANSWER FOR THE READER WHO FOLLOWS THE WATERFALL AND WANTS TO LOOKUP OF THE QUESTION: HOW DOES PURE LISP TP DO ELIMINATION OF IRRELEVANCE?2. TO LET THE RESP. SECTIONS ON NQTHM HAVE THE RESP. SECTION NUMBERS.

48 J Strother Moore, Claus-Peter Wirth

fault description does not suggest any induction because one of the arguments of p
in one of the pockets is not a variable. As this is not the case for the previous fault
description, it suggests the set of all arguments of p in all pockets as induction
variables. As this is the only suggestion, no merging of suggested inductions is
required here.

So the Pure LISP Theorem Prover picks the right set of induction variables.
Nevertheless, it fails to generate appropriate base and step cases, because the
overall case analysis results in two base cases given by {x 7→ 0} and {y 7→ 0},
and a step case given by {x 7→ s(x′), y 7→ s(y′)}.116 This turns the first step case
of the proof of Example 5 into a base case. The Pure LISP Theorem Prover
finally fails with the step case it actually generates:

lessp(s(y′), ack(s(x′), s(y′))) = true ⇐ lessp(y′, ack(x′, y′))= true.

This step case has only one hypothesis, which is neither of the two we need. ¤

EXAMPLE 12 (Proof of (lessp7) by Explicit Induction with Merging).
Let us write T (x, y, z) for (lessp7) of § 3.4. From the proof of (lessp7) in Exam-
ple 3 of § 3.7 we can learn the following: The proof becomes simpler when we take
T (0, s(y′), s(z′)) as base case (besides say T (x, y, 0) and T (x, 0, s(z′))), instead of
any of T (0, y, s(z′)), T (0, s(y′), z), T (0, y, z). The crucial lesson from Example 3,
however, is that the step case of explicit induction has to be

T (s(x′), s(y′), s(z′)) ⇐ T (x′, y′, z′).
Note that the Boyer–Moore heuristics for using the induction rule of explicit induc-
tion look only one rewrite step ahead, separately for each occurrence of a recursive
function in the conjecture.

This means that there is no way for their heuristic to apply case distinctions
on variables step by step, most interesting first, until finally we end up with an
instance of the induction hypothesis as in Example 3.

Nevertheless, even the Pure LISP Theorem Prover manages the pretty
hard task of suggesting exactly the right step case. It requires the axioms (lessp1),
(lessp2), (lessp3) to be in destructor style:
(lessp1′) lessp(x, y) = false ⇐ y = 0
(lessp2′) lessp(x, y) = true ⇐ y 6= 0 ∧ x= 0
(lessp3′) lessp(x, y) = lessp(p(x), p(y)) ⇐ y 6= 0 ∧ x 6= 0

“Evaluation” does not rewrite any of the occurrences of lessp in the input con-
jecture with this definition, but writes one “fault description” for each of these
occurrences about the permanent occurrences of p as argument of the one occur-
rence of lessp on the right-hand sides, resulting in one “pocket” in each fault de-
scription, which essentially consist of ((p(z))), ((p(x), p(y))), and ((p(y), p(z))),
respectively. The Pure LISP Theorem Prover merges these three fault de-
scriptions to the single one ((p(x), p(y), p(z))), and so suggests the proper step case
indeed, although it suggests the base case T (0, y, z) instead of T (0, s(y′), s(z′)),
which requires some extra work, but does not result in a failure. ¤
116We can see this from a similar case on Page 164 and from the explicit description on the

bottom of Page 166 in [Moore, 1973].

Josie
Highlight
I assume you are lining this example up as a contrast to a later version of the prover that does prove this theorem. It might be kind to anticipate this, in case a selective reader comes away with the wrong impression.RIGHT. NEW PARENTHESIS:
(contrary to all otherBoyer–Moore theorem provers, see Examples 4.5, 5.5, and 6.11)

Josie
Highlight
Aren't definitions always in destructor style, so no additional requirement is necessary?

IN BM TP: YES. IN THE PREVIOUS EXAMPLES AND IN QUODLIBET: NO. SO NEW TEXT READS: It requires all axioms to be in destructor style,
so instead of (lessp1), (lessp2), (lessp3), we have to take:

Automation of Mathematical Induction 49

5.2.7 Conclusion on the Pure LISP Theorem Prover

The Pure LISP Theorem Prover establishes the historic breakthrough regard-
ing the heuristic automation of inductive theorem proving in theories specified by
recursive function definitions.

Moreover, it is the first implementation of a prover for explicit induction going
beyond most simple structural inductions over s and 0.

Furthermore, the Pure LISP Theorem Prover has most of the stages of the
Boyer–Moore waterfall (cf. Figure 1), and these stages occur in the final order and
with the final overall behavior of throwing the formulas back to the center pool
after a stage was successful in changing them.

As we have seen in Example 11 of § 5.2.6, the main weakness of the Pure LISP
Theorem Prover is the realization of its induction rule, which ignores most of
the structure of the recursive calls in the right-hand sides of recursive function
definitions.117 In the Pure LISP Theorem Prover, all information on this
structure taken into account by the induction rule comes from the fault descriptions
of previous applications of “evaluation”, which drop a lot of information that is
actually required for finding the proper instances for the eager instantiation of
induction hypotheses required in explicit induction.

As a consequence, all induction hypotheses and conclusions of the Pure LISP
Theorem Prover are instantiations of the input formula with mere constructor
terms. Nevertheless, the Pure LISP Theorem Prover can generate multi-
ple hypotheses for astonishingly complicated step cases, which go far beyond the
simple ones typical for structural induction over s and 0.

Although the induction stage of the Pure LISP Theorem Prover is pretty
underdeveloped compared to the sophisticated recursion analysis of the later
Boyer–Moore theorem provers, it somehow contains all essential later ideas in
a rudimentary form, such as recursion analysis and the merging of step cases. As
we have seen in Example 12, the simple merging procedure of the Pure LISP
Theorem Prover is surprisingly successful.

The Pure LISP Theorem Prover cannot succeed, however, in the rare cases
where a step case has to follow a destructor different from CAR and CDR (such as
delfirst in § 3.5), or in the more general case that the arguments of the recursive
calls contain recursively defined functions at the measured positions (such as the
Ackermann function in Example 11).

The weaknesses and provisional procedures of the Pure LISP Theorem Pro-
ver we have documented, help to decompose the giant leap form nothing to Thm,
and so fulfill our historiographic intention expressed at the beginning of § 5.2.

Especially the link between symbolic evaluation and the induction rule of ex-
plicit induction described at the end of § 5.2.1 may be crucial for the success of
the entire development of recursion analysis and explicit induction.

117There are indications that the induction rule of the Pure LISP Theorem Prover had to
be implemented in a hurry. For instance, on top of Page 168 of [Moore, 1973], we read on the
Pure LISP Theorem Prover: “The case for n term induction is much more complicated, and
is not handled in its full generality by the program.”

Josie
Inserted Text
 that is

Josie
Highlight

Josie
Highlight

Josie
Highlight
Why 'drop'? I thought you were going to say that it stores information that is later used by the induction rule construction process.

WE CLARIFIED THIS PHRASE AS FOLLOWS: which store only a small part of the information that is actually required for finding the
proper instances ...

Josie
Cross-Out

Josie
Replacement Text
ro

50 J Strother Moore, Claus-Peter Wirth

5.3 Thm

“Thm” is the name used in this article for a release of the prover described in
[Boyer and Moore, 1979]. Note that the clearness, precision, and detail of the
natural-language descriptions of heuristics in [Boyer and Moore, 1979] is unique
and unrivaled.118 To the best of our knowledge, there is no similarly broad treat-
ment of heuristics in theorem proving.

Except for ACL2, Boyer and Moore never gave names to their theorem pro-
vers.119 The names “Thm” (for “theorem prover”), “Qthm” (“quantified Thm”),
and “Nqthm” (“new quantified Thm”) were actually the directory names under
which the different versions of their theorem provers were developed and main-
tained.120 Qthm was never released and its development was discontinued soon
after the “quantification” in Nqthm had turned out to be superior; so the name
“Qthm” was never used in public. Until today, it seems that “Thm” appeared
in publication only as a mode in Nqthm,121 which simulates the release previous
to the release of Nqthm (i.e. before “quantification” was introduced) with a logic
that is a further development of the one described in [Boyer and Moore, 1979].
It was Matt Kaufmann (*1952) who started calling the prover “Nqthm”, in the
second half of the 1980s.122 The name “Nqthm” appeared in publication first in
[Boyer and Moore, 1988b] as a mode in Nqthm.

In this section we describe the enormous heuristic improvements documented
in [Boyer and Moore, 1979] as compared to [Moore, 1973] (cf. § 5.2). In case of
the minor differences of the logic described in [Boyer and Moore, 1979] and of the
later released version that is simulated by the THM mode in Nqthm as documented
in [Boyer and Moore, 1988b; 1998], we try to follow the later descriptions, partly
because of their elegance, partly because Nqthm is still an available program.
For this reason, we have entitled this section “Thm” instead of “The standard
reference on the Boyer–Moore heuristics [Boyer and Moore, 1979]”.

From 1973 to 1981 Boyer and Moore were researchers at Xerox Palo Alto Re-
search Center (Moore only) and — just a few miles away — at SRI International
in Menlo Park (CA). From 1981 they were both professors at The University of

118In [Boyer and Moore, 1988b, p. xi] and [Boyer and Moore, 1998, p. xv] we can read about
the book [Boyer and Moore, 1979]:

“The main purpose of the book was to describe in detail how the theorem prover
worked, its organization, proof techniques, heuristics, etc. One measure of the
success of the book is that we know of three independent successful efforts to
construct the theorem prover from the book.”

119The only further exception seems to be [Moore, 1975a, p. 1], where the Pure LISP Theo-
rem Prover is called “the Boyer–Moore Pure LISP Theorem Prover”, probably because Moore
wanted to stress that, though Boyer appears in the references of [Moore, 1975a] only in [Boyer
and Moore, 1975], Boyer has had an equal share in contributing to the Pure LISP Theorem
Prover right from the start.
120Cf. [Boyer, 2012].
121For the occurrences of “THM” in publications, and for the exact differences between the THM

and NQTHM modes and logics, see Pages 256–257 and 308 in [Boyer and Moore, 1988b], as well as
Pages 303–305, 326, 357, and 386 in the second edition [Boyer and Moore, 1998].
122Cf. [Boyer, 2012].

Automation of Mathematical Induction 51

Texas at Austin or scientists at Computational Logic Inc. in Austin (TX). So they
could easily meet and work together. And — just like the Pure LISP Theorem
Prover — the provers Thm and Nqthm were again developed and implemented
exclusively by Boyer and Moore.123

In the six years separating Thm from the Pure LISP Theorem Prover,
Boyer and Moore extended the system in four important ways that especially
affect inductive theorem proving. The first major extension is the provision for
an arbitrary number of inductive data types, where the Pure LISP Theorem
Prover supported only CONS. The second is the formal provision of a definition
principle with its explicit termination analysis based on well-founded relations
which we discussed in § 4. The third major extension is the expansion of the
proof techniques used by the waterfall, notably including the use of previously
proved theorems, most often as rewrite rules via what would come to be called
“contextual rewriting”, and by which the Thm user can “guide” the prover by
posing lemmas that the system cannot discover on its own. The fourth major
extension is the synthesis of induction schemes from definition-time termination
analysis and the application and manipulation of those schemes at proof-time to
create “appropriate” inductions for a given formula, in place of the Pure LISP
Theorem Prover’s less structured reliance on symbolic evaluation. We discuss
Thm’s inductive data types, waterfall, and induction schemes below.

