AUTOMATION OF
MATHEMATICAL INDUCTION
AS PART OF THE HISTORY OF LOGIC*

J Strother Moore, Claus-Peter Wirth

1 A SNAPSHOT OF A DECISIVE MOMENT IN HISTORY

The automation of mathematical theorem proving for deductive first-order logic
started in the 1950s, and it took about half a century to develop systems that are
sufficiently strong and general to be successfully applied outside the community
of automated theorem proving.

Surprisingly, the development of such strong systems for restricted logic lan-
guages was not achieved much earlier — for neither the purely equational fragment
nor propositional logic.> Moreover, automation of theorem proving for higher-order
logic has started becoming generally useful only during the last ten years.?

Destructor Elimination

Simplification ?\Q Cross Fertilization
) ~IA

_/O Generalization

pool j
\O Elimination of
J Irrelevance

Induction

Figure 1. The Boyer—Moore Waterfall

Note that a formula falls back to the center pool after each successful application
of one of the stages in the circle.

*Second Readers: Alan Bundy, Bernhard Gramlich

IThe currently (i.e. in 2012) most successful first-order automated theorem prover is VAMPIRE,
cf. e.g. [Riazanov and Voronkov, 2001].

2The most successful automated theorem prover for purely equational logic is WALDMEISTER,
cf. e.g. [Buch and Hillenbrand, 1996], [Hillenbrand and Léchner, 2002]. For deciding propositio-
nal validity (i.e. sentential validity) (or its dual: propositional satisfiability) (which is decidable,
but NP-complete), a breakthrough toward industrial strength was the SAT solver CHAFF, cf. e.g.
[Moskewicz et al., 2001].

2 J Strother Moore, Claus-Peter Wirth

A Y

Figure 2. Robert S. Boyer (1971) (1.) and J Strother Moore (1972?) (r.)

In this context, it is surprising that for the field of quantifier-free first-order
inductive theorem proving based on recursive functions, most of the progress
toward general usefulness took place within the 1970s and that usefulness was
clearly demonstrated by 1986.%

In this article we describe how this giant step took place, and sketch the further
development of automated inductive theorem proving.

The work on this breakthrough in the automation of inductive theorem proving
was started in September 1972, by Robert S. Boyer and J Strother Moore, in Edin-
burgh, Scotland. Unlike earlier work on theorem proving, Boyer and Moore chose
to make induction the focus of their work. Most of the crucial steps and their
synergetic combination in the “waterfall”® of their now famous theorem provers
were developed in the span of a single year and implemented in their “PURE LISP

3Driving forces in the automation of higher-order theorem proving are the TPTP-competition-
winning systems LEO-II (cf. e.g. [Benzmiiller et al., 2008]) and SATALLAX (cf. e.g. [Brown, 2012]).

4See the last paragraph of §6.4.

5See Figurel for the Boyer—-Moore waterfall. See [Bell and Thayer, 1976] for the probably
first occurrence of “waterfall” as a term in software engineering. Boyer and Moore, however, were
inspired not by this metaphor from software engineering, but again by a real waterfall, as can be
clearly seen from [Boyer and Moore, 1979, p. 89]:

“A good metaphor for the organization of these heuristics is an initially dry water-
fall. One pours out a clause at the top. It trickles down and is split into pieces.
Some pieces evaporate as they are proved. Others are further split up and simpli-
fied. Eventually at the bottom a pool of clauses forms whose conjunction suffices
to prove the original formula.”

Automation of Mathematical Induction as part of the History of Logic 3

THEOREM PROVER”, presented at IJCAI in Stanford (CA) in August 1973,° and
documented in Moore’s PhD thesis [1973], defended in November 1973.

Readers who take a narrow view on the automation of inductive theorem prov-
ing might be surprised that we discuss the waterfall. It is impossible, however,
to build a good inductive theorem prover without considering how to transform the
induction conclusion into the hypothesis (or, alternatively, how to recognize that a
legitimate induction hypothesis can dispatch a subgoal). So we take the expansive
view and discuss not just the induction principle and its heuristic control, but also
the waterfall architecture that is effectively an integral part of the success.

Boyer and Moore had met in August 1971, a year before the induction work
started, when Boyer took up the position of a post-doctoral research fellow
at the Metamathematics Unit of the University of Edinburgh. Moore was at
that time starting the second year of his PhD studies in “the Unit”. Ironically,
they were both from Texas and they had both come to Edinburgh from the MIT.
Boyer’s PhD supervisor, W. W. Bledsoe, from The University of Texas at Austin,
spent 1970-71 on sabbatical at the MIT, and Boyer accompanied him and com-
pleted his PhD work there. Moore got his bachelor’s degree at the MIT (1966-70)
before going to Edinburgh for his PhD.

Being “warm blooded Texans”, they shared an office in the Metamathematics
Unit at 9 Hope Park Square, Meadow Lane. The 18¢:century buildings at Hope
Park Square were the center of Artificial Intelligence research in Britain at a time
when the promises of Al were seemingly just on the horizon.” In addition to main-

6Cf. [Boyer and Moore, 1973].

