
THE AUTOMATION OF
MATHEMATICAL INDUCTION∗

J Strother Moore, Claus-Peter Wirth

1 A SNAPSHOT OF A DECISIVE MOMENT IN HISTORY

The automation of mathematical theorem proving for deductive first-order logic
started in the 1950s, and it took about half a century to develop systems that are
sufficiently strong and general to be successfully applied outside the community of
automated theorem proving.1 Surprisingly, the development of such strong systems
for restricted logic languages was not achieved much earlier, neither for the purely
equational fragment nor for propositional logic.2 Moreover, automation of theorem
proving for higher-order logic is making progress towards general usefulness just
during the last ten years.3

Irrelevance

Cross-Fertilization

Destructor Elimination

User

Generalization

Induction

Simplification

pool

Elimination of

formula

Figure 1. The Boyer–Moore Waterfall
Note that a formula falls back to the center pool after each successful application

of one of the stages in the circle.

∗Second Readers: Somebody from the history of math & logic. I wanna ask Wilfried Sieg. OK?
1The currently (i.e. in 2012) most successful first-order automated theorem prover is Vampire,

cf. e.g. [Riazanov and Voronkov, 2001].
2The most successful automated theorem prover for purely equational logic is WaldMeister,

cf. e.g. [Buch and Hillenbrand, 1996], [Hillenbrand and Löchner, 2002]. For deciding propositio-
nal validity (i.e. sentential validity) (or its dual: propositional satisfiability) (which is decidable,
but NP-complete), a breakthrough toward industrial strength was the SAT solver Chaff, cf. e.g.
[Moskewicz et al., 2001].

3One of the driving forces in the automaton of higher-order theorem proving is the system
Leo-II, cf. e.g. [Benzmüller et al., 2008].

2 J Strother Moore, Claus-Peter Wirth

In this context, it is most astonishing that for the field of quantifier-free first-
order inductive theorem proving based on recursive functions, the whole develop-
ment — from the scratch to general usefulness — took place within the 1970s.

In this article we describe how this giant step took place, and sketch the further
development of automated inductive theorem proving.

The work on this breakthrough in the automation of inductive theorem proving
was started in September 1972 by Robert S. Boyer and J Strother Moore, and most
of the crucial steps and their synergetic combination in the now famous “waterfall”
(cf. Figure 1) are already implemented in their “Pure LISP Theorem Prover”,
presented at IJCAI in Stanford (CA) in August 1973,4 and documented in Moore’s
PhD thesis [1973], defended in November 1973.

At that time, Boyer and Moore were both members of the Metamathematics
Unit of the University of Edinburgh.5

Boyer and Moore had met for the first time in August 1971 in Edinburgh, and
had worked together on structure sharing in resolution theorem proving, for which
the inventor of resolution, J. Alan Robinson, invented and granted to them the
“1971 Programming Prize” on December 17, 1971, half jokingly, half seriously.6

In spite of this experience, the original plan to implement structure sharing in the
Pure LISP Theorem Prover was dropped at some point.

4Cf. [Boyer and Moore, 1973].

5The Metamathematics Unit of the University of Edinburgh was renamed into “Dept. of Com-
putational Logic” in late 1971, and was absorbed into the new “Dept. of Artificial Intelligence” in
Oct. 1974. It was founded and headed by Bernard Meltzer. In the early 1970s, the University of
Edinburgh hosted most remarkable scientists, of which the following are relevant in our context:

Univ. Edinburgh PhD life time
(time, Dept.) (year, advisor) (birth–death)

Donald Michie (1965–1984, MI) (1953, ?) (1923–2007)
Bernard Meltzer (1965–1978, CL) (1953, Fürth) (1916?–2008)
Robin J. Popplestone (1965–1984, MI) (no PhD?) (1938–2004)
Rod M. Burstall (1965–2000, MI & CL) (1966, Dudley) (*1934)
Robert A. Kowalski (1967–1974, CL) (1970, Meltzer) (*1941)
Pat Hayes (1967–1973, CL) (1973, Meltzer) (*1944)
Gordon Plotkin (1968–today, CL & LFCS) (1972, Burstall) (*1946)
J Strother Moore (1970–1973, CL) (1973, Burstall) (*1947)
Mike J. C. Gordon (1970–1978, MI) (1973, Burstall) (*1948)
Robert S. Boyer (1971–1974, CL) (1971, Bledsoe) (*1946)
Alan Bundy (1971–today, CL) (1971, Goodstein) (*1947)
Robin Milner (1973–1979, LFCS) (no PhD) (1934–2010)

CL = Metamathematics Unit (founded and headed by Bernard Meltzer)
(new name from late 1971 to Oct. 1974: Dept. of Computational logic)
(new name from Oct. 1974: Dept. of Artificial Intelligence)

MI = Experimental Programming Unit (founded and headed by Donald Michie)
(new name from 1966 to Oct. 1974: Dept. for Machine Intelligence and Perception)
(new name from Oct. 1974: Machine Intelligence Unit)

LFCS = Laboratory for Foundations of Computer Science

(Sources: [Meltzer, 1975], [Kowalski, 1988], etc.)

The Automation of Mathematical Induction 3

Boyer and Moore’s achievements become even more surprising by the fact that
they had to work with inferior computing machinery and that they did all the
programming themselves.

Working with computers was pretty troublesome and difficult at that time:
The storage medium was paper tapes, and the editor programs of the time still
simulated paper-tape editing.

Moreover, the Metamathematics Unit did not even have a PDP–10, which was
the top model of the time, but only an ICL–4130, which had only 64 kByte core
memory (RAM). A funny feature was the loudspeaker connect to this core mem-
ory, which, however, did not produce a regular sound when the Pure LISP
Theorem Prover was running (unless during garbage collection). An irregu-
lar sound was meant to indicate that it was not in a constant loop, but making
“progress”.

What made the situation worse was that Boyer and Moore were granted suffi-
cient computation time only at nights, for which Boyer had to have a huge teletype
terminal in his tiny house in Edinburgh.

It is easy to imagine what this meant for the wives of Boyer and Moore who
lived with them in Edinburgh.

“The PDP–10, the PDP–10,
I’ve sung it before and I’ll sing it again.
I hav’nt seen my man since I don’t know when —
Oh, I lost my husband to a PDP–10.

If he’d a woman, the fight would be fair.
If he were out drinking, his liquor I’d share.
But the odds are against me, you know what I mean —
Even John Henry couldn’t beat a machine.

Guess I’ll give up, I know when I am beat.
Sure hate to say it, but this is defeat.
There’s just one more problem that I’ve got to face —
Can you name a machine in an adultery case?”

The Boyers and Moores used to sing this text to the melody of the popular Amer-
ican folksong “John Henry”, a legendary African-American railroad worker who
died in a competition with a steam-powered hammer. The new text — which
paradigmatically describes a situation well-known to probably all spouses of scien-
tists until today — was written by Anne Boyer at a time when actually no PDP–10
was available to Boyer and Moore; but their situation had improved in this aspect
when she published it [1980]. Needless to say that Anne and Bob Boyer are still
living together today.

6The document, handwritten by J. Alan Robinson (*1930?) actually says:

“In 1971, the prize is awarded, by unanimous agreement of the Board, to Robert S.
Boyer and J Strother Moore for their idea, explained in [Boyer and Moore, 1971],
of representing clauses as their own genesis. The Board declared, on making the
announcement of the award, that this idea is ‘. . . bloody marvelous’.”

4 J Strother Moore, Claus-Peter Wirth

2 METHOD OF PROCEDURE AND PRESENTATION

Contrary to the excellent handbook articles [Walther, 1994] and [Bundy, 1999]
on the automation of explicit induction, our focus in this article is neither on
current standards, nor on the engineering and research problems of the field, but
on the history of the automation of mathematical induction.

The main problem of historians of recent history is that they are in the time-
line of the incidents under consideration and strongly influenced by the tradition
that the achievements have established, such that they cannot appreciate the in-
cidents with contemporary eyes, but with the view from today back into the past,
“knowing” that the solved problems are the easy ones because they are solved.

We try to mitigate this problem by avoiding the standpoint of a disciple of the
leading school of explicit induction. Instead, we put the historic achievements into
a broad mathematical context and a space of time from the ancient Greeks to a
possible future, based on a most general approach to recursive definition, and on
descente infinie as the most general practical approach to mathematical induction.
Then we can see the great achievements in the field with the surprise, astonishment,
and awe they historically deserve — after all, they succeeded to a large degree in
the automation of operations that used to be considered as the summit of human
intellectual abilities before, leaving not much superiority to the human race.

As a historiographical text, this article should be accessible to an audience that
goes beyond the technical experts and programmers of the day, should use com-
mon mathematical language and representation, focus on the global and eternal
ideas and their developments, and paradigmatically display the historically most
significant achievements.

Because these achievements in the automation of inductive theorem proving
manifest themselves mainly in the line of the Boyer–Moore theorem provers, we
cannot avoid the confrontation of the reader with some more ephemeral forms
of representation found in these software systems. In particular, we cannot avoid
some small expressions in the list programming language LISP,7 simply because the
Boyer–Moore theorem provers we discuss in this article, namely the Pure LISP
Theorem Prover, Thm, Nqthm, and ACL2, all have logics based on a subset
of LISP. Here we do not necessarily refer to the implementation language of these
software systems, but actually to the logic language used both for representation
of formulas and for communication with the user.

For the first system in this line of development, Boyer and Moore had the free
choice, but — in 1972 — there was actually no alternative to a logic based on LISP,
because inductive theorem proving with recursively defined functions requires a
logic in which

a method of symbolic evaluation can be obtained from an interpretation
procedure by generalizing the ground terms of computation to terms
with free variables that are implicitly universally quantified.

7Cf. [McCarthy et al., 1965].

The Automation of Mathematical Induction 5

Beside LISP, a candidate to be considered today is the functional programming
language Haskell.8 Haskell, however, was not available in 1972. And still
today, LISP is to be preferred to Haskell as the logic of an inductive theorem
prover because of LISP’s innermost evaluation strategy, which gives preference
to the constructor terms that represent the constructor-based data types, which
again establish the most interesting domains in hard- and software verification and
the major elements of mathematical induction.

Yet another candidate today would be the rewrite systems of [Wirth and Gram-
lich, 1994a] and [Wirth, 1991; 2009] with their constructor variables9 and their
positive/negative-conditional equations, designed and developed for the specifica-
tion, interpretation, and symbolic evaluation of recursive functions in the context
of inductive theorem proving in the domain of constructor-based data types. Nei-
ther this tailor-made theory, nor even the general theory of rewrite systems in
which its development is rooted,10 were available in 1972. And still today, the
applicative subset of Common Lisp that provides the logic language for ACL2
(= (ACL)2 = A Computational Logic for Applicative Common LISP) is again to
preferred to these positive/negative-conditional rewrite systems under the aspect
of efficiency: The applications of ACL2 in hardware verification and testing require
a performance that is still at the very limits of today’s computing technology. This
challenging efficiency demand requires, among other aspects, that the logic of the
theorem prover is so close to its own programming language that — after certain
side conditions have been checked successfully — the theorem prover can defer
the interpretation of ground terms to the analogous interpretation in its own pro-
gramming language.

For many of our illustrative examples in this article, however, we will use the
higher flexibility and conceptual adequacy of positive/negative-conditional rewrite
systems. They are so close to standard logic that we can dispense their semantics
to the readers intuition,11 and they can immediately serve as an intuitively clear
replacement of the Boyer–Moore machines.12

Moreover, the typed (many-sorted) approach of the positive/negative-condi-
tional equations admits to present the formulas in a form that is much easier to

8Cf. e.g. [Hudlak et al., 1999].

9See § 4.3 of this article.

10The general theory on which the rewrite systems of [Wirth and Gramlich, 1994a] and [Wirth,
1991; 2009] is rooted is documented in [Dershowitz and Jouannaud, 1990]. One may try to argue
that the paper that launched the whole field of rewrite systems, [Knuth and Bendix, 1970], was
already out in 1972, but the relevant parts of rewrite theory for unconditional equations were
developed only in the late 1970s and the 1980s. Especially relevant in the given context are
[Huet, 1980] and [Toyama, 1988]. The rewrite theory of positive/negative-conditional equations,
however, started to become an intensive area of research only at the breath-taking 1st Int. Work-
shop on Conditional Term Rewriting Systems (CTRS), Orsay (France), 1987; cf. [Kaplan and
Jouannaud, 1988].

11The readers interested into the precise details are referred to [Wirth, 2009].

12Cf. [Boyer and Moore, 1979, p. 165f.].

6 J Strother Moore, Claus-Peter Wirth

grasp for human readers than the corresponding sugar-free LISP notation with its
overhead of explicit type restrictions.

Another good reason for avoiding LISP notation is the following: We want to
make it most obvious that the achievements of the Boyer–Moore theorem provers
are not limited to their LISP logic and would well survive in a better world, where
— based on the computing technology of the future — positive/negative-condi-
tional rewriting is not too inefficient for the relevant applications anymore.

For the same reason, we also prefer examples from arithmetic to examples from
list theory, which might be considered to be especially supported by the LISP
logic. The reader can find the famous examples from list theory in almost any
other publication on the subject.13

In general, we tend to present the challenges and their historical solutions with
the help of small intuitive examples and refer the readers interested in the very
details of the implementations of the theorem provers to the published and easily
accessible documents on which our description is mostly based.

Nevertheless, small LISP expression cannot be completely avoided because
we have to describe the crucial parts of the historically most significant imple-
mentations and ought to show some of the advantages of LISP’s untypedness.14

The readers interested in these aspects, however, do not have to know more about
LISP than the following: A LISP term is either a variable symbol, or a function
call of the form (f t1 · · · tn), where f is a function symbol and t1, . . . , tn are
LISP terms.

2.1 Organization of This Article

This article is further organized as follows: §§ 3 and 4 are a self-contained reference
for the readers who are not acquainted with the field of automated induction. In
§ 3 we introduce the essentials of mathematical induction. In § 4 we have to
become more formal regarding recursive function definitions, their consistency,
termination, and induction templates and schemes.

After this self-contained introduction, In § 5 we come to the presentation of
the historically most important systems in automated induction, and discuss the
details of software systems for explicit induction, with a focus on the 1970s.

The approaches to the automation of induction that do not follow the paradigm
of explicit induction are discussed in § 6. After looking beyond induction in § 7,
we conclude with § 8.

This should be augmented with more details at the very end of our writing. Note that
the handbook style does not admit us to have a table contents.

13Cf. e.g. [Moore, 1973], [Boyer and Moore, 1979; 1988b; 1998], [Walther, 1994], [Bundy, 1999],
[Kaufmann et al., 2000a; 2000b].

14See e.g. of the advantages of the untyped and type-restriction-free declaration of the shell
CONS in § 5.3.

The Automation of Mathematical Induction 7

3 MATHEMATICAL INDUCTION
In this section, we introduce mathematical induction with its rich history since
the 6th centuryb.c., and clarify the difference between structural induction and
Noetherian induction with its traditional variant called descente infinie.

According to Aristotle, induction means to go from the special to the general,
in particular to obtain general laws from special cases, which plays a major rôle
in the generation of conjectures in mathematics and the natural sciences. Modern
scientists design experiments to falsify such a law of nature, and they accept the
law as a scientific fact only after many trials have all failed to falsify it. In the
tradition of Euclid of Alexandria, mathematicians accept a conjectured mathema-
tical law as a theorem only after a rigorous proof has been provided. According to
Kant, induction is synthetic in the sense that it properly extends what we think
to know — in opposition to deduction, which is analytic in the sense that all infor-
mation we can obtain by it, is implicitly contained in the initial judgments, though
we can hardly be aware of all deducible consequences in advance.

Surprisingly, in this well-established and time-honored terminology, mathema-
tical induction is not induction, but a special form of deduction for which — in the
19th century15 — the term “induction” was introduced and became standard in Eng-
lish and German mathematics. In spite of this misnomer, for the sake of brevity,
the term “induction” will always refer to mathematical induction in what follows.

Although it received its current name only in 19th century, mathematical induc-
tion has been a standard method of every working mathematician at all times.
Hippasus of Metapontum (Italy) (ca. 550b.c.) is reported16 to have proved the
irrationality of the golden number by a form of mathematical induction, which later
was named descente infinie (ou indéfinie) by Fermat. We find another form of in-
duction, nowadays called structural induction, in a text of Plato (427–347b.c.).17

In the famous “Elements” of Euclid [ca. 300b.c.], we find several applications of
descente infinie and structural induction.18 Structural induction was known to
the Muslim mathematicians around the year 1000, and occurs in a Hebrew book
of Levi ben Gerson (Orange and Avignon) (1288–1344).19 Furthermore, struc-
tural induction was used by Francesco Maurolico (Messina) (1494–1575),20 and
by Blaise Pascal (1623–1662).21 After an absence of more than one millennium,
descente infinie was reinvented by Pierre Fermat (1607?–1665).22

15Cf. [Cajori, 1918].
16Cf. [Fritz, 1945].
17Cf. [Acerbi, 2000].
18An example for descente infinie is Proposition 31 of Vol. VII of the Elements, and an example

for structural induction is Proposition 8 of Vol. IX, cf. [Wirth, 2010b, § 2.4].
19Cf. [Katz, 1998].
20Cf. [Bussey, 1917].
21Cf. [Pascal, 1954, p. 103].
22See [Barner, 2001] for the correction on Fermat’s year of birth as compared to the wrong date

in the title of [Mahoney, 1994]. The best-documented example of a proof by descente infinie of
one of Fermat’s outstanding results in number theory is the proof of the following theorem: The
area of a Pythagorean triangle with positive integer side lengths is not the square of an integer ;
cf. [Wirth, 2010b].

8 J Strother Moore, Claus-Peter Wirth

3.1 Well-foundedness and Termination

A relation < is well-founded if each proposition Q(w) that is not constantly false
holds for a <-minimal m, i.e. there is an m with Q(m), for which there is no v < m
with Q(v). Writing “Wellf(<)” for “< is well-founded”, we can formalize this
definition as follows:

(Wellf(<)) ∀Q.
(
∃w. Q(w) ⇒ ∃m.

(
Q(m) ∧ ¬∃u<m. Q(u)

))

Moreover, < is an (irreflexive) ordering if it is irreflexive and transitive. There is
not much difference between a well-founded relation and a well-founded ordering:23

LEMMA 1. A relation is well-founded if and only if its transitive closure is a
well-founded ordering.

Closely related to the well-foundedness of a relation < is the termination of
its reverse relation >, given as <−1 := { (u, v) | (v, u)∈< }.

A relation > is terminating if it has no non-terminating sequences, i.e. if there
is no infinite sequence of the form x0 > x1 >x2 >x3

If > has a non-terminating sequence, then this sequence, taken as a set, is a
witness for the non-well-foundedness of <. The converse implication, however, is a
weak form of the Axiom of Choice;24 indeed, it admits us to pick a non-terminating
sequence for > from the set witnessing the non-well-foundedness of <.

So well-foundedness is slightly stronger than termination of the reverse relation,
and this difference is relevant in our context here, where we cannot take the Axiom
of Choice for granted because it can be seen as a very strong induction axiom.25

3.2 The Theorem of Noetherian Induction

In its modern standard meaning, the method of mathematical induction is easily
seen to be a form of deduction, simply because it can be formalized as the appli-
cation of the Theorem of Noetherian Induction:

A proposition P (w) can be shown to hold (for all w) by Noetherian
induction over a well-founded relation < as follows: Show (for every v)
that P (v) follows from the assumption that P (u) holds for all u < v.

Again writing “Wellf(<)” for “< is well-founded”, we can formalize the Theorem
of Noetherian Induction as follows:26

(N) ∀P.

(
∀w. P (w) ⇐ ∃<.

(∀v.
(
P (v) ⇐ ∀u<v. P (u)

)
∧ Wellf(<)

))

23Cf. Lemma2.1 of [Wirth, 2004, § 2.1.1].
24See [Wirth, 2004, § 2.1.2, p. 18] for the equivalence to the Principle of Dependent Choice,

which is found in [Rubin and Rubin, 1985, p. 19] and analyzed in detail as Form43 (p. 30) in
[Howard and Rubin, 1998].

25Cf. [Geser, 1995].
26When we write an implication A⇒B in the reverse form of B⇐A, we do this to indicate

that a proof attempt will typically start from B and try to reduce it to A.

The Automation of Mathematical Induction 9

The term “Noetherian induction” is a tribute to the famous German female
mathematician Emmy Noether (1882–1935). It occurs as the “Generalized prin-
ciple of induction (Noetherian induction)” in [Cohn, 1965, p. 20]. It also occurs in
Proposition 7 (“Principle of Noetherian Induction”) (p. 190) of § 6.5 in [Bourbaki,
1968a, Chapter III], which is a translation of the French original in its second edi-
tion [Bourbaki, 1967], where it occurs in Proposition 7 (“principe de récurrence
nœthérienne”)27 of § 6.5. We do not know whether the today most common term
“Noetherian Induction” occurred already before 1965;28 in particular, it does not
occur in the first French edition [Bourbaki, 1956] of [Bourbaki, 1967].29

3.3 The Natural Numbers

The field of application of mathematical induction most familiar in mathematics
is the domain of the natural numbers 0, 1, 2, Let us formalize the natural
numbers with the help of two constructors: the constant symbol

0 : nat
for zero, and the function symbol

s : nat → nat
for the direct successor of a natural number. Moreover, let us assume in this arti-
cle that the variables x, y always range over the natural numbers, and that free
variables in formulas are implicitly universally quantified (as standard in mathe-
matics), such that, for example, a formula with the free variable x can be seen as
having the implicit outermost quantifier ∀x : nat.

After the definition (Wellf(<)) and the theorem (N), let us now consider some
standard axioms for specifying the natural numbers, namely that a natural number
is either zero or a direct successor of another natural number (nat1), that zero is
not a successor (nat2), that the successor function is injective (nat3), and that the
so-called Axiom of Structural Induction over 0 and s holds; formally:
(nat1) x = 0 ∨ ∃y.

(
x = s(y)

)

(nat2) s(x) 6= 0

(nat3) s(x)= s(y) ⇒ x= y

(S) ∀P.
(
∀x. P (x) ⇐ P (0) ∧ ∀y.

(
P (s(y)) ⇐ P (y)

))

27The peculiar French spelling “Nœthér” in “nœthérienne” tries to imitate the German pro-
nunciation of “Noether”, where the “oe” is to be pronounced neither as a long “o” (which would
be the default, as in “Itzehoe”), nor as two separate vowels as indicated by the diaeresis in “oë”,
but as an umlaut, typically written in German as the ligature “ö”. Neither Emmy Noether nor
her father, the mathematics professor Max Noether (1844–1921), ligated the “oe” in their name;
the ligature occurs, however, in some of their official German documents.

28Even in 1967, “Noetherian Induction” was not generally used as a name for the Theorem
of Noetherian Induction: For instance, in [Schoenfield, 1967, p. 205], this theorem (instantiated
with the ordering of the natural numbers) is called the principle of complete induction, which
is a most confusing name that should be avoided because “complete induction” looks like the
straightforward translation of the German technical term “vollständige Induction”, which tradi-
tionally means structural induction (cf. Note 30), and which already in the 1920s had become
a very vague notion that is best translated as “mathematical induction”, as done already in
[Heijenoort, 1971, p.130] and as it is standard today, cf. [Hilbert and Bernays, 2011, Note 23.4].

10 J Strother Moore, Claus-Peter Wirth

Richard Dedekind (1831–1916) proved the Axiom of Structural Induction (S) for
his model of the natural numbers in [Dedekind, 1888], where he states that the
proof method resulting from the application of this axiom is known under the
name “vollständige Induction” (“complete induction”).30

Now we can go on by defining — in two equivalent ways31 — the destructor
function p : nat → nat, returning the predecessor of a positive natural number:

1. In (p1) in constructor style, where constructor terms may occur on the left-
hand side of the positive/negative-conditional equation as arguments of the
function being defined.

2. In (p1′) in destructor style, where only variables may occur as arguments on
the right-hand side.

For both definition styles, the term on the left-hand side must be linear (i.e. all
its variable occurrences must be distinct variables) and have the function symbol
to be defined as the top symbol.

(p1) p(s(x)) = x

(p1′) p(x′) = x ⇐ s(x)= x′

Let us define some recursive functions over the natural numbers, such as addition
and multiplication +, ∗ : nat, nat → nat, the irreflexive ordering of the natural
numbers lessp : nat, nat → bool (see § 3.4 for the data type bool of Boolean values),
and the Ackermann function ack : nat, nat → nat:32

(+1) 0 + y = y (∗1) 0 ∗ y = 0

(+2) s(x)+ y = s(x+ y) (∗2) s(x) ∗ y = y +(x ∗ y)

(lessp1) lessp(x, 0) = false

(lessp2) lessp(0, s(y)) = true

(lessp3) lessp(s(x), s(y)) = lessp(x, y)

(ack1) ack(0, y) = s(y)
(ack2) ack(s(x), 0) = ack(x, s(0))
(ack3) ack(s(x), s(y)) = ack(x, ack(s(x), y))

29Indeed, the main text of § 6.5 in the 1st edition [Bourbaki, 1956] ends (on Page 98) three lines
before the text of Proposition 7 begins in the 2nd edition [Bourbaki, 1967] (on Page 76 of § 6.5).

30The first occurrence of the name “vollständige Induction” with the meaning of mathematical
induction seems to be on Page 46f. in [Fries, 1822]. See also Note 28.

31For the equivalence transformation between constructor and destructor style see Example 15
in § 5.3.2.

32Rósza Péter (1905–1977), a female mathematician in Budapest of Jewish parentage, pub-
lished a simplified version [1951] of the first recursive, but not primitive recursive function de-
veloped by Wilhelm Ackermann (1896–1962) [Ackermann, 1928]. What is simply called “the
Ackermann function” today is actually Péter’s version.

The Automation of Mathematical Induction 11

The relation from a natural number to its direct successor can be formalized
by the binary relation λx, y. (s(x)= y). Then Wellf(λx, y. (s(x)= y)) states
the well-foundedness of this relation, which means according to Lemma 1 that its
transitive closure — i.e. the irreflexive ordering of the natural numbers — is a
well-founded ordering; so, in particular, we have Wellf(λx, y. (lessp(x, y)= true)).

Now the natural numbers can be specified up to isomorphism either by33

• (nat2), (nat3), and (S) — following Guiseppe Peano (1858–1932),

or else by

• (nat1) and Wellf(λx, y. (s(x)= y)) — following Mario Pieri (1860–1913).34

Immediate consequences of the axiom (nat1) and the definition (p1) are the
lemma (s1) and its flattened version (s1′):

(s1) s(p(x′)) = x′ ⇐ x′ 6= 0

(s1′) s(x) = x′ ⇐ x′ 6= 0 ∧ x= p(x′)

Moreover, on the basis of the given axioms we can most easily show

(lessp4) lessp(x, s(x)) = true

(lessp5) lessp(x, s(x + y)) = true

by structural induction on x, i.e. by taking the predicate variable P in the Axiom
of Structural Induction (S) to be λx. (lessp(x, s(x))= true) in case of (lessp4),
and λx. (lessp(x, s(x+ y))= true) in case of (lessp5).

Moreover — to see the necessity of doing induction on several variables in
parallel — we will do35 the more complicated proof of the strengthened transitivity
of the irreflexive ordering of the natural numbers, i.e. of

(lessp7) lessp(s(x), z)= true ⇐ (
lessp(x, y) = true ∧ lessp(y, z) = true

)

We will also prove the commutativity lemma (+3)36 and the simple lemma (ack4)
about the Ackermann function:37

(+3) x+ y = y + x,

(ack4) lessp(y, ack(x, y)) = true

33Cf. [Wirth, 2004, § 1.1.2].
34Pieri [1908] stated these axioms informal and showed their equivalence to the version of the

Peano axioms of Alessandro Padoa (1868–1937). For a discussion and an English translation see
[Marchisotto and Smith, 2007]. Pieri [1908] has also a version where, instead of the symbol 0,
there is only the statement that there is a natural number, and where (nat1) is replaced with the
weaker statement that there is at most one s-minimal element:

¬∃y0. (x0 = s(y0)) ∧ ¬∃y1. (x1 = s(y1)) ⇒ x0 = x1.
That non-standard natural numbers cannot exist in Pieri’s specification is easily shown as follows:
For every natural number x we can form the set of all elements that can be reached from x by the
inverse of the successor relation; by well-foundedness of s, this set contains the unique s-minimal
element (0); thus, we have x = sn(0) for some standard meta-level natural number n.

