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2 WHAT IS MATHEMATICAL INDUCTION?

In this section, we will introduce mathematical induction with its rich history
since the 6th centuryb.c., and clarify the difference between structural induction
and Noetherian induction with its traditional variant called descente infinie.

According to Aristotle, induction means to go from the special to the general,
in particular to obtain general laws from special cases, which plays a major rôle
in the generation of conjectures in mathematics and the natural sciences. Modern
scientists design experiments to falsify such a law of nature, and they accept the
law as a scientific fact only after many trials have all failed to falsify it. In the
tradition of Euclid of Alexandria, mathematicians accept a conjectured mathema-
tical law as a theorem only after a rigorous proof has been provided. According to
Kant, induction is synthetic in the sense that it properly extends what we think
to know — in opposition to deduction, which is analytic in the sense that all infor-
mation we can obtain by deduction is implicitly contained in the initial judgments,
though we can hardly be aware of all their deducible consequences before.

Surprisingly, in this well-established and time-honored terminology, mathema-
tical induction is not induction, but a special form of deduction for which — in the
19th century1 — the term “induction” was introduced and became standard in Eng-
lish and German mathematics. In spite of this misnomer, for the sake of brevity,
the term “induction” will always refer to mathematical induction in what follows.

Although it received its current name only in 19th century, mathematical induc-
tion has been a standard method of every working mathematician at all times.
Hippasus of Metapontum (Italy) (ca. 550b.c.) is reported2 to have proved the
irrationality of the golden number by a form of mathematical induction, which
later was named descente infinie (ou indéfinie) by Fermat. We find another form of
induction, nowadays called structural induction, in a text of Plato (427–347b.c.).3

In the famous “Elements” of Euclid [ca. 300b.c.], we find several applications of
descente infinie and structural induction.4 Structural induction was known to the
Muslim mathematicians around the year 1000, and occurs in a Hebrew book of
Levi ben Gerson (Orange and Avignon) (1288–1344).5 Furthermore, structural in-
duction was used by Francesco Maurolico (Messina) (1494–1575),6 and by Blaise
Pascal (1623–1662).7 After an absence of more than one millennium, descente
infinie was reinvented by Pierre Fermat (1607?–1665).8

1Cf. [Cajori, 1918].
2Cf. [Fritz, 1945].
3Cf. [Acerbi, 2000].
4An example for descente infinie is Proposition 31 of Vol.VII of the Elements, and an example

for structural induction is Proposition 8 of Vol. IX, cf. [Wirth, 2010, § 2.4].
5Cf. [Katz, 1998].
6Cf. [Bussey, 1917].
7Cf. [Pascal, 1954, p. 103].
8See [Barner, 2001] for the correction on the Fermat’s year of birth as compared to the

wrong date in the title of [Mahoney, 1994]. The best-documented example of a proof by descente
infinie of one of Fermat’s many outstanding results in number theory is the proof of the following
theorem: The area of a Pythagorean triangle with positive integer side lengths is not the square
of an integer ; cf. [Wirth, 2010].
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In its modern standard meaning, the method of mathematical induction can
easily be seen to be a form of deduction, simply because it can be formalized as
the application of the Theorem of Noetherian Induction (after Emmy Noether
(1882–1935)):

A proposition P (x) can be shown to hold (for all x) by Noetherian
induction over a well-founded relation < as follows: Show (for every v)
that P (v) follows from the assumption that P (u) holds for all u < v.

A relation < is well-founded if each proposition Q(x) that is not constantly false
holds for a <-minimal m, i.e. there is an m with Q(m), for which there is no w < m

with Q(w).
Writing “Wellf(<)” for “< is well-founded”, we can formalize this definition

together with the Theorem of Noetherian Induction (N) as follows:

(Wellf(<)) ∀Q.
(

∃x. Q(x) ⇒ ∃m.
(

Q(m) ∧ ¬∃w<m. Q(w)
)

)

(N) ∀P.

(

∀x. P (x) ⇐ ∃<.