By means of the new shell principle,124 it is now possible to define new data
types by describing the shell, a constructor with at least one argument, each of
whose arguments may have a simple type restriction, and the optional base object,
a nullary constructor.125 Each argument of the shell can be accessed126 by its
destructor, for which a name and a default value (for the sake of totality) have to
be given in addition. The user also has to supply a name for the predicate that
that recognizes126 the objects of the new data type (as the logic remains untyped).

NIL lost its elementary status and is now an element of the shell PACK of sym-
bols.127 T and F now abbreviate the nullary function calls (TRUE) and (FALSE),

123In both [Boyer and Moore, 1988b, p. xv] and [Boyer and Moore, 1998, p. xix] we read:

“Notwithstanding the contributions of all our friends and supporters, we would like
to make clear that ours is a very large and complicated system that was written
entirely by the two of us. Not a single line of LISP in our system was written by
a third party. Consequently, every bug in it is ours alone. Soundness is the most
important property of a theorem prover, and we urge any user who finds such a
bug to report it to us at once.”

124Cf. [Boyer and Moore, 1979, p. 37ff.].

125Note that this restriction to at most two constructors, including exactly one with arguments,
is pretty uncomfortable. For instance, it neither admits simple enumeration types (such as the
Boolean values), nor disjoint unions (e.g., as part of the popular record types with variants, say
of [Wirth, 1971]). Moreover, mutually recursive data types are not possible, such as and-or-
trees, where each element is a list of or-and-trees, and vice versa, as given by the following four
constructors: empty-or-tree : or-tree; or : and-tree, or-tree → or-tree;

empty-and-tree : and-tree; and : or-tree, and-tree → and-tree.

126Actually, in the jargon of [Boyer and Moore, 1979; 1988b; 1998], the destructors are called
accessor functions, and the type predicates are called recognizer functions.

52 J Strother Moore, Claus-Peter Wirth

respectively, which are the only Boolean values. Any argument with Boolean
intention besides F is taken to be T (including NIL).

Instead of discussing the shell principle in detail with all its intricacies resulting
from the untyped framework, we just present the first two shells:

1. The shell (ADD1 X1) of the natural numbers, with
• type restriction (NUMBERP X1),
• base object (ZERO), abbreviated by 0,
• destructor126 SUB1 with default value 0, and
• type predicate126 NUMBERP.

2. The shell (CONS X1 X2) of pairs, with
• destructors CAR with default value 0,

CDR with default value 0, and
• type predicate LISTP.

According to the shell principle, these two shell declarations add axioms to the
theory, which are equivalent to the following ones:
Axioms Generated by Shell ADD1 Axioms Generated by Shell CONS

0.1 (NUMBERP X)= T ∨ (NUMBERP X)= F (LISTP X)= T ∨ (LISTP X)= F

0.2 (NUMBERP (ADD1 X1))= T (LISTP (CONS X1 X2))= T

0.3 (NUMBERP 0)= T

0.4 (NUMBERP T)= F (LISTP T)= F

0.5 (NUMBERP F)= F (LISTP F)= F

0.6 (LISTP X)= F ∨ (NUMBERP X)= F

1 (ADD1 (SUB1 X))= X (CONS (CAR X) (CDR X))= X

⇐ X 6= 0 ∧ (NUMBERP X)= T ⇐ (LISTP X)= T

2 (ADD1 X1) 6= 0

3 (SUB1 (ADD1 X1))= X1 (CAR (CONS X1 X2))= X1

⇐ (NUMBERP X1)= T (CDR (CONS X1 X2))= X2

4 (SUB1 0)= 0

5.1 (SUB1 X)= 0 ⇐ (NUMBERP X)= F (CAR X)= 0 ⇐ (LISTP X)= F

(CDR X)= 0 ⇐ (LISTP X)= F

5.2 (SUB1 (ADD1 X1))= 0

⇐ (NUMBERP X1)= F

L1 128 (ADD1 X)= (ADD1 0)
⇐ (NUMBERP X)= F

L2 129 (NUMBERP (SUB1 X))= T

127There are the following two different declarations for the shell PACK: In [Boyer and Moore,
1979], the shell CONS is defined after the shell PACK because NIL is the default value for the
destructors CAR and CDR; moreover, NIL is an abbreviation for (NIL), which is the base object
of the shell PACK.

In [Boyer and Moore, 1988b; 1998], however, the shell PACK is defined after the shell CONS,
we have (CAR NIL) = 0, the shell PACK has no base object, and NIL just abbreviates

(PACK (CONS 78 (CONS 73 (CONS 76 0)))).
When we discuss the logic of [Boyer and Moore, 1979], we tacitly use the shells CONS and PACK

as described in [Boyer and Moore, 1988b; 1998].

Automation of Mathematical Induction 53

Note that the two occurrences of “(NUMBERP X1)” in Axioms 3 and 5.2 are
exactly the ones that result from the type restriction of ADD1. Moreover, the
occurrence of “(NUMBERP X)” in Axiom 0.6 is allocated at the right-hand side
because the shell ADD1 is declared before the shell CONS.

Let us discuss the axioms generated by declaration of the shell ADD1. Roughly
speaking, Axioms 0.1–0.3 are return-type declarations, Axioms 0.4–0.6 are about
disjointness of types, Axiom1 and Lemma L2 imply the axiom (nat1) from § 3.4,
Axioms 2 and 3 imply axioms (nat2) and (nat3), respectively. Axioms 4 and 5.1–5.2
overspecify SUB1. Note that Lemma L1 is equivalent to 5.2 under 0.2–0.3 and 1–3.

Analogous to Lemma L1, every shell forces each argument not satisfying its type
restriction into behaving like the default object of the argument’s destructor.

By contrast, the arguments of the shell CONS (just as every shell argument
without type restriction) are not forced like this, and so — a clear advantage
of the untyped framework — even objects of later defined shells (such as PACK)
can be properly paired by the shell CONS. For instance, although NIL belongs to
the shell PACK defined after the shell CONS (and so (CDR NIL) = 0),127 we have
(CAR (CONS NIL NIL)) = NIL by Axiom 3.

Nevertheless, the shell principle also allows us to declare a shell
(CONSNAT X1 X2)

of the lists of natural numbers only — similar to the ones of § 3.5 — say, with a
type predicate LISTNATP, type restrictions (NUMBERP X1), (LISTNATP X2), base
object (NILNAT), and destructors CARNAT, CDRNAT with default values 0, (NILNAT),
respectively.

Let us now come to the admissible definitions of new functions in Thm. In § 4
we have already discussed the definition principle130 of Thm in detail. The defini-
tion of recursive functions has not changed compared to the Pure LISP Theorem
Prover besides that a function definition is admissible now only after a termina-
tion proof, which proceeds as explained in § 4.4. To this end, Thm can apply its
additional axiom of the well-foundedness of the irreflexive ordering LESSP on the
natural numbers,131 and the theorem of the well-foundedness of the lexicographic
combination of two well-founded orderings.

We again follow the Boyer–Moore waterfall (cf. Figure 1) and sketch how the stages
of the waterfall are realized in Thm in comparison to the Pure LISP Theorem
Prover.

128Proof of LemmaL1 from 0.2, 1–2, 5.2: Under the assumption of (NUMBERP X)= F, we show
(ADD1 X)= (ADD1 (SUB1 (ADD1 X)))= (ADD1 0). The first step is a backward application of the
conditional equation 1 via {X 7→ (ADD1 X)}, where the condition is fulfilled because of 2 and 0.2.
The second step is an application of 5.2, where the condition is fulfilled by assumption.

129Proof of Lemma L2 from 0.1–0.3, 1–4, 5.1–5.2 by argumentum ad absurdum:
For a counterexample X, we get (SUB1 X) 6= 0 by 0.3, as well as (NUMBERP (SUB1 X))= F by 0.1.
From the first we get X 6= 0 by 4, and (NUMBERP X)= T by 5.1 and 0.1. Now we get the contra-
diction (SUB1 X)= (SUB1 (ADD1 (SUB1 X)))= (SUB1 (ADD1 0))= 0; the first step is a backward
application of the conditional equation 1, the second of L1, and the last of 3 (using 0.3).

130Cf. [Boyer and Moore, 1979, p. 44f.].

54 J Strother Moore, Claus-Peter Wirth

5.3.1 Simplification in Thm

We discussed simplification in the Pure LISP Theorem Prover in § 5.2.1.
Simplification in Thm is covered in Chapters VI–IX of [Boyer and Moore, 1979],
and the reader interested in the details is strongly encouraged to read these very
well-written descriptions of heuristic procedures for simplification.

To compensate for the extra complication of the untyped approach in Thm,
which has a much higher number of interesting soft types than the Pure LISP
Theorem Prover, soft-typing rules are computed for each new function symbol
based on types that are disjunctions (actually: bit-vectors) of the following disjoint
types: one for T, one for F, one for each shell, and one for objects not belonging
to any of these.132 These soft-typing rules are pervasively applied in all stages of
the theorem prover, which we cannot discuss here in detail. Some of these rules
can be expressed in the LISP logic language as a theorem and presented in this
form to the human users. Let us see two examples on this.

EXAMPLE 13. (continuing Example 6 of § 4.1)
As Thm knows (NUMBERP (FIX X)) and (NUMBERP (ADD1 X)), it produces the
theorem (NUMBERP (PLUS X Y)) immediately after the termination proof for the
definition of PLUS in Example 6. Note that this would neither hold in case of
non-termination of PLUS, nor if there were a simple Y instead of (FIX Y) in the
definition of PLUS. In the latter case, Thm would only register that the return-
type of PLUS is among NUMBERP and the types of its second argument Y. ¤

EXAMPLE 14. As Thm knows that the type of APPEND is among LISTP and
the type of its second argument, it produces the theorem (LISTP (FLATTEN X))
immediately after the termination proof for the following definition:

(FLATTEN X) = (IF (LISTP X)
(APPEND (FLATTEN (CAR X)) (FLATTEN (CDR X)))
(CONS X NIL)) ¤

131See Page 52f. of [Boyer and Moore, 1979] for the informal statement of this axiom on well-
foundedness of LESSP.

Because Thm is able to prove (LESSP X (ADD1 X)), well-foundedness of LESSP would imply
— together with Axiom1 and LemmaL2 — that Thm admits only the standard model of the
natural numbers, as explained in Note 40.

Matt Kaufmann, however, was so kind and made clear in a private e-mail communication
that non-standard models are not excluded, because the statement “We assume LESSP to be a
well-founded relation.” of [Boyer and Moore, 1979, p. 53] is actually to be read as the well-
foundedness of the formal definition of § 3.1 with the additional assumption that the predicate Q
must be definable in Thm.

Note that in Pieri’s argument on the exclusion of non-standard models (as described in
Note 40), it is not possible to replace the reflexive and transitive closure of the successor relation s
with the Thm-definable predicate

˘
Y (NUMBERP Y)= T ∧ ((LESSP Y X)= T ∨ Y= X)

¯
,

because (by the Thm-analog of axiom (lessp2′) of Example 12 in § 5.2.6) this predicate will con-
tain 0 as a minimal element even for a non-standard natural number X; thus, in non-standard
models, LESSP is a proper super-relation of the reflexive and transitive closure of s.

132See ChapterVI in [Boyer and Moore, 1979].

Automation of Mathematical Induction 55

The standard representation of a propositional expression has improved from the
multifarious LISP representation of the Pure LISP Theorem Prover toward
today’s standard of clausal representation. A clause is a disjunctive list of literals.
Literals, however, deviating from the standard of being optionally negated atoms,
are just LISP terms here, because every LISP function can be seen as a predicate.

This means that the “water” of the waterfall now consists of clauses, and the
conjunction of all clauses in the waterfall represents the proof task.