35We will prove (lessp7) twice: once in Example 3 in § 3.6, and again in Example 12 in § 5.2.6.
36We will prove (+3) twice: once in Example 2 in § 3.6, and again in Example 4 in § 3.7.1.
37We will prove (ack4) in Example 5 in § 3.8.

12 J Strother Moore, Claus-Peter Wirth

3.4 Standard Data Types

As we are interested in the verification of hard- and software, more important
for us than natural numbers are standard data types, such as those well-known
today from their occurrence in higher-level programming languages.

To clarify the inductive character of data types defined by constructors, and to
show the additional complications arising from constructors with no or more than
one argument, let us present the data types bool (of Boolean values) and list(nat)
(of lists over natural numbers), which we need for our further examples as well.

A special case is the data type bool of the Boolean values given by the two
constructors true, false : bool without any arguments, for which we get only the two
following axioms by analogy to the axioms for the natural numbers. We globally
declare the variable b : bool, such that it always ranges over the Boolean values.
(bool1) b = true ∨ b = false
(bool2) true 6= false
Note that the analogy of the axioms of Boolean values to the axioms of the natural
numbers (cf. § 3.3) is not perfect: An axiom (bool3) analogous to (nat3) cannot
exist because there are no constructors for bool that take arguments. Moreover,
an axiom analogous to (S) is superfluous because it is implied by (bool1).

Furthermore, let us define the Boolean function and : bool, bool → bool :
(and1) and(false, b) = false
(and2) and(b, false) = false
(and3) and(true, true) = true

Let us now formalize the data type of the (finite) lists over natural numbers with
the help of the following two constructors: the constant symbol

nil : list(nat)
for the empty list, and the function symbol

cons : nat, list(nat) → list(nat),
which takes a natural number and a list of natural numbers, and returns the
list where the number has been added to the input list as a new first element.
We globally declare the variables k, l : list(nat).

In analogy to natural numbers, the axioms of this data type are the following:
(list(nat)1) l = nil ∨ ∃y, k.

(
l = cons(y, k)

)

(list(nat)2) cons(x, l) 6= nil

(list(nat)31) cons(x, l)= cons(y, k) ⇒ x= y
(list(nat)32) cons(x, l)= cons(y, k) ⇒ l = k

(list(nat)S) ∀P.
(∀l. P (l) ⇐ (

P (nil) ∧ ∀x, k.
(
P (cons(x, k)) ⇐ P (k)

)))

Moreover, let us define the recursive functions length, count : list(nat) → nat,
returning the length and the size of a list:
(length1) length(nil) = 0
(length2) length(cons(x, l)) = s(length(l))
(count(list(nat))1) count(nil) = 0
(count(list(nat))2) count(cons(x, l)) = s(x + count(l))

The Automation of Mathematical Induction 13

Note that the analogy of the axioms of lists to the axioms of the natural numbers
is again not perfect:

1. There is an additional axiom (list(nat)31), which has no analog among the
axioms of the natural numbers.

2. None of the axioms (list(nat)31) and (list(nat)32) is implied by the axiom
(list(nat)1) together with the axiom

Wellf(λl, k. ∃x. (cons(x, l)= k)),
which is the analog to Pieri’s second axiom for the natural numbers.38

3. The latter axiom is weaker than each of the following axioms
Wellf(λl, k. (lessp(length(l), length(k)) = true)),
Wellf(λl, k. (lessp(count(l), count(k)) = true)).

which state the well-foundedness of bigger39 relations. In spite of their rela-
tive strength, the well-foundedness of these relations is already implied by the
well-foundedness that Pieri used for his specification of the natural numbers.

Therefore, the lists of natural numbers can be specified up to isomorphism by a
specification of the natural numbers up to isomorphism (see § 3.3), plus the axioms
(list(nat)31) and (list(nat)32), plus one of the following sets of axioms:

• (list(nat)2), (list(nat)S) — in the style of Peano,

• (list(nat)1), Wellf(λl, k. ∃x. (cons(x, l) = k)) — in the style of Pieri,40

• (list(nat)1), (length1–2) — refining the style of Pieri.41

Today it is standard to avoid higher-order axioms in the way exemplified in the
last of these three items,42 and to get along with one second-order axiom for the
natural numbers, or even with the first-order instances of the axiom.

38See § 3.3 for Pieri’s specification of the natural numbers. The axioms (list(nat)31) and
(list(nat)32) are not implied because all axioms beside (list(nat)31) or (list(nat)32) are satis-
fied in the structure where both natural numbers and lists are isomorphic to the standard model
of the natural numbers, and where lists differ only in their sizes.

39Indeed, in case of cons(x, l) = k, we have lessp(length(l), length(k)) =
= lessp(length(l), length(cons(x, l))) = lessp(length(l), s(length(l))) = true because of (lessp4),
and we also have lessp(count(l), count(k)) = lessp(count(l), count(cons(x, l))) =
lessp(count(l), s(x + count(l))) = true because of (+3) and (lessp5).

40This option is essentially the choice of the “shell principle” of [Boyer and Moore, 1979, p.37ff.]:
The one but last axiom of Item (1) of the shell principle means (list(nat)2) in our formalization,
and guarantees that Item (6) implies Wellf(λl, k. ∃x. (cons(x, l)= k)).

41Although (list(nat)2) follows from (length1–2) and (nat2), it should be included to this
standard specification because of its frequent applications.

42For this avoidance, however, we have to admit the additional function length. The same can
be achieved with count instead of length, which is only possible, however, for lists over element
types that have a mapping into the natural numbers.

14 J Strother Moore, Claus-Peter Wirth

Moreover, as some of the most natural functions on lists, let us define the de-
structors car : list(nat) → nat and cdr : list(nat) → list(nat), both in constructor
and destructor style. Furthermore, let us define the recursive member predi-
cate mbp : nat, list(nat) → bool, and delfirst : list(nat) → list(nat), a recursive
function that deletes the first occurrence of a natural number in a list:
(car1) car(cons(x, l)) = x

(cdr1) cdr(cons(x, l)) = l

(car1′) car(l′) = x ⇐ cons(x, l)= l′

(cdr1′) cdr(l′) = l ⇐ cons(x, l)= l′

(mbp1) mbp(x, nil) = false
(mbp2) mbp(x, cons(y, l)) = true ⇐ x= y
(mbp3) mbp(x, cons(y, l)) = mbp(x, l) ⇐ x 6= y

(delfirst1) delfirst(x, cons(y, l)) = l ⇐ x= y
(delfirst2) delfirst(x, cons(y, l)) = cons(y, delfirst(x, l)) ⇐ x 6= y

Immediate consequences of the axiom (list(nat)1) and the definitions (car1) and
(cdr1) are the lemma (cons1) and its flattened version (cons1′):

(cons1) cons(car(l′), cdr(l′)) = l′ ⇐ l′ 6= nil

(cons1′) cons(x, l) = l′ ⇐ l′ 6= nil ∧ x= car(l′) ∧ l = cdr(l′)

Furthermore, let us define the Boolean function lexless : list(nat), list(nat) → bool,
which lexicographically compares lists according to the ordering of the natural
numbers, and lexlimless : list(nat), list(nat), nat → bool, its restriction to list of a
length up to a given natural number:

(lexless1) lexless(l, nil) = false
(lexless2) lexless(nil, cons(y, k)) = true
(lexless3) lexless(cons(x, l), cons(y, k)) = lexless(l, k) ⇐ x= y
(lexless4) lexless(cons(x, l), cons(y, k)) = lessp(x, y) ⇐ x 6= y

(lexlimless1) lexlimless(l, k, x) = and(lexless(l, k), lessp(length(l), x))
Such lexicographic combinations play an important rôle in well-foundedness ar-
guments of induction proofs, because they combine given well-founded orderings
into new well-founded orderings, provided there is an upper bound for the length
of the list:43

(lexlimless2) Wellf(λl, k. (lexlimless(l, k, x) = true))

Finally note that analogous axioms can be used to specify any other data type
generated by constructors, such as pairs of natural numbers or binary trees over
such pairs.

43The length limit is required because otherwise we have the following counterexample to
termination: (s(0)), (0, s(0)), (0, 0, s(0)), (0, 0, 0, s(0)), Note that the need to compare
lists of different lengths typically arises in mutual induction proofs where the two induction
hypotheses have a different number of free variables at measured positions. See [Wirth, 2004,
§ 3.2.2] for a nice example.

The Automation of Mathematical Induction 15

3.5 The Standard High-Level Method of Mathematical Induction

A mathematical proof method cannot be completely captured by its non-procedural
logic formalization; and so we need effective heuristics for actually finding proofs
by induction.

In everyday mathematical practice of an advanced theoretical journal, the com-
mon inductive arguments are hardly ever carried out explicitly. Instead, the proof
reads something like “by structural induction on n, q.e.d.” or “by (Noetherian)
induction on (x, y) over <, q.e.d.”, expecting that the mathematically educated
reader could easily expand the proof if in doubt. In contrast, difficult inductive
arguments, sometimes covering several pages,44 require considerable ingenuity and
have to be carried out.

In case of a proof on natural numbers, the experienced mathematician engineers
his proof roughly according to the following pattern:

He starts with the conjecture and simplifies it by case analysis, typically
based on the axiom (nat1). When he realizes that the current goal be-
comes similar to an instance of the conjecture, he applies the in-
stantiated conjecture just like a lemma, but keeps in mind that he
has actually applied an induction hypothesis. Finally, using the free
variables of the conjecture, he constructs some ordering whose well-
foundedness follows from the axiom Wellf(λx, y : nat. (s(x) = y)) and
in which all instances of the conjecture applied as induction hypotheses
are smaller than the original conjecture.

The hard tasks of a proof by mathematical induction are thus:

(Induction-Hypotheses Task)
to find the numerous induction hypotheses,45 and

(Induction-Ordering Task)
to construct an induction ordering for the proof, i.e. a well-founded ordering
that satisfies the ordering constraints of all these induction hypotheses in
parallel.46

The above induction method can be formalized as an application of the Theorem
of Noetherian Induction. For non-trivial proofs, mathematicians indeed prefer the
the axioms of Pieri’s specification in combination with the Theorem of Noetherian
Induction (N) to Peano’s alternative with the Axiom of Structural Induction (S),
because the instances for P and < in (N) are often still easy to find when the
instances for P in (S) are not.

44For example, such difficult inductive arguments are the proofs of Hilbert’s first ε-theorem
[Hilbert and Bernays, 1970], Gentzen’s Hauptsatz [Gentzen, 1935], and confluence theorems such
as the ones in [Gramlich and Wirth, 1996], [Wirth, 2009].

45As, e.g., in the proof of Gentzen’s Hauptsatz on Cut-elimination.

46For instance, this was the hard part in the elimination of the ε-formulas in the proof of the
1st ε-theorem in [Hilbert and Bernays, 1970], and in the proof of the consistency of arithmetic
by the ε-substitution method in [Ackermann, 1940].

16 J Strother Moore, Claus-Peter Wirth

3.6 Descente Infinie

The soundness of the induction method of § 3.5 is most easily seen when the
argument is structured as a proof by contradiction, assuming a counterexample.
For Fermat’s historic reinvention of the method, it is thus just natural that he
developed the method in terms of assumed counterexamples.47 Here is Fermat’s
Method of Descente Infinie in modern language, very roughly speaking:

A proposition P (w) can be proved by descente infinie as follows:
Show that for each assumed counterexample v of P there is a smaller
counterexample u of P w.r.t. a well-founded relation <, which does
not depend on the counterexamples.

If this method is executed successfully, we have proved ∀w. P (w) because no
counterexample can be <-minimal and so the well-foundedness of < implies that
there are no counterexamples at all.

Nowadays every logician immediately realizes that a formalization of the method
of descente infinie is obtained from the Theorem of Noetherian Induction (N)
(cf. § 3.2) simply by replacing

P (v) ⇐ ∀u<v. P (u)
with its contrapositive

¬P (v) ⇒ ∃u<v. ¬P (u).

Although it was still very hard for Fermat to obtain a positive version of his
counterexample method,48 the negation is irrelevant in our context here, which is
the one of the 19th and 20th centuries and which is based on classical logic. What
matters for us is the heuristic task of finding proofs. Therefore, we take descente
infinie in this article49 as a synonym for the modern standard high-level method
of mathematical induction described in this section.

Let us now prove the lemmas (+3) and (lessp7) of § 3.3 (in the axiomatic context
of § 3.3) by descente infinie, seen as the standard high-level method of mathema-
tical induction described in § 3.5.

47Cf. [Fermat, 1891ff.], [Mahoney, 1994], [Bussotti, 2006], [Wirth, 2010b].

48Fermat reported in his letter for Huygens that he had had problems to apply the Method
of Descente Infinie to positive mathematical statements. See [Wirth, 2010b, p. 11] and the
references there, in particular [Fermat, 1891ff., Vol. II, p. 432].

Moreover, a natural-language presentation via descente infinie (such as Fermat’s representation
in Latin) is often simpler than a presentation via the Theorem of Noetherian Induction, because
it is easier to speak of one counterexample v and to find one smaller counterexample u, than to
administrate the dependences of universally quantified variables.

49In general, in the tradition of [Wirth, 2004], descente infinie is nowadays taken as a synonym
for the standard high-level method of mathematical induction as described in § 3.5. This way of
using the term “descente infinie” is found in [Brotherston and Simpson, 2007; 2011], [Voicu and
Li, 2009], [Wirth, 2005; 2010a; 2012b; 2013].

If, however, the historical perspective before the 19th century is taken, then this identification is
not appropriate because a more fine-grained differentiation is required, such as found in [Bussotti,
2006], [Wirth, 2010b].

The Automation of Mathematical Induction 17

EXAMPLE 2 (Proof of (+3) by descente infinie).
By application of the Theorem of Noetherian Induction (N) (cf. § 3.2) with P
set to λx, y. (x+ y = y + x), and the variables v, u renamed to (x, y), (x′′, y′′),
respectively, the conjectured lemma (+3) reduces to

∃<.

(∀(x, y).
(
(x+ y = y +x) ⇐ ∀(x′′, y′′) < (x, y). (x′′+ y′′= y′′+x′′)

)
∧ Wellf(<)

)
.

Let us focus on the sub-formula x + y = y + x. Based on axiom (nat1) we can
reduce this task to the two cases x= 0 and x= s(x′) with the two goals

0+ y = y + 0; s(x′)+ y = y + s(x′);
respectively. They simplify by (+1) and (+2) to

y = y + 0; s(x′+ y) = y + s(x′);
respectively. Based on axiom (nat1) we can reduce each of these goals to the two
cases y = 0 and y = s(y′), with leaves us with the four open goals

0 = 0 + 0; s(x′+ 0) = 0 + s(x′);
s(y′) = s(y′)+ 0; s(x′+ s(y′)) = s(y′) + s(x′).

They simplify by (+1) and (+2) to
0 = 0; s(x′+ 0) = s(x′);
s(y′) = s(y′+ 0); s(x′+ s(y′)) = s(y′+ s(x′));

respectively. Now we can make immediate progress only if we instantiate the
induction hypothesis that is available in the context50 given by our above formula
in four different forms, namely we have to instantiate (x′′, y′′) with (x′, 0), (0, y′),
(x′, s(y′)), (s(x′), y′), respectively. Rewriting with these instances, the four goals
become:

0 = 0; s(0 +x′) = s(x′);
s(y′) = s(0 + y′); s(s(y′)+ x′) = s(s(x′)+ y′);

which simplify by (+1) and (+2) to
0 = 0; s(x′) = s(x′);
s(y′) = s(y′); s(s(y′+ x′)) = s(s(x′+ y′)).

Now the first three goals following directly from the reflexivity of equality, whereas
the last goal needs also an application of our induction hypothesis: This time
we have to instantiate (x′′, y′′) with (x′, y′).

Finally, we instantiate our induction ordering < to the lexicographic combi-
nation of length less than 3 of the ordering of the natural numbers. If we read
our pairs as two element lists, i.e. (x′′, y′′) as cons(x′′, cons(y′′, nil)), then we can
set < to λl, k. (lexlimless(l, k, s(s(s(0)))) = true), which is well-founded according
to (lexlimless2) (cf. § 3.4). Then it is trivial to show that (s(x′), s(y′)) is greater
than each of (x′, 0) (0, y′), (x′, s(y′)), (s(x′), y′), (x′, y′).

This completes the proof of our conjecture. ¤

50On how this availability can be understood formally, see [Autexier, 2005].

18 J Strother Moore, Claus-Peter Wirth

EXAMPLE 3 (Proof of (lessp7) by descente infinie).
In the previous proof in Example 2 we wanted to make the application of the
Theorem of Noetherian Induction most explicit, and so its presentation was rather
formal w.r.t. the underlying logic, beside the intuitive technique of focusing.

Contrary to this, let us now proceed more in the vernacular of a working mathe-
matician. Moreover, instead of p = true, let us just write p.

To prove the strengthened transitivity of lessp as expressed in lemma (lessp7)
in the axiomatic context of § 3.3, we then have to show

lessp(s(x), z) ⇐ (
lessp(x, y) ∧ lessp(y, z)

)
.

If we apply the axiom (nat1) twice to both y and z with the intention to reduce
the last literal, then, after reduction with (lessp1), the two base cases have an
atom false in their conditions, abbreviating false= true, which is false according
to (bool2), and so the base cases are true (ex falso quodlibet). The remaining case,
where we have both y = s(y′) and z = s(z′), reduces with (lessp3) to

lessp(x, z′) ⇐ (
lessp(x, s(y′)) ∧ lessp(y′, z′)

)

If we apply the induction hypothesis instantiated via {y 7→y′, z 7→z′} to match
the last atom in the condition, then we obtain the two goals

lessp(x, z′) ⇐ (
lessp(s(x), z′) ∧ lessp(x, s(y′)) ∧ lessp(y′, z′)

)

lessp(x, y′) ∨ lessp(s(x), z′) ∨ lessp(x, z′) ⇐ (
lessp(x, s(y′)) ∧ lessp(y′, z′)

)

By elimination of irrelevant literals, the first goal can be reduced to the valid con-
jecture lessp(x, z′) ⇐ lessp(s(x), z′), but we cannot obtain a lemma simpler than
our initial conjecture (lessp7) by generalization and elimination of irrelevant literals
from the second goal. This means that the application of the given instantiation
of the induction hypothesis is useless.

Thus, instead of induction-hypothesis application, we had better apply the
axiom (nat1) also to x, obtaining the cases x= 0 and x = s(x′) with the two
goals — after reduction with (lessp2) and (lessp3) —

lessp(0, z′) ⇐ lessp(y′, z′)

lessp(s(x′), z′) ⇐ (
lessp(x′, y′) ∧ lessp(y′, z′)

)
,

respectively. The first is trivial by (lessp1), (lessp2) after another application of
the axiom (nat1) to z′. The second is just an instance of the induction hypothesis
via {x7→x′, y 7→y′, z 7→z′}. As the induction ordering we can take any of the
variables of the original conjecture w.r.t. the irreflexive ordering on the natural
numbers or the successor relation.

This completes the proof of the conjecture.
Note that we also have shown that the given proof can only be successful with

the given induction hypotheses. It is actually possible to show that this simple
example — ceteris paribus — requires an induction hypothesis resulting from an
instance {x7→x′′, y 7→y′′, z 7→z′′} where, for some standard meta-level natural
number n, we have x= sn+1(x′′) ∧ y = sn+1(y′′) ∧ z = sn+1(z′′). ¤

The Automation of Mathematical Induction 19

3.7 Explicit Induction

3.7.1 From the Theorem of Noetherian Induction to Explicit Induction

To admit the realization of the standard high-level method of mathematical induc-
tion as described in § 3.5, a proof calculus should have an explicit concept of an
induction hypothesis. Moreover, it has to cope in some form with the second-order
variables P and < in the Theorem of Noetherian Induction (N) (cf. § 3.2), and also
with the second-order variable Q in the definition of well-foundedness (Wellf(<))
(cf. § 3.1).

Such an implementation needs special care regarding the calculus level and its
heuristics. For example, the best theorem provers for higher-order logic today are
still not able to prove standard inductive theorems by just adding the Theorem of
Noetherian Induction, which immediately effects an explosion of the search space.
It is indeed a main obstacle to practical usefulness of higher-order automated
theorem provers today that they are poor in mathematical induction.

Therefore, it is probable that — on the basis of the logic calculi and the com-
puter technology of the 1970s – also Boyer and Moore would have failed to imple-
ment induction via these human-oriented and higher-order features, and that they
were lucky to find a way to confine the concept of an induction hypothesis to the
internals of single reductive inference steps — namely the applications of the so-
called induction rule — and to restrict all other inference steps to quantifier-free
first-order deductive reasoning.

Described in terms of the Theorem of Noetherian Induction, this induction
rule immediately instantiates the higher-order variables P and < with first-order
predicates. This is rather straightforward for the predicate variable P, which
simply becomes the (properly simplified and generalized) quantifier-free first-order
conjecture that is to be proved by induction, and the tuple of the free first-order
variables of this conjecture takes the place of the single argument of P.

The instantiation of the higher-order variable < is more difficult: Instead of a
simple instantiation, the whole context of its two occurrences is transformed. For
the first occurrence, namely the one in the sub-formula ∀u<v. P (u), the whole
sub-formula is replaced with a conjunction of instances of P (u), for which u is know
to be smaller than v in some lexicographic combination of given orderings that are
already know to be well-founded. As a consequence, the second occurrence of <,
i.e. the one in Wellf(<), simplifies to true, and so we can completely drop the
conjunction that contains it.

At a first glance, it seems highly unlikely that there could be any framework
of proof-search heuristics in which such an induction rule could succeed in im-
plementing all applications of the Theorem of Noetherian Induction, simply be-
cause this rule has to solve the two hard tasks of an induction proof, namely the
Induction-Hypotheses Task and the Induction-Ordering Task (cf. § 3.5), right at
the beginning of the proof attempt, before the proof has been sufficiently devel-
oped to exhibit its structural difficulties.

20 J Strother Moore, Claus-Peter Wirth

Most surprisingly, but as a matter of fact, the induction rule has proved to
be most successful in realizing all applications of the Theorem of Noetherian In-
duction required within the proof-search heuristics of the Boyer–Moore waterfall
(cf. Figure 1). This has only partly to do with the poor quantifier-free first-order
logic, which limits the expressibility of induction hypotheses to a certain degree
and often requires the definition of new recursive functions, which then again
provide some guidance for the induction rule. Crucial is the possibility of having
additional lemmas that can then be proved again by induction. This is best shown
by an example.

EXAMPLE 4 (Proof of (+3) by explicit induction).
Let us prove (+3) in the context of § 3.3, just as we have done already in Ex-
ample 2 (cf. § 3.6), but now with the induction rule as the only way to apply the
Theorem of Noetherian Induction.

As the conjecture is already properly simplified and concise, we instantiate P (w)
in the Theorem of Noetherian Induction again to the whole conjecture and reduce
this conjecture by application of the Theorem of Noetherian Induction to

∃<.

(∀(x, y).
(
(x + y = y + x) ⇐ ∀(x′′, y′′)< (x, y). (x′′+ y′′= y′′+ x′′)

)
∧ Wellf(<)

)
.

Based, roughly speaking, on a termination analysis for the function +, the heuris-
tic of the induction rules of the Boyer–Moore theorem provers suggest to instanti-
ate < to λx′′, y′′, x, y. (s(x′′)= x). As this relation is known to be well-founded,
the induction rule reduces the task based on axiom (nat1) to two goals, namely
the base case 0 + y = y + 0;
and the step case (s(x′)+ y = y + s(x′)) ⇐ (x′+ y = y +x′).
This completes the application of the induction rule, and these two goals must
now be shown without the possibility to apply further instances of the induction
hypotheses.

The induction rules of the Boyer–Moore theorem provers are not able to find the
many instances we applied in the proof of Example 2. This is different for a the-
oretically more powerful, but heuristically less successful induction rule suggested
by Christoph Walther (*1950), which actually admits to execute the proof of Ex-
ample 2.51 In general, however, for harder conjectures, a simulation of descente
infinie by the induction rule of explicit induction would require an arbitrary look-
ahead into the proofs, depending on the size of the structure of these proofs; thus,
because the induction rule is understood to have a limited look-ahead into the
proofs, such a simulation would not fall under the paradigm of explicit induction
anymore. Indeed, the look-ahead of induction rules into the proofs is typically not
more than a single unfolding of a single occurrence of a recursive function symbol,
for each such occurrence in the conjecture.

Note that the two above goals of the base and the step case are exactly the ones
51See [Walther, 1993, p. 99f.]. On Page 100, the most interesting step case computed by

Walther’s induction is (rewritten to constructor-style):
s(x)+ s(y) = s(y)+ s(x) ⇐ `

x + s(y) = s(y)+ x ∧ ∀z. (z + y = y + z)
´
.

The Automation of Mathematical Induction 21

that would result from the reduction of the input conjecture by an application of
the Axiom of Structural Induction over 0 and s (cf. axiom (S) of § 3.3). Neverthe-
less, the induction rule is in general able to produce much more complicated base
and step cases than a simple structural induction on x over 0 and s.

Now the first goal is simplified again to y = y + 0, and then another application
of the induction rule results in two goals that can be proved without further
induction.

The second goal is simplified to
(s(x′+ y) = y + s(x′)) ⇐ (x′+ y = y + x′).

Now we use the condition from left to right for rewriting only the left-hand side
of the conclusion and then we throw away the condition completely, with the
intention to obtain a stronger induction hypothesis. This is the famous “cross-
fertilization” of the Boyer–Moore waterfall (cf. Figure 1). By this, the simplified
second goal reduces to

s(y +x′) = y + s(x′).
Now the induction rule triggers a structural induction on y, which is successful
without further induction.

All in all, although the induction rules of the Boyer–Moore theorem provers do
not find the more complicated induction hypotheses of the descente infinie proof
of Example 2, they are well able prove our original conjecture with the help of the
additional lemmas y = y + 0 and s(y +x′) = y + s(x′). From a logical viewpoint,
these lemmas are redundant because they follow from the original conjecture and
the definition of +. From a heuristic viewpoint, however, they are more useful
than the original conjecture, because — oriented for rewriting from right to left —
their application tends to terminate in the context of the overall simplification by
symbolic evaluation, which constitutes the first stage in the Boyer–Moore waterfall
(cf. Figure 1). ¤

Although the two proofs of the very simple conjecture (+3) given in Examples 2
and 4 can only give a very rough idea on the advantage of descente infinie for hard
induction proofs,52 these two proofs nicely demonstrate how the induction rule
of explicit induction manages to prove simple theorems very efficiently and with
additional benefits for the further performance of the simplification procedure.

Moreover, if the overall waterfall heuristic fails, the user can help any Boyer–

52For some of the advantages of descente infinie, see our Example 12 in § 5.2.6. For a more
difficult higher-order proof by descente infinie see § 3.4 of [Wirth, 2004], where a complete formal
proof of M. H. A. Newman’s famous lemma is given, i.e. the reverse of a well-founded relation is
shown to be confluent in case of local confluence by induction w.r.t. this well-founded relation
itself, a situation where explicit induction cannot even be applied.

Note that, though confluence is the Church–Rosser property, the Newman Lemma has
nothing to do with the Church–Rosser Theorem stating the confluence of the rewrite relation
of αβ-reduction in untyped λ-calculus, which has actually been verified with a Boyer–Moore
theorem prover in the first half of the 1980s by Shankar [1988], following the short Tait/Mar-
tin-Löf proof found e.g. in [Barendregt, 2012, p. 59ff.]. Unlike the Newman Lemma, Shankar’s
proof proceeds by structural induction on the λ-terms and not by Noetherian induction w.r.t.
the reverse of the rewrite relation; indeed, untyped λ-calculus in non-terminating.

22 J Strother Moore, Claus-Peter Wirth

Moore theorem prover except the Pure LISP Theorem Prover by stating
hints and additional lemmas with additional notions, which will finally help the
induction rule to prove also very hard theorems.

3.7.2 Theoretical Viewpoint

From a theoretical viewpoint, we should be aware of the possibility that the in-
tended models of specifications in explicit-induction systems, say for the natural
numbers, also include non-standard models, where — contrary to the higher-order
specifications of Peano and Pieri — there may be Z-chains in addition to the natu-
ral numbers N.53 These Z-chains cannot be excluded because all applications of
the Theorem of Noetherian Induction are confined to the induction rule, which
does not use any higher-order properties, but only well-founded orderings that are
defined in the first-order logic of the explicit-induction system,54 and because the
remaining inference rules realize only first-order deductive reasoning.