(

∀v.
(

P (v) ⇐ ∀u<v. P (u)
)

∧ Wellf(<)

))

A main field of application of induction is the domain of the natural numbers
0, 1, 2, . . . . Let us formalize the natural numbers with the help of two construc-
tors: the constant symbol

0 : nat
for zero, and the the function symbol

s : nat → nat
for the direct successor of a natural number.

After the definition (Wellf(<)) and the theorem (N), let us now consider some
standard axioms for specifying the natural numbers, namely that a natural number
is either zero or a direct successor of another natural number (nat1), that zero is
not a successor (nat2), that the successor function is injective (nat3), and the
Axiom of Structural Induction; formally:

(nat1) ∀x : nat.
(

x = 0 ∨ ∃y : nat.
(

x = s(y)
) )

(nat2) ∀x : nat.
(

s(x) 6= 0
)

(nat3) ∀x, y : nat.
(

s(x) = s(y) ⇒ x= y
)

(S) ∀P.
(

∀x : nat. P (x) ⇐ P (0) ∧ ∀y : nat.
(

P (s(y)) ⇐ P (y)
)

)

Note that analogous axioms can be used to specify any other data type given by
constructors, such as lists of natural numbers or binary trees over such lists.

Richard Dedekind (1831–1916) proved the Axiom of Structural Induction (S)
for his model of the natural numbers in [Dedekind, 1888], where he states that
the proof method resulting from the application of this axiom is known under the
name “vollständige Induction” (“complete induction”).9

9The first occurrence of the name “vollständige Induction” with the meaning of mathematical
induction seems to be on Page 46f. in [Fries, 1822].
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The relation from a natural number to its direct successor can be formalized by the
binary relation λx, y : nat. (s(x)= y). Then Wellf(λx, y : nat. (s(x)= y)) states
the well-foundedness of this relation, which implies that its transitive closure — i.e.
the irreflexive ordering of the natural numbers — is a well-founded ordering.10

Now the natural numbers can be specified up to isomorphism either11

• by (nat2), (nat3), and (S) — following Guiseppe Peano (1858–1932) —

or else

• by (nat1) and Wellf(λx, y. (s(x) = y)) — following Mario Pieri (1860–1913).

In everyday mathematical practice of an advanced theoretical journal, the common
inductive arguments are hardly ever carried out explicitly. Instead, the proof
reads something like “by structural induction on n, q.e.d.” or “by (Noetherian)
induction on (x, y) over <, q.e.d.”, expecting that the mathematically educated
reader could easily expand the proof if in doubt. In contrast, difficult inductive
arguments, sometimes covering several pages,12 still require considerable ingenuity
and have to be carried out. In case of a proof on natural numbers, the experienced
mathematician engineers his proof roughly according to the following pattern:

He starts with the conjecture and simplifies it by case analysis, typically
based on the axiom (nat1). When he realizes that the current goal be-
comes similar to an instance of the conjecture, he applies the in-
stantiated conjecture just like a lemma, but keeps in mind that he
has actually applied an induction hypothesis. Finally, using the free
variables of the conjecture, he constructs some ordering, whose well-
foundedness follows from the axiom Wellf(λx, y. (s(x) = y)), and in
which all instances of the conjecture applied as induction hypotheses
are smaller than the original conjecture.

The hard tasks of a proof by mathematical induction are thus:

(Induction-Hypotheses Task)
to find the numerous induction hypotheses,13 and

(Induction-Ordering Task)
to construct an induction ordering for the proof, i.e. a well-founded ordering
that satisfies the ordering constraints of all these induction hypotheses in
parallel.14

10According to Lemma2.1 of [Wirth, 2004, § 2.1.1], a relation is well-founded if and only if its
transitive closure is a well-founded ordering.

11Cf. [Wirth, 2004, § 1.1.2].
12Such difficult inductive arguments, for example, are the proofs of Hilbert’s first ε-theorem

[Hilbert and Bernays, 1970], Gentzen’s Hauptsatz [Gentzen, 1935], and confluence theorems such
as the ones in [Gramlich and Wirth, 1996], [Wirth, 2009].