Based on this clausal representation, we find a full-fledged description of con-
textual rewriting in Chapter IX of [Boyer and Moore, 1979], and its applications in
ChaptersVII–IX. This description comes some years before the term “contextual
rewriting” became popular in automated theorem proving, and the term does not
appear in [Boyer and Moore, 1979]. It is probably the first description of contex-
tual rewriting in the history of logic, unless one counts the rudimentary contextual
rewriting in the “reduction” of the Pure LISP Theorem Prover as such.133

As indicated before, the essential idea of contextual rewriting is the following:
While focusing on one literal of a clause for simplification, we can assume all other
literals — the context — to be false, simply because the literal in focus is irrelevant
otherwise. Especially useful are literals that are negated equations, because they
can be used as a ground term-rewrite system. A non-equational literal t can
always be taken to be the negated equation (t 6= F). The free universal variables
of a clause have to be treated as constants during contextual rewriting.134

To bring contextual rewriting to full power, all occurrences of the function sym-
bol IF in the literals of a clause are expelled from the literals as follows. If the
condition of an IF-expression can be simplified to be definitely false F or defi-
nitely true (i.e. non-F, e.g. if F is not set in the bit-vector as a potential type),
then the IF-expression is replaced with its respective case. Otherwise, after the
IF-expression could not be removed by those rewrite rules for IF whose soundness
depends on termination,135 it is moved to the top position (outside-in), by replac-
ing each case with itself in the IF’s context, such that the literal C[(IF t0 t1 t2)]
is intermediately replaced with (IF t0 C[t1] C[t2]), and then this literal splits
its clause in two: one with the two literals (NOT t0) and C[t1] in place of the old
one, and one with t0 and C[t2] instead.

133Cf. § 5.2.1.

134This has the advantage that we could take any well-founded ordering that is total on ground
terms and run the terminating ground version of a Knuth–Bendix completion procedure [Knuth
and Bendix, 1970] for all literals in a clause representation that have the form li 6= ri, and
replace the literals of this form with the resulting confluent and terminating rewrite system and
normalize the other literals of the clause with it. Note that this transforms a clause into a
logically equivalent one. None of the Boyer–Moore theorem provers does this, however.

135These rewrite rules whose soundness depends on termination are (IF X Y Y) = Y;
(IF X X F) = X; and for Boolean X: (IF X T F) = X; tested for applicability in the given order.

56 J Strother Moore, Claus-Peter Wirth

Thm eagerly removes variables in solved form: If the variable X does not occur in
the term t, but the literal (X 6= t) occurs in a clause, then we can remove that literal
after rewriting all occurrences of X in the clause to t. This removal is a logical equi-
valence transformation, because the single remaining occurrence of X is implicitly
universally quantified and so (X 6= t) must be false because it implies (t 6= t).

It now remains to describe the rewriting with function definitions and with
lemmas tagged for rewriting, where the context of the clause is involved again.

Non-recursive function definitions are always unfolded by Thm.

Recursive function definitions are treated in a way very similar to that of the
Pure LISP Theorem Prover. The criteria on the unfolding of a function call
of a recursively defined function f still depend solely on the terms introduced as
arguments in the recursive calls of f in the body of f, which are accessed dur-
ing the simplification of the body. But now, instead of rejecting the unfolding
in case of the presence of new destructor terms in the simplified recursive calls,
rejections are based on whether the simplified recursive calls contain subterms
not occurring elsewhere in the clause. That is, an unfolding is approved if all
subterms of the simplified recursive calls already occur in the clause. This basic
occurrence heuristic is one of the keys to Thm’s success at induction. As we will
see, instead of the Pure LISP Theorem Prover’s phrasing of inductive argu-
ments with “constructors in the conclusion”, such as P (s(x))) ⇐ P (x), Thm uses
“destructors in the hypothesis”, such as (P (x) ⇐ P (p(x))) ⇐ x 6=0. Thanks to
the occurrence heuristic, the very presence of a well-chosen induction hypothesis
gives the rewriter “permission” to unfold certain recursive functions in the induc-
tion conclusion (which is possible because all function definitions are in destructor
style).

There are also two less important criteria which individually suffice to unblock
the unfolding of recursive function definitions:

1. An increase of the number of arguments of the function to be unfolded that
are constructor ground terms.

2. The second is a decrease of the number of function symbols in the arguments
of the function to be unfolded at the measured positions of an induction
template for that function.

So the clause
C[lessp(x, s(y))]

will be expanded by (lessp2′), (lessp3′), and (p1) into the clauses

x 6= 0, C[true]
and

x= 0, C[lessp(p(x), y)]

— even if p(x) is a newly occurring subterm! — because the second argument
position of lessp is such a set of measured positions according to Example 18
of § 5.3.7.136

Josie
Highlight
We can see this as resolution with the reflexive axiom.

NEW SENTENCES APPENDED: Alternatively, the removal can be
seen as a resolution step with the axiom of reflexivity.

Automation of Mathematical Induction 57

Thm is able to exploit previously proved lemmas. When the user submits a
theorem for proof, the user tags it with tokens indicating how it is to be used
in the future if it is proved. Thm supports four tags and they indicate that the
lemma is to be used as a rewrite rule, as a rule to eliminate destructors, as a rule
to restrict generalizations, or as a rule to suggest inductions. The paradigm of
tagging theorems for use by certain proof techniques focus the user on developing
general “tactics” (within a very limited framework) while allowing the user to think
mainly about relevant mathematical truths. This paradigm has been a hallmark
of all Boyer–Moore theorem provers since Thm and partially accounts for their
reputation of being “automatic”.

Rewriting with lemmas that have been proved and tagged for rewriting
— so-called rewrite lemmas — differs from rewriting with recursive function defi-
nitions mainly in one aspect: There is no need to block them because the user
has tagged them explicitly for rewriting, and because rewrite lemmas have the
form of conditional equations instead of unconditional ones. Simplification with
lemmas tagged for rewriting and the heuristics behind the process are nicely de-
scribed in [Schmidt-Samoa, 2006c], where a rewrite lemma is not just tagged for
rewriting, but where the user can also mark the condition literals on how they
should be dealt with. In Thm there is no lazy rewriting with rewrite lemmas, i.e.
no case splits are introduced to be able to apply the lemma.137 This means that
all conditions of the rewrite lemma have to be shown to be fulfilled in the current
context. In partial compensation there is a process of backward chaining, i.e. the
conditions can be shown to be fulfilled by the application of further conditional
rewrite lemmas. The termination of this backward chaining is achieved by avoiding
the generation of conditions into which the previous conditions can be homeomor-
phically embedded.138 In addition, rewrite lemmas can introduce IF-expressions,
splitting the rewritten clause into cases. There are provisions to instantiate extra
variables of conditions eagerly, which is necessary because there are no existential
variables.139 Some collections of rewrite lemmas can cause Thm’s rewriter not
to terminate. For permutative rules like commutativity, however, termination is
assured by simple term ordering heuristics.140

5.3.2 Destructor Elimination in Thm

We have already seen constructors such as s (in Thm: ADD1) and cons (CONS) with
the destructors p (SUB1) and car (CAR), and cdr (CDR), respectively.

136See Page 118f. of [Boyer and Moore, 1979] for the details of the criteria for unblocking the
unfolding of function definitions.

137Matt Kaufmann and J Strother Moore added support for “forcing” and “case split” annota-
tions to ACL2 in the mid-1990s.

138See Page 109ff. of [Boyer and Moore, 1979] for the details.

139See Page 111f. of [Boyer and Moore, 1979] for the details.

140See Page 104f. of [Boyer and Moore, 1979] for the details.

Josie
Highlight
Note that a lemma can be tagged in more than one way. CORRECTED PHRASE:
THM supports four non-exclusive tags ...

Josie
Highlight
How is this indicated to the user and how does the user deal with it?

THERE IS A NEW FOOTNOTE TO THIS SENTENCE: 149Non-termination of rewriting caused the Boyer–Moore theorem provers to run forever or exhaust
the LISP stack or heap — except ACL2, which maintains its own user-adjustable stack size
and gives a coherent error on stack overflow without crashing the LISP system. Nqthm introduced
special tools to track down the rewriting process via the rewrite call stack (namely BREAK-REWRITE,
after setting (MAINTAIN-REWRITE-PATH T)) and to count the applications of a rewrite rule (namely
ACCUMULATED-PERSISTENCE), so the problematic rules can easily be detected and the user can disable
them. See § 12 of [Boyer & Moore, 1988b; 1998] for the details.

58 J Strother Moore, Claus-Peter Wirth

EXAMPLE 15 (From Constructor to Destructor Style and back).
We have presented several function definitions both in constructor and in destruc-
tor style. Let us do careful and generalizable equivalence transformations (reverse
step justified in parentheses) starting with the constructor-style rule (ack3) of § 3.4:

ack(s(x), s(y))= ack(x, ack(s(x), y)).

Introduce (delete) the solved variables x′ and y′ for the constructor terms s(x)
and s(y) occurring on the left-hand side, respectively, and add (delete) two further
conditions by applying the definition (p1′) (cf. § 3.4) twice.

ack(s(x), s(y))= ack(x, ack(s(x), y)) ⇐
(

x′= s(x) ∧ p(x′)= x
∧ y′= s(y) ∧ p(y′) = y

)
.

Normalize the conclusion with leftmost equations of the condition from right to
left (left to right).

ack(x′, y′)= ack(x, ack(x′, y)) ⇐
(

x′= s(x) ∧ p(x′)= x
∧ y′= s(y) ∧ p(y′)= y

)
.

Normalize the conclusion with rightmost equations of the condition from right to
left (left to right).

ack(x′, y′)= ack(p(x′), ack(x′, p(y′))) ⇐
(

x′= s(x) ∧ p(x′)= x
∧ y′= s(y) ∧ p(y′)= y

)
.

Add (Delete) two conditions by applying axiom (nat2) twice.

ack(x′, y′)= ack(p(x′), ack(x′, p(y′)))

⇐
(

x′= s(x) ∧ p(x′)= x ∧ x′ 6= 0
∧ y′= s(y) ∧ p(y′)= y ∧ y′ 6= 0

)
.

Delete (Introduce) the leftmost equations of the condition by applying lemma
(s1′) (cf. § 3.4) twice, and delete (introduce) the solved variables x and y for the
destructor terms p(x′) and p(y′) occurring in the left-hand side of the equation in
the conclusion, respectively.

ack(x′, y′)= ack(p(x′), ack(x′, p(y′))) ⇐ x′ 6= 0 ∧ y′ 6= 0.

Up to renaming of the variables, this is the destructor-style rule (ack3′) of Exam-
ple 11 (cf. § 5.2.6). ¤

Our data types are defined inductively over constructors.141 Therefore construc-
tors play the main rôle in our semantics, and practice shows that step cases of
simple induction proofs work out much better with constructors than with the re-
spective destructors, which are secondary (i.e. defined) operators in our semantics
and have a more complicated case analysis in application.

141Here the term “inductive” means the following: We start with the empty set and take the
smallest fixpoint under application of the constructors, which contains only finite structures, such
as natural numbers and lists. Co-inductively over the destructors we would obtain different data
types, because we start with the universal class and obtain the greatest fixed point under inverse
application of the destructors, which typically contains infinite structures. For instance, for the
unrestricted destructors car, cdr of the list of natural numbers list(nat) of § 3.5, we co-inductively
obtain the data type of infinite streams of natural numbers.

Automation of Mathematical Induction 59

There are two further positive effects of destructor elimination:

1. It tends to standardize the representation of a clause in the sense that the
numbers of occurrences of identical subterms tend to be increased.

2. Destructor elimination also brings the subterm property in line with the
sub-structure property; e.g., Y is both a sub-structure of (CONS X Y) and a
subterm of it, whereas (CDR Z) is a sub-structure of Z in case of (LISTP Z),
but not a subterm of Z.

