
AUTOMATION OF
MATHEMATICAL INDUCTION∗

J Strother Moore, Claus-Peter Wirth

1 A SNAPSHOT OF A DECISIVE MOMENT IN HISTORY

The automation of mathematical theorem proving for deductive first-order logic
started in the 1950s, and it took about half a century to develop systems that are
sufficiently strong and general to be successfully applied outside the community
of automated theorem proving.1

Surprisingly, the development of such strong systems for restricted logic lan-
guages was not achieved much earlier — for neither the purely equational fragment
nor propositional logic.2 Moreover, automation of theorem proving for higher-order
logic has started becoming generally useful only during the last ten years.3

Irrelevance

Cross-Fertilization

Destructor Elimination

User

Generalization

Induction

Simplification

pool

Elimination of

formula

Figure 1. The Boyer–Moore Waterfall
Note that a formula falls back to the center pool after each successful application

of one of the stages in the circle.

∗Second Readers:
1The currently (i.e. in 2012) most successful first-order automated theorem prover is Vampire,

cf. e.g. [Riazanov and Voronkov, 2001].
2The most successful automated theorem prover for purely equational logic is WaldMeister,

cf. e.g. [Buch and Hillenbrand, 1996], [Hillenbrand and Löchner, 2002]. For deciding propositio-
nal validity (i.e. sentential validity) (or its dual: propositional satisfiability) (which is decidable,
but NP-complete), a breakthrough toward industrial strength was the SAT solver Chaff, cf. e.g.
[Moskewicz et al., 2001].

3One of the driving forces in the automation of higher-order theorem proving is the system
Leo-II, cf. e.g. [Benzmüller et al., 2008].

bundy
Highlight
This sentence is hard to parse. Can you reword to remove the implicit double negative.One could argue that most SAT solvers are based on DPLL, which dates from the 1950s.

bundy
Highlight
You need more evidence to back up this claim.

bundy
Highlight

bundy
Highlight
This figure is occurring too early.

bundy
Highlight
What is the purpose of this footnote?

2 J Strother Moore, Claus-Peter Wirth

Figure 2. Robert S. Boyer (1971) (l.) and J Strother Moore (1972?) (r.)

In this context, it is surprising that for the field of quantifier-free first-order
inductive theorem proving based on recursive functions, most of the progress
toward general usefulness took place within the 1970s and that usefulness was
clearly demonstrated by 1986.4

In this article we describe how this giant step took place, and sketch the further
development of automated inductive theorem proving.

The work on this breakthrough in the automation of inductive theorem prov-
ing was started quite deliberately in September 1972, by Robert S. Boyer and
J Strother Moore, in Edinburgh, Scotland. Most of the crucial steps and their syn-
ergetic combination in the “waterfall” (cf. Figure 1) of their now famous theorem
provers were developed in the span of a single year and implemented in their “Pure
LISP Theorem Prover”, presented at IJCAI in Stanford (CA) in August 1973,5

and documented in Moore’s PhD thesis [1973], defended in November 1973.
Readers who take a narrow view on the automation of inductive theorem proving

might be surprised that we discuss the waterfall. But it is impossible to build a
good inductive theorem prover without considering how to transform the induction
conclusion into the hypothesis (or, alternatively, how to recognize that a legitimate
induction hypothesis can dispatch a subgoal). So we take the expansive view and
discuss not just the induction principle and its heuristic control but the waterfall
architecture that is effectively an integral part of the success.

4See the last paragraph of § 5.4.
5Cf. [Boyer and Moore, 1973].

bundy
Highlight

bundy
Highlight
What non-deliberate starting are you contrasting this with?

bundy
Highlight
I'm not sure like is being compared with like here. FO provers were being used for formal verification around the same time.

bundy
Highlight
The origins of this term lie in software engineering methodologies popular at the time. I think this deserves a mention.

Automation of Mathematical Induction 3

Boyer and Moore had met in August 1971, a year before the induction work
started, when Boyer took up the position of a post-doctoral Research Fellow at
the Metamathematics Unit of the University of Edinburgh. Moore was at that
time starting the second year of his PhD studies in “the Unit”. Ironically, they
were both from Texas and they had both come to Edinburgh from MIT. Boyer’s
PhD supervisor, W. W. Bledsoe, from The University of Texas at Austin, spent
1970–71 on sabbatical at MIT, and Boyer accompanied him and completed his
PhD work there. Moore got his bachelor’s degree at MIT (1966–70) before going
to Edinburgh for his PhD.

Being “warm blooded Texans”, they shared an office in the Metamathematics
Unit at 9 Hope Park Square, Meadow Lane. The 18th century buildings at Hope
Park Square were the center of Artificial Intelligence research in Britain at a
time when the promises of AI were seemingly just on the horizon.6 In addi-
tion to mainline work on mechanized reasoning by Rod M. Burstall, Robert A.
Kowalski, Pat Hayes, Gordon Plotkin, Boyer, Moore, Mike J. C. Gordon, Alan
Bundy, and (by 1973) Robin Milner, there was work on new programming para-
digms, program transformation and synthesis, natural language, machine vision,
robotics, and cognitive modeling. Hope Park Square received a steady stream of
distinguished visitors from around the world, including J. Alan Robinson, John
McCarthy, W. W. Bledsoe, Dana S. Scott, and Marvin Minsky. An eclectic series
of seminars were on offer weekly to complement the daily tea times, where all
researchers gathered around a table and talked about their current problems.

6The Metamathematics Unit of the University of Edinburgh was renamed into “Dept. of Com-
putational Logic” in late 1971, and was absorbed into the new “Dept. of Artificial Intelligence” in
Oct. 1974. It was founded and headed by Bernard Meltzer. In the early 1970s, the University of
Edinburgh hosted most remarkable scientists, of which the following are relevant in our context:

Univ. Edinburgh PhD life time
(time, Dept.) (year, advisor) (birth–death)

Donald Michie (1965–1984, MI) (1953, ?) (1923–2007)
Bernard Meltzer (1965–1978, CL) (1953, Fürth) (1916?–2008)
Robin J. Popplestone (1965–1984, MI) (no PhD?) (1938–2004)
Rod M. Burstall (1965–2000, MI & CL) (1966, Dudley) (*1934)
Robert A. Kowalski (1967–1974, CL) (1970, Meltzer) (*1941)
Pat Hayes (1967–1973, CL) (1973, Meltzer) (*1944)
Gordon Plotkin (1968–today, CL & LFCS) (1972, Burstall) (*1946)
J Strother Moore (1970–1973, CL) (1973, Burstall) (*1947)
Mike J. C. Gordon (1970–1978, MI) (1973, Burstall) (*1948)
Robert S. Boyer (1971–1973, CL) (1971, Bledsoe) (*1946)
Alan Bundy (1971–today, CL) (1971, Goodstein) (*1947)
Robin Milner (1973–1979, LFCS) (no PhD) (1934–2010)

CL = Metamathematics Unit (founded and headed by Bernard Meltzer)
(new name from late 1971 to Oct. 1974: Dept. of Computational logic)
(new name from Oct. 1974: Dept. of Artificial Intelligence)

MI = Experimental Programming Unit (founded and headed by Donald Michie)
(new name from 1966 to Oct. 1974: Dept. for Machine Intelligence and Perception)
(new name from Oct. 1974: Machine Intelligence Unit)

LFCS = Laboratory for Foundations of Computer Science

(Sources: [Meltzer, 1975], [Kowalski, 1988], etc.)

bundy
Highlight

bundy
Highlight
Famously, Pop's thesis was lost when his boat sank and he never rewrote it.

bundy
Highlight
I'm pretty sure that Rod was never part of DCL.

bundy
Inserted Text
Research

4 J Strother Moore, Claus-Peter Wirth

Boyer and Moore initially worked together on structure sharing in resolution
theorem proving. The inventor of resolution, J. Alan Robinson (*1930?), created
and awarded them the “1971 Programming Prize” on December 17, 1971 — half
jokingly, half seriously. The document, handwritten by Robinson, actually says
in part:

“In 1971, the prize is awarded, by unanimous agreement of the Board,
to Robert S. Boyer and J Strother Moore for their idea, explained in
[Boyer and Moore, 1971], of representing clauses as their own genesis.
The Board declared, on making the announcement of the award, that
this idea is ‘. . . bloody marvelous’.”

Their structure-sharing representation of derived clauses in a linear resolution
system is just a stack of resolution steps. This suggests the idea of resolution
being a kind of “procedure call.”7 Exploiting structure sharing, Boyer and
Moore implemented a declarative LISP-like programming language called Baroque
[Moore, 1973], a precursor to Prolog. They then implemented a LISP interpreter
in Baroque and began to use their resolution engine to prove simple theorems
about programs in LISP. However, while resolution was sufficient to prove such
theorems as that “there is a list whose length is 3”, the absence of a rule of
induction prevented the proofs of more interesting theorems like the associativity
of list concatenation.

So, in the summer of 1972, they turned their attention to a theorem prover
designed explicitly to do mathematical induction — this at a time when first-
order, uniform proof procedures were all the rage. The fall of 1972 found them
taking turns at the blackboard proving theorems about recursive LISP functions
and articulating their reasons for each proof step. Only after several months of
such proofs did they sit down together to write the code for the Pure LISP
Theorem Prover.

Today’s readers might have difficulty imagining the computing infrastructure
in Scotland in the early 1970s. Boyer and Moore developed their software on
an ICL–4130, with 64 kByte (128 kByte in 1972) core memory (RAM). Paper
tape was used for archival storage. The machine was physically located in the
Forrest Hill building of the University of Edinburgh, about 1 km from Hope Park
Square. A rudimentary time-sharing system allowed several users at once to run
lightweight applications from teletype machines at Hope Park Square. The only
high-level programming language supported was POP–2, a simple stack-based
list-processing language with an Algol-like syntax.8

Programs were prepared with a primitive text editor modeled on a paper tape
editor: a disk file could be copied through a one byte buffer to an output file.
By halting the copying and typing characters into or deleting characters from the
buffer one could edit a file, a process that usually took several passes. Memory

7Cf. [Moore, 1973, p. 68].