7"The Metamathematics Unit of the University of Edinburgh was renamed into “Dept. of Com-
putational Logic” in late 1971, and was absorbed into the new “Dept. of Artificial Intelligence” in
Oct. 1974. It was founded and headed by Bernard Meltzer. In the early 1970s, the University of
Edinburgh hosted most remarkable scientists, of which the following are relevant in our context:

Univ. Edinburgh PhD life time

(time, Dept.) (year, advisor) (birth—death)
Donald Michie (1965-1984, MI) (1953, unknown) (1923-2007)
Bernard Meltzer (1965-1978, CL) (1953, Fiirth) (19167-2008)
Robin J. Popplestone | (1965-1984, MI) (no PhD) (1938-2004)
Rod M. Burstall (1965-2000, MI & Dept. AI) (1966, Dudley) (*1934)
Robert A. Kowalski | (1967-1974, CL) (1970, Meltzer) (*1941)
Pat Hayes (1967-1973, CL) (1973, Meltzer) (*1944)
Gordon Plotkin (1968-today, CL & LFCS) (1972, Burstall) (*1946)
J Strother Moore (1970-1973, CL) (1973, Burstall) (*1947)
Mike J. C. Gordon (1970-1978, MI) (1973, Burstall) (*1948)
Robert S. Boyer (1971-1973, CL) (1971, Bledsoe) (*1946)
Alan Bundy (1971-today, CL) (1971, Goodstein) (*1947)
Robin Milner (1973-1979, LFCS) (no PhD) (1934-2010)
CL = Metamathematics Unit (founded and headed by Bernard Meltzer)

(new name from late 1971 to Oct. 1974: Dept. of Computational Logic)
(new name from Oct. 1974: Dept. of Artificial Intelligence)
MI = Experimental Programming Unit (founded and headed by Donald Michie)
(new name from 1966 to Oct. 1974: Dept. for Machine Intelligence and Perception)
(new name from Oct. 1974: Machine Intelligence Unit)
LFCS = Laboratory for Foundations of Computer Science

(Sources: [Meltzer, 1975], [Kowalski, 1988], etc.)

4 J Strother Moore, Claus-Peter Wirth

line work on mechanized reasoning by Rod M. Burstall, Robert A. Kowalski,
Pat Hayes, Gordon Plotkin, J Strother Moore, Mike J. C. Gordon, Robert S. Boyer,
Alan Bundy, and (by 1973) Robin Milner, there was work on new programming
paradigms, program transformation and synthesis, natural language, machine vi-
sion, robotics, and cognitive modeling. Hope Park Square received a steady stream
of distinguished visitors from around the world, including J. Alan Robinson, John
McCarthy, W. W. Bledsoe, Dana S. Scott, and Marvin Minsky. An eclectic series
of seminars were on offer weekly to complement the daily tea times, where all
researchers gathered around a table and talked about their current problems.
Boyer and Moore initially worked together on structure sharing in resolution
theorem proving. The inventor of resolution, J. Alan Robinson (*19307), created
and awarded them the “1971 Programming Prize” on December 17,1971 — half jok-
ingly, half seriously. The document, handwritten by Robinson, actually says in part:

“In 1971, the prize is awarded, by unanimous agreement of the Board,
to Robert S. Boyer and J Strother Moore for their idea, explained in
[Boyer and Moore, 1971], of representing clauses as their own genesis.
The Board declared, on making the announcement of the award, that

Y ”

this idea is ‘... bloody marvelous’.

Their structure-sharing representation of derived clauses in a linear resolution
system is just a stack of resolution steps. This suggests the idea of resolution
being a kind of “procedure call.”® Exploiting structure sharing, Boyer and Moore
implemented a declarative LISP-like programming language called “BAROQUE”
[Moore, 1973], a precursor to PROLOG.? They then implemented a LISP inter-
preter in BAROQUE and began to use their resolution engine to prove simple
theorems about programs in LISP. Resolution was sufficient to prove such
theorems as “there is a list whose length is 37, whereas the absence of a rule
for induction prevented the proofs of more interesting theorems like the associa-
tivity of list concatenation.

So, in the summer of 1972, they turned their attention to a theorem prover
designed explicitly to do mathematical induction — this at a time when uni-
form first-order proof procedures were all the rage. The fall of 1972 found them
taking turns at the blackboard proving theorems about recursive LISP functions
and articulating their reasons for each proof step. Only after several months of
such proofs did they sit down together to write the code for the PURE LISP
THEOREM PROVER.

Today’s readers might have difficulty imagining the computing infrastructure
in Scotland in the early 1970s. Boyer and Moore developed their software on
an 1CL-4130, with 64kByte (128 kByte in 1972) core memory (RAM). Paper
tape was used for archival storage. The machine was physically located in the
Forrest Hill building of the University of Edinburgh, about 1km from Hope Park
Square. A rudimentary time-sharing system allowed several users at once to run

8Cf. [Moore, 1973, p. 68].
9For logic programming and PROLOG see [Kowalski, 1974; 1988], [Clocksin and Mellish, 2003].

Automation of Mathematical Induction as part of the History of Logic 5

lightweight applications from teletype machines at Hope Park Square. The only
high-level programming language supported was POP—-2, a simple stack-based
list-processing language with an ALGOL-like syntax.'?

Programs were prepared with a primitive text editor modeled on a paper tape
editor: a disk file could be copied through a one byte buffer to an output file.
By halting the copying and typing characters into or deleting characters from the
buffer one could edit a file — a process that usually took several passes. Memory
limitations of the ICL—4130 prohibited storing large files in memory for editing.
In their very early collaboration, Boyer and Moore solved this problem by inventing
what has come to be called the “piece table ”, whereby an edited document is
represented by a linked list of “pieces” referring to the original file which remains
on disk. Their “77-editor” [Boyer et al., 1973] (written in 1971 and named for
the disk track on which it resided) provided an interface like MIT’s Teco, but
with POP—2 as the command language.!' It was thus with their own editor that
Boyer and Moore wrote the code for the PURE LISP THEOREM PROVER.

During the day they worked at Hope Park Square, with frequent trips by foot
or bicycle through The Meadows to Forrest Hill to make archival paper tapes or
to pick up line-printer output. During the night — when they could often have
the ICL—4130 to themselves — they often worked at Boyer’s home where another
teletype was available.

2 METHOD OF PROCEDURE AND PRESENTATION

In contrast to the excellent handbook articles [Walther, 1994a) and [Bundy, 1999]
on the automation of explicit induction, our focus in this article is neither on
current standards, nor on the engineering and research problems of the field, but
on the history of the automation of mathematical induction.