Both effects improve the chances that the clause passes the follow-up stages of
cross-fertilization and generalization with good success.142

As noted earlier, the Pure LISP Theorem Prover does induction using step
cases with constructors, such as P (s(x)) ⇐ P (x), whereas Thm does induction
using step cases with destructors, such as(

P (x) ⇐ P (p(x))
) ⇐ x 6= 0.

So destructor elimination was not so urgent in the Pure LISP Theorem Pro-
ver, simply because there were fewer destructors around. Indeed, the stage “de-
structor elimination” does not exist in the Pure LISP Theorem Prover.

Thm does not do induction with constructors because there are generalized de-
structors that do not have a straightforward constructor (see below), and because
the induction rule of explicit induction has to fix in advance whether the step cases
are destructor or constructor style. So with destructor style in all step cases and
in all function definitions, explicit induction and recursion in Thm choose the style
that is always applicable. Destructor elimination then confers the advantages of
constructor-style proofs when possible.

EXAMPLE 16 (A Generalized Destructor Without Constructor).
A generalized destructor that does not have a straightforward constructor is the
function delfirst defined in § 3.5. To verify the correctness of a deletion-sort algo-
rithm based on delfirst, a useful step case for an induction proof is of the form143(

P (l) ⇐ P (delfirst(max(l), l))
) ⇐ l 6= nil.

A constructor version of this induction scheme would need something like an inser-
tion function with an additional free variable indicating the position of insertion
— a complication that further removes the proof obligations from the algorithm
being verified. ¤

Proper destructor functions take only one argument. The generalized destructor
delfirst we have seen in Example 16 has actually two arguments; the second one is
the proper destructor argument and the first is a parameter. After the elimination
of a set of destructors, the terms at the parameter positions of the destructors are
typically still present, whereas the terms at the proper destructor argument are
removed.
142See Page 114ff. of [Boyer and Moore, 1979] for a nice example for the advantage of destructor

elimination for cross-fertilization.
143See Page 143f. of [Boyer and Moore, 1979].

Josie
Highlight
Also, evaluation will always terminate.IT SEEMS THAT YOU EXPECT THAT THM APPLIES CONSTRUCTOR ELIMINATION TO DEFINING RULES AS IN THE PREVIOUS EXAMPLE (BECAUSE ONLY THEN IT COULD HAVE AN EFFECT ON TERMINATION OF EVALUATION). SO I HAVE NOW EXTENDED THIS PARAGRAPH AS FOLLOWS TO BE SUFFICIENTLY VERBOSE FOR THE READER WHO STARTS OR RESTARTS READING WITH THIS SECTION:

For this reason — contrary to the Pure LISP Theorem Prover — Thm applies destructor elimination to the clauses in the waterfall, but not (as in Example 6.5) to the defining equations. This application of destructor elimination has actually two furtherpositive effects:

60 J Strother Moore, Claus-Peter Wirth

EXAMPLE 17 (Division with Remainder as a pair of Generalized Destructors).
In case of y 6= 0, we can construct each natural number x in the form of (q ∗ y)+ r
with lessp(r, y)= true. The related generalized destructors are the quotient div(x, y)
of x by y, and its remainder rem(x, y). Note that in both functions, the first argu-
ment is the proper destructor argument and the second the parameter, which must
not be 0. The rôle that the definition (p1′) and the lemma (s1′) of § 3.4 play in Ex-
ample 15 (and which the definitions (car1′), (cdr1′) and the lemma (cons1′) of § 3.5
play in the equivalence transformations between constructor and destructor style
for lists) is here taken by the following lemmas on the generalized destructors div
and rem and on the generalized constructor λq, r. ((q ∗ y)+ r):
(div1′) div(x, y) = q ⇐ y 6= 0 ∧ (q ∗ y)+ r = x ∧ lessp(r, y)= true
(rem1′) rem(x, y) = r ⇐ y 6= 0 ∧ (q ∗ y)+ r = x ∧ lessp(r, y)= true
(+9′) (q ∗ y)+ r = x ⇐ y 6= 0 ∧ q = div(x, y) ∧ r = rem(x, y)
If we have a clause with the literal y = 0, in which the destructor terms div(x, y)
or rem(x, y) occur, we can — just as in the of Example 15 (reverse direction) —
introduce the new literals div(x, y) 6= q and rem(x, y) 6= r for fresh q, r, and apply
lemma (+9′) to introduce the literal x 6=(q ∗ y) + r. Then we can normalize with the
first two literals, and afterwards with the third. Then all occurrences of div(x, y),
rem(x, y), and x are gone.144 ¤

To enable the form of elimination of generalized destructors described in Exam-
ple 17, Thm allows the user to tag lemmas of the form (s1′), (cons1′), or (+9′) as
elimination lemmas to perform destructor elimination. In clause representation,
this form is in general the following: The first literal of the clause is of the form
(tc = x), where x is a variable which does not occur in the (generalized) constructor
term tc. Moreover, tc contains some distinct variables y0, . . . , yn, which occur
only on the left-hand sides of the first literal and of the last n+1 literals of the
clause, which are of the form (y0 6= td0), . . . , (yn 6= tdn), for distinct (generalized)
destructor terms td0 ,. . . ,tdn.145

The idea of application for destructor elimination in a given clause is, of course,
the following: If, for an instance of the elimination lemma, the literals not men-
tioned above (i.e. in the middle of the clause, such as y 6= 0 in (+9′)) occur in
the given clause, and if td0 , . . . , tdn occur in the given clause as subterms, then
rewrite all their occurrences with (y0 6= td0), . . . , (yn 6= tdn) from right to left and
then use the first literal of the elimination lemma from right to left for further
normalization.146

144For a nice, but non-trivial example on why proofs tend to work out much easier after this
transformation, see Page 135ff. of [Boyer and Moore, 1979].

145Thm adds one more restriction here, namely that the generalized destructor terms have to
consist of a function symbol applied to a list containing exactly the variables of the clause,
besides y0, . . . , yn.

Moreover, note that Thm actually does not use our flattened form of the elimination lemmas,
but the one that results from replacing each yi in the clause with tdi , and then removing the literal

(yi 6= tdi). Thus, Thm would accept only the non-flattened versions of our elimination lemmas,
such as (s1) instead of (s1′) (cf. § 3.4), and such as (cons1) instead of (cons1′) (cf. § 3.5).

Automation of Mathematical Induction 61

After a clause enters the destructor-elimination stage of Thm, its most simple
(actually: the one defined first) destructor that can be eliminated is eliminated,
and destructor elimination is continued until all destructor terms introduced by
destructor elimination are eliminated if possible. Then, before further destructors
are eliminated, the resulting clause is returned to the center pool of the waterfall.
So the clause will enter the simplification stage where the (generalized) construc-
tor introduced by destructor elimination may be replaced with a (generalized)
destructor. Then the resulting clauses re-enter the destructor-elimination stage,
which may result in infinite looping.

For example, destructor elimination turns the clause

x′= 0, C[lessp(p(x′), x′)], C ′[p(x′), x′]

by the elimination lemma (s1) into the clause

s(x) = 0, C[lessp(x, s(x))], C ′[x, s(x)].

Then, in the simplification stage of the waterfall, lessp(x, s(x)) is unfolded, re-
sulting in the clause

x= 0, C[lessp(p(x), x)], C ′[x, s(x)]

and another one.147

Looping could result from eliminating the destructor introduced by simplifi-
cation (such as it is actually the case for our destructor p in the last clause).
To avoid looping, before returning a clause to the center pool of the waterfall,
the variables introduced by destructor elimination (such as our variable x) are
marked. (Generalized) destructor terms containing marked variables are blocked
for further destructor elimination. This marking is removed only when the clause
reaches the induction stage of the waterfall.148

5.3.3 (Cross-) Fertilization in Thm

This stage has already been described in § 5.2.3 because there is no noticeable
difference between the Pure LISP Theorem Prover and Thm here, besides
some heuristic fine tuning.149

146If we add the last literals of the elimination lemma to the given clause, use them for contextual
rewriting, and remove them only if this can be achieved safely via application of the definitions
of the destructors (as we could do in all our examples), then the elimination of destructors is
an equivalence transformation. Destructor elimination in Thm, however, may (over-) generalize
the conjecture, because these last literals are not present in the non-flattened elimination lemma
of Thm and its variables yi are actually introduced in Thm by generalization. Thus, instead of
trying to delete the last literals of our deletion lemmas safely, Thm never adds them.

147The latter step is given in more detail in the context of the second of the two less important
criteria of § 5.3.1 for unblocking the unfolding of lessp(x, s(y)).

148See Page 139 of [Boyer and Moore, 1979]. In general, for more sophisticated details of de-
structor elimination in Thm, we have to refer the reader to ChapterX of [Boyer and Moore, 1979].

149See Page 149 of [Boyer and Moore, 1979].

62 J Strother Moore, Claus-Peter Wirth

5.3.4 Generalization in Thm

Thm adds only one new rule to the universally applicable heuristic rules for gen-
eralization on a term t mentioned in § 3.9:

“Never generalize on a destructor term t !”

This new rule makes sense in particular after the preceding stage of destructor
elimination in the sense that destructors that outlast their elimination probably
carry some relevant information. Another reason for not generalizing on destructor
terms is that the clause will enter the center pool in case another generalization is
possible, and then the destructor elimination might eliminate the destructor term
more carefully than generalization would do.150

The main improvement of generalization in Thm over the Pure LISP Theo-
rem Prover, however, is the following: Suppose again that the term t is to be
replaced at all its occurrences in the clause T [t] with the fresh variable z. Recall
that the Pure LISP Theorem Prover restricts the fresh variable with a pred-
icate synthesized from the definition of the top function symbol of the replaced
term. Thm instead restricts the new variable in two ways. Both ways add addi-
tional literals to the clause before the term is replaced by the fresh variable:

1. Assuming all literals of the clause T [t] to be false (i.e. of type F), the bit-
vector describing the soft type of t is computed and if only one bit is set,
then, for the respective type predicate, say the bit expressing NUMBERP, then
a new literal is added to the clause, such as (NOT (NUMBERP t)).

2. The user can tag certain lemmas as generalization lemmas; such as
(SORTEDP (SORT X))

for a sorting function SORT; and if (SORT X) matches t, the respective
instance of (NOT (SORTEDP (SORT X))) is added to T [t].151 In general,
for the addition of such a literal (NOT t′′), a proper subterm t′ of a gener-
alization lemma must match t.152

150See Page 156f. of [Boyer and Moore, 1979].

151Cf. Note 114.

152Moreover, the literal is actually added to the generalized clause only if the top function sym-
bol of t does no longer occur in the literal after replacing t with x. This means that, for a gen-
eralization lemma (EQUAL (FLATTEN (GOPHER X)) (FLATTEN X)), the literal

(NOT (EQUAL (FLATTEN (GOPHER t′′′)) (FLATTEN t′′′)))
is added to T [t] in case of t being of the form (GOPHER t′′′), but not in case of t being of the
form (FLATTEN t′′′) where the first occurrence of FLATTEN is not removed by the generalization.
See Page 156f. of [Boyer and Moore, 1979] for the details.

Automation of Mathematical Induction 63

5.3.5 Elimination of Irrelevance in Thm

Thm includes another waterfall stage not in the Pure LISP Theorem Prover,
the elimination of irrelevant literals. This is the last transformation before we come
to “induction”. Like generalization, this stage may turn a valid clause into an in-
valid one. The main reason for taking this risk is that the subsequent heuristic
procedures for induction assume all literals to be relevant: irrelevant literals may
suggest inappropriate induction schemes which may result in a failure of the induc-
tion proof. Moreover, if all literals seem to be irrelevant, then the goal is probably
invalid and we should not do a costly induction but just fail immediately.153

Let us call two literals connected if there is a variable that occurs in both of them.
Consider the partition of a clause into its equivalence classes w.r.t. the reflexive
and transitive closure of connectedness. If we have more than one equivalence
class in a clause, this is an alarm signal for irrelevance: if the original clause is
valid, then a sub-clause consisting only of the literals of one of these equivalence
classes must be valid as well. This is a consequence of the logical equivalence of
∀x. (A ∨ B) with A ∨ ∀x. B, provided that x does not occur in A. Then we
should remove one of the irrelevant equivalence classes after the other from the
original clause. To this end, Thm has two heuristic tests for irrelevance.

