
AUTOMATION OF
MATHEMATICAL INDUCTION

AS PART OF THE HISTORY OF LOGIC∗

J Strother Moore, Claus-Peter Wirth

1 A SNAPSHOT OF A DECISIVE MOMENT IN HISTORY

The automation of mathematical theorem proving for deductive first-order logic
started in the 1950s, and it took about half a century to develop systems that are
sufficiently strong and general to be successfully applied outside the community
of automated theorem proving.1

Surprisingly, the development of such strong systems for restricted logic lan-
guages was not achieved much earlier — for neither the purely equational fragment
nor propositional logic.2 Moreover, automation of theorem proving for higher-order
logic has started becoming generally useful only during the last ten years.3

Irrelevance

Cross-Fertilization

Destructor Elimination

User

Generalization

Induction

Simplification

pool

Elimination of

formula

Figure 1. The Boyer–Moore Waterfall
Note that a formula falls back to the center pool after each successful application

of one of the stages in the circle.

∗Second Readers: Alan Bundy, Bernhard Gramlich
1The currently (i.e. in 2012) most successful first-order automated theorem prover is Vampire,

cf. e.g. [Riazanov and Voronkov, 2001].
2The most successful automated theorem prover for purely equational logic is WaldMeister,

cf. e.g. [Buch and Hillenbrand, 1996], [Hillenbrand and Löchner, 2002]. For deciding propositio-
nal validity (i.e. sentential validity) (or its dual: propositional satisfiability) (which is decidable,
but NP-complete), a breakthrough toward industrial strength was the SAT solver Chaff, cf. e.g.
[Moskewicz et al., 2001].

2 J Strother Moore, Claus-Peter Wirth

Figure 2. Robert S. Boyer (1971) (l.) and J Strother Moore (1972?) (r.)

In this context, it is surprising that for the field of quantifier-free first-order
inductive theorem proving based on recursive functions, most of the progress
toward general usefulness took place within the 1970s and that usefulness was
clearly demonstrated by 1986.4

In this article we describe how this giant step took place, and sketch the further
development of automated inductive theorem proving.

The work on this breakthrough in the automation of inductive theorem proving
was started in September 1972, by Robert S. Boyer and J Strother Moore, in Edin-
burgh, Scotland. Unlike earlier work on theorem proving, Boyer and Moore chose
to make induction the focus of their work. Most of the crucial steps and their
synergetic combination in the “waterfall”5 of their now famous theorem provers
were developed in the span of a single year and implemented in their “Pure LISP

3Driving forces in the automation of higher-order theorem proving are the TPTP-competition-
winning systems Leo-II (cf. e.g. [Benzmüller et al., 2008]) and Satallax (cf. e.g. [Brown, 2012]).

4See the last paragraph of § 6.4.
5See Figure 1 for the Boyer–Moore waterfall. See [Bell and Thayer, 1976] for the probably

first occurrence of “waterfall” as a term in software engineering. Boyer and Moore, however, were
inspired not by this metaphor from software engineering, but again by a real waterfall, as can be
clearly seen from [Boyer and Moore, 1979, p. 89]:

“A good metaphor for the organization of these heuristics is an initially dry water-
fall. One pours out a clause at the top. It trickles down and is split into pieces.
Some pieces evaporate as they are proved. Others are further split up and simpli-
fied. Eventually at the bottom a pool of clauses forms whose conjunction suffices
to prove the original formula.”

Automation of Mathematical Induction as part of the History of Logic 3

Theorem Prover”, presented at IJCAI in Stanford (CA) in August 1973,6 and
documented in Moore’s PhD thesis [1973], defended in November 1973.

Readers who take a narrow view on the automation of inductive theorem prov-
ing might be surprised that we discuss the waterfall. It is impossible, however,
to build a good inductive theorem prover without considering how to transform the
induction conclusion into the hypothesis (or, alternatively, how to recognize that a
legitimate induction hypothesis can dispatch a subgoal). So we take the expansive
view and discuss not just the induction principle and its heuristic control, but also
the waterfall architecture that is effectively an integral part of the success.

Boyer and Moore had met in August 1971, a year before the induction work
started, when Boyer took up the position of a post-doctoral research fellow
at the Metamathematics Unit of the University of Edinburgh. Moore was at
that time starting the second year of his PhD studies in “the Unit”. Ironically,
they were both from Texas and they had both come to Edinburgh from the MIT.
Boyer’s PhD supervisor, W.W. Bledsoe, from The University of Texas at Austin,
spent 1970–71 on sabbatical at the MIT, and Boyer accompanied him and com-
pleted his PhD work there. Moore got his bachelor’s degree at the MIT (1966–70)
before going to Edinburgh for his PhD.

Being “warm blooded Texans”, they shared an office in the Metamathematics
Unit at 9 Hope Park Square, Meadow Lane. The 18th century buildings at Hope
Park Square were the center of Artificial Intelligence research in Britain at a time
when the promises of AI were seemingly just on the horizon.7 In addition to main-

6Cf. [Boyer and Moore, 1973].
7The Metamathematics Unit of the University of Edinburgh was renamed into “Dept. of Com-

putational Logic” in late 1971, and was absorbed into the new “Dept. of Artificial Intelligence” in
Oct. 1974. It was founded and headed by Bernard Meltzer. In the early 1970s, the University of
Edinburgh hosted most remarkable scientists, of which the following are relevant in our context:

Univ. Edinburgh PhD life time
(time, Dept.) (year, advisor) (birth–death)

Donald Michie (1965–1984, MI) (1953, unknown) (1923–2007)
Bernard Meltzer (1965–1978, CL) (1953, Fürth) (1916?–2008)
Robin J. Popplestone (1965–1984, MI) (no PhD) (1938–2004)
Rod M. Burstall (1965–2000, MI & Dept. AI) (1966, Dudley) (*1934)
Robert A. Kowalski (1967–1974, CL) (1970, Meltzer) (*1941)
Pat Hayes (1967–1973, CL) (1973, Meltzer) (*1944)
Gordon Plotkin (1968–today, CL & LFCS) (1972, Burstall) (*1946)
J Strother Moore (1970–1973, CL) (1973, Burstall) (*1947)
Mike J. C. Gordon (1970–1978, MI) (1973, Burstall) (*1948)
Robert S. Boyer (1971–1973, CL) (1971, Bledsoe) (*1946)
Alan Bundy (1971–today, CL) (1971, Goodstein) (*1947)
Robin Milner (1973–1979, LFCS) (no PhD) (1934–2010)

CL = Metamathematics Unit (founded and headed by Bernard Meltzer)
(new name from late 1971 to Oct. 1974: Dept. of Computational Logic)
(new name from Oct. 1974: Dept. of Artificial Intelligence)

MI = Experimental Programming Unit (founded and headed by Donald Michie)
(new name from 1966 to Oct. 1974: Dept. for Machine Intelligence and Perception)
(new name from Oct. 1974: Machine Intelligence Unit)

LFCS = Laboratory for Foundations of Computer Science

(Sources: [Meltzer, 1975], [Kowalski, 1988], etc.)

4 J Strother Moore, Claus-Peter Wirth

line work on mechanized reasoning by Rod M. Burstall, Robert A. Kowalski,
Pat Hayes, Gordon Plotkin, J Strother Moore, Mike J. C. Gordon, Robert S. Boyer,
Alan Bundy, and (by 1973) Robin Milner, there was work on new programming
paradigms, program transformation and synthesis, natural language, machine vi-
sion, robotics, and cognitive modeling. Hope Park Square received a steady stream
of distinguished visitors from around the world, including J. Alan Robinson, John
McCarthy, W. W. Bledsoe, Dana S. Scott, and Marvin Minsky. An eclectic series
of seminars were on offer weekly to complement the daily tea times, where all
researchers gathered around a table and talked about their current problems.

Boyer and Moore initially worked together on structure sharing in resolution
theorem proving. The inventor of resolution, J. Alan Robinson (*1930?), created
and awarded them the “1971Programming Prize” on December 17, 1971 — half jok-
ingly, half seriously. The document, handwritten by Robinson, actually says in part:

“In 1971, the prize is awarded, by unanimous agreement of the Board,
to Robert S. Boyer and J Strother Moore for their idea, explained in
[Boyer and Moore, 1971], of representing clauses as their own genesis.
The Board declared, on making the announcement of the award, that
this idea is ‘. . . bloody marvelous’.”

Their structure-sharing representation of derived clauses in a linear resolution
system is just a stack of resolution steps. This suggests the idea of resolution
being a kind of “procedure call.”8 Exploiting structure sharing, Boyer and Moore
implemented a declarative LISP-like programming language called “Baroque”
[Moore, 1973], a precursor to Prolog.9 They then implemented a LISP inter-
preter in Baroque and began to use their resolution engine to prove simple
theorems about programs in LISP. Resolution was sufficient to prove such
theorems as “there is a list whose length is 3”, whereas the absence of a rule
for induction prevented the proofs of more interesting theorems like the associa-
tivity of list concatenation.

So, in the summer of 1972, they turned their attention to a theorem prover
designed explicitly to do mathematical induction — this at a time when uni-
form first-order proof procedures were all the rage. The fall of 1972 found them
taking turns at the blackboard proving theorems about recursive LISP functions
and articulating their reasons for each proof step. Only after several months of
such proofs did they sit down together to write the code for the Pure LISP
Theorem Prover.

Today’s readers might have difficulty imagining the computing infrastructure
in Scotland in the early 1970s. Boyer and Moore developed their software on
an ICL–4130, with 64 kByte (128 kByte in 1972) core memory (RAM). Paper
tape was used for archival storage. The machine was physically located in the
Forrest Hill building of the University of Edinburgh, about 1 km from Hope Park
Square. A rudimentary time-sharing system allowed several users at once to run

8Cf. [Moore, 1973, p. 68].

9For logic programming and Prolog see [Kowalski, 1974; 1988], [Clocksin and Mellish, 2003].

Automation of Mathematical Induction as part of the History of Logic 5

lightweight applications from teletype machines at Hope Park Square. The only
high-level programming language supported was POP–2, a simple stack-based
list-processing language with an Algol-like syntax.10

Programs were prepared with a primitive text editor modeled on a paper tape
editor: a disk file could be copied through a one byte buffer to an output file.
By halting the copying and typing characters into or deleting characters from the
buffer one could edit a file — a process that usually took several passes. Memory
limitations of the ICL–4130 prohibited storing large files in memory for editing.
In their very early collaboration, Boyer and Moore solved this problem by inventing
what has come to be called the “piece table ”, whereby an edited document is
represented by a linked list of “pieces” referring to the original file which remains
on disk. Their “77-editor” [Boyer et al., 1973] (written in 1971 and named for
the disk track on which it resided) provided an interface like MIT’s Teco, but
with POP–2 as the command language.11 It was thus with their own editor that
Boyer and Moore wrote the code for the Pure LISP Theorem Prover.

During the day they worked at Hope Park Square, with frequent trips by foot
or bicycle through The Meadows to Forrest Hill to make archival paper tapes or
to pick up line-printer output. During the night — when they could often have
the ICL–4130 to themselves — they often worked at Boyer’s home where another
teletype was available.

2 METHOD OF PROCEDURE AND PRESENTATION

In contrast to the excellent handbook articles [Walther, 1994a] and [Bundy, 1999]
on the automation of explicit induction, our focus in this article is neither on
current standards, nor on the engineering and research problems of the field, but
on the history of the automation of mathematical induction.

It is always hard to see the past because we look through the lens of the present.
Achieving the necessary detachment from the present is especially hard for the his-
torian of recent history because the “lens of the present” is shaped so immediately
by the events being studied.

We try to mitigate this problem by avoiding the standpoint of a disciple of the
leading school of explicit induction. Instead, we put the historic achievements
into a broad mathematical context and a space of time from the ancient Greeks
to a possible future, based on a most general approach to recursive definition
(cf. § 5), and on descente infinie as a general, implementation-neutral approach
to mathematical induction (cf. § 4.7). Then we can see the great achievements
in the field with the surprise they historically deserve — after all, until 1973
mathematical induction was considered too creative an activity to be automated.

10Cf. [Burstall et al., 1971].
11The 77-editor was widely used by researchers at Hope Park Square until the ICL–4130 was

decommissioned. When Moore went to Xerox PARC in Palo Alto (CA) (Dec. 1973), the Boyer–
Moore representation [Moore, 1981] was adopted by Charles Simonyi (*1948) for the Bravo editor
on the Alto and subsequently found its way into Microsoft Word, cf. [Verma, 2005?].

6 J Strother Moore, Claus-Peter Wirth

As a historiographical text, this article should be accessible to an audience that
goes beyond the technical experts and programmers of the day, should use com-
mon mathematical language and representation, focus on the global and eternal
ideas and their developments, and paradigmatically display the historically most
significant achievements.

Because these achievements in the automation of inductive theorem proving
manifest themselves mainly in the line of the Boyer–Moore theorem provers,
we cannot avoid the confrontation of the reader with some more ephemeral forms
of representation found in these software systems. In particular, we cannot avoid
some small expressions in the list programming language LISP,12 simply because
the Boyer–Moore theorem provers we discuss in this article, namely the Pure
LISP Theorem Prover, Thm, Nqthm, and ACL2, all have logics based on a
subset of LISP.

Note that we do not necessarily refer to the implementation language of these
software systems, but to the logic language used both for representation of formulas
and for communication with the user!

For the first system in this line of development, Boyer and Moore had a free
choice, but wrote:

“We use a subset of LISP as our language because recursive list pro-
cessing functions are easy to write in LISP and because theorems can
be naturally stated in LISP; furthermore, LISP has a simple syntax
and is universal in Artificial Intelligence. We employ a LISP inter-
preter to ‘run’ our theorems and a heuristic which produces induction
formulas from information about how the interpreter fails. We com-
bine with the induction heuristic a set of simple rewrite rules of LISP
and a heuristic for generalizing the theorem being proved.”13

Note that the choice of LISP was influenced by the rôle of the LISP interpreter
in induction. LISP was important for another reason: Boyer and Moore were
building a computational-logic theorem prover:

“The structure of the program is remarkably simple by artificial intel-
ligence standards. This is primarily because the control structure is
embedded in the syntax of the theorem. This means that the system
does not contain two languages, the ‘object language’, LISP, and the
‘meta-language’, predicate calculus. They are identified. This mix of
computation and deduction was largely inspired by the view that the
two processes are actually identical. Bob Kowalski, Pat Hayes, and
the nature of LISP deserve the credit for this unified view.”14

This view was prevalent in the Metamathematics Unit by 1972. Indeed, “the
Unit” was by then officially renamed the Department of Computational Logic.7

12Cf. [McCarthy et al., 1965]. Note that we use the historically correct capitalized “LISP” for
general reference, but not for more recent, special dialects such as Common Lisp.

13Cf. [Boyer and Moore, 1973, p. 486, left column].
14Cf. [Moore, 1973, p. 207f.].

Automation of Mathematical Induction as part of the History of Logic 7

In general, inductive theorem proving with recursively defined functions requires
a logic in which

a method of symbolic evaluation can be obtained from an interpretation
procedure by generalizing the ground terms of computation to terms
with free variables that are implicitly universally quantified.

So candidates to be considered today (besides a subset of LISP or of λ-calculus) are
the typed functional programming languages ml and Haskell,15 which, however,
were not available in 1972. LISP and ml are to be preferred to Haskell as the
logic of an inductive theorem prover because of their innermost evaluation strategy,
which gives preference to the constructor terms that represent the constructor-
based data types, which again establish the most interesting domains in hard-
and software verification and the major elements of mathematical induction.

Yet another candidate today would be the rewrite systems of [Wirth and Gram-
lich, 1994a] and [Wirth, 1991; 2009] with constructor variables16 and positive/ne-
gative-conditional equations, designed and developed for the specification, inter-
pretation, and symbolic evaluation of recursive functions in the context of induc-
tive theorem proving in the domain of constructor-based data types. Neither this
tailor-made theory, nor even the general theory of rewrite systems in which its
development is rooted,17 were available in 1972. And still today, the applicative
subset of Common Lisp that provides the logic language for ACL2 (= (ACL)2

= A Computational Logic for Applicative Common Lisp) is again to preferred to
these positive/negative-conditional rewrite systems for reasons of efficiency: The
applications of ACL2 in hardware verification and testing require a performance
that is still at the very limits of today’s computing technology. This challenging
efficiency demand requires, among other aspects, that the logic of the theorem
prover is so close to its own programming language that — after certain side con-
ditions have been checked — the theorem prover can defer the interpretation of
ground terms to the analogous interpretation in its own programming language.

For most of our illustrative examples in this article, however, we will use the
higher flexibility and conceptual adequacy of positive/negative-conditional rewrite
systems. They are so close to standard logic that we can dispense their semantics
to the reader’s intuition,18 and they can immediately serve as an intuitively clear
replacement of the Boyer–Moore machines.19

15Cf. [Hudlak et al., 1999] for Haskell, [Paulson, 1996] for ml, which started as the meta-
language for implementations of LCF (the Logic of Computable Functions with a single undefined
element ⊥, invented by Scott [1993]) with structural induction over ⊥, 0, and s, but without
original contributions to the automation of induction, cf. [Milner, 1972, p. 8], [Gordon, 2000].

16See § 5.4 of this article.
17See [Dershowitz and Jouannaud, 1990] for the theory in which the rewrite systems of [Wirth

and Gramlich, 1994a], [Wirth, 1991; 2009] are rooted. One may try to argue that the paper that
launched the whole field of rewrite systems, [Knuth and Bendix, 1970], was already out in 1972,
but the relevant parts of rewrite theory for unconditional equations were developed only in the
late 1970s and the 1980s. Especially relevant in the given context are [Huet, 1980] and [Toyama,
1988]. The rewrite theory of positive/negative-conditional equations, however, started to become
an intensive area of research only with the burst of creativity at 1st Int. Workshop on Conditional
Term Rewriting Systems (CTRS), Orsay (France), 1987; cf. [Kaplan and Jouannaud, 1988].

8 J Strother Moore, Claus-Peter Wirth

Moreover, the typed (many-sorted) approach of the positive/negative-condi-
tional equations allows the presentation of formulas in a form that is much easier
to grasp for human readers than the corresponding sugar-free LISP notation with
its overhead of explicit type restrictions.

Another reason for avoiding LISP notation is that we want to make it most
obvious that the achievements of the Boyer–Moore theorem provers are not limited
to their LISP logic.

For the same reason, we also prefer examples from arithmetic to examples from
list theory, which might be considered to be especially supported by the LISP
logic. The reader can find the famous examples from list theory in almost any
other publication on the subject.20

In general, we tend to present the challenges and their historical solutions with
the help of small intuitive examples and refer the readers interested in the very
details of the implementations of the theorem provers to the published and easily
accessible documents on which our description is mostly based.

Nevertheless, small LISP expression cannot be completely avoided because
we have to describe the crucial parts of the historically most significant imple-
mentations and ought to show some of the advantages of LISP’s untypedness.21

The readers, however, do not have to know more about LISP than the follow-
ing: A LISP term is either a variable symbol, or a function call of the form
(f t1 · · · tn), where f is a function symbol, t1, . . . , tn are LISP terms, and n is
one of the natural numbers, which we assume to include 0.

3 ORGANIZATION OF THIS ARTICLE

This article is further organized as follows.
§§ 4 and 5 offer a self-contained reference for the readers who are not familiar

with the field of mathematical induction and its automation. In § 4 we introduce
the essentials of mathematical induction. In § 5 we have to become more formal
regarding recursive function definitions, their consistency, termination, and induc-
tion templates and schemes. The main part is § 6, where we present the historically
most important systems in automated induction, and discuss the details of soft-
ware systems for explicit induction, with a focus on the 1970s. After describing
the application context in § 6.1, we describe the following Boyer–Moore theorem
provers: the Pure LISP Theorem Prover (§ 6.2), Thm (§ 6.3), Nqthm (§ 6.4),
and ACL2 (§ 6.5). The most noteworthy remaining explicit-induction systems are
sketched in § 6.6. Alternative approaches to the automation of induction that do
not follow the paradigm of explicit induction are discussed in § 7. After summa-
rizing the lessons learned in § 8, we conclude with § 9.

18The readers interested into the precise details are referred to [Wirth, 2009].
19Cf. [Boyer and Moore, 1979, p. 165f.].
20Cf. e.g. [Moore, 1973], [Boyer and Moore, 1979; 1988b; 1998], [Walther, 1994a], [Bundy,

1999], [Kaufmann et al., 2000a; 2000b].
21See the advantages of the untyped, type-restriction-free declaration of the shell CONS in § 6.3.

Automation of Mathematical Induction as part of the History of Logic 9

4 MATHEMATICAL INDUCTION

In this section, we introduce mathematical induction and clarify the difference
between descente infinie and Noetherian, structural, and explicit induction.

According to Aristotle, induction means to go from the special to the general,
and to realize the general from the memorized perception of particular cases.
Induction plays a major rôle in the generation of conjectures in mathematics and
the natural sciences. Modern scientists design experiments to falsify a conjectured
law of nature, and they accept the law as a scientific fact only after many trials have
all failed to falsify it. In the tradition of Euclid, mathematicians accept a mathe-
matical conjecture as a theorem only after a rigorous proof has been provided.
According to Kant, induction is synthetic in the sense that it properly extends
what we think to know — in opposition to deduction, which is analytic in the
sense that it cannot provide us with any information not implicitly contained in
the initial judgments, though we can hardly be aware of all deducible consequences.

Surprisingly, in this well-established and time-honored terminology, mathema-
tical induction is not induction, but a special form of deduction for which — in the
19th century — the term “induction” was introduced and became standard in Ger-
man and English mathematics.22 In spite of this misnomer, for the sake of brevity,
the term “induction” will always refer to mathematical induction in what follows.

Although it received its current name only in the 19th century, mathematical
induction has been a standard method of every working mathematician at all times.
It has been conjectured23 that Hippasus of Metapontum (ca. 550b.c.) applied a
form of mathematical induction, later named descente infinie (ou indéfinie) by
Fermat. We find another form of induction, nowadays called structural induction,
in a text of Plato (427–347b.c.).24 In Euclid’s famous “Elements” [ca. 300b.c.],
we find several applications of descente infinie and in a way also of structural in-
duction.25 Structural induction was known to the Muslim mathematicians around
the year 1000, and occurs in a Hebrew book of Levi ben Gerson (Orange and
Avignon) (1288–1344).26 Furthermore, structural induction was used by Francesco
Maurolico (Messina) (1494–1575),27 and by Blaise Pascal (1623–1662).28 After an
absence of more than one millennium (besides copying ancient proofs), descente
infinie was reinvented by Pierre Fermat (160?–1665).29

22First in German (cf. Note 38), soon later in English (cf. [Cajori, 1918]).
23It is conjectured in [Fritz, 1945] that Hippasus has proved that there is no pair of natural

numbers that can describe the ratio of the lengths of the sides of a pentagram and its enclosing
pentagon. Note that this ratio, seen as an irrational number, is equal to the golden number,
which, however, was conceptualized in entirely different terms in ancient Greek mathematics.

24Cf. [Acerbi, 2000].
25An example for descente infinie is Proposition 31 of Vol. VII of the Elements. Moreover,

the proof in the Elements of Proposition 8 of Vol. IX seems to be sound according to mathematical
standards; and so we can see it only as a proof by structural induction in a very poor linguistic
and logical form. This is in accordance with [Freudenthal, 1953], but not with [Unguru, 1991]

and [Acerbi, 2000]. See [Fowler, 1994] and [Wirth, 2010b, § 2.4] for further discussion.
26Cf. [Rabinovitch, 1970]. Also summarized in [Katz, 1998].
27Cf. [Bussey, 1917].
28Cf. [Pascal, 1954, p. 103].

10 J Strother Moore, Claus-Peter Wirth

4.1 Well-Foundedness and Termination

A relation < is well-founded if, for each proposition Q(w) that is not constantly
false, there is a <-minimal m among the objects for which Q holds, i.e. there is
an m with Q(m), for which there is no u < m with Q(u). Writing “Wellf(<)” for
“< is well-founded”, we can formalize this definition as follows:

(Wellf(<)) ∀Q.
(
∃w. Q(w) ⇒ ∃m.

(
Q(m) ∧ ¬∃u<m. Q(u)

))

Let <+ denote the transitive closure of <, and <∗ the reflexive closure of <+.
< is an (irreflexive) ordering if it is an irreflexive and transitive relation. There is

not much difference between a well-founded relation and a well-founded ordering:30

LEMMA 1. < is well-founded if and only if <+ is a well-founded ordering.

Closely related to the well-foundedness of a relation < is the termination of
its reverse relation >, given as <−1 := { (u, v) | (v, u)∈< }.

A relation > is terminating if it has no non-terminating sequences, i.e. if there
is no infinite sequence of the form x0 > x1 > x2 > x3

If > has a non-terminating sequence, then this sequence, taken as a set, is a
witness for the non-well-foundedness of <. The converse implication, however, is a
weak form of the Axiom of Choice;31 indeed, it allows us to pick a non-terminating
sequence for > from the set witnessing the non-well-foundedness of <.

So well-foundedness is slightly stronger than termination of the reverse relation,
and the difference is relevant here because we cannot take the Axiom of Choice for
granted in a discussion of the foundations of induction, as will be explained in § 4.3.

4.2 The Theorem of Noetherian Induction

In its modern standard meaning, the method of mathematical induction is easily
seen to be a form of deduction, simply because it can be formalized as the appli-
cation of the Theorem of Noetherian Induction:

A proposition P (w) can be shown to hold (for all w) by Noetherian
induction over a well-founded relation < as follows: Show (for every v)
that P (v) follows from the assumption that P (u) holds for all u < v.

Again writing “Wellf(<)” for “< is well-founded”, we can formalize the Theorem
of Noetherian Induction as follows:32

(N) ∀P.

(
∀w. P (w) ⇐ ∃<.

(∀v.
(
P (v) ⇐ ∀u<v. P (u)

)
∧ Wellf(<)

))

29There is no consensus on Fermat’s year of birth. Candidates are 1601, 1607 ([Barner, 2007]),
and 1608. Thus, we write “160?”, following [Goldstein, 2008]. The best-documented example of
Fermat’s applications of descente infinie is the proof of the theorem: The area of a rectangular
triangle with positive integer side lengths is not the square of an integer ; cf. e.g. [Wirth, 2010b].

30Cf. Lemma2.1 of [Wirth, 2004, § 2.1.1].
31See [Wirth, 2004, § 2.1.2, p. 18] for the equivalence to the Principle of Dependent Choice,

found in [Rubin and Rubin, 1985, p.19], analyzed in [Howard and Rubin, 1998, p. 30, Form43].
32When we write an implication A⇒B in the reverse form of B⇐A, we do this to indicate

that a proof attempt will typically start from B and try to reduce it to A.

Automation of Mathematical Induction as part of the History of Logic 11

The today commonly used term “Noetherian induction” is a tribute to the fa-
mous female German mathematician Emmy Noether (1882–1935). It occurs as the
“Generalized principle of induction (Noetherian induction)” in [Cohn, 1965, p. 20].
Moreover, it occurs as Proposition 7 (“Principle of Noetherian Induction”) in
[Bourbaki, 1968a, Chapter III, § 6.5, p. 190] — a translation of the French origi-
nal in its second edition [Bourbaki, 1967, § 6.5], where it occurs as Proposition 7
(“principe de récurrence nœthérienne”).33 We do not know whether “Noetherian”
was used as a name of an induction principle before 1965;34 in particular, it does
not occur in the first French edition [Bourbaki, 1956] of [Bourbaki, 1967].35

4.3 An Induction Principle Stronger than Noetherian Induction?

Let us try to find a weaker replacement for the precondition of well-foundedness
in Noetherian induction, in the sense that we try to replace “Wellf(<)” in the
Theorem of Noetherian Induction (N) in § 4.2 with some weaker property, which
we will designate with “Weak(<,P)” (such that ∀P. Weak(<, P) ⇐ Wellf(<)).
This would result in the formula

(N′) ∀P.

(
∀w. P (w) ⇐ ∃<.

(∀v.
(
P (v) ⇐ ∀u<v. P (u)

)
∧ Weak(<,P)

))
.

If we assume (N′), however, we get the converse ∀P. Weak(<,P) ⇒ Wellf(<). 36

This means that a proper weakening is possible only w.r.t. certain P, and the
Theorem of Noetherian Induction is the strongest among those induction principles
of the form (N′) where Weak(<,P) does not depend on P.

C is a <-chain if <+ is a total ordering on C. Let us write “u<C” for ∀c∈C. u<c,
and “∀u<C. F ” as usual for ∀u.(u<C ⇒ F). In [Geser, 1995], we find applica-
tions of an induction principle that roughly has the form (N′) where Weak(<,P) is:

For every non-empty <-chain C [without a <-minimal element]:
∃v ∈C. P (v) ⇐ ∀u<C. P (u).

The resulting induction principle can be given an elegant form: If we drop the part
of Weak(<,P) given in optional brackets [. . .], then we can drop the conjunction
in (N′) together with its first element, because {v} is a non-empty <-chain.

33The peculiar French spelling “nœthérienne” imitates the German pronunciation of “Noether”,
where the “oe” is to be pronounced neither as a long “o” (the default, as in “Itzehoe”), nor as two
separate vowels as indicated by the diaeresis in “oë”, but as an umlaut, typically written in Ger-
man as the ligature “ö”. Neither Emmy nor her father Max Noether (1844–1921) (mathematics
professor as well) used this ligature, found however in some of their official German documents.

34In 1967, “Noetherian Induction” was not generally used as a name for the Theorem of
Noetherian Induction yet: For instance, this theorem — instantiated with the ordering of the
natural numbers — is called the principle of complete induction in [Schoenfield, 1967, p. 205],
but more often called course-of-values induction, cf. e.g. http://en.wikipedia.org/wiki/

Mathematical_induction#Complete_induction. “Complete induction”, however, is a most con-
fusing name hardly used in English. Indeed, “complete induction” is the literal translation of the
German technical term “vollständige Induction”, which traditionally means structural induction
(cf. Note 38) — and these two kinds of mathematical induction are different from each other.

35Indeed, the main text of § 6.5 in the 1st edition [Bourbaki, 1956] ends (on Page 98) three lines
before the text of Proposition 7 begins in the 2nd edition [Bourbaki, 1967] (on Page 76 of § 6.5).

12 J Strother Moore, Claus-Peter Wirth

Then the following equivalent is obtained by switching from proposition P to
its class of counterexamples Q: “If, for every non-empty <-chain C ⊆ Q, there
is a u ∈ Q with u<C, then Q = ∅.” Under the assumption that Q is a set, this is
an equivalent of the Axiom of Choice (cf. [Geser, 1995], [Rubin and Rubin, 1985]).

This means that the axiomatic status of induction principles ranges from the
Theorem of Noetherian Induction up to the Axiom of Choice. If we took the
Axiom of Choice for granted, this difference in status between a theorem and an
axiom would collapse and our discussion of the axiomatic status of mathematical
induction would degenerate. So the care with which we distinguished termination
of the reverse relation from well-foundedness in § 4.1 is justified.

4.4 The Natural Numbers

The field of application of mathematical induction most familiar in mathematics
is the domain of the natural numbers 0, 1, 2, Let us formalize the natural
numbers with the help of two constructor function symbols, namely one for the
constant zero and one for the direct successor of a natural number:

0 : nat
s : nat → nat

Moreover, let us assume in this article that the variables x, y always range over
the natural numbers, and that free variables in formulas are implicitly universally
quantified (as is standard in mathematics), such that, for example, a formula with
the free variable x can be seen as having the implicit outermost quantifier ∀x : nat.

After the definition (Wellf(<)) and the theorem (N), let us now consider some
standard axioms for specifying the natural numbers, namely that a natural number
is either zero or a direct successor of another natural number (nat1), that zero is
not a successor (nat2), that the successor function is injective (nat3), and that the
so-called Axiom of Structural Induction over 0 and s holds; formally:
(nat1) x = 0 ∨ ∃y.

(
x = s(y)

)

(nat2) s(x) 6= 0

(nat3) s(x)= s(y) ⇒ x= y

(S) ∀P.
(
∀x. P (x) ⇐ P (0) ∧ ∀y.

(
P (s(y)) ⇐ P (y)

))

36Proof. Let <¹A denote the range restriction of < to A (i.e. u<¹Av if and only if u < v ∈A).
Let us take P (w) to be Wellf(<¹A(w)) for A(w) := { w′ | w′<∗ w }. Then the reverse implication

follows from (N′) because P (v)⇐ ∀u<v. P (u) holds for any v,37 and ∀w. P (w) implies Wellf(<).
37Proof. To show P (v), it suffices to find, for an arbitrary, not constantly false proposition Q,

an m with Q(m), for which, in case of m∈A(v), there is no m′< m with Q(m′).
If we have Q(m) for some m with m 6∈A(v), then we are done.
If we have Q(u′) for some u < v and some u′ ∈ A(u), then, for Q′(u′′) being the conjunction

of Q(u′′) and u′′ ∈A(u), there is (because of the assumed P (u)) an m with Q′(m), for which
there is no m′< m with Q′(m′). Then we have Q(m). If there were an m′< m with Q(m′), then
we would have Q′(m′). Thus, there cannot be such an m′, and so m satisfies our requirements.

Otherwise, if none of these two cases is given, Q can only hold for v. As Q is not constantly
false, we get Q(v) and then v≮ v (because otherwise the second case is given for u := v and
u′ := v). Then m := v satisfies our requirements.

Automation of Mathematical Induction as part of the History of Logic 13

Richard Dedekind (1831–1916) proved the Axiom of Structural Induction (S) for
his model of the natural numbers in [Dedekind, 1888], where he states that the
proof method resulting from the application of this axiom is known under the
name “vollständige Induction”.38

Now we can go on by defining — in two equivalent39 ways — the destructor
function p : nat → nat, returning the predecessor of a positive natural number:

(p1) p(s(x)) = x

(p1′) p(x′) = x ⇐ x′= s(x)

The definition via (p1) is in constructor style, where constructor terms may occur
on the left-hand side of the positive/negative-conditional equation as arguments
of the function being defined. The alternative definition via (p1′) is in destructor
style, where only variables may occur as arguments on the left-hand side.

For both definition styles, the term on the left-hand side must be linear (i.e. all
its variable occurrences must be distinct variables) and have the function symbol
to be defined as the top symbol.

Let us define some recursive functions over the natural numbers, such as addition
and multiplication +, ∗ : nat, nat → nat, the irreflexive ordering of the natural
numbers lessp : nat, nat → bool (see § 4.5 for the data type bool of Boolean values),
and the Ackermann function ack : nat, nat → nat:40

(+1) 0 + y = y (∗1) 0 ∗ y = 0

(+2) s(x)+ y = s(x + y) (∗2) s(x) ∗ y = y +(x ∗ y)

(lessp1) lessp(x, 0) = false

(lessp2) lessp(0, s(y)) = true

(lessp3) lessp(s(x), s(y)) = lessp(x, y)

(ack1) ack(0, y) = s(y)
(ack2) ack(s(x), 0) = ack(x, s(0))
(ack3) ack(s(x), s(y)) = ack(x, ack(s(x), y))

38In the tradition of Aristotelian logic, the technical term “vollständige Induction” (in Latin:
“inductio completa”, cf. e.g. [Wolff, 1740, Part I, § 478, p. 369]) denotes a complete case analysis,
cf. e.g. [Lambert, 1764, Dianoiologie, § 287; Alethiologie, § 190]. Its misuse as a designation of
structural induction originates in [Fries, 1822, p. 46f.], and was perpetuated by Dedekind. Its
literal translation “complete induction” is misleading, cf. Note 34. By the 1920s, “vollständige
Induction” had become a very vague notion that is best translated as “mathematical induction”,
as done in [Heijenoort, 1971, p.130] and as it is standard today, cf. e.g. [Hilbert and Bernays,
2013, Note 23.4].

39For the equivalence transformation between constructor and destructor style see Example 15
in § 6.3.2.

40Rósza Péter (1905–1977) (a woman in the fertile community of Budapest mathematicians
and, like most of them, of Jewish parentage) published a simplified version [1951] of the first
recursive, but not primitive recursive function developed by Wilhelm Ackermann (1896–1962)
[Ackermann, 1928]. It is actually Péter’s version what is simply called “the Ackermann function”
today.

14 J Strother Moore, Claus-Peter Wirth

The relation from a natural number to its direct successor can be formalized
by the binary relation λx, y. (s(x)= y). Then Wellf(λx, y. (s(x)= y)) states
the well-foundedness of this relation, which means according to Lemma 1 that its
transitive closure — i.e. the irreflexive ordering of the natural numbers — is a
well-founded ordering; so, in particular, we have Wellf(λx, y. (lessp(x, y) = true)).

Now the natural numbers can be specified up to isomorphism either by41

• (nat2), (nat3), and (S) — following Guiseppe Peano (1858–1932),

or else by
• (nat1) and Wellf(λx, y. (s(x)= y)) — following Mario Pieri (1860–1913).42

Immediate consequences of the axiom (nat1) and the definition (p1) are the
lemma (s1) and its flattened43 version (s1′):
(s1) s(p(x′)) = x′ ⇐ x′ 6= 0

(s1′) s(x) = x′ ⇐ x′ 6= 0 ∧ x= p(x′)

Moreover, on the basis of the given axioms we can most easily show
(lessp4) lessp(x, s(x)) = true

(lessp5) lessp(x, s(x+ y)) = true

by structural induction on x, i.e. by taking the predicate variable P in the Axiom
of Structural Induction (S) to be λx. (lessp(x, s(x)) = true) in case of (lessp4),
and λx. ∀y. (lessp(x, s(x + y))= true) in case of (lessp5).

Moreover — to see the necessity of doing induction on several variables in
parallel — we will present44 the more complicated proof of the strengthened tran-
sitivity of the irreflexive ordering of the natural numbers, i.e. of

(lessp7) lessp(s(x), z)= true ⇐ lessp(x, y)= true ∧ lessp(y, z)= true

We will also prove the commutativity lemma (+3)45 and the simple lemma (ack4)
about the Ackermann function:46

(+3) x+ y = y + x,

(ack4) lessp(y, ack(x, y)) = true

41Cf. [Wirth, 2004, § 1.1.2].
42Pieri [1908] stated these axioms informally and showed their equivalence to the version of the

Peano axioms [Peano, 1889] given in [Padoa, 1913]. For a discussion and an English translation
see [Marchisotto and Smith, 2007]. Pieri [1908] has also a version where, instead of the symbol 0,
there is only the statement that there is a natural number, and where (nat1) is replaced with the
weaker statement that there is at most one s-minimal element:

¬∃y0. (x0 = s(y0)) ∧ ¬∃y1. (x1 = s(y1)) ⇒ x0 = x1.
That non-standard natural numbers cannot exist in Pieri’s specification is easily shown as follows:
For every natural number x we can form the set of all elements that can be reached from x by the
reverse of the successor relation; by well-foundedness of s, this set contains the unique s-minimal
element (0); thus, we have x = sn(0) for some standard meta-level natural number n.

43Flattening is a logical equivalence transformation that replaces a subterm (here: p(x′)) with
a fresh variable (here: x) and adds a condition that equates the variable with the subterm.

44We will prove (lessp7) twice: once in Example 3 in § 4.7, and again in Example 12 in § 6.2.6.
45We will prove (+3) twice: once in Example 2 in § 4.7, and again in Example 4 in § 4.8.1.
46We will prove (ack4) in Example 5 in § 4.9.

Automation of Mathematical Induction as part of the History of Logic 15

4.5 Standard Data Types

As we are interested in the verification of hardware and software, more important
for us than natural numbers are the standard data types of higher-level program-
ming languages, such as lists, arrays, and records.