8Cf. [Burstall et al., 1971].

bundy
Highlight

Automation of Mathematical Induction 5

limitations of the ICL–4130 prohibited storing large files in memory for editing.
Early in their collaboration Boyer and Moore solved this problem by inventing
what has come to be called the “piece table” whereby an edited document is
represented by a linked list of “pieces” referring to the original file which remains
on disk. Their “77-editor” [Boyer et al., 1973] (written in 1971 and named for the
disk track on which it resided) provided an interface like MIT’s Teco, but with
POP–2 as the command language.9 It was thus with their own editor that Boyer
and Moore wrote the code for the Pure LISP Theorem Prover.

During the day they worked at Hope Park Square, with frequent trips by foot
or bicycle through The Meadows to Forrest Hill to make archival paper tapes or
to pick up line-printer output. During the night, when they could often have
the ICL–4130 to themselves, they often worked at Boyer’s home where another
teletype was available.

2 METHOD OF PROCEDURE AND PRESENTATION

Contrary to the excellent handbook articles [Walther, 1994a] and [Bundy, 1999]
on the automation of explicit induction, our focus in this article is neither on
current standards, nor on the engineering and research problems of the field, but
on the history of the automation of mathematical induction.

It is always hard to see the past because we look through the lens of the present.
Achieving the necessary detachment from the present is especially hard for the his-
torian of recent history because the “lens of the present” is shaped so immediately
by the events being studied.

We try to mitigate this problem by avoiding the standpoint of a disciple of the
leading school of explicit induction. Instead, we put the historic achievements
into a broad mathematical context and a space of time from the ancient Greeks
to a possible future, based on a most general approach to recursive definition,
and on descente infinie as a general, implementation-neutral approach to mathe-
matical induction. Then we can see the great achievements in the field with the
surprise they historically deserve — after all, until 1973 mathematical induction
was considered too creative an activity to be automated.

As a historiographical text, this article should be accessible to an audience that
goes beyond the technical experts and programmers of the day, should use com-
mon mathematical language and representation, focus on the global and eternal
ideas and their developments, and paradigmatically display the historically most
significant achievements.

9The 77-editor was widely used by researchers at Hope Park Square until the ICL–4130 was
decommissioned. When Moore went to Xerox PARC in Palo Alto (CA) (Dec. 1973), the Boyer–
Moore representation [Moore, 1981] was adopted by Charles Simonyi (*1948) for the Bravo editor
on the Alto and subsequently found its way into Microsoft Word, cf. [Verma, 2005?].

bundy
Highlight
Perhaps better as "In contrast to". "Contrary to" suggests a factual error.

bundy
Highlight
This would have been better stated on p1, e.g, in the abstract.

bundy
Highlight
This term will require a definition for most readers.

bundy
Highlight
What are these *s for?

bundy
Highlight

6 J Strother Moore, Claus-Peter Wirth

Because these achievements in the automation of inductive theorem proving
manifest themselves mainly in the line of the Boyer–Moore theorem provers,
we cannot avoid the confrontation of the reader with some more ephemeral forms
of representation found in these software systems. In particular, we cannot avoid
some small expressions in the list programming language LISP,10 simply because
the Boyer–Moore theorem provers we discuss in this article, namely the Pure
LISP Theorem Prover, Thm, Nqthm, and ACL2, all have logics based on
a subset of LISP. Note that we do not necessarily refer to the implementation
language of these software systems, but to the logic language used both for repre-
sentation of formulas and for communication with the user.

For the first system in this line of development, Boyer and Moore had a free
choice, but wrote:

“We use a subset of LISP as our language because recursive list pro-
cessing functions are easy to write in LISP and because theorems can
be naturally stated in LISP; furthermore, LISP has a simple syntax
and is universal in Artificial Intelligence. We employ a LISP inter-
preter to ‘run’ our theorems and a heuristic which produces induction
formulas from information about how the interpreter fails. We com-
bine with the induction heuristic a set of simple rewrite rules of LISP
and a heuristic for generalizing the theorem being proved.”11

Note that the choice of LISP was influenced by the rôle of the LISP interpreter
in induction. LISP was important for another reason: Boyer and Moore were
building a computational logic theorem prover:

“The structure of the program is remarkably simple by artificial intel-
ligence standards. This is primarily because the control structure is
embedded in the syntax of the theorem. This means that the system
does not contain two languages, the ‘object language’, LISP, and the
‘meta-language’, predicate calculus. They are identified. This mix of
computation and deduction was largely inspired by the view that the
two processes are actually identical. Bob Kowalski, Pat Hayes, and
the nature of LISP deserve the credit for this unified view.”12

This view was prevalent in the Metamathematics Unit by 1972. Indeed, “the
Unit” was by then officially renamed the Department of Computational Logic.6

10Cf. [McCarthy et al., 1965]. Note that we use the historically correct capitalized “LISP” for
general reference, but not for more recent, special dialects such as Common Lisp.

11Cf. [Boyer and Moore, 1973, p. 486, left column].

12Cf. [Moore, 1973, p. 207f.].

bundy
Highlight
Be consistent on capitalization of this term.

bundy
Highlight

Automation of Mathematical Induction 7

In general, inductive theorem proving with recursively defined functions requires
a logic in which

a method of symbolic evaluation can be obtained from an interpretation
procedure by generalizing the ground terms of computation to terms
with free variables that are implicitly universally quantified.

So a candidate to be considered today (besides a subset of LISP or of λ-calculus)
is the functional programming language Haskell.13 Haskell, however, was not
available in 1972. And still today, LISP is to be preferred to Haskell as the logic
of an inductive theorem prover because of LISP’s innermost evaluation strategy,
which gives preference to the constructor terms that represent the constructor-
based data types, which again establish the most interesting domains in hard-
and software verification and the major elements of mathematical induction.

Yet another candidate today would be the rewrite systems of [Wirth and Gram-
lich, 1994a] and [Wirth, 1991; 2009] with their constructor variables14 and their
positive/negative-conditional equations, designed and developed for the specifica-
tion, interpretation, and symbolic evaluation of recursive functions in the context
of inductive theorem proving in the domain of constructor-based data types. Nei-
ther this tailor-made theory, nor even the general theory of rewrite systems in
which its development is rooted,15 were available in 1972. And still today, the
applicative subset of Common Lisp that provides the logic language for ACL2
(= (ACL)2 = A Computational Logic for Applicative Common Lisp) is again
to preferred to these positive/negative-conditional rewrite systems for reasons of
efficiency: The applications of ACL2 in hardware verification and testing require
a performance that is still at the very limits of today’s computing technology. This
challenging efficiency demand requires, among other aspects, that the logic of the
theorem prover is so close to its own programming language that — after certain
side conditions have been checked — the theorem prover can defer the interpre-
tation of ground terms to the analogous interpretation in its own programming
language.

For many of our illustrative examples in this article, however, we will use the
higher flexibility and conceptual adequacy of positive/negative-conditional rewrite
systems. They are so close to standard logic that we can dispense their semantics
to the reader’s intuition,16 and they can immediately serve as an intuitively clear
replacement of the Boyer–Moore machines.17

13Cf. e.g. [Hudlak et al., 1999].
14See § 4.3 of this article.
15The general theory in which the rewrite systems of [Wirth and Gramlich, 1994a] and [Wirth,

1991; 2009] is rooted is documented in [Dershowitz and Jouannaud, 1990]. One may try to
argue that the paper that launched the whole field of rewrite systems, [Knuth and Bendix, 1970],
was already out in 1972, but the relevant parts of rewrite theory for unconditional equations
were developed only in the late 1970s and the 1980s. Especially relevant in the given context
are [Huet, 1980] and [Toyama, 1988]. The rewrite theory of positive/negative-conditional equa-
tions, however, started to become an intensive area of research only at the breath-taking 1st Int.
Workshop on Conditional Term Rewriting Systems (CTRS), Orsay (France), 1987; cf. [Kaplan
and Jouannaud, 1988].

16The readers interested into the precise details are referred to [Wirth, 2009].

bundy
Highlight
ML, however, was available soon thereafter and was widely used, e.g., in the LCF family of provers

bundy
Highlight
Most developers of ML-based LCF provers would contest this.

bundy
Highlight
Why was this workshop 'breath-taking'?

8 J Strother Moore, Claus-Peter Wirth

Moreover, the typed (many-sorted) approach of the positive/negative-condi-
tional equations allows the presentation of formulas in a form that is much easier
to grasp for human readers than the corresponding sugar-free LISP notation with
its overhead of explicit type restrictions.

Another reason for avoiding LISP notation is that we want to make it most
obvious that the achievements of the Boyer–Moore theorem provers are not limited
to their LISP logic.

For the same reason, we also prefer examples from arithmetic to examples from
list theory, which might be considered to be especially supported by the LISP
logic. The reader can find the famous examples from list theory in almost any
other publication on the subject.18

In general, we tend to present the challenges and their historical solutions with
the help of small intuitive examples and refer the readers interested in the very
details of the implementations of the theorem provers to the published and easily
accessible documents on which our description is mostly based.

Nevertheless, small LISP expression cannot be completely avoided because
we have to describe the crucial parts of the historically most significant imple-
mentations and ought to show some of the advantages of LISP’s untypedness.19

The readers, however, do not have to know more about LISP than the following: A
LISP term is either a variable symbol, or a function call of the form (f t1 · · · tn),
where f is a function symbol and t1, . . . , tn are LISP terms.

2.1 Organization of This Article

This article is further organized as follows.
§§ 3 and 4 offer a self-contained reference for the readers who are not familiar

with the field of mathematical induction and its automation. In § 3 we introduce
the essentials of mathematical induction. In § 4 we have to become more for-
mal regarding recursive function definitions, their consistency, termination, and
induction templates and schemes.

The main part is § 5, where we present the historically most important systems
in automated induction, and discuss the details of software systems for explicit
induction, with a focus on the 1970s. After describing the application context
in § 5.1, we describe the following Boyer–Moore theorem provers: the Pure LISP
Theorem Prover (§ 5.2) Thm (§ 5.3) Nqthm (§ 5.4), and ACL2 (§ 5.5). The
most noteworthy remaining explicit-induction systems are sketched in § 5.6.

Alternative approaches to the automation of induction that do not follow the
paradigm of explicit induction are discussed in § 6.

After summarizing the lessons learned in § 7, we conclude with § 8.