1. An equivalence class of literals is irrelevant if it does not contain any properly
recursive function symbol.

Based on the assumption that the previous stages of the waterfall are suffi-
ciently powerful to prove clauses composed only of primitive functions, the
justification for this heuristic test is the following: If the clause of the equi-
valence class were valid, then the previous stages of the waterfall should
already have established the validity of this equivalence class.

2. An equivalence class of literals is irrelevant if it consists of only one literal
and if this literal is the application of a properly recursive function to a list
of distinct variables.

Based on the assumption that the soft typing rules are sufficiently powerful
and that the user has not defined a tautological, but tricky predicate,154 the
justification for this heuristic test is the following: The bit-vector of this
literal must contain the singleton type of F; otherwise the validity of the lit-
eral and the clause would have been recognized by the stage “simplification”.
This means that F is most probably a possible value for some combination
of arguments.

153See Page 160f. of [Boyer and Moore, 1979] for a typical example of this.

154This assumption is critical because it often occurs that updated program code contains
recursive predicates that are actually trivially true, but very tricky. See § 3.2 of [Wirth, 2004] for
such an example.

Josie
Highlight

Josie
Highlight
Does this mean 'non-recursive'? I don't recall its definition being given.WE HAVE REPLACED THIS NOTION OF BEING PRIMITIVE OF THE BM JARGON WITH ITS DEFINITION: composed only of constructor functions(i.e. shells and base objects) and functions with explicit (i.e. non-recursive) definitions,

Josie
Sticky Note
Also, users sometimes supply such predicates in order to suggest a particular induction rule.

NOTE EXTENDED AS FOLLOWS: Moreover, users sometimes supply such predicates to suggest a particular induction ordering. For example,
if we want to supply the function sqrtio of § 6.3.9 to Thm , then we have to provide a complete definition,
typically given by setting sqrtio to be T in all other cases. Luckily, such nonsense functions will typically
not occur in any proof.

Josie
Highlight
Do you mean false by F?NEW PARENTHESIS:
(containing only the term F,
cf. § 6.3.1);

64 J Strother Moore, Claus-Peter Wirth

5.3.6 Induction in Thm as compared to the Pure LISP Theorem Prover

As we have seen in § 5.2.6, the recursion analysis in the Pure LISP Theorem
Prover is only rudimentary. Indeed, the whole information on the body of the re-
cursive function definitions comes out of the poor feedback of the “evaluation” pro-
cedure of the simplification stage of the Pure LISP Theorem Prover. Roughly
speaking, this information consists only in the two facts

1. that a destructor symbol occurring as an argument of the recursive function
call in the body is not removed by the “evaluation” procedure in the context
of the current goal and in the local environment, and

2. that it is not possible to derive that this recursive function call is unreachable
in this context and environment.

In Thm, however, the first part of recursion analysis is done at definition time, i.e.
at the time the function is defined, and applied at proof time, i.e. at the time the
induction rule produces the base and step cases. Surprisingly, there is no reacha-
bility analysis for the recursive calls in this second part of the recursion analysis
in Thm. While the information in item 1 is thoroughly improved as compared to
the Pure LISP Theorem Prover, the information in item 2 is partly weaker
because all recursive function calls are assumed to be reachable during recursion
analysis. The overwhelming success of Thm means that the heuristic decision to
abandon reachability analysis in Thm was appropriate.155

5.3.7 Induction Templates generated by Definition-Time Recursion Analysis

The first part of recursion analysis in Thm consists in a termination analysis of
every recursive function at the time of its definition. The system does not only
look for one termination proof that is sufficient for the admissibility of the function
definition, but actually looks through all termination proofs in a finite search space
and gathers from them all information required for justifying the termination of
the recursive function definition, as well as for justifying the soundness and for
improving the feasibility of the step cases to be generated by the induction rule.

To this end, Thm constructs valid induction templates very similar to our de-
scription in § 4.4.156 Let us approach the idea of a valid induction template with
some typical examples, which are actually the templates for the constructor-style
examples of § 4.4, but now for the destructor-style definitions of lessp and ack,
because only destructor-style definitions are admissible in Thm.

155Note that in most cases the step formula of the reachable cases works somehow in Thm, as
long as no better step case was canceled because of unreachable step cases, which, of course, are
trivial to prove, simply because their condition is false. Moreover, note that, contrary to descente
infinie which can get along with the first part of recursion analysis alone, the heuristics of explicit
induction have to guess the induction steps eagerly, which is always a fault-prone procedure,
to be corrected by additional induction proofs, as we have seen in Example 4 of § 3.8.1.

Josie
Highlight
Why 'poor'?

NEW FOOTNOTE: See the discussion in § 6.2.7 on Example 6.1 from § 6.2.6.

Josie
Cross-Out

Josie
Replacement Text
of

Josie
Highlight
Presumably, to suggest lots of induction rules.

NEW PARENTHESIS: —
to be able to generate a plenitude of sound sets of step formulas later —

Automation of Mathematical Induction 65

EXAMPLE 18 (Two Induction Templates with different Measured Positions).
For the ordering predicate lessp as defined by (lessp1′–3′) in Example 12 of § 5.2.6,
we get two induction templates with the sets of measured positions {1} and {2},
respectively, both for the well-founded ordering λx, y. (lessp(x, y)= true). The
first template has the weight term (1) and the relational description{ (

lessp(x, y), {lessp(p(x), p(y))}, {x 6= 0}) }
.

The second one has the weight term (2) and the relational description{ (
lessp(x, y), {lessp(p(x), p(y))}, {y 6= 0}) }

. ¤
EXAMPLE 19 (One Induction Template with Two Measured Positions).
For the Ackermann function ack as defined by (ack1′–3′) in Example 11 of § 5.2.6,
we get only one appropriate induction template. The set of its measured positions
is {1, 2}, because of the weight function cons((1), cons((2), nil)) (in Thm actually:
(CONS x y)) in the well-founded lexicographic ordering

λl, k. (lexlimless(l, k, s(s(s(0))))= true).
The relational description has two elements: For the equation (ack2′) we get(

ack(x, y), {ack(p(x), s(0))}, {x 6= 0})
,

and for the equation (ack3′) we get(
ack(x, y), {ack(x, p(y)), ack(p(x), ack(x, p(y)))}, {x 6= 0, y 6= 0})

. ¤

To find valid induction templates automatically by exhaustive search, Thm allows
the user to tag certain theorems as “induction lemmas”. An induction lemma
consists of the application of a well-founded relation to two terms with the same top
function symbol w, playing the rôle of the weight term; plus a condition without
extra variables, which is used to generate the case conditions of the induction
template. Moreover, the arguments of the application of w occurring as the second
argument of the well-founded relation must be distinct variables in Thm, mirroring
the left-hand side of its function definitions in destructor style.

Certain induction lemmas are generated with each shell declaration. Such an
induction lemma generated for the shell ADD1, which is roughly

(LESSP (COUNT (SUB1 X)) (COUNT X)) ⇐ (NOT (ZEROP X)),
suffices for generating the two templates of Example 18. Note that COUNT, playing
the rôle of w here, is a special function in Thm, which is generically extended by
every shell declaration in an object-oriented style for the elements of the new shell.
On the natural numbers here, COUNT is the identity. On other shells, COUNT is
defined similar to our function count from § 3.5.157

156Those parts of the condition of the equation that contain the new function symbol f must be
ignored in the case conditions of the induction template because the definition of the function f
is admitted in Thm only after it has passed the termination proof.

That Thm ignores the governing conditions that contain the new function symbol f is described
in the 2nd paragraph on Page 165 of [Boyer and Moore, 1979]. Moreover, an example for this is
the definition of OCCUR on Page 166 of [Boyer and Moore, 1979].

After one successful termination proof, however, the function can be admitted in Thm, and
then these conditions could actually be admitted in the templates. So the actual reason why
Thm ignores these conditions in the templates is that it generates the templates with the help
of previously proved induction lemmas, which, of course, cannot contain the new function yet.

66 J Strother Moore, Claus-Peter Wirth

5.3.8 Proof-Time Recursion Analysis in Thm

The induction rule uses the information from the induction templates as follows:
For each recursive function occurring in the input formula, all applicable induction
templates are retrieved and turned into induction schemes as described in § 4.7.
Any induction scheme that is subsumed by another one is deleted after adding its
hitting ratio to the one of the other. The remaining schemes are merged into new
ones with a higher hitting ratio, and finally, after the flawed schemes are deleted,
the scheme with the highest hitting ratio will be used by the induction rule to
generate the base and step cases.

EXAMPLE 20 (Applicable Induction Templates).
Let us consider the conjecture (ack4) from § 3.4. From the three induction tem-
plates of Examples 18 and 19, only the second one of Example 18 is not applicable
because the second position of lessp (which is the only measured position of that
template) is changeable, but filled in (ack4) by the non-variable ack(x, y). ¤

From the destructor-style definitions (lessp1′–3′) (cf. Example 12) and (ack1′–3′)
(cf. Example 11), we have generated two induction templates applicable to
(ack4) lessp(y, ack(x, y)) = true

They yield the two induction schemes of Example 21. See also Example 10 for
the single induction scheme for the constructor-style definitions (lessp1–3) and
(ack1–3).

EXAMPLE 21 (Induction Schemes).
The induction template for lessp of Example 18 that is applicable to (ack4) accord-
ing to Example 20 and whose relational description contains only the triple(

lessp(x, y), {lessp(p(x), p(y))}, {x 6= 0})

yields the induction scheme with position set {1.1} (i.e. left-hand side of first literal
in (ack4)); the step-case description is

{(
{x,y}»id, {µ1}, {y 6= 0})}, where µ1 =

{x 7→x, y 7→p(y)}; the set of induction variables is {y}; and the hitting ratio is 1
2 .

This can be seen as follows: The substitution called ξ in the discussion of § 4.7
can be chosen to be the identity substitution {x,y}»id on {x, y} because the first
element of the triple does not contain any constructors. This is always the
case for induction templates for destructor-style definitions such as (lessp1′–3′).
The substitution called σ in § 4.7 (which has to match the first element of the
triple to the term (ack4)/1.1, i.e. the term at the position 1.1 in (ack4)) is σ =
{x 7→y, y 7→ack(x, y)}. So the constraints for µ1 (which tries to match (ack4)/1.1
to the σ-instance of the second element of the triple) are: yµ1 = p(y) for the
first (measured) position of lessp; and ack(x, y)µ1 = p(ack(x, y)) for the second
(unmeasured) position, which cannot be achieved and is skipped. This results in
a hitting ratio of only 1

2 . The single measured position 1 of the induction template
results in the induction variable (ack4)/1.1.1 = y.
157For more details on the recursion analysis a definition time in Thm, see Page 180ff. of [Boyer

and Moore, 1979].

Josie
Highlight
This is the first time the purpose of 'hitting ratio' has become apparent. It would help to suggest why this has heuristic value.THIS DOES NOT APPLY ANYMORE BECAUSE THERE IS MORE ON HITTING RATIO NOW. WE HAVE ALSO ADDED A FOOTNOTE HERE: This part of the heuristics is made perspicuous in Example 5.5 of § 5.8.