13As, e.g., in the proof of Gentzen’s Hauptsatz on Cut-elimination.
14For instance, this was the hard part in the elimination of the ε-formulas in the proof of the

1st ε-theorem in [Hilbert and Bernays, 1970], and in the proof of the consistency of arithmetic
by the ε-substitution method in [Ackermann, 1940].
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The above induction method can be formalized as an application of the Theorem
of Noetherian Induction. For non-trivial proofs, mathematicians indeed prefer the
the axioms of Pieri’s specification in combination with the Theorem of Noetherian
Induction (N) to Peano’s alternative with the Axiom of Structural Induction (S),
because the instances for P and < in (N) are often still easy to find when the
instances for P in (S) are not.

The soundness of the above induction method is most easily seen when the
argument is structured as a proof by contradiction, assuming a counterexample.
For Fermat’s historic reinvention of the method, it is thus just natural that he
developed the method in terms of assumed counterexamples.15 Here is Fermat’s
Method of Descente Infinie in modern language, very roughly speaking:

A proposition P (x) can be proved by descente infinie as follows:
Show that for each assumed counterexample of P (x) there is a smaller
counterexample of P (x) w.r.t. a well-founded relation <, which does
not depend on the counterexamples.

If this method is executed successfully, we have proved ∀x. P (x) because no
counterexample can be <-minimal and so the well-foundedness of < implies that
there are no counterexamples at all.

Nowadays every logician immediately realizes that a formalization of the method
of descente infinie is obtained from the Theorem of Noetherian Induction simply
by replacing

P (v) ⇐ ∀u<v. P (u)
with its contrapositive

¬P (v) ⇒ ∃u<v. ¬P (u).

For Fermat, however, it was still very hard to obtain a positive version of his
method.16 Moreover, a natural-language presentation via descente infinie is often
simpler than via the Theorem of Noetherian Induction, because it is easier to
speak of one counterexample v and to find one smaller counterexample u, than to
administrate the dependences of universally quantified variables.

The following two proof-theoretical peculiarities of induction compared to first-
order deduction are noteworthy:17

• As the theory of arithmetic is not enumerable according to [Gödel, 1931],
a calculus for arithmetic cannot be complete.18

• According to Gentzen’s Hauptsatz [Gentzen, 1935], a proof of a first-order
theorem can be restricted to its “sub”-formulas. In contrast to lemma appli-

15Cf. [Fermat, 1891ff.], [Mahoney, 1994], [Bussotti, 2006], [Wirth, 2010].
16Fermat reported in his letter for Huygens that he had had problems to apply the Method of

Descente Infinie to positive mathematical statements; see [Wirth, 2010, p. 11] and the references
there, in particular [Fermat, 1891ff., Vol. II,p. 432].

17Note, however, that these peculiarities of induction do not make a difference to first-order
deductive theorem proving in practice. See Notes 18 and 20.

18In practice, however, it does not matter whether our proof attempt fails because our theorem
will not be enumerated ever or will not be enumerated before doomsday.
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cation in a deductive proof tree, however, the application of induction hypo-
theses and lemmas inside an inductive reasoning cycle cannot generally be
eliminated in the sense that the “sub”-formula property could be obtained.19

As a consequence, in first-order inductive theorem proving, “creativity” can-
not be restricted to finding just the proper instances, but may require the
invention of new lemmas and notions.20

In this section, we have presented a formalization and a first practical description
of the induction method in its historical context. A proof method of a working
mathematician, however, cannot be completely captured by the formulas he ap-
plies, and so we still have to develop effective heuristics for actually finding proofs
by induction. This will be the subject of the following section.

J suggested to write on ordinal numbers in this section. CP does not
know for which context, but guesses [Manolios and Vroon, 2003].

19Cf. [Kreisel, 1965].
20In practice, however, it does not matter whether we have to extend our proof search to

additional lemmas and notions for principled reasons or for tractability, cf. [Baaz and Leitsch,
1995].
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3 EXPLICIT INDUCTION

(very long)

• How it came to Explicit induction

• 1 section on how the base and step cases are obtained from Noetherian induction.

