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1 A SNAPSHOT OF A DECISIVE MOMENT IN HISTORY

The automation of mathematical theorem proving for deductive first-order logic
started in the 1950s, and it took about half a century to develop systems that are
sufficiently strong and general to be successfully applied outside the community of
automated theorem proving.1 Surprisingly, the development of such strong systems
for restricted logic languages was not achieved much earlier, neither for the purely
equational fragment nor for propositional logic.2 Moreover, automation of theorem
proving for higher-order logic is making progress towards general usefulness just
during the last ten years.3
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∗Second Readers: Somebody from the history of math & logic. I wanna ask Wilfried Sieg. OK?
1The currently (i.e. in 2012) most successful first-order automated theorem prover is Vampire,

cf. e.g. [Riazanov and Voronkov, 2001].
2The most successful automated theorem prover for purely equational logic is WaldMeister,

cf. e.g. [Buch and Hillenbrand, 1996], [Hillenbrand and Löchner, 2002]. For deciding propositio-
nal validity (i.e. sentential validity) (or its dual: propositional satisfiability) (which is decidable,
but still NP-complete), a breakthrough toward industrial strength was the SAT solver Chaff,
cf. e.g. [Moskewicz et al., 2001].

3One of the driving forces in the automaton of higher-order theorem proving is the system
Leo-II, cf. e.g. [Benzmüller et al., 2008].
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In this context, it is most astonishing that for the field of quantifier-free first-
order inductive theorem proving based on recursive functions, the whole develop-
ment — from the scratch to general usefulness — took place within the 1970s.

In this article we describe how this giant step and the further development of
automated inductive theorem proving took place.

The work on this breakthrough in the automation of inductive theorem proving
was started in September 1972 by Robert S. Boyer and J Strother Moore, and most
of the crucial steps and their synergetic combination in the now famous “waterfall”
(cf. Figure 1) are already implemented in their “Pure LISP Theorem Prover”,
presented at IJCAI in Stanford (CA) in August 1973,4 and documented in Moore’s
PhD thesis [1973], defended in November 1973.

At that time, Boyer and Moore were both members of the Metamathematics
Unit of the University of Edinburgh.5

Boyer and Moore had met for the first time in August 1971 in Edinburgh, and
had worked together on structure sharing in resolution theorem proving, for which
the inventor of resolution, J. Alan Robinson, invented and granted to them the
“1971 Programming Prize” on December 17, 1971, half jokingly, half seriously.6

In spite of this experience, the original plan to implement structure sharing in the
Pure LISP Theorem Prover was dropped at some point.

4Cf. [Boyer and Moore, 1973].

5The Metamathematics Unit of the University of Edinburgh was renamed into “Dept. of Com-
putational Logic” late in 1971, and was absorbed into the new “Dept. of Artificial Intelligence” in
Oct. 1974. It was founded and headed by Bernard Meltzer. In the early 1970s, the University of
Edinburgh hosted most remarkable scientists, of which the following are relevant in our context:

Univ. Edinburgh PhD life time
(time, Dept.) (year, advisor) (birth–death)

Donald Michie (1965–1984, MI) (1953, ?) (1923–2007)
Bernard Meltzer (1965–1978, CL) (1953, Fürth) (1916?–2008)
Robin J. Popplestone (1965–1984, MI) (no PhD?) (1938–2004)
Rod M. Burstall (1965–2000, MI & CL) (1966, Dudley) (*1934)
Robert A. Kowalski (1967–1974, CL) (1970, Meltzer) (*1941)
Pat Hayes (1967–1973, CL) (1973, Meltzer) (*1944)
Gordon Plotkin (1968–today, CL & LFCS) (1972, Burstall) (*1946)
J Strother Moore (1970–1973, CL) (1973, Burstall) (*1947)
Mike J. C. Gordon (1970–1978, MI) (1973, Burstall) (*1948)
Robert S. Boyer (1971–1974, CL) (1971, Bledsoe) (*1946)
Alan Bundy (1971–today, CL) (1971, Goodstein) (*1947)
Robin Milner (1973–1979, LFCS) (no PhD) (1934–2010)

CL = Metamathematics Unit (founded and headed by Bernard Meltzer)
(new name from late 1971 to Oct. 1974: Dept. of Computational logic)
(new name from Oct. 1974: Dept. of Artificial Intelligence)

MI = Experimental Programming Unit (founded and headed by Donald Michie)
(new name from 1966 to Oct. 1974: Dept. for Machine Intelligence and Perception)
(new name from Oct. 1974: Machine Intelligence Unit)

LFCS = Laboratory for Foundations of Computer Science

(Sources: [Kowalski, 1988], [Meltzer, 1975], etc.)
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Boyer and Moore’s achievements become even more surprising by the fact that
they had to work with inferior computing machinery and that they did all the
programming themselves.

Working with computers was pretty troublesome and difficult at that time:
The storage medium was paper tapes, and the editor programs of the time still
simulated paper tape editing.

Moreover, the Metamathematics Unit did not even have a PDP–10, which was
the top model of the time, but only an ICL–4130, which had only 64 kByte core
memory (RAM). A funny feature was the loudspeaker connect to this core mem-
ory, which, however, did not produce a regular sound when the Pure LISP
Theorem Prover was running (unless during garbage collection). An irregu-
lar sound was meant to indicate that it was not in a constant loop, but making
“progress”.

What made the situation worse is that Boyer and Moore were granted sufficient
computation time only at nights, for which Boyer had to have a huge teletype
terminal in his tiny house in Edinburgh.

It is easy to imagine what this meant for the wives of Boyer and Moore who
lived with them in Edinburgh.

“The PDP–10, the PDP–10,
I’ve sung it before and I’ll sing it again.
I hav’nt seen my man since I don’t know when —
Oh, I lost my husband to a PDP–10.

If he’d a woman, the fight would be fair.
If he were out drinking, his liquor I’d share.
But the odds are against me, you know what I mean —
Even John Henry couldn’t beat a machine.

Guess I’ll give up, I know when I am beat.
Sure hate to say it, but this is defeat.
There’s just one more problem that I’ve got to face —
Can you name a machine in an adultery case?”

The Boyers and Moores used to sing this text to the melody of the popular Amer-
ican folksong “John Henry”, a legendary African-American railroad worker who
died in a competition with a steam-powered hammer. The new text — which
paradigmatically describes a situation well-known to probably all spouses of scien-
tists until today — was written by Anne Boyer at a time when actually no PDP–10
was available to Boyer and Moore; but their situation had improved in this aspect
when she published it [1980]. Needless to say that Anne and Bob Boyer are still
living together today.

6The document, handwritten by J. Alan Robinson (*1930?) actually says:

“In 1971, the prize is awarded, by unanimous agreement of the Board, to Robert S.
Boyer and J Strother Moore for their idea, explained in [Boyer and Moore, 1971],
of representing clauses as their own genesis. The Board declared, on making the
announcement of the award, that this idea is ‘. . . bloody marvelous’.”
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2 METHOD OF PROCEDURE AND PRESENTATION

Contrary to the excellent handbook articles [Walther, 1994] and [Bundy, 1999] on
the automation of mathematical induction, our focus in this article is neither on
current standards, nor on the engineering and research problems of the field, but
on its history. Consequently, this text should be accessible to an audience that
goes beyond the technical experts and programmers of the day, should use common
mathematical language and representation, should focus on the global and eternal
ideas and their developments, and should paradigmatically display the historically
most significant achievements.

Because these achievements manifest themselves in the line of the Boyer–Moore
theorem provers, we nevertheless have to confront the reader with some more
ephemeral forms of representation found in these software systems. In particular,
we cannot avoid some small expressions in the list programming language LISP,7

simply because the Boyer–Moore theorem provers we discuss in this article, namely
the Pure LISP Theorem Prover, Thm, Nqthm, and ACL2, all have logics
based on a subset of LISP. Here we do not necessarily refer to the implementation
language of these software systems, but actually to the logic language used both
for proof representation and for communication with the user.

For the first system in this line of development, Boyer and Moore had the free
choice, but — in 1972 — there was actually no alternative to a logic based on LISP,
because inductive theorem proving with recursively defined functions requires a
logic in which

a method of symbolic evaluation can be obtained from an interpretation
procedure by generalizing the ground terms of computation to terms
with free variables that are implicitly universally quantified.

Beside LISP, a candidate to be considered today would be the functional program-
ming language Haskell.8 Haskell, however, was not available in 1972. And
still today, LISP is to be preferred to Haskell as the logic of an inductive theorem
prover because of LISP’s innermost evaluation strategy, which gives preference to
the constructor terms that represent the constructor-based data types, which again
establish the most interesting domains in hard- and software verification and the
major elements of mathematical induction.

Yet another candidate today would be the rewrite systems of [Wirth and Gram-
lich, 1994a] and [Wirth, 1991; 2009] with their constructor variables9 and their
positive/negative-conditional equations, designed and developed for the specifica-
tion, interpretation, and symbolic evaluation of recursive functions in the context
of inductive theorem proving in the domain of constructor-based data types. Nei-
ther this tailor-made theory, nor even the general theory of rewrite systems in

7Cf. [McCarthy et al., 1965].

8Cf. e.g. [Hudlak et al., 1999].

9See § 4.4 of this article.
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which its development is rooted,10 were available in 1972. And still today, the ap-
plicative subset of Common Lisp as part of ACL2 (= (ACL)2 = A Computational
Logic for Applicative Common LISP) is again to preferred to these positive/ne-
gative-conditional rewrite systems under the aspect of efficiency: The applications
of ACL2 in hardware verification and testing require a performance that is still
at the very limits of today’s computing technology. This challenging efficiency
demand requires, among other aspects, that the logic of the theorem prover is so
close to its own programming language that — after certain side conditions have
been checked successfully — the theorem prover can defer the interpretation of
ground terms to the analogous interpretation in its own programming language.

For many of our illustrative examples in this article, however, we will use the
higher flexibility and conceptual adequacy of positive/negative-conditional rewrite
systems, especially because they are so close to logic that we can dispense their
semantics to the readers intuition, and because their typed (many-sorted) ap-
proach admits to present the formulas in a form that is much easier to grasp for
human readers than the corresponding sugar-free LISP notation with its additional
explicit type restrictions. Nevertheless, small LISP expression cannot be avoided
if we want to get close to an implementation or if we want to show the advantages
of LISP’s untypedness.11 The readers interested in these aspects, however, do not
have to know more about LISP than the following: A LISP term is either a vari-
able symbol or a function call of the form (f t1 · · · tn), where f is a function
symbol and t1, . . . , tn are LISP terms.

Another good reason for us to try to avoid LISP notation is the following: We
want to make it most obvious that the great achievements of the Boyer–Moore
theorem provers are not limited to their LISP logic and would well survive in
a better world, where — based on the computing technology of the future —
positive/negative-conditional rewriting is not too inefficient for the relevant appli-
cations anymore.

For the same reason, we also prefer examples from arithmetic to examples from
list theory, which could be considered to profit especially from the logic of LISP.
The reader can find the famous examples from list theory in almost any other
publication on the subject.12

10The general theory on which the rewrite systems of [Wirth and Gramlich, 1994a] and [Wirth,
1991; 2009] is rooted is documented in [Dershowitz and Jouannaud, 1990]. One may try to argue
that the paper that launched the whole field of rewrite systems, [Knuth and Bendix, 1970], was
already out in 1972, but the relevant parts of rewrite theory for unconditional equations were
developed only in the late 1970s and the 1980s. Especially relevant in the given context are
[Huet, 1980] and [Toyama, 1988]. The rewrite theory of positive/negative-conditional equations,
however, started to become an intensive area of research only at the breath-taking 1st Int. Work-
shop on Conditional Term Rewriting Systems (CTRS), Orsay (France), 1987; cf. [Kaplan and
Jouannaud, 1988].

11See e.g. of the advantages of the untyped and type-restriction-free declaration of the shell
CONS in § 5.3.

12Cf. e.g. [Moore, 1973], [Boyer and Moore, 1979; 1988b; 1998], [Walther, 1994], [Bundy, 1999],
[Kaufmann et al., 2000a; 2000b].
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In general, we tend to present the challenges and their historical solutions with
the help of small intuitive examples and refer the readers interested in the very
details of the implementations of the theorem provers to the published and easily
accessible documents on which our description is mostly based.

We have to add here something like an abstract and an organization. Note that the
handbook does not admit a table of contents.
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3 MATHEMATICAL INDUCTION
In this section, we introduce mathematical induction with its rich history since
the 6th centuryb.c., and clarify the difference between structural induction and
Noetherian induction with its traditional variant called descente infinie.

According to Aristotle, induction means to go from the special to the general,
in particular to obtain general laws from special cases, which plays a major rôle
in the generation of conjectures in mathematics and the natural sciences. Modern
scientists design experiments to falsify such a law of nature, and they accept the
law as a scientific fact only after many trials have all failed to falsify it. In the
tradition of Euclid of Alexandria, mathematicians accept a conjectured mathema-
tical law as a theorem only after a rigorous proof has been provided. According to
Kant, induction is synthetic in the sense that it properly extends what we think
to know — in opposition to deduction, which is analytic in the sense that all infor-
mation we can obtain by it, is implicitly contained in the initial judgments, though
we can hardly be aware of all deducible consequences in advance.

Surprisingly, in this well-established and time-honored terminology, mathema-
tical induction is not induction, but a special form of deduction for which — in the
19th century13 — the term “induction” was introduced and became standard in Eng-
lish and German mathematics. In spite of this misnomer, for the sake of brevity,
the term “induction” will always refer to mathematical induction in what follows.

Although it received its current name only in 19th century, mathematical induc-
tion has been a standard method of every working mathematician at all times.
Hippasus of Metapontum (Italy) (ca. 550b.c.) is reported14 to have proved the
irrationality of the golden number by a form of mathematical induction, which later
was named descente infinie (ou indéfinie) by Fermat. We find another form of in-
duction, nowadays called structural induction, in a text of Plato (427–347b.c.).15

In the famous “Elements” of Euclid [ca. 300b.c.], we find several applications of
descente infinie and structural induction.16 Structural induction was known to
the Muslim mathematicians around the year 1000, and occurs in a Hebrew book
of Levi ben Gerson (Orange and Avignon) (1288–1344).17 Furthermore, struc-
tural induction was used by Francesco Maurolico (Messina) (1494–1575),18 and
by Blaise Pascal (1623–1662).19 After an absence of more than one millennium,
descente infinie was reinvented by Pierre Fermat (1607?–1665).20

13Cf. [Cajori, 1918].
14Cf. [Fritz, 1945].
15Cf. [Acerbi, 2000].
16An example for descente infinie is Proposition 31 of Vol. VII of the Elements, and an example

for structural induction is Proposition 8 of Vol. IX, cf. [Wirth, 2010b, § 2.4].
17Cf. [Katz, 1998].
18Cf. [Bussey, 1917].
19Cf. [Pascal, 1954, p. 103].
20See [Barner, 2001] for the correction on Fermat’s year of birth as compared to the wrong date

in the title of [Mahoney, 1994]. The best-documented example of a proof by descente infinie of
one of Fermat’s outstanding results in number theory is the proof of the following theorem: The
area of a Pythagorean triangle with positive integer side lengths is not the square of an integer ;
cf. [Wirth, 2010b].



8 J Strother Moore, Claus-Peter Wirth

3.1 Well-foundedness and Termination

A relation < is well-founded if each proposition Q(w) that is not constantly false
holds for a <-minimal m, i.e. there is an m with Q(m), for which there is no v < m
with Q(v). Writing “Wellf(<)” for “< is well-founded”, we can formalize this
definition as follows:

(Wellf(<)) ∀Q.
(
∃w. Q(w) ⇒ ∃m.

(
Q(m) ∧ ¬∃u<m. Q(u)

) )

Moreover, < is an (irreflexive) ordering if it is irreflexive and transitive. There is
not much difference between a well-founded relation and a well-founded ordering:21

LEMMA 1. A relation is well-founded if and only if its transitive closure is a
well-founded ordering.

Closely related to the well-foundedness of a relation < is the termination of
its reverse relation >, given as <−1 := { (u, v) | (v, u)∈< }.

A relation > is terminating if it has no non-terminating sequences, i.e. if there
is no infinite sequence of the form x0 > x1 >x2 >x3 . . ..

If > has a non-terminating sequence, then this sequence, taken as a set, is a
witness for the non-well-foundedness of <. The converse implication, however, is a
weak form of the Axiom of Choice;22 indeed, it admits us to pick a non-terminating
sequence for > from the set witnessing the non-well-foundedness of <.

So well-foundedness is slightly stronger than termination of the reverse relation,
and this difference is relevant in our context here, where we cannot take the Axiom
of Choice for granted because it can be seen as a very strong induction axiom.23

3.2 The Theorem of Noetherian Induction

In its modern standard meaning, the method of mathematical induction can easily
be seen to be a form of deduction, simply because it can be formalized as the
application of the Theorem of Noetherian Induction:

A proposition P (w) can be shown to hold (for all w) by Noetherian
induction over a well-founded relation < as follows: Show (for every v)
that P (v) follows from the assumption that P (u) holds for all u < v.

21Cf. Lemma2.1 of [Wirth, 2004, § 2.1.1].

22See [Wirth, 2004, § 2.1.2, p. 18] for the equivalence to the Principle of Dependent Choice,
which is found in [Rubin and Rubin, 1985, p. 19] and analyzed in detail as Form43 (p. 30) in
[Howard and Rubin, 1998].

23Cf. [Geser, 1995].
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Writing “Wellf(<)” again for “< is well-founded”, we can formalize the Theorem
of Noetherian Induction (N) as follows:24

(N) ∀P.

(
∀w. P (w) ⇐ ∃<.