3.7.3 Practical Viewpoint

From a practical viewpoint, we have to be aware that application of the induction
rule of explicit induction is not implemented via a reference to the Theorem of
Noetherian Induction, but directly handles the following practical tasks and their
heuristic decisions.

In general, the induction stage of the Boyer–Moore waterfall (cf. Figure 1) ap-
plies the induction rule once to its input formula, which results in a conjunction
— or conjunctive set — of base and step cases to which to the input conjecture
reduces, i.e. whose validity implies the validity of the input conjecture.

Therefore, from the viewpoint of a working mathematician, the induction rule
of explicit induction has to solve the following tasks:

1. Choose some of the variables in the conjecture as induction variables, and
split the conjecture into several base and step cases, based on the induction
variables’ demand on which governing conditions and constructor substitu-
tions55 have to be added to be able to unfold some of the recursive function
calls that contain the induction variables as direct arguments without further
case analysis.

2. Eagerly generate the induction hypotheses for the step cases.
As we will see,56 the actual realization of these tasks in the induction rule is quite
different because it focuses on complete step cases including eagerly generated

53Contrary to the Z-chains, which are structures similar to the integers Z, where every element
is greater than every standard natural number, s-circles cannot exist because it is possible to
show by structural induction on x the two lemmas lessp(x, x)= false and lessp(x, sn+1(x))=
true for each standard meta-level natural number n.

54See also Note 120.
55This adding of constructor substitutions refers to the application of axioms like (nat1)

(cf. § 3.3), and is required whenever constructor style either is found in the recursive function
definitions or is to be used for the step cases. In the Pure LISP Theorem Prover, only the
latter is the case. In Thm, none of this is the case.

The Automation of Mathematical Induction 23

induction hypotheses, and generates the base case to complement the step cases
only in the very end; moreover, “induction variables” only play a very minor rôle
at the end of the procedure (in the deletion of faulty induction schemes).

3.8 Generalization

Contrary to merely deductive, analytic theorem proving, an input conjecture for
a proof by induction is not only a task (as induction conclusion) but also a tool
(as induction hypothesis) in the proof attempt. Therefore, a stronger conjecture
is often easier to prove because it supplies us with a stronger induction hypothesis
during the proof attempt.

Such a step from a weaker to a stronger input conjecture is called generalization.
Generalization is to be handled with great care because it is an unsafe reduction

step in the sense that it may reduce a valid conjecture to an invalid one; such a
reduction is called over-generalization.

Generalization is hardly needed when input conjectures are supplied by humans.
As we have seen in Example 4 of § 3.7.1, however, explicit induction often has
to start another induction during the proof, and then the secondary, machine-
generated input conjecture often requires generalization for its proof attempt to
be successful.

Syntactically, there are two kinds of generalization, namely the replacement of
terms with universal variables and the removal of irrelevant side conditions.

In the vernacular of Boyer–Moore theorem provers, the first is simply called
“generalization” and the second is called “elimination of irrelevance”. They are
dealt with in two consecutive stages of these names in the Boyer–Moore waterfall,
which come right before the induction stage.

We will use the technical term “generalization” in this article from now on only
in the narrower sense that is standard in explicit induction.

The removal of irrelevant side conditions is intuitively clear. For formulas in
clausal form, it simply means to remove irrelevant literals. More interesting are
the heuristics of its realization, which we discuss in § 5.3.5.

The less clear process of generalization typically proceeds by the replacement
of all occurrences of a non-variable term with a fresh variable.

This is especially promising for a subsequent induction if the same non-variable
term t has multiple occurrences in the conjecture, and becomes even more promis-
ing if these occurrences are found on both sides of the same positive equation or in
literals of different polarity, say in a conclusion and a condition of an implication.

To avoid over-generalization, sub-terms are to be preferred to their super-terms,
and one should never generalize if t is of any of the following forms: a constructor
term, a top level term, a term with a logical operator (such as implication or equal-
ity) as top symbol, a direct argument of a logical operator, or the first argument
of a conditional (IF). In any of these cases, the information loss by generalization

56See, e.g., Example 10 of § 4.5.

24 J Strother Moore, Claus-Peter Wirth

is typically so high that it probably results in an invalid conjecture.
How powerful generalization can be is best seen by the multitude of its successful

applications, which often surprise the human users. Here is one of these:

EXAMPLE 5 (Proof of (ack4) by Explicit Induction and Generalization).
Let us prove (ack4) in the context of § 3.3 by explicit induction. It is obvious
that such a proof has to follow the definition of ack in the three cases (ack1),
(ack2), (ack3), using the termination ordering of ack, which is just the lexicographic
combination of its arguments. So the induction rule of all Boyer–Moore theorem
provers except the Pure LISP Theorem Prover reduces the input formula
(ack4) to the following goals:57

lessp(y, ack(0, y)) = true;
lessp(0, ack(s(x′), 0))= true ⇐ lessp(s(0), ack(x′, s(0)))= true;
lessp(s(y′), ack(s(x′), s(y′))) = true

⇐
(

lessp(y′, ack(s(x′), y′)) = true
∧ lessp(ack(s(x′), y′), ack(x′, ack(s(x′), y′)))= true

)
.

After simplifying with (ack1), (ack2), (ack3), respectively, we obtain:
lessp(y, s(y)) = true;
lessp(0, ack(x′, s(0)))= true ⇐ lessp(s(0), ack(x′, s(0)))= true;
lessp(s(y′), ack(x′, ack(s(x′), y′)))= true

⇐
(

lessp(y′, ack(s(x′), y′)) = true
∧ lessp(ack(s(x′), y′), ack(x′, ack(s(x′), y′)))= true

)
.

Now the base case is simply an instance of our lemma (lessp4). Let us simplify
the two step cases by introducing variables for their common subterms:

lessp(0, z)= true ⇐ (
lessp(s(0), z) = true ∧ z = ack(x′, s(0))

)
;

lessp(s(y′), z2)= true ⇐
(

lessp(y′, z1)= true ∧ lessp(z1, z2)= true
∧ z1 = ack(s(x′), y′) ∧ z2 = ack(x′, z1)

)
.

Now the first follows from applying (nat1) to z. Before we can prove the second
by another induction, however, we have to generalize it to the lemma (lessp7) of
§ 3.3 by deleting the last two literals from the condition. ¤

In combination with explicit induction, generalization becomes especially powerful
in the invention of new lemmas of general interest, because the step cases of explicit
induction tend to have common occurrences of the same term in their conclusion
and their condition. Indeed, the lemma (lessp7), which we have just discovered
in Example 5, is one of the most useful lemmas in the theory of natural numbers.

It should be noted that all Boyer–Moore theorem provers except the Pure LISP
Theorem Prover are able to do this whole proof completely automatically and
invent the lemma (lessp7) by generalization of the the second step case; and they
do this even when they work with an arithmetic theory that was redefined, so that
no decision procedures or other special knowledge on the natural numbers can be
used by the system. Moreover, as shown in § 3.3 of [Wirth, 2004], in a slightly richer
logic, these heuristics would additionally admit to synthesize the lower bound in

57See Example 10 of § 4.5 on how these step cases are actually found in explicit induction.

The Automation of Mathematical Induction 25

the first argument of lessp from the input conjecture ∃z. (lessp(z, ack(x, y))= true),
simply because lessp does not contribute to the choice of the base and step cases.

3.9 Proof-Theoretical Peculiarities of Mathematical Induction

The following two proof-theoretical peculiarities of induction compared to first-
order deduction may be considered noteworthy:58

• A calculus for arithmetic cannot be complete, simply because the theory of
the arithmetic of natural numbers is not enumerable.59

• According to Gentzen’s Hauptsatz,60 a proof of a first-order theorem can
always be restricted to the “sub”-formulas of this theorem. In contrast to
lemma application in a deductive proof tree, however, the application of
induction hypotheses and lemmas inside an inductive reasoning cycle cannot
generally be eliminated in the sense that the “sub”-formula property could
be obtained.61 As a consequence, in first-order inductive theorem proving,
“creativity” cannot be restricted to finding just the proper instances, but
may require the invention of new lemmas and notions.62

3.10 Conclusion

In this section, after briefly presenting the induction method in its rich historical
context, we have offered a formalization and a first practical description. More-
over, we have explained why we can take Fermat’s term “descente infinie” in our
modern context as a synonym for the standard high-level method of mathematical
induction. Finally, we have introduced to explicit induction and generalization.

Noetherian induction requires domains for its well-founded orderings; and these
domains are typically built-up by constructors. Therefore, the discussion of the
method of induction required the introduction of some paradigmatic data types,
such as natural numbers and lists.

To express the relevant notions in these data types, we need recursion, a method
of definition, which we have often used in this section intuitively. We did not
discuss its formal admissibility requirements, however, which we will do in § 4,
with a focus on modes of recursion that admit an effective consistency test, in-
cluding termination aspects such as induction templates and schemes.

58Note, however, that these peculiarities of induction do not make a difference to first-order
deductive theorem proving in practice. See Notes 59 and 62.

59This theoretical result is Gödel’s first incompleteness theorem [1931]. In practice, however,
it does not matter whether our proof attempt fails because our theorem will not be enumerated
ever, or will not be enumerated before doomsday.

60Cf. [Gentzen, 1935].
61Cf. [Kreisel, 1965].
62In practice, however, we have to extend our proof search to additional lemmas and notions

anyway, and it does not really matter whether we have to do this for principled reasons (as in
induction) or for tractability (as required in first-order deductive theorem proving, cf. [Baaz and
Leitsch, 1995]).

26 J Strother Moore, Claus-Peter Wirth

4 RECURSION AND TERMINATION

Recursion is a form of programming or definition where a newly defined notion
may even occur in its definientia. Contrary to explicit definitions, where we can
always get rid of the new notions by reduction (i.e. by rewriting the definienda
(left-hand sides of the defining equations) to the definientia (right-hand sides)),
reduction with recursive definitions may run forever.

We have already seen some recursive function definitions in §§ 3.3 and 3.4, such
as the ones of +, lessp, length, and count, where these function symbols occurred in
some of the right-hand sides of the equations of their own definitions; for instance,
the function symbol + occurs in the right-hand side of (+2) in § 3.3.

4.1 Confluence

The restriction that is to be required for every recursive function definition is
the confluence63 of the rewrite relation that results from reading the defining
equations as reduction rules, in the sense that they admit us to replace occurrences
of left-hand sides of instantiated equations with their respective right-hand sides,
provided that their conditions are fulfilled.64

The confluence restriction guarantees that no distinct objects of the data types
can be equated by the recursive function definitions.65 If we assume axioms such
as (nat2–3) (cf. § 3.3) or (list(nat)2–3) (cf. § 3.4), then this restriction is essential
for consistency.

Indeed, without confluence, a definition of a recursive function could destroy the
data type in the sense that the specification has no model anymore; for example,
if we added p(x) = 0 as a further defining equation to (p1), then we would get
s(0) = p(s(s(0))) = 0, in contradiction to the axiom (nat2) of § 3.3.

For the recursive function definitions admissible in the Boyer–Moore theorem
provers, confluence results from the restrictions that there is only one (uncondi-
tional) defining equation for each new function symbol,66 and that all variables
occurring on the right-hand side of the definition also occur on the left-hand side
of the defining equation.67

63A relation −→ is confluent (or has the “Church–Rosser property”) if two sequences of steps
with −→, starting from the same element, can always be joined by an arbitrary number of further

steps on each side; formally:
+←−◦ +−→ ⊆ ∗−→◦ ∗←−. Here←− = −→−1 is the reverse relation

of −→ (cf. § 3.1).
+−→ is the transitive closure of −→, which admits an arbitrary positive number

of steps with −→; and
∗−→ is the reflexive closure of

+−→, which additionally admits us to do no
step at all. Finally, ◦ is the concatenation of binary relations.

64For the technical meaning of fulfilledness in the recursive definition of the rewrite relation
see [Wirth, 2009], where it is also explained why the rewrite relation respects the straightforward
purely logical semantics of positive/negative-conditional equation equations.

65As constructor terms are irreducible w.r.t. this rewrite relation, if the application of a defined
function symbol rewrites to two constructor terms, these constructor terms must be identical in
case of confluence.

66Cf. Item (a) of the “definition principle” of [Boyer and Moore, 1979, p. 44f.]. Confluence is
also discussed under the label “uniqueness” on Page 87ff. of [Moore, 1973].

The Automation of Mathematical Induction 27

These two restrictions are an immediate consequence of the general definition
style of list programming language LISP. More precisely, recursive functions are
to be defined in all Boyer–Moore theorem provers in the more restrictive style of
applicative LISP.68

EXAMPLE 6 (A Recursive Function Definition in Applicative LISP).
To avoid the association of routine knowledge, let us not consider a function defini-
tion over lists (as standard in LISP), but over the natural numbers. For example,
instead of our two equations (+1), (+2) for +, we find the following single equa-
tion on Page 53 in the standard reference for the Boyer–Moore heuristics [Boyer
and Moore, 1979]:

(PLUS X Y) = (IF (ZEROP X)
(FIX Y)
(ADD1 (PLUS (SUB1 X) Y)))

Note that (IF x y z) is nothing but the conditional “IF z then y else z”, that
ZEROP is a Boolean function checking for being zero, that (FIX Y) returns Y
if Y is a natural number, and that ADD1 is the successor function s.

The primary difference to (+1), (+2) is that PLUS is defined in destructor style
instead of the constructor style of our equations (+1), (+2) in § 3.3. As there is
no essential semantical difference between these two styles, let us transform our
definition of + from (+1), (+2) into destructor style.

In place of the untyped destructor SUB1, let us use the typed destructor p
defined by either by (p1) or by (p1′) of § 3.3, which — just as SUB1 — returns
the predecessor of a positive natural number. Now our destructor-style definition
of + consists of the following two positive/negative-conditional equations:
(+1′) x+ y = y ⇐ x= 0
(+2′) x+ y = s(p(x)+ y) ⇐ x 6= 0

If we compare this definition of + to the one via the equations (+1), (+2), then
we find that the constructors 0 and s have been removed from the left-hand sides of
the defining equations; they are replaced with the destructor p on the right-hand
side and with some conditions.

Now it is easy to see that (+1′), (+2′) represent the above definition of PLUS
in positive/negative-conditional equations, provided that we ignore that Boyer–
Moore theorem provers have no types and no typed variables. ¤

If we considered the recursive equation (+2) together with the alternative recursive
equation (+2′), then we could rewrite s(x)+ y on the one hand with (+2) into
s(x+ y), and, on the other hand, with (+2′) into s(p(s(x))+ y). This does not
seem to be problematic, because the latter result can be rewritten to the former

67Cf. Item (c) of the “definition principle” of [Boyer and Moore, 1979, p. 44f.].
68Cf. [McCarthy et al., 1965] for the definition of LISP. The “‘applicative” subset of LISP

lacks the imperative commands of LISP, such as variants of PROG, SET, GO, and RETURN, as well as
all functions or special forms that depend on the concrete allocation on the system heap, such as
EQ, RPLACA, and RPLACD, which can be used in LISP to realize circular structures or to save space
on the system heap.

28 J Strother Moore, Claus-Peter Wirth

one by (p1). In general, however, confluence is undecidable and criteria sufficient
for confluence are extremely hard to develop.

The only decidable criterion that is sufficient for confluence of positive/negative-
conditional equations and applies to all our example specifications, but does not
require termination, is found in [Wirth, 2009]. It can be more easily tested than
the admissibility conditions of the Boyer–Moore theorem provers and avoids di-
vergence even in case of non-termination; only the proof that it indeed guarantees
confluence is very involved.

4.2 Termination and Reducibility

There are two restrictions that are additionally required for any function definition
in the Boyer–Moore theorem provers, namely termination of the rewrite relation
and reducibility of all ground terms w.r.t. the rewrite relation.

The requirement of termination should be intuitively clear; we will further
discuss it in § 4.4.

To understand the requirement of reducibility, note that it is not only so that we
can check the soundness of (+1′) and (+2′) independently from each other, we can
even omit one of the equations, resulting in a partial definition of the function +.
Indeed, for the function p we did not specify any value for p(0); so p(0) is not
reducible in the rewrite relation that results from reading the specifying equations
as reduction rules.

A function defined in a Boyer–Moore theorem prover, however, must always
be specified completely, in the sense that every application of such a function
to (constructor) ground terms must be reducible. This reducibility immediately
results from the LISP definition style, which requires all arguments of the function
symbol on the left-hand side of its defining equation to be distinct variables.69

4.3 Constructor Variables

The two further restrictions of the Boyer–Moore theorem provers, namely reducibi-
lity and termination of the rewrite relation that results from reading the specifying
equations as reduction rules, are not essential, neither for the semantics of recur-
sive function definitions with data types given by constructors,70 nor for confluence
and consistency.71

Note that these two additional restrictions imply that only total recursive func-
tions72 are admissible in the Boyer–Moore theorem provers.

As termination, the second of these restrictions, is not in the spirit of the LISP
logic of the Boyer–Moore theorem provers, we have to ask why Boyer and Moore
brought up these two additional restrictions.

69Cf. Item (b) of the “definition principle” of [Boyer and Moore, 1979, p. 44f.].
70Cf. [Wirth and Gramlich, 1994b].
71Cf. [Wirth, 2009].
72You may follow the explicit reference to [Schoenfield, 1967] as the basis for the logic of the

Pure LISP Theorem Prover on Page 93 of [Moore, 1973].

The Automation of Mathematical Induction 29

Of course, when these restrictions are both satisfied, then — similar to the
classical case of explicitly defined notions — we can get rid of all recursively defined
function symbols by rewriting, but in general only in terms without variables.

A better potential answer is found on Page 87ff. of [Moore, 1973], where con-
fluence of the rewrite relation is discussed and a reference to Russell’s Paradox
serves as an argument that confluence alone would not be sufficient for consistency.
The argumentation is essentially the following: First, a Boolean function russell
is recursively defined by
(russell1) russell(b) = false ⇐ russell(b) = true
(russell2) russell(b) = true ⇐ russell(b) = false

Then it is claimed that this function definition would result in an inconsistent
specification on the basis of the axioms (bool1–2) of § 3.4.

This inconsistency, however, arises only if the variable b of the axiom (bool1)
can be instantiated with the term russell(b), which is actually not our intention
and which we do not have to permit: If all variables we have introduced so far
are constructor variables73 in the sense that they can only be instantiated with
terms formed from constructor function symbols (incl. constructor constants) and
constructor variables, then irreducible terms such as russell(b) can denote junk
objects different from true and false, and no inconsistency arises.74

Note that these constructor variables are implicitly part of the LISP semantics
with its innermost evaluation strategy. For instance, in Example 6 of § 4.1, neither
the LISP definition of PLUS nor its representation via the positive/negative-condi-
tional equations (+1′), (+2′) is intended to be applied to a non-constructor term
in the sense that X or x should be instantiated to a term that is a function call of
a (partially) defined function symbol that may denote a junk object.

Moreover, there is evidence that Moore considered the variables already in 1973
as constructor variables: On Page 87 in [Moore, 1973], we find formulas on de-
finedness and confluence, which make sense only for constructor variables; the one
on definedness of the Boolean function AND reads

∃Z (COND X (COND Y T NIL) NIL) = Z,
which is trivial for a general variable Z and makes sense only if Z is taken to be a
constructor variable.

Finally, the termination as it is established via induction templates in the Boyer–
Moore theorem provers except the Pure LISP Theorem Prover, and as we will
describe it in § 4.4, holds for the rewrite relation of the defining equations only if
we consider the variables of these equations to be constructor variables (or if we
restrict the termination result to an innermost rewriting strategy and require that
all function definitions are total).

73Such constructor variables were formally introduced in [Wirth et al., 1993] and became an
essential part of the frameworks found in [Wirth and Gramlich, 1994a; 1994b], [Kühler and Wirth,
1996; 1997], [Wirth, 1997; 2009] [Kühler, 2000], [Avenhaus et al., 2003], and in [Schmidt-Samoa,
2006a; 2006b; 2006c].

74For the appropriate semantics see in particular [Wirth and Gramlich, 1994b], and [Kühler
and Wirth, 1997].

30 J Strother Moore, Claus-Peter Wirth

4.4 Termination and General Induction Templates

In addition to LISP definition style, the theorem provers for explicit induction
require termination of the rewrite relation that results from reading the specifying
equations as reduction rules. More precisely, in all Boyer–Moore theorem provers
except the Pure LISP Theorem Prover,75 before a new function symbol fk is
admitted to the specification, a “valid induction template” — which immediately
implies termination — has to be constructed from the defining equation of fk.76

Induction templates were first used in Thm and received their name when they
were first described in [Boyer and Moore, 1979].

Every time a new recursive function fk is defined, systems for explicit reduction
immediately try to construct valid induction templates; if the system does not find
any, then the new function symbol is rejected w.r.t. the given definition; otherwise
the system stores a link from the function name to its valid induction templates.

The induction templates actually serve two purposes: as witnesses for termina-
tion and as the basic tools of the induction rule of explicit induction for generating
the step cases.

For a finite number of mutually recursive functions fk with arity nk (k∈K),
an induction template in the most general form consists of the following:

1. A relational description77 of the changes in the argument pattern of these
recursive functions as found in their recursive defining equations:

For each k ∈ K and for each positive/negative-conditional equation with
left-hand side fk(t1, . . . , tnk

), we take the set R of recursive function calls of
the fk′ (k′ ∈K) occurring in the right-hand side or the condition, and some
case condition C, which must be implied by the condition of the defining
equation. Typically, C is empty (i.e. always true) (in case of constructor
style definitions) or just a sub-conjunction of the condition of the equation,
which is sufficient to admit a proper destructor application.

Together they form the triple (fk(t1, . . . , tnk
), R, C), and a set containing

such a triple for each such defining equation forms the relational description.

For our definition of + with (+1), (+2) in § 3.3, there is only one recursive
equation and only one relevant relational description, namely the following
one with an empty case condition:{ (

s(x)+ y, {x+ y}, ∅) }
.

Also for our definition of + with (+1′), (+2′) in Example 6, there is only
one recursive equation and only one relevant relational description, namely{ (

x + y, {p(x)+ y}, x 6= 0
) }

.

75Note that termination is not proved in the Pure LISP Theorem Prover; instead, the sound-
ness of the induction proofs comes with the proviso that all the rewrite relation of all defined
function symbols terminate.

76See also Item (d) of the “definition principle” of [Boyer and Moore, 1979, p. 44f.] for a for-
mulation that avoids the technical term “induction template”.

77The name “relational description” comes from [Walther, 1992; 1993].

The Automation of Mathematical Induction 31

2. For each k ∈ K, a variable-free weight term wfk
containing the position

numbers {(1), . . . , (nk)} instead of variables. The position numbers actually
occurring in the term are called the measured positions.

For our two relational descriptions, only the weight term (1) (consisting just
of a position number) makes sense as w+, resulting in the set of measured
positions {1}. Indeed, + terminates in both definitions because the argu-
ment in the first position gets smaller.

3. A binary predicate < that is known to represent a well-founded relation.

For our two relational descriptions, the predicate λx, y. (lessp(x, y)= true),
is appropriate.

Now, an induction template is valid if for each element of the relational description
as given above, and for each fk′(t′1, . . . , t

′
nk′

) ∈ R, the following conjecture is valid:

wfk′{(1)7→t′1, . . . , (nk′)7→t′nk′
} < wfk

{(1)7→t1, . . . , (nk) 7→tnk
} ⇐ C.

For our two relational descriptions, this amounts to showing lessp(x, s(x)) and
lessp(p(x), x) ⇐ x 6= 0, respectively; so their templates are both valid.

EXAMPLE 7 (Two Induction Templates with different Measured Positions).
For the ordering predicate lessp as defined by (lessp1–3) of § 3.3, we get two ap-
propriate induction templates with the sets of measured positions {1} and {2},
respectively, both with the relational description{ (

lessp(s(x), s(y)), {lessp(x, y)}, ∅) }
,

and both with the well-founded ordering λx, y. (lessp(x, y)= true). The first tem-
plate has the weight term (1) and the second one has the weight term (2). The
validity of both templates is given by lemma (lessp4) of § 3.3. ¤

EXAMPLE 8 (One Induction Template with Two Measured Positions).
For the Ackermann function ack as defined by (ack1–3) of § 3.3, we get only
one appropriate induction template. The set of its measured positions is {1, 2},
because of the weight function cons((1), cons((2), nil)), which we will abbreviate
in the following with [(1), (2)]. The well-founded relation is the lexicographic
ordering λl, k. (lexlimless(l, k, s(s(s(0))))= true). The relational description has
two elements: For the equation (ack2) we get(

ack(s(x), 0), {ack(x, s(0))}, ∅)
,

and for the equation (ack3) we get(
ack(s(x), s(y)), {ack(s(x), y), ack(x, ack(s(x), y))}, ∅)

.
The validity of the template is expressed in the three equations

lexlimless([x, s(0)], [s(x), 0], s(s(s(0)))) = true;
lexlimless([s(x), y], [s(x), s(y)], s(s(s(0)))) = true;
lexlimless([x, ack(s(x), y)], [s(x), s(y)], s(s(s(0)))) = true;

which follow deductively from (lessp4), (lexlimless1), (lexless2–4), (length1–2). ¤

For valid induction templates of destructor-style definitions see Examples 18 and 19
in § 5.3.7.

32 J Strother Moore, Claus-Peter Wirth

That the existence a valid induction template for a new set of recursive func-
tions fk (k∈K) actually implies termination of the rewrite relation on ground
terms given after addition of the new equations for the fk can be executed in any
model of the old specification as follows:

For a reductio ad absurdum, suppose that there is an infinite sequence of rewrite
steps on ground terms. Let us now consider each term to be replaced with the
multiset of the weight terms for its function calls for fk with k∈K. Then the
rewrite steps with the old equations of previous function definitions (of symbols
not among the fk) can only change the multiset by deleting some elements for the
following two reasons:

1. The new function symbols do not occur in the old equations.

2. We consider all our variables to be constructor variables as explained in § 4.3.

Moreover, a rewrite step with a new equation reduces the multiset in the well-
founded relation given by the multiset extension of the well-founded relation of the
template in the assumed model of the old specification, because of the fulfilledness
of the conditions of the equation and the validity of the template. Thus, in each
rewrite step, the the multiset gets smaller in a well-founded ordering or does not
change. Moreover, if we assume that rewriting with the old equations terminates,
then the new equations must be applied infinitely often in this sequence, and so the
multiset gets smaller in infinitely many steps, which is impossible in a well-founded
ordering.

4.5 Induction Templates for Explicit Induction

We restrict the discussion in this section to recursive functions that are not mutu-
ally recursive, partly for simplicity and partly because explicit induction is hardly
helpful for finding proofs involving mutually recursive functions.

Thus, all the fk with arity nk of § 4.4 simplify to one symbol f with arity n.
Moreover, under this restriction it is easy to partition the measured positions of a
template into “changeable” and “unchangeable” ones.78

Changeable are those measured positions i of the template which sometimes
change in the recursion, i.e. for which there is a triple (f(t1, . . . , tn), R,C) in
the relational description of the template, and an f(t′1, . . . , t

′
n) ∈ R such that

t′i 6= ti. The remaining measured positions of the template are called unchangeable.
Unchangeable positions typically result from the inclusion of a global variable into
the argument list of a function for observing applicative programming style.

To improve the applicability of the induction hypotheses of the step cases pro-
duced by the induction rule, these induction hypotheses should mirror the recursive
calls of the unfolding of the definition of a function f occurring in the induction
rule’s input formula, say

A[f(t′′1 , . . . , t′′n)].

78This partition into changeable and unchangeable positions (actually: variables) originates in
[Boyer and Moore, 1979, p. 185f.].

The Automation of Mathematical Induction 33

An induction template is applicable to the indicated occurrence of its function
symbol f if the terms t′′i at the changeable positions i of the template are dis-
tinct variables and none of these variables occurs in the terms t′′i′ that fill the
unchangeable positions i′ of the template.79 For templates of constructor-style
equations we additionally have to require here that the first element f(t1, . . . , tn)
of each triple of the relational description of the template matches (f(t′′1 , . . . , t′′n))ξ
for some constructor substitution ξ that may replace the variables of f(t′′1 , . . . , t′′n)
with constructor terms, i.e. terms consisting of constructor symbols and variables,
such that t′′i ξ = t′′i for each unchangeable position i of the template.