It is always hard to see the past because we look through the lens of the present.
Achieving the necessary detachment from the present is especially hard for the his-
torian of recent history because the “lens of the present” is shaped so immediately
by the events being studied.

We try to mitigate this problem by avoiding the standpoint of a disciple of the
leading school of explicit induction. Instead, we put the historic achievements
into a broad mathematical context and a space of time from the ancient Greeks
to a possible future, based on a most general approach to recursive definition
(cf. §5), and on descente infinie as a general, implementation-neutral approach
to mathematical induction (cf. §4.7). Then we can see the great achievements
in the field with the surprise they historically deserve — after all, until 1973
mathematical induction was considered too creative an activity to be automated.

10Cf. [Burstall et al., 1971].

11The 77-editor was widely used by researchers at Hope Park Square until the ICL-4130 was
decommissioned. When Moore went to Xerox PARC in Palo Alto (CA) (Dec.1973), the Boyer—
Moore representation [Moore, 1981] was adopted by Charles Simonyi (*1948) for the Bravo editor
on the Alto and subsequently found its way into Microsoft Word, cf. [Verma, 20057].

6 J Strother Moore, Claus-Peter Wirth

As a historiographical text, this article should be accessible to an audience that
goes beyond the technical experts and programmers of the day, should use com-
mon mathematical language and representation, focus on the global and eternal
ideas and their developments, and paradigmatically display the historically most
significant achievements.

Because these achievements in the automation of inductive theorem proving
manifest themselves mainly in the line of the Boyer—-Moore theorem provers,
we cannot avoid the confrontation of the reader with some more ephemeral forms
of representation found in these software systems. In particular, we cannot avoid
some small expressions in the list programming language LISP,'? simply because
the Boyer—Moore theorem provers we discuss in this article, namely the PURE
LISP THEOREM PROVER, THM, NQTHM, and ACLZ2, all have logics based on a
subset of LISP.

Note that we do not necessarily refer to the implementation language of these
software systems, but to the logic language used both for representation of formulas
and for communication with the user!

For the first system in this line of development, Boyer and Moore had a free
choice, but wrote:

“We use a subset of LISP as our language because recursive list pro-
cessing functions are easy to write in LISP and because theorems can
be naturally stated in LISP; furthermore, LISP has a simple syntax
and is universal in Artificial Intelligence. We employ a LISP inter-
preter to ‘run’ our theorems and a heuristic which produces induction
formulas from information about how the interpreter fails. We com-
bine with the induction heuristic a set of simple rewrite rules of LISP
and a heuristic for generalizing the theorem being proved.”!?

Note that the choice of LISP was influenced by the role of the LISP interpreter
in induction. LISP was important for another reason: Boyer and Moore were
building a computational-logic theorem prover:

“The structure of the program is remarkably simple by artificial intel-
ligence standards. This is primarily because the control structure is
embedded in the syntax of the theorem. This means that the system
does not contain two languages, the ‘object language, LISP, and the
‘meta-language’, predicate calculus. They are identified. This mix of
computation and deduction was largely inspired by the view that the
two processes are actually identical. Bob Kowalski, Pat Hayes, and
the nature of LISP deserve the credit for this unified view.”

This view was prevalent in the Metamathematics Unit by 1972. Indeed, “the
Unit” was by then officially renamed the Department of Computational Logic.”

12Cf. [McCarthy et al., 1965]. Note that we use the historically correct capitalized “LISP” for
general reference, but not for more recent, special dialects such as COMMON Lisp.

13Cf. [Boyer and Moore, 1973, p. 486, left column).

14Cf. [Moore, 1973, p. 207f.].

Automation of Mathematical Induction as part of the History of Logic 7

In general, inductive theorem proving with recursively defined functions requires
a logic in which

a method of symbolic evaluation can be obtained from an interpretation
procedure by generalizing the ground terms of computation to terms
with free variables that are implicitly universally quantified.

So candidates to be considered today (besides a subset of LISP or of A-calculus) are
the typed functional programming languages ML and HASKELL;}® which, however,
were not available in 1972. LISP and ML are to be preferred to HASKELL as the
logic of an inductive theorem prover because of their innermost evaluation strategy,
which gives preference to the constructor terms that represent the constructor-
based data types, which again establish the most interesting domains in hard-
and software verification and the major elements of mathematical induction.

Yet another candidate today would be the rewrite systems of [Wirth and Gram-
lich, 1994a] and [Wirth, 1991; 2009] with constructor variables'® and positive/ne-
gative-conditional equations, designed and developed for the specification, inter-
pretation, and symbolic evaluation of recursive functions in the context of induc-
tive theorem proving in the domain of constructor-based data types. Neither this
tailor-made theory, nor even the general theory of rewrite systems in which its
development is rooted,'” were available in 1972. And still today, the applicative
subset of COMMON LispP that provides the logic language for ACL2 (= (ACL)2
= A Computational Logic for Applicative COMMON LisP) is again to preferred to
these positive/negative-conditional rewrite systems for reasons of efficiency: The
applications of ACL2 in hardware verification and testing require a performance
that is still at the very limits of today’s computing technology. This challenging
efficiency demand requires, among other aspects, that the logic of the theorem
prover is so close to its own programming language that — after certain side con-
ditions have been checked — the theorem prover can defer the interpretation of
ground terms to the analogous interpretation in its own programming language.