To clarify the inductive character of data types defined by constructors, and to
show the additional complications arising from constructors with no or more than
one argument, let us present the data types bool (of Boolean values) and list(nat)
(of lists over natural numbers), which we also need for our further examples.

A special case is the data type bool of the Boolean values given by the two
constructors true, false : bool without any arguments, for which we get only the
following two axioms by analogy to the axioms for the natural numbers. We glo-
bally declare the variable b : bool; so b will always range over the Boolean values.
(bool1) b = true ∨ b = false
(bool2) true 6= false
Note that the analogy of the axioms of Boolean values to the axioms of the natural
numbers (cf. § 4.4) is not perfect: An axiom (bool3) analogous to (nat3) cannot
exist because there are no constructors for bool that take arguments. Moreover,
an axiom analogous to (S) is superfluous because it is implied by (bool1).

Furthermore, let us define the Boolean function and : bool, bool → bool :
(and1) and(false, b) = false
(and2) and(b, false) = false
(and3) and(true, true) = true

Let us now formalize the data type of the (finite) lists over natural numbers with
the help of the following two constructors: the constant symbol

nil : list(nat)
for the empty list, and the function symbol

cons : nat, list(nat) → list(nat),
which takes a natural number and a list of natural numbers, and returns the
list where the number has been added to the input list as a new first element.
We globally declare the variables k, l : list(nat).

By analogy to natural numbers, the axioms of this data type are the following:
(list(nat)1) l = nil ∨ ∃y, k.

(
l = cons(y, k)

)

(list(nat)2) cons(x, l) 6= nil

(list(nat)31) cons(x, l)= cons(y, k) ⇒ x= y
(list(nat)32) cons(x, l)= cons(y, k) ⇒ l = k

(list(nat)S) ∀P.
(∀l. P (l) ⇐ (

P (nil) ∧ ∀x, k.
(
P (cons(x, k)) ⇐ P (k)

)))

Moreover, let us define the recursive functions length, count : list(nat) → nat,
returning the length and the size of a list:
(length1) length(nil) = 0
(length2) length(cons(x, l)) = s(length(l))
(count1) count(nil) = 0
(count2) count(cons(x, l)) = s(x + count(l))

16 J Strother Moore, Claus-Peter Wirth

Note that the analogy of the axioms of lists to the axioms of the natural numbers
is again not perfect:

1. There is an additional axiom (list(nat)31), which has no analog among the
axioms of the natural numbers.

2. Neither of the axioms (list(nat)31) and (list(nat)32) is implied by the axiom
(list(nat)1) together with the axiom

Wellf(λl, k. ∃x. (cons(x, l)= k)),
which is the analog to Pieri’s second axiom for the natural numbers.47

3. The latter axiom is weaker than each of the two axioms
Wellf(λl, k. (lessp(length(l), length(k))= true)),
Wellf(λl, k. (lessp(count(l), count(k))= true)),

which state the well-foundedness of bigger48 relations. In spite of their rela-
tive strength, the well-foundedness of these relations is already implied by the
well-foundedness that Pieri used for his specification of the natural numbers.

Therefore, the lists of natural numbers can be specified up to isomorphism by a
specification of the natural numbers up to isomorphism (see § 4.4), plus the axioms
(list(nat)31) and (list(nat)32), plus one of the following sets of axioms:

• (list(nat)2), (list(nat)S) — in the style of Peano,

• (list(nat)1), Wellf(λl, k. ∃x. (cons(x, l)= k)) — in the style of Pieri,49

• (list(nat)1), (length1–2) — refining the style of Pieri.50

Today it is standard to avoid higher-order axioms in the way exemplified in the
last of these three items,51 and to get along with one second-order axiom for the
natural numbers, or even with the first-order instances of that axiom.

47See § 4.4 for Pieri’s specification of the natural numbers. The axioms (list(nat)31) and
(list(nat)32) are not implied because all axioms besides (list(nat)31) or (list(nat)32) are satis-
fied in the structure where both natural numbers and lists are isomorphic to the standard model
of the natural numbers, and where lists differ only in their sizes.

48Indeed, in case of cons(x, l) = k, we have lessp(length(l), length(k)) =
= lessp(length(l), length(cons(x, l))) = lessp(length(l), s(length(l))) = true because of (lessp4),
and we also have lessp(count(l), count(k)) = lessp(count(l), count(cons(x, l))) =
lessp(count(l), s(x + count(l))) = true because of (+3) and (lessp5).

49This option is essentially the choice of the “shell principle” of [Boyer and Moore, 1979, p.37ff.]:
The one but last axiom of item (1) of the shell principle means (list(nat)2) in our formalization,
and guarantees that item (6) implies Wellf(λl, k. ∃x. (cons(x, l)= k)).

50Although (list(nat)2) follows from (length1–2) and (nat2), it should be included in this
standard specification because of its frequent applications.

51For this avoidance, however, we have to admit the additional function length. The same can
be achieved with count instead of length, which is only possible, however, for lists over element
types that have a mapping into the natural numbers.

Automation of Mathematical Induction as part of the History of Logic 17

Moreover, as some of the most natural functions on lists, let us define the de-
structors car : list(nat) → nat and cdr : list(nat) → list(nat), both in constructor
and destructor style. Furthermore, let us define the recursive member predi-
cate mbp : nat, list(nat) → bool, and delfirst : list(nat) → list(nat), a recursive
function that deletes the first occurrence of a natural number in a list:
(car1) car(cons(x, l)) = x

(cdr1) cdr(cons(x, l)) = l

(car1′) car(l′) = x ⇐ l′= cons(x, l)
(cdr1′) cdr(l′) = l ⇐ l′= cons(x, l)

(mbp1) mbp(x, nil) = false
(mbp2) mbp(x, cons(y, l)) = true ⇐ x= y
(mbp3) mbp(x, cons(y, l)) = mbp(x, l) ⇐ x 6= y

(delfirst1) delfirst(x, cons(y, l)) = l ⇐ x = y
(delfirst2) delfirst(x, cons(y, l)) = cons(y, delfirst(x, l)) ⇐ x 6= y

Immediate consequences of the axiom (list(nat)1) and the definitions (car1) and
(cdr1) are the lemma (cons1) and its flattened version (cons1′):

(cons1) cons(car(l′), cdr(l′)) = l′ ⇐ l′ 6= nil

(cons1′) cons(x, l) = l′ ⇐ l′ 6= nil ∧ x = car(l′) ∧ l = cdr(l′)

Furthermore, let us define the Boolean function lexless : list(nat), list(nat) → bool,
which lexicographically compares lists according to the ordering of the natural
numbers, and lexlimless : list(nat), list(nat), nat → bool, which further restricts the
length of the first argument to be less than the number given as third argument:

(lexless1) lexless(l, nil) = false
(lexless2) lexless(nil, cons(y, k)) = true
(lexless3) lexless(cons(x, l), cons(y, k)) = lexless(l, k) ⇐ x= y
(lexless4) lexless(cons(x, l), cons(y, k)) = lessp(x, y) ⇐ x 6= y

(lexlimless1) lexlimless(l, k, x) = and(lexless(l, k), lessp(length(l), x))
Such lexicographic combinations play an important rôle in well-foundedness ar-
guments of induction proofs, because they combine given well-founded orderings
into new well-founded orderings, provided there is an upper bound for the length
of the list:52

(lexlimless2) Wellf(λl, k. (lexlimless(l, k, x) = true))

Finally note that analogous axioms can be used to specify any other data type
generated by constructors, such as pairs of natural numbers or binary trees over
such pairs.

52The length limit is required because otherwise we have the following counterexample to
termination: (s(0)), (0, s(0)), (0, 0, s(0)), (0, 0, 0, s(0)), Note that the need to compare
lists of different lengths typically arises in mutual induction proofs where the two induction
hypotheses have a different number of free variables at measured positions. See [Wirth, 2004,
§ 3.2.2] for a nice example.

18 J Strother Moore, Claus-Peter Wirth

4.6 The Standard High-Level Method of Mathematical Induction

In general, the intuitive and procedural aspects of a mathematical proof method
are not completely captured by its logic formalization. For actually finding and
automating proofs by induction, we also need effective heuristics.

In the everyday mathematical practice of an advanced theoretical journal, the
common inductive arguments are hardly ever carried out explicitly. Instead,
the proof reads something like “by structural induction on n, q.e.d.” or
“by (Noetherian) induction on (x, y) over <, q.e.d.”, expecting that the mathe-
matically educated reader could easily expand the proof if in doubt. In contrast,
difficult inductive arguments, sometimes covering several pages,53 require consid-
erable ingenuity and have to be carried out in the journal explicitly.

In case of a proof on natural numbers, the experienced mathematician might
engineer his proof roughly according to the following pattern:

He starts with the conjecture and simplifies it by case analysis, typically
based on the axiom (nat1). When he realizes that the current goal is
similar to an instance of the conjecture, he applies the instantiated
conjecture just like a lemma, but keeps in mind that he has actually
applied an induction hypothesis. Finally, using the free variables of the
conjecture, he constructs some ordering whose well-foundedness follows
from the axiom Wellf(λx, y. (s(x)= y)) and in which all instances of
the conjecture applied as induction hypotheses are smaller than the
original conjecture.

The hard tasks of a proof by mathematical induction are thus:

(Induction-Hypotheses Task)
to find the numerous induction hypotheses,54 and

(Induction-Ordering Task)
to construct an induction ordering for the proof, i.e. a well-founded ordering
that satisfies the ordering constraints of all these induction hypotheses in
parallel.55

The above induction method can be formalized as an application of the Theorem
of Noetherian Induction. For non-trivial proofs, mathematicians indeed prefer the
the axioms of Pieri’s specification in combination with the Theorem of Noetherian
Induction (N) to Peano’s alternative with the Axiom of Structural Induction (S),
because the instances for P and < in (N) are often easier to find than the instances
for P in (S) are.

53Such difficult inductive arguments are the proofs of Hilbert’s first ε-theorem [Hilbert and
Bernays, 1970], Gentzen’s Hauptsatz [Gentzen, 1935], and confluence theorems such as the ones
in [Gramlich and Wirth, 1996], [Wirth, 2009].

54As, e.g., in the proof of Gentzen’s Hauptsatz on Cut-elimination.

55For instance, this was the hard part in the elimination of the ε-formulas in the proof of the
1st ε-theorem in [Hilbert and Bernays, 1970], and in the proof of the consistency of arithmetic
by the ε-substitution method in [Ackermann, 1940].

Automation of Mathematical Induction as part of the History of Logic 19

4.7 Descente Infinie

The soundness of the induction method of § 4.6 is most easily seen when the
argument is structured as a proof by contradiction, assuming a counterexample.
For Fermat’s historic reinvention of the method, it is thus just natural that he
developed the method in terms of assumed counterexamples.56 Here is Fermat’s
Method of Descente Infinie in modern language, very roughly speaking:

A proposition P (w) can be proved by descente infinie as follows:
Show that for each assumed counterexample v of P there is a smaller
counterexample u of P w.r.t. a well-founded relation <, which does
not depend on the counterexamples.

If this method is executed successfully, we have proved ∀w. P (w) because no
counterexample can be a <-minimal one, and so the well-foundedness of < implies
that there are no counterexamples at all.

Nowadays every logician immediately realizes that a formalization of the method
of descente infinie is obtained from the Theorem of Noetherian Induction (N)
(cf. § 4.2) simply by replacing

P (v) ⇐ ∀u<v. P (u)
with its contrapositive

¬P (v) ⇒ ∃u<v. ¬P (u).

It was very hard for Fermat to obtain a positive version of his counterexample
method.57 The difference between an implication and its contrapositive, however,
is irrelevant in our context here, which is the one of the 19th and 20th centuries and
which is based on classical logic. What matters for us is the heuristic task of finding
proofs. Therefore, we take descente infinie in this article58 as a synonym for the
modern standard high-level method of mathematical induction described in § 4.6.

Let us now prove the lemmas (+3) and (lessp7) of § 4.4 (in the axiomatic context
of § 4.4) by descente infinie, seen as the standard high-level method of mathema-
tical induction described in § 4.6.

56Cf. [Fermat, 1891ff.], [Mahoney, 1994], [Bussotti, 2006], [Wirth, 2010b].

57Fermat reported in his letter for Christiaan Huygens (1629–1695) that he had had problems
applying the Method of Descente Infinie to positive mathematical statements. See [Wirth,
2010b, p. 11] and the references there, in particular [Fermat, 1891ff., Vol. II, p. 432].

Moreover, a natural-language presentation via descente infinie (such as Fermat’s representation
in Latin) is often simpler than a presentation via the Theorem of Noetherian Induction, because
it is easier to speak of one counterexample v and to find one smaller counterexample u, than to
administrate the dependences of universally quantified variables.

58In general, in the tradition of [Wirth, 2004], descente infinie is nowadays taken as a synonym
for the standard high-level method of mathematical induction as described in § 4.6. This way of
using the term “descente infinie” is found in [Brotherston and Simpson, 2007; 2011], [Voicu and
Li, 2009], [Wirth, 2005a; 2010a; 2013; 2012c].

If, however, the historical perspective before the 19th century is taken, then this identification is
not appropriate because a more fine-grained differentiation is required, such as found in [Bussotti,
2006], [Wirth, 2010b].

20 J Strother Moore, Claus-Peter Wirth

EXAMPLE 2 (Proof of (+3) by descente infinie).
By application of the Theorem of Noetherian Induction (N) (cf. § 4.2) with P
set to λx, y. (x+ y = y +x), and the variables v, u renamed to (x, y), (x′′, y′′),
respectively, the conjectured lemma (+3) reduces to

∃<.

(∀(x, y).
(
(x+ y = y + x) ⇐ ∀(x′′, y′′)< (x, y). (x′′+ y′′= y′′+ x′′)

)
∧ Wellf(<)

)
.

Let us focus on the sub-formula x+ y = y +x. Based on axiom (nat1) we can
reduce this task to the two cases x= 0 and x= s(x′) with the two goals

0 + y = y + 0; s(x′)+ y = y + s(x′);
respectively. They simplify by (+1) and (+2) to

y = y + 0; s(x′+ y) = y + s(x′);
respectively. Based on axiom (nat1) we can reduce each of these goals to the two
cases y = 0 and y = s(y′), which leaves us with the four open goals

0 = 0 + 0; s(x′+ 0) = 0 + s(x′);
s(y′) = s(y′)+ 0; s(x′+ s(y′)) = s(y′)+ s(x′).

They simplify by (+1) and (+2) to
0 = 0; s(x′+ 0) = s(x′);
s(y′) = s(y′+ 0); s(x′+ s(y′)) = s(y′+ s(x′));

respectively. Now we instantiate the induction hypothesis that is available in the
context59 given by our above formula in four different forms, namely we instantiate
(x′′, y′′) with (x′, 0), (0, y′), (x′, s(y′)), and (s(x′), y′), respectively. Rewriting with
these instances, the four goals become:

0 = 0; s(0 + x′) = s(x′);
s(y′) = s(0 + y′); s(s(y′)+ x′) = s(s(x′)+ y′);

which simplify by (+1) and (+2) to
0 = 0; s(x′) = s(x′);
s(y′) = s(y′); s(s(y′+x′)) = s(s(x′+ y′)).

Now the first three goals follow directly from the reflexivity of equality, whereas
the last goal needs also an application of our induction hypothesis: This time
we have to instantiate (x′′, y′′) with (x′, y′).

Finally, we instantiate our induction ordering < to the lexicographic combi-
nation of length less than 3 of the ordering of the natural numbers. If we read
our pairs as two-element lists, i.e. (x′′, y′′) as cons(x′′, cons(y′′, nil)), then we can
set < to λl, k. (lexlimless(l, k, s(s(s(0)))) = true), which is well-founded according
to (lexlimless2) (cf. § 4.5). Then it is trivial to show that (s(x′), s(y′)) is greater
than each of (x′, 0), (0, y′), (x′, s(y′)), (s(x′), y′), (x′, y′).

This completes the proof of our conjecture by descente infinie. ¤

59On how this availability can be understood formally, see [Autexier, 2005].

Automation of Mathematical Induction as part of the History of Logic 21

EXAMPLE 3 (Proof of (lessp7) by descente infinie).

In the previous proof in Example 2 we made the application of the Theorem of
Noetherian Induction most explicit, and so its presentation was rather formal
w.r.t. the underlying logic.

Contrary to this, let us now proceed more in the vernacular of a working mathe-
matician. Moreover, instead of p = true, let us just write p.

To prove the strengthened transitivity of lessp as expressed in lemma (lessp7)
in the axiomatic context of § 4.4, we have to show

lessp(s(x), z) ⇐ lessp(x, y) ∧ lessp(y, z).

Let us reduce the last literal. To this end, we apply the axiom (nat1) once to y
and once to z. Then, after reduction with (lessp1), the two base cases have an
atom false in their conditions, abbreviating false= true, which is false according
to (bool2), and so the base cases are true (ex falso quodlibet). The remaining case,
where we have both y = s(y′) and z = s(z′), reduces with (lessp3) to

lessp(x, z′) ⇐ lessp(x, s(y′))∧lessp(y′, z′)

If we apply the induction hypothesis instantiated via {y 7→y′, z 7→z′} to match
the last literal, then we obtain the two goals

lessp(x, z′) ⇐ lessp(x, s(y′))∧lessp(y′, z′)∧lessp(s(x), z′)

lessp(x, y′)∨lessp(s(x), z′)∨lessp(x, z′) ⇐ lessp(x, s(y′))∧lessp(y′, z′)

By elimination of irrelevant literals, the first goal can be reduced to the valid con-
jecture lessp(x, z′) ⇐ lessp(s(x), z′), but we cannot obtain a lemma simpler than
our initial conjecture (lessp7) by generalization and elimination of irrelevant literals
from the second goal. This means that the application of the given instantiation
of the induction hypothesis is useless.

Thus, instead of induction-hypothesis application, we had better apply the
axiom (nat1) also to x, obtaining the cases x = 0 and x= s(x′) with the two
goals — after reduction with (lessp2) and (lessp3) —

lessp(0, z′) ⇐ lessp(y′, z′)

lessp(s(x′), z′) ⇐ lessp(x′, y′) ∧ lessp(y′, z′),

respectively. The first is trivial by (lessp1), (lessp2) after another application of
the axiom (nat1) to z′. The second is just an instance of the induction hypothesis
via {x 7→x′, y 7→y′, z 7→z′}. As the induction ordering we can select any of the
variables of the original conjecture w.r.t. the irreflexive ordering on the natural
numbers or w.r.t. the successor relation.

This completes the proof of the conjecture by descente infinie.

22 J Strother Moore, Claus-Peter Wirth

Note that we also have made clear that the given proof can only be successful
with an induction hypotheses where all variables are instantiated with predeces-
sors. It is actually possible to show that this simple example — ceteris paribus —
requires an induction hypothesis resulting from an instance {x 7→x′′, y 7→y′′, z 7→z′′}
where, for some meta-level natural number n, we have

x= sn+1(x′′) ∧ y = sn+1(y′′) ∧ z = sn+1(z′′). ¤

4.8 Explicit Induction

4.8.1 From the Theorem of Noetherian Induction to Explicit Induction

To admit the realization of the standard high-level method of mathematical induc-
tion as described in § 4.6, a proof calculus should have an explicit concept of an
induction hypothesis. Moreover, it has to cope in some form with the second-order
variables P and < in the Theorem of Noetherian Induction (N) (cf. § 4.2), and
with the second-order variable Q in the definition of well-foundedness (Wellf(<))
(cf. § 4.1).

Such an implementation needs special care regarding the calculus and its heuris-
tics. For example, the theorem provers for higher-order logic with the strongest
automation today3 are yet not able to prove standard inductive theorems by just
adding the Theorem of Noetherian Induction, which immediately effects an explo-
sion of the search space. It is a main obstacle to practical usefulness of higher-order
theorem provers that they are still poor in the automation of induction.

Therefore, it is probable that — on the basis of the logic calculi and the com-
puter technology of the 1970s — Boyer and Moore would also have failed to imple-
ment induction via these human-oriented and higher-order features and were wise
to confine the concept of an induction hypothesis to the internals of single reductive
inference steps — namely the applications of the so-called induction rule — and to
restrict all other inference steps to quantifier-free first-order deductive reasoning.

Described in terms of the Theorem of Noetherian Induction, this induction rule
immediately instantiates the higher-order variables P and < with first-order pred-
icates. This is rather straightforward for the predicate variable P, which simply
becomes the (properly simplified and generalized) quantifier-free first-order conjec-
ture that is to be proved by induction, and the tuple of the free first-order variables
of this conjecture takes the place of the single argument of P ; cf. Example 4 below.

The instantiation of the higher-order variable < is more difficult: Instead of a
simple instantiation, the whole context of its two occurrences is transformed. For
the first occurrence, namely the one in the sub-formula ∀u<v. P (u), the whole
sub-formula is replaced with a conjunction of instances of P (u), for which u is
known to be smaller than v in some lexicographic combination of given orderings
that are already known to be well-founded. As a consequence, the second occur-
rence of <, i.e. the one in Wellf(<), simplifies to true, and so we can drop the
conjunction that contains it.

Automation of Mathematical Induction as part of the History of Logic 23

At a first glance, it seems highly unlikely that there could be any framework
of proof-search heuristics in which such an induction rule could succeed in im-
plementing all applications of the Theorem of Noetherian Induction, simply be-
cause this rule has to solve the two hard tasks of an induction proof, namely the
Induction-Hypotheses Task and the Induction-Ordering Task (cf. § 4.6), right at
the beginning of the proof attempt, before the proof has been sufficiently devel-
oped to exhibit its structural difficulties.

Most surprisingly, but as a matter of fact, the induction rule has proved to
be most successful in realizing all applications of the Theorem of Noetherian In-
duction required within the proof-search heuristics of the Boyer–Moore waterfall
(cf. Figure 1). Essential for this success is the relatively weak quantifier-free first-
order logic:

• No new symbols have to be introduced during the proof, such as the ones
of quantifier elimination. Therefore, the required instances of the induction
hypothesis can already be denoted when the induction rule is applied.60

• A general peculiarity of induction,61 namely that the formulation of lemmas
often requires the definition of new recursive functions, is aggravated by the
weakness of the logic; and the user is actually required to provide further
guidance for the induction rule via these new function definitions.62

Moreover, this success crucially depends on the possibility to generate additional
lemmas that are proved by subsequent inductions, which is best shown by an
example.

EXAMPLE 4 (Proof of (+3) by explicit induction).
Let us prove (+3) in the context of § 4.4, just as we have done already in Ex-
ample 2 (cf. § 4.7), but now with the induction rule as the only way to apply the
Theorem of Noetherian Induction.

As the conjecture is already properly simplified and concise, we instantiate P (w)
in the Theorem of Noetherian Induction again to the whole conjecture and reduce
this conjecture by application of the Theorem of Noetherian Induction again to

∃<.

(∀(x, y).
(
(x+ y = y +x) ⇐ ∀(x′′, y′′)< (x, y). (x′′+ y′′= y′′+ x′′)

)
∧ Wellf(<)

)
.

Based, roughly speaking, on a termination analysis for the function +, the
heuristic of the induction rule of explicit induction suggests to instantiate < to
λ(x′′, y′′), (x, y). (s(x′′)= x).

60Cf. Note 64.

61See item 2 of § 4.10.

62Cf. § 9.

24 J Strother Moore, Claus-Peter Wirth

As this relation is known to be well-founded, the induction rule reduces the
task based on axiom (nat1) to two goals, namely the base case

0 + y = y + 0;
and the step case

(s(x′)+ y = y + s(x′)) ⇐ (x′+ y = y +x′).

This completes the application of the induction rule. Thus, instances of the in-
duction hypothesis can no longer be applied in the further proof (except the ones
that have been added explicitly as conditions of step cases by the induction rule).

The induction rules of the Boyer–Moore theorem provers are not able to find the
many instances we applied in the proof of Example 2. This is different for a the-
oretically more powerful induction rule suggested by Christoph Walther (*1950),
which actually finds the proof of Example 2.63 In general, however, for harder con-
jectures, a simulation of descente infinie by the induction rule of explicit induction
would require an arbitrary look-ahead into the proofs, depending on the size of the
structure of these proofs; thus, because the induction rule is understood to have
a limited look-ahead into the proofs, such a simulation would not fall under the
paradigm of explicit induction any more. Indeed, the look-ahead of induction rules
into the proofs is typically not more than a single unfolding of a single occurrence
of a recursive function symbol, for each such occurrence in the conjecture.

Note that the two above goals of the base and the step case can also be obtained
by reducing the input conjecture with an instance of axiom (S) (cf. § 4.4), i.e. with
the Axiom of Structural Induction over 0 and s. Nevertheless, the induction rule
of the Boyer–Moore theorem provers is, in general, able to produce much more
complicated base and step cases than those that can be obtained by reduction
with the axiom (S).

Now the first goal is simplified again to y = y + 0, and then another application
of the induction rule results in two goals that can be proved without further
induction.

The second goal is simplified to

(s(x′+ y) = y + s(x′)) ⇐ (x′+ y = y +x′).

Now we use the condition from left to right for rewriting only the left-hand side
of the conclusion and then we throw away the condition completely, with the
intention to obtain a stronger induction hypothesis in a subsequent induction proof.
This is the famous “cross-fertilization” of the Boyer–Moore waterfall (cf. Figure 1).
By this, the simplified second goal reduces to

s(y + x′) = y + s(x′).

63See [Walther, 1993, p. 99f.]. On Page 100, the most interesting step case computed by
Walther’s induction rule is (rewritten to constructor-style):

s(x)+ s(y) = s(y)+ s(x) ⇐ `
x + s(y) = s(y)+ x ∧ ∀z. (z + y = y + z)

´
.

In practice, however, Walther’s induction rule has turned out to be overall less successful when
applied within a heuristic framework similar to the Boyer–Moore waterfall (cf. Figure 1).

Automation of Mathematical Induction as part of the History of Logic 25

Now the induction rule triggers a structural induction on y, which is successful
without further induction.

All in all, although the induction rule of the Boyer–Moore theorem provers does
not find the more complicated induction hypotheses of the descente infinie proof
of Example 2 in § 4.7, it is well able prove our original conjecture with the help of
the additional lemmas y = y + 0 and s(y + x′) = y + s(x′).

It is crucial here that the heuristics of the Boyer–Moore waterfall discover these
lemmas automatically, and that this is also typically the case in general.

From a logical viewpoint, these lemmas are redundant because they follow
from the original conjecture and the definition of +. From a heuristic viewpoint,
however, they are more useful than the original conjecture, because — oriented for
rewriting from right to left — their application tends to terminate in the context of
the overall simplification by symbolic evaluation, which constitutes the first stage
of the waterfall. ¤

Although the two proofs of the very simple conjecture (+3) given in Exam-
ples 2 and 4 can only give a very rough idea on the advantage of descente infinie for
hard induction proofs,64 these two proofs nicely demonstrate how the induction
rule of explicit induction manages to prove simple theorems very efficiently and
with additional benefits for the further performance of the simplification proce-
dure.

Moreover, for proving very hard theorems for which the overall waterfall heuris-
tic fails, the user can state hints and additional lemmas with additional notions
in any Boyer–Moore theorem prover, except thePure LISP Theorem Prover.

4.8.2 Theoretical Viewpoint on Explicit Induction

From a theoretical viewpoint, we have to be aware of the possibility that the
intended models of specifications in explicit-induction systems may also include
non-standard models.

64For some of the advantages of descente infinie, see Example 12 in § 6.2.6, and especially
the more difficult, complete formal proof of Max H. A. Newman’s famous lemma in [Wirth,
2004, § 3.4], where the reverse of a well-founded relation is shown to be confluent in case of
local confluence — by induction w.r.t. this well-founded relation itself. The induction rule of
explicit induction cannot be applied here because an eager induction hypothesis generation is not
possible: The required instances of the induction hypothesis contain δ-variables that can only be
generated later during the proof by quantifier elimination.

Though confluence is the Church–Rosser property, the Newman Lemma has nothing to do
with the Church–Rosser Theorem stating the confluence of the rewrite relation of αβ-reduction
in untyped λ-calculus, which has actually been verified with a Boyer–Moore theorem prover in the
first half of the 1980s by Shankar [1988] (see the last paragraph of § 6.4 and Note 175) following
the short Tait/Martin-Löf proof found e.g. in [Barendregt, 2012, p. 59ff.]. Unlike the Newman
Lemma, Shankar’s proof proceeds by structural induction on the λ-terms, not by Noetherian
induction w.r.t. the reverse of the rewrite relation; indeed, untyped λ-calculus is not terminating.

26 J Strother Moore, Claus-Peter Wirth

For the natural numbers, for instance, there may be Z-chains in addition to
the natural numbers N, whereas the higher-order specifications of Peano and Pieri
specify exactly the natural numbers N up to isomorphism.65 This is indeed the
case for the case of the Boyer–Moore theorem provers as explained in Note 138.
These Z-chains cannot be excluded because the inference rules realize only first-
order deductive reasoning, except for the induction rule to which all applications
of the Theorem of Noetherian Induction are confined and which does not use any
higher-order properties, but only well-founded orderings that are defined in the
first-order logic of the explicit-induction system.

4.8.3 Practical Viewpoint on Explicit Induction

Note that the application of the induction rule of explicit induction is not im-
plemented via a reference to the Theorem of Noetherian Induction, but directly
handles the following practical tasks and their heuristic decisions.

In general, the induction stage of the Boyer–Moore waterfall (cf. Figure 1) ap-
plies the induction rule once to its input formula, which results in a conjunction
— or conjunctive set — of base and step cases to which the input conjecture
reduces, i.e. whose validity implies the validity of the input conjecture.

Therefore, a working mathematician would expect that the induction rule of
explicit induction solves the following two tasks:

1. Choose some of the variables in the conjecture as induction variables, and
split the conjecture into several base and step cases, based on the induction
variables’ demand on which governing conditions and constructor substi-
tutions66 have to be added to be able to unfold — without further case
analysis — some of the recursive function calls that contain the induction
variables as direct arguments.

2. Eagerly generate the induction hypotheses for the step cases.

The actual realization of these tasks in the induction rule, however, is quite differ-
ent from these expectations: Induction variables play only a very minor rôle toward
the end of the procedure (in the deletion of flawed induction schemes, cf. § 6.3.8),
the focus is on complete step cases including eagerly generated induction hypo-
theses, and the complementing bases case are generated only at the very end.67

65Contrary to the Z-chains (which are structures similar to the integers Z, injectively generated
from an arbitrary element via s and its inverse, where every element is greater than every standard
natural number), “s-circles” cannot exist because it is possible to show by structural induction
on x the two lemmas lessp(x, x)= false and lessp(x, sn+1(x))= true for each standard meta-level
natural number n.

66This adding of constructor substitutions refers to the application of axioms like (nat1)
(cf. § 4.4), and is required whenever constructor style either is found in the recursive function
definitions or is to be used for the step cases. In the Pure LISP Theorem Prover, only the
latter is the case. In Thm, none is the case.

67See, e.g., Example 10 of § 5.8.

Automation of Mathematical Induction as part of the History of Logic 27

4.9 Generalization

Contrary to merely deductive, analytic theorem proving, an input conjecture for
a proof by induction is not only a task (as induction conclusion) but also a tool
(as induction hypothesis) in the proof attempt. Therefore, a stronger conjecture
is often easier to prove because it supplies us with a stronger induction hypothesis
during the proof attempt.

Such a step from a weaker to a stronger input conjecture is called generalization.
Generalization is to be handled with great care because it is an unsafe reduction

step in the sense that it may reduce a valid conjecture to an invalid one; such a
reduction is called over-generalization.

Generalization of input conjectures directly supplied by humans is rarely helpful
because stating sufficiently general theorems is part of the standard mathematical
training in induction. As we have seen in Example 4 of § 4.8.1, however, explicit
induction often has to start another induction during the proof, and then the
secondary, machine-generated input conjecture often requires generalization.

The two most simple syntactical generalizations are the replacement of terms
with fresh universal variables and the removal of irrelevant side conditions.

In the vernacular of Boyer–Moore theorem provers, the first is simply called
“generalization” and the second is called “elimination of irrelevance”. They are
dealt with in two consecutive stages of these names in the Boyer–Moore waterfall,
which come right before the induction stage.

The removal of irrelevant side conditions is intuitively clear. For formulas in
clausal form, it simply means to remove irrelevant literals. More interesting are
the heuristics of its realization, which we discuss in § 6.3.5.

The less clear process of generalization typically proceeds by the replacement
of all occurrences of a non-variable68 term with a fresh variable.

This is especially promising for a subsequent induction if the same non-variable
term has multiple occurrences in the conjecture, and becomes even more promising
if these occurrences are found on both sides of the same positive equation or in
literals of different polarity, say in a conclusion and a condition of an implication.

To avoid over-generalization, subterms are to be preferred to their super-terms,69

and one should never generalize a term of any of the following forms: a constructor
term, a top level term, a term with a logical operator (such as implication or equal-
ity) as top symbol, a direct argument of a logical operator, or the first argument of a
conditional (IF). Indeed, for any of these forms, the information loss by general-
ization is typically so high that the generalization results in an invalid conjecture.

How powerful generalization can be is best seen by the multitude of its successful
automatic applications, which often surprise humans. Here is one of these:

68Besides the replacement of (typically all) the occurrences of a non-variable term, there is
also the possibility of replacing some — but not all — occurrences of a variable with a fresh
variable. This is a very delicate process, but heuristics for it were discussed very early, namely
in [Aubin, 1976, § 3.3].

69This results in a weaker conjecture and the stronger one remains available by generalization.

28 J Strother Moore, Claus-Peter Wirth

EXAMPLE 5 (Proof of (ack4) by Explicit Induction and Generalization).
Let us prove (ack4) in the context of § 4.4 by explicit induction. It is obvious
that such a proof has to follow the definition of ack in the three cases (ack1),
(ack2), (ack3), using the termination ordering of ack, which is just the lexicographic
combination of its arguments. So the induction rule of explicit induction reduces
the input formula (ack4) to the following goals:70

lessp(y, ack(0, y)) = true;
lessp(0, ack(s(x′), 0))= true ⇐ lessp(s(0), ack(x′, s(0)))= true;
lessp(s(y′), ack(s(x′), s(y′))) = true

⇐
(

lessp(y′, ack(s(x′), y′)) = true
∧ lessp(ack(s(x′), y′), ack(x′, ack(s(x′), y′)))= true

)
.

After simplifying with (ack1), (ack2), (ack3), respectively, we obtain:
lessp(y, s(y)) = true;
lessp(0, ack(x′, s(0)))= true ⇐ lessp(s(0), ack(x′, s(0)))= true;
lessp(s(y′), ack(x′, ack(s(x′), y′)))= true

⇐
(

lessp(y′, ack(s(x′), y′)) = true
∧ lessp(ack(s(x′), y′), ack(x′, ack(s(x′), y′)))= true

)
.

Now the base case is simply an instance of our lemma (lessp4). Let us simplify
the two step cases by introducing variables for their common subterms:

lessp(0, z)= true ⇐ (
lessp(s(0), z) = true ∧ z = ack(x′, s(0))

)
;

lessp(s(y′), z2)= true ⇐
(

lessp(y′, z1)= true ∧ lessp(z1, z2)= true
∧ z1 = ack(s(x′), y′) ∧ z2 = ack(x′, z1)

)
.

Now the first follows from applying (nat1) to z. Before we can prove the second
by another induction, however, we have to generalize it to the lemma (lessp7) of
§ 4.4 by deleting the last two literals from the condition. ¤

In combination with explicit induction, generalization becomes especially powerful
in the invention of new lemmas of general interest, because the step cases of explicit
induction tend to have common occurrences of the same term in their conclusion
and their condition. Indeed, the lemma (lessp7), which we have just discovered
in Example 5, is one of the most useful lemmas in the theory of natural numbers.

It should be noted that all Boyer–Moore theorem provers except the Pure LISP
Theorem Prover are able to do this whole proof completely automatically and
invent the lemma (lessp7) by generalization of the second step case; and they do
this even when they work with an arithmetic theory that was redefined, so that
no decision procedures or other special knowledge on the natural numbers can be
used by the system. Moreover, as shown in § 3.3 of [Wirth, 2004], in a slightly
richer logic, these heuristics can actually synthesize the lower bound in the first
argument of lessp from the weaker input conjecture ∃z. (lessp(z, ack(x, y))= true),
simply because lessp does not contribute to the choice of the base and step cases.

70See Example 10 of § 5.8 on how these step cases are actually found in explicit induction.

Automation of Mathematical Induction as part of the History of Logic 29

4.10 Proof-Theoretical Peculiarities of Mathematical Induction

The following two proof-theoretical peculiarities of induction compared to first-
order deduction may be considered noteworthy:71

1. A calculus for arithmetic cannot be complete, simply because the theory of
the arithmetic of natural numbers is not enumerable.72

2. According to Gentzen’s Hauptsatz,73 a proof of a first-order theorem can
always be restricted to the “sub”-formulas of this theorem. In contrast to
lemma application in a deductive proof tree, however, the application of
induction hypotheses and lemmas inside an inductive reasoning cycle cannot
generally be eliminated in the sense that the “sub”-formula property could
be obtained.74 As a consequence, in first-order inductive theorem proving,
“creativity” cannot be restricted to finding just the proper instances, but
may require the invention of new lemmas and notions.75

4.11 Conclusion

In this section, after briefly presenting the induction method in its rich historical
context, we have offered a formalization and a first practical description. More-
over, we have explained why we can take Fermat’s term “descente infinie” in our
modern context as a synonym for the standard high-level method of mathematical
induction. Finally, we have introduced explicit induction and generalization.

Noetherian induction requires domains for its well-founded orderings; and these
domains are typically built-up by constructors. Therefore, the discussion of the
method of induction required the introduction of some paradigmatic data types,
such as natural numbers and lists.

To express the relevant notions on these data types, we need recursion, a method
of definition, which we have often used in this section intuitively. We did not dis-
cuss its formal admissibility requirements yet. We will do so in § 5, with a focus on
modes of recursion that admit an effective consistency test, including termination
aspects such as induction templates and schemes.

71Note, however, that these peculiarities of induction do not make a difference to first-order
deductive theorem proving in practice. See Notes 72 and 75.

72This theoretical result is given by Gödel’s first incompleteness theorem [1931]. In practice,
however, it does not matter whether our proof attempt fails because our theorem will not be
enumerated ever, or will not be enumerated before doomsday.

73Cf. [Gentzen, 1935].

74Cf. [Kreisel, 1965].

75In practice, however, proof search for harder theorems often requires the introduction of
lemmas, functions, and relations, and it is only a matter of degree whether we have to do this
for principled reasons (as in induction) or for tractability (as required in first-order deductive
theorem proving, cf. [Baaz and Leitsch, 1995]).

30 J Strother Moore, Claus-Peter Wirth

5 RECURSION, TERMINATION, AND INDUCTION

5.1 Recursion and the Rewrite Relation on Ground Terms

Recursion is a form of programming or definition where a newly defined notion
may even occur in its definientia. Contrary to explicit definitions, where we can
always get rid of the new notions by reduction (i.e. by rewriting the definienda
(left-hand sides of the defining equations) to the definientia (right-hand sides)),
reduction with recursive definitions may run forever.

We have already seen some recursive function definitions in §§ 4.4 and 4.5, such
as the ones of +, lessp, length, and count, where these function symbols occurred in
some of the right-hand sides of the equations of their own definitions; for instance,
the function symbol + occurs in the right-hand side of (+2) in § 4.4.