( ∀v.
(
P (v) ⇐ ∀u<v. P (u)

)
∧ Wellf(<)

))

The term “Noetherian induction” is a tribute to the famous German female mathe-
matician Emmy Noether (1882–1935). It occurs as the “Generalized principle of
induction (Noetherian induction)” in [Cohn, 1965, p. 20]. It also occurs in Pro-
position 7 (“Principle of Noetherian Induction”) (p. 190) of § 6.5 in [Bourbaki,
1968a, Chapter III], which is a translation of the French original in its second edi-
tion [Bourbaki, 1967], where it occurs in Proposition 7 (“principe de récurrence
nœthérienne”)25 of § 6.5. We do not know whether the today most common term
“Noetherian Induction” occurred already before 1965;26 in particular, it does not
occur in the first French edition [Bourbaki, 1956] of [Bourbaki, 1967].27

3.3 The Natural Numbers

A most familiar field of application of induction is the domain of the natural
numbers 0, 1, 2, . . . . Let us formalize the natural numbers with the help of two
constructors: the constant symbol

0 : nat
for zero, and the function symbol

s : nat → nat

for the direct successor of a natural number. Moreover, let us assume that the
variables x, y always range over the natural numbers, and that free variables in
formulas are implicitly universally quantified (as standard in mathematics), such
that, for example, a formula with the free variable x can be seen as having ∀x : nat.
as an implicit outermost quantifier.

24When we write an implication A⇒B in the reverse form of B⇐A, we do this to indicate
that a proof attempt will typically start from B and try to reduce it to A.

25The peculiar French spelling “Nœthér” in “nœthérienne” tries to imitate the German pro-
nunciation of “Noether”, where the “oe” is to be pronounced neither as a long “o” (which would
be the default, as in “Itzehoe”), nor as two separate vowels as indicated by the diaeresis in “oë”,
but as an umlaut, typically written in German as the ligature “ö”. Neither Emmy Noether nor
her father, the mathematics professor Max Noether (1844–1921), ligated the “oe” in their name,
which occurs, however, in some of their official German documents.

26Even in 1967, “Noetherian Induction” was not generally used as a name for the Theorem
of Noetherian Induction: For instance, in [Schoenfield, 1967, p. 205], this theorem (instantiated
with the ordering of the natural numbers) is called the principle of complete induction, which
is a most confusing name that should be avoided because “complete induction” looks like the
straightforward translation of the German “vollständige Induction”, which traditionally means
structural induction (cf. Note 28), and which nowadays has become a very vague notion that is
best translated as “mathematical induction”, as done already in [Heijenoort, 1971, p.130] and as
it is standard today, cf. [Hilbert and Bernays, 2011, Note 23.4].

27Indeed, the main text of § 6.5 in the first edition [Bourbaki, 1956] ends (on Page 98) three
lines before the text of Proposition 7 begins in the second edition [Bourbaki, 1967] (on Page 76
of § 6.5).



10 J Strother Moore, Claus-Peter Wirth

After the definition (Wellf(<)) and the theorem (N), let us now consider some
standard axioms for specifying the natural numbers, namely that a natural number
is either zero or a direct successor of another natural number (nat1), that zero is
not a successor (nat2), that the successor function is injective (nat3), and that the
so-called Axiom of Structural Induction on 0 and s holds; formally:

(nat1) x = 0 ∨ ∃y.
(

x = s(y)
)

(nat2) s(x) 6= 0

(nat3) s(x)= s(y) ⇒ x= y

(S) ∀P.
(
∀x. P (x) ⇐ P (0) ∧ ∀y.

(
P (s(y)) ⇐ P (y)

) )

Richard Dedekind (1831–1916) proved the Axiom of Structural Induction (S) for
his model of the natural numbers in [Dedekind, 1888], where he states that the
proof method resulting from the application of this axiom is known under the
name “vollständige Induction” (“complete induction”).28

Now we can go on by defining — in two equivalent ways — the destructor function
p : nat → nat, which returns the predecessor of a positive natural number, first in
constructor style (where constructor terms may occur as arguments of the func-
tion being defined) in (p1), and then in destructor style (where only variables may
occur as arguments) in (p1′). Moreover, we define some recursive functions over
the natural numbers, such as addition and multiplication +, ∗ : nat, nat → nat
(for which we use infix notation), the irreflexive ordering of the natural num-
bers less : nat, nat → bool (see § 3.4 for the data type bool of Boolean values), and
the Ackermann function ack : nat, nat → nat:29

(p1) p(s(x)) = x

(p1′) p(x′) = x ⇐ s(x)= x′

(+1) 0 + y = y (∗1) 0 ∗ y = 0

(+2) s(x)+ y = s(x+ y) (∗1) s(x) ∗ y = y +(x ∗ y)

(less1) less(x, 0) = false

(less2) less(0, s(y)) = true

(less3) less(s(x), s(y)) = less(x, y)

(ack1) ack(0, y) = s(y)
(ack2) ack(s(x), 0) = ack(x, s(0))
(ack3) ack(s(x), s(y)) = ack(x, ack(s(x), y))

28The first occurrence of the name “vollständige Induction” with the meaning of mathematical
induction seems to be on Page 46f. in [Fries, 1822]. See also Note 26.

29Rósza Péter (1905–1977) published a simplified version [1951] of the first recursive, but not
primitive recursive function developed by Wilhelm Ackermann (1896–1962) [Ackermann, 1928].
What today is simply called the Ackermann function is actually Péter’s version.
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An immediate consequence of the axiom (nat1) and the definition (p1) is the lemma
(s1) and its flattened version (s1′)

(s1) s(p(x′)) = x′ ⇐ x′ 6= 0

(s1′) s(x) = x′ ⇐ x′ 6= 0 ∧ x= p(x′)

On the basis of these axioms we can most easily show

(less4) less(x, s(x)) = true

(less5) less(x, s(x + y)) = true

by structural induction on x, i.e. by taking the predicate variable P in the Axiom
of Structural Induction (S) to be λx. (less(x, s(x))= true) in case of (less4), and
λx. (less(x, s(x+ y))= true) in case of (less4). Moreover — to see the necessity of
doing induction upon several variables in parallel — we will do the more compli-
cated proof of the strengthened transitivity of the irreflexive ordering of the natural
numbers, i.e. of

(less7) less(s(x), z)= true ⇐ (
less(x, y)= true ∧ less(y, z)= true

)

twice, once in once in Example 3 in § 3.6, and again in Example 9 in § 5.2.6. Twice
we also prove the commutativity lemma

(+3) x+ y = y + x,

once in Example 2 in § 3.6, and again in Example 4 in § 3.7.1. Moreover, in Ex-
ample 5 in § 3.8, we prove the most simple fact about the Ackermann function:

(ack4) less(y, ack(x, y)) = true

The relation from a natural number to its direct successor can be formalized by the
binary relation λx, y. (s(x)= y). Then Wellf(λx, y. (s(x)= y)) states the well-
foundedness of this relation, which means according to Lemma 1 that its transitive
closure — i.e. the irreflexive ordering of the natural numbers — is a well-founded
ordering; so, in particular, we have Wellf(λx, y. (less(x, y)= true)).

Now the natural numbers can be specified up to isomorphism either by30

• (nat2), (nat3), and (S) — following Guiseppe Peano (1858–1932),

or else by

• (nat1) and Wellf(λx, y. (s(x)= y)) — following Mario Pieri (1860–1913).31

30Cf. [Wirth, 2004, § 1.1.2].

31Pieri [1908] stated these axioms informal and showed their equivalence to the version of the
Peano axioms of Alessandro Padoa (1868–1937). For a discussion and an English translation see
[Marchisotto and Smith, 2007]. Pieri has also a version where instead of the symbol 0, there is
only the statement that there is a natural number, and where (nat1) is replaced with the weaker
¬∃y0. (x0 = s(y0)) ∧ ¬∃y1. (x1 = s(y1)) ⇒ x0 = x1. Non-standard natural numbers cannot
exist in Pieri’s specification: For every natural number x we can from the set of all elements
that can be reached from x by the inverse of the successor relation. By well-foundedness, this
set contains a minimal element, which is 0; so x = sn(0) for some meta-level natural number n.
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3.4 Standard Data Types

As we are interested in the verification of hard- and software, more important for
us than natural numbers are standard data types, such as those well-known from
their occurrence in any higher-level programming language.

To clarify the inductive character of data types defined by constructors, and
to show the additional complications arising from constructors with no or more
than one argument, let us present here the specification of the data type bool of
Boolean values and the data type list(nat) of the lists over natural numbers. We
will need these data types for our further examples as well.

A special case is the data type bool of the Boolean values given by the two
constructors true, false : bool without any arguments, for which we globally declare
the variable b : bool, but for which we get only the two following axioms by analogy
to the axioms for the natural numbers and the axioms for lists:

(bool1) b = true ∨ b = false

(bool2) true 6= false

Note that the analogy of the axioms of Boolean values to the axioms of the natural
numbers (cf. § 3.3) is not perfect: An axiom (bool3) analogous to (nat3) cannot
exist because there are no constructors for bool that take arguments. Moreover,
(boolS) is superfluous because it is implied by (bool1).

Furthermore, let us define the Boolean function and : bool, bool → bool :

(and1) and(false, b) = false

(and2) and(b, false) = false

(and3) and(true, true) = true

Let us now formalize the data type of the (finite) lists over natural numbers with
the help of the following two constructors: the constant symbol

nil : list(nat)

for the empty list, and the function symbol

cons : nat, list(nat) → list(nat),

which takes two arguments, a natural number and a list of natural numbers, and
returns the list where the number has been added to the input list as a new first
element. Moreover, let us assume that the variables k, l always range over lists of
natural numbers and globally declare k, l : list(nat).
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In analogy to the axioms of the natural numbers, the axioms of this data type
are the following.

(list(nat)1) l = nil ∨ ∃y, k.
(

l = cons(y, k)
)

(list(nat)2) cons(x, l) 6= nil

(list(nat)31) cons(x, l)= cons(y, k) ⇒ x= y

(list(nat)32) cons(x, l)= cons(y, k) ⇒ l = k

(list(nat)S) ∀P.

(
∀l. P (l) ⇐

(
P (nil)

∧ ∀x, k.
(

P (cons(x, k)) ⇐ P (k)
)

) )

Moreover, let us define the recursive functions giving the length and the size of a
list length, size : list(nat) → nat, which are helpful when specifying list over natural
numbers up to isomorphism:

(length(list(nat))1) length(nil) = 0

(length(list(nat))2) length(cons(x, l)) = s(length(l))

(size(list(nat))1) size(nil) = 0

(size(list(nat))2) size(cons(x, l)) = s(x + size(l))

Note that the analogy of the axioms of lists to the axioms of the natural numbers
is again not perfect:

1. There is an additional axiom (list(nat)31), which has no analog among the
axioms of the natural numbers.

2. None of the axioms (list(nat)31) and (list(nat)32) is implied by the axiom
(list(nat)1) together with the axiom

Wellf(λl, k. ∃x. (cons(x, l)= k)),

which is the analog to the second axiom of Pieri’s specification of the natural
numbers.32

3. The latter axiom, however, is weaker than each of

Wellf(λl, k. (less(length(l), length(k))= true)),

Wellf(λl, k. (less(size(l), size(k))= true)),

simply because they state the well-foundedness of relations bigger33 than
λl, k. ∃x. (cons(x, l)= k). The well-foundedness of these relations, however,
is already implied by the well-foundedness that Pieri used for his specification
of the natural numbers.

32See § 3.3 for Pieri’s specification of the natural numbers. The axioms (list(nat)31)
and (list(nat)32) are not implied simply because all axioms beside (list(nat)31) or (list(nat)32)
are satisfied in the structure where both natural numbers and lists are isomorphic to the stan-
dard model of the natural numbers, and where lists differ only in their lengths or in their sizes,
respectively.
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Therefore, the lists of natural numbers can be specified up to isomorphism by a
specification of the natural numbers up to isomorphism (see § 3.3), plus the axioms
(list(nat)31) and (list(nat)32), plus one of the following sets of axioms:

• (list(nat)2), (list(nat)S) — in the style of Peano,

• (list(nat)1), Wellf(λl, k. ∃x. (cons(x, l)= k)) — in the style of Pieri,34

• (list(nat)1), (length(list(nat))1), (length(list(nat))2)
— refining the style of Pieri.35

Today it is standard to avoid higher-order axioms in the way exemplified in the
last of these three items,36 and to get along with one second-order axiom for the
natural numbers or even with its first-order instances.

Moreover, as some of the most natural functions on lists, let us define the
destructors car : list(nat) → nat and cdr : list(nat) → list(nat) both in constructor
and destructor style. Furthermore, let us define the recursive member predicate

mbp : nat, list(nat) → bool,
and the recursive function

delfirst : list(nat) → list(nat)
that deletes the first occurrence of a natural number in a list:

(car1) car(cons(x, l)) = x

(cdr1) cdr(cons(x, l)) = l

(car1′) car(l′) = x ⇐ cons(x, l)= l′

(cdr1′) cdr(l′) = l ⇐ cons(x, l)= l′

(mbp1) mbp(x, nil) = false

(mbp2) mbp(x, cons(y, l)) = true ⇐ x= y

(mbp3) mbp(x, cons(y, l)) = mbp(x, l) ⇐ x 6= y

(delfirst1) delfirst(x, cons(y, l)) = l ⇐ x= y

(delfirst1) delfirst(x, cons(y, l)) = cons(y, delfirst(x, l)) ⇐ x 6= y

33Indeed, in case of cons(x, l) = k, we have less(length(l), length(k)) =
= less(length(l), length(cons(x, l))) = less(length(l), s(length(l))) = true because of (less4), and
we also have less(size(l), size(k)) = less(size(l), size(cons(x, l))) = less(size(l), s(x + size(l))) = true
because of (+3) and (less5).

34This option is essentially the choice of the “shell principle” of [Boyer and Moore, 1979, p.37ff.]:
The one but last axiom of Item (1) of the shell principle means (list(nat)2) in our formalization,
and guarantees that Item (6) essentially means Wellf(λl, k. ∃x. (cons(x, l)= k)). The last axiom
of Item (1) guarantees (list(nat)1). Moreover, Item (2) guarantees (list(nat)31) and (list(nat)32).

35Although (list(nat)2) follows from (length(list(nat))1), (length(list(nat))2), and (nat2),
it should be included to this standard specification because of its frequent applications.

36For this avoidance, however, we have to admit the additional function length. The same can
be achieved with size instead of length, which is only possible, however, for lists over element
types that have a mapping into the natural numbers.
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An immediate consequence of the axiom (list(nat)1) and the definitions (car1) and
(cdr1) is the lemma (cons1) and its flattened version (cons2′):

(cons2) cons(car(l′), cdr(l′)) = l′ ⇐ l′ 6= nil

(cons2′) cons(x, l) = l′ ⇐ l′ 6= nil ∧ x = car(l′) ∧ l = cdr(l′)

Furthermore, let us define the Boolean function
lexless : list(nat), list(nat) → bool,

which lexicographically compares lists according to the ordering of the natural
numbers, and lexlimless : nat, list(nat), list(nat) → bool,
its restriction to lengths up to a given natural number:

(lexless1) lexless(l, nil) = false

(lexless2) lexless(nil, cons(y, k)) = true

(lexless3) lexless(cons(x, l), cons(y, k)) = lexless(l, k) ⇐ x= y

(lexless4) lexless(cons(x, l), cons(y, k)) = less(x, y) ⇐ x 6= y

(lexlimless1) lexlimless(x, l, k) = and(lexless(l, k), less(length(l), x))

Such lexicographic combinations play an important rôle in well-foundedness ar-
guments in induction proofs, because they combine given well-founded orderings
into new well-founded orderings, provided there is an upper bound for the length
of the list:37

(lexlimless2) Wellf(λl, k. (lexlimless(x, l, k) = true))

Now analogous axioms can be used to specify any other data type given by con-
structors, such as pairs of natural numbers or binary trees over such pairs.

37The length limit is required because otherwise we have the following counterexample to
termination: (s(0)), (0, s(0)), (0, 0, s(0)), (0, 0, 0, s(0)), . . . . Note that the need to compare
of lists of different lengths typically arises in mutual induction proofs where the two induction
hypotheses have a different number of free variables. See [Wirth, 2004, § 3.2.2] for a nice example.
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3.5 The Standard High-Level Method of Mathematical Induction

In everyday mathematical practice of an advanced theoretical journal, the common
inductive arguments are hardly ever carried out explicitly. Instead, the proof
reads something like “by structural induction on n, q.e.d.” or “by (Noetherian)
induction on (x, y) over <, q.e.d.”, expecting that the mathematically educated
reader could easily expand the proof if in doubt. In contrast, difficult inductive
arguments, sometimes covering several pages,38 require considerable ingenuity and
have to be carried out. In case of a proof on natural numbers, the experienced
mathematician engineers his proof roughly according to the following pattern:

He starts with the conjecture and simplifies it by case analysis, typically
based on the axiom (nat1). When he realizes that the current goal be-
comes similar to an instance of the conjecture, he applies the in-
stantiated conjecture just like a lemma, but keeps in mind that he
has actually applied an induction hypothesis. Finally, using the free
variables of the conjecture, he constructs some ordering whose well-
foundedness follows from the axiom Wellf(λx, y : nat. (s(x)= y)) and
in which all instances of the conjecture applied as induction hypotheses
are smaller than the original conjecture.

The hard tasks of a proof by mathematical induction are thus:

(Induction-Hypotheses Task)
to find the numerous induction hypotheses,39 and

(Induction-Ordering Task)
to construct an induction ordering for the proof, i.e. a well-founded ordering
that satisfies the ordering constraints of all these induction hypotheses in
parallel.40

The above induction method can be formalized as an application of the Theorem
of Noetherian Induction. For non-trivial proofs, mathematicians indeed prefer the
the axioms of Pieri’s specification in combination with the Theorem of Noetherian
Induction (N) to Peano’s alternative with the Axiom of Structural Induction (S),
because the instances for P and < in (N) are often still easy to find when the
instances for P in (S) are not.

38For example, such difficult inductive arguments are the proofs of Hilbert’s first ε-theorem
[Hilbert and Bernays, 1970], Gentzen’s Hauptsatz [Gentzen, 1935], and confluence theorems such
as the ones in [Gramlich and Wirth, 1996], [Wirth, 2009].

39As, e.g., in the proof of Gentzen’s Hauptsatz on Cut-elimination.