For most of our illustrative examples in this article, however, we will use the
higher flexibility and conceptual adequacy of positive/negative-conditional rewrite
systems. They are so close to standard logic that we can dispense their semantics
to the reader’s intuition,'® and they can immediately serve as an intuitively clear
replacement of the Boyer—-Moore machines.'®

15Cf. [Hudlak et al., 1999] for HASKELL, [Paulson, 1996] for ML, which started as the meta-
language for implementations of LCF (the Logic of Computable Functions with a single undefined
element 1, invented by Scott [1993]) with structural induction over L, 0, and s, but without
original contributions to the automation of induction, cf. [Milner, 1972, p. 8], [Gordon, 2000].

16See §5.4 of this article.

17See [Dershowitz and Jouannaud, 1990] for the theory in which the rewrite systems of [Wirth
and Gramlich, 1994a], [Wirth, 1991; 2009] are rooted. One may try to argue that the paper that
launched the whole field of rewrite systems, [Knuth and Bendix, 1970], was already out in 1972,
but the relevant parts of rewrite theory for unconditional equations were developed only in the
late 1970s and the 1980s. Especially relevant in the given context are [Huet, 1980] and [Toyama,
1988]. The rewrite theory of positive/negative-conditional equations, however, started to become
an intensive area of research only with the burst of creativity at 1st Int. Workshop on Conditional
Term Rewriting Systems (CTRS), Orsay (France), 1987; cf. [Kaplan and Jouannaud, 1988].

8 J Strother Moore, Claus-Peter Wirth

Moreover, the typed (many-sorted) approach of the positive/negative-condi-
tional equations allows the presentation of formulas in a form that is much easier
to grasp for human readers than the corresponding sugar-free LISP notation with
its overhead of explicit type restrictions.

Another reason for avoiding LISP notation is that we want to make it most
obvious that the achievements of the Boyer—-Moore theorem provers are not limited
to their LISP logic.

For the same reason, we also prefer examples from arithmetic to examples from
list theory, which might be considered to be especially supported by the LISP
logic. The reader can find the famous examples from list theory in almost any
other publication on the subject.?°

In general, we tend to present the challenges and their historical solutions with
the help of small intuitive examples and refer the readers interested in the very
details of the implementations of the theorem provers to the published and easily
accessible documents on which our description is mostly based.

Nevertheless, small LISP expression cannot be completely avoided because
we have to describe the crucial parts of the historically most significant imple-
mentations and ought to show some of the advantages of LISP’s untypedness.?!
The readers, however, do not have to know more about LISP than the follow-
ing: A LISP term is either a variable symbol, or a function call of the form
(f t1 -+ t,), where f is a function symbol, ¢y, ..., t,, are LISP terms, and n is
one of the natural numbers, which we assume to include 0.

3 ORGANIZATION OF THIS ARTICLE

This article is further organized as follows.

6§ 4 and 5 offer a self-contained reference for the readers who are not familiar
with the field of mathematical induction and its automation. In §4 we introduce
the essentials of mathematical induction. In §5 we have to become more formal
regarding recursive function definitions, their consistency, termination, and induc-
tion templates and schemes. The main part is § 6, where we present the historically
most important systems in automated induction, and discuss the details of soft-
ware systems for explicit induction, with a focus on the1970s. After describing
the application context in §6.1, we describe the following Boyer—-Moore theorem
provers: the PURE LISP THEOREM PROVER (§6.2), THM (§6.3), NQTHM (§6.4),
and ACL2 (§6.5). The most noteworthy remaining explicit-induction systems are
sketched in §6.6. Alternative approaches to the automation of induction that do
not follow the paradigm of explicit induction are discussed in §7. After summa-
rizing the lessons learned in § 8, we conclude with §9.

18The readers interested into the precise details are referred to [Wirth, 2009].

19Cf. [Boyer and Moore, 1979, p. 165f.].

20Cf. e.g. [Moore, 1973], [Boyer and Moore, 1979; 1988b; 1998], [Walther, 1994a], [Bundy,
1999], [Kaufmann et al., 2000a; 2000b].

21Gee the advantages of the untyped, type-restriction-free declaration of the shell CONS in §6.3.

Automation of Mathematical Induction as part of the History of Logic 9

4 MATHEMATICAL INDUCTION

In this section, we introduce mathematical induction and clarify the difference
between descente infinie and Noetherian, structural, and explicit induction.

According to Aristotle, induction means to go from the special to the general,
and to realize the genmeral from the memorized perception of particular cases.
Induction plays a major role in the generation of conjectures in mathematics and
the natural sciences. Modern scientists design experiments to falsify a conjectured
law of nature, and they accept the law as a scientific fact only after many trials have
all failed to falsify it. In the tradition of Euclid, mathematicians accept a mathe-
matical conjecture as a theorem only after a rigorous proof has been provided.
According to Kant, induction is synthetic in the sense that it properly extends
what we think to know — in opposition to deduction, which is analytic in the
sense that it cannot provide us with any information not implicitly contained in
the initial judgments, though we can hardly be aware of all deducible consequences.

Surprisingly, in this well-established and time-honored terminology, mathema-
tical induction is not induction, but a special form of deduction for which — in the
19¢s century — the term “induction” was introduced and became standard in Ger-
man and English mathematics.?? In spite of this misnomer, for the sake of brevity,
the term “induction” will always refer to mathematical induction in what follows.

Although it received its current name only in the 19¢: century, mathematical
induction has been a standard method of every working mathematician at all times.
It has been conjectured?® that Hippasus of Metapontum (ca.550B.C.) applied a
form of mathematical induction, later named descente infinie (ou indéfinie) by
Fermat. We find another form of induction, nowadays called structural induction,
in a text of Plato (427-347B.c.).2* In Euclid’s famous “Elements” [ca. 300 B.C.],
we find several applications of descente infinie and in a way also of structural in-
duction.?® Structural induction was known to the Muslim mathematicians around
the year 1000, and occurs in a Hebrew book of Levi ben Gerson (Orange and
Avignon) (1288-1344).2¢ Furthermore, structural induction was used by Francesco
Maurolico (Messina) (1494-1575),% and by Blaise Pascal (1623-1662).2® After an
absence of more than one millennium (besides copying ancient proofs), descente
infinie was reinvented by Pierre Fermat (160?-1665).%°

22First in German (cf. Note 38), soon later in English (cf. [Cajori, 1918]).