The steps of rewriting with recursive definitions can be formalized as a binary
relation on terms, namely as the rewrite relation that results from reading the
defining equations as reduction rules, in the sense that they allow us to replace
occurrences of left-hand sides of instantiated equations with their respective right-
hand sides, provided that their conditions are fulfilled.76

A ground term is a term without variables. We can restrict our considerations
here to rewrite relations on ground terms.

5.2 Confluence

The restriction that is to be required for every recursive function definition is the
confluence77 of this rewrite relation on ground terms.

The confluence restriction guarantees that no distinct objects of the data types
can be equated by the recursive function definitions.78

This is essential for consistency if we assume axioms such as (nat2–3) (cf. § 4.4)
or (list(nat)2–3) (cf. § 4.5).

Indeed, without confluence, a definition of a recursive function could destroy the
data type in the sense that the specification has no model anymore; for example,
if we added p(x) = 0 as a further defining equation to (p1), then we would get
s(0) = p(s(s(0))) = 0, in contradiction to the axiom (nat2) of § 4.4.

76For the technical meaning of fulfilledness in the recursive definition of the rewrite relation see
[Wirth, 2009], where it is also explained why the rewrite relation respects the straightforward
purely logical, model-theoretic semantics of positive/negative-conditional equation equations,
provided that the given admissibility conditions are satisfied (as is the case for all our examples).

77A relation −→ is confluent (or has the “Church–Rosser property”) if two sequences of steps
with −→, starting from the same element, can always be joined by an arbitrary number of further

steps on each side; formally:
+←− ◦ +−→ ⊆ ∗−→ ◦ ∗←−. Here ◦ denotes the concatenation of

binary relations; for the further notation see § 4.1.

78As constructor terms are irreducible w.r.t. this rewrite relation, if the application of a defined
function symbol rewrites to two constructor terms, they must be identical in case of confluence.

Automation of Mathematical Induction as part of the History of Logic 31

For the recursive function definitions admissible in the Boyer–Moore theorem
provers, confluence results from the restrictions that there is only one (uncondi-
tional) defining equation for each new function symbol,79 and that all variables
occurring on the right-hand side of the definition also occur on the left-hand side
of the defining equation.80

These two restrictions are an immediate consequence of the general definition
style of the list-programming language LISP. More precisely, recursive functions
are to be defined in all Boyer–Moore theorem provers in the more restrictive style
of applicative LISP.81

EXAMPLE 6 (A Recursive Function Definition in Applicative LISP).
Instead of our two equations (+1), (+2) for +, we find the following single equation
on Page 53 of the standard reference for the Boyer–Moore heuristics [Boyer and
Moore, 1979]:

(PLUS X Y) = (IF (ZEROP X)
(FIX Y)
(ADD1 (PLUS (SUB1 X) Y)))

Note that (IF x y z) is nothing but the conditional “IF z then y else z”, that
ZEROP is a Boolean function checking for being zero, that (FIX Y) returns Y
if Y is a natural number, and that ADD1 is the successor function s.

The primary difference to (+1), (+2) is that PLUS is defined in destructor
style instead of the constructor style of our equations (+1), (+2) in § 4.4. As a
constructor-style definition can always be transformed into an equivalent destructor-
style definition, let us do so for our definition of + via (+1), (+2).

In place of the untyped destructor SUB1, let us use the typed destructor p
defined by either by (p1) or by (p1′) of § 4.4, which — just as SUB1 — returns
the predecessor of a positive natural number. Now our destructor-style definition
of + consists of the following two positive/negative-conditional equations:

(+1′) x+ y = y ⇐ x= 0

(+2′) x+ y = s(p(x)+ y) ⇐ x 6= 0

If we compare this definition of + to the one via the equations (+1), (+2), then
we find that the constructors 0 and s have been removed from the left-hand sides of
the defining equations; they are replaced with the destructor p on the right-hand
side and with some conditions.

Now it is easy to see that (+1′), (+2′) represent the above definition of PLUS
in positive/negative-conditional equations, provided that we ignore that Boyer–
Moore theorem provers have no types and no typed variables. ¤

79Cf. item (a) of the “definition principle” of [Boyer and Moore, 1979, p. 44f.]. Confluence is
also discussed under the label “uniqueness” on Page 87ff. of [Moore, 1973].

80Cf. item (c) of the “definition principle” of [Boyer and Moore, 1979, p. 44f.].

32 J Strother Moore, Claus-Peter Wirth

If we considered the recursive equation (+2) together with the alternative recursive
equation (+2′), then we could rewrite s(x) + y on the one hand with (+2) into
s(x + y), and, on the other hand, with (+2′) into s(p(s(x))+ y). This does not
seem to be problematic, because the latter result can be rewritten to the former
one by (p1).

In general, however, confluence is undecidable and criteria sufficient for con-
fluence are extremely hard to develop. The only known decidable criterion that
is sufficient for confluence of conditional equations and applies to all our exam-
ple specifications, but does not require termination, is found in [Wirth, 2009].82

It can be more easily tested than the admissibility conditions of the Boyer–Moore
theorem provers and avoids divergence even in case of non-termination; the proof
that it indeed guarantees confluence is very involved.

5.3 Termination and Reducibility

There are two restrictions that are additionally required for any function definition
in the Boyer–Moore theorem provers, namely termination of the rewrite relation
and reducibility of all ground terms that contain a defined function symbol w.r.t.
the rewrite relation.

The requirement of termination should be intuitively clear; we will further
discuss it in § 5.5.

To understand the requirement of reducibility, note that it is not only so that we
can check the soundness of (+1′) and (+2′) independently from each other, we can
even omit one of the equations, resulting in a partial definition of the function +.
Indeed, for the function p we did not specify any value for p(0); so p(0) is not
reducible in the rewrite relation that results from reading the specifying equations
as reduction rules.

A function defined in a Boyer–Moore theorem prover, however, must always
be specified completely, in the sense that every application of such a function
to (constructor) ground terms must be reducible. This reducibility immediately
results from the LISP definition style, which requires all arguments of the function
symbol on the left-hand side of its defining equation to be distinct variables.83

81See [McCarthy et al., 1965] for the definition of LISP. The “‘applicative” subset of LISP
lacks side effects via global variables and the imperative commands of LISP, such as variants of
PROG, SET, GO, and RETURN, as well as all functions or special forms that depend on the concrete
allocation on the system heap, such as EQ, RPLACA, and RPLACD, which can be used in LISP to
realize circular structures or to save space on the system heap.

82The effective confluence test of [Wirth, 2009] requires binding-triviality or -complementary of
every critical peak, and effective weak-quasi-normality, i.e. that each equation in the condition
must be restricted to constructor variables (cf. § 5.4), or that one of its top terms either is a
constructor term or occurs as the argument of a definedness literal in the same condition.

83Cf. item (b) of the “definition principle” of [Boyer and Moore, 1979, p. 44f.].

Automation of Mathematical Induction as part of the History of Logic 33

5.4 Constructor Variables

These restrictions of reducibility and termination of the rewrite relation are not
essential; neither for the semantics of recursive function definitions with data types
given by constructors,84 nor for confluence and consistency.85

Note that these two restrictions imply that only total recursive functions86 are
admissible in the Boyer–Moore theorem provers.

As a termination restriction is not in the spirit of the LISP logic of the Boyer–
Moore theorem provers, we have to ask why Boyer and Moore brought up this
additional restriction.

When both reducibility and termination are given, then — similar to the clas-
sical case of explicitly defined notions — we can get rid of all recursively defined
function symbols by rewriting, but in general only for ground terms.

A better potential answer is found on Page 87ff. of [Moore, 1973], where con-
fluence of the rewrite relation is discussed and a reference to Russell’s Paradox
serves as an argument that confluence alone would not be sufficient for consistency.
The argumentation is essentially the following: First, a Boolean function russell
is recursively defined by

(russell1) russell(b) = false ⇐ russell(b) = true

(russell2) russell(b) = true ⇐ russell(b) = false

Then it is claimed that this function definition would result in an inconsistent
specification on the basis of the axioms (bool1–2) of § 4.5.

This inconsistency, however, arises only if the variable b of the axiom (bool1)
can be instantiated with the term russell(b), which is actually not our intention
and which we do not have to permit: If all variables we have introduced so far
are constructor variables87 in the sense that they can only be instantiated with
terms formed from constructor function symbols (incl. constructor constants) and
constructor variables, then irreducible terms such as russell(b) can denote junk
objects different from true and false, and no inconsistency arises.88

Note that these constructor variables are implicitly part of the LISP semantics
with its innermost evaluation strategy. For instance, in Example 6 of § 5.2, neither
the LISP definition of PLUS nor its representation via the positive/negative-condi-
tional equations (+1′), (+2′) is intended to be applied to a non-constructor term

84Cf. [Wirth and Gramlich, 1994b].

85Cf. [Wirth, 2009].

86You may follow the explicit reference to [Schoenfield, 1967] as the basis for the logic of the
Pure LISP Theorem Prover on Page 93 of [Moore, 1973].

87Such constructor variables were formally introduced for the first time in [Wirth et al., 1993]

and became an essential part of the frameworks found in [Wirth and Gramlich, 1994a; 1994b],
[Kühler and Wirth, 1996; 1997], [Wirth, 1997; 2009] [Kühler, 2000], [Avenhaus et al., 2003], and
[Schmidt-Samoa, 2006a; 2006b; 2006c].

88For the appropriate semantics see [Wirth and Gramlich, 1994b], [Kühler and Wirth, 1997].

34 J Strother Moore, Claus-Peter Wirth

in the sense that X or x should be instantiated to a term that is a function call of
a (partially) defined function symbol that may denote a junk object.

Moreover, there is evidence that Moore considered the variables already in 1973
as constructor variables: On Page 87 in [Moore, 1973], we find formulas on de-
finedness and confluence, which make sense only for constructor variables; the one
on definedness of the Boolean function AND reads89

∃Z (IF X (IF Y T NIL) NIL) = Z,

which is trivial for a general variable Z and makes sense only if Z is taken to be a
constructor variable.

Finally, the way termination is established via induction templates in Boyer–
Moore theorem provers and as we will describe it in § 5.5, is sound for the rewrite
relation of the defining equations only if we consider the variables of these equations
to be constructor variables (or if we restrict the termination result to an innermost
rewriting strategy and require that all function definitions are total).

5.5 Termination and General Induction Templates

In addition to the restricted style of recursive definition that is found in LISP
and that guarantees reducibility of terms with defined function symbols and con-
fluence as described in §§ 5.3 and 5.4, the theorem provers for explicit induction
require termination of the rewrite relation that results from reading the specifying
equations as reduction rules. More precisely, in all Boyer–Moore theorem provers
except the Pure LISP Theorem Prover,90 before a new function symbol fk is
admitted to the specification, a “valid induction template” — which immediately
implies termination — has to be constructed from the defining equation of fk.91

Induction templates were first used in Thm and received their name when they
were first described in [Boyer and Moore, 1979].

Every time a new recursive function fk is defined, a system for explicit induction
immediately tries to construct valid induction templates; if it does not find any,
then the new function symbol is rejected w.r.t. the given definition; otherwise the
system links the function name with its definition and its valid induction templates.

The induction templates serve actually two purposes: as witnesses for termina-
tion and as the basic tools of the induction rule of explicit induction for generating
the step cases.

89In the logic of the Pure LISP Theorem Prover, the special form IF is actually called
“COND”. This is most confusing because COND is a standard special form in LISP, different
from IF. Therefore, we will ignore this peculiarity and tacitly write “IF” here and in what
follows for every “COND” of the Pure LISP Theorem Prover.

90Note that termination is not proved in the Pure LISP Theorem Prover; instead, the sound-
ness of the induction proofs comes with the proviso that the rewrite relation of all defined function
symbols terminate.

91See also item (d) of the “definition principle” of [Boyer and Moore, 1979, p. 44f.] for a for-
mulation that avoids the technical term “induction template”.

Automation of Mathematical Induction as part of the History of Logic 35

For a finite number of mutually recursive functions fk with arity nk (k∈K),
an induction template in the most general form consists of the following:

1. A relational description92 of the changes in the argument pattern of these
recursive functions as found in their recursive defining equations:
For each k ∈ K and for each positive/negative-conditional equation with a
left-hand side of the form fk(t1, . . . , tnk

), we take the set R of recursive func-
tion calls of the fk′ (k′ ∈K) occurring in the right-hand side or the condition,
and some case condition C, which must be a subset of the conjunctive condi-
tion literals of the defining equation. Typically, C is empty (i.e. always true)
in the case of constructor-style definitions, and just sufficient to guarantee
proper destructor applications in the case of destructor-style definitions.
Together they form the triple (fk(t1, . . . , tnk

), R, C), and a set containing
such a triple for each such defining equation forms the relational description.
For our definition of + via (+1), (+2) in § 4.4, there is only one recursive
equation and only one relevant relational description, namely the following
one with an empty case condition:

{ (
s(x)+ y, {x + y}, ∅) }

.

Also for our definition of + with (+1′), (+2′) in Example 6, there is only
one recursive equation and only one relevant relational description, namely

{ (
x+ y, {p(x)+ y}, {x 6= 0}) }

.

2. For each k ∈ K, a variable-free weight term wfk
in which the position

numbers (1), . . . , (nk) are used in place of variables. The position numbers
actually occurring in the term are called the measured positions.
For our two relational descriptions, only the weight term (1) (consisting just
of a position number) makes sense as w+, resulting in the set of measured
positions {1}. Indeed, + terminates in both definitions because the argu-
ment in the first position gets smaller.

3. A binary predicate < that is known to represent a well-founded relation.
For our two relational descriptions, the predicate λx, y. (lessp(x, y)= true),
is appropriate.

Now, an induction template is valid if for each element of the relational description
as given above, and for each fk′(t′1, . . . , t

′
nk′

) ∈ R, the following conjecture is valid:

wfk′{(1)7→t′1, . . . , (nk′)7→t′nk′
} < wfk

{(1)7→t1, . . . , (nk) 7→tnk
} ⇐ ∧

C.

For our two relational descriptions, this amounts to showing lessp(x, s(x))= true
and lessp(p(x), x)= true ⇐ x 6= 0, respectively; so their templates are both valid
by lemma (lessp4) and axioms (nat1–2) and (p1).

92The name “relational description” comes from [Walther, 1992; 1993].

36 J Strother Moore, Claus-Peter Wirth

EXAMPLE 7 (Two Induction Templates with different Measured Positions).
For the ordering predicate lessp as defined by (lessp1–3) of § 4.4, we get two ap-
propriate induction templates with the sets of measured positions {1} and {2},
respectively, both with the relational description{ (

lessp(s(x), s(y)), {lessp(x, y)}, ∅) }
,

and both with the well-founded ordering λx, y. (lessp(x, y)= true). The first tem-
plate has the weight term (1) and the second one has the weight term (2). The
validity of both templates is given by lemma (lessp4) of § 4.4. ¤

EXAMPLE 8 (One Induction Template with Two Measured Positions).
For the Ackermann function ack as defined by (ack1–3) of § 4.4, we get only one
appropriate induction template. The set of its measured positions is {1, 2}, be-
cause of the weight function cons((1), cons((2), nil)), which we will abbreviate in
the following with [(1), (2)]. The well-founded relation is the lexicographic order-
ing λl, k. (lexlimless(l, k, s(s(s(0))))= true). The relational description has two
elements: For the equation (ack2) we get(

ack(s(x), 0), {ack(x, s(0))}, ∅)
,

and for the equation (ack3) we get(
ack(s(x), s(y)), {ack(s(x), y), ack(x, ack(s(x), y))}, ∅)

.
The validity of the template is expressed in the three equations

lexlimless([x, s(0)], [s(x), 0], s(s(s(0)))) = true;
lexlimless([s(x), y], [s(x), s(y)], s(s(s(0)))) = true;
lexlimless([x, ack(s(x), y)], [s(x), s(y)], s(s(s(0)))) = true;

which follow deductively from (lessp4), (lexlimless1), (lexless2–4), (length1–2). ¤

For valid induction templates of destructor-style definitions see Examples 18 and 19
in § 6.3.7.

5.6 Termination of the Rewrite Relation on Ground Terms

Let us prove that the existence of a valid induction template for a new set of recur-
sive functions fk (k∈K) actually implies termination of the rewrite relation after
addition of the new positive/negative-conditional equations for the fk, assuming
any arbitrary model M of the old equations to be given.

For an argumentum ad absurdum, suppose that there is an infinite sequence of
rewrite steps on ground terms. Consider each term in this sequence to be replaced
with the multiset that contains, for each occurrence of a function call fk(t1, . . . , tnk

)
with k∈K, the value of its weight term wfk

{(1)7→t1, . . . , (nk) 7→tnk
} in M.

Then the rewrite steps with instances of the old equations of previous function
definitions (of symbols not among the fk) can change the multiset only by deleting
some elements for the following two reasons: Instances that do not contain any
new function symbol have no effect on the values in M, because M is a model of
the old equations. There are no other instances because the new function symbols
do not occur in the old equations, and because we consider all our variables to be
constructor variables as explained in § 5.4.93

Automation of Mathematical Induction as part of the History of Logic 37

Moreover, a rewrite step with a new equation reduces the multiset in a well-
founded relation, namely the multiset extension of the well-founded relation of
the template in the assumed model M. This follows from the fulfilledness of the
conditions of the equation and the validity of the template.

Thus, in each rewrite step, the multiset gets smaller in a well-founded order-
ing or does not change. Moreover, if we assume that rewriting with the old
equations terminates, then the new equations must be applied infinitely often in
this sequence, and so the multiset gets smaller in infinitely many steps, which is
impossible in a well-founded ordering.

5.7 Applicable Induction Templates for Explicit Induction

We restrict the discussion in this section to recursive functions that are not mu-
tually recursive, partly for simplicity and partly because induction templates are
hardly helpful for finding proofs involving non-trivially mutually recursive func-
tions.94

Moreover, in principle, users can always encode mutually recursive functions
fk(. . .) by means of a single recursive function f(k, . . .). Via such an encoding,
humans tend to provide additional heuristic information relevant for induction
templates, namely by the way they standardize the argument list w.r.t. length
and position (cf. the “changeable positions” below).

Thus, all the fk with arity nk of § 5.5 simplify to one symbol f with arity n.
Moreover, under this restriction it is easy to partition the measured positions of a
template into “changeable” and “unchangeable” ones.95

Changeable are those measured positions i of the template which sometimes
change in the recursion, i.e. for which there is a triple (f(t1, . . . , tn), R, C) in
the relational description of the template, and an f(t′1, . . . , t

′
n) ∈ R such that

t′i 6= ti. The remaining measured positions of the template are called unchangeable.
Unchangeable positions typically result from the inclusion of a global variable into
the argument list of a function (to observe an applicative programming style).

To improve the applicability of the induction hypotheses of the step cases
produced by the induction rule, these induction hypotheses should mirror the
recursive calls of the unfolding of the definition of a function f occurring in the
induction rule’s input formula, say

A[f(t′′1 , . . . , t′′n)].
93Among the old equations here, we may even admit projective equations with general vari-

ables, such as for destructors and the conditional function IfThenElsenat : bool, nat, nat→ nat:
p(s(X))= X car(cons(X, L)) = X

cdr(cons(X, L))= L
IfThenElsenat(true, X, Y) = X
IfThenElsenat(false, X, Y)= Y

for general variables X, Y : nat, L : list(nat), ranging over general terms (instead of constructor
terms only). Moreover, we can drop all typing restrictions because they are irrelevant here.

94See, however, [Kapur and Subramaniam, 1996] for explicit-induction heuristics applicable to
simple forms of mutual recursion.

95This partition into changeable and unchangeable positions (actually: variables) originates in
[Boyer and Moore, 1979, p. 185f.].

38 J Strother Moore, Claus-Peter Wirth

An induction template is applicable to the indicated occurrence of its function
symbol f if the terms t′′i at the changeable positions i of the template are dis-
tinct variables and none of these variables occurs in the terms t′′i′ that fill the
unchangeable positions i′ of the template.96 For templates of constructor-style
equations we additionally have to require here that the first element f(t1, . . . , tn)
of each triple of the relational description of the template matches (f(t′′1 , . . . , t′′n))ξ
for some constructor substitution ξ that may replace the variables of f(t′′1 , . . . , t′′n)
with constructor terms, i.e. terms consisting of constructor symbols and variables,
such that t′′i ξ = t′′i for each unchangeable position i of the template.

EXAMPLE 9 (Applicable Induction Templates).
Let us consider the conjecture (ack4) from § 4.4. From the three induction tem-
plates of Examples 7 and 8, only the one of Example 8 is applicable. The two
of Example 7 are not applicable because lessp(s(x), s(y)) cannot be matched to
(lessp(y, ack(x, y)))ξ for any constructor substitution ξ. ¤

5.8 Induction Schemes

Let us recall that for every recursive call f(t′j′,1, . . . , t
′
j′,n) in a positive/negative-

conditional equation with left-hand side f(t1, . . . , tn), the relational description
of an induction template for f contains a triple

(
f(t1, . . . , tn), { f(t′j,1, . . . , t

′
j,n) | j ∈J }, C

)
,

such that j′ ∈ J (by definition of an induction template).
Let us assume that the induction template is valid and applicable to the occur-

rence indicated in the formula A[f(t′′1 , . . . , t′′n)] given as input to the induction rule
of explicit induction. Let σ be the substitution whose domain are the variables
of f(t1, . . . , tn) and which matches the first element f(t1, . . . , tn) of the triple to
(f(t′′1 , . . . , t′′n))ξ for some constructor substitution ξ whose domain are the vari-
ables of f(t′′1 , . . . , t′′n), such that t′′i ξ = t′′i for each unchangeable position i of the
template. Then we have tiσ = t′′i ξ for i ∈ {1, . . . , n}.

Now, for the well-foundedness of the generic step-case formula((
A[f(t′′1 , . . . , t′′n)]

)
ξ ⇐ ∧

j∈J

(
A[f(t′′1 , . . . , t′′n)]

)
µj

)
⇐ ∧

Cσ

to be implied by the validity of the induction template, it suffices to take substitu-
tions µj whose domain dom(µj) is the set of variables of f(t′′1 , . . . , t′′n), such that
the constraint t′′i µj = t′j,iσ is satisfied for each measured position i of the template
and for each j ∈ J (because of t′′i ξ = tiσ).

If i is an unchangeable position of the template, then we have ti = t′j,i and
t′′i ξ = t′′i . Therefore, we can satisfy the constraint by requiring µj to be the identity
on the variables of t′′i , simply because then we have t′′i µj = t′′i = t′′i ξ = tiσ = t′j,iσ.

If i is a changeable position, then we know by the applicability of the template
that t′′i is a variable not occurring in another changeable or unchangeable position
in f(t′′1 , . . . , t′′n), and we can satisfy the constraint simply by defining t′′i µj := t′j,iσ.

Automation of Mathematical Induction as part of the History of Logic 39

On the remaining variables of f(t′′1 , . . . , t′′n), we define µj in a way that we
get t′′i µj = t′j,iσ for as many unmeasured positions i as possible, and otherwise as
the identity. This is not required for well-foundedness, but it improves the likeli-
ness of applicability of the induction hypothesis (A[f(t′′1 , . . . , t′′n)])µj after unfold-
ing f(t′′1 , . . . , t′′n)ξ in (A[f(t′′1 , . . . , t′′n)])ξ. Note that such an eager instantiation is
required in explicit induction unless the logic admits one of the following: existen-
tial quantification, existential variables,97 lazy induction-hypothesis generation.

An induction scheme for the given input formula consists of the following items:

1. The position set contains the position of f(t′′1 , . . . , t′′n) in A[f(t′′1 , . . . , t′′n)].
Merging of induction schemes may lead to non-singleton position sets later.

2. The set of the induction variables, which are defined as the variables at the
changeable positions of the induction template in f(t′′1 , . . . , t′′n).

3. To obtain a step-case description for all step cases by means of the generic
step-case formula displayed above, each triple in the relational description
of the considered form is replaced with the new triple(

ξ, {µj | j ∈ J }, Cσ
)
.

To make as many induction hypotheses available as possible in each case,
we assume that step-case descriptions are implicitly kept normalized by the
following associative commutative operation: If two triples are identical in
their first elements and in their last elements, we replace them with the single
triple that has the same first and last elements and the union of the middle
elements as new middle element.

4. We also add the hitting ratio98 of all substitutions µj with j ∈ J given by
|{ (j, i) ∈ J×{1, . . . , n} | t′′i µj = t′j,iσ }|

|J×{1, . . . , n}| ,

where J actually has to be the disjoint sum over all the J occurring as index
sets of second elements of triples like the one displayed above.

Note that the resulting step-case description is a set describing all step cases of
an induction scheme; these step cases are guaranteed to be well-founded,99 but
— for providing a sound induction formula — they still have to be complemented
by base cases, which may be analogously described by triples (ξ, ∅, C), such that
all substitutions in the first elements of the triples together describe a distinction
of cases that is complete for constructor terms and, for each of these substitutions,
its case conditions describe a complete distinction of cases again.

96This definition of applicability originates in [Boyer and Moore, 1979, p. 185f.].
97Existential variables are called “free variables” in modern tableau systems (see the

2nd rev. edn. [Fitting, 1996], but not its 1st edn. [Fitting, 1990]) and occur with extended func-
tionality under different names in the inference systems of [Wirth, 2004; 2012b; 2013].

98We newly introduce this name here in the hope that it helps the readers to remember that
this ratio measures how well the induction hypotheses hit the recursive calls.

99Well-foundedness is indeed guaranteed according to the above discussion. As a consequence,
the induction scheme does not need the weight term and the well-founded relation of the induction
template anymore.

40 J Strother Moore, Claus-Peter Wirth

EXAMPLE 10 (Induction Scheme).
The template for ack of Example 8 is the only one that is applicable to (ack4)
according to Example 9. It yields the following induction scheme.

The position set is {1.1.2}. It describes the occurrence of ack in the second
subterm of the left-hand side of the first literal of the formula (ack4) as input to
the induction rule of explicit induction:

(ack4) / 1.1.2 = ack(x, y).
The set of induction variables is {x, y}, because both positions of the induction

template are changeable.
The relational description of the induction template is replaced with the step-

case description{ (
ξ1, {µ1,1}, ∅)

,
(

ξ2, {µ2,1, µ2,2}, ∅) }
.

that is given as follows.
The first triple of the relational description, namely(

ack(s(x), 0), {ack(x, s(0))}, ∅)

(obtained from the equation (ack2)) is replaced with
(

ξ1, {µ1,1}, ∅)
, where

ξ1 = {x7→s(x′), y 7→0} and µ1,1 = {x 7→x′, y 7→s(0)}. This can be seen as follows.
The substitution called σ in the above discussion — which has to match the first
element of the triple to ((ack4)/1.1.2)ξ1 — has to satisfy (ack(s(x), 0))σ =
(ack(x, y))ξ1. Taking ξ1 as the minimal constructor substitution given above,
this determines σ = {x 7→x′}. Moreover, as both positions of the template are
changeable, µ1,1 has to match (ack4)/1.1.2 to the σ-instance of the single element
of the second element of the triple, which determines µ1,1 as given.

The second triple of the relational description, namely(
ack(s(x), s(y)), {ack(s(x), y), ack(x, ack(s(x), y))}, ∅)

(obtained from the equation (ack3)) is replaced with
(

ξ2, {µ2,1, µ2,2}, ∅)
,

where ξ2 = {x7→s(x′), y 7→s(y′)}, µ2,1 = {x7→s(x′), y 7→y′}, and
µ2,2 = {x7→x′, y 7→ack(s(x′), y′)}. This can be seen as follows. The substitution
called σ in the above discussion has to satisfy (ack(s(x), s(y)))σ = (ack(x, y))ξ2.
Taking ξ2 as the minimal constructor substitution given above, this determines σ =
{x 7→x′, y 7→y′}. Moreover, we get the constraints (ack(x, y))µ2,1 = (ack(s(x), y))σ
and (ack(x, y))µ2,2 = (ack(x, ack(s(x), y)))σ, which determine µ2,1 and µ2,2 as
given above.

The hitting ratio for the three constraints on the two arguments of (ack4)/1.1.2
is 6

6 = 1. This is optimal: the induction hypotheses are 100% identical to the
expected recursive calls.

To achieve completeness of the substitutions ξk for constructor terms we have to
add the base case (ξ0, ∅, ∅) with ξ0 = {x7→0, y 7→y} to the step-case description.

The three new triples now describe exactly the three formulas displayed at the
beginning of Example 5 in § 4.9. ¤

Automation of Mathematical Induction as part of the History of Logic 41

6 AUTOMATED EXPLICIT INDUCTION

6.1 The Application Context of Automated Explicit Induction

Since the development of programmable computing machinery in the middle of
the 20th century, a major problem of hard- and software has been and still is the
uncertainty that they actually always do what they should do.

It is almost never the case that the product of the possible initial states, input
threads, and schedulings of a computing system is a smaller number. Otherwise,
however, even the most carefully chosen test series cannot cover the often very
huge or even infinite number of possible cases; and then, no matter how many
bugs have been found by testing, there can never be certainty that none remain.

Therefore, the only viable solution to this problem seems to be:

Specify the intended functionality in a language of formal logic, and
then supply a formal mechanically checked proof that the program
actually satisfies the specification!

Such an approach also requires formalizing the platforms on which the system is
implemented. This may include the hardware, operating system, programming
language, sensory input, etc. One may additionally formalize and prove that the
underlying platforms are implemented correctly and this may ultimately involve
proving, for example, that a network of logical gates and wires implements a given
abstract machine. Eventually, however, one must make an engineering judgment
that certain physical objects (e.g. printed circuit boards, gold plated pins, power
supplies, etc.) reliably behave as specified. To be complete, such an approach
would also require a verification that the verification system is sound and correctly
implemented.100

A crucial problem, however, is the cost — in time and money — of doing the
many proofs required, given the huge amounts of application hard- and software
in our modern economies. Thus, we can expect formal verification only in areas
where the managers expect that mere testing does not suffice, that the costs of the
verification process are lower than the costs of bugs in the hard- or software, and
that the competitive situation admits the verification investment. Good candi-
dates are the areas of central processing units (CPUs) in standard processors and
of security protocols.

To reduce the costs of verification, we can hope to automate it with automated
theorem-proving systems. This automation has to include mathematical induction
because induction is essential for the verification of the properties of most data
types used in digital design (such as natural numbers, arrays, lists, and trees), for
the repetition in processing (such as loops), and for parameterized systems (such
as a generic n-bit adder). Decision methods (many of them exploiting finiteness,
e.g. the use of 32-bit data paths) allow automatic verification of some modules,

100See, for example, [Davis, 2009].

42 J Strother Moore, Claus-Peter Wirth

but — barring a completely unexpected breakthrough in the future — the verifi-
cation of a new hard- or software system will always require human users who help
the theorem-proving systems to explore and develop the notions and theories that
properly match the new system. Already today, however, ACL2 often achieves
complete automation in verifying minor modifications of previously verified mod-
ules — an activity called proof maintenance which is increasingly important in the
microprocessor-design industry.

6.2 The Pure LISP Theorem Prover

Our overall task is to answer — from a historical perspective — the question:

How could Robert S. Boyer and J Strother Moore — starting virtually
from zero101 in the summer of 1972 — actually invent their long-lived
solutions to the hard heuristic problems in the automation of induc-
tion and implement them in the sophisticated theorem prover Thm as
described [Boyer and Moore, 1979]?

As already described in § 1, the breakthrough in the heuristics for automated in-
ductive theorem proving was achieved with the “Pure LISP Theorem Prover”,
developed and implemented by Boyer and Moore. It was presented by Moore at
the third IJCAI [Boyer and Moore, 1973], which took place in Stanford (CA) in
August 1973, and it is best documented in Part II of Moore’s PhD thesis [1973],
defended in November 1973.

The Pure LISP Theorem Prover was given no name in the before-mentioned
publications. The only occurrence of the name in publication seems to be in
[Moore, 1975a, p. 1], where it is actually called “the Boyer–Moore Pure LISP
Theorem Prover”.

101No heuristics at all were explicitly described, for instance, in Burstall’s 1968 work on program
verification by induction over recursive functions in [Burstall, 1969], where the proofs were not
even formal, and an implementation seemed to be more or less utopian:

“The proofs presented will be mathematically rigorous but not formalised to the point
where each inference is presented as a mechanical application of elementary rules of
symbol manipulation. This is deliberate since I feel that our first aim should be to
devise methods of proof which will prove the validity of non-trivial programs in a
natural and intelligible manner. Obviously we will wish at some stage to formalise the
reasoning to a point where it can be performed by a computer to give a mechanised
debugging service.” [Burstall, 1969, p. 41]

As far as we are aware, besides interactively invoked induction in resolution theorem prov-
ing (e.g. by starting a resolution proof for the two clauses resulting from Skolemization of
(P(0) ∧ ¬P(x)) ⇒ ∃y. (P(y) ∧ ¬P(s(y))) [Darlington, 1968]), the only implementation of an
automatically invoked mathematical-induction heuristic prior to 1972 is in a set-theory prover
by Bledsoe [1971], which uses structural induction over 0 and s (cf. § 4.4) on a randomly picked,
universally quantified variable of type nat.

Automation of Mathematical Induction as part of the History of Logic 43

To make a long story short, the fundamental insights were

• to exploit the duality of recursion and induction to formulate explicit induc-
tion hypotheses,

• to abandon “random” search and focus on simplifying the goal by rewriting
and normalization techniques to lead to opportunities to use the induction
hypotheses, and

• to support generalization to prepare subgoals for subsequent inductions.

Thus, it is not enough for us to focus here just on the induction heuristics per se,
but it is necessary to place them in the context of the development of the Boyer–
Moore waterfall (cf. Figure 1).

To understand the achievements a bit better, let us now discuss the material of
Part II of Moore’s PhD thesis in some detail, because it provides some explanation
of how Boyer and Moore could be so surprisingly successful. Especially helpful
for understanding the process of creation are those procedures of the Pure LISP
Theorem Prover that are provisional w.r.t. their refinement in later Boyer–
Moore theorem provers. Indeed, these provisional procedures help to decompose
the giant leap from nothing to Thm, which was achieved by only two men in less
than eight years of work.

As W.W. Bledsoe (1921–1995) was Boyer’s PhD advisor, it is no surprise that
the Pure LISP Theorem Prover shares many design features with Bledsoe’s
provers. In [Moore, 1973, p.172] we read on the Pure LISP Theorem Prover:

“The design of the program, especially the straightforward approach of
‘hitting’ the theorem over and over again with rewrite rules until it can
no longer be changed, is largely due to the influence of W. W. Bledsoe.”

Boyer and Moore report102 that in late 1972 and early 1973 they were doing proofs
about list data structures on the blackboard and verbalizing to each other the
heuristics behind their choices on how to proceed with the proof. This means
that, although explicit induction is not the approach humans would choose for
non-trivial induction tasks, the heuristics of the Pure LISP Theorem Prover
are learned from human heuristics after all.

Note that Boyer’s and Moore’s method of learning computer heuristics from
their own human behavior in mathematical logic was a step of two young men
against the spirit of the time: the use of vast amounts of computational power to
search an even more enormous space of possibilities. Boyer’s and Moore’s goal,
however, was in a sense more modest:

“The program was designed to behave properly on simple functions.
The overriding consideration was that it should be automatically able
to prove theorems about simple LISP functions in the straightforward
way we prove them.” [Moore, 1973, p. 205]

102Cf. [Wirth, 2012d].

44 J Strother Moore, Claus-Peter Wirth

It may be that the orientation toward human-like or “intelligible” methods and
heuristics in the automation of theorem proving had also some tradition in Edin-
burgh at the time,103 but, also in this aspect, the major influence on Boyer and
Moore is again W.W. Bledsoe.104

The source code of the Pure LISP Theorem Prover was written in the
programming language POP–2.105 Boyer and Moore were the only programmers
involved in the implementation. The average time in the central processing unit
(CPU) of the ICL–4130 for the proof of a theorem is reported to be about ten sec-
onds.106 This was considered fast at the time, compared to the search-dominated
proofs by resolution systems. Moore explains the speed:

“Finally, it should be pointed out that the program uses no search.
At no time does it ‘undo’ a decision or back up. This is both the
primary reason it is a fast theorem prover, and strong evidence that
its methods allow the theorem to be proved in the way a programmer
might ‘observe’ it. The program is designed to make the right guess
the first time, and then pursue one goal with power and perseverance.”

[Moore, 1973, p. 208]

One remarkable omission in the Pure LISP Theorem Prover is lemma appli-
cation. As a consequence, the success of proving a set of theorems cannot depend
on the order of their presentation to the theorem prover. Indeed, just as the reso-
lution theorem provers of the time, the Pure LISP Theorem Prover starts
every proof right from scratch and does not improve its behavior with the help of
previously proved lemmas. This was a design decision; one of the reasons was:

“Finally, one of the primary aims of this project has been to demon-
strate clearly that it is possible to prove program properties entirely
automatically. A total ban on all built-in information about user de-
fined functions thus removes any taint of user supplied information.”

[Moore, 1973, p. 203]

Moreover, all induction orderings in the Pure LISP Theorem Prover are re-
combinations of constructor relations, such that all inductions it can do are struc-
tural inductions over combinations of constructors. As a consequence, contrary to
later Boyer–Moore theorem provers, the well-foundedness of the induction order-
ings does not depend on the termination of the recursive function definitions.107

103Cf. e.g. the quotation from [Burstall, 1969] in Note 101.
104Cf. e.g. [Bledsoe et al., 1972].
105Cf. [Burstall et al., 1971].
106Here is the actual wording of the timing result found on Page 171f. of [Moore, 1973]:

“Despite theses inefficiencies, the ‘typical’ theorem proved requires only 8 to 10
seconds of CPU time. For comparison purposes, it should be noted that the
time for CONS in 4130 POP–2 is 400 microseconds, and CAR and CDR are about
50 microseconds each. The hardest theorems solved, such as those involving SORT,
require 40 to 50 seconds each.”

Automation of Mathematical Induction as part of the History of Logic 45

Nevertheless, the soundness of the Pure LISP Theorem Prover depends
on the termination of the recursive function definitions, but only in one aspect:
It simplifies and evaluates expressions under the assumption of termination. For
instance, both (IF108 a d d) and (CDR (CONS a d)) simplify to d, no matter
whether a terminates; and it is admitted to rewrite with a recursive function
definition even if an argument of the function call does not terminate. Note that
such a lazy form of evaluation is sound w.r.t. the given logic only if each eager call
terminates and returns a constructor ground term, simply because all functions
are meant to be defined in terms of constructor variables (cf. § 5.4).109

The termination of the recursively defined functions, however, is not checked
by the Pure LISP Theorem Prover, but comes as a proviso for its soundness.

The logic of the Pure LISP Theorem Prover is an applicative110 subset of
the logic of LISP. The only destructors in this logic are CAR and CDR. They are
overspecified on the only constructors NIL and CONS by the following equations:

(CAR (CONS a d)) = a (CAR NIL) = NIL
(CDR (CONS a d)) = d (CDR NIL) = NIL

As standard in LISP, every term of the form (CONS a d) is taken to be true
in the logic of the Pure LISP Theorem Prover if it occurs at an argument
position with Boolean intention. The actual truth values (to be returned by
Boolean functions) are NIL (representing false) and T, which is an abbreviation
for (CONS NIL NIL) and represents true.111 Unlike conventional LISPs (both then
and now), the natural numbers are represented by lists of NILs to keep the logic
simple; the natural number 0 is represented by NIL and the successor function s(d)
is represented by (CONS NIL d).112

Let us now discuss the behavior of the Pure LISP Theorem Prover by de-
scribing the instances of the stages of the Boyer–Moore waterfall (cf. Figure 1)
as they are described in Moore’s PhD thesis.