17Cf. [Boyer and Moore, 1979, p. 165f.].
18Cf. e.g. [Moore, 1973], [Boyer and Moore, 1979; 1988b; 1998], [Walther, 1994a], [Bundy,

1999], [Kaufmann et al., 2000a; 2000b].
19See e.g. the advantages of the untyped and type-restriction-free declaration of the shell CONS

in § 5.3.

bundy
Highlight
Note that n can be 0.

bundy
Cross-Out

bundy
Replacement Text
t

bundy
Highlight
Surely the LCF family of HO provers also deserves some explicit attention.

bundy
Highlight
This seems to invert your declared intention of taking a descente infinie standpoint..

Automation of Mathematical Induction 9

3 MATHEMATICAL INDUCTION

In this section, we introduce mathematical induction and clarify the difference
between Noetherian, structural, and explicit induction, and descente infinie.

According to Aristotle, induction means to go from the special to the general,
and to realize the general from the memorized perception of particular cases.
Induction plays a major rôle in the generation of conjectures in mathematics and
the natural sciences. Modern scientists design experiments to falsify a conjectured
law of nature, and they accept the law as a scientific fact only after many trials have
all failed to falsify it. In the tradition of Euclid, mathematicians accept a mathe-
matical conjecture as a theorem only after a rigorous proof has been provided.
According to Kant, induction is synthetic in the sense that it properly extends
what we think to know — in opposition to deduction, which is analytic in the
sense that it cannot provide us with any information not implicitly contained in
the initial judgments, though we can hardly be aware of all deducible consequences.

Surprisingly, in this well-established and time-honored terminology, mathema-
tical induction is not induction, but a special form of deduction for which — in the
19th century — the term “induction” was introduced and became standard in Ger-
man and English mathematics.20 In spite of this misnomer, for the sake of brevity,
the term “induction” will always refer to mathematical induction in what follows.

Although it received its current name only in the 19th century, mathematical in-
duction has been a standard method of every working mathematician at all times.
It has been conjectured21 that Hippasus of Metapontum (ca. 550b.c.) has ap-
plied a form of mathematical induction that was later named descente infinie
(ou indéfinie) by Fermat. We find another form of induction, nowadays called
structural induction, in a text of Plato (427–347b.c.).22 In Euclid’s famous
“Elements” [ca. 300b.c.], we find several applications of descente infinie and in
a way also of structural induction.23 Structural induction was known to the Mus-
lim mathematicians around the year 1000, and occurs in a Hebrew book of Levi ben
Gerson (Orange and Avignon) (1288–1344).24 Furthermore, structural induction
was used by Francesco Maurolico (Messina) (1494–1575),25 and by Blaise Pascal
(1623–1662).26 After an absence of more than one millennium (besides copying
ancient proofs), descente infinie was reinvented by Pierre Fermat (160?–1665).27

20First in German (cf. Note 36), soon later in English (cf. [Cajori, 1918]).
21It is conjectured in [Fritz, 1945] that Hippasus has proved that there is no pair of natural

numbers that can describe the ratio of the lengths of the sides of a pentagram and its enclosing
pentagon. Note that this ratio, seen as an irrational number, is equal to the golden number,
which, however, was conceptualized in entirely different terms in ancient Greek mathematics.

22Cf. [Acerbi, 2000].
23An example for descente infinie is Proposition 31 of Vol. VII of the Elements. Moreover,

we consider the proof of Proposition IX.8 of the Elements to be sound in a mathematical sense,
though very poor in its linguistic and logical form. Thus, Proposition IX.8 must be a proof by
structural induction. This is in accordance with [Freudenthal, 1953], but not with [Unguru, 1991]

and [Acerbi, 2000]. See also [Fowler, 1994], [Wirth, 2010b, § 2.4] for a further discussion.
24Cf. [Rabinovitch, 1970]. Also summarized in [Katz, 1998].
25Cf. [Bussey, 1917].
26Cf. [Pascal, 1954, p. 103].

bundy
Cross-Out

bundy
Highlight

bundy
Cross-Out

bundy
Highlight
Why 'thus'? This looks like a non-sequitur.

10 J Strother Moore, Claus-Peter Wirth

3.1 Well-foundedness and Termination

A relation < is well-founded if, for each proposition Q(w) that is not constantly
false, there is a <-minimal m among the objects for which Q holds, i.e. there is
an m with Q(m), for which there is no u < m with Q(u). Writing “Wellf(<)” for
“< is well-founded”, we can formalize this definition as follows:

(Wellf(<)) ∀Q.
(
∃w. Q(w) ⇒ ∃m.

(
Q(m) ∧ ¬∃u<m. Q(u)

))

Let <+ denote the transitive closure of <, and <∗ the reflexive closure of <+.
< is an (irreflexive) ordering if it is irreflexive and transitive. There is not much

difference between a well-founded relation and a well-founded ordering:28

LEMMA 1. < is well-founded if and only if <+ is a well-founded ordering.

Closely related to the well-foundedness of a relation < is the termination of
its reverse relation >, given as <−1 := { (u, v) | (v, u)∈< }.

A relation > is terminating if it has no non-terminating sequences, i.e. if there
is no infinite sequence of the form x0 > x1 >x2 >x3

If > has a non-terminating sequence, then this sequence, taken as a set, is a
witness for the non-well-foundedness of <. The converse implication, however, is a
weak form of the Axiom of Choice;29 indeed, it admits us to pick a non-terminating
sequence for > from the set witnessing the non-well-foundedness of <.

So well-foundedness is slightly stronger than termination of the reverse relation,
and the difference is relevant here because we cannot take the Axiom of Choice for
granted in a discussion of foundations of induction, as will be explained in § 3.3.

3.2 The Theorem of Noetherian Induction

In its modern standard meaning, the method of mathematical induction is easily
seen to be a form of deduction, simply because it can be formalized as the appli-
cation of the Theorem of Noetherian Induction:

A proposition P (w) can be shown to hold (for all w) by Noetherian
induction over a well-founded relation < as follows: Show (for every v)
that P (v) follows from the assumption that P (u) holds for all u < v.

Again writing “Wellf(<)” for “< is well-founded”, we can formalize the Theorem
of Noetherian Induction as follows:30

(N) ∀P.

(
∀w. P (w) ⇐ ∃<.

(∀v.
(
P (v) ⇐ ∀u<v. P (u)

)
∧ Wellf(<)

))

27There is no consensus on Fermat’s year of birth. Candidates are 1601, 1607 ([Barner, 2007]),
and 1608. Thus, we write “160?”, following [Goldstein, 2008]. The best-documented example of
Fermat’s applications of descente infinie is the proof of the theorem: The area of a rectangular
triangle with positive integer side lengths is not the square of an integer ; cf. e.g. [Wirth, 2010b].

28Cf. Lemma2.1 of [Wirth, 2004, § 2.1.1].
29See [Wirth, 2004, § 2.1.2, p. 18] for the equivalence to the Principle of Dependent Choice,

found in [Rubin and Rubin, 1985, p.19], analyzed in [Howard and Rubin, 1998, p. 30, Form43].
30When we write an implication A⇒B in the reverse form of B⇐A, we do this to indicate

that a proof attempt will typically start from B and try to reduce it to A.

bundy
Highlight
Since well-founded ordering has not yet been defined, this reads more like its definition than a lemma.

bundy
Highlight
"alllows"?

Automation of Mathematical Induction 11

The today commonly used term “Noetherian induction” is a tribute to the fa-
mous female German mathematician Emmy Noether (1882–1935). It occurs as the
“Generalized principle of induction (Noetherian induction)” in [Cohn, 1965, p. 20].
Moreover, it occurs as Proposition 7 (“Principle of Noetherian Induction”) in
[Bourbaki, 1968a, Chapter III, § 6.5, p. 190] — a translation of the French origi-
nal in its second edition [Bourbaki, 1967, § 6.5], where it occurs as Proposition 7
(“principe de récurrence nœthérienne”).31 We do not know whether “Noetherian”
was used as a name of an induction principle before 1965;32 in particular, it does
not occur in the first French edition [Bourbaki, 1956] of [Bourbaki, 1967].33

3.3 An Induction Principle Stronger Than Noetherian Induction?

Let us try to find a weaker replacement for the precondition of well-foundedness
in Noetherian induction, in the sense that we try to replace “Wellf(<)” in the
Theorem of Noetherian Induction (N) in § 3.2 with some weaker property, which
we will designate with “Weak(<,P)” (such that ∀P. Weak(<, P) ⇐ Wellf(<)).
This would result in the formula

(N′) ∀P.

(
∀w. P (w) ⇐ ∃<.

(∀v.
(
P (v) ⇐ ∀u<v. P (u)

)
∧ Weak(<,P)

))
.

If we assume (N′), however, we get the reverse ∀P. Weak(<,P) ⇒ Wellf(<). 34

This means that a proper weakening is possible only w.r.t. certain P, and the
Theorem of Noetherian Induction is the strongest among those induction principles
of the form (N′) where Weak(<,P) does not depend on P.

C is a <-chain if <+ is a total ordering on C. Let us write “u<C” for ∀c∈C. u<c,
and “∀u<C. F ” as usual for ∀u.(u<C ⇒ F). In [Geser, 1995], we find applica-
tions of an induction principle that roughly has the form (N′) where Weak(<,P) is:

For every non-empty <-chain C [without a <-minimal element]:
∃v ∈C. P (v) ⇐ ∀u<C. P (u).

The resulting induction principle can be given an elegant form: If we drop the part
of Weak(<,P) given in optional brackets [. . .], then we can drop the the conjunc-
tion in (N′) together with its first element, because {v} is a non-empty <-chain.

31The peculiar French spelling “nœthérienne” imitates the German pronunciation of “Noether”,
where the “oe” is to be pronounced neither as a long “o” (the default, as in “Itzehoe”), nor as two
separate vowels as indicated by the diaeresis in “oë”, but as an umlaut, typically written in Ger-
man as the ligature “ö”. Neither Emmy nor her father Max Noether (1844–1921) (mathematics
professor as well) used this ligature, found however in some of their official German documents.