Automation of Mathematical Induction 67

The template for ack of Example 19 yields an induction scheme with the position
set {1.1.2}, and the set of induction variables {x, y}. The triple(

ack(x, y), {ack(p(x), s(0))}, {x 6= 0})
(generated by the equation (ack2′)) is replaced with

(
{x,y}»id, {µ′1,1}, {x 6= 0})

,
where µ′1,1 = {x7→p(x), y 7→s(0)}. The triple(

ack(x, y), {ack(x, p(y)), ack(p(x), ack(x, p(y)))}, {x 6= 0, y 6= 0})
(generated by (ack3′)) is replaced with

(
{x,y}»id, {µ′2,1, µ′2,2}, {x 6= 0, y 6= 0})

,
where µ′2,1 = {x7→x, y 7→p(y)}, and µ′2,2 = {x 7→p(x), y 7→ack(x, p(y))}.

This can be seen as follows: The substitution called σ in the above discussion
is {x,y}»id in both cases, and so the constraints for the (measured) positions are
xµ′1,1=p(x), yµ′1,1=s(0); xµ′2,1=x, yµ′2,1=p(y); xµ′2,2=p(x), yµ′2,2=ack(x, p(y)).

As all six constraints are satisfied, the hitting ratio is 6
6 = 1. ¤

An induction scheme that is either subsumed by or merged into another induction
scheme adds its hitting ratio and sets of positions and induction variables to those
of the other’s, respectively, and then it is deleted.

The most important case of subsumption are schemes that are identical except
for their position sets, where — no matter which scheme is deleted — the result
is the same. The more general case of proper subsumption occurs when the sub-
sumer provides the essential structure of the subsumee, but not vice versa.

Merging and proper subsumption of schemes — seen as binary algebraic opera-
tions — are not commutative, however, because the second argument inherits the
well-foundedness guarantee alone and somehow absorbs the first argument, and so
the result for swapped arguments is often undefined.

More precisely, subsumption is given if the step-case description of the first
induction scheme can be injectively mapped to the step-case description of the
second one, such that (using the notation of § 4.7 and Example 21), for each
step case (id, { µj | j ∈ J }, C) mapped to (id, { µ′j | j ∈ J]J ′ }, C ′), we have
C ⊆ C ′, and the set of substitutions { µj | j ∈ J } can be injectively158 mapped
to { µ′j | j ∈ J] J ′ } (w.l.o.g. say µi to µ′i for i∈ J), such that, for each j ∈ J and
x ∈ dom(µj): x∈dom(µ′j); xµj=x implies xµ′j=x; and xµj is a subterm of xµ′j .

EXAMPLE 22 (Subsumption of Induction Schemes).
In Example 21, the induction scheme for lessp is subsumed by the induction scheme
for ack, because we can map the only element of the step-case description of
the former to the second element of the step-case description of latter: the case
condition {y 6= 0} is a subset of the case condition {x 6= 0, y 6= 0}, and we have
µ1 = µ′2,1. So the former scheme is deleted and the scheme for ack is updated to
have the position set {1.1, 1.1.2} and the hitting ratio 3

2 . ¤
158From a logical viewpoint, it is not clear why this second injectivity requirement is found here,

just as in different (but equivalent) form in [Boyer and Moore, 1979, p. 191, 1st paragraph]. (The
first injectivity requirement may prevent us from choosing an induction ordering that is too small,
cf. § 5.3.9.) An omission of the second requirement would just admit a term of the subsumer to
have multiple subterms of the subsumee, which seems reasonable. Nevertheless, as pointed out
in § 5.3.9, only practical testing of the heuristics is what matters here. See also Note 159.

68 J Strother Moore, Claus-Peter Wirth

In Example 12 of § 5.2.6 we have already seen a rudimentary, but pretty success-
ful kind of merging of suggested step cases in the Pure LISP Theorem Prover.
As Thm additionally has induction schemes, it applies a more sophisticated merg-
ing of induction schemes instead.

Two substitutions µ1 and µ2 are [non-trivially] mergeable if xµ1 = xµ2 for each
x ∈ dom(µ1) ∩ dom(µ2) [and there is a y ∈ dom(µ1) ∩ dom(µ2) with yµ1 6= y].

Two triples (V1»id, A1, C1) and (V2»id, A2, C2) of two step-case descriptions
of two induction schemes, each with domain Vk = dom(µk) for all µk ∈ Ak

(for k ∈ {1, 2}), are [non-trivially] mergeable if for each µ1 ∈ A1 there is a µ2 ∈ A2

such that µ1 and µ2 are [non-trivially] mergeable. The result of their merging is(
V1∪V2»id, m(A1, A2), C1∪C2

)
, where m(A1, A2) is the set containing all sub-

stitutions µ1 ∪ µ2 with µ1 ∈ A1 and µ2 ∈ A2 such that µ1 and µ2 are mergeable
as well as all substitutions V1\V2»id ∪ µ2 with µ2 ∈ A2 for which there is no sub-
stitution µ1 ∈ A1 such that µ1 and µ2 are mergeable.

Two induction schemes are mergeable if the step-case description of the first
induction scheme can be injectively159 mapped to the step-case description of the
second one, such that each argument and its image are non-trivially mergeable.
The step-case description of the induction scheme that results from merging the
first induction scheme into the second contains the merging of all mergeable triples
of the step-case descriptions of first and second induction scheme, respectively.

Finally, we have to describe what it means that an induction scheme is flawed.
This simply is the case if — after merging is completed — the intersection of its
induction variables with the (common) domain of the substitutions of the step-
case description of another remaining induction scheme is non-empty.

If an induction scheme is flawed by another one that cannot be merged with it,
this indicates that an induction on it will probably result in a permanent clash
between the induction conclusion and the available induction hypotheses at some
occurrences of the induction variables.160

pos. set ind. var.s step-case description hit. ratio

1 {1} {x} { (
{x,z}»id, {µ1}, {x 6= 0}) }

1
2 {2} {x} { (

{x,y}»id, {µ2}, {x 6= 0}) }
1

3 {2} {y} { (
{x,y}»id, {µ2}, {y 6= 0}) }

1
4 {3} {y} { (

{y,z}»id, {µ3}, {y 6= 0}) }
1

5 {3} {z} { (
{y,z}»id, {µ3}, {z 6= 0}) }

1
6 {2} {x, y} { (

{x,y}»id, {µ2}, {x 6= 0, y 6= 0}) }
2

7 {3} {y, z} { (
{y,z}»id, {µ3}, {y 6= 0, z 6= 0}) }

2
8 {2, 3} {x, y, z} { (

{x,y,z}»id, {µ4}, {x 6= 0, y 6= 0, z 6= 0}) }
4

9 {1, 2, 3} {x, y, z} { (
{x,y,z}»id, {µ4}, {x 6= 0, y 6= 0, z 6= 0}) }

5

µ1 = {x7→p(x), z 7→p(z)}, µ2 = {x7→p(x), y 7→p(y)},
µ3 = {y 7→p(y), z 7→p(z)}, and µ4 = {x7→p(x), y 7→p(y), z 7→p(z)}.
pos. = position; ind. var.s = set of induction variables; hit. = hitting.

Figure 3. The induction schemes of Example 23

Automation of Mathematical Induction 69

EXAMPLE 23 (Merging and Flawedness of Induction Schemes).
Let us reconsider merging in the proof of lemma (lessp7) w.r.t. the definition of lessp
via (lessp1′–3′), just as we did in Example 12. Let us abbreviate p = true with p,
just as in our very first proof of lemma (lessp7) in Example 3, and also following
the LISP style of Thm. Simplification reduces (lessp7) first to the clause
(lessp7′) lessp(x, p(z)), ¬lessp(x, y), ¬lessp(y, z), z = 0

Then the Boyer–Moore waterfall sends this clause through three rounds of re-
duction between destructor elimination and simplification as discussed at the end
of § 5.3.2, finally returning again to (lessp7′), but now with all its variables marked
as being introduced by destructor elimination, which prevents looping by blocking
further destructor elimination.

Note that the marked variables refer actually to the predecessors of the values
of the original lemma (lessp7′), and that these three rounds of reduction already
include all that is required for the entire induction proof, such that descente infinie
would now conclude the proof with an induction-hypothesis application. This most
nicely illustrates the crucial similarity between recursion and induction, which
Boyer and Moore “exploit” . . . “or, rather, contrived”.161

The proof by explicit induction in Thm, however, now just starts to compute
induction schemes. The two induction templates for lessp found in Example 18 are
applicable five times, resulting in the induction schemes 1–5 in Figure 3.

From the domains of the substitutions in the step-case descriptions, it is obvious
that — among schemes 1–5 — only the two pairs of schemes 2 and 3 as well as
4 and 5 are candidates for subsumption, which is not given here, however, because
the case conditions of these two pairs of schemes are not subsets of each other.

Nevertheless, these pairs of schemes merge, resulting in the schemes 6 and 7,
respectively, which merge again, resulting in scheme 8.

Now only the schemes 1 and 8 remain. As each of them has x as an induction
variable, both schemes would be flawed if they could not be merged.

It does not matter that the scheme 1 is subsumed by scheme 8 simply because the
phase of subsumption is already over; but they are also mergeable, actually with
the same result as subsumption would have, namely the scheme 9, which admits
us to prove the generic step-case formula it describes without further induction,
and so Thm achieves the crucial task of heuristic anticipation of an appropriate
induction hypotheses, just as well as the Pure LISP Theorem Prover.162 ¤
159From a logical viewpoint, it is again not clear why and injectivity requirement is found

here, just as in different (but equivalent) form in [Boyer and Moore, 1979, p. 193, 1st paragraph].
An omission of the injectivity requirement would admit to define merging as a commutative
associative operation. Nevertheless, as pointed out in § 5.3.9, only practical testing of the heuris-
tics is what matters here. See also Note 158.

160See Page 194f. of [Boyer and Moore, 1979] for a short further discussion and a nice example.

161Cf. [Boyer and Moore, 1979, p. 163, last paragraph].

162The base cases show no improvement to the proof with the Pure LISP Theorem Prover
in Example 12 and a further additional, but also negligible overhead is the preceding reduction
from (lessp7) over (lessp7′) to a version of (lessp7′) with marked variables.

70 J Strother Moore, Claus-Peter Wirth

5.3.9 Conclusion on Thm

Logicians reading on Thm may ask themselves many questions such as: Why
is merging of induction schemes — seen as a binary algebraic operation — not
realized to satisfy the constraint of associativity, so that the result of merging
become independent of the order of the operations? Why does merging not admit
the subterm-property in the same way as subsumption of induction schemes does?
Why do some of the injectivity requirements163 of subsumption and mergeability
lack a meaningful justification, and how can it be that they do not matter?

The answer is trivial, although it is easily overlooked: The part of the auto-
mation of induction we have discussed in this section on Thm, belongs mostly
to the field of heuristics and not in the field of logics. Therefore, the final judg-
ment cannot come from logical and intellectual adequacy and comprehensibility
— which are not much more applicable here than in the field of neural nets for
instance — but must come from complete testing with a huge and growing corpus
of example theorems. A modification of an operation, say merging of induction
schemes, that may have some practical advantages for some examples or admit
humans some insight or understanding, can be accepted only if it admits us to
run, as efficiently as before, all the lemmas that could be automatically proved
with the system before. All in all, logical and formal considerations may help us
to find new heuristics, but they cannot play any rôle in their evaluation.164

Moreover, it is remarkable that the well-founded relation that is expressed by
the subsuming induction scheme is smaller than that expressed by the subsumed
one, and the relation expressed by a merged scheme is typically smaller than those
expressed by the original ones. This means that the newly generated induction
schemes do not represent a more powerful induction ordering (say, in terms of
Noetherian induction), but actually achieve an improvement w.r.t. the eager in-
stantiation of the induction hypothesis (both for a direct proof and for generaliza-
tion), and provide case conditions that further a successful generalization without
further case analysis.

Since the end of the 1970s until today, Thm has set the standard for explicit
induction; moreover, Thm and its successors Nqthm and ACL2 have given
many researchers a hard time trying to demonstrate weaknesses of their explicit-
induction heuristics, because examples carefully devised to fail with certain steps
of the construction of induction schemes (or other stages of the waterfall) tend to
end up with alternative proofs not imagined before.