EXAMPLE 9 (Applicable Induction Templates).
Let us consider the conjecture (ack4) from § 3.3. From the three induction tem-
plates of Examples 7 and 8, only the one of Example 8 is applicable. The two
of Example 7 are not applicable because lessp(s(x), s(y)) cannot be matched to
(lessp(y, ack(x, y)))ξ for any constructor substitution ξ. ¤

For every recursive call f(t′j′,1, . . . , t
′
j′,n) in a positive/negative-conditional equa-

tion with left-hand side f(t1, . . . , tn), the relational description of an induction
template for f contains a triple

(
f(t1, . . . , tn), { f(t′j,1, . . . , t

′
j,n) | j ∈ J }, C

)
,

such that j′ ∈ J.
Let us assume that the induction template is valid and applicable to the occur-

rence indicated in the input formula. Let σ be the substitution whose domain are
the variables of f(t1, . . . , tn) and which matches the first element f(t1, . . . , tn) of
the triple to (f(t′′1 , . . . , t′′n))ξ for some constructor substitution ξ whose domain are
the variables of f(t′′1 , . . . , t′′n), such that t′′i ξ = t′′i for each unchangeable position i
of the template. Then we have tiσ = t′′i ξ for i ∈ {1, . . . , n}.

Now, for the well-foundedness of the step case(
(A[f(t′′1 , . . . , t′′n)])ξ ⇐ ∧

j∈J (A[f(t′′1 , . . . , t′′n)])µj

) ⇐ Cσ,

to be implied by the validity of the induction template, we have to find substitu-
tions µj whose domain dom(µj) is the set of variables of f(t′′1 , . . . , t′′n), such that
the constraint t′′i µj = t′j,iσ is satisfied for each measured position i of the template
and j ∈ J.

If i is an unchangeable position of the template, then we have ti = t′j,i and
t′′i ξ = t′′i . Therefore, we can satisfy the constraint by requiring µj to be the identity
on the variables of t′′i , simply because then we have t′′i µj = t′′i = t′′i ξ = tiσ = t′j,iσ.

If i is a changeable position, then we know by the applicability of the template
that t′′i is a variable not occurring in another changeable or unchangeable position
in f(t′′1 , . . . , t′′n), and we can satisfy the constraint by defining t′′i µj := t′j,iσ.

On the remaining variables of f(t′′1 , . . . , t′′n), we define µj in a way that we
get t′′i µj = t′j,iσ for as many unmeasured positions i as possible, and otherwise
as the identity. This is not required for soundness but it improves the likeli-
ness of applicability of the induction hypothesis (A[f(t′′1 , . . . , t′′n)])µj after unfold-
ing f(t′′1 , . . . , t′′n)ξ in (A[f(t′′1 , . . . , t′′n)])ξ. Note that such an eager instantiation is

79This definition of applicability originates in [Boyer and Moore, 1979, p. 185f.].

34 J Strother Moore, Claus-Peter Wirth

required in explicit induction unless the logic admits one of the following: existen-
tial quantification, existential variables,80 lazy induction-hypothesis generation.

An induction scheme for the given input formula is now obtained from the
given information as follows: Each triple in the relational description of the con-
sidered form is replaced with the triple

(
ξ, { µj | j ∈ J }, Cσ

)
, the weight

term is replaced with the set of induction variables, which are the variables at the
the changeable positions in f(t′′1 , . . . , t′′n). The well-founded relation is dropped.
Moreover, we add a set containing the position of f(t′′1 , . . . , t′′n) in A[f(t′′1 , . . . , t′′n)].
Finally, we add the hitting ratio of all substitutions µj with j ∈ J :

|{ (j, i) ∈ J×{1, . . . , n} | t′iµj = tj,iσ }|
|J×{1, . . . , n}| ,

where J actually has to be the disjoint sum over all the J occurring as index sets
of second elements of triples like the one above.

EXAMPLE 10 (Induction Schemes).
The template for ack of Example 8 is the only one that is applicable to (ack4)
according to Example 9 and gives rise to the following induction scheme. The
set containing the position of occurrence is {1.2} (left-hand side, second subterm)
and the set of induction variables is {x, y}, because both positions are changeable.
The relational description is replaced with

{
(ξ1, {µ1}, ∅), (ξ2, {µ2,1, µ2,2}, ∅)

}
.

From matching the first element of the first triple of the relational description to
the position in the input formula we get (ack(s(x), 0))σ1 = (ack(x, y))ξ1, i.e.
ξ1 = {x7→s(x′), y 7→0} and σ1 = {x 7→x′} as both positions of the template
are changeable, and thus we get the constraint (ack(x, y))µ1 = (ack(x, s(0)))σ1,
i.e. µ1 = {x7→x′, y 7→s(0)}. This results in the step case

lessp(0, ack(s(x′), 0))= true ⇐ lessp(s(0), ack(x′, s(0)))= true.

From matching the first element of the second triple of the relational description
to the position in the input formula we get (ack(s(x), s(y)))σ2 = (ack(x, y))ξ2,
i.e. ξ2 = {x7→s(x′), y 7→s(y′)} and σ2 = {x7→x′, y 7→y′}. Moreover, we get the
constraints (ack(x, y))µ2,1 = (ack(s(x), y))σ2;

(ack(x, y))µ2,2 = (ack(x, ack(s(x), y)))σ2;
i.e. µ2,1 = {x7→s(x′), y 7→y′} and µ2,2 = {x7→x′, y 7→ack(s(x′), y′)}. This results
in the step case

lessp(s(y′), ack(s(x′), s(y′))) = true

⇐
(

lessp(y′, ack(s(x′), y′)) = true
∧ lessp(ack(s(x′), y′), ack(x′, ack(s(x′), y′)))= true

)
.

The hitting ratio is 6
6 = 1. ¤

80Existential variables are called “free variables” in modern tableau systems (see the
2nd rev. edn. [Fitting, 1996], but not its 1st edn. [Fitting, 1990]) and occur with extended func-
tionality under different names in the inference systems of [Wirth, 2004; 2012b; 2012c].

The Automation of Mathematical Induction 35

5 AUTOMATED EXPLICIT INDUCTION

5.1 The Application Context of Automated Explicit Induction

Since the upcoming of programmable computing machinery in the middle of the
20th century, a major problem of hard- and software has been and still is the
uncertainty whether they actually always do what they should do.

The only viable solution to this problem seems to be the following verification
approach:

Specify the intended functionality in a language of formal logic, and
then supply a formal proof that the program actually satisfies the speci-
fication!

Such an approach requires a formal specification of the hardware or of the involved
programming languages.81

The crucial problem, however, are the costs of the many proofs of the huge
amounts of application hard- and software in our market-oriented economies.
Thus, for our times and in our economical system, we can expect a verification only
in areas where the managers know that mere testing does not suffice and where
the bugs in the hard- or software have shown to produce more costs than the ver-
ification process. Good candidates for this are central processing units (CPUs) in
standard processors.82

To reduce the costs of verification, we can hope to automate it with automa-
ted theorem-proving systems; this has to include an automation of mathematical
induction because most data types applied in programming, such as natural num-
bers, pairs, arrays, lists, and trees, require induction for the verification of their
properties. Up to a completely unexpected breakthrough in the future, however,
the verification of a new hard- or software system will always require human users
who help the theorem-proving systems to explore and develop the notions and
theories that properly match the new system or theory. Already today, however,
ACL2 achieves a complete automation when re-running the proofs for an already
verified CPU after a minor update.

81To simplify matters, we assume here that none of the components of the physical hardware
is broken and that the computing machinery is situated at a place where we can neglect the
perturbation by the environment. Under this assumption, the task of showing that the hard-
and software actually implements the intended functionality can be made concrete as we do it
here — at least in principle.

To be complete, such an approach would also require a verification that the verification system
is sound and that the implementation of the programming languages (via interpreters or com-
pilers) actually follow their specifications. To reduce the complexity of the approach, we could
restrict ourselves to a single programming language which is very close to the formal logics of
the verification system and admits a simple implementation.

82Although the costs for the verification of CPUs are economically maintainable, a company in
a market-oriented economy may have problems with these relatively small extra costs, because
their competitors may be able to offer slightly lower prices and push that company out of the
market. Even the economical ruin of some of these competitors because of the liabilities for their
faulty processing units does not guarantee a future success of verification in the business.

36 J Strother Moore, Claus-Peter Wirth

5.2 The Pure LISP Theorem Prover

Our overall task is to answer — from a historical perspective — the question:
How could Robert S. Boyer and J Strother Moore — starting virtually
from zero83 in the middle of 1972 — actually invent their outstanding
solutions to the hard heuristic problems in the automation of induc-
tion and implement them in the sophisticated theorem prover Thm as
described [Boyer and Moore, 1979]?

As already described in § 1, the breakthrough in the heuristics for automated
theorem proving was achieved with the “Pure LISP Theorem Prover”, devel-
oped and implemented by Boyer and Moore. It was presented by Moore at the
third IJCAI, which took place in Stanford (CA) in August 1973,84 but it is best
documented in Part II of Moore’s PhD thesis [1973], defended in November 1973.

The Pure LISP Theorem Prover is given no name in the before-mentioned
publications. The only occurrence of the name in publication seems to be in
[Moore, 1975, p.1], where it is actually called “the Boyer–Moore Pure LISP
Theorem Prover”.

To understand the achievements a bit better, let us now discuss the material
of Part II of Moore’s PhD thesis in some detail, because it provides some expla-
nation on how Boyer and Moore could be so surprisingly successful. Especially
helpful for understanding the process of creation are those procedures of the Pure
LISP Theorem Prover that are provisional w.r.t. to their refinement in later
Boyer–Moore theorem provers. Indeed, these provisional procedures help to de-
compose the giant leap from nothing to Thm, which has no parallel in the history
of automated theorem proving, to steps of a more comprehensible size.

As W. W. Bledsoe (1921–1995) was Boyer’s PhD advisor, it is likely that Boyer
was building the Pure LISP Theorem Prover on the advanced standpoint in
the automation of theorem proving that Bledsoe had developed and taught.85

83No heuristics at all were explicitly described, for instance, in Burstall’s considerations of the
year 1968 on program verification by induction over recursive functions in [Burstall, 1969], where
the proofs were not even formal, and an implementation seemed to be more or less utopian:

“The proofs presented will be mathematically rigorous but not formalised to the point
where each inference is presented as a mechanical application of elementary rules of
symbol manipulation. This is deliberate since I feel that our first aim should be to
devise methods of proof which will prove the validity of non-trivial programs in a
natural and intelligible manner. Obviously we will wish at some stage to formalise the
reasoning to a point where it can be performed by a computer to give a mechanised
debugging service.” [Burstall, 1969, p. 41]

Still in 1972, all known implementations of automated inductive theorem provers based on re-
cursive functions (we know only of the ones of W.W. Bledsoe and Robert S. Boyer) were just
able to apply the Axiom of Structural Induction (S) of § 3.3 to a randomly picked variable of
type nat, which is not worth mentioning in comparison with the Boyer–Moore theorem provers.

84Cf. [Boyer and Moore, 1973].
85On Page 172 of [Moore, 1973] we read on the Pure LISP Theorem Prover:

“The design of the program, especially the straightforward approach of ‘hitting’ the
theorem over and over again with rewrite rules until it can no longer be changed,
is largely due to the influence of W.W. Bledsoe.”

The Automation of Mathematical Induction 37

Boyer and Moore report on the method of for the development of their induc-
tion heuristics in late 1972 and early 1973 that they were doing proofs on list data
structures on the blackboard and verbalizing to each other the heuristics behind
their choices on how to proceed with the proof.86 This means that, although
explicit induction is not the approach humans would choose for non-trivial induc-
tion tasks, the heuristics of the Pure LISP Theorem Prover are learned from
human heuristics after all.

Note that Boyer’s and Moore’s method of learning computer heuristics from
their own human behavior in mathematical logic was a step of two young men
against the spirit of the time: The dominance of J. Alan Robinson’s resolution
method suggested the application of vast amounts of computational power to most
elementary forms of “machine-oriented” (i.e. not human-like) first-order reasoning.
It may be that the orientation toward human-like or “intelligible” methods and
heuristics in the automation of theorem proving had also some tradition in Edin-
burgh at the time,87 but here the major influence of Boyer and Moore is again
W.W. Bledsoe.88

The source code of the Pure LISP Theorem Prover was written in the
programming language POP–2.89 Boyer and Moore were the only programmers
involved in the implementation. The average time in the central processing unit
(CPU) of the ICL–4130 for the proof of a theorem is reported to be about 10 s.90

One remarkable omission in the Pure LISP Theorem Prover is lemma
application. As a consequence, the success of proving a set of theorems cannot
depend on the order of their presentation to the theorem prover. Indeed, just as
the resolution theorem provers of the time, the Pure LISP Theorem Prover
starts every proof right from the scratch and does not improve its behavior with
the help of previously proved lemmas.

Moreover, all induction orderings in the Pure LISP Theorem Prover are
recombinations of constructor relations, such that all inductions it can do are struc-
tural inductions over combinations of constructors. As a consequence, contrary to
later Boyer–Moore theorem provers, the well-foundedness of the induction order-
ings does not depend on the termination of the recursive function definitions.91

86Cf. [Boyer and Moore, 2012].
87Cf. e.g. the quotation from [Burstall, 1969] in Note 83.
88Cf. e.g. [Bledsoe et al., 1972].
89Cf. [Burstall et al., 1971].
90This timing result is hard to believe and strongly indicates that Boyer and Moore were as

great in coding as they were in creating heuristics for theorem proving. Here is the actual wording
of the timing result found on Page 171f. of [Moore, 1973]:

“Despite theses inefficiencies, the ‘typical’ theorem proved requires only 8 to 10
seconds of CPU time. For comparison purposes, it should be noted that the
time for CONS in 4130 POP–2 is 400microseconds, and CAR and CDR are about
50microseconds each. The hardest theorems solved, such as those involving SORT,
require 40 to 50 seconds each.”

91Note that the well-foundedness of the constructor relations depends on distinctness of the
constructor ground terms in the models, but this does not really depend on the termination of
the recursive functions because (as discussed in § 4.1) confluence is sufficient here.

38 J Strother Moore, Claus-Peter Wirth

Nevertheless, the soundness of the Pure LISP Theorem Prover depends
directly on the termination of the recursive function definitions, but only in one
aspect: It simplifies and evaluates expressions under the assumption of termina-
tion. For instance, both (IF92 a d d) and (CDR (CONS a d)) simplify to d,
no matter whether a terminates; and it is admitted to rewrite with a recursive
function definition even if an argument of the function call does not terminate.

The termination of the recursively defined functions, however, is not at all
checked by the Pure LISP Theorem Prover, but comes as a proviso for its
soundness.

The logic of the Pure LISP Theorem Prover is an applicative93 subset of
the logic of LISP. The only destructors in this logic are CAR and CDR. They are
overspecified on the only constructors NIL and CONS by the equations

(CAR (CONS a d)) = a (CAR NIL) = NIL
(CDR (CONS a d)) = d (CDR NIL) = NIL

As standard in LISP, every term of the form (CONS a d) is taken to be true
in the logic of the Pure LISP Theorem Prover if it occurs at an argument
position with Boolean intention. The actual truth values (to be returned by
Boolean functions) are NIL (representing false) and T, which is an abbreviation for
(CONS NIL NIL) and represents true.94 Moreover, the logic is pure LISP in the
sense that the natural number 0 is represented by NIL and the successor function
s(d) is represented by (CONS NIL d).95

Let us now discuss the behavior of the Pure LISP Theorem Prover by de-
scribing the instances of the stages of the Boyer–Moore waterfall (cf. Figure 1)
as they are described in Moore’s PhD thesis.

5.2.1 Simplification in the Pure LISP Theorem Prover

The first stage of the Boyer–Moore waterfall — “simplification” in Figure 1 —
is called “normalation” in the Pure LISP Theorem Prover. It applies the
following simplification procedures to LISP expressions until the result does not
change anymore: “evaluation”, “normalization”, and “reduction”.

“Normalization” tries find sufficient conditions for a given expression to have
the soft type “Boolean” and to normalize logical expressions. Contrary to clausal
logic over equational atoms, LISP admits EQUAL and IF to appear not only on top
level, but in arbitrary mutually nested terms. To free later tests and heuristics
from checking for their triggers in every equivalent form, such a normalization
w.r.t. propositional logic and equality is part of most theorem provers today.

92In the logic of the Pure LISP Theorem Prover, the special form IF is actually called
“COND”. This is most confusing because COND is a standard special form in LISP, different from IF.
Therefore, we will ignore this peculiarity and write “IF” here for every “COND” of the Pure LISP
Theorem Prover.

93Cf. Note 68.
94Cf. 2nd paragraph of Page 86 of [Moore, 1973].
95Cf. 2nd paragraph of Page 87 of [Moore, 1973].

The Automation of Mathematical Induction 39

“Reduction” is a form of what today is called contextual rewriting. It is based
on fact that — in the logic of the Pure LISP Theorem Prover — in the
conditional expression (IF c p n)

we can simplify occurrences of c in p to (CONS (CAR c) (CDR c)), and in n
to NIL. The replacement with (CONS (CAR c) (CDR c)) is executed only at
positions with Boolean intention and can be improved in the following two special
cases:

1. If we know that c is of soft type “Boolean”, then we rewrite all occurrences
of c in p actually to T.

2. If c is of the form (EQUAL l r), then we can rewrite occurrences of l in p
to r (or vice versa). Note that we have to treat the variables in l and r as
constants in this rewriting. The Pure LISP Theorem Prover rewrites
with this equation here only if one of l, r is a ground term.96 If this is
the case, then the other cannot be a ground term because the equation
would otherwise have been simplified to T or NIL in the previously applied
“evaluation”. So replacing the latter term with the ground term everywhere
in p must terminate, and this is all the contextual rewriting with equalities
that the Pure LISP Theorem Prover does in “reduction”.97

“Evaluation” is a procedure that evaluates expressions partly by simplification
within the elementary logic as given by Boolean operations and the equality pred-
icate. Moreover, “evaluation” executes some rewrite steps with the equations
defining the recursive functions. Thus, “evaluation” can roughly be seen as nor-
malization with the rewrite relation resulting from the elementary logic and from
the recursive function definitions. The rewrite relation is applied according to the
innermost left-to-right rewriting strategy, which is standard in LISP.

By “evaluation”, ground terms are completely evaluated to their normal forms.
Terms containing (implicitly universally quantified) variables, however, have to be
handled in addition. Surprisingly, the considered rewrite relation is not necessarily
terminating on non-ground terms, although the LISP evaluation of ground terms
terminates because of the assumed termination of recursive function definitions
(cf. § 4.4). The reason for this non-termination is the following: Because of the
LISP definition style via unconditional equations, the positive/negative conditions
are actually part of the right-hand sides of the defining equations, such that the
rewrite step can be executed even if the conditions evaluate neither to false nor
to true. For instance, in Example 6 of § 4.1, a rewrite step with the definition of
PLUS can always be executed, whereas a rewrite step with (+1′) or (+2′) requires
x= 0 to be definitely true or definitely false. This means that non-termination
may result from the rewriting of cases that do not occur in the evaluation of any
ground instance.98

96A ground term is a term without variables. Actually, this ground term here is always a
constructor ground term because the previously applied “evaluation” procedure has reduced any
ground term to a constructor ground term, provided that the termination proviso is satisfied.

97Note, however, that further contextual rewriting with equalities is applied in a later stage of
the Boyer–Moore waterfall, named cross-fertilization.

40 J Strother Moore, Claus-Peter Wirth

As the final aim of the stages of the Boyer–Moore waterfall is a formula that
provides sufficiently concise and strong induction hypotheses in the last of these
stages, symbolic evaluation must be prevented from unfolding function definitions
unless the context admits us to expect an effect of simplification.99

Because the main function of “evaluation” — only to be found in the Pure
LISP Theorem Prover — is to collect data on which base and step cases
should be chosen later by the induction rule, the Pure LISP Theorem Prover
applies a unique procedure to stop the unfolding of recursive function definitions:

A rewrite step with an equation defining a recursive function f is canceled if
there is a CAR or a CDR in an argument to an occurrence of f in the right-hand side
of the defining equation that is encountered during the control flow of “evaluation”,
and if this CAR or CDR is not removed by the “evaluation” of the arguments of this
occurrence of f under the environment updated by matching of the left-hand side of
the equation to the redex. For instance, “evaluation” of (PLUS (CONS NIL X) Y)
returns (CONS NIL (PLUS X Y)); whereas “evaluation” of (PLUS X Y) returns
(PLUS X Y) and informs the induction rule that only (CDR X) occurred in the
recursive call during the trial to rewrite with the definition of PLUS. In general,
such occurrences indicate which induction hypotheses should be generated by the
induction rule.100 101

“Evaluation” provides a link between symbolic evaluation and the induction
rule of explicit induction. The question “Which case distinction on which vari-
ables should be used for the induction proof and how should the step cases look
like?” is reduced to the quite different question “Where do destructors like CAR
and CDR heap up during symbolic evaluation?”. This reduction helps to under-
stand by which intermediate steps it was possible to develop the most surprising,
sophisticated recursion analysis of later Boyer–Moore theorem provers.

98It becomes clear in the second paragraph on Page 118 of [Moore, 1973] that the code of both
the positive and the negative case of a conditional will be evaluated, unless one of them can be
canceled by the complete evaluation of the governing condition to true or false. Note that the
evaluation of both case is necessary indeed and cannot be avoided in practice.

Moreover, note that a stronger termination requirement that guarantees termination indepen-
dent of the governing condition is not feasible for recursive function definitions in practice.

Later Boyer–Moore theorem provers also use lemmas for rewriting during symbolic evaluation,
which is another source of possible non-termination.

99In QuodLibet this is achieved by contextual rewriting where evaluation stops when the
governing conditions cannot be established from the context. Cf. [Schmidt-Samoa, 2006b; 2006c].

100Actually, “evaluation” also informs which occurrences of CAR or CDR beside the arguments of
recursive occurrences of PLUS were permanently introduced during that trial to rewrite. Such
occurrences trigger an additional case analysis to be generated by the induction rule, mostly
as a compensation for the omission of the stage of “destructor elimination” in the Pure LISP
Theorem Prover.

101The mechanism for partially enforcing termination of “evaluation” according to this proce-
dure is vaguely described in the last paragraph on Page 118 of Moore’s PhD thesis. As this kind
of “evaluation” is only an intermediate solution on the way to more refined control information
for the induction rule in later Boyer–Moore theorem provers, the rough information given here
may suffice.

The Automation of Mathematical Induction 41

5.2.2 Destructor Elimination in the Pure LISP Theorem Prover

There is no such stage in the Pure LISP Theorem Prover.102

5.2.3 (Cross-) Fertilization in the Pure LISP Theorem Prover

Fertilization is just contextual rewriting with an equality, described before for
the “reduction” that is part of the simplification of the Pure LISP Theorem
Prover, but now with an equation between two non-ground terms.

The most important case of fertilization is called “cross-fertilization”. It occurs
very often in step cases of induction proofs of equational theorems, and we have
seen it already in Example 4 of § 3.7.1.

Neither Boyer nor Moore ever explained why cross-fertilization is cross. Cross-
fertilization is actually a term from genetics referring to the alignment of haploid
genetic code from male and female to a diploid code in the egg cell.

This image may help to remember that only that side (i.e. left- or right-hand side
of the equation) of the induction conclusion which was activated by a successful
simplification is further rewritten during cross-fertilization, namely everywhere
where the same side of the induction hypothesis occurs as a redex, just like two
haploid chromosomes have to start at the same (activated) sides for successful
recombination.

Furthermore — for getting a sufficiently powerful new induction hypothesis in
a follow-up induction — it is crucial to delete the equation used for rewriting
(i.e. the old induction hypothesis), which can be memorized by the fact that
— in the image — only one (diploid) genetic code remains.

The only noteworthy difference between cross-fertilization in the Pure LISP
Theorem Prover and later Boyer–Moore theorem provers is that the generaliza-
tion that consists in the deletion of the used-up equations is done in a halfhearted
way, which admits a later identification of the deleted equation.

5.2.4 Generalization in the Pure LISP Theorem Prover

Generalization in the Pure LISP Theorem Prover works as described in § 3.8.
The only difference to our presentation there is the following: Instead of just re-
placing all occurrences of a non-variable subterm t with a new variable z, the
definition of the top function symbol of t is used to generate the definition of a
new predicate p, such that p(t) holds. Then the generalization of T [t] becomes
T [z] ⇐ p(z) instead of just T [z]. The version of this automated function syn-
thesis actually implemented in the Pure LISP Theorem Prover is just able
to generate simple type properties, such as being a number or being a Boolean
value.103

102See, however, Note 100 and the discussion of the Pure LISP Theorem Prover in § 5.3.2.
103See § 3.7 of [Moore, 1973]. As explained on Page 156f. of [Moore, 1973], Boyer and Moore

failed with the trial to improve the implemented version of the function synthesis, so that it
could generate a predicate on a list being ordered from a simple sorting-function.

42 J Strother Moore, Claus-Peter Wirth

Note that generalization is essential for the Pure LISP Theorem Prover
because it does not use lemmas, and so it cannot build up a more and more
complex theory successively. It is clear that this limits the complexity of the
theorems it can prove, because a proof can only be successful if the implemented
non-backtracking heuristics work out all the way from the theorem down to the
most elementary theory.

5.2.5 Elimination of Irrelevance in the Pure LISP Theorem Prover

There is no such stage in the Pure LISP Theorem Prover.

5.2.6 Induction in the Pure LISP Theorem Prover

This stage of the Pure LISP Theorem Prover applies the induction rule of
explicit induction as described in § 3.7. As input it takes a formula and it returns a
conjunction of base and step cases to which the input formula reduces. Contrary
to later Boyer–Moore theorem provers that gather the relevant information via
induction schemes,104 the induction rule of the Pure LISP Theorem Prover is
based solely on the information provided by the “evaluation” as described in § 5.2.1.

Instead of trying to describe the general procedure, let us just put the induc-
tion rule of the Pure LISP Theorem Prover to test with two paradigmatic
examples. In these examples we ignore the here irrelevant fact that the Pure
LISP Theorem Prover actually uses a list representation for the natural num-
bers. The only effect of this is that the destructor p takes over the rôle of the
destructor CDR.

EXAMPLE 11 (Induction Rule in the Explicit Induction Proof of (ack4)).
Let us see how the induction rule of the Pure LISP Theorem Prover proceeds
w.r.t. the proof of (ack4) that we have seen in Example 5 of § 3.8. The substi-
tutions ξ1, ξ2 computed as instances for the induction conclusion in Example 10
of § 4.5 suggest an overall case analysis with a base case given by {x 7→ 0}, and two
step cases given by ξ1 = {x 7→ s(x′), y 7→ 0} and ξ2 = {x 7→ s(x′), y 7→ s(y′)}.
The Pure LISP Theorem Prover requires the axioms (ack1), (ack2), (ack3)
to be in destructor instead of constructor style:
(ack1′) ack(x, y) = s(y) ⇐ x= 0
(ack2′) ack(x, y) = ack(p(x), s(0)) ⇐ x 6= 0 ∧ y = 0
(ack3′) ack(x, y) = ack(p(x), ack(x, p(y))) ⇐ x 6= 0 ∧ y 6= 0

“Evaluation” does not rewrite the input conjecture with this definition, but writes
a “fault description” for the permanent occurrences of p as arguments of the three
occurrences of ack on the right-hand sides, essentially consisting of the following
three “pockets”: (p(x)), (p(x), p(y)), and (p(y)), respectively. Similarly, the pock-
ets gained from the fault descriptions of rewriting the input conjecture with the
definition of lessp essentially consists of the pocket (p(y), p(ack(x, y))). Similar to

104Cf. § 4.5.

The Automation of Mathematical Induction 43

the non-applicability of the induction template for lessp in Example 9 of § 4.5, this
fault description does not suggest any induction because one of the arguments of p
in one of the pockets is not a variable. As this is not the case for the previous fault
description, it suggests the set of all arguments of p in all pockets as induction
variables. As this is the only suggestion, no merging of suggested inductions is
required here.

So the Pure LISP Theorem Prover picks the right set of induction variables.
Nevertheless, it fails already with the generation of the base and step cases, because
the overall case analysis has two base cases given by {x 7→ 0} and {y 7→ 0}, and a
step case given by {x 7→ s(x′), y 7→ s(y′)}.105 This turns the first step case of the
proof of Example 5 into a base case. The Pure LISP Theorem Prover finally
fails with the step case it actually generates:

lessp(s(y′), ack(s(x′), s(y′)))= true ⇐ lessp(y′, ack(x′, y′))= true.