32In 1967, “Noetherian Induction” was not generally used yet as a name for the Theorem
of Noetherian Induction: For instance, in [Schoenfield, 1967, p. 205], this theorem (instanti-
ated with the ordering of the natural numbers) is called the principle of complete induction.
“Complete induction”, however, is a most confusing name hardly used in English, typically
referring to course-of-values induction, cf. e.g. http://en.wikipedia.org/wiki/Mathematical_
induction#Complete_induction. Moreover, “complete induction” is the literal translation of the
German technical term “vollständige Induction”, which traditionally means structural induction
(cf. Note 36) — and these three kinds of mathematical induction are different from each other.

33Indeed, the main text of § 6.5 in the 1st edition [Bourbaki, 1956] ends (on Page 98) three lines
before the text of Proposition 7 begins in the 2nd edition [Bourbaki, 1967] (on Page 76 of § 6.5).

bundy
Cross-Out

bundy
Replacement Text
t

bundy
Highlight
"converse"?

bundy
Highlight
You have gone from a text that is accessible to the non-technical reader suddenly to something quite mathematically deep.

12 J Strother Moore, Claus-Peter Wirth

Then the following equivalent is obtained by switching from proposition P to
its class of counterexamples Q: “If, for every non-empty <-chain C ⊆ Q, there
is a u ∈ Q with u<C, then Q = ∅.” Under the assumption that Q is a set, this is
an equivalent of the Axiom of Choice (cf. [Geser, 1995], [Rubin and Rubin, 1985]).

This means that the axiomatic status of induction principles ranges from the
Theorem of Noetherian Induction up to the Axiom of Choice. If we took the
Axiom of Choice for granted, this difference in status between a theorem and
an axiom would collapse and our discussion of the axiomatic status of mathema-
tical induction would be deteriorated. So the care with which we distinguished
termination of the reverse relation from well-foundedness in § 3.1 is justified.

3.4 The Natural Numbers

The field of application of mathematical induction most familiar in mathematics
is the domain of the natural numbers 0, 1, 2, Let us formalize the natural
numbers with the help of two constructors: the constant symbol

0 : nat
for zero, and the function symbol

s : nat → nat
for the direct successor of a natural number. Moreover, let us assume in this arti-
cle that the variables x, y always range over the natural numbers, and that free
variables in formulas are implicitly universally quantified (as standard in mathe-
matics), such that, for example, a formula with the free variable x can be seen as
having the implicit outermost quantifier ∀x : nat.

After the definition (Wellf(<)) and the theorem (N), let us now consider some
standard axioms for specifying the natural numbers, namely that a natural num-
ber is either zero or a direct successor of another natural number (nat1), that zero
is not a successor (nat2), that the successor function is injective (nat3), and that
the so-called Axiom of Structural Induction over 0 and s holds; formally:
(nat1) x = 0 ∨ ∃y.

(
x = s(y)

)

(nat2) s(x) 6= 0

(nat3) s(x)= s(y) ⇒ x= y

(S) ∀P.
(
∀x. P (x) ⇐ P (0) ∧ ∀y.

(
P (s(y)) ⇐ P (y)

))

34Proof. Let <¹A denote the range restriction of < to A (i.e. u<¹Av if and only if u < v ∈A).
Let us take P (w) to be Wellf(<¹A(w)) for A(w) := { w′ | w′<∗ w }. Then the reverse implication

follows from (N′) because P (v)⇐ ∀u<v. P (u) holds for any v,35 and ∀w. P (w) implies Wellf(<).
35Proof. To show P (v), it suffices to find, for an arbitrary, not constantly false proposition Q,

an m with Q(m), for which, in case of m∈A(v), there is no m′< m with Q(m′).
If we have Q(m) for some m with m 6∈A(v), then we are done.
If we have Q(u′) for some u < v and some u′ ∈ A(u), then, for Q′(u′′) being the conjunction

of Q(u′′) and u′′ ∈A(u), there is (because of the assumed P (u)) an m with Q′(m), for which
there is no m′< m with Q′(m′). Then we have Q(m). If there were an m′< m with Q(m′), then
we would have Q′(m′). Thus, there cannot be such an m′, and so m satisfies our requirements.

Otherwise, if none of these two cases is given, Q can only hold for v. As Q is not constantly
false, we get Q(v) and then v≮ v (because otherwise the second case is given for u := v and
u′ := v). Then m := v satisfies our requirements.

bundy
Highlight
This is a rather pejorative term to use.

bundy
Inserted Text
is

bundy
Highlight
Shouldn't Peano get some credit around here?

Automation of Mathematical Induction 13

Richard Dedekind (1831–1916) proved the Axiom of Structural Induction (S) for
his model of the natural numbers in [Dedekind, 1888], where he states that the
proof method resulting from the application of this axiom is known under the
name “vollständige Induction”.36

Now we can go on by defining — in two equivalent37 ways — the destructor
function p : nat → nat, returning the predecessor of a positive natural number:

1. In (p1) in constructor style, where constructor terms may occur on the left-
hand side of the positive/negative-conditional equation as arguments of the
function being defined.

2. In (p1′) in destructor style, where only variables may occur as arguments on
the left-hand side.

For both definition styles, the term on the left-hand side must be linear (i.e. all
its variable occurrences must be distinct variables) and have the function symbol
to be defined as the top symbol.

(p1) p(s(x)) = x

(p1′) p(x′) = x ⇐ x′= s(x)

Let us define some recursive functions over the natural numbers, such as addition
and multiplication +, ∗ : nat, nat → nat, the irreflexive ordering of the natural
numbers lessp : nat, nat → bool (see § 3.5 for the data type bool of Boolean values),
and the Ackermann function ack : nat, nat → nat:38

(+1) 0 + y = y (∗1) 0 ∗ y = 0

(+2) s(x)+ y = s(x + y) (∗2) s(x) ∗ y = y +(x ∗ y)

(lessp1) lessp(x, 0) = false

(lessp2) lessp(0, s(y)) = true

(lessp3) lessp(s(x), s(y)) = lessp(x, y)

(ack1) ack(0, y) = s(y)
(ack2) ack(s(x), 0) = ack(x, s(0))
(ack3) ack(s(x), s(y)) = ack(x, ack(s(x), y))

36In the tradition of Aristotelian logic, the technical term “vollständige Induction” (in Latin:
“inductio completa”, cf. e.g. [Wolff, 1740, Part I, § 478, p. 369]) denotes a complete case analysis,
cf. e.g. [Lambert, 1764, Dianoiologie, § 287; Alethiologie, § 190]. Its misuse as a designation of
structural induction originates in [Fries, 1822, p. 46f.], and was perpetuated by Dedekind. Its
literal translation “complete induction” is misleading, cf. Note 32. By the 1920s, “vollständige
Induction” had become a very vague notion that is best translated as “mathematical induction”,
as done in [Heijenoort, 1971, p.130] and as it is standard today, cf. e.g. [Hilbert and Bernays,
2011, Note 23.4].

37For the equivalence transformation between constructor and destructor style see Example 15
in § 5.3.2.

38Rósza Péter (1905–1977) (a woman in the fertile community of Budapest mathematicians
and, like most of them, of Jewish parentage) published a simplified version [1951] of the first
recursive, but not primitive recursive function developed by Wilhelm Ackermann (1896–1962)
[Ackermann, 1928]. What is simply called “the Ackermann function” today is actually Péter’s
version.

bundy
Highlight
You should point out that p is a partial function as it is undefined for 0.

14 J Strother Moore, Claus-Peter Wirth

The relation from a natural number to its direct successor can be formalized
by the binary relation λx, y. (s(x)= y). Then Wellf(λx, y. (s(x)= y)) states
the well-foundedness of this relation, which means according to Lemma 1 that its
transitive closure — i.e. the irreflexive ordering of the natural numbers — is a
well-founded ordering; so, in particular, we have Wellf(λx, y. (lessp(x, y) = true)).

Now the natural numbers can be specified up to isomorphism either by39

• (nat2), (nat3), and (S) — following Guiseppe Peano (1858–1932),

or else by

• (nat1) and Wellf(λx, y. (s(x)= y)) — following Mario Pieri (1860–1913).40

Immediate consequences of the axiom (nat1) and the definition (p1) are the
lemma (s1) and its flattened version (s1′):

(s1) s(p(x′)) = x′ ⇐ x′ 6= 0

(s1′) s(x) = x′ ⇐ x′ 6= 0 ∧ x= p(x′)

Moreover, on the basis of the given axioms we can most easily show

(lessp4) lessp(x, s(x)) = true

(lessp5) lessp(x, s(x+ y)) = true

by structural induction on x, i.e. by taking the predicate variable P in the Axiom
of Structural Induction (S) to be λx. (lessp(x, s(x)) = true) in case of (lessp4),
and λx. ∀y. (lessp(x, s(x + y))= true) in case of (lessp5).

Moreover — to see the necessity of doing induction on several variables in
parallel — we will present41 the more complicated proof of the strengthened tran-
sitivity of the irreflexive ordering of the natural numbers, i.e. of

(lessp7) lessp(s(x), z)= true ⇐ lessp(x, y)= true ∧ lessp(y, z)= true

We will also prove the commutativity lemma (+3)42 and the simple lemma (ack4)
about the Ackermann function:43

(+3) x+ y = y + x,

(ack4) lessp(y, ack(x, y)) = true

39Cf. [Wirth, 2004, § 1.1.2].
40Pieri [1908] stated these axioms informally and showed their equivalence to the version of the

Peano axioms of Alessandro Padoa (1868–1937). For a discussion and an English translation see
[Marchisotto and Smith, 2007]. Pieri [1908] has also a version where, instead of the symbol 0,
there is only the statement that there is a natural number, and where (nat1) is replaced with the
weaker statement that there is at most one s-minimal element:

¬∃y0. (x0 = s(y0)) ∧ ¬∃y1. (x1 = s(y1)) ⇒ x0 = x1.
That non-standard natural numbers cannot exist in Pieri’s specification is easily shown as follows:
For every natural number x we can form the set of all elements that can be reached from x by the
reverse of the successor relation; by well-foundedness of s, this set contains the unique s-minimal
element (0); thus, we have x = sn(0) for some standard meta-level natural number n.

41We will prove (lessp7) twice: once in Example 3 in § 3.7, and again in Example 12 in § 5.2.6.
42We will prove (+3) twice: once in Example 2 in § 3.7, and again in Example 4 in § 3.8.1.
43We will prove (ack4) in Example 5 in § 3.9.

bundy
Highlight
Explain what this means.