• 1 very long section on recursion analysis.

• 1 long section From the early 1970 to Nqthm.

• 1 section on Inka, (could be written by Dieter and Serge?)

• 1 section on Acl2.

• 1 section on the practical challenges

• 1 section on the limitations of explicit induction
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4 ALTERNATIVE APPROACHES

4.1 Proof Planning

Suggestions on how to overcome an envisioned dead end in automated theorem
proving were summarized at the end of the 1980s under the keyword proof planning.
Beside its human-science aspects,21 the main idea of proof planning22 is to add a
smaller and more human-oriented higher-level search space to the theorem-proving
system on top of the low level search space of the logic calculus. We do not cover
this subject here, and refer the reader to the article by Alan Bundy and Jörg
Siekmann in this volume.

4.2 Rippling

Rippling is a technique for augmenting rewrite rules with information that helps
to find a way to rewrite one expression (goal) into another (target), more precisely
to reduce the difference between the goal and the target by rewriting the goal. We
cannot cover this very well-documented subject here, but refer the reader to the
monograph [Bundy et al., 2005].23 Let us explain here, however, why rippling can
be most helpful in the automation of simple inductive proofs.

Roughly speaking, the remarkable success in proving simple theorems by in-
duction automatically, can be explained as follows: If we look upon the task of
proving a theorem as reducing it to a tautology, then we have more heuristic guid-
ance when we know that we probably have to do it by mathematical induction:
Tautologies can have arbitrary subformulas, but the induction hypothesis we are
going to apply can restrict the search space tremendously.

In a cartoon of Alan Bundy’s, the original theorem is pictured as a zigzagged
mountainscape and the reduced theorem after the unfolding of recursive operators
according to recursion analysis as a lake with ripples (goal). To apply the induction
hypothesis (target), instead of the uninformed search for an arbitrary tautology,
we have to get rid of the ripples to be able to apply an instance of the theorem as
induction hypothesis, mirrored by the calmed surface of the lake.

4.3 Implicit Induction

Proof planning and rippling were applied to the automation of induction within the
paradigm of explicit induction. The alternative approaches to mechanize mathe-
matical induction not subsumed by explicit induction, however, are united under
the name “implicit induction”. Triggered by the success of Boyer and Moore [1979],
work on these alternative approaches started already in the year 1980 in purely

21Cf. [Bundy, 1989].
22Cf. [Bundy, 1988] [Dennis et al., 2005].
23Historically important are also the following publications on rippling: [Hutter, 1990], [Bundy

et al., 1991], [Basin and Walsh, 1996].
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equational theories.24 A sequence of papers on technical improvements25 was
topped by [Bachmair, 1988], which gave rise to a hope to develop the method into
practical usefulness, although it was still restricted to purely equational theories.
Inspired by this paper, in the end of the 1980s and the first half of the 1990s several
researchers tried to understand more clearly what implicit induction means from
a theoretical point of view and whether it could be useful in practice.26

While it is generally accepted that [Bachmair, 1988] is about implicit induction
and [Boyer and Moore, 1979] is about explicit induction, there are the follow-
ing three different viewpoints on what the essential aspect of implicit induction
actually is.

Proof by Consistency:27 Systems for proof by consistency run some Knuth–
Bendix28 or superposition29 completion procedure that produces a huge
number of irrelevant inferences under which the ones relevant for estab-
lishing the induction steps can hardly be made explicit. A proof attempt
is successful when the prover has drawn all necessary inferences and stops
without having detected an inconsistency.

Proof by consistency has shown to be not competitive with explicit induction
in practice, mainly due to too many superfluous inferences, typically infinite
runs, and too restrictive admissibility conditions. Roughly speaking, the
conceptual flaw in proof by consistency is that, instead of finding a sufficient
set of reasonable inferences, the research follows the paradigm of ruling out
as many irrelevant inferences as possible.