This step case has only one hypothesis, which is none of the two we need. ¤

EXAMPLE 12 (Proof of (lessp7) by Explicit Induction with Merging).
Let us write T (x, y, z) for (lessp7) of § 3.3. From the proof of (lessp7) in Exam-
ple 3 of § 3.6 we can learn the following: The proof becomes simpler when we take
T (0, s(y′), s(z′)) as base case (beside say T (x, y, 0) and T (x, 0, s(z′))), instead of
any of T (0, y, s(z′)), T (0, s(y′), z), T (0, y, z). The crucial lesson from Example 3,
however, is that the step case of explicit induction has to be

T (s(x′), s(y′), s(z′)) ⇐ T (x′, y′, z′).
Note that the induction rule of explicit induction looks ahead only one rewrite
step, separately for each occurrence of a recursive function in the conjecture.

This means that there is no way for explicit induction to apply case distinctions
on variables step by step, most interesting first, until finally we end up with an
instance of the induction hypothesis as in Example 3.

Nevertheless, even the Pure LISP Theorem Prover manages the pretty
hard task of suggesting exactly the right step case. It requires the axioms (lessp1),
(lessp2), (lessp3) to be in destructor style:
(lessp1′) lessp(x, y) = false ⇐ y = 0
(lessp2′) lessp(x, y) = true ⇐ y 6= 0 ∧ x = 0
(lessp3′) lessp(x, y) = lessp(p(x), p(y)) ⇐ y 6= 0 ∧ x 6= 0

“Evaluation” does not rewrite any of the occurrences of lessp in the input con-
jecture with this definition, but writes one “fault description” for each of these
occurrences about the permanent occurrences of p as argument of the one occur-
rence of lessp on the right-hand sides, resulting in one “pocket” in each fault de-
scription, which essentially consist of ((p(z))), ((p(x), p(y))), and ((p(y), p(z))),
respectively. The Pure LISP Theorem Prover merges these three fault de-
scriptions to the single one ((p(x), p(y), p(z))), and so suggests the proper step case
indeed, although it suggests the base case T (0, y, z) instead of T (0, s(y′), s(z′)),
which requires some considerable extra work, but does not result in a failure. ¤
105We can see this from a similar case on Page 164 and from the explicit description on the

bottom of Page 166 in [Moore, 1973].

44 J Strother Moore, Claus-Peter Wirth

5.2.7 Conclusion on the Pure LISP Theorem Prover

The Pure LISP Theorem Prover establishes the historic breakthrough regard-
ing the heuristic automation of inductive theorem proving in theories specified by
recursive function definitions.

Moreover, it is the first implementation of a prover for explicit induction going
beyond most simple structural inductions.

Furthermore, the Pure LISP Theorem Prover has already most of the
stages of the Boyer–Moore waterfall (cf. Figure 1), and these stages occur in the
final order and with the final overall behavior of throwing the formulas back to
the center pool after a stage was successful in changing them.

As we have seen in Example 11 of § 5.2.6, the main weakness of the Pure LISP
Theorem Prover is the realization of its induction rule, which ignores most of
the structure of the recursive calls in the right-hand sides of recursive function
definitions.106 In the Pure LISP Theorem Prover, all information on this
structure taken into account by the induction rule comes from the fault descriptions
of previous applications of “evaluation”, which drop a lot of information that is
actually required for finding the proper instances for the eager instantiation of
induction hypotheses required in explicit induction.

As a consequence, all induction hypotheses and conclusions of the Pure LISP
Theorem Prover are instantiations of the input formula with mere constructor
terms. Nevertheless, the Pure LISP Theorem Prover can generate multi-
ple hypotheses for astonishingly complicated step cases, which go far beyond the
simple ones typical for structural induction.

Although the induction stage of the Pure LISP Theorem Prover is pretty
underdeveloped compared to the sophisticated recursion analysis of the later
Boyer–Moore theorem provers, it somehow contains all essential later ideas in
a rudimentary form, such as recursion analysis and the merging of step cases. As
we have seen in Example 12, the merging procedure of the Pure LISP Theorem
Prover is surprisingly successful.

The Pure LISP Theorem Prover cannot succeed, however, in the rare cases
where a step case has to follow a destructor different from CAR and CDR (such as
delfirst in § 3.4), or in the more general case that the arguments of the recursive
calls contain recursively defined functions at the measured positions (such as the
Ackermann function in Example 11).

The weaknesses and provisional procedures of the Pure LISP Theorem Pro-
ver we have documented help to decompose the giant leap form nothing to Thm,
and so fulfill our historiographic intention expressed at the beginning of § 5.2.

Especially the link between symbolic evaluation and the induction rule of ex-
plicit induction described at the end of § 5.2.1 may be considered to be crucial for
the success of the entire development of recursion analysis and explicit induction.

106There are indications that the induction rule of the Pure LISP Theorem Prover had to
be implemented in a hurry. For instance, on top of Page 168 of [Moore, 1973], we read on the
Pure LISP Theorem Prover: “The case for n term induction is much more complicated, and
is not handled in its full generality by the program.”

The Automation of Mathematical Induction 45

5.3 Thm

Boyer and Moore never gave names to their theorem provers.107 The names “Thm”
(for “theorem prover”), “Qthm” (for “quantified Thm”), and “Nqthm” (for
“new quantified Thm”) were actually the directory names under which the differ-
ent versions of their theorem provers were developed and maintained.108 Qthm
was never released and its development was discontinued soon after the “quantifi-
cation” in Nqthm had turned out to be superior; so the name Qthm was never
used in public. Until today, it seems that “Thm” appeared in publication only
as a mode in Nqthm,109 which simulates the release previous to the release of
Nqthm (i.e. before “quantification” was introduced) with a logic that is a further
development of the one described in [Boyer and Moore, 1979]. It was Matt Kauf-
mann (*1952) who started calling the prover “Nqthm”, in the second half of the
1980s.110 The name “Nqthm” appeared in publication first in [Boyer and Moore,
1988b] as a mode in Nqthm.

In this section we describe the enormous heuristic improvements documented
in [Boyer and Moore, 1979] as compared to [Moore, 1973] (cf. § 5.2). In case of
the minor differences of the logic described in [Boyer and Moore, 1979] and of the
later released version that is simulated by the THM mode in Nqthm as documented
in [Boyer and Moore, 1988b; 1998], we try to follow the later descriptions, partly
because of their elegance, partly because Nqthm is still an available program.
For this reason, we have entitled this section “Thm” instead of “The standard
reference on the Boyer–Moore heuristics [Boyer and Moore, 1979]”.

Note the clearness, precision, and detail of the natural-language descriptions
of heuristics in [Boyer and Moore, 1979] is unique and unrivaled.111 To the best
of our knowledge, there is no similarly broad treatment of heuristics in theorem
proving.

107The only exception seems to be [Moore, 1975], where the Pure LISP Theorem Prover is
called “the Boyer–Moore Pure LISP Theorem Prover”, probably because Moore wanted to stress
that, though Boyer appears in the references of [Moore, 1975] only in [Boyer and Moore, 1975],
Boyer has had an equal share in contributing to the Pure LISP Theorem Prover right from
the start.

108Cf. [Boyer, 2012].

109For the occurrences of “THM” in publications, and for the exact differences between the THM

and NQTHM modes and logics, see Pages 256–257 and 308 in [Boyer and Moore, 1988b], as well as
Pages 303–305, 326, 357, and 386 in the second edition [Boyer and Moore, 1998].

110Cf. [Boyer, 2012].

111In [Boyer and Moore, 1988b, p. xi] and [Boyer and Moore, 1998, p. xv] we can read about
the book [Boyer and Moore, 1979]:

“The main purpose of the book was to describe in detail how the theorem prover
worked, its organization, proof techniques, heuristics, etc. One measure of the
success of the book is that we know of three independent successful efforts to
construct the theorem prover from the book.”

46 J Strother Moore, Claus-Peter Wirth

From 1973 to 1981 Boyer and Moore were researchers at Xerox Palo Alto Re-
search Center (Moore only) and — just a few miles apart — at SRI International
in Menlo Park (CA). Since 1981 they were both professors at The University of
Texas at Austin and scientists at Computational Logic Inc. in Austin (TX). So
they could most easily meet and work together. And — just like the Pure LISP
Theorem Prover — the provers Thm and Nqthm were again developed and
implemented exclusively by Boyer and Moore.112

The approach for developing the heuristics remained the same as before: Just
as in the Pure LISP Theorem Prover, the heuristics of Thm are still learned
from the heuristics of the human mathematicians Boyer and Moore.

The logic of Thm has changed a bit compared to the Pure LISP Theorem
Prover. By means of the new shell principle,113 it is now possible to define
new data types by describing the shell, a constructor with at least one argument,
each of whose arguments may have a simple type restriction, and the optional base
object, a nullary constructor.114 Each argument of the shell can be accessed115 by
its destructor, for which a name and a default value (for the sake of totality) have
to be given in addition. The user also has to supply a name for the predicate that
that recognizes115 the objects of the new data type (as the logic remains untyped).

NIL has lost its elementary status and is now an element of the shell PACK
of symbols.116 T and F now abbreviate the nullary function calls (TRUE) and
(FALSE), respectively, which are the only Boolean values. Any argument with
Boolean intention beside F is taken to be T (including NIL).

112In both [Boyer and Moore, 1988b, p. xv] and [Boyer and Moore, 1998, p. xix] we read:

“Notwithstanding the contributions of all our friends and supporters, we would like
to make clear that ours is a very large and complicated system that was written
entirely by the two of us. Not a single line of Lisp in our system was written by
a third party. Consequently, every bug in it is ours alone. Soundness is the most
important property of a theorem prover, and we urge any user who finds such a
bug to report it to us at once.”

113Cf. [Boyer and Moore, 1979, p. 37ff.].
114Note that this restriction to at most two constructors, including exactly one with arguments,

is pretty uncomfortable. For instance, it neither admits simple enumeration types, such as the
Boolean values, nor record types. Moreover, mutually recursive data types are not possible,
such as and-or-trees, where each element is a list of or-and-trees, and vice versa, as given by the
following four constructors:

empty-or-tree : or-tree; or : and-tree, or-tree → or-tree;
empty-and-tree : and-tree; and : or-tree, and-tree → and-tree.

115 Actually, in the jargon of [Boyer and Moore, 1979; 1988b; 1998], the destructors are called
accessor functions, and the type predicates are called recognizer functions.
116There are the following two different declarations for the shell PACK: In [Boyer and Moore,

1979], the shell CONS is defined after the shell PACK because NIL is the default value for the
destructors CAR and CDR; moreover, NIL is an abbreviation for (NIL), which is the base object
of the shell PACK.

In [Boyer and Moore, 1988b; 1998], however, the shell PACK is defined after the shell CONS,
we have (CAR NIL) = 0, the shell PACK has no base object, and NIL just abbreviates

(PACK (CONS 78 (CONS 73 (CONS 76 0)))).
When we discuss the logic of [Boyer and Moore, 1979], we tacitly use the shells CONS and PACK

as described in [Boyer and Moore, 1988b; 1998].

The Automation of Mathematical Induction 47

Instead of discussing the shell principle in detail with all its intricacies resulting
from the untyped framework, we just present the first two shells:

1. The shell (ADD1 X1) of the natural numbers, with

• type restriction (NUMBERP X1),
• base object (ZERO), abbreviated by 0,
• destructor115 SUB1 with default value 0, and
• type predicate115 NUMBERP.

2. The shell (CONS X1 X2) of pairs, with

• destructors CAR with default value 0,
CDR with default value 0, and

• type predicate LISTP.

According to the shell principle, these two shell declarations add axioms to the
theory, which are equivalent to the following ones:
Axioms Generated by Shell ADD1 Axioms Generated by Shell CONS

0.1 (NUMBERP X)= T ∨ (NUMBERP X)= F (LISTP X)= T ∨ (LISTP X)= F

0.2 (NUMBERP (ADD1 X1))= T (LISTP (CONS X1 X2))= T

0.3 (NUMBERP 0)= T

0.4 (NUMBERP T)= F (LISTP T)= F

0.5 (NUMBERP F)= F (LISTP F)= F

0.6 (LISTP X)= F ∨ (NUMBERP X)= F

1 (ADD1 (SUB1 X))= X (CONS (CAR X) (CDR X))= X

⇐ X 6= 0 ∧ (NUMBERP X)= T ⇐ (LISTP X)= T

2 (ADD1 X1) 6= 0

3 (SUB1 (ADD1 X1))= X1 (CAR (CONS X1 X2))= X1

⇐ (NUMBERP X1)= T (CDR (CONS X1 X2))= X2

4 (SUB1 0)= 0

5.1 (SUB1 X)= 0 ⇐ (NUMBERP X)= F (CAR X)= 0 ⇐ (LISTP X)= F

(CDR X)= 0 ⇐ (LISTP X)= F

5.2 (SUB1 (ADD1 X1))= 0

⇐ (NUMBERP X1)= F

L1 117 (ADD1 X)= (ADD1 0)
⇐ (NUMBERP X)= F

L2 118 (NUMBERP (SUB1 X))= T

117Proof of LemmaL1 from 0.2, 1–2, 5.2: Under the assumption of (NUMBERP X)= F, we show
(ADD1 X)= (ADD1 (SUB1 (ADD1 X)))= (ADD1 0). The first step is a backward application of the
conditional equation 1 via {X 7→ (ADD1 X)}, where the condition is fulfilled because of 2 and 0.2.
The second step is an application of 5.2, where the condition is fulfilled by assumption.

118Proof of Lemma L2 from 0.1–0.3, 1–4, 5.1–5.2 by reductio ad absurdum:
For a counterexample X, we get (SUB1 X) 6= 0 by 0.3, as well as (NUMBERP (SUB1 X))= F by 0.1.
From the first we get X 6= 0 by 4, and (NUMBERP X)= T by 5.1 and 0.1. Now we get the contra-
diction (SUB1 X)= (SUB1 (ADD1 (SUB1 X)))= (SUB1 (ADD1 0))= 0; the first step is a backward
application of the conditional equation 1, the second of L1, and the last of 3 (using 0.3).

48 J Strother Moore, Claus-Peter Wirth

Note that the two occurrences of “(NUMBERP X1)” in Axioms 3 and 5.2 are
exactly the ones that result from the type restriction of ADD1. Moreover, the
occurrence of “(NUMBERP X)” in Axiom 0.6 is allocated at the right-hand side
because the shell ADD1 is declared before the shell CONS.

Let us discuss the axioms generated by declaration of the shell ADD1. Roughly
speaking, Axioms 0.1–0.3 are return-type declarations, Axioms 0.4–0.6 are about
disjointness of types, Axiom 1 and Lemma L2 imply the axiom (nat1) from § 3.3,
Axioms 2 and 3 imply axioms (nat2) and (nat3), respectively. Axioms 4 and 5.1–5.2
overspecify SUB1. Note that LemmaL1 is equivalent to 5.2 under 0.2–0.3 and 1–3.

Analogous to LemmaL1, every shell forces each argument not satisfying its type
restriction into behaving like the default object of the argument’s destructor.

To the contrary, the arguments of the shell CONS (just as every shell argu-
ment without type restriction) are not forced like this, and so even objects of
later defined shells (such as PACK) can be properly paired by the shell CONS.
For instance, although NIL belongs to the shell PACK defined after the shell CONS
(and so (CDR NIL) = 0),116 we have (CAR (CONS NIL NIL)) = NIL by Axiom 3.

Nevertheless, the the shell principle also admits us to declare a shell
(CONSNAT X1 X2)

of the lists of natural numbers only — similar to the ones of § 3.4 — with a type
predicate LISTNATP, type restrictions (NUMBERP X1), (LISTNATP X2), base object
(NILNAT), and destructors CARNAT, CDRNAT with default values 0, (NILNAT).

Let us come now to the definition of new functions admissible in Thm. In § 4
we have already discussed the definition principle119 of Thm in detail. The defini-
tion of recursive functions has not changed compared to the Pure LISP Theorem
Prover beside that a function definition is admissible now only after a termina-
tion proof, which proceeds as explained in § 4.4. To this end, Thm can apply its
additional axiom of the well-foundedness of the irreflexive ordering LESSP on the
natural numbers,120 and the theorem of the well-foundedness of the lexicographic
combination of two well-founded orderings.

119[Boyer and Moore, 1979, p. 44f.].

120See Page 52f. of [Boyer and Moore, 1979] for the informal statement of this axiom on well-
foundedness of LESSP.

Because Thm is able to prove (LESSP X (ADD1 X)), well-foundedness of LESSP would imply
— together with Axiom1 and LemmaL2 — that Thm admits only the standard model of the
natural numbers, as explained in Note 34.

Matt Kaufmann, however, was so kind and made clear in a private e-mail communication
that non-standard models are not excluded, because the statement “We assume LESSP to be a
well-founded relation.” of [Boyer and Moore, 1979, p. 53] is actually to be read as the well-
foundedness of the formal definition of § 3.1 with the additional assumption that the predicate Q
must be definable in Thm.

Note that in the argument of Note 34, it is not possible to replace the reflexive transitive
closure of the successor relation s with the Thm-definable predicate˘

Y (NUMBERP Y)= T ∧ ((LESSP Y X)= T ∨ Y= X)
¯
,

because (by the Thm-analog of axiom (lessp2′) of Example 12 in § 5.2.6) this predicate will
contain 0 as a minimal element even for a non-standard natural number X; thus, LESSP is a
proper super-relation of the reflexive transitive closure of s.

The Automation of Mathematical Induction 49

Let us now again follow the Boyer–Moore waterfall (cf. Figure 1) and sketch how
the stages of the waterfall are realized in Thm in comparison to the Pure LISP
Theorem Prover. The most relevant change is that previously proved theorems
have an effect on the current proof, provided that they have been activated for the
purpose they can serve, in which case they are a applied in the reverse order of
activation. This means that the performance of the the prover is not doomed to
slow down when progressing to less and less elementary results, provided that the
user develops the theory stepwise and activates the theorems properly. Moreover,
there is also the chance to help the theorem prover directly with a new lemma
that becomes necessary during a proof, but is not found by the prover. This is
actually the most crucial application of lemmas, because humans have a truly
fascinating ability to understand a theory semantically, and because they can
apply this ability to “see” why a sub-goal happens to be true. This ability to see
the missing lemmas is actually the only aspect where humans still top the machine
in the heuristics of typical induction proofs.

5.3.1 Simplification in Thm

Regarding the Pure LISP Theorem Prover, we have been discussing simplifi-
cation before in § 5.2.1.

Simplification in Thm is covered in Chapters VI–IX of [Boyer and Moore, 1979],
and the reader interested in the details is strongly encouraged to read these very
well-written descriptions of heuristic procedures for simplification.

To compensate for the extra complication of the untyped approach in Thm,
which has a much higher number of interesting soft types than the Pure LISP
Theorem Prover, soft-typing rules are computed for each new function symbol
based on types that are disjunctions (actually: bit-vectors) of the following disjoint
types: one for T, one for F, one for each shell, and one for objects not belonging
to any of these.121 These soft-typing rules are pervasively applied in all stages of
the theorem prover, which we cannot discuss here in detail. Some of these rules
can be expressed in the LISP logic language as a theorem and presented in this
form to the human users. Let us see two examples on this.

EXAMPLE 13. (continuing Example 6 of § 4.1)
As Thm knows (NUMBERP (FIX X)) and (NUMBERP (ADD1 X)), it produces the
theorem (NUMBERP (PLUS X Y)) immediately after the termination proof for the
definition of PLUS in Example 6. Note that this would neither hold in case of
non-termination of PLUS, nor if there were a simple Y instead of (FIX Y) in the
definition of PLUS. In the latter case, Thm would only register that the return-
type of PLUS is among NUMBERP and the types of its second argument Y.

EXAMPLE 14. As Thm knows that the type of APPEND is among LISTP and
the type of its second argument, it produces the theorem (LISTP (FLATTEN X))
immediately after the termination proof for the following definition:

121See Chapter VI in [Boyer and Moore, 1979].

50 J Strother Moore, Claus-Peter Wirth

(FLATTEN X) = (IF (LISTP X)
(APPEND (FLATTEN (CAR X)) (FLATTEN (CDR X)))
(CONS X NIL)) ¤

The standard representation of an expression of propositional logic has improved
from the multifarious LISP representation of the Pure LISP Theorem Pro-
ver toward today’s standard of clausal representation. A clause is a disjunctive
list of literals. Literals, however, deviating from the standard definition of being
optionally negated atoms, are just LISP terms here, because every LISP function
can be seen as a predicate.

This means that the “water” of the waterfall now consists of clauses, and the
conjunction of all clauses in the waterfall represents the proof task.

Based on this clausal representation, we find a full-fledged description of con-
textual rewriting in Chapter IX of [Boyer and Moore, 1979], and its applications in
ChaptersVII–IX. This description comes some years before the term “contextual
rewriting” became popular in automated theorem proving, and the term does not
occur yet. It is probably the first description of contextual rewriting in the history
of logic, unless one counts the rudimentary contextual rewriting in the “reduction”
of the Pure LISP Theorem Prover as such.122

As indicated before, the essential idea of contextual rewriting is the following:
While focusing on one literal of a clause for simplification, we can assume all other
literals — the context — to be false, simply because the literal in focus is irrelevant
otherwise. Especially useful are literals that are negated equations, because they
can be used as a ground term-rewrite system. A non-equational literal t can
always be taken to be the negated equation (t 6= F). The free universal variables
of a clause have to be treated as constants during contextual rewriting.123

To bring contextual rewriting to full power, all occurrences of the function sym-
bol IF in the literals of a clause are expelled from the literals as follows. If the
condition of an IF-expression can be simplified to be definitely false F or defi-
nitely true (i.e. non-F, e.g. if F is not set in the bit-vector as a potential type),
then the IF-expression is replaced with its respective case. Otherwise, after the
IF-expression could not be removed by those rewrite rules for IF whose soundness
depends on termination,124 it is moved to the top position (outside-in), by replac-
ing each case with itself in the IF’s context, such that the literal C[(IF t0 t1 t2)]
is intermediately replaced with (IF t0 C[t1] C[t2]), and then this literal splits
its clause in two: one with the two literals (NOT t0) and C[t1] in place of the old
one, and one with t0 and C[t2] instead.

122Cf. § 5.2.1.
123This has the advantage that we could take any well-founded ordering that is total on ground

terms and run the terminating ground version of a Knuth–Bendix completion procedure [Knuth
and Bendix, 1970] for all literals in a clause representation that have the form li 6= ri, and
replace the literals of this form with the resulting confluent and terminating rewrite system and
normalize the other literals of the clause with it. Note that this transforms a clause into a
logically equivalent one. None of the Boyer–Moore theorem provers does this, however.
124These rewrite rules whose soundness depends on termination are (IF X Y Y) = Y;
(IF X X F) = X; and for Boolean X: (IF X T F) = X tested for applicability in the given order.

The Automation of Mathematical Induction 51

Thm already eagerly removes variables in solved form: If the variable X does
not occur in the term t, but the literal (X 6= t) occurs in a clause, then we can
remove that literal after rewriting all occurrences of X in the clause to t. This
removal is a logical equivalence transformation, because X is universally quantified
and so (X 6= t) must be false because it implies (t 6= t).

It remains to describe the rewriting with function definitions and with lemmas
activated for rewriting, where the context of the clause is involved again.

Non-recursive function definitions are always unfolded by Thm. Recursive func-
tion definitions are treated in a way very similar to that of the Pure LISP
Theorem Prover. The criteria on the unfolding a function call of a recur-
sively defined function f still depend solely on the terms introduced as arguments
in the recursive calls of f in the body of f, which are accessed during the simpli-
fication of the body. But now the unfolding is rejected not anymore by destructor
terms introduced by the body and not removed by simplification, but actually
by the occurrence of terms that (after simplification) do not occur as sub-terms
elsewhere in the clause. This means that a new term (CDR t) in the simplified
argument of a recursive function call, where CDR originates in an argument of that
recursive call in the body and not in the arguments of the tentative unfolding, does
not block unfolding anymore if (CDR t) occurs already as a sub-term elsewhere in
the clause. There are also further less important criteria to unblock unfolding of
recursive function definitions, such an increase of the number arguments that are
constructor ground terms.125

Rewriting with lemmas that have been proved and then activated for rewriting
— so-called rewrite lemmas — differs from rewriting with recursive function defi-
nitions mainly in one aspect: There is no need to block them because the user has
activated them explicitly for rewriting, and because rewrite lemmas have the form
of conditional equations instead of unconditional ones. Simplification with lemmas
activated for rewriting and the heuristics behind the process are nicely described in
[Schmidt-Samoa, 2006c], where a rewrite lemma is not just activated for rewriting,
but where the user can also mark the condition literals on how they should be dealt
with. In Thm there is no lazy rewriting with rewrite lemmas, i.e. no case splits are
introduced to be able to apply the lemma. This means that all conditions of the
rewrite lemma have to be shown to be fulfilled in the current context. As a partly
compensation there is a process of backward chaining, i.e. the conditions can be
shown to be fulfilled by the application of further conditional rewrite lemmas. The
termination of this backward chaining is achieved by avoiding the generation of
conditions into which the previous conditions can be homeomorphically embed-
ded.126 There are provisions to instantiate extra variables of conditions eagerly,
which is necessary because there are no existential variables.127 Non-termination
of evaluation via rewrite lemmas is achieved by simple term orderings, which in
particular avoid looping with commutative lemmas.128

125See Page 119 of [Boyer and Moore, 1979] for the details and the remaining criteria.
126See Page 109ff. of [Boyer and Moore, 1979] for the details.
127See Page 111f. of [Boyer and Moore, 1979] for the details.

52 J Strother Moore, Claus-Peter Wirth

5.3.2 Destructor Elimination in Thm

We have already seen constructors such as s (in Thm: ADD1) and cons (CONS) with
the destructors p (SUB1) and car (CAR), and cdr (CDR), respectively.

EXAMPLE 15 (From Constructor to Destructor Style and back).
We have presented several function definitions both in constructor and in destruc-
tor style. Let us do careful and generalizable equivalence transformations (reverse
step justified in parentheses) starting with the constructor-style rule (ack3) of § 3.3:

ack(s(x), s(y))= ack(x, ack(s(x), y)).
Introduce (delete) the solved variables x′ and y′ for the constructor terms s(x)
and s(y) occurring on the left-hand side, respectively, and add (delete) two further
conditions by applying the definition (p1′) (cf. § 3.3) twice.

ack(s(x), s(y))= ack(x, ack(s(x), y)) ⇐
(

x′= s(x) ∧ p(x′)= x
∧ y′= s(y) ∧ p(y′) = y

)
.

Normalize conclusion with leftmost equations of the condition from right to left
(left to right).

ack(x′, y′)= ack(x, ack(x′, y)) ⇐
(

x′= s(x) ∧ p(x′)= x
∧ y′= s(y) ∧ p(y′)= y

)
.

Normalize conclusion with rightmost equations of the condition from right to left
(left to right).

ack(x′, y′)= ack(p(x′), ack(x′, p(y′))) ⇐
(

x′= s(x) ∧ p(x′)= x
∧ y′= s(y) ∧ p(y′)= y

)
.

Add (Delete) two conditions by applying axiom (nat2) twice.
ack(x′, y′)= ack(p(x′), ack(x′, p(y′)))

⇐
(

x′= s(x) ∧ p(x′)= x ∧ x′ 6= 0
∧ y′= s(y) ∧ p(y′)= y ∧ y′ 6= 0

)
.

Delete (Introduce) the leftmost equations of the condition by applying lemma
(s1′) (cf. § 3.3) twice, and delete (introduce) the solved variables x and y for the
destructor terms p(x′) and p(y′) occurring in the left-hand side of the equation in
the conclusion, respectively.

ack(x′, y′)= ack(p(x′), ack(x′, p(y′))) ⇐ x′ 6= 0 ∧ y′ 6= 0.
Up to renaming of the variables, this is the destructor-style rule (ack3′) of Exam-
ple 11 (cf. § 5.2.6). ¤

Our data types are defined inductively over constructors.129 Therefore construc-
tors play the main rôle in our semantics, and practice shows that step cases of
induction proofs work out much better with constructors than with the respective
destructors, which are secondary (i.e. defined) operators in our semantics and have
a more complicated case analysis in application.

128See Page 104f. of [Boyer and Moore, 1979] for the details.
129Here the term “inductive” means the following: We start with the empty set and take the

smallest fixpoint under application of the constructors, which contains only finite structures, such
as natural numbers and lists. Co-inductively over the destructors we would obtain different data
types, because we start with the universal class and obtain the greatest fixed point under inverse
application of the destructors, which typically contains infinite structures. For instance, for the
unrestricted destructors car, cdr of the list of natural numbers list(nat) of § 3.4, we co-inductively
obtain the data type of infinite streams of natural numbers.