Automation of Mathematical Induction 15

3.5 Standard Data Types

As we are interested in the verification of hard- and software, more important
for us than natural numbers are standard data types, such as those well-known
today from their occurrence in higher-level programming languages.

To clarify the inductive character of data types defined by constructors, and to
show the additional complications arising from constructors with no or more than
one argument, let us present the data types bool (of Boolean values) and list(nat)
(of lists over natural numbers), which we also need for our further examples.

A special case is the data type bool of the Boolean values given by the two
constructors true, false : bool without any arguments, for which we get only the
following two axioms by analogy to the axioms for the natural numbers. We glo-
bally declare the variable b : bool; so b will always range over the Boolean values.
(bool1) b = true ∨ b = false
(bool2) true 6= false
Note that the analogy of the axioms of Boolean values to the axioms of the natural
numbers (cf. § 3.4) is not perfect: An axiom (bool3) analogous to (nat3) cannot
exist because there are no constructors for bool that take arguments. Moreover,
an axiom analogous to (S) is superfluous because it is implied by (bool1).

Furthermore, let us define the Boolean function and : bool, bool → bool :
(and1) and(false, b) = false
(and2) and(b, false) = false
(and3) and(true, true) = true

Let us now formalize the data type of the (finite) lists over natural numbers with
the help of the following two constructors: the constant symbol

nil : list(nat)
for the empty list, and the function symbol

cons : nat, list(nat) → list(nat),
which takes a natural number and a list of natural numbers, and returns the
list where the number has been added to the input list as a new first element.
We globally declare the variables k, l : list(nat).

In analogy to natural numbers, the axioms of this data type are the following:
(list(nat)1) l = nil ∨ ∃y, k.

(
l = cons(y, k)

)

(list(nat)2) cons(x, l) 6= nil

(list(nat)31) cons(x, l)= cons(y, k) ⇒ x= y
(list(nat)32) cons(x, l)= cons(y, k) ⇒ l = k

(list(nat)S) ∀P.
(∀l. P (l) ⇐ (

P (nil) ∧ ∀x, k.
(
P (cons(x, k)) ⇐ P (k)

)))

Moreover, let us define the recursive functions length, count : list(nat) → nat,
returning the length and the size of a list:
(length1) length(nil) = 0
(length2) length(cons(x, l)) = s(length(l))
(count1) count(nil) = 0
(count2) count(cons(x, l)) = s(x + count(l))

bundy
Highlight
Since there is no hyphen in "software", it would be better to say "hardware".

bundy
Highlight
Give some examples. I was expecting arrays and records, not booles and lists.

bundy
Highlight
Note that and(false,false) is defined twice.

bundy
Cross-Out

bundy
Replacement Text
By

16 J Strother Moore, Claus-Peter Wirth

Note that the analogy of the axioms of lists to the axioms of the natural numbers
is again not perfect:

1. There is an additional axiom (list(nat)31), which has no analog among the
axioms of the natural numbers.

2. Neither of the axioms (list(nat)31) and (list(nat)32) is implied by the axiom
(list(nat)1) together with the axiom

Wellf(λl, k. ∃x. (cons(x, l)= k)),
which is the analog to Pieri’s second axiom for the natural numbers.44

3. The latter axiom is weaker than each of the two axioms
Wellf(λl, k. (lessp(length(l), length(k))= true)),
Wellf(λl, k. (lessp(count(l), count(k))= true)),

which state the well-foundedness of bigger45 relations. In spite of their rela-
tive strength, the well-foundedness of these relations is already implied by the
well-foundedness that Pieri used for his specification of the natural numbers.

Therefore, the lists of natural numbers can be specified up to isomorphism by a
specification of the natural numbers up to isomorphism (see § 3.4), plus the axioms
(list(nat)31) and (list(nat)32), plus one of the following sets of axioms:

• (list(nat)2), (list(nat)S) — in the style of Peano,

• (list(nat)1), Wellf(λl, k. ∃x. (cons(x, l)= k)) — in the style of Pieri,46

• (list(nat)1), (length1–2) — refining the style of Pieri.47

Today it is standard to avoid higher-order axioms in the way exemplified in the
last of these three items,48 and to get along with one second-order axiom for the
natural numbers, or even with the first-order instances of that axiom.

44See § 3.4 for Pieri’s specification of the natural numbers. The axioms (list(nat)31) and
(list(nat)32) are not implied because all axioms besides (list(nat)31) or (list(nat)32) are satis-
fied in the structure where both natural numbers and lists are isomorphic to the standard model
of the natural numbers, and where lists differ only in their sizes.

45Indeed, in case of cons(x, l) = k, we have lessp(length(l), length(k)) =
= lessp(length(l), length(cons(x, l))) = lessp(length(l), s(length(l))) = true because of (lessp4),
and we also have lessp(count(l), count(k)) = lessp(count(l), count(cons(x, l))) =
lessp(count(l), s(x + count(l))) = true because of (+3) and (lessp5).

46This option is essentially the choice of the “shell principle” of [Boyer and Moore, 1979, p.37ff.]:
The one but last axiom of item (1) of the shell principle means (list(nat)2) in our formalization,
and guarantees that item (6) implies Wellf(λl, k. ∃x. (cons(x, l)= k)).

47Although (list(nat)2) follows from (length1–2) and (nat2), it should be included in this
standard specification because of its frequent applications.

48For this avoidance, however, we have to admit the additional function length. The same can
be achieved with count instead of length, which is only possible, however, for lists over element
types that have a mapping into the natural numbers.

Automation of Mathematical Induction 17

Moreover, as some of the most natural functions on lists, let us define the de-
structors car : list(nat) → nat and cdr : list(nat) → list(nat), both in constructor
and destructor style. Furthermore, let us define the recursive member predi-
cate mbp : nat, list(nat) → bool, and delfirst : list(nat) → list(nat), a recursive
function that deletes the first occurrence of a natural number in a list:
(car1) car(cons(x, l)) = x

(cdr1) cdr(cons(x, l)) = l

(car1′) car(l′) = x ⇐ l′= cons(x, l)
(cdr1′) cdr(l′) = l ⇐ l′= cons(x, l)

(mbp1) mbp(x, nil) = false
(mbp2) mbp(x, cons(y, l)) = true ⇐ x= y
(mbp3) mbp(x, cons(y, l)) = mbp(x, l) ⇐ x 6= y

(delfirst1) delfirst(x, cons(y, l)) = l ⇐ x = y
(delfirst2) delfirst(x, cons(y, l)) = cons(y, delfirst(x, l)) ⇐ x 6= y

Immediate consequences of the axiom (list(nat)1) and the definitions (car1) and
(cdr1) are the lemma (cons1) and its flattened version (cons1′):

(cons1) cons(car(l′), cdr(l′)) = l′ ⇐ l′ 6= nil

(cons1′) cons(x, l) = l′ ⇐ l′ 6= nil ∧ x = car(l′) ∧ l = cdr(l′)

Furthermore, let us define the Boolean function lexless : list(nat), list(nat) → bool,
which lexicographically compares lists according to the ordering of the natural
numbers, and lexlimless : list(nat), list(nat), nat → bool, which further restricts the
length of the first argument to be less than the number given as third argument:

(lexless1) lexless(l, nil) = false
(lexless2) lexless(nil, cons(y, k)) = true
(lexless3) lexless(cons(x, l), cons(y, k)) = lexless(l, k) ⇐ x= y
(lexless4) lexless(cons(x, l), cons(y, k)) = lessp(x, y) ⇐ x 6= y

(lexlimless1) lexlimless(l, k, x) = and(lexless(l, k), lessp(length(l), x))
Such lexicographic combinations play an important rôle in well-foundedness ar-
guments of induction proofs, because they combine given well-founded orderings
into new well-founded orderings, provided there is an upper bound for the length
of the list:49

(lexlimless2) Wellf(λl, k. (lexlimless(l, k, x) = true))

Finally note that analogous axioms can be used to specify any other data type
generated by constructors, such as pairs of natural numbers or binary trees over
such pairs.

49The length limit is required because otherwise we have the following counterexample to
termination: (s(0)), (0, s(0)), (0, 0, s(0)), (0, 0, 0, s(0)), Note that the need to compare
lists of different lengths typically arises in mutual induction proofs where the two induction
hypotheses have a different number of free variables at measured positions. See [Wirth, 2004,
§ 3.2.2] for a nice example.

bundy
Highlight
Motivate these definitions. How do you plan to use them?

bundy
Highlight
Is this the motivation? If so, anticipate this earlier.

18 J Strother Moore, Claus-Peter Wirth

3.6 The Standard High-Level Method of Mathematical Induction

A mathematical proof method cannot be completely captured by its non-procedural
logic formalization; and so we need effective heuristics for actually finding proofs
by induction.

In everyday mathematical practice of an advanced theoretical journal, the com-
mon inductive arguments are hardly ever carried out explicitly. Instead, the proof
reads something like “by structural induction on n, q.e.d.” or “by (Noetherian)
induction on (x, y) over <, q.e.d.”, expecting that the mathematically educated
reader could easily expand the proof if in doubt. In contrast, difficult inductive
arguments, sometimes covering several pages,50 require considerable ingenuity and
have to be carried out.

In case of a proof on natural numbers, the experienced mathematician might
engineer his proof roughly according to the following pattern:

He starts with the conjecture and simplifies it by case analysis, typically
based on the axiom (nat1). When he realizes that the current goal is
similar to an instance of the conjecture, he applies the instantiated
conjecture just like a lemma, but keeps in mind that he has actually
applied an induction hypothesis. Finally, using the free variables of the
conjecture, he constructs some ordering whose well-foundedness follows
from the axiom Wellf(λx, y. (s(x)= y)) and in which all instances of
the conjecture applied as induction hypotheses are smaller than the
original conjecture.

The hard tasks of a proof by mathematical induction are thus:

(Induction-Hypotheses Task)
to find the numerous induction hypotheses,51 and

(Induction-Ordering Task)
to construct an induction ordering for the proof, i.e. a well-founded ordering
that satisfies the ordering constraints of all these induction hypotheses in
parallel.52

The above induction method can be formalized as an application of the Theorem
of Noetherian Induction. For non-trivial proofs, mathematicians indeed prefer the
the axioms of Pieri’s specification in combination with the Theorem of Noetherian
Induction (N) to Peano’s alternative with the Axiom of Structural Induction (S),
because the instances for P and < in (N) are often easier to find than the instances
for P in (S) are.