Implicit Induction Ordering: In the early implicit-induction systems, induc-
tion proceeds over a syntactical term ordering, which typically cannot be
made explicit in the sense that there would be some predicate in the logical
syntax that denotes this ordering in the intended models of the specification.
The semantical orderings of explicit induction, however, cannot depend pre-
cisely on the syntactical term structure of a weight w, but only on the value
of w under an evaluation in the intended models.

The price one has to pay for the possibility to have induction orderings
that can also depend on the precise syntax is surprisingly high for powerful
inference systems.30

24Cf. [Goguen, 1980], [Huet and Hullot, 1980], [Lankford, 1980], [Musser, 1980].
25Cf. [Göbel, 1985], [Jouannaud and Kounalis, 1986], [Fribourg, 1986], [Küchlin, 1989].
26Cf. e.g. [Zhang et al., 1988], [Kapur and Zhang, 1989], [Bevers and Lewi, 1990], [Reddy,

1990], [Gramlich and Lindner, 1991], [Ganzinger and Stuber, 1992], [Bouhoula and Rusinowitch,
1995], [Padawitz, 1996].

27The name “proof by consistency” was coined in the title of [Kapur and Musser, 1987], which
is the later published forerunner of its outstanding improved version [Kapur and Musser, 1986].

28Cf. [Gramlich and Lindner, 1991].
29Cf. [Ganzinger and Stuber, 1992].
30Cf. [Wirth, 1997].
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The early implicit-induction systems needed such sophisticated term order-
ings31 because they started from the induction conclusion and every inference
step reduced the formulas w.r.t. the induction ordering again and again, but
an application of an induction hypothesis was admissible to greater formu-
las only. This deterioration of the ordering information with every inference
step was overcome by the introduction of explicit weight terms,32 after which
the need for syntactical term orderings does not exist anymore in automated
induction.

Descente Infinie (“Lazy Induction”): Contrary to explicit induction, where
induction is introduced into an otherwise merely deductive inference system
only by the explicit application of induction axioms in the induction rule,
the cyclic arguments and their termination in implicit induction need not be
confined to single inference steps.33 The induction rule of explicit induction
combines several induction hypotheses in a single inference step. To the con-
trary, in implicit induction, the inference system “knows” what an induction
hypothesis is, i.e. it includes inference rules that provide or apply induction
hypotheses, given that certain ordering conditions resulting from these appli-
cations can be met by an induction ordering. Because this aspect of implicit
induction can facilitate the human-oriented induction method described in
§ 2, the name descente infinie was coined for it in [Wirth, 2004]. Researchers
introduced to this aspect by [Protzen, 1994] (entitled “Lazy Generation of
Induction Hypotheses”) sometimes speak of “lazy induction” instead of des-
cente infinie.

The interest in proof by consistency and implicit induction orderings today is
either merely theoretical or merely historical, especially because these approaches
cannot combined with the paradigm of explicit induction. For more information
on these viewpoints on implicit induction see the handbook article [Comon, 2001]

and its partial correction [Wirth, 2005].

In § 4.4 we will show, however, how Descente infinie (“lazy induction”) goes well
together with explicit induction and why we can hope that both the restrictions
implied by induction axioms can be overcome and the usefulness of the excellent
heuristic knowledge developed in explicit induction can be improved.34

4.4 QuodLibet

(along [Wirth, 2009] and [Schmidt-Samoa, 2006c])

31Cf. e.g. [Bachmair, 1988], [Steinbach, 1995].
32Cf. [Wirth and Becker, 1995].
33For this reason, the funny name “inductionless induction” was originally coined for implicit

induction in the titles of [Lankford, 1980; 1981] as a short form for “induction without induction
rule”. See also the title of [Goguen, 1980] for a similar phrase.

34Cf. [Wirth, 2012].
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5 BEYOND INDUCTION

(short)

• Beyond Noetherian induction (Full axiom of choice instead of principle of de-
pendent choices)

• 1 section on what the incredible success of Nqthm meant for the fields of ATP
and AI

• Lessons we have learned for ATP useful outside induction.

6 CONCLUSION

(very short)
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