6.2.1 Simplification in the Pure LISP Theorem Prover

The first stage of the Boyer–Moore waterfall — “simplification” in Figure 1 —
is called “normalation”113 in the Pure LISP Theorem Prover. It applies the
following simplification procedures to LISP expressions until the result does not
change any more: “evaluation”, “normalization”, and “reduction”.

107Note that the well-foundedness of the constructor relations depends on distinctness of the
constructor ground terms in the models, but this does not really depend on the termination of
the recursive functions because (as discussed in § 5.2) confluence is sufficient here.
108Cf. Note 89.
109There is a work-around for projective functions as indicated in Note 93 and in [Wirth, 2009].
110Cf. Note 81.
111Cf. 2nd paragraph of Page 86 of [Moore, 1973].
112Cf. 2nd paragraph of Page 87 of [Moore, 1973].
113During the oral defense of the dissertation, Moore’s committee abhorred the non-word and

instructed him to choose a word. Some copies of the dissertation call the process “simplification.”

46 J Strother Moore, Claus-Peter Wirth

“Normalization” tries to find sufficient conditions for a given expression to have
the soft type “Boolean” and to normalize logical expressions. Contrary to clausal
logic over equational atoms, LISP admits EQUAL and IF to appear not only at the
top level, but in nested terms. To free later tests and heuristics from checking for
their triggers in every equivalent form, such a normalization w.r.t. propositional
logic and equality is part of most theorem provers today.

“Reduction” is a form of what today is called contextual rewriting. It is based
on the fact that — in the logic of the Pure LISP Theorem Prover — in the
conditional expression

(IF c p n)

we can simplify occurrences of c in p to (CONS (CAR c) (CDR c)), and in n to NIL.
The replacement with (CONS (CAR c) (CDR c)) is executed only at positions
with Boolean intention and can be improved in the following two special cases:

1. If we know that c is of soft type “Boolean”, then we rewrite all occurrences
of c in p actually to T.

2. If c is of the form (EQUAL l r), then we can rewrite occurrences of l in p
to r (or vice versa). Note that we have to treat the variables in l and r as
constants in this rewriting. The Pure LISP Theorem Prover rewrites in
this case only if either l or r is a ground term;114 then the other cannot be
a ground term because the equation would otherwise have been simplified
to T or NIL in the previously applied “evaluation”. So replacing the latter
term with the ground term everywhere in p must terminate, and this is
all the contextual rewriting with equalities that the Pure LISP Theorem
Prover does in “reduction”.115

“Evaluation” is a procedure that evaluates expressions partly by simplification
within the elementary logic as given by Boolean operations and the equality pred-
icate. Moreover, “evaluation” executes some rewrite steps with the equations
defining the recursive functions. Thus, “evaluation” can roughly be seen as nor-
malization with the rewrite relation resulting from the elementary logic and from
the recursive function definitions. The rewrite relation is applied according to the
innermost left-to-right rewriting strategy, which is standard in LISP.

By “evaluation”, ground terms are completely evaluated to their normal forms.
Terms containing (implicitly universally quantified) variables, however, have to be
handled in addition. Surprisingly, the considered rewrite relation is not necessarily
terminating on non-ground terms, although the LISP evaluation of ground terms

114Actually, this ground term (i.e. a term without variables) here is always a constructor ground
term (i.e. a term built-up exclusively from constructor function symbols) because the previously
applied “evaluation” procedure has reduced any ground term to a constructor ground term,
provided that the termination proviso is satisfied.

115Note, however, that further contextual rewriting with equalities is applied in a later stage of
the Boyer–Moore waterfall, named cross-fertilization.

Automation of Mathematical Induction as part of the History of Logic 47

terminates because of the assumed termination of recursive function definitions
(cf. § 5.5). The reason for this non-termination is the following: Because of the
LISP definition style via unconditional equations, the positive/negative conditions
are actually part of the right-hand sides of the defining equations, such that the
rewrite step can be executed even if the conditions evaluate neither to false nor
to true. For instance, in Example 6 of § 5.2, a rewrite step with the definition of
PLUS can always be executed, whereas a rewrite step with (+1′) or (+2′) requires
x= 0 to be definitely true or definitely false. This means that non-termination
may result from the rewriting of cases that do not occur in the evaluation of any
ground instance.116

As the final aim of the stages of the Boyer–Moore waterfall is a formula that
provides concise and sufficiently strong induction hypotheses in the last of these
stages, symbolic evaluation must be prevented from unfolding function definitions
unless the context admits us to expect an effect of simplification.117

Because the main function of “evaluation” — only to be found in this first one
of the Boyer–Moore theorem provers — is to collect data on which base and step
cases should be chosen later by the induction rule, the Pure LISP Theorem
Prover applies a unique procedure to stop the unfolding of recursive function
definitions:

A rewrite step with an equation defining a recursive function f is canceled
if there is a CAR or a CDR in an argument to an occurrence of f in the right-
hand side of the defining equation that is encountered during the control flow of
“evaluation”, and if this CAR or CDR is not removed by the “evaluation” of the ar-
guments of this occurrence of f under the current environment updated by match-
ing the left-hand side of the equation to the redex. For instance, “evaluation” of
(PLUS (CONS NIL X) Y) returns (CONS NIL (PLUS X Y)); whereas “evaluation”
of (PLUS X Y) returns (PLUS X Y) and informs the induction rule that only
(CDR X) occurred in the recursive call during the trial to rewrite with the defini-
tion of PLUS. In general, such occurrences indicate which induction hypotheses
should be generated by the induction rule.118 119

116It becomes clear in the second paragraph on Page 118 of [Moore, 1973] that the code of both
the positive and the negative case of a conditional will be evaluated, unless one of them can be
canceled by the complete evaluation of the governing condition to true or false. Note that the
evaluation of both cases is necessary indeed and cannot be avoided in practice.

Moreover, note that a stronger termination requirement that guarantees termination indepen-
dent of the governing condition is not feasible for recursive function definitions in practice.

Later Boyer–Moore theorem provers also use lemmas for rewriting during symbolic evaluation,
which is another source of possible non-termination.

117In QuodLibet this is achieved by contextual rewriting where evaluation stops when the
governing conditions cannot be established from the context. Cf. [Schmidt-Samoa, 2006b; 2006c].

118Actually, “evaluation” also informs which occurrences of CAR or CDR besides the arguments
of recursive occurrences of PLUS were permanently introduced during that trial to rewrite. Such
occurrences trigger an additional case analysis to be generated by the induction rule, mostly
as a compensation for the omission of the stage of “destructor elimination” in the Pure LISP
Theorem Prover.

48 J Strother Moore, Claus-Peter Wirth

“Evaluation” provides a crucial link between symbolic evaluation and the
induction rule of explicit induction. The question “Which case distinction on
which variables should be used for the induction proof and how should the step
cases look like?” is reduced to the quite different question “Where do destructors
like CAR and CDR heap up during symbolic evaluation?”. This reduction helps
to understand by which intermediate steps it was possible to develop the most
surprising, sophisticated recursion analysis of later Boyer–Moore theorem provers.

6.2.2 Destructor Elimination in the Pure LISP Theorem Prover

There is no such stage in the Pure LISP Theorem Prover.120

6.2.3 (Cross-) Fertilization in the Pure LISP Theorem Prover

Fertilization is just contextual rewriting with an equality, described before for
the “reduction” that is part of the simplification of the Pure LISP Theorem
Prover, but now with an equation between two non-ground terms.

The most important case of fertilization is called “cross-fertilization”. It occurs
very often in step cases of induction proofs of equational theorems, and we have
seen it already in Example 4 of § 4.8.1.

Neither Boyer nor Moore ever explicitly explained why cross-fertilization is
“cross”, but in [Moore, 1973, p. 142] we read:

“When two equalities are involved and the fertilization was right-side”
[of the induction hypothesis put] “into left-side” [of the induction con-
clusion,] “or left-side into right-side, it is called ‘cross-fertilization’.”

“Cross-fertilization” is actually a term from genetics referring to the alignment of
haploid genetic code from male and female to a diploid code in the egg cell. This
image may help to recall that only that side (i.e. left- or right-hand side of the equa-
tion) of the induction conclusion which was activated by a successful simplification
is further rewritten during cross-fertilization, namely everywhere where the same
side of the induction hypothesis occurs as a redex — just like two haploid chro-
mosomes have to start at the same (activated) sides for successful recombination.
In [Moore, 1973, p. 139] we find the reason for this: cross-fertilization frequently
produces a new goal that is easy to prove because its uniform “genre” in the sense
that its subterms uniformly come from just one side of the original equality.

119The mechanism for partially enforcing termination of “evaluation” according to this proce-
dure is vaguely described in the last paragraph on Page 118 of Moore’s PhD thesis. As this kind
of “evaluation” is only an intermediate solution on the way to more refined control information
for the induction rule in later Boyer–Moore theorem provers, the rough information given here
may suffice.

120See, however, Note 118 and the discussion of the Pure LISP Theorem Prover in § 6.3.2.

Automation of Mathematical Induction as part of the History of Logic 49

Furthermore — for getting a sufficiently powerful new induction hypothesis in
a follow-up induction — it is crucial to delete the equation used for rewriting
(i.e. the old induction hypothesis), which can be remembered by the fact that
— in the image — only one (diploid) genetic code remains.

The only noteworthy difference between cross-fertilization in the Pure LISP
Theorem Prover and later Boyer–Moore theorem provers is that the generaliza-
tion that consists in the deletion of the used-up equations is done in a halfhearted
way: the resulting formula is equipped with a link to the deleted equation.

6.2.4 Generalization in the Pure LISP Theorem Prover

Generalization in the Pure LISP Theorem Prover works as described in § 4.9.
The only difference to our presentation there is the following: Instead of just re-
placing all occurrences of a non-variable subterm t with a new variable z, the
definition of the top function symbol of t is used to generate the definition of a
new predicate p, such that p(t) holds. Then the generalization of T [t] becomes
T [z] ⇐ p(z) instead of just T [z]. The version of this automated function synthesis
actually implemented in the Pure LISP Theorem Prover is just able to gen-
erate simple type properties, such as being a number or being a Boolean value.121

Note that generalization is essential for the Pure LISP Theorem Prover
because it does not use lemmas, and so it cannot build up a more and more
complex theory successively. It is clear that this limits the complexity of the
theorems it can prove, because a proof can only be successful if the implemented
non-backtracking heuristics work out all the way from the theorem down to the
most elementary theory.

6.2.5 Elimination of Irrelevance in the Pure LISP Theorem Prover

There is no such stage in the Pure LISP Theorem Prover.

6.2.6 Induction in the Pure LISP Theorem Prover

This stage of the Pure LISP Theorem Prover applies the induction rule of
explicit induction as described in § 4.8. Induction is tried only after the goal
formula has been maximally simplified and generalized by repeated trips through
the waterfall. The induction heuristic takes a formula as input and returns a
conjunction of base and step cases to which the input formula reduces. Contrary
to later Boyer–Moore theorem provers that gather the relevant information via
induction schemes gleaned by preprocessing recursive definitions,122 the induction
rule of the Pure LISP Theorem Prover is based solely on the information
provided by “evaluation” as described in § 6.2.1.

121See § 3.7 of [Moore, 1973]. As explained on Page 156f. of [Moore, 1973], Boyer and Moore
failed with the trial to improve the implemented version of the function synthesis, so that it
could generate a predicate on a list being ordered from a simple sorting-function.

122Cf. § 5.8.

50 J Strother Moore, Claus-Peter Wirth

Instead of trying to describe the general procedure, let us just put the induc-
tion rule of the Pure LISP Theorem Prover to test with two paradigmatic
examples. In these examples we ignore the here irrelevant fact that the Pure
LISP Theorem Prover actually uses a list representation for the natural num-
bers. The only effect of this is that the destructor p takes over the rôle of the
destructor CDR.

EXAMPLE 11 (Induction Rule in the Explicit Induction Proof of (ack4)).
Let us see how the induction rule of the Pure LISP Theorem Prover proceeds
w.r.t. the proof of (ack4) that we have seen in Example 5 of § 4.9. The substi-
tutions ξ1, ξ2 computed as instances for the induction conclusion in Example 10
of § 5.8 suggest an overall case analysis with a base case given by {x 7→ 0}, and two
step cases given by ξ1 = {x 7→ s(x′), y 7→ 0} and ξ2 = {x 7→ s(x′), y 7→ s(y′)}.
The Pure LISP Theorem Prover requires the axioms (ack1), (ack2), (ack3)
to be in destructor instead of constructor style:

(ack1′) ack(x, y) = s(y) ⇐ x= 0
(ack2′) ack(x, y) = ack(p(x), s(0)) ⇐ x 6= 0 ∧ y = 0
(ack3′) ack(x, y) = ack(p(x), ack(x, p(y))) ⇐ x 6= 0 ∧ y 6= 0

“Evaluation” does not rewrite the input conjecture with this definition, but writes
a “fault description” for the permanent occurrences of p as arguments of the three
occurrences of ack on the right-hand sides, essentially consisting of the following
three “pockets”: (p(x)), (p(x), p(y)), and (p(y)), respectively. Similarly, the pock-
ets gained from the fault descriptions of rewriting the input conjecture with the
definition of lessp essentially consists of the pocket (p(y), p(ack(x, y))). Similar to
the non-applicability of the induction template for lessp in Example 9 of § 5.7, this
fault description does not suggest any induction because one of the arguments of p
in one of the pockets is not a variable. As this is not the case for the previous fault
description, it suggests the set of all arguments of p in all pockets as induction
variables. As this is the only suggestion, no merging of suggested inductions is
required here.

So the Pure LISP Theorem Prover picks the right set of induction variables.
Nevertheless, it fails to generate appropriate base and step cases, because the
overall case analysis results in two base cases given by {x 7→ 0} and {y 7→ 0},
and a step case given by {x 7→ s(x′), y 7→ s(y′)}.123 This turns the first step case
of the proof of Example 5 into a base case. The Pure LISP Theorem Prover
finally fails (contrary to all other Boyer–Moore theorem provers, see Examples 5,
10, and 21) with the step case it actually generates:

lessp(s(y′), ack(s(x′), s(y′))) = true ⇐ lessp(y′, ack(x′, y′))= true.

This step case has only one hypothesis, which is neither of the two we need. ¤

123We can see this from a similar case on Page 164 and from the explicit description on the
bottom of Page 166 in [Moore, 1973].

Automation of Mathematical Induction as part of the History of Logic 51

EXAMPLE 12 (Proof of (lessp7) by Explicit Induction with Merging).
Let us write T (x, y, z) for (lessp7) of § 4.4. From the proof of (lessp7) in Exam-
ple 3 of § 4.7 we can learn the following: The proof becomes simpler when we take
T (0, s(y′), s(z′)) as base case (besides say T (x, y, 0) and T (x, 0, s(z′))), instead of
any of T (0, y, s(z′)), T (0, s(y′), z), T (0, y, z). The crucial lesson from Example 3,
however, is that the step case of explicit induction has to be

T (s(x′), s(y′), s(z′)) ⇐ T (x′, y′, z′).

Note that the Boyer–Moore heuristics for using the induction rule of explicit induc-
tion look only one rewrite step ahead, separately for each occurrence of a recursive
function in the conjecture.

This means that there is no way for their heuristic to apply case distinctions
on variables step by step, most interesting first, until finally we end up with an
instance of the induction hypothesis as in Example 3.

Nevertheless, even the Pure LISP Theorem Prover manages the pretty
hard task of suggesting exactly the right step case. It requires all axioms to be in
destructor style, so instead of (lessp1), (lessp2), (lessp3), we have to take:

(lessp1′) lessp(x, y) = false ⇐ y = 0
(lessp2′) lessp(x, y) = true ⇐ y 6= 0 ∧ x = 0
(lessp3′) lessp(x, y) = lessp(p(x), p(y)) ⇐ y 6= 0 ∧ x 6= 0

“Evaluation” does not rewrite any of the occurrences of lessp in the input con-
jecture with this definition, but writes one “fault description” for each of these
occurrences about the permanent occurrences of p as argument of the one occur-
rence of lessp on the right-hand sides, resulting in one “pocket” in each fault de-
scription, which essentially consist of ((p(z))), ((p(x), p(y))), and ((p(y), p(z))),
respectively. The Pure LISP Theorem Prover merges these three fault de-
scriptions to the single one ((p(x), p(y), p(z))), and so suggests the proper step case
indeed, although it suggests the base case T (0, y, z) instead of T (0, s(y′), s(z′)),
which requires some extra work, but does not result in a failure. ¤

6.2.7 Conclusion on the Pure LISP Theorem Prover

The Pure LISP Theorem Prover establishes the historic breakthrough regard-
ing the heuristic automation of inductive theorem proving in theories specified by
recursive function definitions.

Moreover, it is the first implementation of a prover for explicit induction going
beyond most simple structural inductions over s and 0.

Furthermore, the Pure LISP Theorem Prover has most of the stages of the
Boyer–Moore waterfall (cf. Figure 1), and these stages occur in the final order and
with the final overall behavior of throwing the formulas back to the center pool
after a stage was successful in changing them.

52 J Strother Moore, Claus-Peter Wirth

As we have seen in Example 11 of § 6.2.6, the main weakness of the Pure LISP
Theorem Prover is the realization of its induction rule, which ignores most of
the structure of the recursive calls in the right-hand sides of recursive function
definitions.124 In the Pure LISP Theorem Prover, all information on this
structure that is taken into account by the induction rule comes from the fault
descriptions of previous applications of “evaluation”, which store only a small part
of the information that is actually required for finding the proper instances for the
eager instantiation of induction hypotheses required in explicit induction.

As a consequence, all induction hypotheses and conclusions of the Pure LISP
Theorem Prover are instantiations of the input formula with mere constructor
terms. Nevertheless, the Pure LISP Theorem Prover can generate multi-
ple hypotheses for astonishingly complicated step cases, which go far beyond the
simple ones typical for structural induction over s and 0.

Although the induction stage of the Pure LISP Theorem Prover is pretty
underdeveloped compared to the sophisticated recursion analysis of the later
Boyer–Moore theorem provers, it somehow contains all essential later ideas in
a rudimentary form, such as recursion analysis and the merging of step cases.
As we have seen in Example 12, the simple merging procedure of the Pure LISP
Theorem Prover is surprisingly successful.

The Pure LISP Theorem Prover cannot succeed, however, in the rare cases
where a step case has to follow a destructor different from CAR and CDR (such as
delfirst in § 4.5), or in the more general case that the arguments of the recursive
calls contain recursively defined functions at the measured positions (such as the
Ackermann function in Example 11).

The weaknesses and provisional procedures of the Pure LISP Theorem Pro-
ver we have documented, help to decompose the giant leap from nothing to Thm,
and so fulfill our historiographic intention expressed at the beginning of § 6.2.

Especially the crucial link between symbolic evaluation and the induction rule
of explicit induction described at the end of § 6.2.1 may be crucial for the success
of the entire development of recursion analysis and explicit induction.

6.3 Thm

“Thm” is the name used in this article for a release of the prover described in
[Boyer and Moore, 1979]. Note that the clearness, precision, and detail of the
natural-language descriptions of heuristics in [Boyer and Moore, 1979] is unique
and unrivaled.125 To the best of our knowledge, there is no similarly broad treat-
ment of heuristics in theorem proving.

124There are indications that the induction rule of the Pure LISP Theorem Prover had to
be implemented in a hurry. For instance, on top of Page 168 of [Moore, 1973], we read on the
Pure LISP Theorem Prover: “The case for n term induction is much more complicated, and
is not handled in its full generality by the program.”

Automation of Mathematical Induction as part of the History of Logic 53

Except for ACL2, Boyer and Moore never gave names to their theorem pro-
vers.126 The names “Thm” (for “theorem prover”), “Qthm” (“quantified Thm”),
and “Nqthm” (“new quantified Thm”) were actually the directory names under
which the different versions of their theorem provers were developed and main-
tained.127 Qthm was never released and its development was discontinued soon
after the “quantification” in Nqthm had turned out to be superior; so the name
“Qthm” was never used in public. Until today, it seems that “Thm” appeared
in publication only as a mode in Nqthm,128 which simulates the release previous
to the release of Nqthm (i.e. before “quantification” was introduced) with a logic
that is a further development of the one described in [Boyer and Moore, 1979].
It was Matt Kaufmann (*1952) who started calling the prover “Nqthm”, in the
second half of the 1980s.129 The name “Nqthm” appeared in publication first in
[Boyer and Moore, 1988b] as a mode in Nqthm.

In this section we describe the enormous heuristic improvements documented
in [Boyer and Moore, 1979] as compared to [Moore, 1973] (cf. § 6.2). In case of
the minor differences of the logic described in [Boyer and Moore, 1979] and of the
later released version that is simulated by the THM mode in Nqthm as documented
in [Boyer and Moore, 1988b; 1998], we try to follow the later descriptions, partly
because of their elegance, partly because Nqthm is still an available program.
For this reason, we have entitled this section “Thm” instead of “The standard
reference on the Boyer–Moore heuristics [Boyer and Moore, 1979]”.

From 1973 to 1981 Boyer and Moore were researchers at Xerox Palo Alto Re-
search Center (Moore only) and — just a few miles away — at SRI International
in Menlo Park (CA). From 1981 they were both professors at The University of
Texas at Austin or scientists at Computational Logic Inc. in Austin (TX). So they
could easily meet and work together. And — just like the Pure LISP Theorem
Prover — the provers Thm and Nqthm were again developed and implemented
exclusively by Boyer and Moore.130

125In [Boyer and Moore, 1988b, p. xi] and [Boyer and Moore, 1998, p. xv] we can read about
the book [Boyer and Moore, 1979]:

“The main purpose of the book was to describe in detail how the theorem prover
worked, its organization, proof techniques, heuristics, etc. One measure of the
success of the book is that we know of three independent successful efforts to
construct the theorem prover from the book.”

126The only further exception seems to be [Moore, 1975a, p. 1], where the Pure LISP Theo-
rem Prover is called “the Boyer–Moore Pure LISP Theorem Prover”, probably because Moore
wanted to stress that, though Boyer appears in the references of [Moore, 1975a] only in [Boyer
and Moore, 1975], Boyer has had an equal share in contributing to the Pure LISP Theorem
Prover right from the start.

127Cf. [Boyer, 2012].

128For the occurrences of “THM” in publications, and for the exact differences between the THM

and NQTHM modes and logics, see Pages 256–257 and 308 in [Boyer and Moore, 1988b], as well as
Pages 303–305, 326, 357, and 386 in the second edition [Boyer and Moore, 1998].

129Cf. [Boyer, 2012].

54 J Strother Moore, Claus-Peter Wirth

In the six years separating Thm from the Pure LISP Theorem Prover,
Boyer and Moore extended the system in four important ways that especially
affect inductive theorem proving. The first major extension is the provision for
an arbitrary number of inductive data types, where the Pure LISP Theorem
Prover supported only CONS. The second is the formal provision of a definition
principle with its explicit termination analysis based on well-founded relations
which we discussed in § 5.5. The third major extension is the expansion of the
proof techniques used by the waterfall, notably including the use of previously
proved theorems, most often as rewrite rules via what would come to be called
“contextual rewriting”, and by which the Thm user can “guide” the prover by
posing lemmas that the system cannot discover on its own. The fourth major
extension is the synthesis of induction schemes from definition-time termination
analysis and the application and manipulation of those schemes at proof-time to
create “appropriate” inductions for a given formula, in place of the Pure LISP
Theorem Prover’s less structured reliance on symbolic evaluation. We discuss
Thm’s inductive data types, waterfall, and induction schemes below.

By means of the new shell principle,131 it is now possible to define new data
types by describing the shell, a constructor with at least one argument, each of
whose arguments may have a simple type restriction, and the optional base object,
a nullary constructor.132 Each argument of the shell can be accessed133 by its
destructor, for which a name and a default value (for the sake of totality) have to
be given in addition. The user also has to supply a name for the predicate that
that recognizes133 the objects of the new data type (as the logic remains untyped).

NIL lost its elementary status and is now an element of the shell PACK of sym-
bols.134 T and F now abbreviate the nullary function calls (TRUE) and (FALSE),
respectively, which are the only Boolean values. Any argument with Boolean
intention besides F is taken to be T (including NIL).

130In both [Boyer and Moore, 1988b, p. xv] and [Boyer and Moore, 1998, p. xix] we read:

“Notwithstanding the contributions of all our friends and supporters, we would like
to make clear that ours is a very large and complicated system that was written
entirely by the two of us. Not a single line of LISP in our system was written by
a third party. Consequently, every bug in it is ours alone. Soundness is the most
important property of a theorem prover, and we urge any user who finds such a
bug to report it to us at once.”

131Cf. [Boyer and Moore, 1979, p. 37ff.].

132Note that this restriction to at most two constructors, including exactly one with arguments,
is pretty uncomfortable. For instance, it neither admits simple enumeration types (such as the
Boolean values), nor disjoint unions (e.g., as part of the popular record types with variants, say
of [Wirth, 1971]). Moreover, mutually recursive data types are not possible, such as and-or-
trees, where each element is a list of or-and-trees, and vice versa, as given by the following four
constructors: empty-or-tree : or-tree; or : and-tree, or-tree → or-tree;

empty-and-tree : and-tree; and : or-tree, and-tree → and-tree.

133Actually, in the jargon of [Boyer and Moore, 1979; 1988b; 1998], the destructors are called
accessor functions, and the type predicates are called recognizer functions.

Automation of Mathematical Induction as part of the History of Logic 55

Instead of discussing the shell principle in detail with all its intricacies resulting
from the untyped framework, we just present the first two shells:

1. The shell (ADD1 X1) of the natural numbers, with

• type restriction (NUMBERP X1),
• base object (ZERO), abbreviated by 0,
• destructor133 SUB1 with default value 0, and
• type predicate133 NUMBERP.

2. The shell (CONS X1 X2) of pairs, with

• destructors CAR with default value 0,
CDR with default value 0, and

• type predicate LISTP.

According to the shell principle, these two shell declarations add axioms to the
theory, which are equivalent to the following ones:

Axioms Generated by Shell ADD1 Axioms Generated by Shell CONS

0.1 (NUMBERP X)= T ∨ (NUMBERP X)= F (LISTP X)= T ∨ (LISTP X)= F

0.2 (NUMBERP (ADD1 X1))= T (LISTP (CONS X1 X2))= T

0.3 (NUMBERP 0)= T

0.4 (NUMBERP T)= F (LISTP T)= F

0.5 (NUMBERP F)= F (LISTP F)= F

0.6 (LISTP X)= F ∨ (NUMBERP X)= F

1 (ADD1 (SUB1 X))= X (CONS (CAR X) (CDR X))= X

⇐ X 6= 0 ∧ (NUMBERP X)= T ⇐ (LISTP X)= T

2 (ADD1 X1) 6= 0

3 (SUB1 (ADD1 X1))= X1 (CAR (CONS X1 X2))= X1

⇐ (NUMBERP X1)= T (CDR (CONS X1 X2))= X2

4 (SUB1 0)= 0

5.1 (SUB1 X)= 0 ⇐ (NUMBERP X)= F (CAR X)= 0 ⇐ (LISTP X)= F

(CDR X)= 0 ⇐ (LISTP X)= F

5.2 (SUB1 (ADD1 X1))= 0

⇐ (NUMBERP X1)= F

L1 135 (ADD1 X)= (ADD1 0)
⇐ (NUMBERP X)= F

L2 136 (NUMBERP (SUB1 X))= T

134There are the following two different declarations for the shell PACK: In [Boyer and Moore,
1979], the shell CONS is defined after the shell PACK because NIL is the default value for the
destructors CAR and CDR; moreover, NIL is an abbreviation for (NIL), which is the base object
of the shell PACK.

In [Boyer and Moore, 1988b; 1998], however, the shell PACK is defined after the shell CONS,
we have (CAR NIL) = 0, the shell PACK has no base object, and NIL just abbreviates

(PACK (CONS 78 (CONS 73 (CONS 76 0)))).
When we discuss the logic of [Boyer and Moore, 1979], we tacitly use the shells CONS and PACK

as described in [Boyer and Moore, 1988b; 1998].

56 J Strother Moore, Claus-Peter Wirth

Note that the two occurrences of “(NUMBERP X1)” in Axioms 3 and 5.2 are
exactly the ones that result from the type restriction of ADD1. Moreover, the
occurrence of “(NUMBERP X)” in Axiom 0.6 is allocated at the right-hand side
because the shell ADD1 is declared before the shell CONS.

Let us discuss the axioms generated by declaration of the shell ADD1. Roughly
speaking, Axioms 0.1–0.3 are return-type declarations, Axioms 0.4–0.6 are about
disjointness of types, Axiom 1 and Lemma L2 imply the axiom (nat1) from § 4.4,
Axioms 2 and 3 imply axioms (nat2) and (nat3), respectively. Axioms 4 and 5.1–5.2
overspecify SUB1. Note that LemmaL1 is equivalent to 5.2 under 0.2–0.3 and 1–3.

Analogous to LemmaL1, every shell forces each argument not satisfying its type
restriction into behaving like the default object of the argument’s destructor.

By contrast, the arguments of the shell CONS (just as every shell argument
without type restriction) are not forced like this, and so — a clear advantage
of the untyped framework — even objects of later defined shells (such as PACK)
can be properly paired by the shell CONS. For instance, although NIL belongs to
the shell PACK defined after the shell CONS (and so (CDR NIL) = 0),134 we have
(CAR (CONS NIL NIL)) = NIL by Axiom3.

Nevertheless, the shell principle also allows us to declare a shell
(CONSNAT X1 X2)

of the lists of natural numbers only — similar to the ones of § 4.5 — say, with a
type predicate LISTNATP, type restrictions (NUMBERP X1), (LISTNATP X2), base
object (NILNAT), and destructors CARNAT, CDRNAT with default values 0, (NILNAT),
respectively.

Let us now come to the admissible definitions of new functions in Thm. In § 5
we have already discussed the definition principle137 of Thm in detail. The defini-
tion of recursive functions has not changed compared to the Pure LISP Theorem
Prover besides that a function definition is admissible now only after a termina-
tion proof, which proceeds as explained in § 5.5. To this end, Thm can apply its
additional axiom of the well-foundedness of the irreflexive ordering LESSP on the
natural numbers,138 and the theorem of the well-foundedness of the lexicographic
combination of two well-founded orderings.

Just as in § 6.2, we will now again follow the Boyer–Moore waterfall (cf. Figure 1)
and sketch how the stages of the waterfall are realized in Thm in comparison to
the Pure LISP Theorem Prover.

135Proof of LemmaL1 from 0.2, 1–2, 5.2: Under the assumption of (NUMBERP X)= F, we show
(ADD1 X)= (ADD1 (SUB1 (ADD1 X)))= (ADD1 0). The first step is a backward application of the
conditional equation 1 via {X 7→ (ADD1 X)}, where the condition is fulfilled because of 2 and 0.2.
The second step is an application of 5.2, where the condition is fulfilled by assumption.

136Proof of Lemma L2 from 0.1–0.3, 1–4, 5.1–5.2 by argumentum ad absurdum:
For a counterexample X, we get (SUB1 X) 6= 0 by 0.3, as well as (NUMBERP (SUB1 X))= F by 0.1.
From the first we get X 6= 0 by 4, and (NUMBERP X)= T by 5.1 and 0.1. Now we get the contra-
diction (SUB1 X)= (SUB1 (ADD1 (SUB1 X)))= (SUB1 (ADD1 0))= 0; the first step is a backward
application of the conditional equation 1, the second of L1, and the last of 3 (using 0.3).

137Cf. [Boyer and Moore, 1979, p. 44f.].

Automation of Mathematical Induction as part of the History of Logic 57

6.3.1 Simplification in Thm

We discussed simplification in the Pure LISP Theorem Prover in § 6.2.1.
Simplification in Thm is covered in ChaptersVI–IX of [Boyer and Moore, 1979],
and the reader interested in the details is strongly encouraged to read these very
well-written descriptions of heuristic procedures for simplification.

To compensate for the extra complication of the untyped approach in Thm,
which has a much higher number of interesting soft types than the Pure LISP
Theorem Prover, soft-typing rules are computed for each new function symbol
based on types that are disjunctions (actually: bit-vectors) of the following disjoint
types: one for T, one for F, one for each shell, and one for objects not belonging
to any of these.139 These soft-typing rules are pervasively applied in all stages of
the theorem prover, which we cannot discuss here in detail. Some of these rules
can be expressed in the LISP logic language as a theorem and presented in this
form to the human users. Let us see two examples on this.

EXAMPLE 13. (continuing Example 6 of § 5.2)
As Thm knows (NUMBERP (FIX X)) and (NUMBERP (ADD1 X)), it produces the
theorem (NUMBERP (PLUS X Y)) immediately after the termination proof for the
definition of PLUS in Example 6. Note that this would neither hold in case of
non-termination of PLUS, nor if there were a simple Y instead of (FIX Y) in the
definition of PLUS. In the latter case, Thm would only register that the return-
type of PLUS is among NUMBERP and the types of its second argument Y. ¤

EXAMPLE 14. As Thm knows that the type of APPEND is among LISTP and
the type of its second argument, it produces the theorem (LISTP (FLATTEN X))
immediately after the termination proof for the following definition:

(FLATTEN X) = (IF (LISTP X)
(APPEND (FLATTEN (CAR X)) (FLATTEN (CDR X)))
(CONS X NIL)) ¤

138See Page 52f. of [Boyer and Moore, 1979] for the informal statement of this axiom on well-
foundedness of LESSP.

Because Thm is able to prove (LESSP X (ADD1 X)), well-foundedness of LESSP would imply
— together with Axiom1 and LemmaL2 — that Thm admits only the standard model of the
natural numbers, as explained in Note 42.

Matt Kaufmann, however, was so kind and made clear in a private e-mail communication
that non-standard models are not excluded, because the statement “We assume LESSP to be a
well-founded relation.” of [Boyer and Moore, 1979, p. 53] is actually to be read as the well-
foundedness of the formal definition of § 4.1 with the additional assumption that the predicate Q
must be definable in Thm.

Note that in Pieri’s argument on the exclusion of non-standard models (as described in
Note 42), it is not possible to replace the reflexive and transitive closure of the successor relation s
with the Thm-definable predicate

˘
Y (NUMBERP Y)= T ∧ ((LESSP Y X)= T ∨ Y= X)

¯
,

because (by the Thm-analog of axiom (lessp2′) of Example 12 in § 6.2.6) this predicate will con-
tain 0 as a minimal element even for a non-standard natural number X; thus, in non-standard
models, LESSP is a proper super-relation of the reflexive and transitive closure of s.

139See Chapter VI in [Boyer and Moore, 1979].

58 J Strother Moore, Claus-Peter Wirth

The standard representation of a propositional expression has improved from the
multifarious LISP representation of the Pure LISP Theorem Prover toward
today’s standard of clausal representation. A clause is a disjunctive list of literals.
Literals, however, deviating from the standard of being optionally negated atoms,
are just LISP terms here, because every LISP function can be seen as a predicate.

This means that the “water” of the waterfall now consists of clauses, and the
conjunction of all clauses in the waterfall represents the proof task.

Based on this clausal representation, we find a full-fledged description of con-
textual rewriting in Chapter IX of [Boyer and Moore, 1979], and its applications in
ChaptersVII–IX. This description comes some years before the term “contextual
rewriting” became popular in automated theorem proving, and the term does not
appear in [Boyer and Moore, 1979]. It is probably the first description of contex-
tual rewriting in the history of logic, unless one counts the rudimentary contextual
rewriting in the “reduction” of the Pure LISP Theorem Prover as such.140

As indicated before, the essential idea of contextual rewriting is the following:
While focusing on one literal of a clause for simplification, we can assume all other
literals — the context — to be false, simply because the literal in focus is irrelevant
otherwise. Especially useful are literals that are negated equations, because they
can be used as a ground term-rewrite system. A non-equational literal t can
always be taken to be the negated equation (t 6= F). The free universal variables
of a clause have to be treated as constants during contextual rewriting.141

To bring contextual rewriting to full power, all occurrences of the function sym-
bol IF in the literals of a clause are expelled from the literals as follows. If the
condition of an IF-expression can be simplified to be definitely false F or defi-
nitely true (i.e. non-F, e.g. if F is not set in the bit-vector as a potential type),
then the IF-expression is replaced with its respective case. Otherwise, after the
IF-expression could not be removed by those rewrite rules for IF whose soundness
depends on termination,142 it is moved to the top position (outside-in), by replac-
ing each case with itself in the IF’s context, such that the literal C[(IF t0 t1 t2)]
is intermediately replaced with (IF t0 C[t1] C[t2]), and then this literal splits
its clause in two: one with the two literals (NOT t0) and C[t1] in place of the old
one, and one with t0 and C[t2] instead.

Thm eagerly removes variables in solved form: If the variable X does not occur in
the term t, but the literal (X 6= t) occurs in a clause, then we can remove that literal
after rewriting all occurrences of X in the clause to t. This removal is a logical equi-
valence transformation, because the single remaining occurrence of X is implicitly
140Cf. § 6.2.1.

141This has the advantage that we could take any well-founded ordering that is total on ground
terms and run the terminating ground version of a Knuth–Bendix completion procedure [Knuth
and Bendix, 1970] for all literals in a clause representation that have the form li 6= ri, and
replace the literals of this form with the resulting confluent and terminating rewrite system and
normalize the other literals of the clause with it. Note that this transforms a clause into a
logically equivalent one. None of the Boyer–Moore theorem provers does this, however.

142These rewrite rules whose soundness depends on termination are (IF X Y Y) = Y;
(IF X X F) = X; and for Boolean X: (IF X T F) = X; tested for applicability in the given order.

Automation of Mathematical Induction as part of the History of Logic 59

universally quantified and so (X 6= t) must be false because it implies (t 6= t). Alter-
natively, the removal can be seen as a resolution step with the axiom of reflexivity.

It now remains to describe the rewriting with function definitions and with
lemmas tagged for rewriting, where the context of the clause is involved again.

Non-recursive function definitions are always unfolded by Thm.
Recursive function definitions are treated in a way very similar to that of the

Pure LISP Theorem Prover. The criteria on the unfolding of a function call
of a recursively defined function f still depend solely on the terms introduced as
arguments in the recursive calls of f in the body of f, which are accessed dur-
ing the simplification of the body. But now, instead of rejecting the unfolding
in case of the presence of new destructor terms in the simplified recursive calls,
rejections are based on whether the simplified recursive calls contain subterms
not occurring elsewhere in the clause. That is, an unfolding is approved if all
subterms of the simplified recursive calls already occur in the clause. This basic
occurrence heuristic is one of the keys to Thm’s success at induction. As we will
see, instead of the Pure LISP Theorem Prover’s phrasing of inductive argu-
ments with “constructors in the conclusion”, such as P (s(x))) ⇐ P (x), Thm uses
“destructors in the hypothesis”, such as (P (x) ⇐ P (p(x))) ⇐ x 6=0. Thanks to
the occurrence heuristic, the very presence of a well-chosen induction hypothesis
gives the rewriter “permission” to unfold certain recursive functions in the induc-
tion conclusion (which is possible because all function definitions are in destructor
style).

There are also two less important criteria which individually suffice to unblock
the unfolding of recursive function definitions:

1. An increase of the number of arguments of the function to be unfolded that
are constructor ground terms.

2. A decrease of the number of function symbols in the arguments of the func-
tion to be unfolded at the measured positions of an induction template for
that function.
So the clause

C[lessp(x, s(y))]

will be expanded by (lessp2′), (lessp3′), and (p1) into the clauses

x 6= 0, C[true]
and

x= 0, C[lessp(p(x), y)]

— even if p(x) is a newly occurring subterm! — because the second argument
position of lessp is such a set of measured positions according to Example 18
of § 6.3.7.143

143See Page 118f. of [Boyer and Moore, 1979] for the details of the criteria for unblocking the
unfolding of function definitions.