231t is conjectured in [Fritz, 1945] that Hippasus has proved that there is no pair of natural
numbers that can describe the ratio of the lengths of the sides of a pentagram and its enclosing
pentagon. Note that this ratio, seen as an irrational number, is equal to the golden number,
which, however, was conceptualized in entirely different terms in ancient Greek mathematics.

24Cf. [Acerbi, 2000].

25 An example for descente infinie is Proposition31 of Vol. VII of the Elements. Moreover,
the proof in the Elements of Proposition 8 of Vol. IX seems to be sound according to mathematical
standards; and so we can see it only as a proof by structural induction in a very poor linguistic
and logical form. This is in accordance with [Freudenthal, 1953], but not with [Unguru, 1991]
and [Acerbi, 2000]. See [Fowler, 1994] and [Wirth, 2010b, §2.4] for further discussion.

26Cf. [Rabinovitch, 1970]. Also summarized in [Katz, 1998].

27Cf. [Bussey, 1917].

28Cf. [Pascal, 1954, p.103].

10 J Strother Moore, Claus-Peter Wirth

4.1 Well-Foundedness and Termination

A relation < is well-founded if, for each proposition Q(w) that is not constantly
false, there is a <-minimal m among the objects for which @ holds, i.e. there is
an m with @Q(m), for which there is no v < m with Q(u). Writing “Wellf(<)” for
“< is well-founded”, we can formalize this definition as follows:

(Wellf(<)) VQ. (Jw. Qw) = Im. (Q(m) A ~Fu<m. Q(u)))

Let <™ denote the transitive closure of <, and <* the reflexive closure of <*.
< is an (irreflexive) ordering if it is an irreflexive and transitive relation. There is
not much difference between a well-founded relation and a well-founded ordering:3°

LEMMA 1. < is well-founded if and only if <* is a well-founded ordering.

Closely related to the well-foundedness of a relation < is the termination of
its reverse relation >, given as <71 :={ (u,v) | (v,u)€< }.

A relation > is terminating if it has no non-terminating sequences, i.e. if there
is no infinite sequence of the form zg > x7 > o > 3

If > has a non-terminating sequence, then this sequence, taken as a set, is a
witness for the non-well-foundedness of <. The converse implication, however, is a
weak form of the Axiom of Choice;*' indeed, it allows us to pick a non-terminating
sequence for > from the set witnessing the non-well-foundedness of <.

So well-foundedness is slightly stronger than termination of the reverse relation,
and the difference is relevant here because we cannot take the Axiom of Choice for
granted in a discussion of the foundations of induction, as will be explained in §4.3.

4.2 The Theorem of Noetherian Induction

In its modern standard meaning, the method of mathematical induction is easily
seen to be a form of deduction, simply because it can be formalized as the appli-
cation of the Theorem of Noetherian Induction:

A proposition P(w) can be shown to hold (for all w) by Noetherian
induction over a well-founded relation < as follows: Show (for every v)
that P(v) follows from the assumption that P(u) holds for all u < v.

Again writing “Wellf(<)” for “< is well-founded”, we can formalize the Theorem

of Noetherian Induction as follows:3?

(N) VP (Vw. Pw) < 3<. (Vo.(P(v) < Yu<w. P@))))

A Wellf(<)

29There is no consensus on Fermat’s year of birth. Candidates are 1601, 1607 ([Barner, 2007})7
and 1608. Thus, we write “160?”, following [Goldstein, 2008]. The best-documented example of
Fermat’s applications of descente infinie is the proof of the theorem: The area of a rectangular
triangle with positive integer side lengths is not the square of an integer; cf. e.g. [Wirth, 2010b).

30Cf. Lemma 2.1 of [Wirth, 2004, §2.1.1].

31Gee [Wirth, 2004, §2.1.2, p. 18] for the equivalence to the Principle of Dependent Choice,
found in [Rubin and Rubin, 1985, p.19], analyzed in [Howard and Rubin, 1998, p. 30, Form 43].

32When we write an implication A=B in the reverse form of B<A, we do this to indicate
that a proof attempt will typically start from B and try to reduce it to A.

Automation of Mathematical Induction as part of the History of Logic 11

The today commonly used term “Noetherian induction” is a tribute to the fa-
mous female German mathematician Emmy Noether (1882-1935). It occurs as the
“Generalized principle of induction (Noetherian induction)” in [Cohn, 1965, p. 20].
Moreover, it occurs as Proposition 7 (“Principle of Noetherian Induction”) in
[Bourbaki, 1968a, ChapterIII, §6.5, p.190] — a translation of the French origi-
nal in its second edition [Bourbaki, 1967, §6.5], where it occurs as Proposition 7
(“principe de récurrence noethérienne”)3 We do not know whether “Noetherian”
was used as a name of an induction principle before 1965;3* in particular, it does

not occur in the first French edition [Bourbaki, 1956] of [Bourbaki, 1967].3°

4.3 An Induction Principle Stronger than Noetherian Induction?

Let us try to find a weaker replacement for the precondition of well-foundedness
in Noetherian induction, in the sense that we try to replace “Wellf(<)” in the
Theorem of Noetherian Induction (N) in §4.2 with some weaker property, which
we will designate with “Weak(<, P)” (such that VP. Weak(<, P) < Wellf(<)).
This would result in the formula
Vu.(P(v) < VYu<wv. P(u
(N) VP (Vw. P(w) < 3< (N Wegk(ifp) ()))).
If we assume (N’), however, we get the converse VP. Weak(<, P) = Wellf(<).36
This means that a proper weakening is possible only w.r.t. certain P, and the
Theorem of Noetherian Induction is the strongest among those induction principles
of the form (N') where Weak(<, P) does not depend on P.
Cis a <-chain if <" is a total ordering on C. Let us write “u<C” for Ve € C. u<c,
and “Vu<C. F” as usual for Vu.(u<C = F). In [Geser, 1995], we find applica-
tions of an induction principle that roughly has the form (N’) where Weak(<, P) is:

For every non-empty <-chain C' [without a <-minimal element]:
Jvel. Plv) < Yu<C.P(u).