The Automation of Mathematical Induction 53

There are two further positive effects of destructor elimination:

1. It tends to standardize the representation of a clauses in the sense that the
numbers of occurrences of identical sub-terms tend to be increased.

2. Destructor elimination also brings the sub-term property in line with the
sub-structure property; e.g., Y is both a sub-structure of (CONS X Y) and a
sub-term of it, whereas (CDR Z) is a sub-structure of Z in case of (LISTP Z),
but not a sub-term of Z.

Both effects improve the chances that the clause passes the follow-up stages of
cross-fertilization and generalization with good success.130

For these reasons, the Pure LISP Theorem Prover did induction using step
cases with constructors, such as P (s(x)) ⇐ P (x). Thm, however, does induction
using step cases with destructors, such as(

P (x) ⇐ P (p(x))
) ⇐ x 6= 0.

So destructor elimination was not so urgent in the Pure LISP Theorem Pro-
ver, simply because there were less destructors around. Indeed, the stage “de-
structor elimination” does not exist in the Pure LISP Theorem Prover.

Thm does not do induction with constructors because there are generalized
destructors that do not have a straightforward constructor, and because the in-
duction rule of explicit induction has to fix in advance whether the step cases are
destructor or constructor style. So with destructor style in all step cases and in
all function definitions, explicit induction and recursion in Thm chooses the style
that is always applicable.

EXAMPLE 16 (A Generalized Destructor Without Constructor).
A generalized destructor that does not have a straightforward constructor is the
function delfirst defined in § 3.4. To verify the correctness of a deletion-sort algo-
rithm based on delfirst, a useful step case for an induction proof131 is of the form(

P (l) ⇐ P (delfirst(max(l), l))
) ⇐ l 6= nil.

A constructor version of this induction scheme would need something like an in-
sertion function with an additional free variable for a natural number indicating
the position of insertion, resulting in a step case that is too complicated for the
proof to be successful. ¤
Proper destructor functions take only one argument. The generalized destructor
delfirst we have seen in Example 16 has actually two arguments; the second one is
the proper destructor argument and the first is a parameter. After the elimination
of set of destructors, the terms at the parameter positions of the destructors are
typically still present, where terms at the proper destructor argument are removed.

EXAMPLE 17 (Division with Remainder as a pair of Generalized Destructors).
In case of y 6= 0, we can construct each natural number in the form of (q ∗ y)+ r
with lessp(r, y)= true. The related generalized destructors are the the quotient

130See Page 114ff. of [Boyer and Moore, 1979] for a nice example for the advantage of destructor
elimination for cross-fertilization.
131See Page 143f. of [Boyer and Moore, 1979].

54 J Strother Moore, Claus-Peter Wirth

div(x, y) of x by y, and its remainder rem(x, y). Note that in both functions, the
first argument is the proper destructor argument and the second the parameter,
which must not be 0. The rôle that the definition (p1′) and the lemma (s1′) of § 3.3
have in Example 15 (and which the definitions (car1′), (cdr1′) and the lemma
(cons1′) of § 3.4 have in the equivalence transformations between constructor and
destructor style for lists) is here taken by the following definitions of div and rem
and the following lemma on the constructor λq, r. ((q ∗ y)+ r):
(div1′) div(x, y) = q ⇐ y 6= 0 ∧ (q ∗ y)+ r = x ∧ lessp(r, y)= true
(rem1′) rem(x, y) = r ⇐ y 6= 0 ∧ (q ∗ y)+ r = x ∧ lessp(r, y)= true
(+9′) (q ∗ y)+ r = x ⇐ y 6= 0 ∧ q = div(x, y) ∧ r = rem(x, y)
If we have a clause with the literal y =0, in which the destructor terms div(x, y)
or rem(x, y) occur, we can — just as in the of Example 15 (reverse direction) —
introduce the new literals div(x, y) 6= q and rem(x, y) 6= r for fresh q, r, and apply
lemma (+9′) to introduce also the literal x 6= (q ∗ y)+ r. Then we can normalize
with the first two literals, and afterwards with the third. Then all occurrences of
div(x, y), rem(x, y), and x are gone.132 ¤
To enable the form of elimination of generalized destructors described in Exam-
ple 17, Thm admits the user to activate lemmas of the form (s1′), (cons1′), or (+9′)
as elimination lemmas to perform destructor elimination. In clause representation,
this form is in general the following: The first literal of the clause is of the form
(tc = x), where x is a variable which does not occur in the constructor term tc.
Moreover, tc contains some distinct variables y0, . . . , yn, which occur only on the
left-hand sides of the first literal and of the last n+1 literals of the clause, which
are of the form (y0 6= td0), . . . , (yn 6= tdn), for distinct (generalized) destructor
terms td0 ,. . . ,tdn.133

The idea of application for destructor elimination in a given clause is, of course,
the following: If the non-mentioned literals can be matched to literals of the given
clause, and if td0 , . . . , tdn occur in the given clause as sub-terms, rewrite all their
occurrences with (y0 6= td0), . . . , (yn 6= tdn) from right to left and then use the first
literal of the elimination lemma from right to left for further normalization.134

132For a nice, but non-trivial example on why proofs tend to work out much easier after this
transformation, see Page 135ff. of [Boyer and Moore, 1979].
133Thm adds one more restriction, namely that the generalized destructor terms have to

consist of a function symbol applied to a list containing exactly the variables of the clause,
beside y0, . . . , yn.

Moreover, note that Thm actually does not use our flattened form of the elimination lemmas,
but the one that results from replacing each yi in the clause with tdi , and then removing the

literal (yi 6= tdi). Thus, Thm would accept as elimination lemmas only the non-flattened versions
of our elimination lemmas, such as (s1) instead of (s1′) (cf. § 3.3) and such as (cons1) instead of
(cons1′) (cf. § 3.4).
134If we add the last literals of the elimination lemma to the given clause, use them for contextual

rewriting, and remove them only if this can be achieved safely via application of the definitions
of the destructors (as we could do in all our examples), then the elimination of destructors is
an equivalence transformation. Destructor elimination in Thm, however, may (over-) generalize
the conjecture, because these last literals are not present in the non-flattened elimination lemma
of Thm and its variables yi are actually introduced in Thm by generalization. Thus, instead of
trying to delete the last literals of our deletion lemmas safely, Thm never adds them.

The Automation of Mathematical Induction 55

In the destructor elimination of Thm, the most simple destructor (actually: the
one defined first) is removed first, possibly in several steps. Then the clauses are
re-introduced to the waterfall, but — to avoid looping — the terms with variables
introduced by destructor elimination are blocked for simplification until the next
induction.135

5.3.3 (Cross-) Fertilization in Thm

This stage has already been described in § 5.2.3 because there is no noticeable
difference between the Pure LISP Theorem Prover and Thm here, beside
some heuristic fine tuning.136

5.3.4 Generalization in Thm

Thm adds only one new rule to the universally applicable heuristic rules for gen-
eralization on a term t mentioned already in § 3.8. This new rule makes sense in
particular after the preceding stage of destructor elimination: Never generalize on
a term t consisting in the application of a destructor function symbol to a list of
distinct variables!

The main improvement of generalization in Thm over the Pure LISP Theorem
Prover, however, is the following: Suppose again that the term t is to be re-
placed at all its occurrences in the clause T [t] with the fresh variable z. Now the
the predicate p that is to express essential properties of the term t symbolically,
now added by two new means, different from the synthesis algorithm of the Pure
LISP Theorem Prover:

1. Assuming all literals of the clause T [t] to be false, the bit-vector describing
the soft type of t is computed and if only one bit is set, then, for the respective
type predicate, say the bit expressing NUMBERP, then a new literal is added
to the clause, such as (NOT (NUMBERP t)).

2. The user can activate certain theorems as generalization lemmas; such as
(SORTEDP (SORT X)) for a sorting function SORT; and if (SORT X) matches t,
the respective instance of (NOT (SORTEDP (SORT X))) is added to T [t].137

In general, for the addition of such a literal (NOT t′′), a proper sub-term of
a generalization lemma t′ must match t.138

135See Page 139 of [Boyer and Moore, 1979]. In general, for more sophisticated details of
destructor elimination in Thm, we have to refer the reader to ChapterX of [Boyer and Moore,
1979].
136See Page 149 of [Boyer and Moore, 1979].
137Cf. Note 103.
138Moreover, the literal is actually added to the generalized clause only if the top func-

tion symbol of t does not occur in the literal anymore after replacing t with x. This means
that, for a generalization lemma (EQUAL (FLATTEN (GOPHER X)) (FLATTEN X)), the literal
(NOT (EQUAL (FLATTEN (GOPHER t′′′)) (FLATTEN t′′′))) is added to T [t] in case of t being of
the form (GOPHER t′′′), but not in case of t being of the form (FLATTEN t′′′), where the first
occurrence of FLATTEN is not removed by the generalization. See Page 156f. of [Boyer and Moore,
1979] for the details.

56 J Strother Moore, Claus-Peter Wirth

5.3.5 Elimination of Irrelevance in Thm

Before we come to the next stage “induction”, we should remove irrelevant literals
from clauses. After generalization, this is again a stage that may turn a valid
clause into an invalid one. The main reason for taking this risk here is that the
subsequent heuristic procedures for induction assume all literals to be relevant,
and so they get confused by the presence of irrelevant literals and suggest the
wrong step cases, which results in a failure of the induction proof. Moreover, if all
literals seem to be irrelevant, then we know that we are going to prove a probably
invalid clause, for which we should not do a costly induction, but had better ask
the user to check whether he has supplied the theorem prover with an invalid
lemma, possibly missing a side condition.139

Let us call two literals connected if they both have an occurrence of the same
variable. Consider the partition of a clause into its equivalence classes w.r.t. the
transitive closure of connectedness. If we have more than one equivalence class in
a clause, this is an alarm signal for irrelevance: if the original clause is valid, then
a sub-clause consisting only of the literals of one of these equivalence classes must
be valid as well. This is a consequence of the logical equivalence of ∀x. (A ∨ B)
with A ∨ ∀x. B, provided that x does not occur in A. Then we should remove
one of the irrelevant equivalence classes after the other from the original clause.
To this end, Thm has two heuristic tests for irrelevance.

1. An equivalence class of literals is irrelevant if it does not contain any properly
recursive function symbol.

Based on the assumption that the previous stages of the waterfall are suf-
ficiently powerful, the justification for this heuristic test is the following:
If the clause of the equivalence class were valid, then the previous stages of
the waterfall should already have established the validity of this equivalence
class.

2. An equivalence class of literals is irrelevant if it consists of only one literal
and if this literal is the application of a properly recursive function to a list
of distinct variables.

Based on the assumption that the soft typing rules are sufficiently powerful
and that the user has not defined a tautological, but tricky predicate,140 the
justification for this heuristic test is the following: The bit-vector of this
literal must contain the singleton type of F; otherwise the validity of the lit-
eral and the clause would have been recognized by the stage “simplification”.
This means that F is most probably a possible value for some combination
of arguments.

139See Page 160f. of [Boyer and Moore, 1979] for a typical example of this.

140This assumption is critical because it often occurs that updated program code contains
recursive predicates that are actually trivially true, but very tricky. See § 3.2 of [Wirth, 2004] for
such an example.

The Automation of Mathematical Induction 57

5.3.6 Induction in Thm as compared to the Pure LISP Theorem Prover

As we have seen in § 5.2.6, the recursion analysis in the Pure LISP Theorem
Prover is only rudimentary. Indeed, the whole information on the body of the re-
cursive function definitions comes out of the poor feedback of the “evaluation” pro-
cedure of the simplification stage of the Pure LISP Theorem Prover. Roughly
speaking, this information consists only in the two facts

1. that a destructor symbol occurring as an argument of the recursive function
call in the body is not removed by the “evaluation” procedure in the context
of the current goal and in the local environment, and

2. that it is not possible to derive that this recursive function call is unreachable
in this context and environment.

In Thm, however, the first part of recursion analysis is done at definition time,
i.e. at the time the function is defined, and applied at proof time, i.e. at the time
the induction rule produces the base and step cases. Surprisingly, there is no
reachability analysis for the recursive calls in this second part of the recursion
analysis in Thm. While the information in Item1 is thoroughly improved as
compared to the Pure LISP Theorem Prover, the information in Item2 is
partly weaker because all recursive function calls are assumed to be reachable
during recursion analysis. The overwhelming success of Thm means that the
heuristic decision to abandon reachability analysis in Thm was appropriate.141

5.3.7 Induction Templates generated by Definition-Time Recursion Analysis

The first part of recursion analysis in Thm consists in a termination analysis of
every recursive function at the time of its definition. The system does not only
look for one termination proof that is sufficient for the admissibility of the function
definition, but actually looks through all termination proofs in a finite search space
and gathers from them all information required for justifying the termination of
the recursive function definition, as well as for justifying the soundness and for
improving the feasibility of the step cases to be generated by the induction rule.

To this end, Thm constructs valid induction templates very similar to our de-
scription in § 4.4.142 Let us approach the idea of a valid induction template with
some typical examples, which are actually the templates for the constructor-style
examples of § 4.4, but now for the destructor-style definitions of lessp and ack,
because Thm admits only destructor-style definitions.

141Note that in most cases the step formula of the reachable cases works somehow in Thm, as
long as no better step case was canceled due to unreachable step cases, which, of course, are trivial
to prove, simply because their condition is false. Moreover, note that, contrary to descente infinie
which can make do with the first part of recursion analysis, the heuristics of explicit induction
have to guess the induction steps eagerly, which is always a fault-prone procedure, to be corrected
by additional induction proofs, as we have seen in Example 4 of § 3.7.1.

58 J Strother Moore, Claus-Peter Wirth

EXAMPLE 18 (Two Induction Templates with different Measured Positions).
For the ordering predicate lessp as defined by (lessp1′–3′) in Example 12 of § 5.2.6,
we get two induction templates with the sets of measured positions {1} and {2},
respectively, both for the well-founded ordering λx, y. (lessp(x, y)= true). The
first template has the weight term (1) and the relational description{ (

lessp(x, y), {{lessp(p(x), p(y))}}, x 6= 0
) }

.
The second one has the weight term (2) and the relational description{ (

lessp(x, y), {{lessp(p(x), p(y))}}, y 6= 0
) }

. ¤
EXAMPLE 19 (One Induction Template with Two Measured Positions).
For the Ackermann function ack as defined by (ack1′–3′) in Example 11 of § 5.2.6,
we get only one appropriate induction template. The set of its measured positions
is {1, 2}, because of the weight function cons((1), cons((2), nil)) (in Thm actually:
(CONS x y)) in the well-founded lexicographic ordering

λl, k. (lexlimless(l, k, s(s(s(0)))) = true).
The relational description has two elements: For the equation (ack2′) we get(

ack(x, y), {ack(p(x), s(0))}, x 6= 0
)
,

and for the equation (ack3′) we get(
ack(x, y), {ack(x, p(y)), ack(p(x), ack(x, p(y)))}, x 6= 0 ∧ y 6= 0

)
. ¤

To find valid induction templates automatically by exhaustive search, Thm admits
the user to activate certain theorems as “induction lemmas”. An induction lemma
consists of the application of a well-founded relation to two terms with the same top
function symbol w, playing the rôle of the weight term; plus a condition without
extra variables, which is used to generate the case conditions of the induction
template. Moreover, the arguments of the application of w occurring as the second
argument must be distinct variables in Thm, mirroring the left-hand side of its
function definitions in destructor style.

Certain induction lemmas are generically activated when a shell is declared.
Such an induction lemma generated for the shell CONS, which is roughly

(LESSP (COUNT (SUB1 X)) (COUNT X)) ⇐ (NOT (ZEROP X)).
suffices for generating the two templates of Example 18. Note that COUNT, playing
the rôle of w here, is a special function in Thm, which is generically extended by
every shell declaration in an object-oriented style for the elements of the new shell.
On the natural numbers here, COUNT is the identity. On other shells, COUNT is
defined similar to our function count from § 3.4.143

142Those parts of the condition of the equation that contain the new function symbol f1 must be
ignored in the case conditions of the induction template because the definition of the function f
is admitted in Thm only after it has passed the termination proof.

That Thm ignores the governing conditions that contain the new function symbol f1 is de-
scribed in the 2nd paragraph on Page 165 of [Boyer and Moore, 1979]. Moreover, an example for
this is the definition of OCCUR on Page 166 of [Boyer and Moore, 1979].

After one successful termination proof, however, the function can be admitted in Thm, and
the system QuodLibet does not even require termination for admissibility. In any case, these
conditions could then actually be admitted in the templates. So the actual reason why Thm
ignores these conditions in the templates is that it generates the templates with the help of
previously proved induction lemmas, which, of course, cannot contain the new function yet.

The Automation of Mathematical Induction 59

5.3.8 Proof-Time Recursion Analysis in Thm

The induction rule uses the information from the induction templates as follows:
For each recursive function occurring in the input formula, all applicable induction
templates are retrieved and turned into induction schemes as described in § 4.5.
Those induction schemes that are subsumed by others are deleted; the remaining
schemes are merged into new ones with a higher score, and finally, after the failed
schemes are deleted, the scheme with the highest score will be used by the induction
rule to generate the base and step cases.

EXAMPLE 20 (Applicable Induction Templates).
Let us consider the conjecture (ack4) from § 3.3. From the three induction tem-
plates of Examples 18 and 19, only the second one of Example 18 is not applicable
because the second position of lessp (which is the only measured position of that
template) is changeable, but filled by the term ack(x, y). ¤
EXAMPLE 21 (Induction Schemes).
The two induction templates of Example 20 applicable to (ack4) are augmented to
become in their respective induction schemes as follows:

The first template for lessp of Example 18 is augment by the position set {1},
containing the top position of the left-hand side of (ack4) of § 3.3 and the pair({lessp(p(x), p(y))}, x 6= 0

)
of the template becomes({(lessp(p(y), p(ack(x, y))), µ1)}, y 6= 0

)
,

where µ1 = {x7→x, y 7→p(y)}, and the score is 1
2 . This can be seen as follows:

The substitution called σ in the above discussion is {x 7→y, y 7→ack(x, y)}. So the
constraint for the first (measured) position is yµ1 = p(y), and the constraint for
the second (unmeasured) position is ack(x, y)µ1 = p(ack(x, y)), which cannot be
achieved.

The template for ack of Example 19 is augmented by the position set {1.2}. The
pair

({ack(p(x), s(0))}, x 6= 0
)

(generated by the equation (ack2′)) becomes({(ack(p(x), s(0)), µ′1,1)}, x 6= 0
)
.

where µ′1,1 = {x 7→p(x), y 7→s(0)}. This can be seen as follows: The substitu-
tion called σ in the above discussion is {x 7→x, y 7→y}. So the constraints for the
(measured) positions are xµ′1,1 = p(x) and yµ′1,1 = s(0).

Moreover, the pair
({ack(x, p(y)), ack(p(x), ack(x, p(y)))}, x 6= 0 ∧ y 6= 0

)
(generated by the equation (ack3′)) becomes({(ack(x, p(y)), µ′2,1), (ack(p(x), ack(x, p(y))), µ′2,2)}, x 6= 0 ∧ y 6= 0

)
,

where µ′2,1 = {x7→x, y 7→p(y)}, and µ′2,2 = {x 7→p(x), y 7→ack(x, p(y))}.
The score is 4

4 = 1. ¤

An induction scheme subsumed by another induction scheme adds its set of po-
sitions in the input formula and its score to the subsumer’s, respectively, and is
then deleted.

143For more details on the recursion analysis a definition time in Thm, see Page 180ff. of [Boyer
and Moore, 1979].

60 J Strother Moore, Claus-Peter Wirth

The most important case of subsumption are schemes that are identical except
for their position in the input formula.

The more general case is that the subsumer provides the essential structure
of the subsumee. More precisely, this more general case of subsumption requires
the following: The case conditions of the subsumee can be injectively mapped to
case conditions of the subsumer, such that each case condition C is mapped to a
condition C ′ that differs only in the addition of conjunctive elements, and such that
the substitutions { µj | j ∈ J } belonging to C can be injectively mapped to the
substitutions { µ′j | j ∈ J] J ′ } belonging to C ′, such that for each x ∈ dom(µj)
we have x ∈ dom(µ′j), xµj is a subterm of xµ′j , and xµj = x implies xµ′j = x.

For instance, in Example 21, the induction scheme for lessp is subsumed by the
induction scheme for ack because the pair of the scheme for lessp is subsumed
be the second pair for ack, more precisely by µ′2,1. So the scheme for lessp is
deleted and the scheme for ack is updated to have the position set {1, 1.2} and
the score 3

2 .
It is remarkable that the well-founded relation that is expressed by the sub-

sumer is smaller than that of the subsumee, such that a proof by descente infinie
with the subsumer immediately provides a proof with the subsumee, but not the
other way round in general. This means that the subsumer does not represent a
more powerful induction ordering, but actually achieves an improvement w.r.t. the
eager instantiations of the induction hypothesis (both for a direct proof and for
generalization), and with a case condition that admits for a better generalization
without further case analysis.

This section is still not okay, moreover, induction variables and “failed” induction
schemes are missing

5.4 Nqthm

Short section on quantification. Just describe what “quantification” is and that we
cannot treat it here.

[Boyer and Moore, 1988c]

5.5 ACL2 and the practical challenges

Short section. We should demonstrate the economic applications if they can be made
public. We should also discuss that induction is not the critical step in this applications,
as Matt had put it.

5.6 Inka and other discontinued explicit induction projects

Very short section similar to the one in [Bundy, 1999]

The Automation of Mathematical Induction 61

6 ALTERNATIVE APPROACHES TO THE AUTOMATION OF
INDUCTION

6.1 Proof Planning

Suggestions on how to overcome an envisioned dead end in automated theorem
proving were summarized at the end of the 1980s under the keyword proof planning.
Beside its human-science aspects,144 the main idea of proof planning145 is to add a
smaller and more human-oriented higher-level search space to the theorem-proving
system on top of the low level search space of the logic calculus. We do not cover
this subject here, and refer the reader to the article by Alan Bundy and Jörg
Siekmann in this volume.

6.2 Rippling

Rippling is a technique for augmenting rewrite rules with information that helps
to find a way to rewrite one expression (goal) into another (target), more precisely
to reduce the difference between the goal and the target by rewriting the goal. We
cannot cover this very well-documented subject here, but refer the reader to the
monograph [Bundy et al., 2005].146 Let us explain here, however, why rippling
can be most helpful in the automation of simple inductive proofs.

Roughly speaking, the remarkable success in proving simple theorems by in-
duction automatically, can be explained as follows: If we look upon the task of
proving a theorem as reducing it to a tautology, then we have more heuristic guid-
ance when we know that we probably have to do it by mathematical induction:
Tautologies can have arbitrary subformulas, but the induction hypothesis we are
going to apply can restrict the search space tremendously.

In a cartoon of Alan Bundy’s, the original theorem is pictured as a zigzagged
mountainscape and the reduced theorem after the unfolding of recursive operators
according to recursion analysis as a lake with ripples (goal). To apply the induction
hypothesis (target), instead of the uninformed search for an arbitrary tautology,
we have to get rid of the ripples to be able to apply an instance of the theorem as
induction hypothesis, mirrored by the calmed surface of the lake.

6.3 Implicit Induction

Proof planning and rippling were applied to the automation of induction within the
paradigm of explicit induction. The alternative approaches to mechanize mathe-
matical induction not subsumed by explicit induction, however, are united under
the name “implicit induction”. Triggered by the success of Boyer and Moore [1979],
work on these alternative approaches started already in the year 1980 in purely

144Cf. [Bundy, 1989].
145Cf. [Bundy, 1988] [Dennis et al., 2005].
146Historically important are also the following publications on rippling: [Hutter, 1990], [Bundy

et al., 1991], [Basin and Walsh, 1996].

62 J Strother Moore, Claus-Peter Wirth

equational theories.147 A sequence of papers on technical improvements148 was
topped by [Bachmair, 1988], which gave rise to a hope to develop the method into
practical usefulness, although it was still restricted to purely equational theories.
Inspired by this paper, in the end of the 1980s and the first half of the 1990s several
researchers tried to understand more clearly what implicit induction means from
a theoretical point of view and whether it could be useful in practice.149

While it is generally accepted that [Bachmair, 1988] is about implicit induction
and [Boyer and Moore, 1979] is about explicit induction, there are the follow-
ing three different viewpoints on what the essential aspect of implicit induction
actually is.

Proof by Consistency:150 Systems for proof by consistency run some Knuth–
Bendix151 or superposition152 completion procedure that produces a huge
number of irrelevant inferences under which the ones relevant for estab-
lishing the induction steps can hardly be made explicit. A proof attempt
is successful when the prover has drawn all necessary inferences and stops
without having detected an inconsistency.

Proof by consistency has shown to be not competitive with explicit induction
in practice, mainly due to too many superfluous inferences, typically infinite
runs, and too restrictive admissibility conditions. Roughly speaking, the
conceptual flaw in proof by consistency is that, instead of finding a sufficient
set of reasonable inferences, the research follows the paradigm of ruling out
as many irrelevant inferences as possible.

Implicit Induction Ordering: In the early implicit-induction systems, induc-
tion proceeds over a syntactical term ordering, which typically cannot be
made explicit in the sense that there would be some predicate in the logical
syntax that denotes this ordering in the intended models of the specification.
The semantical orderings of explicit induction, however, cannot depend pre-
cisely on the syntactical term structure of a weight w, but only on the value
of w under an evaluation in the intended models.

The price one has to pay for the possibility to have induction orderings
that can also depend on the precise syntax is surprisingly high for powerful
inference systems.153

147Cf. [Goguen, 1980], [Huet and Hullot, 1980], [Lankford, 1980], [Musser, 1980].
148Cf. [Göbel, 1985], [Jouannaud and Kounalis, 1986], [Fribourg, 1986], [Küchlin, 1989].
149Cf. e.g. [Zhang et al., 1988], [Kapur and Zhang, 1989], [Bevers and Lewi, 1990], [Reddy,

1990], [Gramlich and Lindner, 1991], [Ganzinger and Stuber, 1992], [Bouhoula and Rusinowitch,
1995], [Padawitz, 1996].

150The name “proof by consistency” was coined in the title of [Kapur and Musser, 1987], which
is the later published forerunner of its outstanding improved version [Kapur and Musser, 1986].
151Cf. [Gramlich and Lindner, 1991].
152Cf. [Ganzinger and Stuber, 1992].

153Cf. [Wirth, 1997].

The Automation of Mathematical Induction 63

The early implicit-induction systems needed such sophisticated term order-
ings,154 because they started from the induction conclusion and every infer-
ence step reduced the formulas w.r.t. the induction ordering again and again,
but an application of an induction hypothesis was admissible to greater for-
mulas only. This deterioration of the ordering information with every infer-
ence step was overcome by the introduction of explicit weight terms,155 after
which the need for syntactical term orderings as induction orderings does
not exist anymore.

Descente Infinie (“Lazy Induction”): Contrary to explicit induction, where
induction is introduced into an otherwise merely deductive inference system
only by the explicit application of induction axioms in the induction rule,
the cyclic arguments and their termination in implicit induction need not be
confined to single inference steps.156 The induction rule of explicit induction
combines several induction hypotheses in a single inference step. To the con-
trary, in implicit induction, the inference system “knows” what an induction
hypothesis is, i.e. it includes inference rules that provide or apply induction
hypotheses, given that certain ordering conditions resulting from these appli-
cations can be met by an induction ordering. Because this aspect of implicit
induction can facilitate the human-oriented induction method described in
§ 3, the name descente infinie was coined for it in [Wirth, 2004]. Researchers
introduced to this aspect by [Protzen, 1994] (entitled “Lazy Generation of
Induction Hypotheses”) sometimes speak of “lazy induction” instead of des-
cente infinie.

The interest in proof by consistency and implicit induction orderings today is
either merely theoretical or merely historical, especially because these approaches
cannot be combined with the paradigm of explicit induction. For more information
on these viewpoints on implicit induction see the handbook article [Comon, 2001]
and its partial correction [Wirth, 2005].

In § 6.4 we will show, however, how Descente infinie (“lazy induction”) goes well
together with explicit induction and why we can hope that both the restrictions
implied by induction axioms can be overcome and the usefulness of the excellent
heuristic knowledge developed in explicit induction can be improved.157

6.4 QuodLibet

(along [Wirth, 2009] and [Schmidt-Samoa, 2006c])

154Cf. e.g. [Bachmair, 1988], [Steinbach, 1995].