50Such difficult inductive arguments are the proofs of Hilbert’s first ε-theorem [Hilbert and
Bernays, 1970], Gentzen’s Hauptsatz [Gentzen, 1935], and confluence theorems such as the ones
in [Gramlich and Wirth, 1996], [Wirth, 2009].

51As, e.g., in the proof of Gentzen’s Hauptsatz on Cut-elimination.

52For instance, this was the hard part in the elimination of the ε-formulas in the proof of the
1st ε-theorem in [Hilbert and Bernays, 1970], and in the proof of the consistency of arithmetic
by the ε-substitution method in [Ackermann, 1940].

bundy
Highlight
Is this because it is non-deterministic, so requires search?

bundy
Inserted Text
the

bundy
Highlight
Do you mean have to be specified in the paper?

bundy
Highlight
What is the publisher's policy on male/female pronouns?

Automation of Mathematical Induction 19

3.7 Descente Infinie

The soundness of the induction method of § 3.6 is most easily seen when the
argument is structured as a proof by contradiction, assuming a counterexample.
For Fermat’s historic reinvention of the method, it is thus just natural that he
developed the method in terms of assumed counterexamples.53 Here is Fermat’s
Method of Descente Infinie in modern language, very roughly speaking:

A proposition P (w) can be proved by descente infinie as follows:
Show that for each assumed counterexample v of P there is a smaller
counterexample u of P w.r.t. a well-founded relation <, which does
not depend on the counterexamples.

If this method is executed successfully, we have proved ∀w. P (w) because no
counterexample can be a <-minimal one, and so the well-foundedness of < implies
that there are no counterexamples at all.

Nowadays every logician immediately realizes that a formalization of the method
of descente infinie is obtained from the Theorem of Noetherian Induction (N)
(cf. § 3.2) simply by replacing

P (v) ⇐ ∀u<v. P (u)
with its contrapositive

¬P (v) ⇒ ∃u<v. ¬P (u).

Although it was still very hard for Fermat to obtain a positive version of his
counterexample method,54 the negation is irrelevant in our context here, which is
the one of the 19th and 20th centuries and which is based on classical logic. What
matters for us is the heuristic task of finding proofs. Therefore, we take descente
infinie in this article55 as a synonym for the modern standard high-level method
of mathematical induction described in § 3.6.

Let us now prove the lemmas (+3) and (lessp7) of § 3.4 (in the axiomatic context
of § 3.4) by descente infinie, seen as the standard high-level method of mathema-
tical induction described in § 3.6.

53Cf. [Fermat, 1891ff.], [Mahoney, 1994], [Bussotti, 2006], [Wirth, 2010b].

54Fermat reported in his letter for Huygens that he had had problems applying the Method
of Descente Infinie to positive mathematical statements. See [Wirth, 2010b, p. 11] and the
references there, in particular [Fermat, 1891ff., Vol. II, p. 432].

Moreover, a natural-language presentation via descente infinie (such as Fermat’s representation
in Latin) is often simpler than a presentation via the Theorem of Noetherian Induction, because
it is easier to speak of one counterexample v and to find one smaller counterexample u, than to
administrate the dependences of universally quantified variables.

55In general, in the tradition of [Wirth, 2004], descente infinie is nowadays taken as a synonym
for the standard high-level method of mathematical induction as described in § 3.6. This way of
using the term “descente infinie” is found in [Brotherston and Simpson, 2007; 2011], [Voicu and
Li, 2009], [Wirth, 2005a; 2010a; 2013; 2012c].

If, however, the historical perspective before the 19th century is taken, then this identification is
not appropriate because a more fine-grained differentiation is required, such as found in [Bussotti,
2006], [Wirth, 2010b].

bundy
Highlight
Point first occurrence of this term to this section.

bundy
Highlight
Hard to read. Reword.

20 J Strother Moore, Claus-Peter Wirth

EXAMPLE 2 (Proof of (+3) by descente infinie).
By application of the Theorem of Noetherian Induction (N) (cf. § 3.2) with P
set to λx, y. (x+ y = y +x), and the variables v, u renamed to (x, y), (x′′, y′′),
respectively, the conjectured lemma (+3) reduces to

∃<.

(∀(x, y).
(
(x+ y = y + x) ⇐ ∀(x′′, y′′)< (x, y). (x′′+ y′′= y′′+ x′′)

)
∧ Wellf(<)

)
.

Let us focus on the sub-formula x+ y = y +x. Based on axiom (nat1) we can
reduce this task to the two cases x= 0 and x= s(x′) with the two goals

0 + y = y + 0; s(x′)+ y = y + s(x′);
respectively. They simplify by (+1) and (+2) to

y = y + 0; s(x′+ y) = y + s(x′);
respectively. Based on axiom (nat1) we can reduce each of these goals to the two
cases y = 0 and y = s(y′), which leaves us with the four open goals

0 = 0 + 0; s(x′+ 0) = 0 + s(x′);
s(y′) = s(y′)+ 0; s(x′+ s(y′)) = s(y′)+ s(x′).

They simplify by (+1) and (+2) to
0 = 0; s(x′+ 0) = s(x′);
s(y′) = s(y′+ 0); s(x′+ s(y′)) = s(y′+ s(x′));

respectively. Now we instantiate the induction hypothesis that is available in the
context56 given by our above formula in four different forms, namely we instantiate
(x′′, y′′) with (x′, 0), (0, y′), (x′, s(y′)), and (s(x′), y′), respectively. Rewriting with
these instances, the four goals become:

0 = 0; s(0 + x′) = s(x′);
s(y′) = s(0 + y′); s(s(y′)+ x′) = s(s(x′)+ y′);

which simplify by (+1) and (+2) to
0 = 0; s(x′) = s(x′);
s(y′) = s(y′); s(s(y′+x′)) = s(s(x′+ y′)).

Now the first three goals follow directly from the reflexivity of equality, whereas
the last goal needs also an application of our induction hypothesis: This time
we have to instantiate (x′′, y′′) with (x′, y′).

Finally, we instantiate our induction ordering < to the lexicographic combi-
nation of length less than 3 of the ordering of the natural numbers. If we read
our pairs as two-element lists, i.e. (x′′, y′′) as cons(x′′, cons(y′′, nil)), then we can
set < to λl, k. (lexlimless(l, k, s(s(s(0)))) = true), which is well-founded according
to (lexlimless2) (cf. § 3.5). Then it is trivial to show that (s(x′), s(y′)) is greater
than each of (x′, 0), (0, y′), (x′, s(y′)), (s(x′), y′), (x′, y′).

This completes the proof of our conjecture. ¤

56On how this availability can be understood formally, see [Autexier, 2005].

Automation of Mathematical Induction 21

EXAMPLE 3 (Proof of (lessp7) by descente infinie).
In the previous proof in Example 2 we made the application of the Theorem of
Noetherian Induction most explicit, and so its presentation was rather formal
w.r.t. the underlying logic.

Contrary to this, let us now proceed more in the vernacular of a working mathe-
matician. Moreover, instead of p = true, let us just write p.

To prove the strengthened transitivity of lessp as expressed in lemma (lessp7)
in the axiomatic context of § 3.4, we then have to show

lessp(s(x), z) ⇐ lessp(x, y) ∧ lessp(y, z).

If we apply the axiom (nat1) — with the intention to reduce the last literal —
once to y and once to z, then, after reduction with (lessp1), the two base cases have
an atom false in their conditions, abbreviating false = true, which is false according
to (bool2), and so the base cases are true (ex falso quodlibet). The remaining case,
where we have both y = s(y′) and z = s(z′), reduces with (lessp3) to

lessp(x, z′) ⇐ lessp(x, s(y′))∧lessp(y′, z′)

If we apply the induction hypothesis instantiated via {y 7→y′, z 7→z′} to match
the last literal, then we obtain the two goals

lessp(x, z′) ⇐ lessp(x, s(y′))∧lessp(y′, z′)∧lessp(s(x), z′)

lessp(x, y′)∨lessp(s(x), z′)∨lessp(x, z′) ⇐ lessp(x, s(y′))∧lessp(y′, z′)

By elimination of irrelevant literals, the first goal can be reduced to the valid con-
jecture lessp(x, z′) ⇐ lessp(s(x), z′), but we cannot obtain a lemma simpler than
our initial conjecture (lessp7) by generalization and elimination of irrelevant literals
from the second goal. This means that the application of the given instantiation
of the induction hypothesis is useless.

Thus, instead of induction-hypothesis application, we had better apply the
axiom (nat1) also to x, obtaining the cases x = 0 and x= s(x′) with the two
goals — after reduction with (lessp2) and (lessp3) —

lessp(0, z′) ⇐ lessp(y′, z′)

lessp(s(x′), z′) ⇐ lessp(x′, y′) ∧ lessp(y′, z′),

respectively. The first is trivial by (lessp1), (lessp2) after another application of
the axiom (nat1) to z′. The second is just an instance of the induction hypothesis
via {x 7→x′, y 7→y′, z 7→z′}. As the induction ordering we can select any of the
variables of the original conjecture w.r.t. the irreflexive ordering on the natural
numbers or w.r.t. the successor relation.

This completes the proof of the conjecture.
Note that we also have made clear that the given proof can only be successful

with an induction hypotheses where all variables are instantiated with predeces-
sors. It is actually possible to show that this simple example — ceteris paribus —
requires an induction hypothesis resulting from an instance {x7→x′′, y 7→y′′, z 7→z′′}
where, for some meta-level natural number n, we have

x= sn+1(x′′) ∧ y = sn+1(y′′) ∧ z = sn+1(z′′). ¤

bundy
Highlight
Translate the latin in a footnote.

bundy
Highlight
Hard to read. Reword.

bundy
Highlight
Translate

22 J Strother Moore, Claus-Peter Wirth

3.8 Explicit Induction

3.8.1 From the Theorem of Noetherian Induction to Explicit Induction

To admit the realization of the standard high-level method of mathematical induc-
tion as described in § 3.6, a proof calculus should have an explicit concept of an
induction hypothesis. Moreover, it has to cope in some form with the second-order
variables P and < in the Theorem of Noetherian Induction (N) (cf. § 3.2), and
with the second-order variable Q in the definition of well-foundedness (Wellf(<))
(cf. § 3.1).