40For instance, this was the hard part in the elimination of the ε-formulas in the proof of the
1st ε-theorem in [Hilbert and Bernays, 1970], and in the proof of the consistency of arithmetic
by the ε-substitution method in [Ackermann, 1940].
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3.6 Descente Infinie

The soundness of the induction method of § 3.5 is most easily seen when the
argument is structured as a proof by contradiction, assuming a counterexample.
For Fermat’s historic reinvention of the method, it is thus just natural that he
developed the method in terms of assumed counterexamples.41 Here is Fermat’s
Method of Descente Infinie in modern language, very roughly speaking:

A proposition P (x) can be proved by descente infinie as follows:
Show that for each assumed counterexample of P (x) there is a smaller
counterexample of P (x) w.r.t. a well-founded relation <, which does
not depend on the counterexamples.

If this method is executed successfully, we have proved ∀x. P (x) because no
counterexample can be <-minimal and so the well-foundedness of < implies that
there are no counterexamples at all.

Nowadays every logician immediately realizes that a formalization of the method
of descente infinie is obtained from the Theorem of Noetherian Induction (N)
(cf. § 3.2) simply by replacing

P (v) ⇐ ∀u<v. P (u)
with its contrapositive

¬P (v) ⇒ ∃u<v. ¬P (u).

Although it was still very hard for Fermat to obtain a positive version of his
counterexample method,42 the negation is irrelevant in our context here, which is
the one of the 19th and 20th centuries and which is based on classical logic. What
matters for us is the heuristic task of finding proofs. Therefore, we take descente
infinie in this article43 as a synonym for the modern standard high-level method
of mathematical induction described in this section.

Let us now prove the lemmas (+3) and (less7) of § 3.3 (in the axiomatic context
of § 3.3) by descente infinie seen as the standard high-level method of mathematical
induction described in § 3.5.

41Cf. [Fermat, 1891ff.], [Mahoney, 1994], [Bussotti, 2006], [Wirth, 2010b].

42Fermat reported in his letter for Huygens that he had had problems to apply the Method
of Descente Infinie to positive mathematical statements. See [Wirth, 2010b, p. 11] and the
references there, in particular [Fermat, 1891ff., Vol. II, p. 432]. Moreover, a natural-language
presentation via descente infinie is often simpler than via the Theorem of Noetherian Induction,
because it is easier to speak of one counterexample v and to find one smaller counterexample u,
than to administrate the dependences of universally quantified variables.

43In general, in the tradition of [Wirth, 2004], descente infinie is taken nowadays as a synonym
for the standard high-level method of mathematical induction. This way of using the term
“descente infinie” is found in [Brotherston and Simpson, 2007; 2011], [Voicu and Li, 2009],
[Wirth, 2005; 2010a; 2012b; 2013]. If the historical perspective before the 19th century is
taken, however, this identification is not appropriate because a more fine-grained differentiation
is required, such as found in [Bussotti, 2006], [Wirth, 2010b].
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EXAMPLE 2 (Proof of (+3) by descente infinie).

Applying the Theorem of Noetherian Induction (N) (cf. § 3.2) with P set to λx, y.
(x+ y = y +x), and the variables v, u renamed to (x, y), (x′′, y′′), respectively,
the conjectured lemma (+3) reduces to

∃<.

( ∀(x, y).
(
(x + y = y + x) ⇐ ∀(x′′, y′′) < (x, y). (x′′+ y′′ = y′′+ x′′)

)
∧ Wellf(<)

)
.

Let us focus here on the sub-formula x+ y = y +x. Based on axiom (nat1)
we can reduce this task to the two cases x= 0 and x= s(x′) with the two goals

0 + y = y + 0; s(x′)+ y = y + s(x′);

respectively. They simplify by (+1) and (+2) to

y = y + 0; s(x′+ y) = y + s(x′);

respectively. Based on axiom (nat1) we can reduce each of these goals to the two
cases y = 0 and y = s(y′), with leaves us with four open goals

0 = 0 + 0; s(x′+ 0) = 0 + s(x′);
s(y′) = s(y′)+ 0; s(x′+ s(y′)) = s(y′)+ s(x′).

They simplify by (+1) and (+2) to

0 = 0; s(x′+ 0) = s(x′);
s(y′) = s(y′+ 0); s(x′+ s(y′)) = s(y′+ s(x′));

respectively. Now we can make immediate progress only if we instantiate the
induction hypothesis that is available in the context44 given by our above formula
in four different forms, namely we have to instantiate (x′′, y′′) with (x′, 0) (0, y′),
(x′, s(y′)), (s(x′), y′), respectively. Rewriting with these instances, the four goals
become:

0 = 0; s(0 + x′) = s(x′);
s(y′) = s(0 + y′); s(s(y′)+ x′) = s(s(x′)+ y′);

which simplify by (+1) and (+2) to

0 = 0; s(x′) = s(x′);
s(y′) = s(y′); s(s(y′+x′)) = s(s(x′+ y′)).

Now the first three goals following directly from the reflexivity of equality, whereas
the last goal needs also an application of our induction hypothesis: This time
we have to instantiate (x′′, y′′) with (x′, y′).

Finally, we instantiate our induction ordering < to the lexicographic combi-
nation of length less than 3 of the ordering of the natural numbers. If we read
our pairs as two element lists, i.e. (x′′, y′′) as cons(x′′, cons(y′′, nil)), then we can
set < to λl, k. (lexlimless(s(s(s(0))), l, k) = true), which is well-founded according
to (lexlimless2) (cf. § 3.4). Then it is trivial to show that (s(x′), s(y′)) is greater
than each of (x′, 0) (0, y′), (x′, s(y′)), (s(x′), y′), (x′, y′).

This completes the proof of our conjecture. ¤

44On how this availability can be understood formally, see [Autexier, 2005].
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EXAMPLE 3 (Proof of (less7) by descente infinie).

The previous proof was very formal w.r.t. its underlying logic, because we wanted
to make the application of the Theorem of Noetherian Induction most explicit.
Contrary to this, let us now proceed more in the vernacular of a working mathe-
matician. Moreover, instead of p = true, let us just write p. Then we have to
show

less(s(x), z) ⇐ (
less(x, y) ∧ less(y, z)

)

If we apply the axiom (nat1) twice to both y and z with the intention to reduce the
last literal, then, after reduction with (less1), the two base cases have an atom false
in their conditions, abbreviating false= true, which is false according to (bool2),
and so the base cases are true (ex falso quodlibet). The remaining case, where we
have both y = s(y′) and z = s(z′), reduces with (less3) to

less(x, z′) ⇐ (
less(x, s(y′)) ∧ less(y′, z′)

)

If we apply the induction hypothesis instantiated via {y 7→y′, z 7→z′} to match
the last atom in the condition, then we obtain the two goals

less(x, z′) ⇐ (
less(s(x), z′) ∧ less(x, s(y′)) ∧ less(y′, z′)

)
(

less(x, y′) ∨ less(s(x), z′) ∨ less(x, z′)
) ⇐ (

less(x, s(y′)) ∧ less(y′, z′)
)

The first goal can be generalized to the conjecture less(x, z′) ⇐ less(s(x), z′),
but the second goal cannot be generalized to a theorem simpler than our initial
conjecture (less7). This means that the application of the given instantiation of
the induction hypothesis is useless. Thus, instead of this application, we apply
the axiom nat1 also to x, obtaining the cases x= 0 and x= s(x′) with the two
goals, after reduction with (less2) and (less3),

less(0, z′) ⇐ less(y′, z′)

less(s(x′), z′) ⇐ (
less(x′, y′) ∧ less(y′, z′)

)
,

respectively. The first is trivial by (less1), (less2) after another application of the
axiom nat1 to z′. The second is just an instance of the induction hypothesis via
{x7→x′, y 7→y′, z 7→z′}. As the induction ordering we can take any of the variables
of the original conjecture w.r.t. the irreflexive ordering on the natural numbers or
the successor relation.

This completes the proof of the conjecture. Note that we have shown that the
proof can only be successful. ¤
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3.7 Explicit Induction

3.7.1 From the Theorem of Noetherian Induction to Explicit induction

To admit the realization of the standard high-level method of mathematical induc-
tion as described in § 3.5, a proof calculus should have the explicit concept of an
induction hypothesis. Moreover, it has to cope in some form with the second-order
variables P and < in the Theorem of Noetherian Induction (N) (cf. § 3.2), and also
with the second-order variable Q in the definition of well-foundedness (Wellf(<))
(cf. § 3.1).

At a time when the dominance of J. Alan Robinson’s resolution method sug-
gested a reduction of human-oriented reasoning to the most elementary forms of
machine-oriented first-order reasoning, Boyer and Moore were lucky not to imple-
ment these human-oriented and higher-order features, because they would prob-
ably have failed on the basis of the logic calculi and the computer technology
of the 1970s. Instead, they found a way to confine the concept of an induction
hypothesis to the internals of single reductive inference steps — namely the appli-
cations of the so-called induction rule — and to restrict all other inference steps
to quantifier-free first-order deductive reasoning.

The induction rule immediately instantiates the higher-order variables P and <
in the Theorem of Noetherian Induction with first-order predicates.

This is comparatively straightforward for the predicate variable P , which simply
becomes the (simplified) quantifier-free first-order conjecture that is to be proved
by induction, and its argument is simply the tuple of the free first-order variables
of this conjecture.

The instantiation of the remaining higher-order variable < is more difficult.
Therefore, instead of a simple instantiation, the whole context of its two occurren-
ces is transformed. For the first occurrence, namely the one in ∀u<v. P (u), the
whole formula ∀u<v. P (u) is replaced with a conjunction of instances of P (u),
for which u is know to be smaller than v in some length-restricted lexicographic
combination of given orderings that are already know to be well-founded. As a
consequence, the second occurrence of <, i.e. the one in Wellf(<), simplifies to
true, and the conjunction that contains it can be omitted.

At the first glance, we would not expect that this induction rule could implement
all applications of the Theorem of Noetherian Induction within a successful proof-
search heuristic, simply because it has to solve the two hard tasks of an induction
proof, namely the Induction-Hypotheses Task and the Induction-Ordering Task
(cf. § 3.5), right at the beginning of the proof, before the proof attempt has been
sufficiently developed to exhibit its structural difficulties.

As a matter of fact, however, the induction rule is most successful in realizing
all applications of the Theorem of Noetherian Induction required within the proof-
search heuristic of the Boyer–Moore waterfall (cf. Figure 1). This has to do partly
with the poorness of the quantifier-free first-order logic. More important, however,
is the possibility of having additional lemmas that can then again be proved by
induction.
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EXAMPLE 4 (Proof of (+3) by explicit induction).

Let us prove (+3) in the context of § 3.3, just as we have done already in Ex-
ample 2 (cf. § 3.6), but now with the induction rule as the only way to apply the
Theorem of Noetherian Induction.

As the conjecture is already properly simplified and concise, we instantiate P (w)
in the Theorem of Noetherian Induction again to the whole conjecture and reduce
this conjecture by application of the Theorem of Noetherian Induction to

∃<.

( ∀(x, y).
(
(x+ y = y + x) ⇐ ∀(x′′, y′′) < (x, y). (x′′+ y′′ = y′′+ x′′)

)
∧ Wellf(<)

)
.

Based, roughly speaking, on a termination analysis for the function +, the heuris-
tic of the induction rule suggests to instantiate < to λx′′, y′′, x, y. (s(x′′)= x).
As this relation is known to be well-founded, the induction rule reduces this task
again based on axiom (nat1) to two goals, namely the base case

0 + y = y + 0;
and the step case

(s(x′)+ y = y + s(x′)) ⇐ (x′+ y = y + x′).

This completes the application of the induction rule, and these two goals must
now be shown without the possibility to apply further instances of the induction
hypotheses. Because of the very limited look-ahead that the induction rule can
have on the whole proof, the induction rule is not able to find the many instances
we applied in the proof of Example 2. In general, this would require an arbitrary
look-ahead, depending on the size of the structure of the descente infinie proof.

Note that the two above goals are exactly the ones that result from a structural
induction on x. Nevertheless, the induction rule is in general able to produce much
more complicated base and step cases than a simple structural induction on x.

Now the first goal is simplified again to y = y + 0, and then another application
of the induction rule results in two goals that can be proved without further
induction.

The second goal is simplified to

(s(x′+ y) = y + s(x′)) ⇐ (x′+ y = y + x′).

Now we use the condition from left to right for rewriting only the left-hand side
of the conclusion — this is the famous “cross-fertilization” of the Boyer–Moore
waterfall (cf. Figure 1) — and then throw away the condition completely, with the
intention to obtain a stronger induction hypothesis. The simplified second goal
reduces to

s(y +x′) = y + s(x′).

Now the induction rule triggers a structural induction on y, which is successful
without further induction.

All in all, although the induction rule does not find the more complicated in-
duction hypotheses of the descente infinie proof of Example 2, it well suffices to
prove our original conjecture with the help of the additional lemmas y = y + 0
and s(y + x′) = y + s(x′). From a logical viewpoint, these lemmas are redundant
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because they follow from the original conjecture and the definition of +. From
a heuristic viewpoint and oriented for rewriting from right to left, however, they
are much more useful than the original conjecture, because their application tends
to terminate in the context of the overall simplification by symbolic evaluation,
which constitutes the first stage in the Boyer–Moore waterfall (cf. Figure 1). ¤

The two proofs of the very simple conjecture (+3) given in Examples 2 and 4,
respectively, nicely demonstrate how the induction rule manages to prove simple
theorems very efficiently and with additional benefits for the further performance
of the simplification procedure.

Moreover, if the overall waterfall heuristic fails, the user can help any Boyer–
Moore theorem prover except the Pure LISP Theorem Prover by stating
additional lemmas with additional notions, that will finally help the induction
rule to prove also very hard theorems.

These two proofs of (+3), however, can only give a very rough idea on the ad-
vantage of descente infinie for hard induction proofs, but see Example 9 in § 5.2.6.
For a more difficult higher-order proof by descente infinie see § 3.4 of [Wirth, 2004]
for a complete formal proof of M. H. A. Newman’s famous lemma, where the re-
verse of a well-founded relation is shown to be confluent in case of local confluence
by induction w.r.t. its own ordering, a situation where explicit induction cannot
even be applied.45

3.7.2 Theoretical Viewpoint

Under the theoretical aspect, we should be aware that the models of explicit in-
duction, say for the natural numbers, include also non-standard models,46 where
there are Z-chains in addition to the natural numbers N, contrary to the higher-
order specifications of Peano and Pieri up to isomorphism with N. These Z-chains
cannot be excluded simply because all applications of the Theorem of Noetherian
Induction are confined to the induction rule, which does not use any higher-order
properties, but only first-order instances of the Theorem of Noetherian Induction,
and the remaining inference rule realize only first-order deductive reasoning.

45Note that, though confluence is the Church–Rosser property, the Newman Lemma has
nothing to do with the Church–Rosser Theorem for untyped λ-calculus. This theorem was
actually executed with a Boyer–Moore theorem prover in the first half of the 1980s by Shankar
[1988], following the Tait/Martin-Löf proof found e.g. in [Barendregt, 2012]. Unlike the Newman
Lemma, Shankar’s proof proceeds by structural induction on the λ-terms and not by Noether-
ian induction w.r.t. the reverse of the reduction relation; indeed, untyped λ-calculus in non-
terminating.

46 See also Note 104.
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3.7.3 Practical Viewpoint

Under the practical aspect, we have to be aware that application of the induction
rule of explicit induction does not refer to the Theorem of Noetherian Induction
anymore, but is actually confronted with the following practical tasks and their
heuristic decisions.

In general, the induction stage of the Boyer–Moore waterfall (cf. Figure 1) ap-
plies the induction rule once to its input formula, which results in a conjunction
— or conjunctive set — of base and step cases to which to the input conjecture
reduces, i.e. whose validity implies the validity of the input conjecture.

Therefore, the induction rule of explicit induction has to solve three tasks:

1. Choose some of the variables in the conjecture as induction variables.

2. Split the conjecture into several base and step cases, based on the induction
variables’ demand on which governing conditions (and constructors)47 have
to be added to unfold the recursive function calls on the induction variables
without further case analysis. This means that we successively apply axioms
of the form of (nat1) (cf. § 3.3) and (list(nat)1) (cf. § 3.4) to the induction
variables.

3. Eagerly generate the induction hypotheses for the step cases.

3.8 Generalization

Contrary to merely deductive, analytic theorem proving, an input conjecture for
an inductive proof is not only a task (as induction conclusion) but also a tool (as
induction hypothesis) in the proof attempt. Therefore, a stronger conjecture is
often easier to prove because it supplies us with a stronger induction hypothesis
during the proof attempt. The step from a weaker to a stronger input conjecture
is called generalization. Generalization is to be handled with great care because
it is an unsafe reduction step in the sense that it may reduce a valid conjecture to
an invalid one.

Generalization is hardly needed when humans supply the input conjecture. As
we have seen in § 3.8, explicit induction often has to start another induction during
the proof. In this case, however, the secondary, machine-generated input conjec-
ture often requires generalization for its proof attempt to be successful.

Generalization typically proceeds by the replacement of all occurrences of a
non-variable term with a fresh variable. This is especially promising for a sub-
sequent induction if the same non-variable term t has multiple occurrences in the
conjecture, and becomes even more promising if these occurrences are found on

47This applies when constructor style is either found in the recursive function definitions or or
to be used for the step cases. In the Pure LISP Theorem Prover, only the latter is the case.
In Thm, none of this is the case.
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both sides of the same positive equation or in literals of different polarity, say in
a conclusion and a condition of an implication.

To avoid over-generalization, i.e. the reduction to an invalid new conjecture,
sub-terms are to be preferred to super-terms, and one should never generalize if
t is of any of the following forms: a constructor term, a top level term, a term
with a logical operator (such as implication or equality) as top symbol or its direct
arguments, or the first argument of a conditional (IF). In any of these cases,
the information loss by generalization would typically be so high that it probably
results in an invalid conjecture.

EXAMPLE 5 (Proof of (ack4) by Explicit Induction and Generalization).