The resulting induction principle can be given an elegant form: If we drop the part
of Weak(<, P) given in optional brackets [...], then we can drop the conjunction
in (N’) together with its first element, because {v} is a non-empty <-chain.

33The peculiar French spelling “ncethérienne” imitates the German pronunciation of “Noether”,
where the “oe” is to be pronounced neither as a long “0” (the default, as in “Itzehoe”), nor as two
separate vowels as indicated by the diaeresis in “08”, but as an umlaut, typically written in Ger-
man as the ligature “6”. Neither Emmy nor her father Max Noether (1844-1921) (mathematics
professor as well) used this ligature, found however in some of their official German documents.

34Tn 1967, “Noetherian Induction” was not generally used as a name for the Theorem of
Noetherian Induction yet: For instance, this theorem — instantiated with the ordering of the
natural numbers — is called the principle of complete induction in [Schoenfield, 1967, p.205],
but more often called course-of-values induction, cf. e.g. http://en.wikipedia.org/wiki/
Mathematical_induction#Complete_induction. “Complete induction”, however, is a most con-
fusing name hardly used in English. Indeed, “complete induction” is the literal translation of the
German technical term “vollstdndige Induction”, which traditionally means structural induction
(cf. Note 38) — and these two kinds of mathematical induction are different from each other.

35Indeed, the main text of §6.5 in the 1st edition [Bourbaki, 1956] ends (on Page 98) three lines
before the text of Proposition 7 begins in the 2nd edition [Bourbaki, 1967] (on Page 76 of §6.5).

12 J Strother Moore, Claus-Peter Wirth

Then the following equivalent is obtained by switching from proposition P to
its class of counterexamples @: “If, for every non-empty <-chain C' C @, there
isawu € Q with u<C, then Q =0.” Under the assumption that Q is a set, this is
an equivalent of the Axiom of Choice (cf. [Geser, 1995], [Rubin and Rubin, 1985]).

This means that the axiomatic status of induction principles ranges from the
Theorem of Noetherian Induction up to the Axiom of Choice. If we took the
Axiom of Choice for granted, this difference in status between a theorem and an
axiom would collapse and our discussion of the axiomatic status of mathematical
induction would degenerate. So the care with which we distinguished termination
of the reverse relation from well-foundedness in §4.1 is justified.

4.4 The Natural Numbers

The field of application of mathematical induction most familiar in mathematics
is the domain of the natural numbers 0, 1, 2, Let us formalize the natural
numbers with the help of two constructor function symbols, namely one for the
constant zero and one for the direct successor of a natural number:

0: nat

s : nat — nat
Moreover, let us assume in this article that the variables z, y always range over
the natural numbers, and that free variables in formulas are implicitly universally
quantified (as is standard in mathematics), such that, for example, a formula with
the free variable = can be seen as having the implicit outermost quantifier Vz : nat.

After the definition (Wellf(<)) and the theorem (N), let us now consider some

standard axzioms for specifying the natural numbers, namely that a natural number
is either zero or a direct successor of another natural number (natl), that zero is
not a successor (nat2), that the successor function is injective (nat3), and that the
so-called Aziom of Structural Induction over 0 and s holds; formally:

(natl) z=0 VvV y. (z=s(y))

(nat2) s(z)#£0
(nat3) s(z)=s(y) = z=y
(S) vP. (Vo Pr) = P(O) A Yy ((Psy) = PW)))

36 Proof. Let <], denote the range restriction of < to A (i.e. u<[v if and only if u <v € A).
Let us take P(w) to be Wellf (<] 4(,,)) for A(w) := { v’ | w'<*w }. Then the reverse implication
follows from (N’) because P(v) <= Yu<v. P(u) holds for any v,37 and Vw. P(w) implies Wellf(<).

37 Proof. To show P(v), it suffices to find, for an arbitrary, not constantly false proposition @,
an m with Q(m), for which, in case of m € A(v), there is no m’<m with Q(m/).

If we have Q(m) for some m with m & A(v), then we are done.

If we have Q(u’) for some u < v and some u’ € A(u), then, for Q'(u’) being the conjunction
of Q(u") and u” € A(u), thereis (because of the assumed P(u)) an m with Q’(m), for which
there is no m’<m with Q’(m’). Then we have Q(m). If there were an m/<m with Q(m’), then
we would have Q'(m’). Thus, there cannot be such an m/, and so m satisfies our requirements.

Otherwise, if none of these two cases is given, @ can only hold for v. As @ is not constantly
false, we get Q(v) and then v£v (because otherwise the second case is given for u := v and

u' :=v). Then m := v satisfies our requirements.

Automation of Mathematical Induction as part of the History of Logic 13

Richard Dedekind (1831-1916) proved the Axiom of Structural Induction (S) for
his model of the natural numbers in [Dedekind, 1888], where he states that the
proof method resulting from the application of this axiom is known under the
name “vollstindige Induction”.38

Now we can go on by defining — in two equivalent®® ways — the destructor
function p : nat — nat, returning the predecessor of a positive natural number:

(p1) p(s(z)) ==
(p1") p(a') =z <= 2’ =s(x)

The definition via (pl) is in constructor style, where constructor terms may occur
on the left-hand side of the positive/negative-conditional equation as arguments
of the function being defined. The alternative definition via (pl’) is in destructor
style, where only variables may occur as arguments on the left-hand side.