Such an implementation needs special care regarding the calculus and its heuris-
tics. For example, the best automated theorem provers for higher-order logic to-
day are still not able to prove standard inductive theorems by just adding the
Theorem of Noetherian Induction, which immediately effects an explosion of the
search space. It is indeed a main obstacle to practical usefulness of higher-order
automated theorem provers today that they are poor in mathematical induction.

Therefore, it is probable that — on the basis of the logic calculi and the com-
puter technology of the 1970s — Boyer and Moore would also have failed to imple-
ment induction via these human-oriented and higher-order features and were wise
to confine the concept of an induction hypothesis to the internals of single reductive
inference steps — namely the applications of the so-called induction rule — and to
restrict all other inference steps to quantifier-free first-order deductive reasoning.

Described in terms of the Theorem of Noetherian Induction, this induction
rule immediately instantiates the higher-order variables P and < with first-order
predicates. This is rather straightforward for the predicate variable P, which
simply becomes the (properly simplified and generalized) quantifier-free first-order
conjecture that is to be proved by induction, and the tuple of the free first-order
variables of this conjecture takes the place of the single argument of P.

The instantiation of the higher-order variable < is more difficult: Instead of a
simple instantiation, the whole context of its two occurrences is transformed. For
the first occurrence, namely the one in the sub-formula ∀u<v. P (u), the whole
sub-formula is replaced with a conjunction of instances of P (u), for which u is
known to be smaller than v in some lexicographic combination of given orderings
that are already known to be well-founded. As a consequence, the second occur-
rence of <, i.e. the one in Wellf(<), simplifies to true, and so we can drop the
conjunction that contains it.

At a first glance, it seems highly unlikely that there could be any framework
of proof-search heuristics in which such an induction rule could succeed in im-
plementing all applications of the Theorem of Noetherian Induction, simply be-
cause this rule has to solve the two hard tasks of an induction proof, namely the
Induction-Hypotheses Task and the Induction-Ordering Task (cf. § 3.6), right at
the beginning of the proof attempt, before the proof has been sufficiently devel-
oped to exhibit its structural difficulties.

Most surprisingly, but as a matter of fact, the induction rule has proved to
be most successful in realizing all applications of the Theorem of Noetherian In-

bundy
Highlight
Give examples of the kind of provers you have in mind. I assume you mean Coq, HOL, Isabelle, Nuprl, etc, but these have not been discussed previously.

bundy
Highlight
Most of them are designed to be used interactively, and in this sense they are not poor at induction. Clarify that you mean their automatic behaviour.

bundy
Highlight
An example of what you have in mind would be helpful here.

Automation of Mathematical Induction 23

duction required within the proof-search heuristics of the Boyer–Moore waterfall
(cf. Figure 1). Essential for this success is the relatively weak quantifier-free first-
order logic:

• No new symbols have to be introduced during the proof, such as the ones
of quantifier elimination. Therefore, the required instances of the induction
hypothesis can already be denoted when the induction rule is applied.57

• A general peculiarity of induction,58 namely that the formulation of lemmas
often requires the definition of new recursive functions, is aggravated by the
weakness of the logic; and the user actually provides further guidance for
the induction rule via these new function definitions.59

Moreover, this success crucially depends on the possibility to generate additional
lemmas that are proved by subsequent inductions, which is best shown by an
example.

EXAMPLE 4 (Proof of (+3) by explicit induction).
Let us prove (+3) in the context of § 3.4, just as we have done already in Ex-
ample 2 (cf. § 3.7), but now with the induction rule as the only way to apply the
Theorem of Noetherian Induction.

As the conjecture is already properly simplified and concise, we instantiate P (w)
in the Theorem of Noetherian Induction again to the whole conjecture and reduce
this conjecture by application of the Theorem of Noetherian Induction again to

∃<.

(∀(x, y).
(
(x+ y = y +x) ⇐ ∀(x′′, y′′)< (x, y). (x′′+ y′′= y′′+ x′′)

)
∧ Wellf(<)

)
.

Based, roughly speaking, on a termination analysis for the function +, the
heuristic of the induction rule of explicit induction suggests to instantiate < to
λ(x′′, y′′), (x, y). (s(x′′)= x). As this relation is known to be well-founded, the
induction rule reduces the task based on axiom (nat1) to two goals, namely the
base case 0 + y = y + 0;
and the step case (s(x′)+ y = y + s(x′)) ⇐ (x′+ y = y + x′).
This completes the application of the induction rule. Thus, instances of the in-
duction hypothesis can no longer be applied in the further proof.

The induction rules of the Boyer–Moore theorem provers are not able to find the
many instances we applied in the proof of Example 2. This is different for a the-
oretically more powerful induction rule suggested by Christoph Walther (*1950),
which actually finds the proof of Example 2.60 In general, however, for harder con-
jectures, a simulation of descente infinie by the induction rule of explicit induction

57Cf. Note 61.
58See item 2 of § 3.10.
59Cf. § 8.
60See [Walther, 1993, p. 99f.]. On Page 100, the most interesting step case computed by

Walther’s induction rule is (rewritten to constructor-style):
s(x)+ s(y) = s(y)+ s(x) ⇐ `

x + s(y) = s(y)+ x ∧ ∀z. (z + y = y + z)
´
.

In general, however, Walther’s induction rule is less successful within the heuristic framework of
the Boyer–Moore waterfall (cf. Figure 1).

bundy
Highlight
Or, rather, is required to provide

bundy
Highlight
I don't understand this. B&M's 'fertilization' step exactly applies the induction hypothesis later in the proof.

24 J Strother Moore, Claus-Peter Wirth

would require an arbitrary look-ahead into the proofs, depending on the size of the
structure of these proofs; thus, because the induction rule is understood to have
a limited look-ahead into the proofs, such a simulation would not fall under the
paradigm of explicit induction anymore. Indeed, the look-ahead of induction rules
into the proofs is typically not more than a single unfolding of a single occurrence
of a recursive function symbol, for each such occurrence in the conjecture.

Note that the two above goals of the base and the step case can also be obtained
by reducing the input conjecture with an instance of axiom (S) (cf. § 3.4), i.e. with
the Axiom of Structural Induction over 0 and s. Nevertheless, the induction rule
is in general able to produce much more complicated base and step cases than
reduction with simple instances of (S).

Now the first goal is simplified again to y = y + 0, and then another application
of the induction rule results in two goals that can be proved without further
induction.

The second goal is simplified to
(s(x′+ y) = y + s(x′)) ⇐ (x′+ y = y +x′).

Now we use the condition from left to right for rewriting only the left-hand side
of the conclusion and then we throw away the condition completely, with the
intention to obtain a stronger induction hypothesis. This is the famous “cross-
fertilization” of the Boyer–Moore waterfall (cf. Figure 1). By this, the simplified
second goal reduces to

s(y + x′) = y + s(x′).
Now the induction rule triggers a structural induction on y, which is successful
without further induction.

All in all, although the induction rules of the Boyer–Moore theorem provers do
not find the more complicated induction hypotheses of the descente infinie proof
of Example 2, they are well able prove our original conjecture with the help of
the additional lemmas y = y + 0 and s(y + x′) = y + s(x′), and the heuristics
of the waterfall lead to the discovery of these lemmas. From a logical viewpoint,
these lemmas are redundant because they follow from the original conjecture and
the definition of +. From a heuristic viewpoint, however, they are more useful
than the original conjecture, because — oriented for rewriting from right to left —
their application tends to terminate in the context of the overall simplification by
symbolic evaluation, which constitutes the first stage of the waterfall. ¤

Although the two proofs of the very simple conjecture (+3) given in Exam-
ples 2 and 4 can only give a very rough idea on the advantage of descente infinie
for hard induction proofs,61 these two proofs nicely demonstrate how the induction
rule of explicit induction manages to prove simple theorems very efficiently and
with additional benefits for the further performance of the simplification proce-
dure.

Moreover, for proving very hard theorems for which the overall waterfall heuris-
tic fails, the user can state hints and additional lemmas with additional notions in
any Boyer–Moore theorem prover (except thePure LISP Theorem Prover).

bundy
Inserted Text

bundy
Inserted Text
,

bundy
Inserted Text
,

bundy
Highlight
Give section number where this can be found.

bundy
Highlight
What is this for? Is it out of place?

Automation of Mathematical Induction 25

3.8.2 Theoretical Viewpoint on Explicit Induction
From a theoretical viewpoint, we should be aware of the possibility that the in-
tended models of specifications in explicit-induction systems, say for the natural
numbers, also include non-standard models, where — contrary to the higher-order
specifications of Peano and Pieri — there may be Z-chains in addition to the natu-
ral numbers N.62 These Z-chains cannot be excluded because the inference rules
realize only first-order deductive reasoning, except for the induction rule to which
all applications of the Theorem of Noetherian Induction are confined and which
does not use any higher-order properties, but only well-founded orderings that are
defined in the first-order logic of the explicit-induction system; see also Note 131.

3.8.3 Practical Viewpoint on Explicit Induction
Note that the application of the induction rule of explicit induction is not im-
plemented via a reference to the Theorem of Noetherian Induction, but directly
handles the following practical tasks and their heuristic decisions.

In general, the induction stage of the Boyer–Moore waterfall (cf. Figure 1) ap-
plies the induction rule once to its input formula, which results in a conjunction
— or conjunctive set — of base and step cases to which the input conjecture
reduces, i.e. whose validity implies the validity of the input conjecture.

Therefore, a working mathematician would expect that the induction rule of
explicit induction solves the following two tasks:

1. Choose some of the variables in the conjecture as induction variables, and
split the conjecture into several base and step cases, based on the induction
variables’ demand on which governing conditions and constructor substi-
tutions63 have to be added to be able to unfold — without further case
analysis — some of the recursive function calls that contain the induction
variables as direct arguments.