155Cf. [Wirth and Becker, 1995].

156For this reason, the funny name “inductionless induction” was originally coined for implicit
induction in the titles of [Lankford, 1980; 1981] as a short form for “induction without induction
rule”. See also the title of [Goguen, 1980] for a similar phrase.
157Cf. [Wirth, 2013].

64 J Strother Moore, Claus-Peter Wirth

7 BEYOND INDUCTION

(short)

7.1 Beyond Noetherian induction (Full axiom of choice instead of
principle of dependent choices)

7.2 What the incredible success of Nqthm meant for the fields of
ATP and AI

7.3 Lessons Learned beyond Induction

Boyer and Moore never gave a name to their provers and so they became most
popular under the name the Boyer–Moore theorem prover. So here is an advice to
the young researchers who want to become popular: Build a good system, but do
not give it a name, so that people have to attach your name to it.

From the development of Thm via the intermediate stage of the Pure LISP
Theorem Prover, which somehow contains most essential stages, procedures,
and heuristics of Nqthm in a rudimentary and partly inferior form, we can learn
that it may be beneficial at an early stage of a true creation to proceed as follows:

1. Learn the essential ideas in a rudimentary form from the simpler, most
frequent standard scenarios.

2. Implement and test these ideas.
3. Refine the resulting procedures and structures in later work.

This section on Lessons needs revision and possibly extension.

8 CONCLUSION

(very short)
In [Boyer and Moore, 2012], in their noble humbleness, Moore said the following,

and Boyer agreed laughingly:

“One of the reasons our theorem prover is successful is that we trick
the user into telling us the proof. And the best example of that, that
I know, is: If you want to prove that there exists a prime factorization
— that is to say a list of primes whose product is any given number —
then the way you state it is: You define a function that takes a natu-
ral number and delivers a list of primes, and then you prove that it
does that. And, of course, the definition of that function is everybody
else’s proof. The absence of quantifiers and the focus on constructive,
you know, recursive definitions forces people to do the work. And so
then, when the theorem prover proves it, they say ‘Oh what wonderful
theorem prover!’ without even realizing they sweated bullets to express
the theorem in that impoverished logic.”

The Automation of Mathematical Induction 65

This section on Lessons needs revision and extension.

ACKNOWLEGDGEMENTS

We would like to thank Anne O. Boyer, Robert S. Boyer, Warren A. Hunt, Matt
Kaufmann, Marianeh Rezaei.

We could split the bibliography into subsections, but this seems to be inappro-
priate here, because alternative approaches to explicit induction have few references,
and because the sections on Inka, Nqthm, XeriFun, ACL2, λCLaM would heavily
overlap)

BIBLIOGRAPHY

[Abrahams et al., 1980] Paul W. Abrahams, Richard J. Lipton, and Stephen R. Bourne, editors.
Conference Record of the Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), Las Vegas (NV), 1980. ACM Press, 1980. http://dl.
acm.org/citation.cfm?id=567446.

[Acerbi, 2000] Fabio Acerbi. Plato: Parmenides 149a7–c3. a proof by complete induction?
Archive for History of Exact Sciences, 55:57–76, 2000.

[Ackermann, 1928] Wilhelm Ackermann. Zum Hilbertschen Aufbau der reellen Zahlen. Mathe-
matische Annalen, 99:118–133, 1928. Received Jan. 20, 1927.

[Ackermann, 1940] Wilhelm Ackermann. Zur Widerspruchsfreiheit der Zahlentheorie. Mathe-
matische Annalen, 117:163–194, 1940. Received Aug. 15, 1939.

[Aı̈t-Kaci and Nivat, 1989] Hassan Aı̈t-Kaci and Maurice Nivat, editors. Proc. of the Colloquium
on Resolution of Equations in Algebraic Structures (CREAS), Lakeway, TX, 1987. Academic
Press (Elsevier), 1989.

[Armando et al., 2008] Alessandro Armando, Peter Baumgartner, and Gilles Dowek, editors.
4th Int. Joint Conf. on Automated Reasoning (IJCAR), Sydney, Australia, 2008, number
5195 in Lecture Notes in Artificial Intelligence. Springer, 2008.

[Aubin, 1976] Raymond Aubin. Mechanizing Structural Induction. PhD thesis, Univ. Edin-
burgh, 1976.

[Aubin, 1979] Raymond Aubin. Mechanizing structural induction. Theoretical Computer Sci.,
9:329–345+347–362, 1979.

[Autexier et al., 1999] Serge Autexier, Dieter Hutter, Heiko Mantel, and Axel Schairer. Inka 5.0
— a logical voyager. 1999. In [Ganzinger, 1999, pp. 207–211].

[Autexier, 2005] Serge Autexier. On the dynamic increase of multiplicities in matrix proof
methods for classical higher-order logic. 2005. In [Beckert, 2005, pp. 48–62].

[Avenhaus et al., 2003] Jürgen Avenhaus, Ulrich Kühler, Tobias Schmidt-Samoa, and Claus-
Peter Wirth. How to prove inductive theorems? QuodLibet! 2003. In [Baader, 2003,
pp. 328–333], http://wirth.bplaced.net/p/quodlibet.

[Baader, 2003] Franz Baader, editor. 19th Int. Conf. on Automated Deduction, Miami Beach
(FL), 2003, number 2741 in Lecture Notes in Artificial Intelligence. Springer, 2003.

[Baaz and Leitsch, 1995] Matthias Baaz and Alexander Leitsch. Methods of functional exten-
sion. Collegium Logicum — Annals of the Kurt Gödel Society, 1:87–122, 1995.

[Baaz et al., 1997] Matthias Baaz, Uwe Egly, and Christian G. Fermüller. Lean induction prin-
ciples for tableaus. 1997. In [Galmiche, 1997, pp. 62–75].

[Bachmair et al., 1992] Leo Bachmair, Harald Ganzinger, and Wolfgang J. Paul, editors. Infor-
matik – Festschrift zum 60. Geburtstag von Günter Hotz. B. G. Teubner Verlagsgesellschaft,
1992.

[Bachmair, 1988] Leo Bachmair. Proof by consistency in equational theories. 1988. In [LICS,
1988, pp. 228–233].

66 J Strother Moore, Claus-Peter Wirth

[Bajscy, 1993] Ruzena Bajscy, editor. Proc. 13th Int. Joint Conf. on Artificial Intelligence
(IJCAI), Chambery, France. Morgan Kaufman (Elsevier), 1993. http://ijcai.org/Past%
20Proceedings.

[Barendregt, 1981] Hen(dri)k P. Barendregt. The Lambda Calculus — Its Syntax and Seman-
tics. Number 103 in Studies in Logic and the Foundations of Mathematics. North-Holland
(Elsevier), 1981. 1st edn. (final rev. edn. is [Barendregt, 2012]).

[Barendregt, 2012] Hen(dri)k P. Barendregt. The Lambda Calculus — Its Syntax and Seman-
tics. Number 40 in Studies in Logic. College Publications, London, 2012. 6th rev. edn. (1st edn.
is [Barendregt, 1981]).

[Barner, 2001] Klaus Barner. Das Leben Fermats. DMV-Mitteilungen, 3/2001:12–26, 2001.
[Basin and Walsh, 1996] David Basin and Toby Walsh. A calculus for and termination of rip-

pling. J. Automated Reasoning, 16:147–180, 1996.
[Becker, 1965] Oscar Becker, editor. Zur Geschichte der griechischen Mathematik. Wissen-

schaftliche Buchgesellschaft, Darmstadt, 1965.
[Beckert, 2005] Bernhard Beckert, editor. 14th Int. Conf. on Tableaux and Related Methods,

Koblenz (Germany), 2005, number 3702 in Lecture Notes in Artificial Intelligence. Springer,
2005.

[Benzmüller et al., 2008] Christoph Benzmüller, Frank Theiss, Larry Paulson, and Arnaud
Fietzke. Leo-II — a cooperative automatic theorem prover for higher-order logic. 2008.
In [Armando et al., 2008, pp. 162–170].

[Berka and Kreiser, 1973] Karel Berka and Lothar Kreiser, editors. Logik-Texte – Kommentierte
Auswahl zur Geschichte der modernen Logik. Akademie-Verlag, Berlin, 1973. 2nd rev. edn.
(1st edn. 1971; 4th rev. rev. edn. 1986).

[Bevers and Lewi, 1990] Eddy Bevers and Johan Lewi. Proof by consistency in conditional equa-
tional theories. Tech. Report CW 102, Dept. Comp. Sci., K. U. Leuven, 1990. Rev. July 1990.
Short version in [Kaplan and Okada, 1991, pp. 194–205].

[Bibel and Kowalski, 1980] Wolfgang Bibel and Robert A. Kowalski, editors. 5th Int. Conf. on
Automated Deduction, Les Arcs, France, 1980, number 87 in Lecture Notes in Computer
Science. Springer, 1980.

[Bledsoe et al., 1972] W. W. Bledsoe, Robert S. Boyer, and William H. Henneman. Computer
proofs of limit theorems. Artificial Intelligence, 3:27–60, 1972.

[Bouhoula and Rusinowitch, 1995] Adel Bouhoula and Michaël Rusinowitch. Implicit induction
in conditional theories. J. Automated Reasoning, 14:189–235, 1995.

[Bourbaki, 1939] Nicolas Bourbaki. Éléments des Mathématique — Livre 1: Théorie des En-
sembles. Fascicule De Résultats. Number 846 in Actualités Scientifiques et Industrielles.
Hermann, Paris, 1939. 1st edn., VIII + 50 pp.. Review is [Church, 1946]. 2nd rev. extd. edn. is
[Bourbaki, 1951].

[Bourbaki, 1951] Nicolas Bourbaki. Éléments des Mathématique — Livre 1: Théorie des En-
sembles. Fascicule De Résultats. Number 846-1141 in Actualités Scientifiques et Industrielles.
Hermann, Paris, 1951. 2nd rev. extd. edn. of [Bourbaki, 1939]. 3rd rev. extd. edn. is [Bourbaki,
1958b].

[Bourbaki, 1954] Nicolas Bourbaki. Éléments des Mathématique — Livre 1: Théorie des En-
sembles. Chapitre I & II. Number 1212 in Actualités Scientifiques et Industrielles. Hermann,
Paris, 1954. 1st edn.. 2nd rev. edn. is [Bourbaki, 1960].

[Bourbaki, 1956] Nicolas Bourbaki. Éléments des Mathématique — Livre 1: Théorie des En-
sembles. Chapitre III. Number 1243 in Actualités Scientifiques et Industrielles. Hermann,
Paris, 1956. 1st edn., II + 119+4 (mode d’emploi)+ 23 (errata no. 6) pp.. 2nd rev. extd. edn. is
[Bourbaki, 1967].

[Bourbaki, 1958a] Nicolas Bourbaki. Éléments des Mathématique — Livre 1: Théorie des En-
sembles. Chapitre IV. Number 1258 in Actualités Scientifiques et Industrielles. Hermann,
Paris, 1958. 1st edn.. 2nd rev. extd. edn. is [Bourbaki, 1966a].

[Bourbaki, 1958b] Nicolas Bourbaki. Éléments des Mathématique — Livre 1: Théorie des En-
sembles. Fascicule De Résultats. Number 1141 in Actualités Scientifiques et Industrielles.
Hermann, Paris, 1958. 3rd rev. extd. edn. of [Bourbaki, 1951]. 4th rev. extd. edn. is [Bourbaki,
1964].

[Bourbaki, 1960] Nicolas Bourbaki. Éléments des Mathématique — Livre 1: Théorie des En-
sembles. Chapitre I & II. Number 1212 in Actualités Scientifiques et Industrielles. Hermann,
Paris, 1960. 2nd rev. extd. edn. of [Bourbaki, 1954]. 3rd rev. edn. is [Bourbaki, 1966b].

The Automation of Mathematical Induction 67

[Bourbaki, 1964] Nicolas Bourbaki. Éléments des Mathématique — Livre 1: Théorie des En-
sembles. Fascicule De Résultats. Number 1141 in Actualités Scientifiques et Industrielles.
Hermann, Paris, 1964. 4th rev. extd. edn. of [Bourbaki, 1958b]. 5th rev. extd. edn. is [Bourbaki,
1968b].

[Bourbaki, 1966a] Nicolas Bourbaki. Éléments des Mathématique — Livre 1: Théorie des En-
sembles. Chapitre IV. Number 1258 in Actualités Scientifiques et Industrielles. Hermann,
Paris, 1966. 2nd rev. extd. edn. of [Bourbaki, 1958a]. English translation in [Bourbaki, 1968a].

[Bourbaki, 1966b] Nicolas Bourbaki. Éléments des Mathématique — Livre 1: Théorie des En-
sembles. Chapitres I & II. Number 1212 in Actualités Scientifiques et Industrielles. Hermann,
Paris, 1966. 3rd rev. edn. of [Bourbaki, 1960], VI + 143 + 7 (errata no. 13) pp.. English transla-
tion in [Bourbaki, 1968a].

[Bourbaki, 1967] Nicolas Bourbaki. Éléments des Mathématique — Livre 1: Théorie des En-
sembles. Chapitre III. Number 1243 in Actualités Scientifiques et Industrielles. Hermann,
Paris, 1967. 2nd rev. extd. edn. of [Bourbaki, 1956], 151 + 7 (errata no. 13) pp.. 3rd rev. edn. re-
sults from executing these errata. English translation in [Bourbaki, 1968a].

[Bourbaki, 1968a] Nicolas Bourbaki. Elements of Mathematics — Theory of Sets. Actualités
Scientifiques et Industrielles. Hermann, Paris, jointly published with AdiWes International Se-
ries in Mathematics, Addison–Wesley, Reading (MA), 1968. English translation of [Bourbaki,
1966b; 1967; 1966a; 1968b].

[Bourbaki, 1968b] Nicolas Bourbaki. Éléments des Mathématique — Livre 1: Théorie des En-
sembles. Fascicule De Résultats. Number 1141 in Actualités Scientifiques et Industrielles.
Hermann, Paris, 1968. 5th rev. extd. edn. of [Bourbaki, 1964]. English translation in [Bour-
baki, 1968a].

[Boyer and Moore, 1971] Robert S. Boyer and J Strother Moore. The sharing of structure
in resolution programs. Memo 47, Univ. Edinburgh, Dept. of Computational Logic, 1971.
II+ 24 pp..

[Boyer and Moore, 1972] Robert S. Boyer and J Strother Moore. The sharing of structure in
theorem-proving programs. 1972. In [Meltzer and Michie, 1972, pp. 101–116].

[Boyer and Moore, 1973] Robert S. Boyer and J Strother Moore. Proving theorems about LISP
functions. 1973. In [Nilsson, 1973, pp. 486–493]. http://ijcai.org/Past%20Proceedings/
IJCAI-73/PDF/053.pdf. Rev. version, extd. with a section “Failures”, is [Boyer and Moore,
1975].

[Boyer and Moore, 1975] Robert S. Boyer and J Strother Moore. Proving theorems about LISP
functions. J. of the ACM, 22:129–144, 1975. Rev. extd. edn. of [Boyer and Moore, 1973].
Received Sept. 1973, Rev. April 1974.

[Boyer and Moore, 1977] Robert S. Boyer and J Strother Moore. A lemma driven automatic
theorem prover for recursive function theory. 1977. In [Reddy, 1977, Vol. I, pp. 511–519].
http://ijcai.org/Past%20Proceedings/IJCAI-77-VOL1/PDF/089.pdf.

[Boyer and Moore, 1979] Robert S. Boyer and J Strother Moore. A Computational Logic. Aca-
demic Press (Elsevier), 1979.

[Boyer and Moore, 1981a] Robert S. Boyer and J Strother Moore, editors. The Correctness
Problem in Computer Science. Academic Press (Elsevier), 1981.

[Boyer and Moore, 1981b] Robert S. Boyer and J Strother Moore. Metafunctions: Proving them
correct and using them efficiently as new proof procedures. 1981. In [Boyer and Moore, 1981a,
pp. 103–184].

[Boyer and Moore, 1988a] Robert S. Boyer and J Strother Moore. The addition of bounded
quantification and partial functions to a computational logic and its theorem prover. J.
Automated Reasoning, 4:117–172, 1988. Received Feb. 11, 1987. Also in [Boyer and Moore,
1989].

[Boyer and Moore, 1988b] Robert S. Boyer and J Strother Moore. A Computational Logic
Handbook. Number 23 in Perspectives in Computing. Academic Press (Elsevier), 1988.
2nd rev. extd. edn. is [Boyer and Moore, 1998].

[Boyer and Moore, 1988c] Robert S. Boyer and J Strother Moore. Integrating decision proce-
dures into heuristic theorem provers: A case study of linear arithmetic. 1988. In [Hayes et
al., 1988, pp. 83–124].

[Boyer and Moore, 1989] Robert S. Boyer and J Strother Moore. The addition of bounded
quantification and partial functions to a computational logic and its theorem prover. 1989.
In [Broy, 1989, pp. 95–145] (received Jan. 1988). Also in [Boyer and Moore, 1988a].

68 J Strother Moore, Claus-Peter Wirth

[Boyer and Moore, 1990] Robert S. Boyer and J Strother Moore. A theorem prover for a com-
putational logic. 1990. [Stickel, 1990, pp. 1–15].

[Boyer and Moore, 1998] Robert S. Boyer and J Strother Moore. A Computational Logic
Handbook. International Series in Formal Methods. Academic Press (Elsevier), 1998.
2nd rev. extd. edn. of [Boyer and Moore, 1988b], rev. to work with Nqthm–1992, a new version
of Nqthm.

[Boyer and Moore, 2012] Robert S. Boyer and J Strother Moore. Unpublished Interview by
Claus-Peter Wirth at Boyer’s place in Austin (TX) on Thursday, Oct. 7. 2012.

[Boyer, 1971] Robert S. Boyer. Locking: a restriction of resolution. PhD thesis, The Univ. of
Texas at Austin, 1971.

[Boyer, 1980] Anne O. Boyer. Sing a song of hacking (letter to the editor). Psychology Today
Magazine, One Park Avenue, New York 10016, 14(6 (Nov.)), 1980.

[Boyer, 2012] Robert S. Boyer. E-mail to Claus-Peter Wirth, Nov. 19,. 2012.
[Brotherston and Simpson, 2007] James Brotherston and Alex Simpson. Complete sequent cal-

culi for induction and infinite descent. 2007. In [LICS, 2007, pp. 51–62?]. Thoroughly rev.
version in [Brotherston and Simpson, 2011].

[Brotherston and Simpson, 2011] James Brotherston and Alex Simpson. Sequent calculi for
induction and infinite descent. J. Logic and Computation, 21:1177–1216, 2011. Thoroughly
rev. version of [Brotherston, 2005] and [Brotherston and Simpson, 2007]. Received April 3,
2009. Published online Sept. 30, 2010, http://dx.doi.org/10.1093/logcom/exq052.

[Brotherston, 2005] James Brotherston. Cyclic proofs for first-order logic with inductive defi-
nitions. 2005. In [Beckert, 2005, pp. 78–92]. Thoroughly rev. version in [Brotherston and
Simpson, 2011].

[Broy, 1989] Manfred Broy, editor. Constructive Methods in Computing Science, number F 55
in NATO ASI Series. Springer, 1989.

[Buch and Hillenbrand, 1996] Armin Buch and Thomas Hillenbrand. WaldMeister: Devel-
opment of a High Performance Completion-Based Theorem Prover. SEKI-Report SR–
96–01 (ISSN 1860–5931). SEKI Publications, FB Informatik, Univ. Kaiserslautern, 1996.
agent.informatik.uni-kl.de/seki/1996/Buch.SR-96-01.ps.gz.

[Bundy et al., 1991] Alan Bundy, Andrew Stevens, Frank van Harmelen, Andrew Ireland, and
Alan Smaill. Rippling: A Heuristic for Guiding Inductive Proofs. 1991. DAI Research Paper
No. 567, Dept. Artificial Intelligence, Univ. Edinburgh. Also in Artificial Intelligence (1993)
62, pp. 185–253.

[Bundy et al., 2005] Alan Bundy, Dieter Hutter, David Basin, and Andrew Ireland. Rippling:
Meta-Level Guidance for Mathematical Reasoning. Cambridge Univ. Press, 2005.

[Bundy, 1988] Alan Bundy. The use of Explicit Plans to Guide Inductive Proofs. 1988. DAI
Research Paper No. 349, Dept. Artificial Intelligence, Univ. Edinburgh. Short version in [Lusk
and Overbeek, 1988, pp. 111–120].

[Bundy, 1989] Alan Bundy. A Science of Reasoning. 1989. DAI Research Paper No. 445, Dept.
Artificial Intelligence, Univ. Edinburgh. Also in [Lassez and Plotkin, 1991, pp. 178–198].

[Bundy, 1994] Alan Bundy, editor. 12th Int. Conf. on Automated Deduction, Nancy, 1994,
number 814 in Lecture Notes in Artificial Intelligence. Springer, 1994.

[Bundy, 1999] Alan Bundy. The Automation of Proof by Mathematical Induction. Informatics
Research Report No. 2, Division of Informatics, Univ. Edinburgh, 1999. Also in [Robinson
and Voronkow, 2001, Vol. 1, pp. 845–911].

[Burstall et al., 1971] Rod M. Burstall, John S. Collins, and Robin J. Popplestone. Programming
in POP–2. Univ. Edinburgh Press, 1971.

[Burstall, 1969] Rod M. Burstall. Proving properties of programs by structural induction. The
Computer Journal, 12:48–51, 1969. Received April 1968, rev.Aug. 1968.

[Bussey, 1917] W. H. Bussey. The origin of mathematical induction. American Mathematical
Monthly, XXIV:199–207, 1917.

[Bussotti, 2006] Paolo Bussotti. From Fermat to Gauß: indefinite descent and methods of
reduction in number theory. Number 55 in Algorismus. Dr. Erwin Rauner Verlag, Augsburg,
2006.

[Cajori, 1918] Florian Cajori. Origin of the name “mathematical induction”. American Mathe-
matical Monthly, 25:197–201, 1918.

[Church, 1946] Alonzo Church. Review of [Bourbaki, 1939]. J. Symbolic Logic, 11:91, 1946.
[Cohn, 1965] Paul Moritz Cohn. Universal Algebra. Harper & Row, New York, 1965. 1st edn..

2nd rev. edn. is [Cohn, 1981].

The Automation of Mathematical Induction 69

[Cohn, 1981] Paul Moritz Cohn. Universal Algebra. Number 6 in Mathematics and Its Appli-
cations. D. Reidel Publ., Dordrecht, now part of Springer Science+Business Media, 1981.
2nd rev. edn. (1st edn. is [Cohn, 1965]).

[Comon, 1997] Hubert Comon, editor. 8th Int. Conf. on Rewriting Techniques and Applications
(RTA), Sitges (Spain), 1997, number 1232 in Lecture Notes in Computer Science. Springer,
1997.

[Comon, 2001] Hubert Comon. Inductionless induction. 2001. In [Robinson and Voronkow,
2001, Vol. I, pp. 913–970].

[DAC, 2001] Proc. 38th Design Automation Conference (DAC), Las Vegas (NV), 2001. ACM,
2001.

[Dedekind, 1888] Richard Dedekind. Was sind und was sollen die Zahlen. Vieweg, Braun-
schweig, 1888. Also in [Dedekind, 1930–32, Vol. 3, pp. 335–391]. Also in [Dedekind, 1969].

[Dedekind, 1930–32] Richard Dedekind. Gesammelte mathematische Werke. Vieweg, Braun-
schweig, 1930–32. Ed. by Robert Fricke, Emmy Noether, and Öystein Ore.

[Dedekind, 1969] Richard Dedekind. Was sind und was sollen die Zahlen? Stetigkeit und irra-
tionale Zahlen. Friedrich Vieweg und Sohn, Braunschweig, 1969.

[Dennis et al., 2005] Louise A. Dennis, Mateja Jamnik, and Martin Pollet. On the comparison
of proof planning systems λCLaM, Ωmega and IsaPlanner. Electronic Notes in Theoretical
Computer Sci., 151:93–110, 2005.

[Dershowitz and Jouannaud, 1990] Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite
systems. 1990. In [Leeuwen, 1990, Vol. B, pp. 243–320].

[Dershowitz and Lindenstrauss, 1995] Nachum Dershowitz and Naomi Lindenstrauss, editors.
4th Int. Workshop on Conditional Term Rewriting Systems (CTRS), Jerusalem, 1994, num-
ber 968 in Lecture Notes in Computer Science, 1995.

[Dershowitz, 1989] Nachum Dershowitz, editor. 3rd Int. Conf. on Rewriting Techniques and
Applications (RTA), Chapel Hill (NC), 1989, number 355 in Lecture Notes in Computer
Science. Springer, 1989.

[Euclid, ca. 300 b.c.] Euclid, of Alexandria. Elements. ca. 300 b.c.. Web version without
the figures: http://www.perseus.tufts.edu/hopper/text?doc=Perseus:text:1999.01.0085.
English translation: Thomas L. Heath (ed.). The Thirteen Books of Euclid’s Elements.
Cambridge Univ. Press, 1908; web version without the figures: http://www.perseus.
tufts.edu/hopper/text?doc=Perseus:text:1999.01.0086. English web version (incl. fig-
ures): D. E. Joyce (ed.). Euclid’s Elements. http://aleph0.clarku.edu/~djoyce/java/
elements/elements.html, Dept. Math. & Comp. Sci., Clark Univ., Worcester (MA).

[Fermat, 1891ff.] Pierre Fermat. Œuvres de Fermat. Gauthier-Villars, Paris, 1891ff.. Ed. by
Paul Tannery, Charles Henry.

[Fitting, 1990] Melvin Fitting. First-order logic and automated theorem proving. Springer, 1990.
1st edn. (2nd rev. edn. is [Fitting, 1996]).

[Fitting, 1996] Melvin Fitting. First-order logic and automated theorem proving. Springer, 1996.
2nd rev. edn. (1st edn. is [Fitting, 1990]).

[FOCS, 1980] Proc. 21st Annual Symposium on Foundations of Computer Sci., Syracuse, 1980.
IEEE Press, 1980. http://ieee-focs.org/.

[Fribourg, 1986] Laurent Fribourg. A strong restriction of the inductive completion procedure.
1986. In [Kott, 1986, pp. 105–116]. Also in J. Symbolic Computation 8, pp. 253–276, Academic
Press (Elsevier), 1989.

[Fries, 1822] Jakob Friedrich Fries. Die mathematische Naturphilosophie nach philosophischer
Methode bearbeitet – Ein Versuch. Christian Friedrich Winter, Heidelberg, 1822.

[Fritz, 1945] Kurt von Fritz. The discovery of incommensurability by Hippasus of Metapon-
tum. Annals of Mathematics, 46:242–264, 1945. German translation: Die Entdeckung der
Inkommensurabilität durch Hippasos von Metapont in [Becker, 1965, pp. 271–308].

[Fuchi and Kott, 1988] Kazuhiro Fuchi and Laurent Kott, editors. Programming of Future Gen-
eration Computers II: Proc. of the 2nd Franco-Japanese Symposium. North-Holland (Else-
vier), 1988.

[Gabbay et al., 1994] Dov Gabbay, Christopher John Hogger, and J. Alan Robinson, editors.
Handbook of Logic in Artificial Intelligence and Logic Programming. Vol. 2: Deduction
Methodologies. Oxford Univ. Press, 1994.

[Galmiche, 1997] Didier Galmiche, editor. 6th Int. Conf. on Tableaux and Related Methods,
Pont-à-Mousson (France), 1997, number 1227 in Lecture Notes in Artificial Intelligence.
Springer, 1997.

70 J Strother Moore, Claus-Peter Wirth

[Ganzinger and Stuber, 1992] Harald Ganzinger and Jürgen Stuber. Inductive Theorem Proving
by Consistency for First-Order Clauses. 1992. In [Bachmair et al., 1992, pp. 441–462]. Also
in [Rusinowitch and Remy, 1993, pp. 226–241].

[Ganzinger, 1996] Harald Ganzinger, editor. 7th Int. Conf. on Rewriting Techniques and Appli-
cations (RTA), New Brunswick (NJ), 1996, number 1103 in Lecture Notes in Computer
Science. Springer, 1996.

[Ganzinger, 1999] Harald Ganzinger, editor. 16th Int. Conf. on Automated Deduction, Trento,
Italy, 1999, number 1632 in Lecture Notes in Artificial Intelligence. Springer, 1999.

[Gentzen, 1935] Gerhard Gentzen. Untersuchungen über das logische Schließen. Mathematische
Zeitschrift, 39:176–210,405–431, 1935. Also in [Berka and Kreiser, 1973, pp. 192–253]. English
translation in [Gentzen, 1969].