Let us prove (ack4) in the context of § 3.3 by explicit induction. It is obvious
that such a proof has to follow the definition of ack in the three cases (ack1),
(ack2), (ack3), using the termination ordering of ack, which is just the lexicographic
combination of its arguments. Thus, according to the induction rule of explicit
induction we should try to prove the the goals

less(y, ack(0, y)) = true

less(0, ack(s(x′), 0))= true ⇐ less(s(0), ack(x′, s(0)))= true

less(s(y′), ack(s(x′), s(y′)))= true

⇐
(

less(y′, ack(s(x′), y′))= true
∧ less(ack(s(x′), y′), ack(x′, ack(s(x′), y′)))= true

)

After simplifying with (ack1), (ack2), (ack3), respectively, we obtain:

less(y, s(y)) = true

less(0, ack(x′, s(0))) = true ⇐ less(s(0), ack(x′, s(0)))= true

less(s(y′), ack(x′, ack(s(x′), y′)))= true

⇐
(

less(y′, ack(s(x′), y′))= true
∧ less(ack(s(x′), y′), ack(x′, ack(s(x′), y′)))= true

)

Now the first case is simply an instance of our lemma (less4). Let us simplify the
two remain step cases a bit by introducing variables for their common subterms:

less(0, z) = true ⇐
(

less(s(0), z) = true
∧ z = ack(x′, s(0))

)

less(s(y′), z2) = true ⇐




less(y′, z1)= true
∧ less(z1, z2)= true
∧ z1 = ack(s(x′), y′)
∧ z2 = ack(x′, z1)




Now the first follows from from applying (nat1) to z. Before we can prove the
second by another induction, however, we have to generalize it to the lemma
(less7) of § 3.3 by deleting the last to literals from the condition. ¤
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In combination with explicit induction, generalization becomes especially powerful
in the invention of new lemmas of general interest, because the step cases of explicit
induction tend to have common occurrences of the same term in their conclusion
and their condition. Indeed, the lemma (less7), which we have just discovered in
Example 5, is one of the most useful lemmas in the theory of natural numbers.

It should be noted that Nqthm is able to do this whole proof and generalize the
second step case to the lemma (less7) completely automatically, even when it works
with a redefined empty arithmetic theory. Moreover, as shown in § 3.3 of [Wirth,
2004], in a slightly richer logic, the heuristics of Nqthm would additionally admit
to synthesize the lower bound in the first argument of less from an input conjecture
like ∃z. (less(z, ack(x, y))= true), simply because less does not contribute to the
choice of the base and step cases.

3.9 Proof-Theoretical Peculiarities of Mathematical Induction

The following two proof-theoretical peculiarities of induction compared to first-
order deduction may be considered noteworthy:48

• A calculus for arithmetic cannot be complete, simply because the theory of
the arithmetic of natural numbers is not enumerable.49 50

• According to Gentzen’s Hauptsatz,51 a proof of a first-order theorem can
always be restricted to the “sub”-formulas of this theorem. In contrast to
lemma application in a deductive proof tree, however, the application of
induction hypotheses and lemmas inside an inductive reasoning cycle cannot
generally be eliminated in the sense that the “sub”-formula property could
be obtained.52 As a consequence, in first-order inductive theorem proving,
“creativity” cannot be restricted to finding just the proper instances, but
may require the invention of new lemmas and notions.53

48Note, however, that these peculiarities of induction do not make a difference to first-order
deductive theorem proving in practice. See Notes 53 and 50.

49Cf. [Gödel, 1931].

50In practice, however, we have to extend our proof search to additional lemmas and notions
anyway, and it does not really matter whether we have to do this for principled reasons (as in
induction) or for tractability (as required in first-order deductive theorem proving, cf. [Baaz and
Leitsch, 1995]).

51Cf. [Gentzen, 1935].

52Cf. [Kreisel, 1965].

53In practice, however, it does not matter whether our proof attempt fails because our theorem
will not be enumerated ever or will not be enumerated before doomsday.
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3.10 Conclusion

In this section, after briefly presenting the induction method in its rich historical
context, we have offered a formalization and a first practical description from the
top-level. Moreover, we have explained why we can take Fermat’s term “descente
infinie” in our modern context as a synonym for the standard high-level method
of mathematical induction, which again can be seen as a global application of the
Theorem of Noetherian Induction.

Noetherian induction requires domains for its well-founded orderings; and these
domains are typically built-up by constructors, especially in the area of hard- and
software verification. Therefore, the discussion of the method of induction required
the introduction of some paradigmatic data types, such as the natural numbers,
the lists over natural numbers, and the Boolean values.

To express the relevant notions in these data types, we need recursion, a peculiar
method of definition, which have often used in this section, based on its informal
intuitiveness, but we did not actually discuss its formal admissibility requirements.
We make up for this omission in § 4, with a focus on modes of recursion that admit
an effective consistency test.

Moreover, a mathematical proof method cannot be completely captured by
its non-procedural logic formalization; and so we still have to develop effective
heuristics for actually finding proofs by induction. This issues is treated in § 5,
with a focus on heuristics that can be automated completely.

This Conclusion needs revision.
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4 RECURSION

Recursion is a form of programming or definition where a newly defined notion
may even occur in its definientia. Contrary to explicit definitions, where we can
always get rid of the new notions by reduction (i.e. by rewriting the definienda
(left-hand sides of the defining equations) to the definientia (right-hand sides)),
reduction with recursive definitions may run forever.

We have already seen some recursive function definitions in §§ 3.3 and 3.4, such
as the ones of +, less, length, and size, where these function symbols occurred in
some of the right-hand sides of the equations of their own definitions; for instance,
the function symbol + occurs in the right-hand side of (+2) in § 3.3.

Beginning with the Pure LISP Theorem Prover in 1972, recursive functions
were to be defined in all Boyer–Moore theorem provers in the style of the function
definitions of the programming language LISP.54

EXAMPLE 6. To avoid the association of routine knowledge, let us not consider a
function definition over lists (as standard in LISP), but over the natural numbers.
For example, instead of our two equations (+1), (+2) for +, we find the following
single equation on Page 53 of the standard reference in [Boyer and Moore, 1979]:

(PLUS X Y) = (IF (ZEROP X)
(FIX Y)
(ADD1 (PLUS (SUB1 X) Y)))

The primary difference here is that PLUS is defined in destructor style instead of
the constructor style of our equations (+1), (+2) in § 3.3. As there is no essential
difference between these two styles, let us transform our definition of + from
(+1), (+2) into destructor style.

In place of the untyped destructor SUB1, let us use the typed destructor p
defined by either by (p1) or by (p1′) of § 3.3, which — just as SUB1 — returns the
predecessor of a positive natural number. Now our destructor-style definition of
+ consists of the following two positive/negative-conditional equations:

(+1′) x+ y = y ⇐ x= 0

(+2′) x+ y = s(p(x)+ y) ⇐ x 6= 0

If we compare this definition of + to the one via the equations (+1), (+2), then
we find that the constructors 0 and s have been removed from the left-hand sides
of the defining equations here; they are replaced with the destructor p on the
right-hand side and with some conditions.

Now it is easy to see that (+1′), (+2′) represent the above definition of PLUS
in positive/negative-conditional equations, provided that we ignore that Boyer–
Moore theorem provers have no types and no typed variables.55 ¤

54Cf. [McCarthy et al., 1965].
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There are three kinds of restriction explicitly required for any function definition
in the Boyer–Moore theorem provers.

The first restriction is on confluence of the rewrite relation that results from
reading the defining equations as rewrite rules that admit to replace occurrences
of left-hand sides of instantiated equations with their respective right-hand sides,
provided that their conditions are fulfilled.56 This restriction guarantees that no
distinct objects of the data types can be equated by the recursive function defini-
tions. If we assume the axioms (nat2) and (nat3) (see § 3.3), then this restriction
is essential for consistency.

The two other restrictions, reducibility of all ground terms w.r.t. the rewrite
relation and termination of the rewrite relation, are not essential; when they are
both satisfied, as required in all Boyer–Moore theorem provers, then — similar to
the classical case of explicitly defined notions — we can get rid of the recursively
defined function symbols, but only if all arguments of these function symbols are
concrete objects of data types (i.e. terms without variables, consisting solely of
constructor function symbols).

Let us consider these three kinds of restriction in more detail.

4.1 Confluence

If we consider the (+2) together with (+2′), then we can rewrite s(x) + y on the
one hand with (+2) into s(x+ y), and, on the other hand, with (+2′), into
s(p(s(x))+ y), provided that x 6= 0 is fulfilled. This case does not seem to be
problematic, because the latter result can be rewritten to the former one by (p1).
In general, however, confluence is undecidable and criteria sufficient for confluence
are extremely hard to develop.

Without confluence, a definition of a recursive function could destroy the data
type in the sense that the specification has no model anymore; for example, if we
add p(x) = 0 to (p1), then we get s(0) = p(s(s(0))) = 0, in contradiction to the
axiom (nat2) of § 3.3.

55It is indeed easy to see this, at least with the additional information that IF X Y Z is nothing
but “IF X then Y else Z”, that ZEROP is a Boolean function checking for being zero, that (FIX Y)

returns Y if Y is a natural number, and that ADD1 is the successor function. Note that contrary
to modern LISP dialects, such as Common Lisp [Steele Jr., 1990], in the LISP 1.5 of [McCarthy
et al., 1965] there was no way to restrict the variables of the definition of PLUS to the type of
natural numbers.

56For the technical meaning of fulfilledness in the recursive definition of the rewrite relation
see [Wirth, 2009], where it is also explained why the positive/negative-conditional equation
equations simple respect the straightforward purely logical semantics in the specification.
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For the recursive definitions admissible in the Boyer–Moore theorem provers,
confluence results from the absence of divergence, which is an immediate conse-
quence of the LISP definition style; namely that there is only one defining equation
for each new function symbol,57 and that all variables occurring on the right-hand
side of the definition also occur on the left-hand side of the defining equation.58 59

4.2 Reducibility

It is not only so that we can check the soundness of (+1′) and (+2′) independently
from each other, we can also omit one of the equations, resulting in a partial
definition of the function +. Indeed, for the function p we did not specify any
value for p(0); so p(0) is not reducible in the term-rewrite system that results
from reading the specifying equations as reduction rules.

A function defined in a Boyer–Moore theorem prover, however, must always
be specified completely, in the sense that every application of such a function
to any concrete elements of the data types (in our case the natural numbers)
must be reducible. This reducibility immediately results from the LISP definition
style, which requires all arguments of the function symbol on left-hand side of its
definition to be disjoint variables.60

4.3 Termination

In addition to the LISP definition style, the Boyer–Moore theorem provers require
termination of the rewriting with function definitions as reduction rules in the sense
that — before the definition of a new function is admitted to the specification —
a proof of termination of the following form is required:61

57Cf. Item (a) of the “definition principle” of [Boyer and Moore, 1979, p. 44f.]. Confluence is
also discussed under the label “uniqueness” on Page 87ff. of [Moore, 1973].

58Cf. Item (c) of the “definition principle” of [Boyer and Moore, 1979, p. 44f.].

59The most general applicable confluence criterion for positive/negative-conditional equations
is found in [Wirth, 2008] and avoids divergence in a similar way by a criterion that can be easily
checked, although the proof that it guarantees confluence is very involved.

60Cf. Item (b) of the “definition principle” of [Boyer and Moore, 1979, p. 44f.].

61Cf. Item (d) of the “definition principle” of [Boyer and Moore, 1979, p. 44f.]. Note that in the
Pure LISP Theorem Prover, however, this termination was not proved; instead, the soundness
of the induction proofs came with the proviso that all the rewrite relation of all defined function
symbols terminate.
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For every occurrence of the new function symbol f on the right-hand
side of the defining equation, show that its arguments — when given as
arguments to a newly defined weight function62 wf (taking exactly the
arguments of the new function symbol) — are smaller in a well-founded
relation than the variables occurring as arguments of f on the left-hand
side given as arguments to wf ; and all this, of course, is required only
if the conditions governing this occurrence are all satisfied.

EXAMPLE 7. For our definition of + with (+1′), (+2′) in Example 6, the only
occurrence of + on the right-hand side is in (+2′), and it has the arguments
p(x) and y, governed by the condition x 6=0. If we define the weight function
w+ : nat, nat → nat by w+(x, y) = x, and choose the well-founded ordering λx, y.
(less(x, y)= true), then we have to prove

less(w+(p(x), y), w+(x, y))= true ⇐ x 6= 0,
i.e.

less(p(x), x)= true ⇐ x 6= 0,
which should be no problem for our theorem prover. ¤

4.4 Constructor Variables

In this section we have presented the general admissibility conditions for the defi-
nition of recursive functions, namely confluence (which is essential for consistency)
and the two additional ones of the Boyer–Moore theorem provers, reducibility and
termination.

Note that the two additional restrictions imply that only total recursive func-
tions are admissible in the Boyer–Moore theorem provers.63 Contrary to that, the
inductive theorem prover QuodLibet admits also partial recursive functions.

It is an interesting question why Boyer and Moore brought up these two addi-
tional restrictions. A possible answer is found on Page 87ff. of [Moore, 1973], where
confluence of the rewrite relation is discussed and a reference to Russell’s Paradox
serves as an argument that confluence alone would not be sufficient for consistency.
The argumentation is as follows: First, a function russell : bool → bool is defined,
which is essentially the following:

(russell1) russell(b) = false ⇐ russell(b)= true

(russell2) russell(b) = true ⇐ russell(b)= false

Then it is claimed that this function definition would result in an inconsistent
specification. This, however, is the case only if the variable b of the axiom (bool1)
(cf. § 3.4) can be instantiated with the term russell(b), which we do not have

62Or “measure function” as it is called in the tradition of Boyer and Moore.

63There is an explicit reference to [Schoenfield, 1967] as the basis for the logic of the Pure
LISP Theorem Prover on Page 93 of [Moore, 1973].
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to permit: If all variables we have introduced so far are constructor variables64

in the sense that they can only be instantiated with terms formed from constructor
function symbols (incl. constructor constants) and constructor variables, then the
values of the function russell can exist as a junk objects different from true and
false, and no inconsistency arises.65

Note that these constructor variables are implicitly part of the LISP semantics
with its innermost evaluation strategy. For instance, in Example 6, neither the
LISP definition of PLUS nor its representation via the positive/negative-condi-
tional equations (+1′), (+2′) is intended to be applied to a non-constructor term
in the sense that X or x should be instantiated to a term that represents a function
call of a defined function.

Moreover, there is evidence that Moore considered the variables already in 1973
as constructor variables: On Page 87 in [Moore, 1973], we find formulas on de-
finedness and confluence, which make sense only for constructor variables; the one
on definedness reads ∃Z(COND X (COND Y T NIL) NIL) = Z, which is trivial for
a general variable Z and makes sense only if Z is taken to be a constructor variable.

64Such constructor variables were formally introduced in [Wirth et al., 1993] and became an
essential part of the frameworks found in [Wirth and Gramlich, 1994a; 1994b], [Kühler and Wirth,
1996; 1997], [Wirth, 1997; 2009] [Kühler, 2000], [Avenhaus et al., 2003], and [Schmidt-Samoa,
2006a; 2006b; 2006c].

65For the resulting semantics see in particular [Wirth and Gramlich, 1994b], and [Kühler and
Wirth, 1997].
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5 AUTOMATED EXPLICIT INDUCTION

5.1 The Application Context of Automated Explicit Induction

Since the upcoming of programmable computing machinery in the middle of the
20th century until today, a major problem of hardware and software is the uncer-
tainty whether it actually does what it should do.

To simplify matters, let us assume that none of the components of the physical
hardware is broken and that the machinery situated at a place where we can
neglect the influence of the environment. Under this assumption, the task to show
that the hard- and software actually implements the intended functionality can be
made concrete, at least in principle, in the following way:

We specify the intended functionality in a language of formal logic, and then
we supply a formal proof that the program actually satisfies the specification.

This approach requires a formal specification of the hardware and the involved
programming languages. Moreover, to be complete, this approach would also
require a verification that the implementation of the programming languages (via
interpreters or compilers) actually follows this specification. The crucial problem,
however, are the costs of the many proofs of the huge amounts of application
software in a market-oriented economy.66

To reduce the complexity of the approach, we can restrict ourselves to a single
programming languages which is very close to formal logics and admits a simple
implementation. Moreover, to reduce the costs of the software verification, we
can hope to automate it with automated theorem-proving systems. This means
a mechanization of mathematical induction because most data types applied in
programming, such as natural numbers, pairs, arrays, lists, and trees, require
induction for the verification of their properties.

This section on Application Context needs revision.

66Although the costs for verification of a central processing unit are economically maintainable,
a company in a market-oriented economy may have problems with these relatively small extra
costs, because their competitors may be able to offer slightly lower prices and push that company
out of the market. Even the economical ruin of some of these competitors because of the liabilities
for their faulty processing units does not guarantee a future success of verification in the business.
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5.2 The Pure LISP Theorem Prover

From the historical perspective the big question is how Robert S. Boyer and J
Strother Moore could invent their outstanding solutions to the hard heuristic prob-
lems in the automation of induction, implemented in the sophisticated theorem
prover Thm (cf. [Boyer and Moore, 1979]), starting virtually from zero67 in the
middle of 1972.

As already described in § 1, the main breakthrough in the heuristics for auto-
mated theorem proving was achieved with the “Pure LISP Theorem Prover”,
developed and implemented by Boyer and Moore. It was presented by Moore at
the third IJCAI, which took place in Stanford (CA) in August 1973,68 but it is best
documented in Part II of Moore’s PhD thesis [1973], defended in November 1973.

The Pure LISP Theorem Prover is given no name in the before-mentioned
publications. The only occurrence of the name in publication seems to [Moore,
1975, p.1], where it is actually called “the Boyer–Moore Pure LISP Theorem
Prover”.

To understand the achievements a bit better, let us now discuss the material
of Part II of Moore’s PhD thesis in more detail, because it provides some expla-
nation on how Boyer and Moore could be so surprisingly successful. Especially
helpful for understanding the process of creation are those procedures of the Pure
LISP Theorem Prover that are provisional w.r.t. to their refinement in later
Boyer–Moore theorem provers. Indeed, these provisional procedures help to de-
compose the giant leap from nothing to Thm, which has no parallel in the history
of automated theorem proving, to steps of a more comprehensible size.