For both definition styles, the term on the left-hand side must be linear (i.e. all
its variable occurrences must be distinct variables) and have the function symbol
to be defined as the top symbol.

Let us define some recursive functions over the natural numbers, such as addition
and multiplication +, * : nat, nat — nat, the irreflexive ordering of the natural
numbers lessp : nat, nat — bool (see § 4.5 for the data type bool of Boolean values),
and the Ackermann function ack : nat, nat — nat:*°

(+1) O+y=uy (x1) Oy =0

(+2) s(z) +y = s(z +y) (*2) s(z) xy = y+ (v xy)
(lesspl) lessp(z, 0) = false

(lessp2) lessp(0,s(y)) = true

(lessp3) lessp(s(z),s(y)) = lessp(x, y)

(ackl) ack(0,y) = s(y)

(ack2) ack(s(x),0) = ack(z,s(0))

(ack3) ack(s(x),s(y)) = ack(z, ack(s(x),y))

381n the tradition of Aristotelian logic, the technical term “vollstéindige Induction” (in Latin:
“inductio completa”, cf. e.g. [Wolff, 1740, Part I, §478, p. 369]) denotes a complete case analysis,
cf. e.g. [Lambert, 1764, Dianoiologie, § 287; Alethiologie, §190]. Its misuse as a designation of
structural induction originates in [Fries, 1822, p.46f.], and was perpetuated by Dedekind. Its
literal translation “complete induction” is misleading, cf. Note34. By the 1920s, “vollstandige
Induction” had become a very vague notion that is best translated as “mathematical induction”,
as done in [Heijenoort, 1971, p.130] and as it is standard today, cf. e.g. [Hilbert and Bernays,
2013, Note 23.4].

39For the equivalence transformation between constructor and destructor style see Example 15
in §6.3.2.

40Résza Péter (1905-1977) (a woman in the fertile community of Budapest mathematicians
and, like most of them, of Jewish parentage) published a simplified version [1951] of the first
recursive, but not primitive recursive function developed by Wilhelm Ackermann (1896-1962)
[Ackermann, 1928]. It is actually Péter’s version what is simply called “the Ackermann function”
today.

14 J Strother Moore, Claus-Peter Wirth

The relation from a natural number to its direct successor can be formalized
by the binary relation Az,y. (s(z)=y). Then Wellf(Az,y. (s(x)=y)) states
the well-foundedness of this relation, which means according to Lemma 1 that its
transitive closure — i.e. the irreflexive ordering of the natural numbers — is a
well-founded ordering; so, in particular, we have Wellf(A\z,y. (lessp(z,y) =true)).

Now the natural numbers can be specified up to isomorphism either by*!

e (nat2), (nat3), and (S) — following Guiseppe Peano (1858-1932),
or else by

e (natl) and Wellf(\z,y. (s(z) =y)) — following Mario Pieri (1860-1913).42

Immediate consequences of the axiom (natl) and the definition (pl) are the
lemma (s1) and its flattened®3 version (s1’):
(s1) s(p(2)) =2’ <« 2'#0
(s1") s(x) =2 <« 2'#£0 A x=p(2))
Moreover, on the basis of the given axioms we can most easily show
(lessp4) lessp(z,s(x)) = true
(lessp5) lessp(x,s(x +y)) = true
by structural induction on x, i.e. by taking the predicate variable P in the Axiom
of Structural Induction (S) to be Az. (lessp(z,s(x))=true) in case of (lessp4),
and Az. Vy. (lessp(z,s(x +y)) =true) in case of (lessp5).

Moreover — to see the necessity of doing induction on several variables in
parallel — we will present?* the more complicated proof of the strengthened tran-
sitivity of the irreflexive ordering of the natural numbers, i.e. of

(lesspT) lessp(s(z),z) =true < lessp(z,y)=true A lessp(y,z)=true

We will also prove the commutativity lemma (+3)4°

about the Ackermann function:*8
(+3) r+y=y+u,
(ack4) lessp(y, ack(z,y)) = true

and the simple lemma (ack4)

41Cf, [Wirth, 2004, §1.1.2].

42Pieri [1908] stated these axioms informally and showed their equivalence to the version of the
Peano axioms [Peano, 1889] given in [Padoa, 1913]. For a discussion and an English translation
see [Marchisotto and Smith, 2007]. Pieri [1908] has also a version where, instead of the symbol 0,
there is only the statement that there is a natural number, and where (natl) is replaced with the
weaker statement that there is at most one s-minimal element:

—3yo. (xo=s(yo)) A ~Iy1. (x1=s(y1)) = zo=2x1.

That non-standard natural numbers cannot exist in Pieri’s specification is easily shown as follows:
For every natural number x we can form the set of all elements that can be reached from x by the
reverse of the successor relation; by well-foundedness of s, this set contains the unique s-minimal
element (0); thus, we have z=s"(0) for some standard meta-level natural number n.

43 Flattening is a logical equivalence transformation that replaces a subterm (here: p(z’)) with
a fresh variable (here: x) and adds a condition that equates the variable with the subterm.

44We will prove (lesspT) twice: once in Example 3 in §4.7, and again in Example 12 in §6.2.6.

45We will prove (+3) twice: once in Example?2 in §4.7, and again in Example4 in §4.8.1.

46We will prove (ack4) in Example5 in §4.9.

Automation of Mathematical Induction as part of the History of Logic 15

4.5 Standard Data Types

As we are interested in the verification of hardware and software, more important
for us than natural numbers are the standard data types of higher-level program-
ming languages, such as lists, arrays, and records.

To clarify the inductive character of data types defined by constructors, and to
show the additional complications arising from constructors with no or more than
one argument, let us present the data types bool (of Boolean values) and list(nat)
(of lists over natural numbers), which we also need for our further examples.