2. Eagerly generate the induction hypotheses for the step cases.

61For some of the advantages of descente infinie, see Example 12 in § 5.2.6, and especially the
more difficult, complete formal proof of M. H.A. Newman’s famous lemma in [Wirth, 2004, § 3.4],
where the reverse of a well-founded relation is shown to be confluent in case of local confluence by
induction w.r.t. this well-founded relation itself. The induction rule of explicit induction cannot
be applied here because an eager induction hypothesis generation is not possible: The required
instances of the induction hypothesis contain δ-variables that can only be generated later during
the proof by quantifier elimination.

Though confluence is the Church–Rosser property, the Newman Lemma has nothing to do
with the Church–Rosser Theorem stating the confluence of the rewrite relation of αβ-reduction
in untyped λ-calculus, which has actually been verified with a Boyer–Moore theorem prover in the
first half of the 1980s by Shankar [1988] (see the last paragraph of § 5.4 and Note 166) following
the short Tait/Martin-Löf proof found e.g. in [Barendregt, 2012, p. 59ff.]. Unlike the Newman
Lemma, Shankar’s proof proceeds by structural induction on the λ-terms, not by Noetherian
induction w.r.t. the reverse of the rewrite relation; indeed, untyped λ-calculus is not terminating.

62Contrary to the Z-chains, which are structures similar to the integers Z, where every non-
standard element is greater than every standard natural number, “s-circles” cannot exist because
it is possible to show by structural induction on x the two lemmas lessp(x, x)= false and
lessp(x, sn+1(x))= true for each standard meta-level natural number n.

bundy
Highlight
Define

26 J Strother Moore, Claus-Peter Wirth

The actual realization of these tasks in the induction rule, however, is quite differ-
ent from these expectations: Induction variables play only a very minor rôle toward
the end of the procedure (in the deletion of flawed induction schemes, cf. § 5.3.8),
the focus is on complete step cases including eagerly generated induction hypo-
theses, and the complementing bases case are generated only in the very end.64

3.9 Generalization

Contrary to merely deductive, analytic theorem proving, an input conjecture for
a proof by induction is not only a task (as induction conclusion) but also a tool
(as induction hypothesis) in the proof attempt. Therefore, a stronger conjecture
is often easier to prove because it supplies us with a stronger induction hypothesis
during the proof attempt.

Such a step from a weaker to a stronger input conjecture is called generalization.
Generalization is to be handled with great care because it is an unsafe reduction

step in the sense that it may reduce a valid conjecture to an invalid one; such a
reduction is called over-generalization.

Generalization is hardly needed when input conjectures are supplied by humans.
As we have seen in Example 4 of § 3.8.1, however, explicit induction often has
to start another induction during the proof, and then the secondary, machine-
generated input conjecture often requires generalization.

The two most simple syntactical generalizations are the replacement of terms
with universal variables and the removal of irrelevant side conditions.

In the vernacular of Boyer–Moore theorem provers, the first is simply called
“generalization” and the second is called “elimination of irrelevance”. They are
dealt with in two consecutive stages of these names in the Boyer–Moore waterfall,
which come right before the induction stage.

The removal of irrelevant side conditions is intuitively clear. For formulas in
clausal form, it simply means to remove irrelevant literals. More interesting are
the heuristics of its realization, which we discuss in § 5.3.5.

The less clear process of generalization typically proceeds by the replacement
of all occurrences of a non-variable term with a fresh variable.

This is especially promising for a subsequent induction if the same non-variable
term t has multiple occurrences in the conjecture, and becomes even more promis-
ing if these occurrences are found on both sides of the same positive equation or in
literals of different polarity, say in a conclusion and a condition of an implication.

To avoid over-generalization, subterms are to be preferred to their super-terms,
and one should never generalize if t is of any of the following forms: a constructor
term, a top level term, a term with a logical operator (such as implication or equal-
ity) as top symbol, a direct argument of a logical operator, or the first argument

63This adding of constructor substitutions refers to the application of axioms like (nat1)
(cf. § 3.4), and is required whenever constructor style either is found in the recursive function
definitions or is to be used for the step cases. In the Pure LISP Theorem Prover, only the
latter is the case. In Thm, none of this is the case.

64See, e.g., Example 10 of § 4.7.

bundy
Cross-Out

bundy
Replacement Text
at

bundy
Highlight
Can you explain why?

bundy
Highlight
That's not my experience. Many human-supplied theorems require generalisation,i.e.,the conjecture has to be generalised before induction.

bundy
Highlight
Can you say why not?

Automation of Mathematical Induction 27

of a conditional (IF). In any of these cases, the information loss by generalization
is typically so high that it probably results in an invalid conjecture.

How powerful generalization can be is best seen by the multitude of its successful
automatic applications, which often surprise humans. Here is one of these:

EXAMPLE 5 (Proof of (ack4) by Explicit Induction and Generalization).
Let us prove (ack4) in the context of § 3.4 by explicit induction. It is obvious
that such a proof has to follow the definition of ack in the three cases (ack1),
(ack2), (ack3), using the termination ordering of ack, which is just the lexicographic
combination of its arguments. So the induction rule of all Boyer–Moore theorem
provers except the Pure LISP Theorem Prover reduces the input formula
(ack4) to the following goals:65

lessp(y, ack(0, y)) = true;
lessp(0, ack(s(x′), 0))= true ⇐ lessp(s(0), ack(x′, s(0)))= true;
lessp(s(y′), ack(s(x′), s(y′)))= true

⇐
(

lessp(y′, ack(s(x′), y′))= true
∧ lessp(ack(s(x′), y′), ack(x′, ack(s(x′), y′)))= true

)
.

After simplifying with (ack1), (ack2), (ack3), respectively, we obtain:
lessp(y, s(y)) = true;
lessp(0, ack(x′, s(0)))= true ⇐ lessp(s(0), ack(x′, s(0)))= true;
lessp(s(y′), ack(x′, ack(s(x′), y′)))= true

⇐
(

lessp(y′, ack(s(x′), y′))= true
∧ lessp(ack(s(x′), y′), ack(x′, ack(s(x′), y′)))= true

)
.

Now the base case is simply an instance of our lemma (lessp4). Let us simplify
the two step cases by introducing variables for their common subterms:

lessp(0, z)= true ⇐ (
lessp(s(0), z)= true ∧ z = ack(x′, s(0))

)
;

lessp(s(y′), z2)= true ⇐
(

lessp(y′, z1)= true ∧ lessp(z1, z2)= true
∧ z1 = ack(s(x′), y′) ∧ z2 = ack(x′, z1)

)
.

Now the first follows from applying (nat1) to z. Before we can prove the second
by another induction, however, we have to generalize it to the lemma (lessp7) of
§ 3.4 by deleting the last two literals from the condition. ¤

In combination with explicit induction, generalization becomes especially powerful
in the invention of new lemmas of general interest, because the step cases of explicit
induction tend to have common occurrences of the same term in their conclusion
and their condition. Indeed, the lemma (lessp7), which we have just discovered
in Example 5, is one of the most useful lemmas in the theory of natural numbers.

It should be noted that all Boyer–Moore theorem provers except the Pure LISP
Theorem Prover are able to do this whole proof completely automatically and
invent the lemma (lessp7) by generalization of the second step case; and they do
this even when they work with an arithmetic theory that was redefined, so that no
decision procedures or other special knowledge on the natural numbers can be used
by the system. Moreover, as shown in § 3.3 of [Wirth, 2004], in a slightly richer

65See Example 10 of § 4.7 on how these step cases are actually found in explicit induction.

bundy
Highlight
Mention use of counter-example finders to reject invalid conjectures?

28 J Strother Moore, Claus-Peter Wirth

logic, these heuristics would additionally admit to synthesize the lower bound in
the first argument of lessp from the input conjecture ∃z. (lessp(z, ack(x, y))= true),
simply because lessp does not contribute to the choice of the base and step cases.

3.10 Proof-Theoretical Peculiarities of Mathematical Induction

The following two proof-theoretical peculiarities of induction compared to first-
order deduction may be considered noteworthy:66

1. A calculus for arithmetic cannot be complete, simply because the theory of
the arithmetic of natural numbers is not enumerable.67

2. According to Gentzen’s Hauptsatz,68 a proof of a first-order theorem can
always be restricted to the “sub”-formulas of this theorem. In contrast to
lemma application in a deductive proof tree, however, the application of
induction hypotheses and lemmas inside an inductive reasoning cycle cannot
generally be eliminated in the sense that the “sub”-formula property could
be obtained.69 As a consequence, in first-order inductive theorem proving,
“creativity” cannot be restricted to finding just the proper instances, but
may require the invention of new lemmas and notions.70

3.11 Conclusion

In this section, after briefly presenting the induction method in its rich historical
context, we have offered a formalization and a first practical description. More-
over, we have explained why we can take Fermat’s term “descente infinie” in our
modern context as a synonym for the standard high-level method of mathematical
induction. Finally, we have introduced to explicit induction and generalization.

Noetherian induction requires domains for its well-founded orderings; and these
domains are typically built-up by constructors. Therefore, the discussion of the
method of induction required the introduction of some paradigmatic data types,
such as natural numbers and lists.

To express the relevant notions in these data types, we need recursion, a method
of definition, which we have often used in this section intuitively. We did not
discuss its formal admissibility requirements, however, which we will do in § 4,
with a focus on modes of recursion that admit an effective consistency test, in-
cluding termination aspects such as induction templates and schemes.

66Note, however, that these peculiarities of induction do not make a difference to first-order
deductive theorem proving in practice. See Notes 67 and 70.

67This theoretical result is given by Gödel’s first incompleteness theorem [1931]. In practice,
however, it does not matter whether our proof attempt fails because our theorem will not be
enumerated ever, or will not be enumerated before doomsday.

68Cf. [Gentzen, 1935].
69Cf. [Kreisel, 1965].
70In practice, however, we have to extend our proof search to additional lemmas and notions

anyway, and it does not really matter whether we have to do this for principled reasons (as in
induction) or for tractability (as required in first-order deductive theorem proving, cf. [Baaz and
Leitsch, 1995]).

bundy
Highlight
Odd choice of words.

bundy
Highlight
This would be clearer if you displayed the cut rule.

bundy
Cross-Out

bundy
Replacement Text

bundy
Highlight
I disagree. I think this difference has a real practical impact.