As W. W. Bledsoe (1921–1995) was Boyer’s PhD advisor, it is likely that Boyer
was building the Pure LISP Theorem Prover on the advanced standpoint
Bledsoe had developed in the automation of theorem proving.69

67No heuristics were explicitly described in Rod M. Burstall’s considerations of the year 1968
on program verification by induction over recursive functions in [Burstall, 1969]; the proofs were
not even formal, and an implementation seemed to be more or less utopian:

“The proofs presented will be mathematically rigorous but not formalised to the
point where each inference is presented as a mechanical application of elementary
rules of symbol manipulation. This is deliberate since I feel that our first aim
should be to devise methods of proof which will prove the validity of non-trivial
programs in a natural and intelligible manner. Obviously we will wish at some stage
to formalise the reasoning to a point where it can be performed by a computer to
give a mechanised debugging service.” [Burstall, 1969, p. 41]

Still in 1972, all known implementations of automated inductive theorem provers based on re-
cursive functions (we know only of the ones of W. W. Bledsoe and Robert S. Boyer) were just
able to apply the Axiom of Structural Induction (S) of § 3.3 to a randomly picked variable of
type nat, which is not worth mentioning in comparison with the Boyer–Moore theorem provers.

68Cf. [Boyer and Moore, 1973].

69On Page 172 of [Moore, 1973] we read on the Pure LISP Theorem Prover:

“The design of the program, especially the straightforward approach of ‘hitting’ the
theorem over and over again with rewrite rules until it can no longer be changed,
is largely due to the influence of W. W. Bledsoe.”
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On the method of Boyer and Moore for the development of their induction
heuristics in late 1972 and early 1973, in particular of their famous waterfall
(cf. Figure 1), they report that they were doing proofs on list data structures on
the blackboard and verbalizing to each other the heuristics behind their choices
on how to proceed with the proof.70 This means that the heuristics of the Pure
LISP Theorem Prover are learned from human heuristics, although explicit
induction itself is not the approach humans would choose for non-trivial induction
tasks.

Note that their method of learning computer procedures from their own human
behavior in mathematical logic also meant a step of two young men against the
spirit of the time when the dominance of J. Alan Robinson’s resolution method sug-
gested the application of vast amounts of computational power to most elementary
forms of “machine-oriented” (i.e. not human like) first-order reasoning. It may well
be that the orientation toward human-like or “intelligible” methods and heuristics
in the automation of theorem proving had also some tradition in Edinburgh at the
time,71 but the major influence of Boyer and Moore is here again W. W. Bledsoe.72

The source code of the Pure LISP Theorem Prover was written in the
programming language POP–2.73 Boyer and Moore were the only programmers
involved in the implementation. The average time in the central processing unit
(CPU) of the ICL–4130 for the proof of a theorem is reported to be about 10 s.74

One remarkable omission in the Pure LISP Theorem Prover is lemma
application. As a consequence, the success of proving a set of theorems cannot
depend on the order of their presentation to the theorem prover. Indeed, just as
the resolution theorem provers of the time, the Pure LISP Theorem Prover
starts every proof right from the scratch and does not improve its behavior with
the help of previously established lemmas.

Moreover, the induction orderings in the Pure LISP Theorem Prover are
exclusively recombinations of constructor relations, such that all inductions it can
perform are structural inductions over combinations of constructors. As a con-
sequence, contrary to later Boyer–Moore theorem provers, the well-foundedness
of the induction orderings does not depend on the termination of the recursive
function definitions.75

70Interview of Boyer and Moore by Wirth on Thursday, Oct. 7, 2012.

71Cf. e.g. the quotation from [Burstall, 1969] in Note 67.

72Cf. e.g. [Bledsoe et al., 1972].

73Cf. [Burstall et al., 1971].

74This timing result is hard to believe and strongly indicates that Boyer and Moore were as
great in coding as they were in creating heuristics for theorem proving. Here is the actual wording
of the timing result found on Page 171f. of [Moore, 1973]:

“Despite theses inefficiencies, the ‘typical’ theorem proved requires only 8 to 10
seconds of CPU time. For comparison purposes, it should be noted that the
time for CONS in 4130 POP–2 is 400microseconds, and CAR and CDR are about
50microseconds each. The hardest theorems solved, such as those involving SORT,
require 40 to 50 microseconds each.”
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Nevertheless, the soundness of the Pure LISP Theorem Prover depends
directly on the termination of the recursive function definitions, but only in one
single aspect: It simplifies and evaluates expressions under the assumption of
termination. For instance, both (IF76 a d d) and (CDR (CONS a d)) sim-
plify to d, no matter whether a terminates; and it is admitted to rewrite with
a recursive function definition even if an argument of the function call does not
terminate.77

The termination of the recursively defined functions, however, is not at all
checked by the Pure LISP Theorem Prover, but comes as a proviso for its
soundness.

The logic of the Pure LISP Theorem Prover is an applicative (or pure)
subset of the logic of LISP.78 The only destructors in this logic are CAR and
CDR, which take apart the only constructors NIL and CONS according to the equa-
tions (CAR (CONS a d)) = a and (CDR (CONS a d)) = d. Moreover, to
enforce totality, the destructors are overspecified via (CAR NIL) = NIL and
(CDR NIL) = NIL.

As standard in LISP, every term of the form (CONS a d) is taken to be
true in the logic of the Pure LISP Theorem Prover if it occurs in place of
an argument with Boolean intention. The actual truth values (to be returned
by Boolean functions) are NIL (representing false) and T, which is an abbrevi-
ation for (CONS NIL NIL) and represents true.79 Moreover, the natural num-
ber 0 is represented by NIL and the successor function s(d) is represented by
(CONS NIL d).80

Let us now discuss the behavior of the Pure LISP Theorem Prover by de-
scribing the instances of the stages of the Boyer–Moore waterfall (cf. Figure 1) as
they are described in Moore’s PhD thesis.

75Note that the well-foundedness of the constructor relations depends on distinctness of the
constructor ground terms in the models, but this does not really depend on the termination of
the recursive functions because confluence is sufficient here as discussed in § 4 along the results
of [Wirth, 2009].

76In the logic of the Pure LISP Theorem Prover, the special form IF is actually called
“COND”. This is most confusing because COND is a standard special form in LISP, different from IF.
Therefore, we will ignore this peculiarity and write “IF” for every “COND” of the Pure LISP
Theorem Prover.

77Contrary to later Boyer–Moore theorem provers, the Pure LISP Theorem Prover does
not require termination for (the non-existing) lemma application.

78Beside the imperative commands of LISP, such as variants of PROG, SET, GO, and RETURN,
this pure subset of LISP also lacks all functions or special forms that depend on the memory
representation of the structures, such as EQ, RPLACA, and RPLACD, which can be used in LISP to
realize circular structures or to save memory space.

79Cf. 2nd paragraph of Page 86 of [Moore, 1973].

80Cf. 2nd paragraph of Page 87 of [Moore, 1973].
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5.2.1 Simplification in the Pure LISP Theorem Prover

The first stage of the Boyer–Moore waterfall — called simplification in Figure 1 —
is called “normalation” in the Pure LISP Theorem Prover. It applies the
following simplification procedures to LISP expressions until the result does not
change anymore: “evaluation”, “normalization”, and “reduction”.

“Normalization” tries find sufficient conditions for a given expression to have
the soft type “Boolean” and to normalize logical expressions. Contrary to clausal
logic over equational atoms, LISP admits EQUAL and IF to appear not only on top
level, but in arbitrary mutually nested terms. To free later tests and heuristics
from checking for their triggers in every equivalent form, such a normalization
w.r.t. propositional logic and equality is part of most theorem provers today.

“Reduction” is a form of what today is called contextual rewriting, based on the
obvious fact that in

(IF c p n)

we can simplify occurrences of c in p to (CONS (CAR c) (CDR c)), and in n
to NIL. The replacement with (CONS (CAR c) (CDR c)) is executed only at
positions with Boolean intention and can be improved in the following two special
cases: If we know that c is of soft type “Boolean”, then we rewrite all occurrences
of c in p actually to T. Moreover, if c is of the form (EQUAL l r), then we can
rewrite occurrences of l in p to r (or vice versa). Note that we have to treat
the variables in l and r as constants in this rewriting. This has the advantage
that we could take any well-founded ordering that is total on ground terms and
run the terminating ground version of a Knuth–Bendix completion procedure for
all literals in a clause representation that have the form li 6= ri, and replace the
literals of this form with the resulting confluent and terminating rewrite system
and normalize the other literals of the clause with it. The Pure LISP Theorem
Prover, however, does not do this at all. Instead, it applies the normalization
only if one of l, r is a ground term.81 If this is the case then the other is not
a ground term because the equation would otherwise have been simplified to T
or NIL in the previously applied “evaluation”. So replacing the latter term with
the constructor ground term everywhere in p must terminate, and this is all the
contextual rewriting with equalities that the Pure LISP Theorem Prover does
in “reduction”. Note, however, that further contextual rewriting with equalities
is applied in a later stage of the Boyer–Moore waterfall, named cross-fertilization.

“Evaluation” is a procedure that evaluates expressions partly by simplification
within the elementary logic as given by Boolean operations and the equality pred-
icate. Moreover, “evaluation” executes some rewrite steps with the equations
defining the recursive functions. Thus, “evaluation” can roughly be seen as nor-
malization with the rewrite relation resulting from the elementary logic and from
the recursive function definitions. The rewrite relation is applied according to the
innermost left-to-right rewriting strategy, which is standard in LISP.

81Actually this ground term is always a constructor ground term because the previously applied
“evaluation” procedure has reduced any ground term to a constructor ground term, provided that
the termination proviso is satisfied.
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By “evaluation”, ground terms are completely evaluated to their normal forms.
Terms containing (implicitly universally quantified) variables, however, have to
be handled in addition. Surprisingly, the considered rewrite relation is not neces-
sarily terminating on non-ground terms, although the LISP evaluation of ground
terms terminates because of the assumed termination condition for recursive func-
tion definitions (cf. § 4.3). The reason for this non-termination is the follow-
ing: Because of the LISP definition style via unconditional equations, the posi-
tive/negative conditions are part of the right-hand sides of the defining equations,
such that the rewrite step can be executed even if the conditions evaluate neither
to false nor to true. For instance, in Example 6, a rewrite step with the definition of
PLUS can always be executed, whereas a rewrite step with (+1′) or (+2′) requires
x= 0 to be definitely true or definitely false. This means that non-termination
may result from the rewriting of cases that do not occur in the evaluation of
any ground instance.82 Later Boyer–Moore theorem provers also use lemmas for
rewriting during symbolic evaluation, which is another source of possible non-
termination. As the final aim is a form that provides a sufficiently concise and
strong induction hypothesis, symbolic evaluation must be prevented from unfold-
ing function definitions unless the context lets us expect an effect of simplification.
Today this is typically done by contextual rewriting where evaluation stops when
the governing conditions cannot be established from the context.83

Because the main function of “evaluation” in the Pure LISP Theorem Prover,
however, is to collect data on which base and step cases should be chosen later by
the induction rule, the Pure LISP Theorem Prover applies a completely dif-
ferent procedure to stop the unfolding of recursive function definitions: A rewrite
step with an equation defining a recursive function f is canceled if there is a
CAR or a CDR in an argument to an occurrence of f in the right-hand side of
the defining equation that is encountered during the control flow of “evaluation”,
and if this CAR or CDR is not removed by the “evaluation” of the arguments of
this occurrence of f under the matching of the left-hand side of the equation
to the redex. For instance, “evaluation” of (PLUS (CONS NIL X) Y) returns
(CONS NIL (PLUS X Y)); whereas “evaluation” of (PLUS X Y) returns (PLUS X Y)
and informs the induction rule that only (CDR X) occurred in the recursive call
during the trial to rewrite with the definition of PLUS. In general, such occurrences
indicate which induction hypotheses should be generated by the induction rule.84

82It becomes clear in the second paragraph on Page 118 of [Moore, 1973] that the code of both
the positive and the negative case of a conditional will be evaluated, unless one of them can be
canceled by the complete evaluation of the governing condition to true or false. Note that the
evaluation of both case is necessary indeed and cannot be avoided in practice.

Moreover, note that a stronger termination requirement that guarantees termination indepen-
dent of the governing condition is not feasible for recursive function definitions in practice.

83See, for instance, the evaluation in QuodLibet as described in [Schmidt-Samoa, 2006b;
2006c].
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The mechanism for partially enforcing termination of “evaluation” according to
this procedure is vaguely described in the last paragraph on Page 118 of Moore’s
PhD thesis. As this kind of “evaluation” is only an intermediate solution on the
way to more refined control information for the induction rule in later Boyer–Moore
theorem provers, the rough information given here may suffice.

“Evaluation” provides an interesting link between symbolic evaluation and the
induction rule, which helps to understand how it was possible to develop the more
sophisticated recursion analysis of later Boyer–Moore theorem provers stepwise.
So the question “Which case distinction on which variables should be used for the
induction proof and how should the step cases look like?” is reduced to quite dif-
ferent question “Where to destructors like CAR and CDR block the further symbolic
evaluation?”.

5.2.2 Destructor Elimination in the Pure LISP Theorem Prover

There is no such stage in the Pure LISP Theorem Prover.

5.2.3 (Cross-) Fertilization in the Pure LISP Theorem Prover

Fertilization is just contextual rewriting with an equality, described before for
the “reduction” that is part of the simplification of the Pure LISP Theorem
Prover, but now with an equation between two non-ground terms.

The most important case of fertilization is called “cross-fertilization”. It occurs
very often in step cases of induction proofs of equational theorems, and we have
seen it already in Example 4 of § 3.7.1.

Neither Boyer nor Moore ever explained why cross-fertilization is cross. Cross-
fertilization is actually a term from genetics referring to the alignment of haploid
genetic code from male and female to a diploid code in the egg cell. This image
helps to remember that only the side (i.e. left- or right-hand) of the induction
conclusion that was activated by a successful simplification is further rewritten
during cross-fertilization, namely everywhere where the same side of the induction
hypothesis occurs as a redex, just like two haploid chromosomes have to start at
the same (activated) sides for successful recombination. Furthermore — for getting
a sufficiently powerful new induction hypothesis in a follow-up induction — it is
crucial to delete the equation used for rewriting (i.e. the old induction hypothesis),
which can be memorized by the fact that — in the image — only one (diploid)
genetic code remains.

The only noteworthy difference between cross-fertilization in the Pure LISP
Theorem Prover and later Boyer–Moore theorem provers is that the generaliza-
tion that consists in the deletion of the used-up equations is done in a halfhearted
way, which admits a later identification of the deleted equation.

84Actually, “evaluation” also informs which occurrences of CAR or CDR beside the arguments
of recursive occurrences of PLUS were permanently introduced during that trial to rewrite.
In general, such occurrences indicate which additional case analysis is to be generated by the
induction rule.
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5.2.4 Generalization in the Pure LISP Theorem Prover

Generalization in the Pure LISP Theorem Prover works as described in § 3.8.
The only difference to our presentation there is the following: Instead of just re-
placing all occurrences of a non-variable subterm t with a new variable z, the
definition of the top function symbol of t is used to generate the definition of a
new predicate p, such that p(t) holds. Then the generalization of T [t] becomes
T [z] ⇐ p(z) instead of just T [z]. The version of this automated function syn-
thesis actually implemented in the Pure LISP Theorem Prover is just able
to generate simple type properties, such as being a number or being a Boolean
value.85

Note that generalization is essential for the Pure LISP Theorem Prover
because it does not use lemmas, and so it cannot build up a more and more
complex theory successively. It is clear that this limits the complexity of the
theorems it can prove, because a proof can only be successful if the implemented
non-backtracking heuristics work out all the way from the theorem down to the
most elementary theory.

5.2.5 Elimination of Irrelevance in the Pure LISP Theorem Prover

There is no such stage in the Pure LISP Theorem Prover.

5.2.6 Induction in the Pure LISP Theorem Prover

The reader is reminded of the short § 3.7.3 and the three tasks or steps it displays,
which the induction stage of the Boyer–Moore waterfall has to solve when it applies
the induction rule to its input formula.

EXAMPLE 8 (Induction Rule in the Explicit Induction Proof of (ack4)).
Let us see how these three steps look like for the induction formula of Example 5
of § 3.8. According to the definition of ack in (ack1), (ack2), (ack3) (cf. § 3.3),
we should take x and y as induction variables (Step 1), and generate our base and
step cases according to the substitutions

{x 7→ 0},
{x 7→ s(x′), y 7→ 0},
{x 7→ s(x′), y 7→ s(y′)}.

The definition of less does not suggest any induction because its second argument
is blocked in the input conjecture. The Pure LISP Theorem Prover gets its
information on these steps from its already described “evaluation”. It requires the
axioms (ack1), (ack2), (ack3) to be in destructor instead of constructor style:86

85See § 3.7 of [Moore, 1973]. As explained on Page 156f. of [Moore, 1973], Boyer and Moore
failed with the trial to improve the implemented version of the function synthesis, so that it
could generate a predicate on a list being ordered from a simple sorting-function.

86We ignore the here irrelevant fact that the Pure LISP Theorem Prover actually has a list
representation of the natural numbers.
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(ack1′) ack(x, y) = s(y) ⇐ x= 0

(ack2′) ack(x, y) = ack(p(x), s(0)) ⇐ x 6= 0 ∧ y = 0

(ack3′) ack(x, y) = ack(p(x), ack(x, p(y))) ⇐ x 6= 0 ∧ y 6= 0

“Evaluation” would not rewrite the input conjecture with this definition, but write
a fault description for the permanent occurrences of p as arguments of the three
occurrences of ack on the right-hand sides, essentially consisting of the following
three “pockets”: (p(x)), (p(x), p(y)), and (p(y)), respectively. Similarly, the pock-
ets gained from the fault descriptions of rewriting the input conjecture with the
definition of less essentially consists of the pocket (p(y), p(ack(x, y))). This fault
description does not suggest any induction because one of the arguments of p in
one of the pockets is not a variable. As this is not the case for the previous fault
description, it suggests the set of all arguments of p in all pockets as induction
variables. As this is the only suggestion, no subsumption or merging of suggested
inductions is required here. So the Pure LISP Theorem Prover picks the right
set of induction variables in Step 1.

It fails, however, with Step 2, where it generates the base and step cases accord-
ing to the substitutions87

{x 7→ 0},
{y 7→ 0},
{x 7→ s(x′), y 7→ s(y′)}.