A special case is the data type bool of the Boolean values given by the two
constructors true, false : bool without any arguments, for which we get only the
following two axioms by analogy to the axioms for the natural numbers. We glo-
bally declare the variable b : bool; so b will always range over the Boolean values.
(booll) b=true Vv b=false
(bool2) true # false
Note that the analogy of the axioms of Boolean values to the axioms of the natural
numbers (cf. §4.4) is not perfect: An axiom (bool3) analogous to (nat3) cannot
exist because there are no constructors for bool that take arguments. Moreover,
an axiom analogous to (S) is superfluous because it is implied by (booll).

Furthermore, let us define the Boolean function and : bool, bool — bool :
(andl) and(false,b) = false
(and2) and(b,false) = false
(and3) and(true, true) = true

Let us now formalize the data type of the (finite) lists over natural numbers with
the help of the following two constructors: the constant symbol
nil : list(nat)
for the empty list, and the function symbol
cons : nat, list(nat) — list(nat),
which takes a natural number and a list of natural numbers, and returns the
list where the number has been added to the input list as a new first element.
We globally declare the variables k,1: list(nat).
By analogy to natural numbers, the axioms of this data type are the following:
(list(nat)1) I=nil v 3y, k. (l=cons(y,k))
(list(nat)2) cons(z, 1) # nil
(list(nat)31) cons(z,l)=cons(y,k) = z=y
(list(nat)32) cons(x,l)=cons(y,k) = I=k
(list(nat)S) VP. (VI. P(I) <« (P(nil) A Va,k. (P(cons(z,k)) < P(k))))
Moreover, let us define the recursive functions length, count : list(nat) — nat,
returning the length and the size of a list:

(lengthl) length(nil) =0

(length2) length(cons(z,1)) = s(length(l))
(countl) count(nil) =0

(count2) count(cons(z,1)) = s(z + count(l))

16 J Strother Moore, Claus-Peter Wirth

Note that the analogy of the axioms of lists to the axioms of the natural numbers
is again not perfect:

1. There is an additional axiom (list(nat)3;), which has no analog among the
axioms of the natural numbers.

2. Neither of the axioms (list(nat)3;) and (list(nat)3s) is implied by the axiom
(list(nat)1) together with the axiom
Wellf(Al, k. 3x. (cons(z,l) =k)),
which is the analog to Pieri’s second axiom for the natural numbers.4”

3. The latter axiom is weaker than each of the two axioms
Wellf (AL, k. (lessp(length(l), length(k)) = true)),
Wellf(Al, k. (lessp(count(l), count(k)) =true)),

which state the well-foundedness of bigger*® relations. In spite of their rela-
tive strength, the well-foundedness of these relations is already implied by the
well-foundedness that Pieri used for his specification of the natural numbers.

Therefore, the lists of natural numbers can be specified up to isomorphism by a
specification of the natural numbers up to isomorphism (see §4.4), plus the axioms
(list(nat)31) and (list(nat)33), plus one of the following sets of axioms:

e (list(nat)2), (list(nat)S) — in the style of Peano,
o (list(nat)1), Wellf(\l,k. Jz. (cons(z,l) =k)) — in the style of Pieri,*°
e (list(nat)l), (lengthl-2) — refining the style of Pieri.?°

Today it is standard to avoid higher-order axioms in the way exemplified in the
last of these three items,’' and to get along with one second-order axiom for the
natural numbers, or even with the first-order instances of that axiom.

47See §4.4 for Pieri’s specification of the natural numbers. The axioms (list(nat)3;) and
(list(nat)32) are not implied because all axioms besides (list(nat)3;) or (list(nat)32) are satis-
fied in the structure where both natural numbers and lists are isomorphic to the standard model
of the natural numbers, and where lists differ only in their sizes.

“8Indeed, in case of cons(z,l) = k, we have lessp(length(l), length(k)) =
= lessp(length(l), length(cons(z,1))) = lessp(length(l),s(length(l))) = true because of (lessp4),
and we also have lessp(count(l), count(k)) = lessp(count(l), count(cons(z,1))) =
lessp(count(l), s(z + count(l))) = true because of (4+3) and (lessp5).

49This option is essentially the choice of the “shell principle” of [Boyer and Moore, 1979, p.37ff.]:
The one but last axiom of item (1) of the shell principle means (list(nat)2) in our formalization,
and guarantees that item (6) implies Wellf(Al, k. Jz. (cons(z,l) =k)).

50 Although (list(nat)2) follows from (length1-2) and (nat2), it should be included in this

standard specification because of its frequent applications.

51For this avoidance, however, we have to admit the additional function length. The same can
be achieved with count instead of length, which is only possible, however, for lists over element
types that have a mapping into the natural numbers.

Automation of Mathematical Induction as part of the History of Logic 17

Moreover, as some of the most natural functions on lists, let us define the de-
structors car : list(nat) — nat and cdr : list(nat) — list(nat), both in constructor
and destructor style. Furthermore, let us define the recursive member predi-
cate mbp : nat, list(nat) — bool, and delfirst : list(nat) — list(nat), a recursive
function that deletes the first occurrence of a natural number in a list:
carl) car(cons(z,l)) = x
cdrl) cdr(cons(z, 1)) =1

l

/

car(l') =z <« '=cons(z,l)

))
" cdr(l')

(

(

(

(=1 « l'=cons(z,l)

(mbpl) mbp(z,nil) = false

() mbp(z, cons(y,l)) = true = z=y

(mbp3) mbp(x, cons(y, 1)) = mbp(z,l) < z#y

(delfirstl) delfirst(x, cons(y,1)) =1 = =y
(delfirst2) delfirst(z, cons(y, 1)) = cons(y, de