60 J Strother Moore, Claus-Peter Wirth

Thm is able to exploit previously proved lemmas. When the user submits a
theorem for proof, the user tags it with tokens indicating how it is to be used in
the future if it is proved. Thm supports four non-exclusive tags and they indicate
that the lemma is to be used as a rewrite rule, as a rule to eliminate destruc-
tors, as a rule to restrict generalizations, or as a rule to suggest inductions. The
paradigm of tagging theorems for use by certain proof techniques focus the user on
developing general “tactics” (within a limited framework of very abstract control),
while allowing the user to think mainly about relevant mathematical truths. This
paradigm has been a hallmark of all Boyer–Moore theorem provers since Thm and
partially accounts for their reputation of being “automatic”.

Rewriting with lemmas that have been proved and then tagged for rewriting
— so-called rewrite lemmas — differs from rewriting with recursive function defi-
nitions mainly in one aspect: There is no need to block them because the user has
tagged them explicitly for rewriting, and because rewrite lemmas have the form of
conditional equations instead of unconditional ones. Simplification with lemmas
tagged for rewriting and the heuristics behind the process are nicely described in
[Schmidt-Samoa, 2006c], where a rewrite lemma is not just tagged for rewriting,
but where the user can also mark the condition literals on how they should be dealt
with. In Thm there is no lazy rewriting with rewrite lemmas, i.e. no case splits are
introduced to be able to apply the lemma.144 This means that all conditions of the
rewrite lemma have to be shown to be fulfilled in the current context. In partial
compensation there is a process of backward chaining, i.e. the conditions can be
shown to be fulfilled by the application of further conditional rewrite lemmas. The
termination of this backward chaining is achieved by avoiding the generation of
conditions into which the previous conditions can be homeomorphically embed-
ded.145 In addition, rewrite lemmas can introduce IF-expressions, splitting the
rewritten clause into cases. There are provisions to instantiate extra variables of
conditions eagerly, which is necessary because there are no existential variables.146

Some collections of rewrite lemmas can cause Thm’s rewriter not to termi-
nate.147 For permutative rules like commutativity, however, termination is as-
sured by simple term ordering heuristics.148

144Matt Kaufmann and J Strother Moore added support for “forcing” and “case split” annota-
tions to ACL2 in the mid-1990s.

145See Page 109ff. of [Boyer and Moore, 1979] for the details.

146See Page 111f. of [Boyer and Moore, 1979] for the details.

147Non-termination of rewriting caused the Boyer–Moore theorem provers to run forever or
exhaust the LISP stack or heap — except ACL2, which maintains its own user-adjustable stack
size and gives a coherent error on stack overflow without crashing the LISP system. Nqthm
introduced special tools to track down the rewriting process via the rewrite call stack (namely
BREAK-REWRITE, after setting (MAINTAIN-REWRITE-PATH T)) and to count the applications of a
rewrite rule (namely ACCUMULATED-PERSISTENCE), so the problematic rules can easily be detected
and the user can disable them. See § 12 of [Boyer and Moore, 1988b; 1998] for the details.

148See Page 104f. of [Boyer and Moore, 1979] for the details.

Automation of Mathematical Induction as part of the History of Logic 61

6.3.2 Destructor Elimination in Thm

We have already seen constructors such as s (in Thm: ADD1) and cons (CONS) with
the destructors p (SUB1) and car (CAR), cdr (CDR), respectively.

EXAMPLE 15 (From Constructor to Destructor Style and back).
We have presented several function definitions both in constructor and in destruc-
tor style. Let us do careful and generalizable equivalence transformations (reverse
step justified in parentheses) starting with the constructor-style rule (ack3) of § 4.4:

ack(s(x), s(y))= ack(x, ack(s(x), y)).

Introduce (delete) the solved variables x′ and y′ for the constructor terms s(x)
and s(y) occurring on the left-hand side, respectively, and add (delete) two further
conditions by applying the definition (p1′) (cf. § 4.4) twice.

ack(s(x), s(y))= ack(x, ack(s(x), y)) ⇐
(

x′= s(x) ∧ p(x′)= x
∧ y′= s(y) ∧ p(y′)= y

)
.

Normalize the conclusion with leftmost equations of the condition from right to
left (left to right).

ack(x′, y′)= ack(x, ack(x′, y)) ⇐
(

x′= s(x) ∧ p(x′)= x
∧ y′= s(y) ∧ p(y′)= y

)
.

Normalize the conclusion with rightmost equations of the condition from right to
left (left to right).

ack(x′, y′)= ack(p(x′), ack(x′, p(y′))) ⇐
(

x′= s(x) ∧ p(x′)= x
∧ y′= s(y) ∧ p(y′)= y

)
.

Add (Delete) two conditions by applying axiom (nat2) twice.

ack(x′, y′)= ack(p(x′), ack(x′, p(y′)))

⇐
(

x′= s(x) ∧ p(x′)= x ∧ x′ 6= 0
∧ y′= s(y) ∧ p(y′)= y ∧ y′ 6= 0

)
.

Delete (Introduce) the leftmost equations of the condition by applying lemma
(s1′) (cf. § 4.4) twice, and delete (introduce) the solved variables x and y for the
destructor terms p(x′) and p(y′) occurring in the left-hand side of the equation in
the conclusion, respectively.

ack(x′, y′)= ack(p(x′), ack(x′, p(y′))) ⇐ x′ 6= 0 ∧ y′ 6= 0.

Up to renaming of the variables, this is the destructor-style rule (ack3′) of Exam-
ple 11 (cf. § 6.2.6). ¤

Our data types are defined inductively over constructors.149 Therefore construc-
tors play the main rôle in our semantics, and practice shows that step cases of
simple induction proofs work out much better with constructors than with the re-
spective destructors, which are secondary (i.e. defined) operators in our semantics
and have a more complicated case analysis in applications.

62 J Strother Moore, Claus-Peter Wirth

There are two further positive effects of destructor elimination:

1. It tends to standardize the representation of a clause in the sense that the
numbers of occurrences of identical subterms tend to be increased.

2. Destructor elimination also brings the subterm property in line with the
sub-structure property; e.g., Y is both a sub-structure of (CONS X Y) and a
subterm of it, whereas (CDR Z) is a sub-structure of Z in case of (LISTP Z),
but not a subterm of Z.

Both effects improve the chances that the clause passes the follow-up stages of
cross-fertilization and generalization with good success.150

As noted earlier, the Pure LISP Theorem Prover does induction using step
cases with constructors, such as P (s(x)) ⇐ P (x), whereas Thm does induction
using step cases with destructors, such as(

P (x) ⇐ P (p(x))
) ⇐ x 6= 0.

So destructor elimination was not so urgent in the Pure LISP Theorem Pro-
ver, simply because there were fewer destructors around. Indeed, the stage “de-
structor elimination” does not exist in the Pure LISP Theorem Prover.

Thm does not do induction with constructors because there are generalized de-
structors that do not have a straightforward constructor (see below), and because
the induction rule of explicit induction has to fix in advance whether the step cases
are destructor or constructor style. So with destructor style in all step cases and
in all function definitions, explicit induction and recursion in Thm choose the style
that is always applicable. Destructor elimination then confers the advantages of
constructor-style proofs when possible.

EXAMPLE 16 (A Generalized Destructor Without Constructor).
A generalized destructor that does not have a straightforward constructor is the
function delfirst defined in § 4.5. To verify the correctness of a deletion-sort algo-
rithm based on delfirst, a useful step case for an induction proof is of the form151(

P (l) ⇐ P (delfirst(max(l), l))
) ⇐ l 6= nil.

A constructor version of this induction scheme would need something like an inser-
tion function with an additional free variable indicating the position of insertion
— a complication that further removes the proof obligations from the algorithm
being verified. ¤

149Here the term “inductive” means the following: We start with the empty set and take the
smallest fixpoint under application of the constructors, which contains only finite structures, such
as natural numbers and lists. Co-inductively over the destructors we would obtain different data
types, because we start with the universal class and obtain the greatest fixed point under inverse
application of the destructors, which typically contains infinite structures. For instance, for the
unrestricted destructors car, cdr of the list of natural numbers list(nat) of § 4.5, we co-inductively
obtain the data type of infinite streams of natural numbers.
150See Page 114ff. of [Boyer and Moore, 1979] for a nice example for the advantage of destructor

elimination for cross-fertilization.
151See Page 143f. of [Boyer and Moore, 1979].

Automation of Mathematical Induction as part of the History of Logic 63

Proper destructor functions take only one argument. The generalized destructor
delfirst we have seen in Example 16 has actually two arguments; the second one is
the proper destructor argument and the first is a parameter. After the elimination
of a set of destructors, the terms at the parameter positions of the destructors
are typically still present, whereas all the terms at the positions of the proper
destructor arguments are removed.

EXAMPLE 17 (Division with Remainder as a pair of Generalized Destructors).
In case of y 6= 0, we can construct each natural number x in the form of (q ∗ y)+ r
with lessp(r, y)= true. The related generalized destructors are the quotient div(x, y)
of x by y, and its remainder rem(x, y). Note that in both functions, the first argu-
ment is the proper destructor argument and the second the parameter, which must
not be 0. The rôle that the definition (p1′) and the lemma (s1′) of § 4.4 play in Ex-
ample 15 (and which the definitions (car1′), (cdr1′) and the lemma (cons1′) of § 4.5
play in the equivalence transformations between constructor and destructor style
for lists) is here taken by the following lemmas on the generalized destructors div
and rem and on the generalized constructor λq, r. ((q ∗ y)+ r):
(div1′) div(x, y) = q ⇐ y 6= 0 ∧ (q ∗ y)+ r = x ∧ lessp(r, y)= true
(rem1′) rem(x, y) = r ⇐ y 6= 0 ∧ (q ∗ y)+ r = x ∧ lessp(r, y)= true
(+9′) (q ∗ y)+ r = x ⇐ y 6= 0 ∧ q = div(x, y) ∧ r = rem(x, y)
If we have a clause with the literal y = 0, in which the destructor terms div(x, y)
or rem(x, y) occur, we can — just as in the of Example 15 (reverse direction) —
introduce the new literals div(x, y) 6= q and rem(x, y) 6= r for fresh q, r, and apply
lemma (+9′) to introduce the literal x 6=(q ∗ y)+ r. Then we can normalize with the
first two literals, and afterwards with the third. Then all occurrences of div(x, y),
rem(x, y), and x are gone.152 ¤

To enable the form of elimination of generalized destructors described in Exam-
ple 17, Thm allows the user to tag lemmas of the form (s1′), (cons1′), or (+9′) as
elimination lemmas to perform destructor elimination. In clause representation,
this form is in general the following: The first literal of the clause is of the form
(tc =x), where x is a variable which does not occur in the (generalized) constructor
term tc. Moreover, tc contains some distinct variables y0, . . . , yn, which occur
only on the left-hand sides of the first literal and of the last n+1 literals of the
clause, which are of the form (y0 6= td0), . . . , (yn 6= tdn), for distinct (generalized)
destructor terms td0 ,. . . ,tdn.153

The idea of application for destructor elimination in a given clause is, of course,
the following: If, for an instance of the elimination lemma, the literals not men-
tioned above (i.e. in the middle of the clause, such as y 6= 0 in (+9′)) occur in
the given clause, and if td0 , . . . , tdn occur in the given clause as subterms, then
rewrite all their occurrences with (y0 6= td0), . . . , (yn 6= tdn) from right to left and
then use the first literal of the elimination lemma from right to left for further
normalization.154

152For a nice, but non-trivial example on why proofs tend to work out much easier after this
transformation, see Page 135ff. of [Boyer and Moore, 1979].

64 J Strother Moore, Claus-Peter Wirth

After a clause enters the destructor-elimination stage of Thm, its most simple
(actually: the one defined first) destructor that can be eliminated is eliminated,
and destructor elimination is continued until all destructor terms introduced by
destructor elimination are eliminated if possible. Then, before further destructors
are eliminated, the resulting clause is returned to the center pool of the waterfall.
So the clause will enter the simplification stage where the (generalized) construc-
tor introduced by destructor elimination may be replaced with a (generalized)
destructor. Then the resulting clauses re-enter the destructor-elimination stage,
which may result in infinite looping.

For example, destructor elimination turns the clause

x′= 0, C[lessp(p(x′), x′)], C ′[p(x′), x′]

by the elimination lemma (s1) into the clause

s(x)= 0, C[lessp(x, s(x))], C ′[x, s(x)].

Then, in the simplification stage of the waterfall, lessp(x, s(x)) is unfolded, re-
sulting in the clause

x = 0, C[lessp(p(x), x)], C ′[x, s(x)]

and another one.155

Looping could result from eliminating the destructor introduced by simplifi-
cation (such as it is actually the case for our destructor p in the last clause).
To avoid looping, before returning a clause to the center pool of the waterfall,
the variables introduced by destructor elimination (such as our variable x) are
marked. (Generalized) destructor terms containing marked variables are blocked
for further destructor elimination. This marking is removed only when the clause
reaches the induction stage of the waterfall.156

153Thm adds one more restriction here, namely that the generalized destructor terms have to
consist of a function symbol applied to a list containing exactly the variables of the clause,
besides y0, . . . , yn.

Moreover, note that Thm actually does not use our flattened form of the elimination lemmas,
but the one that results from replacing each yi in the clause with tdi , and then removing the literal

(yi 6= tdi). Thus, Thm would accept only the non-flattened versions of our elimination lemmas,
such as (s1) instead of (s1′) (cf. § 4.4), and such as (cons1) instead of (cons1′) (cf. § 4.5).

154If we add the last literals of the elimination lemma to the given clause, use them for contextual
rewriting, and remove them only if this can be achieved safely via application of the definitions
of the destructors (as we could do in all our examples), then the elimination of destructors is
an equivalence transformation. Destructor elimination in Thm, however, may (over-) generalize
the conjecture, because these last literals are not present in the non-flattened elimination lemma
of Thm and its variables yi are actually introduced in Thm by generalization. Thus, instead of
trying to delete the last literals of our deletion lemmas safely, Thm never adds them.

155The latter step is given in more detail in the context of the second of the two less important
criteria of § 6.3.1 for unblocking the unfolding of lessp(x, s(y)).

156See Page 139 of [Boyer and Moore, 1979]. In general, for more sophisticated details of de-
structor elimination in Thm, we have to refer the reader to ChapterX of [Boyer and Moore, 1979].

Automation of Mathematical Induction as part of the History of Logic 65

6.3.3 (Cross-) Fertilization in Thm

This stage has already been described in § 6.2.3. There is no noticeable difference
between the Pure LISP Theorem Prover and Thm here, besides some heuristic
fine tuning.157

6.3.4 Generalization in Thm

Thm adds only one new rule to the universally applicable heuristic rules for gen-
eralization on a term t mentioned in § 4.9:

“Never generalize on a destructor term t !”

This new rule makes sense in particular after the preceding stage of destructor
elimination in the sense that destructors that outlast their elimination probably
carry some relevant information. Another reason for not generalizing on destructor
terms is that the clause will enter the center pool in case another generalization is
possible, and then the destructor elimination might eliminate the destructor term
more carefully than generalization would do.158

The main improvement of generalization in Thm over the Pure LISP Theo-
rem Prover, however, is the following: Suppose again that the term t is to be
replaced at all its occurrences in the clause T [t] with the fresh variable z. Recall
that the Pure LISP Theorem Prover restricts the fresh variable with a pred-
icate synthesized from the definition of the top function symbol of the replaced
term. Thm instead restricts the new variable in two ways. Both ways add addi-
tional literals to the clause before the term is replaced by the fresh variable:

1. Assuming all literals of the clause T [t] to be false (i.e. of type F), the bit-
vector describing the soft type of t is computed and if only one bit is set
(say the bit expressing NUMBERP), then, for the respective type predicate,
a new literal is added to the clause (such as (NOT (NUMBERP t))).

2. The user can tag certain lemmas as generalization lemmas; such as
(SORTEDP (SORT X))

for a sorting function SORT; and if (SORT X) matches t, the respective
instance of (NOT (SORTEDP (SORT X))) is added to T [t].159 In general,
for the addition of such a literal (NOT t′), a proper subterm t′ of a general-
ization lemma must match t.160

157See Page 149 of [Boyer and Moore, 1979].
158See Page 156f. of [Boyer and Moore, 1979].
159Cf. Note 121.
160Moreover, the literal is actually added to the generalized clause only if the top function sym-

bol of t does no longer occur in the literal after replacing t with x. This means that, for a gen-
eralization lemma (EQUAL (FLATTEN (GOPHER X)) (FLATTEN X)), the literal

(NOT (EQUAL (FLATTEN (GOPHER t′′)) (FLATTEN t′′)))
is added to T [t] in case of t being of the form (GOPHER t′′), but not in case of t being of the
form (FLATTEN t′′) where the first occurrence of FLATTEN is not removed by the generalization.
See Page 156f. of [Boyer and Moore, 1979] for the details.

66 J Strother Moore, Claus-Peter Wirth

6.3.5 Elimination of Irrelevance in Thm

Thm includes another waterfall stage not in the Pure LISP Theorem Prover,
the elimination of irrelevant literals. This is the last transformation before we come
to “induction”. Like generalization, this stage may turn a valid clause into an in-
valid one. The main reason for taking this risk is that the subsequent heuristic
procedures for induction assume all literals to be relevant: irrelevant literals may
suggest inappropriate induction schemes which may result in a failure of the induc-
tion proof. Moreover, if all literals seem to be irrelevant, then the goal is probably
invalid and we should not do a costly induction but just fail immediately.161

Let us call two literals connected if there is a variable that occurs in both of them.
Consider the partition of a clause into its equivalence classes w.r.t. the reflexive
and transitive closure of connectedness. If we have more than one equivalence
class in a clause, this is an alarm signal for irrelevance: if the original clause is
valid, then a sub-clause consisting only of the literals of one of these equivalence
classes must be valid as well. This is a consequence of the logical equivalence
of ∀x. (A ∨ B) with A ∨ ∀x. B, provided that x does not occur in A. Then
we should remove one of the irrelevant equivalence classes after the other from the
original clause. To this end, Thm has two heuristic tests for irrelevance.

1. An equivalence class of literals is irrelevant if it does not contain any properly
recursive function symbol.
Based on the assumption that the previous stages of the waterfall are suf-
ficiently powerful to prove clauses composed only of constructor functions
(i.e. shells and base objects) and functions with explicit definitions, the justi-
fication for this heuristic test is the following: If the clause of the equivalence
class were valid, then the previous stages of the waterfall should already have
established the validity of this equivalence class.

2. An equivalence class of literals is irrelevant if it consists of only one literal
and if this literal is the application of a properly recursive function to a list
of distinct variables.
Based on the assumption that the soft typing rules are sufficiently powerful
and that the user has not defined a tautological, but tricky predicate,162 the
justification for this heuristic test is the following: The bit-vector of this
literal must contain the singleton type of F (containing only the term F,
cf. § 6.3.1); otherwise the validity of the literal and the clause would have
been recognized by the stage “simplification”. This means that F is most
probably a possible value for some combination of arguments.

161See Page 160f. of [Boyer and Moore, 1979] for a typical example of this.
162This assumption is critical because it often occurs that updated program code contains

recursive predicates that are actually trivially true, but very tricky. See § 3.2 of [Wirth, 2004]

for such an example. Moreover, users sometimes supply such predicates in order to suggest a
particular induction ordering. For example, if we want to supply the function sqrtio of § 6.3.9 to
Thm, then we have to provide a complete definition, typically given by setting sqrtio to be T in
all other cases. Luckily, such nonsense functions will typically not occur in any proof.

Automation of Mathematical Induction as part of the History of Logic 67

6.3.6 Induction in Thm as compared to the Pure LISP Theorem Prover

As we have seen in § 6.2.6, the recursion analysis in the Pure LISP Theo-
rem Prover is only rudimentary. Indeed, the whole information on the body
of the recursive function definitions comes out of the poor163 feedback of the
“evaluation” procedure of the simplification stage of the Pure LISP Theorem
Prover. Roughly speaking, this information consists only in the two facts

1. that a destructor symbol occurring as an argument of the recursive function
call in the body is not removed by the “evaluation” procedure in the context
of the current goal and in the local environment, and

2. that it is not possible to derive that this recursive function call is unreachable
in this context and environment.

In Thm, however, the first part of recursion analysis is done at definition time, i.e.
at the time the function is defined, and applied at proof time, i.e. at the time the
induction rule produces the base and step cases. Surprisingly, there is no reacha-
bility analysis for the recursive calls in this second part of the recursion analysis
in Thm. While the information in item1 is thoroughly improved as compared to
the Pure LISP Theorem Prover, the information in item2 is partly weaker
because all recursive function calls are assumed to be reachable during recursion
analysis. The overwhelming success of Thm means that the heuristic decision to
abandon reachability analysis in Thm was appropriate.164

6.3.7 Induction Templates generated by Definition-Time Recursion Analysis

The first part of recursion analysis in Thm consists of a termination analysis of
every recursive function at the time of its definition. The system does not only
look for one termination proof that is sufficient for the admissibility of the function
definition, but — to be able to generate a plenitude of sound sets of step formulas
later — actually looks through all termination proofs in a finite search space and
gathers from them all information required for justifying the termination of the
recursive function definition. This information will later be used to guarantee the
soundness and improve the feasibility of the step cases to be generated by the
induction rule.

To this end, Thm constructs valid induction templates very similar to our de-
scription in § 5.5.165 Let us approach the idea of a valid induction template with
some typical examples, which are actually the templates for the constructor-style
examples of § 5.5, but now for the destructor-style definitions of lessp and ack,
because only destructor-style definitions are admissible in Thm.
163See the discussion in § 6.2.7 on Example 11 from § 6.2.6.

164Note that in most cases the step formula of the reachable cases works somehow in Thm, as
long as no better step case was canceled because of unreachable step cases, which, of course, are
trivial to prove, simply because their condition is false. Moreover, note that, contrary to descente
infinie which can get along with the first part of recursion analysis alone, the heuristics of explicit
induction have to guess the induction steps eagerly, which is always a fault-prone procedure,
to be corrected by additional induction proofs, as we have seen in Example 4 of § 4.8.1.

68 J Strother Moore, Claus-Peter Wirth

EXAMPLE 18 (Two Induction Templates with different Measured Positions).
For the ordering predicate lessp as defined by (lessp1′–3′) in Example 12 of § 6.2.6,
we get two induction templates with the sets of measured positions {1} and {2},
respectively, both for the well-founded ordering λx, y. (lessp(x, y)= true). The
first template has the weight term (1) and the relational description{ (

lessp(x, y), {lessp(p(x), p(y))}, {x 6= 0}) }
.

The second one has the weight term (2) and the relational description{ (
lessp(x, y), {lessp(p(x), p(y))}, {y 6= 0}) }

. ¤
EXAMPLE 19 (One Induction Template with Two Measured Positions).
For the Ackermann function ack as defined by (ack1′–3′) in Example 11 of § 6.2.6,
we get only one appropriate induction template. The set of its measured positions
is {1, 2}, because of the weight function cons((1), cons((2), nil)) (in Thm actually:
(CONS x y)) in the well-founded lexicographic ordering

λl, k. (lexlimless(l, k, s(s(s(0)))) = true).
The relational description has two elements: For the equation (ack2′) we get(

ack(x, y), {ack(p(x), s(0))}, {x 6= 0})
,

and for the equation (ack3′) we get(
ack(x, y), {ack(x, p(y)), ack(p(x), ack(x, p(y)))}, {x 6= 0, y 6= 0})

. ¤

To find valid induction templates automatically by exhaustive search, Thm allows
the user to tag certain theorems as “induction lemmas”. An induction lemma
consists of the application of a well-founded relation to two terms with the same top
function symbol w, playing the rôle of the weight term; plus a condition without
extra variables, which is used to generate the case conditions of the induction
template. Moreover, the arguments of the application of w occurring as the second
argument of the well-founded relation must be distinct variables in Thm, mirroring
the left-hand side of its function definitions in destructor style.

Certain induction lemmas are generated with each shell declaration. Such an
induction lemma generated for the shell ADD1, which is roughly

(LESSP (COUNT (SUB1 X)) (COUNT X)) ⇐ (NOT (ZEROP X)),
suffices for generating the two templates of Example 18. Note that COUNT, playing
the rôle of w here, is a special function in Thm, which is generically extended by
every shell declaration in an object-oriented style for the elements of the new shell.
On the natural numbers here, COUNT is the identity. On other shells, COUNT is
defined similar to our function count from § 4.5.166

165Those parts of the condition of the equation that contain the new function symbol f must be
ignored in the case conditions of the induction template because the definition of the function f
is admitted in Thm only after it has passed the termination proof.

That Thm ignores the governing conditions that contain the new function symbol f is described
in the 2nd paragraph on Page 165 of [Boyer and Moore, 1979]. Moreover, an example for this is
the definition of OCCUR on Page 166 of [Boyer and Moore, 1979].

After one successful termination proof, however, the function can be admitted in Thm, and
then these conditions could actually be admitted in the templates. So the actual reason why
Thm ignores these conditions in the templates is that it generates the templates with the help
of previously proved induction lemmas, which, of course, cannot contain the new function yet.

Automation of Mathematical Induction as part of the History of Logic 69

6.3.8 Proof-Time Recursion Analysis in Thm

The induction rule uses the information from the induction templates as follows:
For each recursive function occurring in the input formula, all applicable induction
templates are retrieved and turned into induction schemes as described in § 5.8.
Any induction scheme that is subsumed by another one is deleted after adding its
hitting ratio to the one of the other. The remaining schemes are merged into new
ones with a higher hitting ratio, and finally, after the flawed schemes are deleted,
the scheme with the highest hitting ratio will be used by the induction rule to
generate the base and step cases.

EXAMPLE 20 (Applicable Induction Templates).
Let us consider the conjecture (ack4) from § 4.4. From the three induction tem-
plates of Examples 18 and 19, only the second one of Example 18 is not applicable
because the second position of lessp (which is the only measured position of that
template) is changeable, but filled in (ack4) by the non-variable ack(x, y). ¤

From the destructor-style definitions (lessp1′–3′) (cf. Example 12) and (ack1′–3′)
(cf. Example 11), we have generated two induction templates applicable to
(ack4) lessp(y, ack(x, y)) = true

They yield the two induction schemes of Example 21. See also Example 10 for
the single induction scheme for the constructor-style definitions (lessp1–3) and
(ack1–3).

EXAMPLE 21 (Induction Schemes).
The induction template for lessp of Example 18 that is applicable to (ack4) accord-
ing to Example 20 and whose relational description contains only the triple(

lessp(x, y), {lessp(p(x), p(y))}, {x 6= 0})

yields the induction scheme with position set {1.1} (i.e. left-hand side of first literal
in (ack4)); the step-case description is

{(
{x,y}»id, {µ1}, {y 6= 0})}, where µ1 =

{x7→x, y 7→p(y)}; the set of induction variables is {y}; and the hitting ratio is 1
2 .

This can be seen as follows: The substitution called ξ in the discussion of § 5.8
can be chosen to be the identity substitution {x,y}»id on {x, y} because the first
element of the triple does not contain any constructors. This is always the
case for induction templates for destructor-style definitions such as (lessp1′–3′).
The substitution called σ in § 5.8 (which has to match the first element of the
triple to the term (ack4)/1.1, i.e. the term at the position 1.1 in (ack4)) is σ =
{x7→y, y 7→ack(x, y)}. So the constraints for µ1 (which tries to match (ack4)/1.1
to the σ-instance of the second element of the triple) are: yµ1 = p(y) for the
first (measured) position of lessp; and ack(x, y)µ1 = p(ack(x, y)) for the second
(unmeasured) position, which cannot be achieved and is skipped. This results in
a hitting ratio of only 1

2 . The single measured position 1 of the induction template
results in the induction variable (ack4)/1.1.1 = y.
166For more details on the recursion analysis a definition time in Thm, see Page 180ff. of [Boyer

and Moore, 1979].

70 J Strother Moore, Claus-Peter Wirth

The template for ack of Example 19 yields an induction scheme with the position
set {1.1.2}, and the set of induction variables {x, y}. The triple(

ack(x, y), {ack(p(x), s(0))}, {x 6= 0})
(generated by the equation (ack2′)) is replaced with

(
{x,y}»id, {µ′1,1}, {x 6= 0})

,
where µ′1,1 = {x7→p(x), y 7→s(0)}. The triple(

ack(x, y), {ack(x, p(y)), ack(p(x), ack(x, p(y)))}, {x 6= 0, y 6= 0})
(generated by (ack3′)) is replaced with

(
{x,y}»id, {µ′2,1, µ′2,2}, {x 6= 0, y 6= 0})

,
where µ′2,1 = {x7→x, y 7→p(y)}, and µ′2,2 = {x7→p(x), y 7→ack(x, p(y))}.

This can be seen as follows: The substitution called σ in the above discussion
is {x,y}»id in both cases, and so the constraints for the (measured) positions are
xµ′1,1=p(x), yµ′1,1=s(0); xµ′2,1=x, yµ′2,1=p(y); xµ′2,2=p(x), yµ′2,2=ack(x, p(y)).

As all six constraints are satisfied, the hitting ratio is 6
6 = 1. ¤

An induction scheme that is either subsumed by or merged into another induction
scheme adds its hitting ratio and sets of positions and induction variables to those
of the other’s, respectively, and then it is deleted.

The most important case of subsumption are schemes that are identical except
for their position sets, where — no matter which scheme is deleted — the result
is the same. The more general case of proper subsumption occurs when the sub-
sumer provides the essential structure of the subsumee, but not vice versa.

Merging and proper subsumption of schemes — seen as binary algebraic opera-
tions — are not commutative, however, because the second argument inherits the
well-foundedness guarantee alone and somehow absorbs the first argument, and so
the result for swapped arguments is often undefined.

More precisely, subsumption is given if the step-case description of the first
induction scheme can be injectively mapped to the step-case description of the
second one, such that (using the notation of § 5.8 and Example 21), for each
step case (id, { µj | j ∈ J }, C) mapped to (id, { µ′j | j ∈ J]J ′ }, C ′), we have
C ⊆ C ′, and the set of substitutions { µj | j ∈ J } can be injectively167 mapped
to { µ′j | j ∈ J] J ′ } (w.l.o.g. say µi to µ′i for i∈ J), such that, for each j ∈ J and
x ∈ dom(µj): x∈dom(µ′j); xµj=x implies xµ′j=x; and xµj is a subterm of xµ′j .

EXAMPLE 22 (Subsumption of Induction Schemes).
In Example 21, the induction scheme for lessp is subsumed by the induction scheme
for ack, because we can map the only element of the step-case description of
the former to the second element of the step-case description of latter: the case
condition {y 6= 0} is a subset of the case condition {x 6= 0, y 6= 0}, and we have
µ1 = µ′2,1. So the former scheme is deleted and the scheme for ack is updated to
have the position set {1.1, 1.1.2} and the hitting ratio 3

2 . ¤
167From a logical viewpoint, it is not clear why this second injectivity requirement is found here,

just as in different (but equivalent) form in [Boyer and Moore, 1979, p. 191, 1st paragraph]. (The
first injectivity requirement may prevent us from choosing an induction ordering that is too small,
cf. § 6.3.9.) An omission of the second requirement would just admit a term of the subsumer to
have multiple subterms of the subsumee, which seems reasonable. Nevertheless, as pointed out
in § 6.3.9, only practical testing of the heuristics is what matters here. See also Note 168.

Automation of Mathematical Induction as part of the History of Logic 71

In Example 12 of § 6.2.6 we have already seen a rudimentary, but pretty success-
ful kind of merging of suggested step cases in the Pure LISP Theorem Prover.
As Thm additionally has induction schemes, it applies a more sophisticated merg-
ing of induction schemes instead.

Two substitutions µ1 and µ2 are [non-trivially] mergeable if xµ1 = xµ2 for each
x ∈ dom(µ1) ∩ dom(µ2) [and there is a y ∈ dom(µ1) ∩ dom(µ2) with yµ1 6= y].

Two triples (V1»id, A1, C1) and (V2»id, A2, C2) of two step-case descriptions
of two induction schemes, each with domain Vk = dom(µk) for all µk ∈ Ak

(for k ∈ {1, 2}), are [non-trivially] mergeable if for each µ1 ∈ A1 there is a µ2 ∈ A2

such that µ1 and µ2 are [non-trivially] mergeable. The result of their merging is(
V1∪V2»id, m(A1, A2), C1∪C2

)
, where m(A1, A2) is the set containing all sub-

stitutions µ1 ∪ µ2 with µ1 ∈ A1 and µ2 ∈ A2 such that µ1 and µ2 are mergeable
as well as all substitutions V1\V2»id ∪ µ2 with µ2 ∈ A2 for which there is no sub-
stitution µ1 ∈ A1 such that µ1 and µ2 are mergeable.

Two induction schemes are mergeable if the step-case description of the first
induction scheme can be injectively168 mapped to the step-case description of the
second one, such that each argument and its image are non-trivially mergeable.
The step-case description of the induction scheme that results from merging the
first induction scheme into the second contains the merging of all mergeable triples
of the step-case descriptions of first and second induction scheme, respectively.

Finally, we have to describe what it means that an induction scheme is flawed.
This simply is the case if — after merging is completed — the intersection of its
induction variables with the (common) domain of the substitutions of the step-
case description of another remaining induction scheme is non-empty.

If an induction scheme is flawed by another one that cannot be merged with it,
this indicates that an induction on it will probably result in a permanent clash
between the induction conclusion and the available induction hypotheses at some
occurrences of the induction variables.169

pos. set ind. var.s step-case description hit. ratio

1 {1} {x} { (
{x,z}»id, {µ1}, {x 6= 0}) }

1
2 {2} {x} { (

{x,y}»id, {µ2}, {x 6= 0}) }
1

3 {2} {y} { (
{x,y}»id, {µ2}, {y 6= 0}) }

1
4 {3} {y} { (

{y,z}»id, {µ3}, {y 6= 0}) }
1

5 {3} {z} { (
{y,z}»id, {µ3}, {z 6= 0}) }

1
6 {2} {x, y} { (

{x,y}»id, {µ2}, {x 6= 0, y 6= 0}) }
2

7 {3} {y, z} { (
{y,z}»id, {µ3}, {y 6= 0, z 6= 0}) }

2
8 {2, 3} {x, y, z} { (

{x,y,z}»id, {µ4}, {x 6= 0, y 6= 0, z 6= 0}) }
4

9 {1, 2, 3} {x, y, z} { (
{x,y,z}»id, {µ4}, {x 6= 0, y 6= 0, z 6= 0}) }

5

µ1 = {x 7→p(x), z 7→p(z)}, µ2 = {x 7→p(x), y 7→p(y)},
µ3 = {y 7→p(y), z 7→p(z)}, and µ4 = {x7→p(x), y 7→p(y), z 7→p(z)}.
pos. = position; ind. var.s = set of induction variables; hit. = hitting.

Figure 3. The induction schemes of Example 23

72 J Strother Moore, Claus-Peter Wirth

EXAMPLE 23 (Merging and Flawedness of Induction Schemes).
Let us reconsider merging in the proof of lemma (lessp7) w.r.t. the definition of lessp
via (lessp1′–3′), just as we did in Example 12. Let us abbreviate p = true with p,
just as in our very first proof of lemma (lessp7) in Example 3, and also following
the LISP style of Thm. Simplification reduces (lessp7) first to the clause
(lessp7′) lessp(x, p(z)), ¬lessp(x, y), ¬lessp(y, z), z = 0

Then the Boyer–Moore waterfall sends this clause through three rounds of re-
duction between destructor elimination and simplification as discussed at the end
of § 6.3.2, finally returning again to (lessp7′), but now with all its variables marked
as being introduced by destructor elimination, which prevents looping by blocking
further destructor elimination.

Note that the marked variables refer actually to the predecessors of the values
of the original lemma (lessp7′), and that these three rounds of reduction already
include all that is required for the entire induction proof, such that descente infinie
would now conclude the proof with an induction-hypothesis application. This most
nicely illustrates the crucial similarity between recursion and induction, which
Boyer and Moore “exploit” . . . “or, rather, contrived”.170

The proof by explicit induction in Thm, however, now just starts to compute
induction schemes. The two induction templates for lessp found in Example 18 are
applicable five times, resulting in the induction schemes 1–5 in Figure 3.

From the domains of the substitutions in the step-case descriptions, it is obvious
that — among schemes 1–5 — only the two pairs of schemes 2 and 3 as well as
4 and 5 are candidates for subsumption, which is not given here, however, because
the case conditions of these two pairs of schemes are not subsets of each other.

Nevertheless, these pairs of schemes merge, resulting in the schemes 6 and 7,
respectively, which merge again, resulting in scheme 8.

Now only the schemes 1 and 8 remain. As each of them has x as an induction
variable, both schemes would be flawed if they could not be merged.

It does not matter that the scheme 1 is subsumed by scheme 8 simply because the
phase of subsumption is already over; but they are also mergeable, actually with
the same result as subsumption would have, namely the scheme 9, which admits
us to prove the generic step-case formula it describes without further induction,
and so Thm achieves the crucial task of heuristic anticipation of an appropriate
induction hypotheses, just as well as the Pure LISP Theorem Prover.171 ¤
168From a logical viewpoint, it is again not clear why an injectivity requirement is found here,

just as in different (but equivalent) form in [Boyer and Moore, 1979, p. 193, 1st paragraph].
An omission of the injectivity requirement would admit to define merging as a commutative
associative operation. Nevertheless, as pointed out in § 6.3.9, only practical testing of the heuris-
tics is what matters here. See also Note 167.

169See Page 194f. of [Boyer and Moore, 1979] for a short further discussion and a nice example.

170Cf. [Boyer and Moore, 1979, p. 163, last paragraph].

171The base cases show no improvement to the proof with the Pure LISP Theorem Prover
in Example 12 and a further additional, but also negligible overhead is the preceding reduction
from (lessp7) over (lessp7′) to a version of (lessp7′) with marked variables.

Automation of Mathematical Induction as part of the History of Logic 73

6.3.9 Conclusion on Thm

Logicians reading on Thm may ask themselves many questions such as: Why
is merging of induction schemes — seen as a binary algebraic operation — not
realized to satisfy the constraint of associativity, so that the result of merging
become independent of the order of the operations? Why does merging not admit
the subterm-property in the same way as subsumption of induction schemes does?
Why do some of the injectivity requirements172 of subsumption and mergeability
lack a meaningful justification, and how can it be that they do not matter?

The answer is trivial, although it is easily overlooked: The part of the auto-
mation of induction we have discussed in this section on Thm, belongs mostly
to the field of heuristics and not in the field of logics. Therefore, the final judg-
ment cannot come from logical and intellectual adequacy and comprehensibility
— which are not much more applicable here than in the field of neural nets for
instance — but must come from complete testing with a huge and growing corpus
of example theorems. A modification of an operation, say merging of induction
schemes, that may have some practical advantages for some examples or admit
humans some insight or understanding, can be accepted only if it admits us to
run, as efficiently as before, all the lemmas that could be automatically proved
with the system before. All in all, logical and formal considerations may help us
to find new heuristics, but they cannot play any rôle in their evaluation.173

Moreover, it is remarkable that the well-founded relation that is expressed by
the subsuming induction scheme is smaller than that expressed by the subsumed
one, and the relation expressed by a merged scheme is typically smaller than those
expressed by the original ones. This means that the newly generated induction
schemes do not represent a more powerful induction ordering (say, in terms of
Noetherian induction), but actually achieve an improvement w.r.t. the eager in-
stantiation of the induction hypothesis (both for a direct proof and for generaliza-
tion), and provide case conditions that further a successful generalization without
further case analysis.