Restricted to the mechanization of explicit induction, no significant progress
has been seen beyond Thm and we do not expect any for the future. A heuristic

163Cf. Notes 158 and 159.

164While Christoph Walther is well aware of the primacy of testing in [Walther, 1992; 1993], this
awareness is not reflected in the sloppy language of the most interesting papers [Stevens, 1988]

and [Bundy et al., 1989]: A “rational reconstruction” or “meta-theoretic analysis” of heuristics
does not make sense in our opinion, and heuristics cannot be “bugged” or “have serious flaws”,
but can only turn out to be inferior to others w.r.t. a standard corpus.

Josie
Highlight
But the term 'bug' or 'flaw' may refer to some failure of the heuristic on that corpus and try to explain the reasons for that failure.

IMPROVED AS FOLLOWS: Heuristics cannot be “bugged” or “have serious flaws”, unless this would mean that
they turn out to be inferior to others w.r.t. a standard corpus. A “rational reconstruction” or a “metatheoretic
analysis” may help to guess even superior heuristics, but they may not have any epistemological
value per se .

Automation of Mathematical Induction 71

x=AE

y =FE =BE = AF

div(x, s(s(0)))= AC =CF

x− y =AB =BD = BG = GF

s(s(0)) ∗ (x− y) =AD

(s(s(0)) ∗ y)−x=AG =GD

...

A

B

C

F E

D
G

Figure 4. Four possibilities to descend with rational representations of
√

2:
From the triangle with right angle at F to those at C, G, or B.

approach that has to anticipate appropriate induction steps with a lookahead
of one individual rewrite step for each recursive function occurring in the input
formula cannot go much further than the carefully developed and exhaustively
tested explicit-induction heuristics Thm.

Working with Thm (or Nqthm) for the first time will always fascinate infor-
maticians and mathematicians, simply because it helps to save more time with
the standard everyday inductive proof work than it takes, and the system often
comes up with completely unexpected proofs. Mathematicians, however, should
be warned that the less trivial mathematical proofs that require some creativity
and would deserve to be explicated in a mathematics lecture, will require some
hints, especially if the induction ordering is not a combination of the termination
orderings of the given function definitions. This is already the case for the simple
proofs of the lemma on the irrationality of the square root of two, simply because
the induction orderings of the typical proofs exist only under the assumption that
the lemma is wrong. To make Thm find the standard proof, the user has to define
a function such as the following one:

(sqrtio1) sqrtio(x, y)
= and(sqrtio(y, div(x, s(s(0)))),

and(sqrtio(s(s(0)) ∗ (x− y), (s(s(0)) ∗ y)−x),
sqrtio((s(s(0)) ∗ y)−x, x− y)))

⇐ x ∗x= s(s(0)) ∗ y ∗ y ∧ y 6= 0

Note that the condition of (sqrtio1) cannot be fulfilled. The three different occur-
rences of sqrtio on the right-hand side of the positive/negative-conditional equation
become immediately clear from Figure 4. Actually, any single one of these occur-
rences is sufficient for a proof of the irrationality lemma with Thm, provided that
we give the hint that the induction templates of sqrtio should be used for comput-
ing the induction schemes, in spite of the fact that sqrtio does not occur in the
lemma.

72 J Strother Moore, Claus-Peter Wirth

5.4 Nqthm

Subsequent theorem provers by Boyer and Moore did not add much to the mech-
anization of induction. While both Nqthm and ACL2 have been very influential
in theorem proving, their inductive heuristics are nearly the same as those in Thm
and their waterfalls have quite similar structures. Since we are concerned with the
history of the mechanization of induction, we just sketch developments since 1979.

The one change from Thm to Nqthm that most directly affected the inductions
carried out by the system is the abandonment of fixed lexicographic relations on
natural numbers as the only available well-founded relations. Nqthm introduces
a formal representation of the ordinals up to ε0, i.e. up to ωω

. . .

, and assumes that
the “less than” relation on such ordinals is well-founded. This did not change
the induction heuristics themselves, it just allowed the admission of more complex
function definitions and the justification of more sophisticated induction templates.

After the publication of [Boyer and Moore, 1979] describing Thm, Boyer and
Moore turned to the question of providing limited support for higher-order func-
tions in their first-order setting. This had two very practical motivations. One
was to allow the user to extend the prover by defining and mechanically verifying
new proof procedures in the pure LISP dialect supported by Thm. The other
was to allow the user the convenience of LISP’s “map functions” and LOOP facil-
ity. Both required formally defining the semantics of the logical language in the
logic, i.e. axiomatizing the evaluation function EVAL. Ultimately this resulted in
the provision of metafunctions [Boyer and Moore, 1981b] and the non-constructive
“value-and-cost” function V&C$ [Boyer and Moore, 1988a], which were provided
as part of the Nqthm system described in [Boyer and Moore, 1988b; 1998].

The most important side-effect of these additions, however, is under the hood;
Boyer and Moore contrived to make the representation of constructor ground terms
in the logic be identical to their representation as constants its underlying im-
plementation language LISP: Integers are represented directly as LISP integers;
for instance, s(s(s(0))) is represented by the machine-oriented internal LISP repre-
sentation of 3, instead of the previous (ADD1 (ADD1 (ADD1 (ZERO)))). Symbols
and list structures are embedded this way as well, so that they can can profit from
the very efficient representation of these basic data types in LISP. It thus also
became possible to represent symbolic machine states containing actual assembly
code or the parse trees of actual programs in the logic of Nqthm. Metafunctions
were put to good use canonicalizing symbolic state expressions. The exploration
of formal operational semantics with Nqthm blossomed.

In addition, Nqthm adds a rational linear-arithmetic165 decision procedure to
the simplification stage of the waterfall [Boyer and Moore, 1988c], reducing the
amount of user interaction necessary to prove arithmetic theorems. The incom-
pleteness of the procedure when operating on terms beyond the linear fragment is
of little practical importance since induction is available (and often automatic).

165Linear arithmetic is traditionally called “Presburger Arithmetic” after Mojżesz Presburger
(actually: “Prezburger”) (1904–1943?); cf. [Presburger, 1930], [Stansifer, 1984], [Zygmunt, 1991].

Josie
Inserted Text
in

Josie
Cross-Out

Josie
Replacement Text
i

Automation of Mathematical Induction 73

With Nqthm it became possible to formalize and verify problems beyond the
scope of Thm, such as the correctness of a netlist implementing the instruction-
set architecture of a microprocessor [Hunt, 1985], Gödel’s first incompleteness
theorem,166 the verified hard- & software stack of Computational Logic, Inc.,
relating a fabricated microprocessor design through an assembler, linker, loader,
several compilers, and an operating system to simple verified application pro-
grams,167 and the verification of the Berkeley C String Library.168 Many more
examples are listed in [Boyer and Moore, 1998].

5.5 ACL2

Because of the pervasive change in the representation of constants, the LISP subset
supported by Nqthm is exponentially more efficient than the LISPs supported by
Thm and the Pure LISP Theorem Prover. It is still too inefficient, however:
Emerging applications of Nqthm in the late 1980s included models of commercial
microprocessors; users wished to run their models on industrial test suites. The
root cause of the inefficiency was that ground execution in Nqthm was done by a
purpose-built interpreter implemented by Boyer and Moore. To reach competitive
speeds, it would have been necessary to build a good compiler and full runtime
system for the LISP subset axiomatized in Nqthm. Instead, in August 1989,
less than a year after the publication of [Boyer and Moore, 1988b] describing
Nqthm, Boyer and Moore decided to axiomatize a practical subset of Common
Lisp [Steele, 1990], the then-emerging standard LISP, and to build an Nqthm-like
theorem prover for it. To demonstrate that the subset was a practical programming
language, they decided to code the theorem prover applicatively in that subset.
Thus, ACL2 was born.

Boyer left Computational Logic, Inc., (CLI) and returned to his duties at the
The University of Texas at Austin in 1989, while Moore resigned his tenure and
stayed at CLI. This meant Moore was working full-time on ACL2, whereas Boyer
was working on it only at night.

166Cf. [Shankar, 1994]. In [Shankar, 1994, p. xii] we read on this work with Nqthm:

“This theorem prover is known for its powerful heuristics for constructing proofs
by induction while making clever use of previously proved lemmas. The Boyer–
Moore theorem prover did not discover proofs of the incompleteness theorem but
merely checked a detailed but fairly high-level proof containing over 2000 definitions
and lemmas leading to the main theorems. These definitions and lemmas were
constructed through a process of interaction with the theorem prover which was
able to automatically prove a large number of nontrivial lemmas. By thus proving
a well-chosen sequence of lemmas, the theorem prover is actually used as a proof
checker rather than a theorem prover.
If we exclude the time spent thinking, planning, and writing about the proof, the
verification of the incompleteness theorem occupied about eighteen months of effort
with the theorem prover.”

167Cf. [Moore, 1989b; 1989a], [Bevier et al., 1989], [Hunt, 1989], [Young, 1989], [Bevier, 1989].
168Via verification of its gcc-generated Motorola MC68020 machine code [Boyer and Yu, 1996].

74 J Strother Moore, Claus-Peter Wirth

Matt Kaufmann (*1952), who had worked with Boyer and Moore since the
mid-1980s on Nqthm and had joined them at CLI, was invited to join the ACL2
project.

By the mid-1990s, Boyer requested that his name be removed as an author of
ACL2 because he no longer knew every line of code.

The only major change to inductive reasoning introduced by ACL2 was the
further refinement of the induction templates computed at definition time. While
Nqthm built the case analysis from the case conditions “governing” the recursive
calls, ACL2 uses the more restrictive notion of the tests “ruling” the recursive
calls. Compare the definition of governors on Page 180 of [Boyer and Moore,
1998] to the definition of rulers on Page 90 of [Kaufmann et al., 2000b].

ACL2 represents a major step, however, toward Boyer and Moore’s dream of
a computational logic because it is a theorem prover for a practical programming
language. Because it is so used, scaling its algorithms and heuristics to deal with
enormous models and the formulas they generate has been a major concern, as has
been the efficiency of ground execution. Moreover, it also added many other proof
techniques including congruence-based contextual rewriting, additional decision
procedures, disjunctive search (meaning the waterfall no longer has just one pool
but may generate several, one of which must be “emptied” to succeed), and many
features made possible by the fact that the system code and state is visible to the
logic and the user.

Among the landmark applications of ACL2 are the verification of a Motorola
digital signal processor [Brock and Hunt, 1999] and of the floating-point division
microcode for the AMD K5tm microprocessor [Moore et al., 1998], the routine
verification of all elementary floating point arithmetic on the AMD Athlontm

[Russinoff, 1998], the certification of the Rockwell Collins AAMP7Gtm for multi-
level secure applications by the US National Security Agency based on the ACL2
proofs [Anon, 2005], and the integration of ACL2 into the work-flow of Centaur
Technology, Inc., a major manufacturer of X86 microprocessors [Hunt and Swords,
2009]. Some of this work was done several years before the publications appeared
because the early use of formal methods was considered proprietary. For example,
the work for [Brock and Hunt, 1999] was completed in 1994, and that for [Moore
et al., 1998] in 1995.

In most industrial applications of ACL2, induction is not used in every proof.
Many of the proofs involve huge intermediate formulas, some requiring megabytes
of storage simply to represent, let alone simplify. Almost all the proofs, however,
depend on lemmas that require induction to prove.

To be successful, ACL2 must be good at both induction and simplification and
integrate them seamlessly in a well-engineered system, so that the user can state
and prove in a single system all the theorems needed.

ACL2 is most relevant to the historiography of inductive theorem proving
because it demonstrates that the induction heuristics and the waterfall provide
such an integration in ways that can be scaled to industrial-strength applications.