This turns the first step case the proof of Example 5 into a base case, for which
the proof can only fail. The Pure LISP Theorem Prover also fails with the
step case it actually generates:

less(s(y′), ack(s(x′), s(y′)))= true ⇐ less(y′, ack(x′, y′))= true.

This step case has only one hypothesis, which is none of the two we need. ¤

Thus, regarding the three tasks or steps described in § 3.7.3, the Pure LISP
Theorem Prover does well in Step 1, but fails88 with Steps 2 and 3 in Example 8.
As seen from that example, the Pure LISP Theorem Prover shows a bad
performance on the rarely occurring non-trivial inductions on several variables.
Moreover, as also seen from that example, the main weakness of the Pure LISP
Theorem Prover is that all information it considers on the right-hand sides
of the recursive function definitions comes from the fault descriptions of previous
applications of “evaluation”, which ignore too much information required for the
proper instances of the induction hypotheses. As a consequence, all these hypo-
theses instantiate the input conjecture exclusively with constructor terms (though
multiple hypotheses for a step case can be generated).

87We can see this from a similar case on Page 164 and from the explicit description on the
bottom of Page 166 in [Moore, 1973].

88There are indications that Steps 2 and 3 had to be implemented in a hurry. For instance,
on top of Page 168 of [Moore, 1973], we read on the Pure LISP Theorem Prover: “The case
for n term induction is much more complicated, an is not handled in its full generality by the
program.”
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Compared to the sophisticated recursion analysis of the later Boyer–Moore
theorem provers, the induction stage of the Pure LISP Theorem Prover is
pretty straightforward and undeveloped, although it somehow contains all essential
later ideas in a rudimentary form, such as recursion analysis, the three above
steps, and the merging of step cases. To see the latter we have to consider another
example.

EXAMPLE 9 (Proof of (less7) by Explicit Induction, incl. Merging of Step Cases).

Let us write T (x, y, z) for (less7) of § 3.3. From the proof of (less7) in Example 3
of § 3.6 we can learn the following: The proof becomes simpler when we take

T (0, s(y′), s(z′))

as base case (beside say T (x, y, 0) and T (x, 0, s(z′))), instead of any of

T (0, y, s(z′)), T (0, s(y′), z), T (0, y, z).

The crucial lesson from Example 3, however, is that the step case of explicit in-
duction has to be

T (s(x′), s(y′), s(z′)) ⇐ T (x′, y′, z′).

Note that the induction rule of explicit induction looks ahead only one rewrite
step, separately for each occurrence of a recursive function in the conjecture.

This means that there is no way for explicit induction to apply case distinctions
on variables step by step, most interesting first, until finally we end up with an
instance of the induction hypothesis as in Example 3.

Nevertheless, even the Pure LISP Theorem Prover manages the pretty
hard task of suggesting exactly the right step case: It gets its information on
these steps from its already described “evaluation”. It requires the axioms (less1),
(less2), (less3) to be in destructor style:89

(less1′) less(x, y) = false ⇐ y = 0

(less2′) less(x, y) = true ⇐ y 6= 0 ∧ x= 0

(less3′) less(x, y) = less(p(x), p(y)) ⇐ y 6= 0 ∧ x 6= 0

“Evaluation” does not rewrite any of the occurrences of less in the input conjecture
with this definition, but writes one fault description for each of these occurrences
about the permanent occurrences of p as argument of the one occurrence of less on
the right-hand sides, resulting in one “pocket” in each fault description, which
essentially consist of ((p(z))), ((p(x), p(y))), and ((p(y), p(z))), respectively.
The Pure LISP Theorem Prover merges these three fault descriptions to
the single one ((p(x), p(y), p(z))), and so suggests the proper step case indeed,
although it suggests the base case T (0, y, z), which requires some considerable
extra work, but does not result in a failure. ¤

89We ignore the here irrelevant fact that the Pure LISP Theorem Prover actually has a list
representation of the natural numbers.
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5.3 Thm

Boyer and Moore never gave names to their theorem provers.90 The names “Thm”
(for “theorem prover”), “Qthm” (for “quantified Thm”), and “Nqthm” (for “new
quantified Thm”) were actually the directory names under which the different ver-
sions of their theorem provers were developed and maintained.91 Qthm was never
released and its development was discontinued soon after the “quantification” in
Nqthm had turned out to be superior; so the name Qthm was never used in
public. Thm appeared yet in publication only as a mode in Nqthm,92 which sim-
ulates the release previous to the release of Nqthm (i.e. before “quantification”
was introduced) with a logic that is a further development of the one described in
[Boyer and Moore, 1979]. It was Matt Kaufmann (*1952) who started calling the
prover “Nqthm” in the second half of the 1980s.93 The name “Nqthm” appeared
in publication first as a name of a reference in [Boyer and Moore, 1987],94 and
then in [Boyer and Moore, 1988b] as a mode in Nqthm.

In this section we describe the enormous heuristic improvements documented
in [Boyer and Moore, 1979] as compared to [Moore, 1973] (cf. § 5.2). In case of
the minor differences of the logic described in [Boyer and Moore, 1979] and of the
later released version that is simulated by the THM mode in Nqthm as documented
in [Boyer and Moore, 1988b; 1998], we try to follow the latter description, partly
because of its elegance, partly because Nqthm is an easily available program. For
this reason we have entitled this section “Thm” instead of “The standard reference
on the Boyer–Moore heuristics [Boyer and Moore, 1979]”.

Note the clearness, precision, and detail of the natural-language descriptions of
heuristics in [Boyer and Moore, 1979] is unique and unrivaled.95 To the best of
our knowledge, there is similarly broad treatment of heuristics in theorem proving.

90The only exception seems to be [Moore, 1975], where the Pure LISP Theorem Prover is
called “the Boyer–Moore Pure LISP Theorem Prover”, probably because Moore wanted to stress
that, though Boyer appears in the references of [Moore, 1975] only in [Boyer and Moore, 1975],
Boyer has had an equal share in contributing to the Pure LISP Theorem Prover right from
the start.

91Cf. [Boyer, 2012].

92For the occurrences of “THM” in publications, and for the exact differences between the THM

and NQTHM modes and logics, see Pages 256–257 and 308 in [Boyer and Moore, 1988b], as well as
Pages 303–305, 326, 357, and 386 in the second edition [Boyer and Moore, 1998].

93Cf. [Boyer, 2012].

94The actual occurrence at the end of § 3.3 of the technical report [Boyer and Moore, 1987]

is the name of a bibliographic reference that was not resolved properly. In the journal version
[Boyer and Moore, 1988a] and in the proceedings version [Boyer and Moore, 1989], this link is
resolved and just reads “9”.

95In [Boyer and Moore, 1988b, p. xi] and [Boyer and Moore, 1998, p. xv] we can read about
the book [Boyer and Moore, 1979]:

“The main purpose of the book was to describe in detail how the theorem prover
worked, its organization, proof techniques, heuristics, etc. One measure of the
success of the book is that we know of three independent successful efforts to
construct the theorem prover from the book.”
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From 1973 to 1981 Boyer and Moore were researchers at Xerox Palo Alto Re-
search Center (Moore only) and at SRI International in Menlo Park (CA) just a
few miles apart. Since 1981 they were both professors at The University of Texas
at Austin or scientists at Computational Logic Inc. in Austin (TX). So they could
easily work together. And — just like the Pure LISP Theorem Prover — the
provers Thm and Nqthm were again developed and implemented exclusively by
Boyer and Moore.96

The approach for developing the heuristics has not changed. Just as in the
Pure LISP Theorem Prover, the heuristics of Thm are still learned from the
heuristics of the human mathematicians Boyer and Moore.

The logic of Thm has changed a bit compared to the Pure LISP Theorem
Prover. By means of the new shell principle,97 it is now possible to define
new data types by describing the shell, a constructor with at least one argument,
each of whose arguments may have a simple type restriction, and the optional
base object, a nullary constructor.98 In addition, for each argument of the shell,
a destructor99 has to be described, together with a default value (for the sake of
totality). As the logic remains untyped, the user also has to supply a name for
the predicate that tests for being an object of the new data type.

NIL has lost its elementary status and is now an element of the shell PACK
of symbols.100 T and F now abbreviate the nullary function calls (TRUE) and
(FALSE), respectively, which are the only Boolean values. Any argument with

96In both [Boyer and Moore, 1988b, p. xv] and [Boyer and Moore, 1998, p. xix] we read:

“Notwithstanding the contributions of all our friends and supporters, we would like
to make clear that ours is a very large and complicated system that was written
entirely by the two of us. Not a single line of Lisp in our system was written by
a third party. Consequently, every bug in it is ours alone. Soundness is the most
important property of a theorem prover, and we urge any user who finds such a
bug to report it to us at once.”

97Cf. [Boyer and Moore, 1979, p. 37ff.].

98Note that this restriction to at most two constructors, including exactly one with arguments,
is pretty uncomfortable. For instance, it neither admits simple enumeration types, such as the
Boolean values, nor record types. Moreover, mutually recursive data types are not possible,
such as and-or-trees, where each element is a list of or-and-trees, and vice versa, as given by the
following four constructors:

empty-or-tree : or-tree; or : and-tree, or-tree → or-tree;
empty-and-tree : and-tree; and : or-tree, and-tree → and-tree.

99 Actually, in the jargon of [Boyer and Moore, 1979; 1988b; 1998], destructors are called
accessor functions, and type predicates are called recognizer functions.

100The there are the following two different declarations for the shell PACK: In [Boyer and
Moore, 1979], the shell CONS is defined after the shell PACK because NIL is the default value for
the destructors CAR and CDR; moreover, NIL is an abbreviation for (NIL), which is the base object
of the shell PACK.

In [Boyer and Moore, 1988b; 1998], however, the shell PACK is defined after the shell CONS,
we have (EQUAL (CAR NIL) 0), the shell PACK has no base object, and NIL just abbreviates
(PACK (CONS 78 (CONS 73 (CONS 76 0)))).

When we discuss the logic of [Boyer and Moore, 1979], we tacitly use the shells CONS and PACK

as described in [Boyer and Moore, 1988b; 1998].
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Boolean intention beside F is taken to be T (including NIL).
Instead of discussing the shell principle in detail with all its intricacies resulting

from the untyped framework, we just present the first two shells:

1. The shell (ADD1 X1) of the natural numbers, with

• type restriction (NUMBERP X1),
• base object (ZERO), abbreviated by 0,
• destructor SUB1 with default value 0, and
• type predicate99 NUMBERP.

2. The shell (CONS X1 X2) of pairs, with

• destructors CAR with default value 0,
CDR with default value 0, and

• type predicate LISTP.

According to the shell principle, these two shell declarations add the following
logical axioms to the theory, respectively:
# Axioms Generated by Shell ADD1 Axioms Generated by Shell CONS

0.1 (NUMBERP X)= T ∨ (NUMBERP X)= F (LISTP X)= T ∨ (LISTP X)= F

0.2 (NUMBERP (ADD1 X1))= T (LISTP (CONS X1 X2))= T

0.3 (NUMBERP 0)= T

0.4 (NUMBERP T)= F (LISTP T)= F

0.5 (NUMBERP F)= F (LISTP F)= F

0.6 (LISTP X)= F ∨ (NUMBERP X)= F

1 (ADD1 (SUB1 X))= X (CONS (CAR X) (CDR X))= X

⇐ X 6= 0 ∧ (NUMBERP X)= T ⇐ (LISTP X)= T

2 (ADD1 X1) 6= 0

3 (SUB1 (ADD1 X1))= X1 (CAR (CONS X1 X2))= X1

⇐ (NUMBERP X1)= T (CDR (CONS X1 X2))= X2

4 (SUB1 0)= 0

5.1 (SUB1 X)= 0 ⇐ (NUMBERP X)= F (CAR X)= 0 ⇐ (LISTP X)= F

(CDR X)= 0 ⇐ (LISTP X)= F

5.2 (SUB1 (ADD1 X1))= 0

⇐ (NUMBERP X1)= F

L1 101 (ADD1 X)= (ADD1 0)

⇐ (NUMBERP X)= F

L2 102 (NUMBERP (SUB1 X))= T

101Proof of L1 from 0.2, 1–2, 5.2: We show (ADD1 X)= (ADD1 (SUB1 (ADD1 X)))= (ADD1 0)

under the assumption of (NUMBERP X)= F. The first step is a backward application of the con-
ditional equation 1 via {X 7→ (ADD1 X)}, where the condition is fulfilled because of 2 and 0.2.
The second step is an application of 5.2, where the condition is fulfilled by assumption.
102Proof of Lemma L2 from 0.1–0.3, 1–4, 5.1–5.2 by reductio ad absurdum:

For a counterexample X, we get (SUB1 X) 6= 0 by 0.3, as well as (NUMBERP (SUB1 X))= F by 0.1.
From the first we get X 6= 0 by 4 and (NUMBERP X)= T by 5.1 and 0.1. Now we get the
contradiction (SUB1 X)= (SUB1 (ADD1 (SUB1 X)))= (SUB1 (ADD1 0))= 0; the first step is a
backward application of the conditional equation 1, the second of L1, and the last of 3, using 0.3.
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Note that the two occurrences of “(NUMBERP X1)” in Axioms 3 and 5.2 are exactly
the ones that result from the type restriction of ADD1. Moreover, the occurrence
of “(NUMBERP X)” in Axiom0.6 is allocated at the right-hand side because the
shell ADD1 is declared before the shell CONS.

Let us discuss the axioms generated by declaration of the shell ADD1. Roughly
speaking, Axioms 0.1–0.3 are return-type declarations, Axioms 0.4–0.6 are about
disjointness of types, Axiom1 and Lemma L2 imply the axiom (nat1) from § 3.3,
Axioms 2 and 3 imply axioms (nat2) and (nat3), respectively. Axioms 4 and 5.1–5.2
overspecify SUB1. Note that L1 is equivalent to 5.2 under 0.2–0.3 and 1–3.

Analogous to Lemma L1, every shell forces each argument not satisfying its type
restriction into behaving like the default object of the argument’s destructor.

To the contrary, the arguments of the shell CONS (just as every shell argument
without type restriction) are not forced like this, such that even objects of shells
defined later (such as PACK) can be properly paired by the shell CONS; for instance,
we have (CAR (CONS NIL NIL)) = NIL, though (CDR NIL) = 0 (because NIL
belongs to the shell PACK).

On the other hand, the untyped approach of the shell principle also admits to
declare a shell (LISTN X1 X2) of the lists of natural numbers only — similar to the
ones of § 3.4 — with a type predicate LISTNP, base object (NILN), type restric-
tions (NUMBERP X1), (LISTNP X2), destructors CARN, CDRN, and default values 0,
(NILN), respectively.

We have already discussed this definition principle103 in detail in § 4. The
definition of recursive functions has not changed compared to the Pure LISP
Theorem Prover beside that a function definition is admissible now only after
a termination proof, which proceeds as explained in § 4.3. To this end, Thm can
applies the theorem of the well-foundedness of the lexicographic combination of two
well-founded orderings; moreover, Thm axiomatically assumes the well-founded-
ness of the irreflexive ordering on the natural numbers.104

103[Boyer and Moore, 1979, p. 44f.].

104See Page 52f. of [Boyer and Moore, 1979] for this informal axiomatic statement of the well-
foundedness of LESSP.

As Thm is able to prove (LESSP X (ADD1 X)) together with Axiom1 and Lemma L2, the latter
well-foundedness of LESSP would imply that Thm admits only the standard model of the natural
numbers, as explained in Note 31.

Matt Kaufmann has made clear in a private e-mail communication, however, that non-standard
models are not excluded, because the statement “We assume LESSP to be a well-founded relation.”
of [Boyer and Moore, 1979, p. 53] is actually to be read as the well-foundedness of the formal
definition of § 3.1, but with the additional assumption that the predicate Q must be definable
in Thm.

Note that in the argument of Note 31, it is not possible to replace the reflexive transitive closure
of the successor relation with the Thm-definable predicate

{ Y | (NUMBERP Y)= T ∧ (LESSP Y X)= T },
because the latter will contain 0 as a minimal element even for a non-standard natural number X,
which turns LESSP into a proper super-relation of that transitive closure.
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Let us now again follow the Boyer–Moore waterfall (cf. Figure 1) and sketch how
the stages of the waterfall are realized in Thm in comparison to the Pure LISP
Theorem Prover. The most relevant change is that previously established
theorems have an effect on the current proof, provided that they have been ac-
tivated for the purpose they can serve, in which case they are a applied in the
reverse order of activation. This means that the performance of the the prover
is not doomed to slow down when progressing to less and less elementary results,
provided that the user develops the theory stepwise and activates the theorems
properly. Moreover, there is also the chance to help the theorem prover directly
with a new lemma that becomes necessary during a proof but is not found by the
prover. This is actually the most crucial application of lemmas, because humans
have a truly fascinating ability to understand a theory semantically, and because
they can apply this ability to “see” why a sub-goal happens to be true. This
ability to see the missing lemmas is actually the only aspect where humans still
top the machine in the heuristics of typical induction proofs.

5.3.1 Simplification in Thm

The simplification in the Pure LISP Theorem Prover was described with the
simplification in Thm already in mind, and so the reader should read that section
of the description of the Pure LISP Theorem Prover before reading this.

Simplification is covered in Chapters VI–IX of [Boyer and Moore, 1979], and
the reader interested in the details are strongly encouraged to read these very
well-written descriptions of heuristic procedures.

To compensate for the extra complication of the untyped approach in a system
that has many more interesting types than the Pure LISP Theorem Prover,
Thm computes soft-typing rules for each new function symbol based on types
that are disjunctions (actually: bit-vectors) of the following disjoint types: one
for T, one for F, one for each shell, and one for objects not belonging to any of
these.105 These type computations are pervasively applied in all stages of the
theorem prover, which we cannot discuss here in detail. If the return type of a
function does not depend on the type of its arguments, the typing result can be
expressed in the LISP logic language as a theorem. Let us see two examples on
this.