Since the end of the 1970s until today, Thm has set the standard for explicit
induction; moreover, Thm and its successors Nqthm and ACL2 have given
many researchers a hard time trying to demonstrate weaknesses of their explicit-
induction heuristics, because examples carefully devised to fail with certain steps
of the construction of induction schemes (or other stages of the waterfall) tend to
end up with alternative proofs not imagined before.

Restricted to the mechanization of explicit induction, no significant progress
has been seen beyond Thm and we do not expect any for the future. A heuristic
172Cf. Notes 167 and 168.
173While Christoph Walther is well aware of the primacy of testing in [Walther, 1992; 1993],

this awareness is not reflected in the sloppy language of the most interesting papers [Stevens,
1988] and [Bundy et al., 1989]: Heuristics cannot be “bugged” or “have serious flaws”, unless
this would mean that they turn out to be inferior to others w.r.t. a standard corpus. A “rational
reconstruction” or a “meta-theoretic analysis” may help to guess even superior heuristics, but
they may not have any epistemological value per se.

74 J Strother Moore, Claus-Peter Wirth

x= AE

y = FE = BE = AF

div(x, s(s(0)))= AC = CF

x− y = AB = BD = BG =GF

s(s(0)) ∗ (x− y)= AD

(s(s(0)) ∗ y)−x= AG = GD

...

A

B

C

F E

D
G

Figure 4. Four possibilities to descend with rational representations of
√

2:
From the triangle with right angle at F to those at C, G, or B.

approach that has to anticipate appropriate induction steps with a lookahead
of one individual rewrite step for each recursive function occurring in the input
formula cannot go much further than the carefully developed and exhaustively
tested explicit-induction heuristics of Thm.

Working with Thm (or Nqthm) for the first time will always fascinate infor-
maticians and mathematicians, simply because it helps to save more time with
the standard everyday inductive proof work than it takes, and the system often
comes up with completely unexpected proofs. Mathematicians, however, should be
warned that the less trivial mathematical proofs that require some creativity and
would deserve to be explicated in an advanced mathematics lecture, will require
some hints, especially if the induction ordering is not a combination of the termi-
nation orderings of the given function definitions. This is already the case for the
simple proofs of the lemma on the irrationality of the square root of two, simply
because the induction orderings of the typical proofs exist only under the assump-
tion that the lemma is wrong. To make Thm find the standard proof, the user has
to define a function such as the following one:

(sqrtio1) sqrtio(x, y)
= and(sqrtio(y, div(x, s(s(0)))),

and(sqrtio(s(s(0)) ∗ (x− y), (s(s(0)) ∗ y)−x),
sqrtio((s(s(0)) ∗ y)−x, x− y)))

⇐ x ∗x= s(s(0)) ∗ y ∗ y ∧ y 6= 0

Note that the condition of (sqrtio1) cannot be fulfilled. The three different occur-
rences of sqrtio on the right-hand side of the positive/negative-conditional equation
become immediately clear from Figure 4. Actually, any single one of these occur-
rences is sufficient for a proof of the irrationality lemma with Thm, provided that
we give the hint that the induction templates of sqrtio should be used for comput-
ing the induction schemes, in spite of the fact that sqrtio does not occur in the
lemma.

Automation of Mathematical Induction as part of the History of Logic 75

6.4 Nqthm

Subsequent theorem provers by Boyer and Moore did not add much to the mech-
anization of induction. While both Nqthm and ACL2 have been very influential
in theorem proving, their inductive heuristics are nearly the same as those in Thm
and their waterfalls have quite similar structures. Since we are concerned with the
history of the mechanization of induction, we just sketch developments since 1979.

The one change from Thm to Nqthm that most directly affected the inductions
carried out by the system is the abandonment of fixed lexicographic relations on
natural numbers as the only available well-founded relations. Nqthm introduces
a formal representation of the ordinals up to ε0, i.e. up to ωω

. . .

, and assumes that
the “less than” relation on such ordinals is well-founded. This did not change
the induction heuristics themselves, it just allowed the admission of more complex
function definitions and the justification of more sophisticated induction templates.

After the publication of [Boyer and Moore, 1979] describing Thm, Boyer and
Moore turned to the question of providing limited support for higher-order func-
tions in their first-order setting. This had two very practical motivations. One
was to allow the user to extend the prover by defining and mechanically verifying
new proof procedures in the pure LISP dialect supported by Thm. The other
was to allow the user the convenience of LISP’s “map functions” and LOOP facil-
ity. Both required formally defining the semantics of the logical language in the
logic, i.e. axiomatizing the evaluation function EVAL. Ultimately this resulted in
the provision of metafunctions [Boyer and Moore, 1981b] and the non-constructive
“value-and-cost” function V&C$ [Boyer and Moore, 1988a], which were provided
as part of the Nqthm system described in [Boyer and Moore, 1988b; 1998].

The most important side-effect of these additions, however, is under the hood;
Boyer and Moore contrived to make the representation of constructor ground terms
in the logic be identical to their representation as constants in its underlying im-
plementation language LISP: integers are represented directly as LISP integers;
for instance, s(s(s(0))) is represented by the machine-oriented internal LISP repre-
sentation of 3, instead of the previous (ADD1 (ADD1 (ADD1 (ZERO)))). Symbols
and list structures are embedded this way as well, so that they can can profit from
the very efficient representation of these basic data types in LISP. It thus also
became possible to represent symbolic machine states containing actual assembly
code or the parse trees of actual programs in the logic of Nqthm. Metafunctions
were put to good use canonicalizing symbolic state expressions. The exploration
of formal operational semantics with Nqthm blossomed.

In addition, Nqthm adds a rational linear-arithmetic174 decision procedure to
the simplification stage of the waterfall [Boyer and Moore, 1988c], reducing the
amount of user interaction necessary to prove arithmetic theorems. The incom-
pleteness of the procedure when operating on terms beyond the linear fragment is
of little practical importance since induction is available (and often automatic).

174Linear arithmetic is traditionally called “Presburger Arithmetic” after Mojżesz Presburger
(actually: “Prezburger”) (1904–1943?); cf. [Presburger, 1930], [Stansifer, 1984], [Zygmunt, 1991].

76 J Strother Moore, Claus-Peter Wirth

With Nqthm it became possible to formalize and verify problems beyond the
scope of Thm, such as the correctness of a netlist implementing the instruction-
set architecture of a microprocessor [Hunt, 1985], Gödel’s first incompleteness
theorem,175 the verified hard- & software stack of Computational Logic, Inc.,
relating a fabricated microprocessor design through an assembler, linker, loader,
several compilers, and an operating system to simple verified application pro-
grams,176 and the verification of the Berkeley C String Library.177 Many more
examples are listed in [Boyer and Moore, 1998].

6.5 ACL2

Because of the pervasive change in the representation of constants, the LISP subset
supported by Nqthm is exponentially more efficient than the LISPs supported by
Thm and the Pure LISP Theorem Prover. It is still too inefficient, however:
Emerging applications of Nqthm in the late 1980s included models of commercial
microprocessors; users wished to run their models on industrial test suites. The
root cause of the inefficiency was that ground execution in Nqthm was done by a
purpose-built interpreter implemented by Boyer and Moore. To reach competitive
speeds, it would have been necessary to build a good compiler and full runtime
system for the LISP subset axiomatized in Nqthm. Instead, in August 1989,
less than a year after the publication of [Boyer and Moore, 1988b] describing
Nqthm, Boyer and Moore decided to axiomatize a practical subset of Common
Lisp [Steele, 1990], the then-emerging standard LISP, and to build an Nqthm-like
theorem prover for it. To demonstrate that the subset was a practical programming
language, they decided to code the theorem prover applicatively in that subset.
Thus, ACL2 was born.

Boyer left Computational Logic, Inc., (CLI) and returned to his duties at the
The University of Texas at Austin in 1989, while Moore resigned his tenure and
stayed at CLI. This meant Moore was working full-time on ACL2, whereas Boyer
was working on it only at night.

175Cf. [Shankar, 1994]. In [Shankar, 1994, p. xii] we read on this work with Nqthm:

“This theorem prover is known for its powerful heuristics for constructing proofs
by induction while making clever use of previously proved lemmas. The Boyer–
Moore theorem prover did not discover proofs of the incompleteness theorem but
merely checked a detailed but fairly high-level proof containing over 2000 definitions
and lemmas leading to the main theorems. These definitions and lemmas were
constructed through a process of interaction with the theorem prover which was
able to automatically prove a large number of nontrivial lemmas. By thus proving
a well-chosen sequence of lemmas, the theorem prover is actually used as a proof
checker rather than a theorem prover.
If we exclude the time spent thinking, planning, and writing about the proof, the
verification of the incompleteness theorem occupied about eighteen months of effort
with the theorem prover.”

176Cf. [Moore, 1989b; 1989a], [Bevier et al., 1989], [Hunt, 1989], [Young, 1989], [Bevier, 1989].

177Via verification of its gcc-generated Motorola MC68020 machine code [Boyer and Yu, 1996].

Automation of Mathematical Induction as part of the History of Logic 77

Matt Kaufmann (*1952), who had worked with Boyer and Moore since the
mid-1980s on Nqthm and had joined them at CLI, was invited to join the ACL2
project.

By the mid-1990s, Boyer requested that his name be removed as an author of
ACL2 because he no longer knew every line of code.

The only major change to inductive reasoning introduced by ACL2 was the
further refinement of the induction templates computed at definition time. While
Nqthm built the case analysis from the case conditions “governing” the recursive
calls, ACL2 uses the more restrictive notion of the tests “ruling” the recursive
calls. Compare the definition of governors on Page 180 of [Boyer and Moore,
1998] to the definition of rulers on Page 90 of [Kaufmann et al., 2000b].

ACL2 represents a major step, however, toward Boyer and Moore’s dream of
a computational logic because it is a theorem prover for a practical programming
language. Because it is so used, scaling its algorithms and heuristics to deal with
enormous models and the formulas they generate has been a major concern, as has
been the efficiency of ground execution. Moreover, it also added many other proof
techniques including congruence-based contextual rewriting, additional decision
procedures, disjunctive search (meaning the waterfall no longer has just one pool
but may generate several, one of which must be “emptied” to succeed), and many
features made possible by the fact that the system code and state is visible to the
logic and the user.

Among the landmark applications of ACL2 are the verification of a Motorola
digital signal processor [Brock and Hunt, 1999] and of the floating-point division
microcode for the AMD K5tm microprocessor [Moore et al., 1998], the routine
verification of all elementary floating point arithmetic on the AMD Athlontm

[Russinoff, 1998], the certification of the Rockwell Collins AAMP7Gtm for multi-
level secure applications by the US National Security Agency based on the ACL2
proofs [Anon, 2005], and the integration of ACL2 into the work-flow of Centaur
Technology, Inc., a major manufacturer of X86 microprocessors [Hunt and Swords,
2009]. Some of this work was done several years before the publications appeared
because the early use of formal methods was considered proprietary. For example,
the work for [Brock and Hunt, 1999] was completed in 1994, and that for [Moore
et al., 1998] in 1995.

In most industrial applications of ACL2, induction is not used in every proof.
Many of the proofs involve huge intermediate formulas, some requiring megabytes
of storage simply to represent, let alone simplify. Almost all the proofs, however,
depend on lemmas that require induction to prove.

To be successful, ACL2 must be good at both induction and simplification and
integrate them seamlessly in a well-engineered system, so that the user can state
and prove in a single system all the theorems needed.

ACL2 is most relevant to the historiography of inductive theorem proving
because it demonstrates that the induction heuristics and the waterfall provide
such an integration in ways that can be scaled to industrial-strength applications.

78 J Strother Moore, Claus-Peter Wirth

ACL2 and, by extension, inductive theorem proving, have changed the way
microprocessors and low-level critical software are designed. Proof of correctness,
or at least proof of some important system properties, is now a possibility.

Boyer, Moore, and Kaufmann were awarded the 2005 ACM Software Systems
Award for “the Boyer–Moore Theorem Prover”:

“The Boyer–Moore Theorem Prover is a highly engineered and effec-
tive formal-methods tool that pioneered the automation of proofs by
induction, and now provides fully automatic or human-guided verifica-
tion of critical computing systems. The latest version of the system,
ACL2, is the only simulation/verification system that provides a stan-
dard modeling language and industrial-strength model simulation in a
unified framework. This technology is truly remarkable in that simu-
lation is comparable to C in performance, but runs inside a theorem
prover that verifies properties by mathematical proof. ACL2 is used
in industry by AMD, IBM, and Rockwell-Collins, among others.”178

6.6 Explicit Induction in Rrl, Inka, and Oyster/CLaM

Rrl, the Rewrite Rule Laboratory [Kapur and Zhang, 1989], was initiated in 1982
and showed its main activity during its first dozen years. Rrl is a system for
proving the viability of many techniques related to term rewriting. Besides other
forms of induction, Rrl includes cover-set induction, which has eager induction-
hypothesis generation, but is restricted to syntactic term orderings.

Interesting work on explicit induction was realized along the line of the Inka
Induction (Karlsruhe) systems. We have to mention here Christoph Walther’s
(*1950) elegant treatment of automated termination proofs for recursive func-
tion definitions [Walther, 1988; 1994b], and his theoretically outstanding work on
the generation of step cases with eager induction-hypothesis generation [Walther,
1992; 1993]; moreover, there is Dieter Hutter’s (*1959) development of rippling
(in parallel to a similar development of rippling by Alan Bundy, cf. § 7.2), and
Martin Protzen’s (*1962) profound work on patching of faulty conjectures and
on breaking out of the imagined cage of explicit induction by “lazy induction”
[Protzen, 1994; 1995; 1996].

The Inka project started in 1984 as part of the Collaborative Research Center
SFB314 “Artificial Intelligence”, which was financed by the German Research
Community (DFG) to overcome a backwardness in artificial intelligence in Ger-
many of more than a dozen years compared to the research in Edinburgh and
the US.

178For the complete text of the citation of Boyer, Moore, and Kaufmann see http://awards.

acm.org/citation.cfm?id=4797627&aw=149.

Automation of Mathematical Induction as part of the History of Logic 79

While the Inka systems proved the executability of several new concepts, they
were never competitive with their contemporary Boyer–Moore theorem provers
(though Inka 5.0 [Autexier et al., 1999] was competitive in speed with Nqthm),179

and the development of Inka was discontinued for this reason in the year 2000.
Three Inka system descriptions were presented at the CADE conference series:

[Biundo et al., 1986], [Hutter and Sengler, 1996], [Autexier et al., 1999].
From the beginning, the Inka project, starting from [Boyer and Moore, 1979],

ignored that Boyer and Moore had actually come from resolution theorem proving
and abandoned this form of “random search” for their inductive theorem provers
for very good reasons (cf. § 6.2). The problematic (many-sorted) resolution and
paramodulation approach of the early Inka system was given up only close to the
end of the project [Autexier et al., 1999].

In principle, the Inka systems offered full first-order predicate logic, but typi-
cally via the poor operationalization of Skolemization as a standard preprocessing
in resolution theorem proving. Besides interfaces to users and other systems, and
the integration of logics, specifications, and results of other theorem provers, the
essentially induction-relevant additions of Inka as compared to the system de-
scribed in [Boyer and Moore, 1979] are the following: In [Biundo et al., 1986]
there is an existential quantification where the system tries to find witnesses for
the existentially quantified variables by interactive program synthesis. In [Hutter
and Sengler, 1996], there is rippling (cf. § 7.2).

The Oyster/CLaM system was developed at the University of Edinburgh in the
late 1980s180 and the 1990s by a large team led by Alan Bundy.181 Oyster is a
reimplementation of Nuprl [Constable et al., 1985], a proof editor for Martin-Löf
constructive type theory with rules for structural induction in the style of Peano
— a logic that is not well-suited for inductive proof search, as discussed in § 4.6.
Oyster is based on tactics with specifications in a meta-level language which
provides a complete representation of the object level, but with a search space
much better suited for inductive proof search. CLaM is a proof planner (cf. § 7.1)
which guides Oyster, based on proof search in the meta-language, which includes
rippling (cf. § 7.2).

Oyster/CLaM proved the viability of many concepts, but it is the slowest
system explicitly mentioned in this article,179 partly because of its constructive
logic.
179This can roughly be concluded from the results of the inductive theorem proving contest at

the 16th Int. Conf. on Automated Deduction (CADE), Trento (Italy), 1999 (the design of which
is described in [Hutter and Bundy, 1999]), where the following systems competed with each other
(in interaction with the following humans): Nqthm (Laurence Pierre), Inka 5.0 (Dieter Hutter),
Oyster/CLaM (Alan Bundy), and a first prototype of QuodLibet (Ulrich Kühler). Only Oys-
ter/CLaM turned out to be significantly slower than the other systems, but all participating
systems would have been left far behind ACL2 if it had participated.

180The system description [Bundy et al., 1990] of Oyster/CLaM appeared already in summer
1990 at the CADE conference series (with a submission in winter 1989/1990); so the development
must have started before the 1990s, contrary to what is stated in § 11.4 of [Bundy, 1999].

181For Alan Bundy see also Note 7.

80 J Strother Moore, Claus-Peter Wirth

Besides approaches in its line of development more or less addressing theorem
proving in general, such as rippling (cf. § 7.2) and the productive use of failure
[Ireland and Bundy, 1994], most interesting from the aspect of induction is the
extension of recursion analysis to ripple analysis, which is sketched already in
[Bundy et al., 1989, § 7], and which is nicely presented in [Bundy, 1999, § 7.10].

7 ALTERNATIVE APPROACHES BESIDES EXPLICIT INDUCTION

In this section we will discuss the approaches to the automation of mathematical
induction that do not strictly follow the method of explicit induction as we have
described it. In general, these approaches are not disjoint from explicit induction.
To the contrary, proof planning and rippling have until now been applied mostly
to systems more or less based on explicit induction, but they are not exclusively
related to induction and they are not following Boyer–Moore’s method of explicit
induction in every detail. Even systems for implicit induction may include many
features of explicit induction and some of them actually do, such as Rrl (cf. § 6.6)
and QuodLibet (cf. § 7.4).

7.1 Proof Planning

Suggestions on how to overcome an envisioned dead end in automated theorem
proving were summarized in the end of the 1980s under the keyword proof planning.
Besides its human-science aspects,182 the main idea183 of proof planning is to
extend a theorem-proving system — on top of the low-level search space of the logic
calculus of a proof checker — with a higher-level search space, which is typically
smaller or better organized w.r.t. searching, more abstract, and more human-
oriented.

The extensive and sophisticated subject of proof planning is not especially re-
lated to induction, but addresses automated theorem proving in general. We can-
not cover it here and have to refer the reader to the standard publications on the
subject.184

182Cf. [Bundy, 1989].

183Cf. [Bundy, 1988], [Dennis et al., 2005].

184In addition to [Bundy, 1989; 1988] and [Dennis et al., 2005], see also [Dietrich, 2011], [Melis
et al., 2008], [Jamnik et al., 2003], and the references there.

Automation of Mathematical Induction as part of the History of Logic 81

7.2 Rippling

Rippling is a technique for augmenting rewrite rules with information that helps
to find a way to rewrite one expression (goal) into another (target), more precisely
to reduce the difference between the goal and the target by rewriting the goal.

Although rippling is not restricted to inductive theorem proving, it was first used
by Aubin [1976] in the context of the description of heuristics for the automation
of mathematical induction185 and found most of its applications there.

We have already mentioned rippling in § 6.6 several times, but this huge and
well-documented area of research cannot be covered here, and we have to refer the
reader to the monograph [Bundy et al., 2005].186

Let us explain here, however, why rippling can be most helpful in the automation
of simple inductive proofs.

Roughly speaking, the remarkable success in proving simple theorems by in-
duction automatically, can be explained as follows: If we look upon the task of
proving a theorem as reducing it to a tautology, then we have more heuristic guid-
ance when we know that we probably have to do it by mathematical induction:
Tautologies can have arbitrary subformulas, but the induction hypothesis we are
going to apply can restrict the search space tremendously.

In a cartoon of Alan Bundy’s, the original theorem is pictured as a zigzagged
mountainscape and the reduced theorem after the unfolding of recursive operators
according to recursion analysis (goal) is pictured as the reflection of the moun-
tainscape on the surface of a lake with ripples. To apply the induction hypothesis
(target), instead of the uninformed search for an arbitrary tautology, we have to
get rid of the ripples to be able to apply an instance of the theorem as induction
hypothesis to the mountainscape mirrored by the calmed surface of the lake.

A crucial advantage of rippling in the area of automated induction is that it
can also be used to suggest missing lemmas as described in [Ireland and Bundy,
1994].

Until today, rippling was applied to the automation of induction only within
explicit induction, whereas it is clearly not limited to explicit induction, and we
actually expect it to be more useful in areas of automated theorem proving with
bigger search spaces and, in particular, in descente infinie.

185The verb “to ripple up” is used in §§ 3.2 and 3.4 of [Aubin, 1976] — not as a technical term,
but just as an informal term for motivating some heuristics. The formalizers of rippling give
explicit credit to Aubin [1976] for their inspiration in [Bundy et al., 2005, § 1.10, p. 21], although
Aubin does not mention the term at any other place in his publications [Aubin, 1976; 1979].
Note, however, that instead of today’s name “rippling out”, Aubin actually used “rippling up”.

186Historically important are also the following publications on rippling: [Hutter, 1990], [Bundy
et al., 1991], [Ireland and Bundy, 1994], [Basin and Walsh, 1996].

82 J Strother Moore, Claus-Peter Wirth

7.3 Implicit Induction

The further approaches to mechanize mathematical induction not subsumed by
explicit induction, however, are united under the name “implicit induction”.

Triggered187 by the success of Boyer and Moore [1979], publication on these
alternative approaches started already in the year 1980 in purely equational theo-
ries.188 A sequence of papers on technical improvements189 was topped by [Bach-
mair, 1988], which gave rise to a hope to develop the method into practical useful-
ness, although it was still restricted to purely equational theories. Inspired by this
paper, in the late 1980s and the first half of the 1990s several researchers tried to
understand more clearly what implicit induction means from a theoretical point
of view and whether it could be useful in practice.190

While it is generally accepted that [Bachmair, 1988] is about implicit induction
and [Boyer and Moore, 1979] is about explicit induction, there are the follow-
ing three different viewpoints on what the essential aspect of implicit induction
actually is.

Proof by Consistency:191 Systems for proof by consistency run some Knuth–
Bendix192 or superposition193 completion procedure which produces a huge
number of irrelevant inferences under which the ones relevant for establishing
the induction steps can hardly be made explicit. A proof attempt is suc-
cessful when the prover has drawn all necessary inferences and stops without
having detected any inconsistency.

187Although it is obvious that in the relatively small community of artificial intelligence and
computer science in the 1970s, the success of [Boyer and Moore, 1979] triggered the publication
of papers on induction in the term rewriting community, we can document the influence of Boyer
and Moore’s work here only with the following facts: [Boyer and Moore, 1975; 1979] are both
cited in [Huet and Hullot, 1980]. [Boyer and Moore, 1977b] is cited in [Musser, 1980] as one
of the “important sources of inspiration”. Moreover, Lankford [1980] constitutively refers to a
personal communication with Robert S. Boyer in 1979. Finally, Goguen [1980] avoids a direct
reference to Boyer and Moore, but cites only the PhD thesis [Aubin, 1976] of Raymond Aubin,
following their work in Edinburgh.

188Cf. [Goguen, 1980], [Huet and Hullot, 1980], [Lankford, 1980], [Musser, 1980].

189Cf. [Göbel, 1985], [Jouannaud and Kounalis, 1986], [Fribourg, 1986], [Küchlin, 1989].

190Cf. e.g. [Zhang et al., 1988], [Kapur and Zhang, 1989], [Bevers and Lewi, 1990], [Reddy,
1990], [Gramlich and Lindner, 1991], [Ganzinger and Stuber, 1992], [Bouhoula and Rusinowitch,
1995], [Padawitz, 1996].

191The name “proof by consistency” was coined in the title of [Kapur and Musser, 1987], which
is the later published forerunner of its outstanding improved version [Kapur and Musser, 1986].

192See Unicom [Gramlich and Lindner, 1991] for such a system, following [Bachmair, 1988]

with several improvements. See [Knuth and Bendix, 1970] for the Knuth–Bendix completion
procedure.

193See [Ganzinger and Stuber, 1992] for such a system.

Automation of Mathematical Induction as part of the History of Logic 83

Proof by consistency has shown to perform far worse than any other known
form of mechanizing mathematical induction; mainly because it requires the
generation of far too many superfluous inferences, and because its runs are
typically infinite, and its admissibility conditions are too restrictive for most
applications. Roughly speaking, the conceptual flaw in proof by consistency
is that, instead of finding a sufficient set of reasonable inferences, the research
follows the idea of ruling out as many irrelevant inferences as possible.

Implicit Induction Ordering: In the early implicit-induction systems,194

induction proceeds over a syntactical term ordering, which typically can-
not be made explicit in the sense that there would be some predicate term
in the logical syntax that denotes this ordering in the intended models of
the specification. The semantical orderings of explicit induction, however,
cannot depend on the precise syntactical term structure of a weight w, but
only on the value of w under an evaluation in the intended models.
Contrary to rudimentary inference systems that turned out to be useless in
practice (such as the one of [Bachmair, 1988] for inductive completion in
unconditional specifications), more powerful human-oriented inference sys-
tems (such as the one of QuodLibet) are considerably restrained by the
constraint to be sound also for induction orderings that depend on the pre-
cise syntactical structure of terms (beyond their values).195

The early implicit-induction systems needed such sophisticated term order-
ings,196 because they started from the induction conclusion and every infer-
ence step reduced the formulas w.r.t. the induction ordering again and again,
but an application of an induction hypothesis was admissible to greater for-
mulas only. This deterioration of the ordering information with every in-
ference step was overcome by the introduction of explicit weight terms in
[Wirth and Becker, 1995], which obviate the former need for syntactical
term orderings as induction orderings.

Descente Infinie (“Lazy Induction”): Contrary to explicit induction, where
induction is introduced into an otherwise merely deductive inference system
only by the explicit application of induction axioms in the induction rule,
the cyclic arguments and their well-foundedness in implicit induction need
not be confined to single inference steps.197 The induction rule of explicit in-
duction generates all induction hypotheses in a single inference step. To the

194See [Gramlich and Lindner, 1991] and [Ganzinger and Stuber, 1992] for such systems.

195This soundness constraint, which was still observed in [Wirth, 1997], was dropped during
the further development of QuodLibet in [Kühler, 2000], because it turned out to be unintuitive
and superfluous.

196Cf. e.g. [Bachmair, 1988], [Steinbach, 1988; 1995], [Geser, 1996].

197For this reason, the funny name “inductionless induction” was originally coined for implicit
induction in the titles of [Lankford, 1980; 1981] as a short form for “induction without induction
rule”. See also the title of [Goguen, 1980] for a similar phrase.

84 J Strother Moore, Claus-Peter Wirth

contrary, in implicit induction, the inference system “knows” what an in-
duction hypothesis is, i.e. it includes inference rules that provide or apply
induction hypotheses, given that certain ordering conditions resulting from
these applications can be met by an induction ordering. Because this aspect
of implicit induction can facilitate the human-oriented induction method
described in § 4.6, the name descente infinie was coined for it (cf. § 4.7).
Researchers introduced to this aspect by [Protzen, 1994] (entitled “Lazy
Generation of Induction Hypotheses”) sometimes speak of “lazy induction”
instead of descente infinie.

The entire handbook article [Comon, 2001] (with corrections in [Wirth, 2005a]) is
dedicated to the two aspects of proof by consistency and implicit induction order-
ings. Today, however, the interest in these two aspects tends to be historical or
theoretical, especially because these aspects can hardly be combined with explicit
induction.

To the contrary, descente infinie synergetically combines with explicit induction,
as witnessed by the QuodLibet system, which we will discuss in § 7.4.

7.4 QuodLibet

In the last years of the Collaborative Research Center SFB314 “Artificial Intel-
ligence” (cf. § 6.6), after extensive experiments with several inductive theorem
proving systems,198 such as the explicit-induction systems Nqthm (cf. § 6.4) and
Inka (cf. § 6.6), the implicit-induction system Unicom [Gramlich and Lindner,
1991], and the mixed system Rrl (cf. § 6.6), Claus-Peter Wirth (*1963) and
Ulrich Kühler (*1964) came to the conclusion that — in spite of the excellent
interaction concept of Unicom199 — descente infinie was actually the only aspect
of implicit induction that deserved further investigation. Moreover, the coding of
recursive functions in unconditional equations in Unicom turned out to be most
inadequate for inductive theorem proving in practice, where positive/negative-
conditional equations were in demand for specification, as well as clausal logic for
theorem proving.200

Therefore, a new system had to be created, which was given the name Quod-
Libet (Latin for “as you like it”), because it should enable its users to avoid over-
specification by admitting partial function specifications, and to execute proofs
whose crucial proof steps mirror exactly the intended ones.201

198Cf. [Kühler, 1991].

199For the assessment of Unicom’s interaction concept see [Kühler, 1991, p. 134ff.].

200See [Kühler, 1991, pp. 134, 138].

Automation of Mathematical Induction as part of the History of Logic 85

A concept for partial function specification instead of the totality requirement of
explicit induction was easily obtained by elaborating the first part of [Wirth, 1991]
into the framework for positive/negative-conditional rewrite systems of [Wirth and
Gramlich, 1994a]. After inventing constructor variables in [Wirth et al., 1993],
the monotonicity of validity w.r.t. consistent extension of the partial specifications
was easily achieved [Wirth and Gramlich, 1994b], so that the induction proofs did
not have to be re-done after such an extension of a partially defined function.

Although the efficiently decidable confluence criterion that defines admissibility
of function definitions in QuodLibet and guarantees their (object-level) consis-
tency (cf. § 5.2) was very hard to prove and was presented completely and in an
appropriate form not before [Wirth, 2009], the essential admissibility requirements
were already clear in 1996.202

The weak admissibility conditions of QuodLibet — mutually recursive func-
tions, possibly partially defined because of missing cases or non-termination —
are of practical importance. Although humans can code mutually recursive func-
tions into non-mutually recursive functions,203 they will hardly be able to under-
stand complicated formulas where these encodings occur, and so they will have
severe problems in assisting the proving system in the construction of hard proofs.
Partiality due to non-termination essentially occurs in interpreters with undecid-
able domains. Partiality due to missing cases of the definition can often be avoided
by overspecification in theory, but not in practice where the unintended results of
overspecification may complicate matters considerably.

201We cannot claim that QuodLibet is actually able to execute proofs whose crucial proof
steps mirror exactly the ones intended by its human users, simply because this was not scien-
tifically investigated in terms of cognitive psychology. Users, however, considered it to be more
appropriate that other systems in this aspect, mostly due to the direct support for partial and
mutual function specification, cf. [Löchner, 2006]. Moreover, the four dozens of elementary
rules of QuodLibet’s inference machine were designed to mirror the way human’s organize their
proofs (cf. [Wirth, 1997], [Kühler, 2000]); so a user has to deal with one natural inference step
where Oyster may have hundreds of intuitionistic steps. The appropriateness of our calculus for
interchanging information with humans deteriorated, however, after adding inference rules for
the efficient implementation of Presburger Arithmetic, as we will explain below. Note that the
calculus is only the lowest logic level a user of a theorem-proving system may have to deal with;
from our experience with many such systems we came to the firm conviction, however, that the
automation of proof search will always fail on the lowest logic level from time to time, such that
human-oriented state-of-the-art logic calculi are are essential for the acceptance of automated,
interactive theorem provers by their users.

202See [Kühler and Wirth, 1996] for the first publication of the object-level consistency of
the specifications that are admissible and supported with strong induction heuristics in Quod-
Libet. In [Kühler and Wirth, 1996], a huge proof from the original 1995 edition of [Wirth,
2005b] guaranteed the consistency. Moreover, the most relevant and appropriate one of the
seven inductive validities of [Wirth and Gramlich, 1994b] is chosen for QuodLibet in [Kühler
and Wirth, 1996] (no longer the initial or free models typical for implicit induction!).

203See the first paragraph of § 5.7.

86 J Strother Moore, Claus-Peter Wirth

For instance, Bernd Löchner (*1967) (a user, not a developer of QuodLibet)
concludes in [Löchner, 2006, p. 76]:

“The translation of the different specifications into the input language
of the inductive theorem prover QuodLibet [Avenhaus et al., 2003]
was straightforward. We later realized that this is difficult or impos-
sible with several other inductive provers as these have problems with
mutual recursive functions and partiality” . . .

Based on the descente infinie inference system for clausal first-order logic of [Wirth
and Kühler, 1995],204 the system development of QuodLibet in Common Lisp
(cf. § 6.5), mostly by Kühler and Tobias Schmidt-Samoa (*1973), lasted from1995
to 2006. The system was described and demonstrated at the 19th Int. Conf. on
Automated Deduction (CADE), Miami Beach (FL), 2003 [Avenhaus et al., 2003].
The extension of the descente infinie inference systems of QuodLibet to the full
[modal] higher-order logic of [Wirth, 2004; 2013] has not been implemented yet.

To the best of our knowledge, QuodLibet is the first theorem prover whose
proof state is an and-or-tree (of clauses); actually, a forest of such trees, so that
in a mutual induction proof each conjecture providing induction hypotheses has
its own tree [Kühler, 2000]. An extension of the recursion analysis of [Boyer
and Moore, 1979] for constructor-style specifications (cf. § 5.5) was developed by
writing and testing tactics in QuodLibet’s Pascal-like205 meta-language Qml
[Kühler, 2000]. To achieve an acceptable run-time performance (but not compet-
itive with ACL2, of course), Qml tactics are compiled before execution.

In principle, termination proofs are not required, simply because termination is
not an admissibility restriction in QuodLibet. Instead, definition-time recursion
analysis uses induction lemmas (cf. § 6.3.7) to prove lemmas on function domains
by induction.206

At proof time, recursion analysis is used by the standard tactic only to deter-
mine the induction variables from the induction templates: As seen in Example 3
of § 4.7 w.r.t. the strengthened transitivity of lessp (as compared to the explicit-
induction proof in Example 12 of § 6.2.6 and Example 23 of § 6.3.8), subsumption
and merging of schemes are not required in descente infinie.207

204Later improvements of this inference system are found in [Wirth, 1997], [Kühler, 2000], and
[Schmidt-Samoa, 2006b].

205See [Wirth, 1971] for the programming language Pascal. The critical decision for an imper-
ative instead of a functional tactics language turned out to be most appropriate during the ten
years of using Qml.

206While domain lemmas for totally defined functions are usually found without interaction and
total functions do not provide relevant overhead in QuodLibet, the user often has to help in
case of partial function definitions by providing domain lemmas such as

Def delfirst(x, l), mbp(x, l) 6= true,
for delfirst defined via (delfirst1–2) of § 4.5.

Automation of Mathematical Induction as part of the History of Logic 87

An enormous speed-up of QuodLibet and an extension of its automatically
provable theorems was achieved by Schmidt-Samoa during his PhD work with the
system in 2004–2006. He developed a marking concept for the tagging of rewrite
lemmas (cf. § 6.3.1), where the elements of a clause can be marked as Forbidden,
Mandatory, Obligatory, and Generous, to control the recursive relief of conditions
in contextual rewriting [Schmidt-Samoa, 2006b; 2006c]. Moreover, a very simple,
but most effective reuse mechanism analyzes during a proof attempt whether it
actually establishes a proof of some sub-clause, and uses this knowledge to crop
conjunctive branches that do not contribute to the actual goal [Schmidt-Samoa,
2006b]. Finally, an even closer integration of linear arithmetic (cf. Note 174)
with excellent results [Schmidt-Samoa, 2006a; 2006b] questioned one of the basic
principles of QuodLibet, namely the idea that the prover does not try to be
clever, but stops early if there is no progress visible, and presents the human
user the proof state in a nice graphical tree representation: The expanded highly-
optimized formulation of arithmetic by means of special functions for the decidable
fragment of Presburger Arithmetic results in clauses that do not easily admit
human inspection anymore. We did not find means to overcome this, because we
did not find a way to fold theses clauses to achieve a human-oriented higher level
of abstraction.

QuodLibet is, of course, able to do all208 descente infinie proofs of our exam-
ples automatically. Moreover, QuodLibet finds all proofs for the irrationality
of the square root of two indicated in Figure 4 (sketched in § 6.3.9) automatically
and without explicit hints on the induction ordering (say, via newly defined non-
sensical functions, such as the one given in (sqrtio1) of § 6.3.9) — provided that
the required lemmas are available.

All in all, QuodLibet has proved that descente infinie (“lazy induction”) goes
well together with explicit induction and that we have reason to hope that ea-
ger induction-hypotheses generation can be overcome for theorems with difficult
induction proofs, sacrificing neither efficiency nor the usefulness of the excellent
heuristic knowledge developed in explicit induction. Why descente infinie and
human-orientedness should remain on the agenda for induction in mathematics
assistance systems is explained in the manifesto [Wirth, 2012c].

207Although it is not a must and not part of the standard tactic, induction hypotheses may be
generated eagerly in QuodLibet to enhance generalization as in Example 5 of § 4.9, in which case
subsumption and merging of induction schemes as described in § 6.3.8 are required. Moreover,
the concept of flawed induction schemes of QuodLibet (taken over from Thm as well, cf. § 6.3.8)
depends on the mergeability of schemes. Furthermore, QuodLibet actually applies some merging
techniques to plan case analyses optimized for induction [Kühler, 2000, § 8.3.3]. The question
why QuodLibet adopts the great ideas of recursion analysis from Thm, but does not follow them
precisely, has two answers: First, it was necessary to extend the heuristics of Thm to deal with
constructor-style definitions. The second answer was already given in § 6.3.9: Testing is the only
judge on heuristics.

208These three descente infinie proofs are presented as Examples 2 and 3 of § 4.7, and Example 5
of § 4.9.

88 J Strother Moore, Claus-Peter Wirth

8 LESSONS LEARNED

What lessons can we draw from the history of the automation of induction?

• Do not be too inclined to follow the current fads. Choose a hard problem,
give thought to the “right” foundations, and then pursue its solution with
patience and perseverance.

• Another piece of oft-repeated advice to the young researcher: start simply.

From the standpoint of formalizing microprocessors, investing in a theorem
prover supporting only NIL and CONS is clearly inadequate. From the stand-
point of understanding induction and simplification, however, it presents vir-
tually all the problems, and its successors then gradually refined and elabo-
rated the techniques. The four key provers discussed here — the Pure LISP
Theorem Prover, Thm, Nqthm, and ACL2 — are clearly “of a kind”.
The lessons learned from one tool directly informed the design of the next.

• If you are interested in building an inductive theorem prover, do not make
the mistake of focusing merely on an induction principle and the heuristics
for controlling it. A successful inductive theorem prover must be able to
simplify and generalize. Ideally, it should be able to invent new concepts to
express inductively provably theorems.

• If theorems and proofs are simple and obvious for humans, a good automatic
theorem prover ought not to struggle with them. If it takes a lot of time
and machinery to prove obvious theorems, then truly interesting theorems
are out of reach.

• Do not be too eager to add features that break old ones. Instead, truly
explore the extent to which new problems can be formalized within the
existing framework so as to exploit the power of the existing system.

Had Boyer and Moore adopted higher-order logic initially or attempted to
solve the problem solely by exhaustive searching in a general purpose logic
calculus, the discovery of many powerful techniques would have been delayed.

• We strongly recommend collecting all your successful proofs into a regression
suite and re-running your improved provers on this suite regularly. It is
remarkably easy to “improve” a theorem prover such that it discovers a new
proof at the cost of failing to re-discover old ones.