Automation of Mathematical Induction 75

ACL2 and, by extension, inductive theorem proving, have changed the way
microprocessors and low-level critical software are designed. Proof of correctness,
or at least proof of some important system properties, is now a possibility.

Boyer, Moore, and Kaufmann were awarded the 2005 ACM Software Systems
Award for “the Boyer–Moore Theorem Prover”:

“The Boyer–Moore Theorem Prover is a highly engineered and effec-
tive formal-methods tool that pioneered the automation of proofs by
induction, and now provides fully automatic or human-guided verifica-
tion of critical computing systems. The latest version of the system,
ACL2, is the only simulation/verification system that provides a stan-
dard modeling language and industrial-strength model simulation in a
unified framework. This technology is truly remarkable in that simu-
lation is comparable to C in performance, but runs inside a theorem
prover that verifies properties by mathematical proof. ACL2 is used
in industry by AMD, IBM, and Rockwell-Collins, among others.”169

5.6 Explicit Induction in Rrl, Inka, and Oyster/CLaM

Rrl, the Rewrite Rule Laboratory [Kapur and Zhang, 1989], was initiated in 1982
and showed its main activity during its first dozen years. Rrl is a system for
proving the viability of many techniques related to term rewriting. Besides other
forms of induction, Rrl includes cover-set induction, which has eager induction-
hypothesis generation, but is restricted to syntactic term orderings.

Interesting work on explicit induction was realized along the line of the Inka
Induction (Karlsruhe) systems. We have to mention here Christoph Walther’s
(*1950) elegant treatment of automated termination proofs for recursive function
definitions [Walther, 1988; 1994b], and his theoretically outstanding work on the
generation of step cases with eager induction-hypothesis generation [Walther, 1992;
1993]; moreover, there is Dieter Hutter’s (*1959) invention of rippling (in parallel
to the same invention by Alan Bundy, cf. § 6.2), and Martin Protzen’s (*1962) pro-
found work on patching of faulty conjectures and on breaking out of the imagined
cage of explicit induction by “lazy induction” [Protzen, 1994; 1995; 1996].

The Inka project started in 1984 as a part of the Collaborative Research Cen-
ter SFB 314 “Artificial Intelligence”, which was financed by the German Research
Community (DFG) to overcome a backwardness in artificial intelligence in Ger-
many of more than a dozen years compared to the research in Edinburgh and
the US.

While the Inka systems proved the executability of several new concepts, they
were never competitive with their contemporary Boyer–Moore theorem provers
(though Inka 5.0 [Autexier et al., 1999] was competitive in speed with Nqthm),170

and the development of Inka was discontinued for this reason in the year 2000.
169For the complete text of the citation of Boyer, Moore, and Kaufmann see http://awards.

acm.org/citation.cfm?id=4797627&aw=149.

Josie
Highlight
The first description of what became rippling is in the thesis of Aubin, a student of Boyers in the 70s. In its modern form it dates from my 1989 paper. See sec 1.10 in Bundy et al 2005 for more historical background. I HAVE CAREFULLY READ AUBIN'S THESIS AND HAD TO CORRECT THE HANDBOOK ARTICLE AT SEVERAL PLACES. RRL, INKA, AND OYSTER/CLAM NOW HAVE SPERATE SECTIONS. THE ONE ON INKA WAS HEAVILY REWRITTEN ACCORDING TO DIETER'S FEEDBACK. THE TEXT AT THE CURRENT POSINTION NOW READS: … Dieter Hutter’s (*1959) further development of rippling(cf. § 7.2), …LET ME GIVE THE FULL NEW INKA SECTION HERE:

The Inka project and the development of the Inka induction systems began at the University
of Karlsruhe at the beginning of the 1980s. It became part of the Collaborative
Research Center SFB 314 “Artificial Intelligence”, which started in 1985 and was financed
by the German Research Community (DFG) to overcome a backwardness in artificial intelligence
in Germany of more than a decade compared to the research in Edinburgh and
in the US.

The Inka systems were based on the concepts of Boyer & Moore [1979] and proved
the executability of several new concepts, but they were never competitive with their contemporary
Boyer–Moore theorem provers,182 and the development of Inka was discontinued
in the year 2000.

Three Inka system descriptions were presented at the CADE conference series:
[Biundo &al., 1986], [Hutter & Sengler, 1996], [Autexier &al., 1999].

Besides interfaces to users and other systems, and the integration of logics, specifications,
and results of other theorem provers, the essentially induction-relevant additions of
Inka as compared to the system described in [Boyer & Moore, 1979] are the following:
In [Biundo &al., 1986], there is an existential quantification where the system tries to
find witnesses for the existentially quantified variables by interactive program synthesis.
In [Hutter, 1994], there is synthesis of induction orderings by rippling (cf. § 7.2).

A lot of most interesting work on explicit induction was realized along the line of the
Inka systems: We have to mention here Christoph Walther’s (*1950) elegant treatment
of automated termination proofs for recursive function definitions [Walther, 1988;
1994b], and his theoretically outstanding work on the generation of step cases with eager
induction-hypothesis generation [Walther, 1992; 1993]. Moreover, there is Dieter Hutter’s
(*1959) further development of rippling (cf. § 7.2), and Martin Protzen’s (*1962)
profound work on patching of faulty conjectures and on breaking out of the imagined cage
of explicit induction by “lazy induction” [Protzen, 1994; 1995; 1996].

182
Inka 5.0 [Autexier &al., 1999], however, was competitive in speed with Nqthm. This can roughly
be concluded from the results of the inductive theorem proving contest at the 16th Int. Conf. on Automated
Deduction (CADE), Trento (Italy), 1999 (the design of which is described in [Hutter & Bundy, 1999]),
where the following systems competed with each other (in interaction with the following humans): Nqthm
(Laurence Pierre), Inka 5.0 (Dieter Hutter), Oyster/CLaM (Alan Bundy), and a first prototype
of QuodLibet (Ulrich Kühler). Only Oyster/CLaM turned out to be significantly slower than the
other systems, but all participating systems would have been left far behind ACL2 if it had participated.

76 J Strother Moore, Claus-Peter Wirth

Three Inka system descriptions were presented at the CADE conference series:
[Biundo et al., 1986], [Hutter and Sengler, 1996], [Autexier et al., 1999].

From the beginning, the Inka project, starting from [Boyer and Moore, 1979],
ignored that Boyer and Moore had actually come from resolution theorem proving
and abandoned this form of “random search” for their inductive theorem provers
for very good reasons (cf. § 5.2). The problematic (many-sorted) resolution and
paramodulation approach of the early Inka system was given up only close to the
end of the project [Autexier et al., 1999].

In principle, the Inka systems offered full first-order predicate logic, but typi-
cally via the poor operationalization of Skolemization as a standard preprocessing
in resolution theorem proving. Besides interfaces to users and other systems, and
the integration of logics, specifications, and results of other theorem provers, the
essentially induction-relevant additions of Inka as compared to the system de-
scribed in [Boyer and Moore, 1979] are the following: In [Biundo et al., 1986]
there is an existential quantification where the system tries to find witnesses for
the existentially quantified variables by interactive program synthesis. In [Hutter
and Sengler, 1996], there is rippling (cf. § 6.2).

The Oyster/CLaM system was developed at the University of Edinburgh in the
late 1980s171 and the 1990s by a large team led by Alan Bundy.172 Oyster is a
reimplementation of Nuprl [Constable et al., 1985], a proof editor for Martin-Löf
constructive type theory with rules for structural induction in the style of Peano
— a logic that is not well-suited for inductive proof search, as discussed in § 3.6.
Oyster is based on tactics with specifications in a meta-level language which
provides a complete representation of the object level, but with a search space
much better suited for inductive proof search. CLaM is a proof planner (cf. § 6.1)
which guides Oyster, based on proof search in the meta-language, which includes
rippling (cf. § 6.2).

Oyster/CLaM proved the viability of many concepts, but it is the slowest sys-
tem explicitly mentioned in this article,170 partly because of its constructive logic.
Besides approaches in its line of development more or less addressing theorem
proving in general, such as rippling (cf. § 6.2) and the productive use of failure
[Ireland and Bundy, 1994], most interesting from the aspect of induction is the ex-
tension of recursion analysis to ripple analysis, which is sketched already in [Bundy
et al., 1989, § 7], and which is nicely presented in [Bundy, 1999, § 7.10].

170This can roughly be concluded from the results of the inductive theorem proving contest at
the 16th Int. Conf. on Automated Deduction (CADE), Trento, Italy, 1999 (the design of which is
described in [Hutter and Bundy, 1999]), where the following systems competed with each other
(in interaction with the following humans): Nqthm (Laurence Pierre), Inka 5.0 (Dieter Hutter),
Oyster/CLaM (Alan Bundy), and a first prototype of QuodLibet (Ulrich Kühler). Only Oys-
ter/CLaM turned out to be significantly slower than the other systems, but all participating
systems would have been left far behind ACL2 if it had participated.
171The system description [Bundy et al., 1990] of Oyster/CLaM appeared already in summer

1990 at the CADE conference series (with a submission in winter 1989/1990); so the development
must have started before the 1990s, contrary to what is stated in § 11.4 of [Bundy, 1999].
172For Alan Bundy see also Note 6.

Josie
Highlight
Note that my group currently uses the IsaPlanner proof planner based on Isabelle, which is much faster. INCLIDED! THE ENTIRE SECTION WAS THOROUGHLY REWRITTEN:The Oyster/CLaM system was developed at the University of Edinburgh in the late 1980s183
and the 1990s by a large team led by Alan Bundy.184

Oyster is a reimplementation of Nuprl [Constable &al., 1985], a proof editor for
Martin-Löf constructive type theory with rules for structural induction in the style of
Peano — a logic that is not well-suited for inductive proof search, as discussed in § 4.6.
Oyster is based on tactics with specifications in a meta-level language which provides a
complete representation of the object level, but with a search space much better suited for
inductive proof search.

CLaM is a proof planner (cf. § 7.1) which guides Oyster, based on proof search in the
meta-language, which includes rippling (cf. § 7.2).

Oyster/CLaM is the slowest system explicitly mentioned in this article.182 One reason
for this inefficiency is its constructive object-level logic. Its successor systems, however,
are much faster.185

In its line of development, Oyster/CLaM proved the viability of several most important
new concepts:

• Among the approaches that more or less address theorem proving in general, we have
to mention rippling (cf. § 7.2) and a productive use of failure for the suggestion of
crucial new lemmas.186

• A most interesting approach that addresses the core of the automation of inductive
theorem proving and that deserves further development is the extension of
recursion analysis to ripple analysis.187

183
The system description [Bundy &al., 1990] of Oyster/CLaM appeared already in summer 1990 at the
CADE conference series (with a submission in winter 1989/1990); so the development must have started
before the 1990s, contrary to what is stated in § 11.4 of [Bundy, 1999].

184
For Alan Bundy see also Note 7.

185
One of the much faster successor systems of Oyster/CLaM under further development is IsaPlanner,
which is based on Isabelle [Paulson, 1990]. See [Dixon & Fleuriot, 2003] and [Dennis &al., 2005]
for early publications on IsaPlanner.

186
Cf. [Ireland & Bundy, 1994]. Moreover, see our discussion on the particular theoretical relevance of
finding new lemmas in mathematical induction in § 4.10. Furthermore, note that the practical relevance
of finding new lemmas addresses the efficiency of theorem proving in general, as described in Notes 72, 73,
and 76 of § 4.10.

187
Ripple analysis is sketched already in [Bundy &al., 1989, § 7] and nicely presented in [Bundy, 1999,
§ 7.10].

Josie
Highlight
I would say that this is the most interesting feature via its suggestions of lemmas and generalisations. INCULDED. SEE PREVIOUS NOTE.