EXAMPLE 10. (continuing Example 6)
As Thm knows (NUMBERP (FIX X)) and (NUMBERP (ADD1 X)), it produces the
theorem (NUMBERP (PLUS X Y)) immediately after the termination proof for the
definition of PLUS in Example 6. Note that this would neither hold in case of
non-termination of PLUS, nor if there were a simple Y instead of (FIX Y) in the
definition of PLUS. In the latter case, Thm would only register that the return-type
of PLUS is among NUMBERP and the types of its second argument Y.

105See ChapterVI in [Boyer and Moore, 1979].
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EXAMPLE 11. As Thm knows that the type of APPEND is among LISTP and
the type of its second argument, it produces the theorem (LISTP (FLATTEN X))
immediately after the termination proof for the following definition:

(FLATTEN X) = (IF (LISTP X)
(APPEND (FLATTEN (CAR X)) (FLATTEN (CDR X)))
(CONS X NIL)) ¤

The standard representation of an expression of propositional logic has improved
from the multifarious LISP representation of the Pure LISP Theorem Prover
toward today’s standard of clausal representation. A clause is a disjunctive list of
literals. Literals, however, deviating from the standard definition of being option-
ally negated atoms, are just LISP terms here, because every LISP function can be
seen as a predicate.

This means that the water of the waterfall now consists of clauses, and the
conjunction of all clauses in the waterfall represents the proof task.

Based on this clausal representation, we find a full-fledged description of con-
textual rewriting in Chapter IX of [Boyer and Moore, 1979], and its applications in
ChaptersVII–IX. This description comes some years before the term “contextual
rewriting” became popular in automated theorem proving, and is not yet carrying
that term. It is probably the first description of contextual rewriting in the his-
tory of logic, unless one counts the rudimentary contextual rewriting in the Pure
LISP Theorem Prover as such.

As indicated before, the essential idea of contextual rewriting is the following:
While focusing on one literal of a clause for simplification, we can assume all other
literals — the context — to be false, simply because the literal in focus is irrelevant
otherwise. The free universal variables of a clause have to be treated as constants
during contextual rewriting. Especially useful are literals that are negated equa-
tions, because they can be used as a ground term-rewrite system. A non-equational
literal t can always be taken to be the negated equation (t 6= F).106

To bring contextual rewriting to full power, all occurrences of the function sym-
bol IF in the literals of a clause are expelled from the literals as follows. If the
condition of an IF-term can be simplified to be definitely false F or definitely true
(i.e. non-F, e.g. if F is not set in the bit-vector as a potential type), then the IF-
expression is replaced with its respective case. Otherwise, after the IF-expression
could not be removed by those rewrite rules for IF whose soundness depends on
termination,107 it is moved to the top position (outside-in), by replacing each case

106Knuth–Bendix [Knuth and Bendix, 1970] completion of such ground term-rewrite systems
terminates for any ground-complete term ordering and can be applied for an equivalence trans-
formation of the context and to normalize the focus. This, however, is not discussed in [Boyer
and Moore, 1979].

107The rewrite rules for IF whose soundness depends on termination are the following:
(IF X Y Y) = Y, (IF X X F) = X, and, for Boolean X only, (IF X T F) = X. They are tested
for applicability in the given order.
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with itself in the IF’s context, such that the literal C[(IF t0 t1 t2)] is intermedi-
ately replaced with (IF t0 C[t1] C[t2]), and then this literal splits its clause in
two: one with the two literals (NOT t0) and C[t1] in place of the old one, and one
with t0 and C[t2] instead.

Thm already eagerly removes variables in solved form: If the variable X does not
occur in the term t, but the literal (X= t) occurs in a clause, then we can remove
that literal after rewriting all occurrences of X in the clause to t. This removal is
an equivalence transformation, because we have more than two objects and X is
universally quantified over both of them, so for one instance (X= t) must be false.

It remains to describe the rewriting with function definitions and with lemmas
activated for rewriting. The context of the clause is involved in the both evaluation
processes.

Non-recursive function definitions are always expanded by Thm. Recursive
function definitions are treated in a very similar style as in the Pure LISP
Theorem Prover. The criteria on the expansion of a function call of a re-
cursively defined function f still depend solely on the terms introduced as argu-
ments in the recursive calls of f in the body of f , which are accessed during the
simplification of the body. But now the expansion is rejected not anymore by
destructor terms introduced by the body and not removed by simplification, but
actually by the occurrence of terms that (after simplification) do not occur as
sub-terms already in the rest of the clause. This means that a new term (CDR t)
in the simplified argument of a recursive function call, where CDR originates an
argument of that recursive call in the body and not in the arguments of the tenta-
tive expansion, does not block expansion anymore if (CDR t) occurs already as a
sub-term elsewhere in the clause. There are also further less important criteria to
unblock expansion of recursive function definitions, such an increase of the number
arguments that are constructor ground terms.108

Rewriting with lemmas activated for rewriting so called rewrite lemmas, differs
from rewriting with recursive function definitions mainly in one aspect: There is
no need to block them because the user has activated them explicitly for rewrit-
ing, and because rewrite lemmas have the form of conditional equations instead
of unconditional ones. Simplification with lemmas activated for rewriting and
the heuristics behind the process are nicely described in [Schmidt-Samoa, 2006c],
where a rewrite lemma is not just activated for rewriting, but where the user can
also mark the literals of the condition on how there are to be treated. In Thm
there is no lazy rewriting with rewrite lemmas, i.e. no case splits are introduced
to be able to apply the lemma. This means that all conditions of the rewrite
lemma have to be shown to be fulfilled in the current context. As a compensation
there is a process of backward chaining, i.e. conditions can be shown to be ful-
filled by the application of further conditional rewrite lemmas. The termination
of this backward chaining is achieved by avoiding the generation of conditions into

108See Page 119 of [Boyer and Moore, 1979] for the details and the remaining criteria.
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which the previous conditions can be homeomorphically embedded.109 There are
provisions to instantiate extra variables of conditions eagerly, which is necessary
because there are no existential variables.110 Non-termination of evaluation via
rewrite lemmas is achieved by simple term orderings, which in particular avoid
looping with commutative lemmas.111

5.3.2 Destructor Elimination in Thm

We have already seen constructors such as s (in Thm: ADD1) and cons (CONS) with
the destructors p (SUB1) and car (CAR), and cdr (CDR), respectively.

EXAMPLE 12 (From Constructor to Destructor Style and back).
We have presented several function definitions both in constructor and in destruc-
tor style. Let us do careful and generalizable equivalence transformations (reverse
step justified in parentheses) starting with the constructor-style rule (ack3) of § 3.3:

ack(s(x), s(y))= ack(x, ack(s(x), y)).
Introduce (delete) the solved variables x′ and y′ for the constructor terms s(x)
and s(y) occurring on the left-hand side, respectively, and add (delete) two further
conditions by applying the definition (p1′) (of p) (cf. § 3.3) twice.

ack(s(x), s(y))= ack(x, ack(s(x), y)) ⇐
(

x′= s(x) ∧ p(x′)= x
∧ y′= s(y) ∧ p(y′)= y

)
.

Normalize conclusion with leftmost equations of the condition from right to left
(left to right).

ack(x′, y′)= ack(x, ack(x′, y)) ⇐
(

x′= s(x) ∧ p(x′)= x
∧ y′= s(y) ∧ p(y′)= y

)
.

Normalize conclusion with rightmost equations of the condition from right to left
(left to right).

ack(x′, y′)= ack(p(x′), ack(x′, p(y′))) ⇐
(

x′= s(x) ∧ p(x′)= x
∧ y′= s(y) ∧ p(y′)= y

)
.

Add (Delete) two conditions by axiom (nat2) twice.
ack(x′, y′)= ack(p(x′), ack(x′, p(y′)))

⇐
(

x′= s(x) ∧ p(x′)= x ∧ x′ 6= 0
∧ y′= s(y) ∧ p(y′)= y ∧ y′ 6= 0

)
.

Delete (Introduce) the leftmost equations of the condition by applying lemma
(s1′) (cf. § 3.3) twice, and delete (introduce) the solved variables x and y for the
destructor terms p(x′) and p(y′) occurring in the left-hand side of the equation in
the conclusion, respectively.

ack(x′, y′)= ack(p(x′), ack(x′, p(y′))) ⇐ x′ 6= 0 ∧ y′ 6= 0.
Up to renaming of the variables, this is the destructor-style rule (ack3′) of Exam-
ple 8 (cf. § 5.2.6). ¤

109See Page 109ff. of [Boyer and Moore, 1979] for the details.

110See Page 111f. of [Boyer and Moore, 1979] for the details.

111See Page 104f. of [Boyer and Moore, 1979] for the details.
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Our data types are defined inductively over constructors.112 Therefore construc-
tors play the main rôle in our semantics, and practice shows that step cases of
induction proofs work out much better with constructors than with the respective
destructors, which are secondary defined operators in our semantics and have a
more complicated case analysis in application.

There are two further positive effects of destructor elimination:

1. It tends to standardize the representation of a clauses in the sense that the
numbers of occurrences of identical sub-terms tend to be increased.

2. Destructor elimination also brings the sub-term property in line with the
sub-structure property; e.g., Y is both a sub-structure of (CONS X Y) and a
sub-term of it, whereas (CDR Z) is a sub-structure of Z in case of (LISTP Z),
but not a sub-term.

Both effects improve the chances that the clause passes the follow-up stages of
cross-fertilization and generalization with good success.113

For these reasons, the Pure LISP Theorem Prover did induction using step
cases with constructors, such as P (s(x)) ⇐ P (x). Thm, however, does induction
using step cases with destructors, such as(

P (x) ⇐ P (p(x))
) ⇐ x 6= 0.

Therefore, destructor elimination was not so urgent in the Pure LISP Theorem
Prover, simply because there were less destructors around. Indeed, the stage
“destructor elimination” does not exist in the Pure LISP Theorem Prover.

Thm does not do induction with constructors because there are generalized
destructors that do not have a straightforward constructor, and because the in-
duction rule of explicit induction has to fix in advance whether the step cases are
destructor or constructor style. So with destructor style in all step cases and in
all function definitions, explicit induction and recursion in Thm chooses the style
that is always applicable.

EXAMPLE 13 (A Generalized Destructor Without Constructor).
A generalized constructor that does not have a straightforward constructor is the
function delfirst as defined in § 3.4. To verify the correctness of a deletion-sort
algorithm based on delfirst, a useful step case for an induction proof114 is of the

112Here the term “inductive” means the following: We start with the empty set and take the
smallest fixpoint under application of the constructors, which contains only finite structures, such
as natural numbers and lists. Co-inductively over the destructors we would obtain different data
types, because we start with the universal class and obtain the greatest fixed point under inverse
application of the destructors, which typically contains infinite structures. For instance, for the
unrestricted destructors car, cdr of the list of natural numbers list(nat) of § 3.4, we co-inductively
obtain the data type of infinite streams over natural numbers.

113See Page 114ff. of [Boyer and Moore, 1979] for a nice example for the advantage of destructor
elimination for cross-fertilization.

114See Page 143f. of [Boyer and Moore, 1979].
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form (
P (l) ⇐ P (delfirst(max(l), l))

) ⇐ l 6= nil.
A constructor version of this induction scheme would need something like an in-
sertion function with an additional free variable for a natural number indicating
the position of insertion, resulting in a step case that is so complicated that the
proof would become much harder. ¤

Proper destructor functions take only one argument. The generalized destructor
delfirst we have seen in Example 13 has actually two arguments; the second one is
the proper destructor argument and the first is a parameter. After the elimination
for a set of destructors, the terms at the parameter positions of the destructors are
typically still present, where terms at the proper destructor argument are removed.

EXAMPLE 14 (Division with Remainder as a pair of Generalized Destructors).
In case of y 6= 0, we can construct each natural number in the form of (q ∗ y)+ r
with less(r, y)= true. The related generalized destructors are the the quotient
div(x, y) of x by y and its remainder rem(x, y). Note that in both functions, the
first argument is the proper destructor argument and the second the parameter,
which must not be 0. The place that the definition (p1′) and the lemma (s1′) of
§ 3.3 have in Example 12, and which the definitions (car1′), (cdr1′) and the lemma
(cons1′) of § 3.4 have in the equivalence transformations between constructor and
destructor style for lists, is here taken by the following definitions of div and rem
and the following lemma on the constructor λq, r. ((q ∗ y)+ r):

(div1′) div(x, y) = q ⇐ y 6= 0 ∧ (q ∗ y)+ r = x ∧ less(r, y)= true

(rem1′) rem(x, y) = r ⇐ y 6= 0 ∧ (q ∗ y)+ r = x ∧ less(r, y)= true

(+9′) (q ∗ y)+ r = x ⇐ y 6= 0 ∧ q = div(x, y) ∧ r = rem(x, y)

If we have a clause with the literal y = 0, in which the destructor terms div(x, y)
or rem(x, y) occur, we can — just as in the reverse direction of Example 12 —
introduce the new literals div(x, y) 6= q and rem(x, y) 6= r for fresh q, r, and apply
lemma (+9′) to introduce also the literal x 6=(q ∗ y) + r. Then we can normalize
with the first two literals, and afterwards with the third. Then all occurrences of
div(x, y), rem(x, y), and x are gone.115 ¤

To enable the form of elimination of generalized destructors described in Exam-
ple 14, Thm admits the user to activate lemmas of the form (s1′), (cons1′) or (+9′)
as elimination lemmas to perform destructor elimination.

For clauses, this form is in general the following: The first literal of the clause is
of the form (tc = x), where x is a variable which does not occur in the generalized
constructor term tc. Moreover, tc contains some distinct variables y0, . . . yn, which
occur only on the left-hand side of the first literal and on left-hand sides of the

115For a nice, but non-trivial example on why proofs tend to work out much easier now, see
Page 135ff. of [Boyer and Moore, 1979].



52 J Strother Moore, Claus-Peter Wirth

last n+1 literals of the clause, which are actually of the form

(y0 6= td0), . . . , (yn 6= tdn),

for distinct generalized destructor terms td0 , . . . , tdn. Thm adds one more restric-
tion, namely that the generalized destructor terms have to consist of a function
symbol applied to the disjoint list of all variables of the clause, beside y0, . . . yn.

Moreover, note that Thm actually does not use our flattened form of the elimi-
nation lemmas, but the one that results from replacing each yi in the clause with tdi ,
and then removing the literal (yi 6= tdi ). Thus, Thm would accept as elimination
lemmas only the non-flattened versions of our elimination lemmas, such as (s1)
instead of (s1′) (cf. § 3.3) and such as (cons1) instead of (cons1′) (cf. § 3.4).

The idea of application for destructor elimination in a given clause is, of course,
the following: If the non-mentioned literals can be matched to literals of the given
clause, and if td0 , . . . , tdn occur in the given clause as sub-terms, rewrite all their
occurrences with (y0 6= td0), . . . , (yn 6= tdn) from right to left and then use the first
literal of the elimination lemma from right to left for further normalization.

If we add the last literals of the elimination lemma to the given clause, use
them for contextual rewriting, and remove them only if this can be achieved safely
via application of the definitions of the destructors (as we could do in all our
examples), then the elimination of destructors is an equivalence transformation.
Destructor elimination in Thm, however, may (over-) generalize the conjecture,
because these last literals are not present in the non-flattened elimination lemma
of Thm and its variables yi are actually introduced in Thm by generalization.
Thus, instead of trying to delete the last literals of our deletion lemmas safely,
Thm never adds them.

In the destructor elimination of Thm, the most simple destructor (actually: the
one defined first) is removed first, possibly in several steps. Then the clauses are
re-introduced to the waterfall, but — to avoid looping — the terms with variables
introduced by destructor elimination are blocked for simplification until the next
induction.116

For more sophisticated details of destructor elimination in Thm, we have to
refer the reader to Chapter X of [Boyer and Moore, 1979].

5.3.3 (Cross-) Fertilization in Thm

This stage has already been described in § 5.2.3 because there is no noticeable
difference between the Pure LISP Theorem Prover and Thm here, beside
some heuristic fine tuning.117

116See Page 139 of [Boyer and Moore, 1979].

117See Page 149 of [Boyer and Moore, 1979].
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5.3.4 Generalization in Thm

Thm adds only one new rule to the universally applicable heuristic rules for gen-
eralization on a term t mentioned already in § 3.8. This new rule makes sense in
particular after the preceding stage of destructor elimination: Never generalize on
a term t consisting in the application of a destructor function symbol to a list of
distinct variables!

The main improvement of generalization in Thm over the Pure LISP Theorem
Prover, however, is the following: Suppose again that the term t is to be replaced
at all its occurrences in the clause T [t] with the fresh variable z. Now the synthesis
of the predicate p that is to express essential properties of the term t symbolically,
which now would result in the generalized clause T [z], (NOT (p z)), is com-
pletely abandoned, because it could not meet its design intentions. Literals such
as (NOT (p z)) are now added by two different means:

1. Assuming all literals of the clause T [t] to be false, the bit-vector describing
the soft type of t is computed and if only one bit is set, then, for the respective
type predicate, say NUMBERP, a new literal is added to the clause, such as
(NOT (NUMBERP t)).

2. The user can activate certain theorems as generalization lemmas. For in-
stance, one of the disappointments of Boyer and Moore with the Pure
LISP Theorem Prover was that it was not able to synthesize a predi-
cate expressing sortedness for t being (SORT X), for a sorting function SORT.
Now, in Thm, the user can activate (SORTEDP (SORT X)) as a generalization
lemma, and then, if (SORT X) matches t, Thm will add the respective in-
stance of (NOT (SORTEDP (SORT X))) to T [t]. In general, for the addition
of such a literal (NOT t′′), a proper sub-term of a generalization lemma t′

must match t; and the literal remains in the generalized clause only if the top
function symbol of t does not occur in the literal anymore after replacing t
with x.118

5.3.5 Elimination of Irrelevance in Thm

Before we come to the next stage “induction”, we should remove irrelevant literals
from clauses. After generalization, this is again a stage that may turn a valid
clause into an invalid one. The main reason for taking this risk here is that the
subsequent heuristic procedures for induction assume all literals to be relevant,
and so they get confused by the presence of irrelevant literals and suggest the
wrong step cases, which results in a failure of the induction proof. Moreover, if all
literals seem to be irrelevant, then we know that we are going to prove a probably

118This means that, for a generalization lemma (EQUAL (FLATTEN (GOPHER X)) (FLATTEN X)),
the literal (NOT (EQUAL (FLATTEN (GOPHER t′′′)) (FLATTEN t′′′))) is added to T [t] in case of
t being of the form (GOPHER t′′′) as well as in case of t being of the form (FLATTEN t′′′), but it
will stay a literal of the generalized clause only in the former case, because in the latter case the
first occurrence of FLATTEN is not removed by the generalization. See Page 156f. of [Boyer and
Moore, 1979] for the details.
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invalid clause, for which we should not do a costly induction, but had better ask
the user to check whether he has supplied the theorem prover with an invalid
lemma, possibly missing a side condition.119

Let us call two literals connected if they both have an occurrence of the same
variable. Consider the partition of a clause into its equivalence classes w.r.t. the
transitive closure of connectedness. If we have more than one equivalence class in
a clause, this is an alarm signal for irrelevance: if the original clause is valid, then
a sub-clause consisting only of the literals of one of these equivalence classes must
be valid as well. This is a consequence of the logical equivalence of ∀x. (A ∨ B)
with A ∨ ∀x. B, provided that x does not occur in A. Then we should remove
one of the irrelevant equivalence classes after the other from the original clause.
To this end, Thm has two heuristic tests for irrelevance.