The ACL2 regression suite, which is used as the acceptance test that any
suggested possible improvement has to pass, contains over 90,000 DEFTHM
commands, i.e. conjectures to be proved. It is an invaluable resource to
Kaufmann and Moore when they explore new heuristics.

Automation of Mathematical Induction as part of the History of Logic 89

• Finally, Boyer and Moore did not give names to their provers before ACL2,
and so they became most commonly known under the name the Boyer–Moore
theorem prover.

So here is some advice to young researchers who want to become well-known:
Build a good system, but do not give it a name, so that people have to attach
your name to it!

9 CONCLUSION

“One of the reasons our theorem prover is successful is that we trick
the user into telling us the proof. And the best example of that, that
I know, is: If you want to prove that there exists a prime factorization
— that is to say a list of primes whose product is any given number —
then the way you state it is: You define a function that takes a natu-
ral number and delivers a list of primes, and then you prove that it
does that. And, of course, the definition of that function is everybody
else’s proof. The absence of quantifiers and the focus on constructive,
you know, recursive definitions forces people to do the work. And so
then, when the theorem prover proves it, they say ‘Oh what wonder-
ful theorem prover!’, without even realizing they sweated bullets to
express the theorem in that impoverished logic.”

said Moore, and Boyer agreed laughingly.209

ACKNOWLEGDGEMENTS

We would like to thank Fabio Acerbi, Klaus Barner, Anne O. Boyer,
Robert S. Boyer, Alan Bundy, Catherine Goldstein, Bernhard Gram-
lich, Warren A. Hunt, Matt Kaufmann, Ulrich Kühler, Klaus Madlener,
Jo Moore, Peter Padawitz, Marianeh Rezaei, Tobias Schmidt-Samoa,
and Judith Stengel.

209[Wirth, 2012d].

90 J Strother Moore, Claus-Peter Wirth

BIBLIOGRAPHY

[Abrahams et al., 1980] Paul W. Abrahams, Richard J. Lipton, and Stephen R. Bourne, editors.
Conference Record of the 7th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), Las Vegas (NV), 1980. ACM Press, 1980. http://dl.acm.
org/citation.cfm?id=567446.

[Acerbi, 2000] Fabio Acerbi. Plato: Parmenides 149a7–c3. A proof by complete induction?
Archive for History of Exact Sciences, 55:57–76, 2000.

[Ackermann, 1928] Wilhelm Ackermann. Zum Hilbertschen Aufbau der reellen Zahlen. Mathe-
matische Annalen, 99:118–133, 1928. Received Jan. 20, 1927.

[Ackermann, 1940] Wilhelm Ackermann. Zur Widerspruchsfreiheit der Zahlentheorie. Mathe-
matische Annalen, 117:163–194, 1940. Received Aug. 15, 1939.

[Aı̈t-Kaci and Nivat, 1989] Hassan Aı̈t-Kaci and Maurice Nivat, editors. Proc. of the Collo-
quium on Resolution of Equations in Algebraic Structures (CREAS), Lakeway (TX), 1987.
Academic Press (Elsevier), 1989.

[Anon, 2005] Anon. Advanced Architecture MicroProcessor 7 Government (AAMP7G) micro-
processor. Rockwell Collins, Inc. WWW only: http://www.rockwellcollins.com/sitecore/
content/Data/Products/Information_Assurance/Cryptography/AAMP7G_Microprocessor.
aspx, 2005.

[Armando et al., 2008] Alessandro Armando, Peter Baumgartner, and Gilles Dowek, editors.
4th Int. Joint Conf. on Automated Reasoning (IJCAR), Sydney (Australia), 2008, number
5195 in Lecture Notes in Artificial Intelligence. Springer, 2008.

[Aubin, 1976] Raymond Aubin. Mechanizing Structural Induction. PhD thesis, Univ. Edin-
burgh, 1976. Short version is [Aubin, 1979]. http://hdl.handle.net/1842/6649.

[Aubin, 1979] Raymond Aubin. Mechanizing Structural Induction — Part I: Formal System.
Part II: Strategies. Theoretical Computer Sci., 9:329–345+347–362, 1979. Received March
(Part I) and November (Part II) 1977, rev. March 1978. Long version is [Aubin, 1976].

[Autexier et al., 1999] Serge Autexier, Dieter Hutter, Heiko Mantel, and Axel Schairer. System
description: Inka 5.0 – a logical voyager. 1999. In [Ganzinger, 1999, pp. 207–211].

[Autexier, 2005] Serge Autexier. On the dynamic increase of multiplicities in matrix proof
methods for classical higher-order logic. 2005. In [Beckert, 2005, pp. 48–62].

[Avenhaus et al., 2003] Jürgen Avenhaus, Ulrich Kühler, Tobias Schmidt-Samoa, and Claus-
Peter Wirth. How to prove inductive theorems? QuodLibet! 2003. In [Baader, 2003,
pp. 328–333], http://wirth.bplaced.net/p/quodlibet.

[Baader, 2003] Franz Baader, editor. 19th Int. Conf. on Automated Deduction (CADE), Miami
Beach (FL), 2003, number 2741 in Lecture Notes in Artificial Intelligence. Springer, 2003.

[Baaz and Leitsch, 1995] Matthias Baaz and Alexander Leitsch. Methods of functional exten-
sion. Collegium Logicum — Annals of the Kurt Gödel Society, 1:87–122, 1995.

[Bachmair et al., 1992] Leo Bachmair, Harald Ganzinger, and Wolfgang J. Paul, editors. Infor-
matik – Festschrift zum 60. Geburtstag von Günter Hotz. B. G. Teubner Verlagsgesellschaft,
1992.

[Bachmair, 1988] Leo Bachmair. Proof by consistency in equational theories. 1988. In [LICS,
1988, pp. 228–233].

[Bajscy, 1993] Ruzena Bajscy, editor. Proc. 13th Int. Joint Conf. on Artificial Intelligence
(IJCAI), Chambery (France). Morgan Kaufmann, Los Altos (CA) (Elsevier), 1993. http:
//ijcai.org/Past%20Proceedings.

[Barendregt, 1981] Hen(dri)k P. Barendregt. The Lambda Calculus — Its Syntax and Seman-
tics. Number 103 in Studies in Logic and the Foundations of Mathematics. North-Holland
(Elsevier), 1981. 1st edn. (final rev. edn. is [Barendregt, 2012]).

[Barendregt, 2012] Hen(dri)k P. Barendregt. The Lambda Calculus — Its Syntax and Seman-
tics. Number 40 in Studies in Logic. College Publications, London, 2012. 6th rev. edn. (1st edn.
is [Barendregt, 1981]).

[Barner, 2001a] Klaus Barner. Pierre Fermat (1601?–1665) — His life beside mathematics. Eu-
ropean Mathematical Society Newsletter, 43 (Dec. 2001):12–16, 2001. Long version in German
is [Barner, 2001b]. www.ems-ph.org/journals/newsletter/pdf/2001-12-42.pdf.

[Barner, 2001b] Klaus Barner. Das Leben Fermats. DMV-Mitteilungen, 3/2001:12–26, 2001.
Extensions in [Barner, 2007]. Short versions in English are [Barner, 2001c; 2001a].

Automation of Mathematical Induction as part of the History of Logic 91

[Barner, 2001c] Klaus Barner. How old did Fermat become? NTM Internationale Zeitschrift
für Geschichte und Ethik der Naturwissenschaften, Technik und Medizin, Neue Serie,
ISSN 00366978, 9:209–228, 2001. Long version in German is [Barner, 2001b]. New results
on the subject in [Barner, 2007].

[Barner, 2007] Klaus Barner. Neues zu Fermats Geburtsdatum. DMV-Mitteilungen, 15:12–14,
2007. (Further support for the results of [Barner, 2001c], narrowing down Fermat’s birth
date from 1607/8 to Nov. 1607).

[Basin and Walsh, 1996] David Basin and Toby Walsh. A calculus for and termination of rip-
pling. J. Automated Reasoning, 16:147–180, 1996.

[Becker, 1965] Oscar Becker, editor. Zur Geschichte der griechischen Mathematik. Wissen-
schaftliche Buchgesellschaft, Darmstadt, 1965.

[Beckert, 2005] Bernhard Beckert, editor. 14th Int. Conf. on Tableaux and Related Methods,
Koblenz (Germany), 2005, number 3702 in Lecture Notes in Artificial Intelligence. Springer,
2005.

[Bell and Thayer, 1976] Thomas E. Bell and T. A. Thayer. Software requirements: Are they
really a problem? 1976. In [Yeh and Ramamoorthy, 1976, pp. 61–68], http://pdf.aminer.
org/000/361/405/software_requirements_are_they_really_a_problem.pdf.

[Benzmüller et al., 2008] Christoph Benzmüller, Frank Theiss, Lawrence C. Paulson, and Ar-
naud Fietzke. Leo-II — a cooperative automatic theorem prover for higher-order logic. 2008.
In [Armando et al., 2008, pp. 162–170].

[Berka and Kreiser, 1973] Karel Berka and Lothar Kreiser, editors. Logik-Texte – Kommen-
tierte Auswahl zur Geschichte der modernen Logik. Akademie Verlag GmbH, Berlin, 1973.
2nd rev. edn. (1st edn. 1971; 4th rev. rev. edn. 1986).

[Bevers and Lewi, 1990] Eddy Bevers and Johan Lewi. Proof by consistency in conditional equa-
tional theories. Tech. Report CW 102, Dept. Comp. Sci., K. U. Leuven, 1990. Rev. July 1990.
Short version in [Kaplan and Okada, 1991, pp. 194–205].

[Bevier et al., 1989] William R. Bevier, Warren A. Hunt, J Strother Moore, and William D.
Young. An approach to systems verification. J. Automated Reasoning, 5:411–428, 1989.

[Bevier, 1989] William R. Bevier. Kit and the short stack. J. Automated Reasoning, 5:519–530,
1989.

[Bibel and Kowalski, 1980] Wolfgang Bibel and Robert A. Kowalski, editors. 5th Int. Conf. on
Automated Deduction (CADE), Les Arcs (France), 1980, number 87 in Lecture Notes in
Computer Science. Springer, 1980.

[Biundo et al., 1986] Susanne Biundo, Birgit Hummel, Dieter Hutter, and Christoph Walther.
The Karlsruhe inductive theorem proving system. 1986. In [Siekmann, 1986, pp. 673–675].

[Bledsoe and Loveland, 1984] W. W. Bledsoe and Donald W. Loveland, editors. Automated
Theorem Proving: After 25 Years. Number 29 in Contemporary Mathematics. American
Math. Soc., Providence (RI), 1984. Proc. of the Special Session on Automatic Theorem
Proving, 89th Annual Meeting of the American Math. Soc., Denver (CO), Jan. 1983.

[Bledsoe et al., 1971] W. W. Bledsoe, Robert S. Boyer, and William H. Henneman. Computer
proofs of limit theorems. 1971. In [Cooper, 1971, pp. 586–600]. Long version is [Bledsoe et
al., 1972].

[Bledsoe et al., 1972] W. W. Bledsoe, Robert S. Boyer, and William H. Henneman. Computer
proofs of limit theorems. Artificial Intelligence, 3:27–60, 1972. Short version is [Bledsoe et
al., 1971].

[Bledsoe, 1971] W. W. Bledsoe. Splitting and reduction heuristics in automatic theorem proving.
Artificial Intelligence, 2:55–77, 1971.

[Bouajjani and Maler, 2009] Ahmed Bouajjani and Oded Maler, editors. Proc. 21st Int. Conf.
on Computer Aided Verification (CAV), Grenoble (France), 2009, volume 5643 of Lecture
Notes in Computer Science. Springer, 2009.

[Bouhoula and Rusinowitch, 1995] Adel Bouhoula and Michaël Rusinowitch. Implicit induction
in conditional theories. J. Automated Reasoning, 14:189–235, 1995.

[Bourbaki, 1939] Nicolas Bourbaki. Éléments des Mathématique — Livre 1: Théorie des En-
sembles. Fascicule De Résultats. Number 846 in Actualités Scientifiques et Industrielles.
Hermann, Paris, 1939. 1st edn., VIII+ 50 pp.. Review is [Church, 1946]. 2nd rev. extd. edn. is
[Bourbaki, 1951].

92 J Strother Moore, Claus-Peter Wirth

[Bourbaki, 1951] Nicolas Bourbaki. Éléments des Mathématique — Livre 1: Théorie des En-
sembles. Fascicule De Résultats. Number 846-1141 in Actualités Scientifiques et Industrielles.
Hermann, Paris, 1951. 2nd rev. extd. edn. of [Bourbaki, 1939]. 3rd rev. extd. edn. is [Bourbaki,
1958b].

[Bourbaki, 1954] Nicolas Bourbaki. Éléments des Mathématique — Livre 1: Théorie des En-
sembles. Chapitre I & II. Number 1212 in Actualités Scientifiques et Industrielles. Hermann,
Paris, 1954. 1st edn.. 2nd rev. edn. is [Bourbaki, 1960].

[Bourbaki, 1956] Nicolas Bourbaki. Éléments des Mathématique — Livre 1: Théorie des En-
sembles. Chapitre III. Number 1243 in Actualités Scientifiques et Industrielles. Hermann,
Paris, 1956. 1st edn., II + 119+4 (mode d’emploi)+ 23 (errata no. 6) pp.. 2nd rev. extd. edn. is
[Bourbaki, 1967].

[Bourbaki, 1958a] Nicolas Bourbaki. Éléments des Mathématique — Livre 1: Théorie des En-
sembles. Chapitre IV. Number 1258 in Actualités Scientifiques et Industrielles. Hermann,
Paris, 1958. 1st edn.. 2nd rev. extd. edn. is [Bourbaki, 1966a].

[Bourbaki, 1958b] Nicolas Bourbaki. Éléments des Mathématique — Livre 1: Théorie des En-
sembles. Fascicule De Résultats. Number 1141 in Actualités Scientifiques et Industrielles.
Hermann, Paris, 1958. 3rd rev. extd. edn. of [Bourbaki, 1951]. 4th rev. extd. edn. is [Bourbaki,
1964].

[Bourbaki, 1960] Nicolas Bourbaki. Éléments des Mathématique — Livre 1: Théorie des En-
sembles. Chapitre I & II. Number 1212 in Actualités Scientifiques et Industrielles. Hermann,
Paris, 1960. 2nd rev. extd. edn. of [Bourbaki, 1954]. 3rd rev. edn. is [Bourbaki, 1966b].

[Bourbaki, 1964] Nicolas Bourbaki. Éléments des Mathématique — Livre 1: Théorie des En-
sembles. Fascicule De Résultats. Number 1141 in Actualités Scientifiques et Industrielles.
Hermann, Paris, 1964. 4th rev. extd. edn. of [Bourbaki, 1958b]. 5th rev. extd. edn. is [Bourbaki,
1968b].

[Bourbaki, 1966a] Nicolas Bourbaki. Éléments des Mathématique — Livre 1: Théorie des En-
sembles. Chapitre IV. Number 1258 in Actualités Scientifiques et Industrielles. Hermann,
Paris, 1966. 2nd rev. extd. edn. of [Bourbaki, 1958a]. English translation in [Bourbaki, 1968a].

[Bourbaki, 1966b] Nicolas Bourbaki. Éléments des Mathématique — Livre 1: Théorie des En-
sembles. Chapitres I & II. Number 1212 in Actualités Scientifiques et Industrielles. Hermann,
Paris, 1966. 3rd rev. edn. of [Bourbaki, 1960], VI+143+7 (errata no. 13) pp.. English transla-
tion in [Bourbaki, 1968a].

[Bourbaki, 1967] Nicolas Bourbaki. Éléments des Mathématique — Livre 1: Théorie des En-
sembles. Chapitre III. Number 1243 in Actualités Scientifiques et Industrielles. Hermann,
Paris, 1967. 2nd rev. extd. edn. of [Bourbaki, 1956], 151+7 (errata no. 13) pp.. 3rd rev. edn. re-
sults from executing these errata. English translation in [Bourbaki, 1968a].

[Bourbaki, 1968a] Nicolas Bourbaki. Elements of Mathematics — Theory of Sets. Actualités
Scientifiques et Industrielles. Hermann, Paris, jointly published with AdiWes International Se-
ries in Mathematics, Addison–Wesley, Reading (MA), 1968. English translation of [Bourbaki,
1966b; 1967; 1966a; 1968b].

[Bourbaki, 1968b] Nicolas Bourbaki. Éléments des Mathématique — Livre 1: Théorie des En-
sembles. Fascicule De Résultats. Number 1141 in Actualités Scientifiques et Industrielles.
Hermann, Paris, 1968. 5th rev. extd. edn. of [Bourbaki, 1964]. English translation in [Bour-
baki, 1968a].

[Boyer and Moore, 1971] Robert S. Boyer and J Strother Moore. The sharing of structure
in resolution programs. Memo 47, Univ. Edinburgh, Dept. of Computational Logic, 1971.
II + 24 pp.. Revised version is [Boyer and Moore, 1972].

[Boyer and Moore, 1972] Robert S. Boyer and J Strother Moore. The sharing of structure in
theorem-proving programs. 1972. In [Meltzer and Michie, 1972, pp. 101–116].

[Boyer and Moore, 1973] Robert S. Boyer and J Strother Moore. Proving theorems about LISP
functions. 1973. In [Nilsson, 1973, pp. 486–493]. http://ijcai.org/Past%20Proceedings/
IJCAI-73/PDF/053.pdf. Rev. version, extd. with a section “Failures”, is [Boyer and Moore,
1975].

[Boyer and Moore, 1975] Robert S. Boyer and J Strother Moore. Proving theorems about LISP
functions. J. of the ACM, 22:129–144, 1975. Rev. extd. edn. of [Boyer and Moore, 1973].
Received Sept. 1973, Rev. April 1974.

[Boyer and Moore, 1977a] Robert S. Boyer and J Strother Moore. A fast string searching algo-
rithm. Comm. ACM, 20:762–772, 1977. http://doi.acm.org/10.1145/359842.359859.

Automation of Mathematical Induction as part of the History of Logic 93

[Boyer and Moore, 1977b] Robert S. Boyer and J Strother Moore. A lemma driven automatic
theorem prover for recursive function theory. 1977. In [Reddy, 1977, Vol. I, pp. 511–519].
http://ijcai.org/Past%20Proceedings/IJCAI-77-VOL1/PDF/089.pdf.

[Boyer and Moore, 1979] Robert S. Boyer and J Strother Moore. A Computational Logic. Aca-
demic Press (Elsevier), 1979. http://www.cs.utexas.edu/users/boyer/acl.text.

[Boyer and Moore, 1981a] Robert S. Boyer and J Strother Moore, editors. The Correctness
Problem in Computer Science. Academic Press (Elsevier), 1981.

[Boyer and Moore, 1981b] Robert S. Boyer and J Strother Moore. Metafunctions: Proving them
correct and using them efficiently as new proof procedures. 1981. In [Boyer and Moore, 1981a,
pp. 103–184].

[Boyer and Moore, 1984a] Robert S. Boyer and J Strother Moore. A mechanical proof of the
Turing completeness of pure LISP. 1984. In [Bledsoe and Loveland, 1984, pp. 133–167].

[Boyer and Moore, 1984b] Robert S. Boyer and J Strother Moore. A mechanical proof of the
unsolvability of the halting problem. J. of the ACM, 31:441–458, 1984.

[Boyer and Moore, 1984c] Robert S. Boyer and J Strother Moore. Proof checking the RSA
public key encryption algorithm. American Mathematical Monthly, 91:181–189, 1984.

[Boyer and Moore, 1985] Robert S. Boyer and J Strother Moore. Program verification. J. Auto-
mated Reasoning, 1:17–23, 1985.

[Boyer and Moore, 1987] Robert S. Boyer and J Strother Moore. The addition of bounded quan-
tification and partial functions to a computational logic and its theorem prover. Technical
Report ICSCA-CMP-52, Inst. for Computing Science and Computing Applications, The Uni-
versity of Texas at Austin, 1987. Printed Jan. 1987. Also published as [Boyer and Moore,
1988a; 1989].

[Boyer and Moore, 1988a] Robert S. Boyer and J Strother Moore. The addition of bounded
quantification and partial functions to a computational logic and its theorem prover. J.
Automated Reasoning, 4:117–172, 1988. Received Feb. 11, 1987. Also pubished as [Boyer and
Moore, 1987; 1989].

[Boyer and Moore, 1988b] Robert S. Boyer and J Strother Moore. A Computational Logic
Handbook. Number 23 in Perspectives in Computing. Academic Press (Elsevier), 1988.
2nd rev. extd. edn. is [Boyer and Moore, 1998].

[Boyer and Moore, 1988c] Robert S. Boyer and J Strother Moore. Integrating decision proce-
dures into heuristic theorem provers: A case study of Linear Arithmetic, note=In [Hayes et
al., 1988, pp. 83–124],. 1988.

[Boyer and Moore, 1989] Robert S. Boyer and J Strother Moore. The addition of bounded
quantification and partial functions to a computational logic and its theorem prover. 1989.
In [Broy, 1989, pp. 95–145] (received Jan. 1988). Also published as [Boyer and Moore, 1987;
1988a].

[Boyer and Moore, 1990] Robert S. Boyer and J Strother Moore. A theorem prover for a com-
putational logic. 1990. In [Stickel, 1990, pp. 1–15].

[Boyer and Moore, 1998] Robert S. Boyer and J Strother Moore. A Computational Logic
Handbook. International Series in Formal Methods. Academic Press (Elsevier), 1998.
2nd rev. extd. edn. of [Boyer and Moore, 1988b], rev. to work with Nqthm–1992, a new version
of Nqthm.

[Boyer and Yu, 1992] Robert S. Boyer and Yuan Yu. Automated correctness proofs of machine
code programs for a commercial microprocessor. 1992. In [Kapur, 1992, 416–430].

[Boyer and Yu, 1996] Robert S. Boyer and Yuan Yu. Automated proofs of object code for a
widely used microprocessor. J. of the ACM, 43:166–192, 1996.

[Boyer et al., 1973] Robert S. Boyer, D. Julian M. Davies, and J Strother Moore. The 77-editor.
Memo 62, Univ. Edinburgh, Dept. of Computational Logic, 1973.

[Boyer et al., 1976] Robert S. Boyer, J Strother Moore, and Robert E. Shostak. Primitive
recursive program transformations. 1976. In [Graham et al., 1976, pp. 171–174]. http:
//doi.acm.org/10.1145/800168.811550.

[Boyer, 1971] Robert S. Boyer. Locking: a restriction of resolution. PhD thesis, The University
of Texas at Austin, 1971.

[Boyer, 2012] Robert S. Boyer. E-mail to Claus-Peter Wirth, Nov. 19,. 2012.
[Brock and Hunt, 1999] Bishop Brock and Warren A. Hunt. Formal analysis of the Motorola

CAP DSP. 1999. In [Hinchey and Bowen, 1999, pp. 81–116].

94 J Strother Moore, Claus-Peter Wirth

[Brotherston and Simpson, 2007] James Brotherston and Alex Simpson. Complete sequent cal-
culi for induction and infinite descent. 2007. In [LICS, 2007, pp. 51–62?]. Thoroughly rev.
version in [Brotherston and Simpson, 2011].

[Brotherston and Simpson, 2011] James Brotherston and Alex Simpson. Sequent calculi for
induction and infinite descent. J. Logic and Computation, 21:1177–1216, 2011. Thoroughly
rev. version of [Brotherston, 2005] and [Brotherston and Simpson, 2007]. Received April 3,
2009. Published online Sept. 30, 2010, http://dx.doi.org/10.1093/logcom/exq052.

[Brotherston, 2005] James Brotherston. Cyclic proofs for first-order logic with inductive defi-
nitions. 2005. In [Beckert, 2005, pp. 78–92]. Thoroughly rev. version in [Brotherston and
Simpson, 2011].

[Brown, 2012] Chad E. Brown. Satallax: An automatic higher-order prover. 2012. In [Gram-
lich et al., 2012, pp. 111–117].

[Broy, 1989] Manfred Broy, editor. Constructive Methods in Computing Science, number F 55
in NATO ASI Series. Springer, 1989.

[Buch and Hillenbrand, 1996] Armin Buch and Thomas Hillenbrand. WaldMeister: Devel-
opment of a High Performance Completion-Based Theorem Prover. SEKI-Report SR–
96–01 (ISSN 1860–5931). SEKI Publications, FB Informatik, Univ. Kaiserslautern, 1996.
agent.informatik.uni-kl.de/seki/1996/Buch.SR-96-01.ps.gz.

[Bundy et al., 1989] Alan Bundy, Frank van Harmelen, Jane Hesketh, Alan Smaill, and Andrew
Stevens. A rational reconstruction and extension of recursion analysis. 1989. In [Sridharan,
1989, pp. 359–365].

[Bundy et al., 1990] Alan Bundy, Frank van Harmelen, Christian Horn, and Alan Smaill. The
Oyster/CLaM system. 1990. In [Stickel, 1990, pp. 647–648].

[Bundy et al., 1991] Alan Bundy, Andrew Stevens, Frank van Harmelen, Andrew Ireland, and
Alan Smaill. Rippling: A Heuristic for Guiding Inductive Proofs. 1991. DAI Research
Paper No. 567, Dept. Artificial Intelligence, Univ. Edinburgh. Also in Artificial Intelligence
62:185–253, 1993.

[Bundy et al., 2005] Alan Bundy, Dieter Hutter, David Basin, and Andrew Ireland. Rippling:
Meta-Level Guidance for Mathematical Reasoning. Cambridge Univ. Press, 2005.

[Bundy, 1988] Alan Bundy. The use of Explicit Plans to Guide Inductive Proofs. 1988. DAI
Research Paper No. 349, Dept. Artificial Intelligence, Univ. Edinburgh. Short version in [Lusk
and Overbeek, 1988, pp. 111–120].

[Bundy, 1989] Alan Bundy. A Science of Reasoning. 1989. DAI Research Paper No. 445, Dept.
Artificial Intelligence, Univ. Edinburgh. Also in [Lassez and Plotkin, 1991, pp. 178–198].

[Bundy, 1994] Alan Bundy, editor. 12th Int. Conf. on Automated Deduction (CADE), Nancy,
1994, number 814 in Lecture Notes in Artificial Intelligence. Springer, 1994.

[Bundy, 1999] Alan Bundy. The Automation of Proof by Mathematical Induction. Informatics
Research Report No. 2, Division of Informatics, Univ. Edinburgh, 1999. Also in [Robinson
and Voronkow, 2001, Vol. 1, pp. 845–911].

[Burstall et al., 1971] Rod M. Burstall, John S. Collins, and Robin J. Popplestone. Programming
in POP–2. Univ. Edinburgh Press, 1971.

[Burstall, 1969] Rod M. Burstall. Proving properties of programs by structural induction. The
Computer Journal, 12:48–51, 1969. Received April 1968, rev.Aug. 1968.

[Bussey, 1917] W. H. Bussey. The origin of mathematical induction. American Mathematical
Monthly, XXIV:199–207, 1917.

[Bussotti, 2006] Paolo Bussotti. From Fermat to Gauß: indefinite descent and methods of
reduction in number theory. Number 55 in Algorismus. Dr. Erwin Rauner Verlag, Augsburg,
2006.

[Cajori, 1918] Florian Cajori. Origin of the name “mathematical induction”. American Mathe-
matical Monthly, 25:197–201, 1918.

[Church, 1946] Alonzo Church. Review of [Bourbaki, 1939]. J. Symbolic Logic, 11:91, 1946.
[Clocksin and Mellish, 2003] William F. Clocksin and Christopher S. Mellish. Programming in

Prolog. Springer, 2003. 5th edn. (1st edn. 1981).
[Cohn, 1965] Paul Moritz Cohn. Universal Algebra. Harper & Row, New York, 1965. 1st edn..

2nd rev. edn. is [Cohn, 1981].
[Cohn, 1981] Paul Moritz Cohn. Universal Algebra. Number 6 in Mathematics and Its Appli-

cations. D. Reidel Publ., Dordrecht, now part of Springer Science+Business Media, 1981.
2nd rev. edn. (1st edn. is [Cohn, 1965]).

Automation of Mathematical Induction as part of the History of Logic 95

[Comon, 1997] Hubert Comon, editor. 8th Int. Conf. on Rewriting Techniques and Applications
(RTA), Sitges (Spain), 1997, number 1232 in Lecture Notes in Computer Science. Springer,
1997.

[Comon, 2001] Hubert Comon. Inductionless induction. 2001. In [Robinson and Voronkow,
2001, Vol. I, pp. 913–970].

[Constable et al., 1985] Robert L. Constable, Stuart F. Allen, H. M. Bromly, W. R. Cleaveland,
J. F. Cremer, R. W. Harper, Douglas J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden,
James T. Sasaki, and Scott F. Smith. Implementing Mathematics with the Nuprl Proof
Development System. Prentice–Hall, Inc., 1985. http://www.nuprl.org/book.

[Cooper, 1971] D. C. Cooper, editor. Proc. 2nd Int. Joint Conf. on Artificial Intelligence
(IJCAI), Sept. 1971, Imperial College, London. Morgan Kaufmann, Los Altos (CA), Los Altos
(CA), 1971. http://ijcai.org/Past%20Proceedings/IJCAI-1971/CONTENT/content.htm.

[DAC, 2001] Proc. 38th Design Automation Conference (DAC), Las Vegas (NV), 2001. ACM
Press, 2001.

[Darlington, 1968] Jared L. Darlington. Automated theorem proving with equality substitutions
and mathematical induction. 1968. In [Michie, 1968, pp. 113–127].

[Davis, 2009] Jared Davis. A Self-Verifying Theorem Prover. PhD thesis, The University of
Texas at Austin, 2009.

[Dedekind, 1888] Richard Dedekind. Was sind und was sollen die Zahlen. Vieweg, Braun-
schweig, 1888. Also in [Dedekind, 1930–32, Vol. 3, pp. 335–391]. Also in [Dedekind, 1969].

[Dedekind, 1930–32] Richard Dedekind. Gesammelte mathematische Werke. Vieweg, Braun-
schweig, 1930–32. Ed. by Robert Fricke, Emmy Noether, and Öystein Ore.

[Dedekind, 1969] Richard Dedekind. Was sind und was sollen die Zahlen? Stetigkeit und irra-
tionale Zahlen. Friedrich Vieweg und Sohn, Braunschweig, 1969.

[Dennis et al., 2005] Louise A. Dennis, Mateja Jamnik, and Martin Pollet. On the comparison
of proof planning systems λCLaM, Ωmega and IsaPlanner. Electronic Notes in Theoretical
Computer Sci., 151:93–110, 2005.

[Dershowitz and Jouannaud, 1990] Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite
systems. 1990. In [Leeuwen, 1990, Vol. B, pp. 243–320].

[Dershowitz and Lindenstrauss, 1995] Nachum Dershowitz and Naomi Lindenstrauss, editors.
4th Int. Workshop on Conditional Term Rewriting Systems (CTRS), Jerusalem, 1994, num-
ber 968 in Lecture Notes in Computer Science, 1995.

[Dershowitz, 1989] Nachum Dershowitz, editor. 3rd Int. Conf. on Rewriting Techniques and
Applications (RTA), Chapel Hill (NC), 1989, number 355 in Lecture Notes in Computer
Science. Springer, 1989.

[Dietrich, 2011] Dominik Dietrich. Assertion Level Proof Planning with Compiled Strategies.
Optimus Verlag, Alexander Mostafa, Göttingen, 2011. PhD thesis, Dept. Informatics, FR
Informatik, Saarland Univ..

[Euclid, ca. 300 b.c.] Euclid, of Alexandria. Elements. ca. 300 b.c.. Web version without
the figures: http://www.perseus.tufts.edu/hopper/text?doc=Perseus:text:1999.01.0085.
English translation: Thomas L. Heath (ed.). The Thirteen Books of Euclid’s Elements.
Cambridge Univ. Press, 1908; web version without the figures: http://www.perseus.
tufts.edu/hopper/text?doc=Perseus:text:1999.01.0086. English web version (incl. fig-
ures): D. E. Joyce (ed.). Euclid’s Elements. http://aleph0.clarku.edu/~djoyce/java/
elements/elements.html, Dept. Math. & Comp. Sci., Clark Univ., Worcester (MA).

[Fermat, 1891ff.] Pierre Fermat. Œuvres de Fermat. Gauthier-Villars, Paris, 1891ff.. Ed. by
Paul Tannery, Charles Henry.

[Fitting, 1990] Melvin Fitting. First-order logic and automated theorem proving. Springer, 1990.
1st edn. (2nd rev. edn. is [Fitting, 1996]).

[Fitting, 1996] Melvin Fitting. First-order logic and automated theorem proving. Springer, 1996.
2nd rev. edn. (1st edn. is [Fitting, 1990]).

[FOCS, 1980] Proc. 21st Annual Symposium on Foundations of Computer Sci., Syracuse, 1980.
IEEE Press, 1980. http://ieee-focs.org/.

[Fowler, 1994] David Fowler. Could the Greeks have used mathematical induction? Did they
use it? Physis, XXXI(1):253–265, 1994.

[Freudenthal, 1953] Hans Freudenthal. Zur Geschichte der vollständigen Induktion. Archives
Internationales d’Histoire des Sciences, 6:17–37, 1953.

96 J Strother Moore, Claus-Peter Wirth

[Fribourg, 1986] Laurent Fribourg. A strong restriction of the inductive completion procedure.
1986. In [Kott, 1986, pp. 105–116]. Also in J. Symbolic Computation 8:253–276, 1989, Aca-
demic Press (Elsevier).

[Fries, 1822] Jakob Friedrich Fries. Die mathematische Naturphilosophie nach philosophischer
Methode bearbeitet – Ein Versuch. Christian Friedrich Winter, Heidelberg, 1822.

[Fritz, 1945] Kurt von Fritz. The discovery of incommensurability by Hippasus of Metapon-
tum. Annals of Mathematics, 46:242–264, 1945. German translation: Die Entdeckung der
Inkommensurabilität durch Hippasos von Metapont in [Becker, 1965, pp. 271–308].

[Fuchi and Kott, 1988] Kazuhiro Fuchi and Laurent Kott, editors. Programming of Future Gen-
eration Computers II: Proc. of the 2nd Franco-Japanese Symposium. North-Holland (Else-
vier), 1988.

[Gabbay and Woods, 2004ff.] Dov Gabbay and John Woods, editors. Handbook of the History
of Logic. North-Holland (Elsevier), 2004ff..

[Gabbay et al., 1994] Dov Gabbay, Christopher John Hogger, and J. Alan Robinson, editors.
Handbook of Logic in Artificial Intelligence and Logic Programming. Vol. 2: Deduction
Methodologies. Oxford Univ. Press, 1994.

[Ganzinger and Stuber, 1992] Harald Ganzinger and Jürgen Stuber. Inductive Theorem Proving
by Consistency for First-Order Clauses. 1992. In [Bachmair et al., 1992, pp. 441–462]. Also
in [Rusinowitch and Remy, 1993, pp. 226–241].

[Ganzinger, 1996] Harald Ganzinger, editor. 7th Int. Conf. on Rewriting Techniques and Appli-
cations (RTA), New Brunswick (NJ), 1996, number 1103 in Lecture Notes in Computer
Science. Springer, 1996.

[Ganzinger, 1999] Harald Ganzinger, editor. 16th Int. Conf. on Automated Deduction (CADE),
Trento (Italy), 1999, number 1632 in Lecture Notes in Artificial Intelligence. Springer, 1999.

[Gentzen, 1935] Gerhard Gentzen. Untersuchungen über das logische Schließen. Mathematische
Zeitschrift, 39:176–210,405–431, 1935. Also in [Berka and Kreiser, 1973, pp. 192–253]. English
translation in [Gentzen, 1969].

[Gentzen, 1969] Gerhard Gentzen. The Collected Papers of Gerhard Gentzen. North-Holland
(Elsevier), 1969. Ed. by Manfred E. Szabo.

[Geser, 1995] Alfons Geser. A principle of non-wellfounded induction. 1995. In [Margaria, 1995,
pp. 117–124].

[Geser, 1996] Alfons Geser. An improved general path order. J. Applicable Algebra in Engi-
neering, Communication and Computing (AAECC), 7:469–511, 1996.

[Gillman, 1987] Leonard Gillman. Writing Mathematics Well. The Mathematical Association
of America, 1987.

[Göbel, 1985] Richard Göbel. Completion of globally finite term rewriting systems for inductive
proofs. 1985. In [Stoyan, 1985, pp. 101–110].

[Gödel, 1931] Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme I. Monatshefte für Mathematik und Physik, 38:173–198, 1931. With
English translation also in [Gödel, 1986ff., Vol. I, pp. 145–195]. English translation also in
[Heijenoort, 1971, pp. 596–616] and in [Gödel, 1962].

[Gödel, 1962] Kurt Gödel. On formally undecidable propositions of Principia Mathematica and
related systems. Basic Books, New York, 1962. English translation of [Gödel, 1931] by Bernard
Meltzer. With an introduction by R. B. Braithwaite. 2nd edn. by Dover Publications, 1992.

[Gödel, 1986ff.] Kurt Gödel. Collected Works. Oxford Univ. Press, 1986ff. Ed. by Sol Feferman,
John W. Dawson Jr., Warren Goldfarb, Jean van Heijenoort, Stephen C. Kleene, Charles
Parsons, Wilfried Sieg, et al..

[Goguen, 1980] Joseph Goguen. How to prove algebraic inductive hypotheses without induction.
1980. In [Bibel and Kowalski, 1980, pp. 356–373].

[Goldstein, 2008] Catherine Goldstein. Pierre Fermat. 2008. In [Gowers et al., 2008, §VI.12,
pp. 740–741].

[Gordon, 2000] Mike J. C. Gordon. From LCF to HOL: a short history. 2000. In [Plotkin et
al., 2000, pp. 169–186]. http://www.cl.cam.ac.uk/~mjcg/papers/HolHistory.pdf.

[Gore et al., 2001] Rajeev Gore, Alexander Leitsch, and Tobias Nipkow, editors. 1st Int. Joint
Conf. on Automated Reasoning (IJCAR), Siena (Italy), 2001, number 2083 in Lecture Notes
in Artificial Intelligence. Springer, 2001.

[Gowers et al., 2008] Timothy Gowers, June Barrow-Green, and Imre Leader, editors. The
Princeton Companion to Mathematics. Princeton Univ. Press, 2008.

Automation of Mathematical Induction as part of the History of Logic 97

[Graham et al., 1976] Susan L. Graham, Robert M. Graham, Michael A. Harrison, William I.
Grosky, and Jeffrey D. Ullman, editors. Conference Record of the 3rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL), Atlanta (GA),
Jan. 1976. ACM Press, 1976. http://dl.acm.org/citation.cfm?id=800168.

[Gramlich and Lindner, 1991] Bernhard Gramlich and Wolfgang Lindner. A Guide to Unicom,
an Inductive Theorem Prover Based on Rewriting and Completion Techniques. SEKI-Report
SR–91–17 (ISSN 1860–5931). SEKI Publications, FB Informatik, Univ. Kaiserslautern, 1991.
http://agent.informatik.uni-kl.de/seki/1991/Lindner.SR-91-17.ps.gz.

[Gramlich and Wirth, 1996] Bernhard Gramlich and Claus-Peter Wirth. Confluence of termi-
nating conditional term rewriting systems revisited. 1996. In [Ganzinger, 1996, pp. 245–259].

[Gramlich et al., 2012] Bernhard Gramlich, Dale A. Miller, and Uli Sattler, editors. 6th Int.
Joint Conf. on Automated Reasoning (IJCAR), Manchester, 2012, number 7364 in Lecture
Notes in Artificial Intelligence. Springer, 2012.