[Gentzen, 1969] Gerhard Gentzen. The Collected Papers of Gerhard Gentzen. North-Holland
(Elsevier), 1969. Ed. by Manfred E. Szabo.

[Geser, 1995] Alfons Geser. A principle of non-wellfounded induction. 1995. In [Margaria, 1995,
pp. 117–124].

[Göbel, 1985] Richard Göbel. Completion of globally finite term rewriting systems for inductive
proofs. 1985. In [Stoyan, 1985, pp. 101–110].

[Gödel, 1931] Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme I. Monatshefte für Mathematik und Physik, 38:173–198, 1931. With
English translation also in [Gödel, 1986ff., Vol. I, pp. 145–195]. English translation also in
[Heijenoort, 1971, pp. 596–616] and in [Gödel, 1962].

[Gödel, 1962] Kurt Gödel. On formally undecidable propositions of Principia Mathematica and
related systems. Basic Books, New York, 1962. English translation of [Gödel, 1931] by Bernard
Meltzer. With an introduction by R. B. Braithwaite. 2nd edn. by Dover Publications, 1992.

[Gödel, 1986ff.] Kurt Gödel. Collected Works. Oxford Univ. Press, 1986ff. Ed. by Sol(omon)
Feferman, John W. Dawson Jr., Warren Goldfarb, Jean van Heijenoort, Stephen C. Kleene,
Charles Parsons, Wilfried Sieg, et al..

[Goguen, 1980] Joseph Goguen. How to prove algebraic inductive hypotheses without induction.
1980. In [Bibel and Kowalski, 1980, pp. 356–373].

[Gore et al., 2001] Rajeev Gore, Alexander Leitsch, and Tobias Nipkow, editors. 1st Int. Joint
Conf. on Automated Reasoning (IJCAR), Siena, Italy, 2001, number 2083 in Lecture Notes
in Artificial Intelligence. Springer, 2001.

[Gramlich and Lindner, 1991] Bernhard Gramlich and Wolfgang Lindner. A Guide to Unicom,
an Inductive Theorem Prover Based on Rewriting and Completion Techniques. SEKI-Report
SR–91–17 (ISSN 1860–5931). SEKI Publications, FB Informatik, Univ. Kaiserslautern, 1991.
http://agent.informatik.uni-kl.de/seki/1991/Lindner.SR-91-17.ps.gz.

[Gramlich and Wirth, 1996] Bernhard Gramlich and Claus-Peter Wirth. Confluence of termi-
nating conditional term rewriting systems revisited. 1996. In [Ganzinger, 1996, pp. 245–259].

[Hayes et al., 1988] J. E. Hayes, Donald Michie, and Judith Richards, editors. Proceedings of
the 11th Annual Machine Intelligence Workshop (Machine Intelligence 11), Univ. Strathclyde,
Glasgow, 1985. Clarendon Press, Oxford (Oxford Univ. Press), 1988.

[Heijenoort, 1971] Jean van Heijenoort. From Frege to Gödel: A Source Book in Mathematical
Logic, 1879–1931. Harvard Univ. Press, 1971. 2nd rev. edn. (1st edn. 1967).

[Herbelin, 2009] Hugo Herbelin, editor. The 1st Coq Workshop. Inst. für Informatik,
Tech. Univ. München, 2009. TUM-I0919, http://www.lix.polytechnique.fr/coq/files/
coq-workshop-TUM-I0919.pdf.

[Hilbert and Bernays, 1934] David Hilbert and Paul Bernays. Die Grundlagen der Mathematik
— Erster Band. Number XL in Die Grundlehren der Mathematischen Wissenschaften in
Einzeldarstellungen. Springer, 1934. 1st edn. (2nd edn. is [Hilbert and Bernays, 1968]).

[Hilbert and Bernays, 1939] David Hilbert and Paul Bernays. Die Grundlagen der Mathematik
— Zweiter Band. Number L in Die Grundlehren der Mathematischen Wissenschaften in
Einzeldarstellungen. Springer, 1939. 1st edn. (2nd edn. is [Hilbert and Bernays, 1970]).

[Hilbert and Bernays, 1968] David Hilbert and Paul Bernays. Die Grundlagen der Mathema-
tik I. Number 40 in Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstel-
lungen. Springer, 1968. 2nd rev. edn. of [Hilbert and Bernays, 1934].

[Hilbert and Bernays, 1970] David Hilbert and Paul Bernays. Die Grundlagen der Mathema-
tik II. Number 50 in Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstel-
lungen. Springer, 1970. 2nd rev. edn. of [Hilbert and Bernays, 1939].

The Automation of Mathematical Induction 71

[Hilbert and Bernays, 2011] David Hilbert and Paul Bernays. Grundlagen der Mathematik I —
Foundations of Mathematics I, Part A. College Publications, London, 2011. Commented, first
English translation of the 2nd edn. [Hilbert and Bernays, 1968] by Claus-Peter Wirthet.al., incl.
the German facsimile and the annotation and translation of all deleted texts of 1st German edn.
[Hilbert and Bernays, 1934]. Advisory Board: Wilfried Sieg (chair), Irving H. Anellis, Steve
Awodey, Matthias Baaz, Wilfried Buchholz, Bernd Buldt, Reinhard Kahle, Paolo Mancosu,
Charles Parsons, Volker Peckhaus, William W. Tait, Christian Tapp, Richard Zach. ISBN 978–
1–84890–033–2.

[Hillenbrand and Löchner, 2002] Thomas Hillenbrand and Bernd Löchner. The next Wald-
Meister loop. 2002. In [Voronkov, 2002, pp. 486–500]. http://www.waldmeister.org.

[Howard and Rubin, 1998] Paul Howard and Jean E. Rubin. Consequences of the Axiom of
Choice. American Math. Society, 1998.

[Hudlak et al., 1999] Paul Hudlak, John Peterson, and Joseph H. Fasel. A gentle introduction
to Haskell. Web only: http://www.haskell.org/tutorial, 1999.

[Huet and Hullot, 1980] Gérard Huet and Jean-Marie Hullot. Proofs by induction in equational
theories with constructors. 1980. In [FOCS, 1980, pp. 96–107]. Also in J. Computer and
System Sci. 25, pp. 239–266, Academic Press (Elsevier), 1982.

[Huet, 1980] Gérard Huet. Confluent reductions: Abstract properties and applications to term
rewriting systems. J. of the ACM, 27:797–821, 1980.

[Hutter and Stephan, 2005] Dieter Hutter and Werner Stephan, editors. Mechanizing Mathema-
tical Reasoning: Essays in Honor of Jörg H. Siekmann on the Occasion of His 60th Birthday.
Number 2605 in Lecture Notes in Artificial Intelligence. Springer, 2005.

[Hutter, 1990] Dieter Hutter. Guiding inductive proofs. 1990. In [Stickel, 1990, pp. 147–161].
[Hutter, 1994] Dieter Hutter. Synthesis of induction orderings for existence proofs. 1994. In

[Bundy, 1994, pp. 29–41].
[Ireland and Bundy, 1994] Andrew Ireland and Alan Bundy. Productive Use of Failure in In-

ductive Proof. 1994. DAI Research Paper No. 716, Dept. Artificial Intelligence, Univ. Edin-
burgh. Also in: J. Automated Reasoning (1996) 16(1-2), pp. 79–111, Kluwer (Springer Sci-
ence+Business Media).

[Jouannaud and Kounalis, 1986] Jean-Pierre Jouannaud and Emmanuël Kounalis. Automatic
proofs by induction in equational theories without constructors. 1986. In [LICS, 1986, pp. 358–
366]. Also in Information and Computation 82, pp. 1–33, Academic Press (Elsevier), 1989.

[Kaplan and Jouannaud, 1988] Stéphane Kaplan and Jean-Pierre Jouannaud, editors. 1st Int.
Workshop on Conditional Term Rewriting Systems (CTRS), Orsay (France), 1987, number
308 in Lecture Notes in Computer Science, 1988.

[Kaplan and Okada, 1991] Stéphane Kaplan and Mitsuhiro Okada, editors. 2nd Int. Workshop
on Conditional Term Rewriting Systems (CTRS), Montreal, 1990, number 516 in Lecture
Notes in Computer Science, 1991.

[Kapur and Musser, 1986] Deepak Kapur and David R. Musser. Inductive reasoning with in-
complete specifications, 1986. In [LICS, 1986, pp. 367–377].

[Kapur and Musser, 1987] Deepak Kapur and David R. Musser. Proof by consistency. Artificial
Intelligence, 31:125–157, 1987.

[Kapur and Zhang, 1989] Deepak Kapur and Hantao Zhang. An overview of Rewrite Rule Lab-
oratory (Rrl). 1989. In [Dershowitz, 1989, pp. 559–563]. Journal version is [Kapur and Zhang,
1995].

[Kapur and Zhang, 1995] Deepak Kapur and Hantao Zhang. An overview of Rewrite Rule Lab-
oratory (Rrl). Computers and Mathematics with Applications, 29(2):91–114, 1995.

[Katz, 1998] Victor J. Katz. A History of Mathematics: An Introduction. Addison–Wesley,
Reading (MA), 1998. 2nd edn..

[Kaufmann et al., 2000a] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore, editors.
Computer-Aided Reasoning: ACL2 Case Studies. Number 4 in Advances in Formal Methods.
Kluwer (Springer Science+Business Media), 2000. With a foreword from the series editor
Mike Hinchey.

[Kaufmann et al., 2000b] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore.
Computer-Aided Reasoning: An Approach. Number 3 in Advances in Formal Methods.
Kluwer (Springer Science+Business Media), 2000. With a foreword from the series editor
Mike Hinchey.

[Knuth and Bendix, 1970] Donald E Knuth and Peter B. Bendix. Simple word problems in
universal algebra. 1970. In [Leech, 1970, pp. 263–297].

72 J Strother Moore, Claus-Peter Wirth

[Kodratoff, 1988] Yves Kodratoff, editor. Proc. 8th European Conf. on Artificial Intelligence
(ECAI). Pitman Publ., London, 1988.

[Kott, 1986] Laurent Kott, editor. 13th Int. Colloquium on Automata, Languages and Program-
ming (ICALP), Rennes, France, number 226 in Lecture Notes in Computer Science. Springer,
1986.

[Kowalski, 1988] Robert A. Kowalski. The early years of logic programming. Comm. ACM,
31:38–43, 1988.

[Kraan et al., 1995] Ina Kraan, David Basin, and Alan Bundy. Middle-Out Reasoning for Syn-
thesis and Induction. 1995. DAI Research Paper No. 729, Dept. Artificial Intelligence, Univ.
Edinburgh. Also in J. Automated Reasoning (1996) 16(1–2), pp. 113–145, Kluwer (Springer
Science+Business Media).

[Kreisel, 1965] Georg Kreisel. Mathematical logic. 1965. In [Saaty, 1965, Vol. III, pp. 95–195].
[Küchlin, 1989] Wolfgang Küchlin. Inductive completion by ground proof transformation. 1989.

In [Aı̈t-Kaci and Nivat, 1989, Vol. 2, pp. 211–244].
[Kühler and Wirth, 1996] Ulrich Kühler and Claus-Peter Wirth. Conditional Equational Speci-

fications of Data Types with Partial Operations for Inductive Theorem Proving. SEKI-Report
SR–1996–11 (ISSN 1437–4447). SEKI Publications, FB Informatik, Univ. Kaiserslautern,
1996. http://wirth.bplaced.net/p/rta97. Short version is [Kühler and Wirth, 1997].

[Kühler and Wirth, 1997] Ulrich Kühler and Claus-Peter Wirth. Conditional equational specifi-
cations of data types with partial operations for inductive theorem proving. 1997. In [Comon,
1997, pp. 38–52]. Extended version is [Kühler and Wirth, 1996].

[Kühler, 2000] Ulrich Kühler. A Tactic-Based Inductive Theorem Prover for Data Types with
Partial Operations. Infix, Akademische Verlagsgesellschaft Aka GmbH, Sankt Augustin, Ber-
lin, 2000. PhD thesis, Univ. Kaiserslautern, ISBN 1586031287, http://wirth.bplaced.net/p/
kuehlerdiss.

[Lankford, 1980] Dallas S. Lankford. Some remarks on inductionless induction. Memo MTP-11,
Math. Dept., Louisiana Tech. Univ., Ruston, LA, 1980.

[Lankford, 1981] Dallas S. Lankford. A simple explanation of inductionless induction. Memo
MTP-14, Math. Dept., Louisiana Tech. Univ., Ruston, LA, 1981.

[Lassez and Plotkin, 1991] Jean-Louis Lassez and Gordon D. Plotkin, editors. Computational
Logic — Essays in Honor of J. Alan Robinson. MIT Press, 1991.

[Leech, 1970] John Leech, editor. Computational Word Problems in Abstract Algebra — Proc. of
a Conf. held at Oxford, under the auspices of the Science Research Council, Atlas Computer
Laboratory, 29th Aug. to 2nd Sept. 1967. Pergamon Press, Oxford, 1970. With a foreword by
J. Howlett.

[Leeuwen, 1990] Jan van Leeuwen, editor. Handbook of Theoretical Computer Sci.. MIT Press,
1990.

[LICS, 1986] Proc. 1st Annual IEEE Symposium on Logic In Computer Sci. (LICS), Cambridge
(MA), 1986. IEEE Press, 1986. http://lii.rwth-aachen.de/lics/archive/1986.

[LICS, 1988] Proc. 3rd Annual IEEE Symposium on Logic In Computer Sci. (LICS), Edinburgh,
1988. IEEE Press, 1988. http://lii.rwth-aachen.de/lics/archive/1988.

[LICS, 2007] Proc. 22nd Annual IEEE Symposium on Logic In Computer Sci. (LICS),
WrocÃlaw (i.e. Breslau, Silesia), 2007. IEEE Press, 2007. http://lii.rwth-aachen.de/lics/
archive/2007.

[Lusk and Overbeek, 1988] Ewing Lusk and Ross Overbeek, editors. 9th Int. Conf. on Auto-
mated Deduction, Argonne National Laboratory (IL), 1988, number 310 in Lecture Notes in
Artificial Intelligence. Springer, 1988.

[Mahoney, 1994] Michael Sean Mahoney. The Mathematical Career of Pierre de Fermat 1601–
1665. Princeton Univ. Press, 1994. 2nd rev. edn. (1st edn. 1973).

[Marchisotto and Smith, 2007] Elena Anne Marchisotto and James T. Smith. The Legacy of
Mario Pieri in Geometry and Arithmetic. Birkhäuser (Springer), 2007.

[Margaria, 1995] Tiziana Margaria, editor. Kolloquium Programmiersprachen und Grundlagen
der Programmierung, 1995. Tech. Report MIP–9519, Univ. Passau.

[McCarthy et al., 1965] John McCarthy, Paul W. Abrahams, D. J. Edwards, T. P. Hart, and
M. I. Levin. LISP 1.5 Programmer’s Manual. MIT Press, 1965.

[McRobbie and Slaney, 1996] Michael A. McRobbie and John K. Slaney, editors. 13th Int. Conf.
on Automated Deduction, New Brunswick (NJ), 1996, number 1104 in Lecture Notes in
Artificial Intelligence. Springer, 1996.

The Automation of Mathematical Induction 73

[Meltzer and Michie, 1972] Bernard Meltzer and Donald Michie, editors. Proceedings of the
7th Annual Machine Intelligence Workshop (Machine Intelligence 7), Edinburgh, 1971. Univ.
Edinburgh Press, 1972.

[Meltzer, 1975] Bernard Meltzer. Department of A.I. – Univ. of Edinburgh. ACM SIGART
Bulletin, 50:5, 1975.

[Moore, 1973] J Strother Moore. Computational Logic: Structure Sharing and Proof of Program
Properties. PhD thesis, Dept. Artificial Intelligence, Univ. Edinburgh, 1973.

[Moore, 1975] J Strother Moore. Introducing iteration into the pure lisp theorem prover. Tech-
nical Report CSL 74–3, Xerox, Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto
(CA), 1975. Received Dec. 1974, rev.March 1975.

[Moskewicz et al., 2001] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang,
and Sharad Malik. Chaff: Engineering an efficient SAT solver. 2001. In [DAC, 2001, pp. 530–
535].

[Musser, 1980] David R. Musser. On proving inductive properties of abstract data types. 1980.
In [Abrahams et al., 1980, pp. 154–162].

[Nilsson, 1973] Nils J. Nilsson, editor. Proc. 3rd Int. Joint Conf. on Artificial Intelligence
(IJCAI), Stanford (CA). Stanford Research Institute, Publications Dept., Stanford (CA),
1973. http://ijcai.org/Past%20Proceedings/IJCAI-73/CONTENT/content.htm.

[Padawitz, 1996] Peter Padawitz. Inductive theorem proving for design specifications. J. Sym-
bolic Computation, 21:41–99, 1996.

[Pascal, 1954] Blaise Pascal. Œuvres Complètes. Gallimard, Paris, 1954. Jacques Chevalier
(ed.).

[Péter, 1951] Rósza Péter. Rekursive Funktionen. Akad. Kiadó, Budapest, 1951.
[Pieri, 1908] Mario Pieri. Sopra gli assiomi aritmetici. Il Bollettino delle seduta della Accademia

Gioenia di Scienze Naturali in Catania, Series 2, 1–2:26–30, 1908. Written Dec. 1907. Received
Jan. 8, 1908. English translation On the Axioms of Arithmetic in [Marchisotto and Smith,
2007, § 4.2, pp. 308–313].

[Protzen, 1994] Martin Protzen. Lazy generation of induction hypotheses. 1994. In [Bundy,
1994, pp. 42–56].

[Protzen, 1995] Martin Protzen. Lazy Generation of Induction Hypotheses and Patching Faulty
Conjectures. Infix, Akademische Verlagsgesellschaft Aka GmbH, Sankt Augustin, Berlin, 1995.
PhD thesis.

[Protzen, 1996] Martin Protzen. Patching faulty conjectures. 1996. In [McRobbie and Slaney,
1996, pp. 77–91].

[Reddy, 1977] Ray Reddy, editor. Proc. 5th Int. Joint Conf. on Artificial Intelligence (IJCAI),
Cambridge (MA). Dept. of Computer Sci., Carnegie Mellon Univ., Cambridge (MA), 1977.
http://ijcai.org/Past%20Proceedings.

[Reddy, 1990] Uday S. Reddy. Term rewriting induction. 1990. [Stickel, 1990, pp. 162–177].
[Riazanov and Voronkov, 2001] Alexander Riazanov and Andrei Voronkov. Vampire 1.1 (system

description). 2001. In [Gore et al., 2001, pp. 376–380].
[Robinson and Voronkow, 2001] Alan Robinson and Andrei Voronkow, editors. Handbook of

Automated Reasoning. Elsevier, 2001.
[Rubin and Rubin, 1985] Herman Rubin and Jean E. Rubin. Equivalents of the Axiom of

Choice. North-Holland (Elsevier), 1985. 2nd rev. edn. (1st edn. 1963).
[Rusinowitch and Remy, 1993] Michaël Rusinowitch and Jean-Luc Remy, editors. 3rd Int. Work-

shop on Conditional Term Rewriting Systems (CTRS), Pont-à-Mousson (France), 1992,
number 656 in Lecture Notes in Computer Science, 1993.

[Saaty, 1965] T. L. Saaty, editor. Lectures on Modern Mathematics. John Wiley & Sons, New
York, 1965.

[Schmidt-Samoa, 2006a] Tobias Schmidt-Samoa. An even closer integration of linear arith-
metic into inductive theorem proving. Electronic Notes in Theoretical Computer Sci., 151:3–
20, 2006. http://wirth.bplaced.net/p/evencloser, http://dx.doi.org/10.1016/j.entcs.
2005.11.020.

[Schmidt-Samoa, 2006b] Tobias Schmidt-Samoa. Flexible Heuristic Control for Combining
Automation and User-Interaction in Inductive Theorem Proving. PhD thesis, Univ. Kaisers-
lautern, 2006. http://wirth.bplaced.net/p/samoadiss.

74 J Strother Moore, Claus-Peter Wirth

[Schmidt-Samoa, 2006c] Tobias Schmidt-Samoa. Flexible heuristics for simplification with con-
ditional lemmas by marking formulas as forbidden, mandatory, obligatory, and generous.
Journal of Applied Non-Classical Logics, 16:209–239, 2006. http://dx.doi.org/10.3166/
jancl.16.208-239.

[Schoenfield, 1967] Joseph R. Schoenfield. Mathematical Logic. Addison–Wesley, Reading (MA),
1967.

[Shankar, 1988] Natarajan Shankar. A mechanical proof of the Church–Rosser theorem. J. of
the ACM, 35:475–522, 1988. Received May 1985, rev. Aug. 1987.

[Steinbach, 1995] Joachim Steinbach. Simplification orderings — history of results. Fundamenta
Informaticae, 24:47–87, 1995.

[Stevens, 1988] Andrew Stevens. A rational reconstruction of Boyer and Moore’s technique for
constructing induction formulas. 1988. In [Kodratoff, 1988, pp. 565–570].

[Stickel, 1990] Mark E. Stickel, editor. 10th Int. Conf. on Automated Deduction, Kaiserslautern
(Germany), 1990, number 449 in Lecture Notes in Artificial Intelligence. Springer, 1990.

[Stoyan, 1985] Herbert Stoyan, editor. 9th German Workshop on Artificial Intelligence (GWAI),
Dassel (Germany), 1985, number 118 in Informatik-Fachberichte. Springer, 1985.

[Toyama, 1988] Yoshihito Toyama. Commutativity of term rewriting systems. 1988. In [Fuchi
and Kott, 1988, pp. 393–407]. Also in [Toyama, 1990].

[Toyama, 1990] Yoshihito Toyama. Term Rewriting Systems and the Church–Rosser Property.
PhD thesis, Tohoku Univ. / Nippon Telegraph and Telephone Corporation, 1990.

[Voicu and Li, 2009] Răzvan Voicu and Mengran Li. Descente Infinie proofs in Coq. 2009. In
[Herbelin, 2009, pp. 73–84].

[Voronkov, 1992] Andrei Voronkov, editor. Proc. 3rd Int. Conf. on Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR), number 624 in Lecture Notes in Artificial
Intelligence. Springer, 1992.

[Voronkov, 2002] Andrei Voronkov, editor. 18th Int. Conf. on Automated Deduction, Køben-
havn, 2002, number 2392 in Lecture Notes in Artificial Intelligence. Springer, 2002.

[Walther, 1992] Christoph Walther. Computing induction axioms. 1992. In [Voronkov, 1992,
pp. 381–392].

[Walther, 1993] Christoph Walther. Combining induction axioms by machine. 1993. In [Bajscy,
1993, pp. 95–101].

[Walther, 1994] Christoph Walther. Mathematical induction. 1994. In [Gabbay et al., 1994,
pp. 127–228].

[Wirth and Becker, 1995] Claus-Peter Wirth and Klaus Becker. Abstract notions and inference
systems for proofs by mathematical induction. 1995. In [Dershowitz and Lindenstrauss, 1995,
pp. 353–373].

[Wirth and Gramlich, 1994a] Claus-Peter Wirth and Bernhard Gramlich. A constructor-based
approach to positive/negative-conditional equational specifications. J. Symbolic Computa-
tion, 17:51–90, 1994. http://dx.doi.org/10.1006/jsco.1994.1004, http://wirth.bplaced.
net/p/jsc94.

[Wirth and Gramlich, 1994b] Claus-Peter Wirth and Bernhard Gramlich. On notions of in-
ductive validity for first-order equational clauses. 1994. In [Bundy, 1994, pp. 162–176],
www.ags.uni-sb.de/~cp/p/cade94.

[Wirth et al., 1993] Claus-Peter Wirth, Bernhard Gramlich, Ulrich Kühler, and Horst Prote.
Constructor-Based Inductive Validity in Positive/Negative-Conditional Equational Specifica-
tions. SEKI-Report SR–93–05 (SFB) (ISSN 1437–4447). SEKI Publications, FB Informatik,
Univ. Kaiserslautern, 1993. IV + 58 pp.. Rev. extd. edn. of 1st part is [Wirth and Gramlich,
1994a], rev. edn. of 2nd part is [Wirth and Gramlich, 1994b].

[Wirth, 1991] Claus-Peter Wirth. Inductive theorem proving in theories specified by positive/ne-
gative-conditional equations. Diplomarbeit (Master’s thesis), Univ. Kaiserslautern, 1991.

[Wirth, 1997] Claus-Peter Wirth. Positive/Negative-Conditional Equations: A Constructor-
Based Framework for Specification and Inductive Theorem Proving, volume 31 of Schriften-
reihe Forschungsergebnisse zur Informatik. Verlag Dr. Kovač, Hamburg, 1997. PhD thesis,
Univ. Kaiserslautern, ISBN 386064551X, www.ags.uni-sb.de/~cp/p/diss.

[Wirth, 2004] Claus-Peter Wirth. Descente Infinie + Deduction. Logic J. of the IGPL, 12:1–96,
2004. http://wirth.bplaced.net/p/d.

[Wirth, 2005] Claus-Peter Wirth. History and future of implicit and inductionless induction:
Beware the old jade and the zombie! 2005. In [Hutter and Stephan, 2005, pp. 192–203],
http://wirth.bplaced.net/p/zombie.

The Automation of Mathematical Induction 75

[Wirth, 2006] Claus-Peter Wirth. lim+, δ+, and Non-Permutability of β-Steps. SEKI-Report
SR–2005–01 (ISSN 1437–4447). SEKI Publications, Saarland Univ., 2006. Rev. edn., http:
//arxiv.org/abs/0902.3635. Thoroughly improved version is [Wirth, 2012c].

[Wirth, 2009] Claus-Peter Wirth. Shallow confluence of conditional term rewriting systems. J.
Symbolic Computation, 44:69–98, 2009. http://dx.doi.org/10.1016/j.jsc.2008.05.005.

[Wirth, 2010a] Claus-Peter Wirth. Progress in Computer-Assisted Inductive Theorem Proving
by Human-Orientedness and Descente Infinie? SEKI-Working-Paper SWP–2006–01 (ISSN
1860–5931). SEKI Publications, Saarland Univ., 2010. Rev. edn. http://arxiv.org/abs/
0902.3294.

[Wirth, 2010b] Claus-Peter Wirth. A Self-Contained and Easily Accessible Discussion of the
Method of Descente Infinie and Fermat’s Only Explicitly Known Proof by Descente Infinie.
SEKI-Working-Paper SWP–2006–02 (ISSN 1860–5931). SEKI Publications, DFKI Bremen
GmbH, Safe and Secure Cognitive Systems, Cartesium, Enrique Schmidt Str. 5, D–28359
Bremen, Germany, 2010. 2nd edn. (1st edn. 2006). http://arxiv.org/abs/0902.3623.

[Wirth, 2012a] Claus-Peter Wirth. Herbrand’s Fundamental Theorem in the eyes of Jean van
Heijenoort. Logica Universalis, 6:485–520, 2012. Received Jan. 12, 2012. Published online
June 22, 2012, http://dx.doi.org/10.1007/s11787-012-0056-7.

[Wirth, 2012b] Claus-Peter Wirth. A Simplified and Improved Free-Variable Framework for
Hilbert’s epsilon as an Operator of Indefinite Committed Choice. SEKI Report SR–2011–
01 (ISSN 1437–4447). SEKI Publications, DFKI Bremen GmbH, Safe and Secure Cognitive
Systems, Cartesium, Enrique Schmidt Str. 5, D–28359 Bremen, Germany, 2012. Rev. edn.,
http://arxiv.org/abs/1104.2444.

[Wirth, 2012c] Claus-Peter Wirth. lim+, δ+, and Non-Permutability of β-Steps. J. Symbolic
Computation, 47:1109–1135, 2012. Received Jan. 18, 2011. Published online July 15, 2011,
http://dx.doi.org/10.1016/j.jsc.2011.12.035. More funny version is [Wirth, 2006].

[Wirth, 2013] Claus-Peter Wirth. Human-oriented inductive theorem proving by descente infinie
— a manifesto. Logic J. of the IGPL, 20, 2013. Received July 11, 2011. Published online
March 12, 2012, http://dx.doi.org/10.1093/jigpal/jzr048. To appear in print.

[Zhang et al., 1988] Hantao Zhang, Deepak Kapur, and Mukkai S. Krishnamoorthy. A mecha-
nizable induction principle for equational specifications. 1988. In [Lusk and Overbeek, 1988,
pp. 162–181].