1. An equivalence class of literals is irrelevant if it does not contain any properly
recursive function symbol.

Based on the assumption that the previous stages of the waterfall are suffi-
ciently powerful, the justification for this heuristic test is the following: If the
partition were valid, then the previous stages of the waterfall should already
have established the validity of this equivalence class.

2. An equivalence class of literals is irrelevant if it consists only of one literal
and if this literal is the application of a properly recursive function to a list
of distinct variables.

Based on the assumption that the soft typing rules are sufficiently powerful
and that the user has not defined a tautological, but tricky predicate,120 the
justification for this heuristic test is the following: The bit-vector of this
literal must contain the type F; otherwise the validity of the literal and the
clause would have been recognized by the stage “simplification”. This means
that F is most probably a positive value for some combination of arguments.

5.3.6 Induction in Thm

As we have seen in § 5.2.6, the recursion analysis in the Pure LISP Theorem
Prover was very rudimentary. Compared to the recursion analysis in Thm, one
might not want to speak of a recursion analysis in the Pure LISP Theorem
Prover at all, because there the whole information on the right-hand side of the
recursive function definitions comes out of the poor feedback of the “evaluation” of
the simplification stage at run time. Roughly speaking, this information consists
only in the facts that the recursive function call is possibly reachable in the current

119See Page 160f. of [Boyer and Moore, 1979] for a typical example of this.

120This assumption is critical because it often occurs that updated program code contains
recursive predicates that are actually trivially true, but very tricky. See § 3.2 of [Wirth, 2004] for
such an example.
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context and that a destructor symbol occurring as an argument of this recursive
function call is not removed by the “evaluation” in the local environment.

In Thm, however, the recursion analysis is done at the time the functions are
defined, and the induction rule uses the results of this analysis for solving the three
tasks of § 3.7.3.

The recursion analysis of Thm is a perfect engineering solution of a not too
difficult problem. In one way or the other, the solution found in Thm has been
part of all practice-oriented automated induction theorem proving systems ever
since.

When the user defines a function f , any such system tries to find justifications
along our description in § 4.3 why and under which conditions this function may
terminate. For each such justification, the system attaches the following informa-
tion to the function:

1. The set of measured variables, which consists of those variables of the weight-
function wf which actually occur in the body of its definition. For instance,
in Example 7 of § 4.3, the measured subset is just {x}.

2. A function w′f defined on the variables of the measured subset by the body
of the definition of the weight function wf .

3. The well-founded relation. In Example 7: less. (In Thm: LESSP)
4. A list of pairs of the recursive function call and those governing conditions of

its context that are relevant for the justification of termination. In Example 7
this list contains only the pair

(
p(x)+ y, x 6= 0

)
.

For the Ackermann function defined by (ack1′–3′) in Example 8 of § 5.2.6, we get
the measured subset {x, y}, the weight function cons(x, cons(y, nil)) (in Thm:
(CONS x y)), the well-founded lexicographic ordering lexlimless(s(s(s(0))), x, y),
and the list consisting of the pairs

(
ack(p(x), s(0)), x 6= 0

)
,(

ack(x, p(y)), y 6= 0
)
, and

(
ack(p(x), ack(x, p(y))), x 6= 0

)
.121

To find the justification automatically, Thm admits the user to activate certain
theorem as “induction lemmas”. An induction lemma consists of the application
of a well-founded relation to two terms with the same top function symbol w′f
(which plays the rôle of the weight function on the measure subset), plus a con-
dition without extra variables. Moreover, the arguments of w′f in the second
argument must be distinct variables. Certain induction lemmas are automatically
activated when a shell is declared. For Example 7 of § 4.3, such a shell-declared
induction lemma suffices, which is roughly

(LESSP (COUNT (SUB1 X)) (COUNT X)) ⇐ (NOT (ZEROP X)).
Note that COUNT, playing the rôle of w′f , is a function that is the identity on the
natural numbers and works on other shells similar to our function size from § 3.4.

This section on Induction needs revision and about 5 more pages.

121Note that for the definition of ack by the constructor style equations (ack1′–3′) of § 3.3
nothing is essentially different. For definitions in constructor style, we have to take triples instead
of pairs by adding the left-hand side of the defining equation. Moreover, for constructor style
definitions in QuodLibet, argument numbers take the place of the variables in the measured set.
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5.4 Nqthm

Short section on quantification and that we cannot treat that here

5.5 ACL2 and the practical challenges

Short section

5.6 Inka and other discontinued explicit induction projects

Very short section similar to the one in [Bundy, 1999]

5.7 Limitations of Explicit Induction(?)

Short section, possibly to be omitted
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6 ALTERNATIVE APPROACHES TO THE AUTOMATION OF
INDUCTION

6.1 Proof Planning

Suggestions on how to overcome an envisioned dead end in automated theorem
proving were summarized at the end of the 1980s under the keyword proof planning.
Beside its human-science aspects,122 the main idea of proof planning123 is to add a
smaller and more human-oriented higher-level search space to the theorem-proving
system on top of the low level search space of the logic calculus. We do not cover
this subject here, and refer the reader to the article by Alan Bundy and Jörg
Siekmann in this volume.

6.2 Rippling

Rippling is a technique for augmenting rewrite rules with information that helps
to find a way to rewrite one expression (goal) into another (target), more precisely
to reduce the difference between the goal and the target by rewriting the goal. We
cannot cover this very well-documented subject here, but refer the reader to the
monograph [Bundy et al., 2005].124 Let us explain here, however, why rippling
can be most helpful in the automation of simple inductive proofs.

Roughly speaking, the remarkable success in proving simple theorems by in-
duction automatically, can be explained as follows: If we look upon the task of
proving a theorem as reducing it to a tautology, then we have more heuristic guid-
ance when we know that we probably have to do it by mathematical induction:
Tautologies can have arbitrary subformulas, but the induction hypothesis we are
going to apply can restrict the search space tremendously.

In a cartoon of Alan Bundy’s, the original theorem is pictured as a zigzagged
mountainscape and the reduced theorem after the unfolding of recursive operators
according to recursion analysis as a lake with ripples (goal). To apply the induction
hypothesis (target), instead of the uninformed search for an arbitrary tautology,
we have to get rid of the ripples to be able to apply an instance of the theorem as
induction hypothesis, mirrored by the calmed surface of the lake.

6.3 Implicit Induction

Proof planning and rippling were applied to the automation of induction within the
paradigm of explicit induction. The alternative approaches to mechanize mathe-
matical induction not subsumed by explicit induction, however, are united under
the name “implicit induction”. Triggered by the success of Boyer and Moore [1979],
work on these alternative approaches started already in the year 1980 in purely

122Cf. [Bundy, 1989].
123Cf. [Bundy, 1988] [Dennis et al., 2005].
124Historically important are also the following publications on rippling: [Hutter, 1990], [Bundy

et al., 1991], [Basin and Walsh, 1996].
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equational theories.125 A sequence of papers on technical improvements126 was
topped by [Bachmair, 1988], which gave rise to a hope to develop the method into
practical usefulness, although it was still restricted to purely equational theories.
Inspired by this paper, in the end of the 1980s and the first half of the 1990s several
researchers tried to understand more clearly what implicit induction means from
a theoretical point of view and whether it could be useful in practice.127

While it is generally accepted that [Bachmair, 1988] is about implicit induction
and [Boyer and Moore, 1979] is about explicit induction, there are the follow-
ing three different viewpoints on what the essential aspect of implicit induction
actually is.

Proof by Consistency:128 Systems for proof by consistency run some Knuth–
Bendix129 or superposition130 completion procedure that produces a huge
number of irrelevant inferences under which the ones relevant for estab-
lishing the induction steps can hardly be made explicit. A proof attempt
is successful when the prover has drawn all necessary inferences and stops
without having detected an inconsistency.

Proof by consistency has shown to be not competitive with explicit induction
in practice, mainly due to too many superfluous inferences, typically infinite
runs, and too restrictive admissibility conditions. Roughly speaking, the
conceptual flaw in proof by consistency is that, instead of finding a sufficient
set of reasonable inferences, the research follows the paradigm of ruling out
as many irrelevant inferences as possible.

Implicit Induction Ordering: In the early implicit-induction systems, induc-
tion proceeds over a syntactical term ordering, which typically cannot be
made explicit in the sense that there would be some predicate in the logical
syntax that denotes this ordering in the intended models of the specification.
The semantical orderings of explicit induction, however, cannot depend pre-
cisely on the syntactical term structure of a weight w, but only on the value
of w under an evaluation in the intended models.

The price one has to pay for the possibility to have induction orderings
that can also depend on the precise syntax is surprisingly high for powerful
inference systems.131

125Cf. [Goguen, 1980], [Huet and Hullot, 1980], [Lankford, 1980], [Musser, 1980].
126Cf. [Göbel, 1985], [Jouannaud and Kounalis, 1986], [Fribourg, 1986], [Küchlin, 1989].
127Cf. e.g. [Zhang et al., 1988], [Kapur and Zhang, 1989], [Bevers and Lewi, 1990], [Reddy,

1990], [Gramlich and Lindner, 1991], [Ganzinger and Stuber, 1992], [Bouhoula and Rusinowitch,
1995], [Padawitz, 1996].

128The name “proof by consistency” was coined in the title of [Kapur and Musser, 1987], which
is the later published forerunner of its outstanding improved version [Kapur and Musser, 1986].
129Cf. [Gramlich and Lindner, 1991].
130Cf. [Ganzinger and Stuber, 1992].

131Cf. [Wirth, 1997].
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The early implicit-induction systems needed such sophisticated term order-
ings,132 because they started from the induction conclusion and every infer-
ence step reduced the formulas w.r.t. the induction ordering again and again,
but an application of an induction hypothesis was admissible to greater for-
mulas only. This deterioration of the ordering information with every infer-
ence step was overcome by the introduction of explicit weight terms,133 after
which the need for syntactical term orderings as induction orderings does
not exist anymore.

Descente Infinie (“Lazy Induction”): Contrary to explicit induction, where
induction is introduced into an otherwise merely deductive inference system
only by the explicit application of induction axioms in the induction rule,
the cyclic arguments and their termination in implicit induction need not be
confined to single inference steps.134 The induction rule of explicit induction
combines several induction hypotheses in a single inference step. To the con-
trary, in implicit induction, the inference system “knows” what an induction
hypothesis is, i.e. it includes inference rules that provide or apply induction
hypotheses, given that certain ordering conditions resulting from these appli-
cations can be met by an induction ordering. Because this aspect of implicit
induction can facilitate the human-oriented induction method described in
§ 3, the name descente infinie was coined for it in [Wirth, 2004]. Researchers
introduced to this aspect by [Protzen, 1994] (entitled “Lazy Generation of
Induction Hypotheses”) sometimes speak of “lazy induction” instead of des-
cente infinie.

The interest in proof by consistency and implicit induction orderings today is
either merely theoretical or merely historical, especially because these approaches
cannot be combined with the paradigm of explicit induction. For more information
on these viewpoints on implicit induction see the handbook article [Comon, 2001]
and its partial correction [Wirth, 2005].

In § 6.4 we will show, however, how Descente infinie (“lazy induction”) goes well
together with explicit induction and why we can hope that both the restrictions
implied by induction axioms can be overcome and the usefulness of the excellent
heuristic knowledge developed in explicit induction can be improved.135

6.4 QuodLibet

(along [Wirth, 2009] and [Schmidt-Samoa, 2006c])

132Cf. e.g. [Bachmair, 1988], [Steinbach, 1995].

133Cf. [Wirth and Becker, 1995].

134For this reason, the funny name “inductionless induction” was originally coined for implicit
induction in the titles of [Lankford, 1980; 1981] as a short form for “induction without induction
rule”. See also the title of [Goguen, 1980] for a similar phrase.
135Cf. [Wirth, 2013].
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7 BEYOND INDUCTION (SHORT)

7.1 Beyond Noetherian induction (Full axiom of choice instead of
principle of dependent choices)

7.2 What the incredible success of Nqthm meant for the fields of
ATP and AI

7.3 Lessons Learned beyond Induction

Boyer and Moore never gave a name to their provers and so they became most
popular under the name the Boyer–Moore theorem prover. So here is an advice to
the young researchers who want to become popular: Build a good system, but do
not give it a name, so that people have to attach your name to it.

From the development of Thm via the intermediate stage of the Pure LISP
Theorem Prover, which somehow contains most essential stages, procedures,
and heuristics of Nqthm in a rudimentary and partly inferior form, we can learn
that it may be beneficial at an early stage of a true creation to proceed as follows:

1. Learn the essential ideas in a rudimentary form from the simpler, most
frequent standard scenarios.

2. Implement and test these ideas.
3. Refine the resulting procedures and structures in later work.

This section on Lessons needs revision and possibly extension.

8 CONCLUSION

(very short)
In an interview on Thursday, Oct. 7, 2012, in their noble humbleness, Moore

said the following, and Boyer agreed laughingly:

“One of the reasons our theorem prover is successful is that we trick
the user into telling us the proof. And the best example of that, that
I know, is: If you want to prove that there exists a prime factorization
— that is to say a list of primes whose product is any given number —
then the way you state it is: You define a function that takes a natu-
ral number and delivers a list of primes, and then you prove that it
does that. And, of course, the definition of that function is everybody
else’s proof. The absence of quantifiers and the focus on constructive,
you know, recursive definitions forces people to do the work. And so
then, when the theorem prover proves it, they say ‘Oh what wonderful
theorem prover!’ without even realizing they sweated bullets to express
the theorem in that impoverished logic.”

This section on Lessons needs revision and extension.
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English translation also in [Gödel, 1986ff., Vol. I, pp. 145–195]. English translation also in
[Heijenoort, 1971, pp. 596–616] and in [Gödel, 1962].
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Univ. Kaiserslautern, ISBN 386064551X, www.ags.uni-sb.de/~cp/p/diss.

[Wirth, 2004] Claus-Peter Wirth. Descente Infinie + Deduction. Logic J. of the IGPL, 12:1–96,
2004. http://wirth.bplaced.net/p/d.

[Wirth, 2005] Claus-Peter Wirth. History and future of implicit and inductionless induction:
Beware the old jade and the zombie! 2005. In [Hutter and Stephan, 2005, pp. 192–203],
http://wirth.bplaced.net/p/zombie.

[Wirth, 2008] Claus-Peter Wirth. Hilbert’s epsilon as an operator of indefinite committed choice.
J. Applied Logic, 6:287–317, 2008. http://dx.doi.org/10.1016/j.jal.2007.07.009.

[Wirth, 2009] Claus-Peter Wirth. Shallow confluence of conditional term rewriting systems. J.
Symbolic Computation, 44:69–98, 2009. http://dx.doi.org/10.1016/j.jsc.2008.05.005.



The Automation of Mathematical Induction 71

[Wirth, 2010a] Claus-Peter Wirth. Progress in Computer-Assisted Inductive Theorem Proving
by Human-Orientedness and Descente Infinie? SEKI-Working-Paper SWP–2006–01 (ISSN
1860–5931). SEKI Publications, Saarland Univ., 2010. Rev. edn. http://arxiv.org/abs/
0902.3294.

[Wirth, 2010b] Claus-Peter Wirth. A Self-Contained and Easily Accessible Discussion of the
Method of Descente Infinie and Fermat’s Only Explicitly Known Proof by Descente Infinie.
SEKI-Working-Paper SWP–2006–02 (ISSN 1860–5931). SEKI Publications, DFKI Bremen
GmbH, Safe and Secure Cognitive Systems, Cartesium, Enrique Schmidt Str. 5, D–28359
Bremen, Germany, 2010. 2nd edn. (1st edn. 2006). http://arxiv.org/abs/0902.3623.

[Wirth, 2012a] Claus-Peter Wirth. Herbrand’s Fundamental Theorem in the eyes of Jean van
Heijenoort. Logica Universalis, 6:485–520, 2012. Received Jan. 12, 2012. Published online
June 22, 2012, http://dx.doi.org/10.1007/s11787-012-0056-7.

[Wirth, 2012b] Claus-Peter Wirth. A Simplified and Improved Free-Variable Framework for
Hilbert’s epsilon as an Operator of Indefinite Committed Choice. SEKI Report SR–2011–
01 (ISSN 1437–4447). SEKI Publications, DFKI Bremen GmbH, Safe and Secure Cognitive
Systems, Cartesium, Enrique Schmidt Str. 5, D–28359 Bremen, Germany, 2012. Rev. edn.,
http://arxiv.org/abs/1104.2444.

[Wirth, 2013] Claus-Peter Wirth. Human-oriented inductive theorem proving by descente infinie
— a manifesto. Logic J. of the IGPL, 20, 2013. Received July 11, 2011. Published online
March 12, 2012, http://dx.doi.org/10.1093/jigpal/jzr048. To appear in print.

[Zhang et al., 1988] Hantao Zhang, Deepak Kapur, and Mukkai S. Krishnamoorthy. A mecha-
nizable induction principle for equational specifications. 1988. In [Lusk and Overbeek, 1988,
pp. 162–181].