[Hayes et al., 1988] Jean E. Hayes, Donald Michie, and Judith Richards, editors. Proceedings of
the 11th Annual Machine Intelligence Workshop (Machine Intelligence 11), Univ. Strathclyde,
Glasgow, 1985. Clarendon Press, Oxford (Oxford Univ. Press), 1988. aitopics.org/sites/
default/files/classic/Machine_Intelligence_11/Machine_Intelligence_v.11.pdf.

[Heijenoort, 1971] Jean van Heijenoort. From Frege to Gödel: A Source Book in Mathematical
Logic, 1879–1931. Harvard Univ. Press, 1971. 2nd rev. edn. (1st edn. 1967).

[Herbelin, 2009] Hugo Herbelin, editor. The 1st Coq Workshop. Inst. für Informatik,
Tech. Univ. München, 2009. TUM-I0919, http://www.lix.polytechnique.fr/coq/files/
coq-workshop-TUM-I0919.pdf.

[Hilbert and Bernays, 1934] David Hilbert and Paul Bernays. Die Grundlagen der Mathematik
— Erster Band. Number XL in Die Grundlehren der Mathematischen Wissenschaften in
Einzeldarstellungen. Springer, 1934. 1st edn. (2nd edn. is [Hilbert and Bernays, 1968]).

[Hilbert and Bernays, 1939] David Hilbert and Paul Bernays. Die Grundlagen der Mathematik
— Zweiter Band. Number L in Die Grundlehren der Mathematischen Wissenschaften in
Einzeldarstellungen. Springer, 1939. 1st edn. (2nd edn. is [Hilbert and Bernays, 1970]).

[Hilbert and Bernays, 1968] David Hilbert and Paul Bernays. Die Grundlagen der Mathema-
tik I. Number 40 in Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstel-
lungen. Springer, 1968. 2nd rev. edn. of [Hilbert and Bernays, 1934].

[Hilbert and Bernays, 1970] David Hilbert and Paul Bernays. Die Grundlagen der Mathema-
tik II. Number 50 in Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstel-
lungen. Springer, 1970. 2nd rev. edn. of [Hilbert and Bernays, 1939].

[Hilbert and Bernays, 2013] David Hilbert and Paul Bernays. Grundlagen der Mathema-
tik I — Foundations of Mathematics I, Part A: Title Pages, Prefaces, and §§ 1–2. http:
//wirth.bplaced.net/p/hilbertbernays, 2013. Thoroughly rev. 2nd edn. (1st edn. College
Publications, London, 2011). First English translation and bilingual facsimile edn. of the
2nd German edn. [Hilbert and Bernays, 1968], incl. the annotation and translation of all dif-
ferences of the 1st German edn. [Hilbert and Bernays, 1934]. Translated and commented by
Claus-Peter Wirth. Ed. by Claus-Peter Wirth, Jörg Siekmann, Michael Gabbay, Dov Gab-
bay. Advisory Board: Wilfried Sieg (chair), Irving H. Anellis, Steve Awodey, Matthias Baaz,
Wilfried Buchholz, Bernd Buldt, Reinhard Kahle, Paolo Mancosu, Charles Parsons, Volker
Peckhaus, William W. Tait, Christian Tapp, Richard Zach.

[Hillenbrand and Löchner, 2002] Thomas Hillenbrand and Bernd Löchner. The next Wald-
Meister loop. 2002. In [Voronkov, 2002, pp. 486–500]. http://www.waldmeister.org.

[Hinchey and Bowen, 1999] Michael G. Hinchey and Jonathan P. Bowen, editors. Industrial-
Strength Formal Methods in Practice. Formal Approaches to Computing and Information
Technology (FACIT). Springer, 1999.

[Hobson and Love, 1913] E. W. Hobson and A. E. H. Love, editors. Proc. 5th Int. Congress
of Mathematicians, Cambridge, Aug 22–28, 1912. Cambridge Univ. Press, 1913. http://
gallica.bnf.fr/ark:/12148/bpt6k99444q.

[Howard and Rubin, 1998] Paul Howard and Jean E. Rubin. Consequences of the Axiom of
Choice. American Math. Society, 1998.

[Hudlak et al., 1999] Paul Hudlak, John Peterson, and Joseph H. Fasel. A gentle introduction
to Haskell. Web only: http://www.haskell.org/tutorial, 1999.

[Huet and Hullot, 1980] Gérard Huet and Jean-Marie Hullot. Proofs by induction in equational
theories with constructors. 1980. In [FOCS, 1980, pp. 96–107]. Also in J. Computer and
System Sci. 25:239–266, 1982, Academic Press (Elsevier).

98 J Strother Moore, Claus-Peter Wirth

[Huet, 1980] Gérard Huet. Confluent reductions: Abstract properties and applications to term
rewriting systems. J. of the ACM, 27:797–821, 1980.

[Hunt and Swords, 2009] Warren A. Hunt and Sol Swords. Centaur technology media unit
verification. 2009. In [Bouajjani and Maler, 2009, pp. 353–367].

[Hunt, 1985] Warren A. Hunt. FM8501: A Verified Microprocessor. PhD thesis, The University
of Texas at Austin, 1985. Also published as [Hunt, 1994].

[Hunt, 1989] Warren A. Hunt. Microprocessor design verification. J. Automated Reasoning,
5:429–460, 1989.

[Hunt, 1994] Warren A. Hunt. FM8501: A Verified Microprocessor. Number 795 in Lecture
Notes in Artificial Intelligence. Springer, 1994. Originally published as [Hunt, 1985].

[Hutter and Bundy, 1999] Dieter Hutter and Alan Bundy. The design of the CADE-16 Inductive
Theorem Prover Contest. 1999. In [Ganzinger, 1999, pp. 374–377].

[Hutter and Sengler, 1996] Dieter Hutter and Claus Sengler. Inka: the next generation. 1996.
In [McRobbie and Slaney, 1996, pp. 288–292].

[Hutter and Stephan, 2005] Dieter Hutter and Werner Stephan, editors. Mechanizing Mathe-
matical Reasoning: Essays in Honor of Jörg Siekmann on the Occasion of His 60th Birthday.
Number 2605 in Lecture Notes in Artificial Intelligence. Springer, 2005.

[Hutter, 1990] Dieter Hutter. Guiding inductive proofs. 1990. In [Stickel, 1990, pp. 147–161].
[Ireland and Bundy, 1994] Andrew Ireland and Alan Bundy. Productive Use of Failure in In-

ductive Proof. 1994. DAI Research Paper No. 716, Dept. Artificial Intelligence, Univ. Edin-
burgh. Also in: J. Automated Reasoning 16:79–111, 1996, Kluwer (Springer Science+Business
Media).

[Jamnik et al., 2003] Mateja Jamnik, Manfred Kerber, Martin Pollet, and Christoph Benz-
müller. Automatic learning of proof methods in proof planning. Logic J. of the IGPL,
11:647–673, 2003.

[Jouannaud and Kounalis, 1986] Jean-Pierre Jouannaud and Emmanuël Kounalis. Automatic
proofs by induction in equational theories without constructors. 1986. In [LICS, 1986, pp. 358–
366]. Also in Information and Computation 82:1–33, 1989, Academic Press (Elsevier), 1989.

[Kaplan and Jouannaud, 1988] Stéphane Kaplan and Jean-Pierre Jouannaud, editors. 1st Int.
Workshop on Conditional Term Rewriting Systems (CTRS), Orsay (France), 1987, number
308 in Lecture Notes in Computer Science, 1988.

[Kaplan and Okada, 1991] Stéphane Kaplan and Mitsuhiro Okada, editors. 2nd Int. Workshop
on Conditional Term Rewriting Systems (CTRS), Montreal, 1990, number 516 in Lecture
Notes in Computer Science, 1991.

[Kapur and Musser, 1986] Deepak Kapur and David R. Musser. Inductive reasoning with in-
complete specifications. 1986. In [LICS, 1986, pp. 367–377].

[Kapur and Musser, 1987] Deepak Kapur and David R. Musser. Proof by consistency. Artificial
Intelligence, 31:125–157, 1987.

[Kapur and Subramaniam, 1996] Deepak Kapur and Mahadevan Subramaniam. Automating
induction over mutually recursive functions. 1996. In [Wirsing and Nivat, 1996, pp. 117–131].

[Kapur and Zhang, 1989] Deepak Kapur and Hantao Zhang. An overview of Rewrite Rule Lab-
oratory (Rrl). 1989. In [Dershowitz, 1989, pp. 559–563]. Journal version is [Kapur and Zhang,
1995].

[Kapur and Zhang, 1995] Deepak Kapur and Hantao Zhang. An overview of Rewrite Rule Lab-
oratory (Rrl). Computers and Mathematics with Applications, 29(2):91–114, 1995.

[Kapur, 1992] Deepak Kapur, editor. 11th Int. Conf. on Automated Deduction (CADE), Sara-
toga Springs (NY), 1992, number 607 in Lecture Notes in Artificial Intelligence. Springer,
1992.

[Katz, 1998] Victor J. Katz. A History of Mathematics: An Introduction. Addison–Wesley,
Reading (MA), 1998. 2nd edn..

[Kaufmann et al., 2000a] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore, editors.
Computer-Aided Reasoning: ACL2 Case Studies. Number 4 in Advances in Formal Methods.
Kluwer (Springer Science+Business Media), 2000. With a foreword from the series editor
Mike Hinchey.

[Kaufmann et al., 2000b] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore.
Computer-Aided Reasoning: An Approach. Number 3 in Advances in Formal Methods.
Kluwer (Springer Science+Business Media), 2000. With a foreword from the series editor
Mike Hinchey.

Automation of Mathematical Induction as part of the History of Logic 99

[Knuth and Bendix, 1970] Donald E Knuth and Peter B. Bendix. Simple word problems in
universal algebra. 1970. In [Leech, 1970, pp. 263–297].

[Kodratoff, 1988] Yves Kodratoff, editor. Proc. 8th European Conf. on Artificial Intelligence
(ECAI). Pitman Publ., London, 1988.

[Kott, 1986] Laurent Kott, editor. 13th Int. Colloquium on Automata, Languages and Pro-
gramming (ICALP), Rennes (France), number 226 in Lecture Notes in Computer Science.
Springer, 1986.

[Kowalski, 1974] Robert A. Kowalski. Predicate logic as a programming language. 1974. In
[Rosenfeld, 1974, pp. 569–574].

[Kowalski, 1988] Robert A. Kowalski. The early years of logic programming. Comm. ACM,
31:38–43, 1988.

[Kreisel, 1965] Georg Kreisel. Mathematical logic. 1965. In [Saaty, 1965, Vol. III, pp. 95–195].
[Küchlin, 1989] Wolfgang Küchlin. Inductive completion by ground proof transformation. 1989.

In [Aı̈t-Kaci and Nivat, 1989, Vol. 2, pp. 211–244].
[Kühler and Wirth, 1996] Ulrich Kühler and Claus-Peter Wirth. Conditional Equational Speci-

fications of Data Types with Partial Operations for Inductive Theorem Proving. SEKI-Report
SR–1996–11 (ISSN 1437–4447). SEKI Publications, FB Informatik, Univ. Kaiserslautern,
1996. 24 pp., http://wirth.bplaced.net/p/rta97. Short version is [Kühler and Wirth, 1997].

[Kühler and Wirth, 1997] Ulrich Kühler and Claus-Peter Wirth. Conditional equational specifi-
cations of data types with partial operations for inductive theorem proving. 1997. In [Comon,
1997, pp. 38–52]. Extended version is [Kühler and Wirth, 1996].

[Kühler, 1991] Ulrich Kühler. Ein funktionaler und struktureller Vergleich verschiedener
Induktionsbeweiser. (English translation of title: “A functional and structural comparsion
of several inductive theorem-proving systems” (Inka, LP (Larch Prover), Nqthm, Rrl, Uni-
com)). vi+143 pp., Diplomarbeit (Master’s thesis), FB Informatik, Univ. Kaiserslautern, 1991.

[Kühler, 2000] Ulrich Kühler. A Tactic-Based Inductive Theorem Prover for Data Types with
Partial Operations. Infix, Akademische Verlagsgesellschaft Aka GmbH, Sankt Augustin, Ber-
lin, 2000. PhD thesis, Univ. Kaiserslautern, ISBN 1586031287, http://wirth.bplaced.net/p/
kuehlerdiss.

[Lambert, 1764] Johann Heinrich Lambert. Neues Organon oder Gedanken über die Er-
forschung und Bezeichnung des Wahren und dessen Unterscheidung von Irrthum und Schein.
Johann Wendler, Leipzig, 1764. Vol. I (Dianoiologie oder die Lehre von den Gesetzen des
Denkens, Alethiologie oder Lehre von der Wahrheit) (http://books.google.de/books/about/
Neues_Organon_oder_Gedanken_Uber_die_Erf.html?id=ViS3XCuJEw8C) & Vol. II (Semiotik
oder Lehre von der Bezeichnung der Gedanken und Dinge, Phänomenologie oder Lehre
von dem Schein) (http://books.google.de/books/about/Neues_Organon_oder_Gedanken_
%C3%BCber_die_Er.html?id=X8UAAAAAcAAj). Facsimile reprint by Georg Olms Verlag, Hildes-
heim (Germany), 1965, with a German introduction by Hans Werner Arndt.

[Lankford, 1980] Dallas S. Lankford. Some remarks on inductionless induction. Memo MTP-11,
Math. Dept., Louisiana Tech. Univ., Ruston (LA), 1980.

[Lankford, 1981] Dallas S. Lankford. A simple explanation of inductionless induction. Memo
MTP-14, Math. Dept., Louisiana Tech. Univ., Ruston (LA), 1981.

[Lassez and Plotkin, 1991] Jean-Louis Lassez and Gordon D. Plotkin, editors. Computational
Logic — Essays in Honor of J. Alan Robinson. MIT Press, 1991.

[Leech, 1970] John Leech, editor. Computational Word Problems in Abstract Algebra — Proc. of
a Conf. held at Oxford, under the auspices of the Science Research Council, Atlas Computer
Laboratory, 29th Aug. to 2nd Sept. 1967. Pergamon Press, Oxford, 1970. With a foreword by
J. Howlett.

[Leeuwen, 1990] Jan van Leeuwen, editor. Handbook of Theoretical Computer Sci.. MIT Press,
1990.

[LICS, 1986] Proc. 1st Annual IEEE Symposium on Logic In Computer Sci. (LICS), Cambridge
(MA), 1986. IEEE Press, 1986. http://lii.rwth-aachen.de/lics/archive/1986.

[LICS, 1988] Proc. 3rd Annual IEEE Symposium on Logic In Computer Sci. (LICS), Edinburgh,
1988. IEEE Press, 1988. http://lii.rwth-aachen.de/lics/archive/1988.

[LICS, 2007] Proc. 22nd Annual IEEE Symposium on Logic In Computer Sci. (LICS),
WrocÃlaw (i.e. Breslau, Silesia), 2007. IEEE Press, 2007. http://lii.rwth-aachen.de/lics/
archive/2007.

[Löchner, 2006] Bernd Löchner. Things to know when implementing LPO. Int. J. Artificial
Intelligence Tools, 15:53–79, 2006.

100 J Strother Moore, Claus-Peter Wirth

[Lusk and Overbeek, 1988] Ewing Lusk and Ross Overbeek, editors. 9th Int. Conf. on Auto-
mated Deduction (CADE), Argonne National Laboratory (IL), 1988, number 310 in Lecture
Notes in Artificial Intelligence. Springer, 1988.

[Mahoney, 1994] Michael Sean Mahoney. The Mathematical Career of Pierre de Fermat 1601–
1665. Princeton Univ. Press, 1994. 2nd rev. edn. (1st edn. 1973).

[Marchisotto and Smith, 2007] Elena Anne Marchisotto and James T. Smith. The Legacy of
Mario Pieri in Geometry and Arithmetic. Birkhäuser (Springer), 2007.

[Margaria, 1995] Tiziana Margaria, editor. Kolloquium Programmiersprachen und Grundlagen
der Programmierung, 1995. Tech. Report MIP–9519, Univ. Passau.

[McCarthy et al., 1965] John McCarthy, Paul W. Abrahams, D. J. Edwards, T. P. Hart, and
M. I. Levin. LISP 1.5 Programmer’s Manual. MIT Press, 1965.

[McRobbie and Slaney, 1996] Michael A. McRobbie and John K. Slaney, editors. 13th Int. Conf.
on Automated Deduction (CADE), New Brunswick (NJ), 1996, number 1104 in Lecture Notes
in Artificial Intelligence. Springer, 1996.

[Melis et al., 2008] Erica Melis, Andreas Meier, and Jörg Siekmann. Proof planning with mul-
tiple strategies. Artificial Intelligence, 172:656–684, 2008. Received May 2, 2006. Published
online Nov. 22, 2007. http://dx.doi.org/10.1016/j.artint.2007.11.004.

[Meltzer and Michie, 1972] Bernard Meltzer and Donald Michie, editors. Proceedings of the
7th Annual Machine Intelligence Workshop (Machine Intelligence 7), Edinburgh, 1971. Univ.
Edinburgh Press, 1972. http://aitopics.org/sites/default/files/classic/Machine%
20Intelligence%203/Machine%20Intelligence%20v3.pdf.

[Meltzer, 1975] Bernard Meltzer. Department of A.I. – Univ. of Edinburgh. ACM SIGART
Bulletin, 50:5, 1975.

[Michie, 1968] Donald Michie, editor. Proceedings of the 3rd Annual Machine Intelli-
gence Workshop (Machine Intelligence 3), Edinburgh, 1967. Univ. Edinburgh Press,
1968. http://aitopics.org/sites/default/files/classic/Machine%20Intelligence%203/
Machine%20Intelligence%20v3.pdf.

[Milner, 1972] Robin Milner. Logic for computable functions — description of a machine
interpretation. Technical Report MemoAIM–169, STAN–CS–72–288, Dept. Computer Sci.,
Stanford University, 1972. ftp://reports.stanford.edu/pub/cstr/reports/cs/tr/72/288/
CS-TR-72-288.pdf.

[Moore et al., 1998] J Strother Moore, Thomas Lynch, and Matt Kaufmann. A mechanically
checked proof of the correctness of the kernel of the AMD5K86 floating point division algo-
rithm. IEEE Transactions on Computers, 47:913–926, 1998.

[Moore, 1973] J Strother Moore. Computational Logic: Structure Sharing and Proof of Program
Properties. PhD thesis, Dept. Artificial Intelligence, Univ. Edinburgh, 1973. http://hdl.
handle.net/1842/2245.

[Moore, 1975a] J Strother Moore. Introducing iteration into the Pure LISP Theorem Prover.
Technical Report CSL 74–3, Xerox, Palo Alto Research Center, 3333 Coyote Hill Rd., Palo
Alto (CA), 1975. ii+37 pp., Received Dec. 1974, rev.March 1975. Short version is [Moore,
1975b].

[Moore, 1975b] J Strother Moore. Introducing iteration into the Pure LISP Theorem
Prover. IEEE Transactions on Software Engineering, 1:328–338, 1975. http://doi.
ieeecomputersociety.org/10.1109/TSE.1975.6312857. Long version is [Moore, 1975a].

[Moore, 1979] J Strother Moore. A mechanical proof of the termination of Takeuti’s function.
Information Processing Letters, 9:176–181, 1979. Received July 13, 1979. Rev. Sept. 5, 1979.
http://dx.doi.org/10.1016/0020-0190(79)90063-2.

[Moore, 1981] J Strother Moore. Text editing primitives — the TXDT package. Technical
Report CSL 81–2, Xerox, Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto (CA),
1981.

[Moore, 1989a] J Strother Moore. A mechanically verified language implementation. J. Auto-
mated Reasoning, 5:461–492, 1989.

[Moore, 1989b] J Strother Moore. System verification. J. Automated Reasoning, 5:409–410,
1989.

[Moskewicz et al., 2001] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang,
and Sharad Malik. Chaff: Engineering an efficient SAT solver. 2001. In [DAC, 2001, pp. 530–
535].

[Musser, 1980] David R. Musser. On proving inductive properties of abstract data types. 1980.
In [Abrahams et al., 1980, pp. 154–162]. http://dl.acm.org/citation.cfm?id=567461.

Automation of Mathematical Induction as part of the History of Logic 101

[Nilsson, 1973] Nils J. Nilsson, editor. Proc. 3rd Int. Joint Conf. on Artificial Intelligence
(IJCAI), Stanford (CA). Stanford Research Institute, Publications Dept., Stanford (CA),
1973. http://ijcai.org/Past%20Proceedings/IJCAI-73/CONTENT/content.htm.

[Padawitz, 1996] Peter Padawitz. Inductive theorem proving for design specifications. J. Sym-
bolic Computation, 21:41–99, 1996.

[Padoa, 1913] Alessandro Padoa. La valeur et les rôles du principe d’induction mathématique.
1913. In [Hobson and Love, 1913, pp. 471–479].

[Pascal, 1954] Blaise Pascal. Œuvres Complètes. Gallimard, Paris, 1954. Ed. by Jacques Cheva-
lier.

[Paulson, 1996] Lawrence C. Paulson. ml for the Working Programmer. Cambridge Univ. Press,
1996. 2nd edn. (1st edn. 1991).

[Peano, 1889] Guiseppe Peano. Arithmetices principia, novo methodo exposita. Fratelli Bocca,
Torino (i.e. Turin, Italy), 1889.

[Péter, 1951] Rósza Péter. Rekursive Funktionen. Akad. Kiadó, Budapest, 1951.
[Pieri, 1908] Mario Pieri. Sopra gli assiomi aritmetici. Il Bollettino delle seduta della Accademia

Gioenia di Scienze Naturali in Catania, Series 2, 1–2:26–30, 1908. Written Dec. 1907. Received
Jan. 8, 1908. English translation On the Axioms of Arithmetic in [Marchisotto and Smith,
2007, § 4.2, pp. 308–313].

[Plotkin et al., 2000] Gordon D. Plotkin, Colin Stirling, and Mads Tofte, editors. Proof, Lan-
guage, and Interaction, Essays in Honour of Robin Milner. MIT Press, 2000.

[Presburger, 1930] Mojżesz Presburger. Über die Vollständigkeit eines gewissen Systems der
Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In Spra-
wozdanie z I Kongresu metematyków krajów sÃlowianskich, Warszawa 1929 (Comptes-rendus
du 1re Congrès des Mathématiciens des Pays Slaves, Varsovie 1929), pages 92–101+395, 1930.
Remarks and English translation in [Stansifer, 1984].

[Protzen, 1994] Martin Protzen. Lazy generation of induction hypotheses. 1994. In [Bundy,
1994, pp. 42–56].

[Protzen, 1995] Martin Protzen. Lazy Generation of Induction Hypotheses and Patching Faulty
Conjectures. Infix, Akademische Verlagsgesellschaft Aka GmbH, Sankt Augustin, Berlin, 1995.
PhD thesis.

[Protzen, 1996] Martin Protzen. Patching faulty conjectures. 1996. In [McRobbie and Slaney,
1996, pp. 77–91].

[Rabinovitch, 1970] Nachum L. Rabinovitch. Rabbi Levi ben Gerson and the origins of mathe-
matical induction. Archive for History of Exact Sciences, 6:237–248, 1970. Received Jan. 12,
1970.

[Reddy, 1977] Ray Reddy, editor. Proc. 5th Int. Joint Conf. on Artificial Intelligence (IJCAI),
Cambridge (MA). Dept. of Computer Sci., Carnegie Mellon Univ., Cambridge (MA), 1977.
http://ijcai.org/Past%20Proceedings.

[Reddy, 1990] Uday S. Reddy. Term rewriting induction. 1990. [Stickel, 1990, pp. 162–177].
[Riazanov and Voronkov, 2001] Alexander Riazanov and Andrei Voronkov. Vampire 1.1 (system

description). 2001. In [Gore et al., 2001, pp. 376–380].
[Robinson and Voronkow, 2001] J. Alan Robinson and Andrei Voronkow, editors. Handbook of

Automated Reasoning. Elsevier, 2001.
[Rosenfeld, 1974] Jack L. Rosenfeld, editor. Proc. of the Congress of the Int. Federation for

Information Processing (IFIP), Stockholm (Sweden), Aug. 5–10, 1974. North-Holland (Else-
vier), 1974.

[Rubin and Rubin, 1985] Herman Rubin and Jean E. Rubin. Equivalents of the Axiom of
Choice. North-Holland (Elsevier), 1985. 2nd rev. edn. (1st edn. 1963).

[Rusinowitch and Remy, 1993] Michaël Rusinowitch and Jean-Luc Remy, editors. 3rd Int. Work-
shop on Conditional Term Rewriting Systems (CTRS), Pont-à-Mousson (France), 1992,
number 656 in Lecture Notes in Computer Science, 1993.

[Russinoff, 1998] David M. Russinoff. A mechanically checked proof of IEEE compliance of
a register-transfer-level specification of the AMD-K7 floating-point multiplication, division,
and square root instructions. London Mathematical Society Journal of Computation and
Mathematics, 1:148–200, 1998.

[Saaty, 1965] T. L. Saaty, editor. Lectures on Modern Mathematics. John Wiley & Sons, New
York, 1965.

102 J Strother Moore, Claus-Peter Wirth

[Schmidt-Samoa, 2006a] Tobias Schmidt-Samoa. An even closer integration of linear arith-
metic into inductive theorem proving. Electronic Notes in Theoretical Computer Sci., 151:3–
20, 2006. http://wirth.bplaced.net/p/evencloser, http://dx.doi.org/10.1016/j.entcs.
2005.11.020.

[Schmidt-Samoa, 2006b] Tobias Schmidt-Samoa. Flexible Heuristic Control for Combining
Automation and User-Interaction in Inductive Theorem Proving. PhD thesis, Univ. Kaisers-
lautern, 2006. http://wirth.bplaced.net/p/samoadiss.

[Schmidt-Samoa, 2006c] Tobias Schmidt-Samoa. Flexible heuristics for simplification with con-
ditional lemmas by marking formulas as forbidden, mandatory, obligatory, and generous.
J. Applied Non-Classical Logics, 16:209–239, 2006. http://dx.doi.org/10.3166/jancl.16.
208-239.

[Schoenfield, 1967] Joseph R. Schoenfield. Mathematical Logic. Addison–Wesley, Reading (MA),
1967.

[Scott, 1993] Dana S. Scott. A type-theoretical alternative to ISWIM, CUCH, OWHY. Theoret-
ical Computer Sci., 121:411–440, 1993. Annotated version of a manuscript from the year 1969.
www.cs.cmu.edu/~kw/scans/scott93tcs.pdf.

[Shankar, 1986] Natarajan Shankar. Proof-checking Metamathematics. PhD thesis, The Uni-
versity of Texas at Austin, 1986. Thoroughly revised version is [Shankar, 1994].

[Shankar, 1988] Natarajan Shankar. A mechanical proof of the Church–Rosser theorem. J. of the
ACM, 35:475–522, 1988. Received May 1985, rev.Aug. 1987. See also Chapter 6 in [Shankar,
1994].

[Shankar, 1994] Natarajan Shankar. Metamathematics, Machines, and Gödel’s Proof. Cam-
bridge Univ. Press, 1994. Originally published as [Shankar, 1986]. Paperback reprint 1997.

[Siekmann, 1986] Jörg Siekmann, editor. 8th Int. Conf. on Automated Deduction (CADE),
Oxford, 1986, number 230 in Lecture Notes in Artificial Intelligence. Springer, 1986.

[Sridharan, 1989] N. S. Sridharan, editor. Proc. 11th Int. Joint Conf. on Artificial Intelligence
(IJCAI), Detroit (MI). Morgan Kaufmann, Los Altos (CA) (Elsevier), 1989. http://ijcai.
org/Past%20Proceedings.

[Stansifer, 1984] Ryan Stansifer. Presburger’s Article on Integer Arithmetic: Remarks and
Translation. Technical Report TR 84–639, Dept. of Computer Sci., Cornell Univ., Ithaca
(NY), 1984. http://hdl.handle.net/1813/6478.

[Steele, 1990] Guy L. Steele, Jr.. Common Lisp — The Language. Digital Press (Elsevier),
1990. 2nd edn. (1st edn. 1984).

[Steinbach, 1988] Joachim Steinbach. Term Orderings With Status. SEKI-Report SR–88–12
(ISSN 1437–4447). SEKI Publications, FB Informatik, Univ. Kaiserslautern, 1988. 57 pp.,
http://wirth.bplaced.net/SEKI/welcome.html#SR-88-12.

[Steinbach, 1995] Joachim Steinbach. Simplification orderings — history of results. Fundamenta
Informaticae, 24:47–87, 1995.

[Stevens, 1988] Andrew Stevens. A Rational Reconstruction of Boyer and Moore’s Technique
for Constructing Induction Formulas. 1988. DAI Research Paper No. 360, Dept. Artificial
Intelligence, Univ. Edinburgh. Also in [Kodratoff, 1988, pp. 565–570].

[Stickel, 1990] Mark E. Stickel, editor. 10th Int. Conf. on Automated Deduction (CADE),
Kaiserslautern (Germany), 1990, number 449 in Lecture Notes in Artificial Intelligence.
Springer, 1990.

[Stoyan, 1985] Herbert Stoyan, editor. 9th German Workshop on Artificial Intelligence (GWAI),
Dassel (Germany), 1985, number 118 in Informatik-Fachberichte. Springer, 1985.

[Toyama, 1988] Yoshihito Toyama. Commutativity of term rewriting systems. 1988. In [Fuchi
and Kott, 1988, pp. 393–407]. Also in [Toyama, 1990].

[Toyama, 1990] Yoshihito Toyama. Term Rewriting Systems and the Church–Rosser Property.
PhD thesis, Tohoku Univ. / Nippon Telegraph and Telephone Corporation, 1990.

[Unguru, 1991] Sabetai Unguru. Greek mathematics and mathematical induction. Physis,
XXVIII(2):273–289, 1991.

[Verma, 2005?] Shamit Verma. Interview with Charles Simonyi. WWW only: http://www.
shamit.org/charles_simonyi.htm, 2005?

[Voicu and Li, 2009] Răzvan Voicu and Mengran Li. Descente Infinie proofs in Coq. 2009. In
[Herbelin, 2009, pp. 73–84].

[Voronkov, 1992] Andrei Voronkov, editor. Proc. 3rd Int. Conf. on Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR), number 624 in Lecture Notes in Artificial
Intelligence. Springer, 1992.

Automation of Mathematical Induction as part of the History of Logic 103

[Voronkov, 2002] Andrei Voronkov, editor. 18th Int. Conf. on Automated Deduction (CADE),
København (Denmark), 2002, number 2392 in Lecture Notes in Artificial Intelligence. Sprin-
ger, 2002.

[Walther, 1988] Christoph Walther. Argument-bounded algorithms as a basis for automated
termination proofs. 1988. In [Lusk and Overbeek, 1988, pp. 601–622].

[Walther, 1992] Christoph Walther. Computing induction axioms. 1992. In [Voronkov, 1992,
pp. 381–392].

[Walther, 1993] Christoph Walther. Combining induction axioms by machine. 1993. In [Bajscy,
1993, pp. 95–101].

[Walther, 1994a] Christoph Walther. Mathematical induction. 1994. In [Gabbay et al., 1994,
pp. 127–228].

[Walther, 1994b] Christoph Walther. On proving termination of algorithms by machine. Arti-
ficial Intelligence, 71:101–157, 1994.

[Wirsing and Nivat, 1996] Martin Wirsing and Maurice Nivat, editors. Proc. 5th Int. Conf.
on Algebraic Methodology and Software Technology (AMAST), München (Germany), 1996,
number 1101 in Lecture Notes in Computer Science. Springer, 1996.

[Wirth and Becker, 1995] Claus-Peter Wirth and Klaus Becker. Abstract notions and inference
systems for proofs by mathematical induction. 1995. In [Dershowitz and Lindenstrauss, 1995,
pp. 353–373].

[Wirth and Gramlich, 1994a] Claus-Peter Wirth and Bernhard Gramlich. A constructor-based
approach to positive/negative-conditional equational specifications. J. Symbolic Computa-
tion, 17:51–90, 1994. http://dx.doi.org/10.1006/jsco.1994.1004, http://wirth.bplaced.
net/p/jsc94.

[Wirth and Gramlich, 1994b] Claus-Peter Wirth and Bernhard Gramlich. On notions of in-
ductive validity for first-order equational clauses. 1994. In [Bundy, 1994, pp. 162–176],
http://wirth.bplaced.net/p/cade94.

[Wirth and Kühler, 1995] Claus-Peter Wirth and Ulrich Kühler. Inductive Theorem Proving
in Theories Specified by Positive/Negative-Conditional Equations. SEKI-Report SR–95–15
(ISSN 1437–4447). SEKI Publications, Univ. Kaiserslautern, 1995. iv+126 pp..

[Wirth et al., 1993] Claus-Peter Wirth, Bernhard Gramlich, Ulrich Kühler, and Horst Prote.
Constructor-Based Inductive Validity in Positive/Negative-Conditional Equational Specifi-
cations. SEKI-Report SR–93–05 (SFB) (ISSN 1437–4447). SEKI Publications, FB Infor-
matik, Univ. Kaiserslautern, 1993. iv+58 pp., http://wirth.bplaced.net/SEKI/welcome.
html#SR-93-05. Rev. extd. edn. of 1st part is [Wirth and Gramlich, 1994a], rev. edn. of 2nd part
is [Wirth and Gramlich, 1994b].

[Wirth et al., 2009] Claus-Peter Wirth, Jörg Siekmann, Christoph Benzmüller, and Serge Au-
texier. Jacques Herbrand: Life, logic, and automated deduction. 2009. In [Gabbay and
Woods, 2004ff., Vol. 5: Logic from Russell to Church, pp. 195–254].

[Wirth, 1971] Niklaus Wirth. The programming language Pascal. Acta Informatica, 1:35–63,
1971.

[Wirth, 1991] Claus-Peter Wirth. Inductive theorem proving in theories specified by positive/ne-
gative-conditional equations. Diplomarbeit (Master’s thesis), FB Informatik, Univ. Kaisers-
lautern, 1991.

[Wirth, 1997] Claus-Peter Wirth. Positive/Negative-Conditional Equations: A Constructor-
Based Framework for Specification and Inductive Theorem Proving, volume 31 of Schriften-
reihe Forschungsergebnisse zur Informatik. Verlag Dr. Kovač, Hamburg, 1997. PhD thesis,
Univ. Kaiserslautern, ISBN 386064551X, http://wirth.bplaced.net/p/diss.

[Wirth, 2004] Claus-Peter Wirth. Descente Infinie + Deduction. Logic J. of the IGPL, 12:1–96,
2004. http://wirth.bplaced.net/p/d.

[Wirth, 2005a] Claus-Peter Wirth. History and future of implicit and inductionless induction:
Beware the old jade and the zombie! 2005. In [Hutter and Stephan, 2005, pp. 192–203],
http://wirth.bplaced.net/p/zombie.

[Wirth, 2005b] Claus-Peter Wirth. Syntactic Confluence Criteria for Positive/Negative-
Conditional Term Rewriting Systems. SEKI-Report SR–95–09 (ISSN 1437–4447). SEKI
Publications, Univ. Kaiserslautern, 2005. Rev. edn. Oct. 2005 (1st edn. 1995), ii+188 pp.,
http://arxiv.org/abs/0902.3614.

104 J Strother Moore, Claus-Peter Wirth

[Wirth, 2006] Claus-Peter Wirth. lim+, δ+, and Non-Permutability of β-Steps. SEKI-Report
SR–2005–01 (ISSN 1437–4447). SEKI Publications, Saarland Univ., 2006. Rev. edn. July 2006
(1st edn. 2005), ii+36 pp., http://arxiv.org/abs/0902.3635. Thoroughly improved version is
[Wirth, 2012b].

[Wirth, 2009] Claus-Peter Wirth. Shallow confluence of conditional term rewriting systems. J.
Symbolic Computation, 44:69–98, 2009. http://dx.doi.org/10.1016/j.jsc.2008.05.005.

[Wirth, 2010a] Claus-Peter Wirth. Progress in Computer-Assisted Inductive Theorem Proving
by Human-Orientedness and Descente Infinie? SEKI-Working-Paper SWP–2006–01 (ISSN
1860–5931). SEKI Publications, Saarland Univ., 2010. Rev. edn.Dec 2010 (1st edn. 2006),
ii+36 pp., http://arxiv.org/abs/0902.3294.

[Wirth, 2010b] Claus-Peter Wirth. A Self-Contained and Easily Accessible Discussion of the
Method of Descente Infinie and Fermat’s Only Explicitly Known Proof by Descente Infinie.
SEKI-Working-Paper SWP–2006–02 (ISSN 1860–5931). SEKI Publications, DFKI Bremen
GmbH, Safe and Secure Cognitive Systems, Cartesium, Enrique Schmidt Str. 5, D–28359
Bremen, Germany, 2010. Rev. ed.Dec. 2010, ii+36 pp., http://arxiv.org/abs/0902.3623.

[Wirth, 2012a] Claus-Peter Wirth. Herbrand’s Fundamental Theorem in the eyes of Jean van
Heijenoort. Logica Universalis, 6:485–520, 2012. Received Jan. 12, 2012. Published online
June 22, 2012, http://dx.doi.org/10.1007/s11787-012-0056-7.

[Wirth, 2012b] Claus-Peter Wirth. lim+, δ+, and Non-Permutability of β-Steps. J. Symbolic
Computation, 47:1109–1135, 2012. Received Jan. 18, 2011. Published online July 15, 2011,
http://dx.doi.org/10.1016/j.jsc.2011.12.035. More funny version is [Wirth, 2006].

[Wirth, 2012c] Claus-Peter Wirth. Human-oriented inductive theorem proving by descente in-
finie — a manifesto. Logic J. of the IGPL, 20:1046–1063, 2012. Received July 11, 2011.
Published online March 12, 2012, http://dx.doi.org/10.1093/jigpal/jzr048.

[Wirth, 2012d] Claus-Peter Wirth. Unpublished Interview of Robert S. Boyer and J Strother
Moore at Boyer’s place in Austin (TX) on Thursday, Oct. 7. 2012.

[Wirth, 2013] Claus-Peter Wirth. A Simplified and Improved Free-Variable Framework for
Hilbert’s epsilon as an Operator of Indefinite Committed Choice. SEKI Report SR–2011–
01 (ISSN 1437–4447). SEKI Publications, DFKI Bremen GmbH, Safe and Secure Cognitive
Systems, Cartesium, Enrique Schmidt Str. 5, D–28359 Bremen, Germany, 2013. Rev. edn.
Jan. 2013 (1st edn. 2011), ii+65 pp., http://arxiv.org/abs/1104.2444.

[Wolff, 1728] Christian Wolff. Philosophia rationalis sive Logica, methodo scientifica pertractata
et ad usum scientiarium atque vitae aptata. Rengerische Buchhandlung, Frankfurt am Main
& Leipzig, 1728. 1st edn..

[Wolff, 1740] Christian Wolff. Philosophia rationalis sive Logica, methodo scientifica pertractata
et ad usum scientiarium atque vitae aptata. Rengerische Buchhandlung, Frankfurt am Main
& Leipzig, 1740. 3rd extd. edn. of [Wolff, 1728]. Facsimile reprint by Georg Olms Verlag,

Hildesheim (Germany), 1983, with a French introduction by Jean École.
[Yeh and Ramamoorthy, 1976] Raymond T. Yeh and C. V. Ramamoorthy, editors. Proc. 2nd

Int. Conf. on Software Engineering, San Francisco (CA), Oct. 13–15, 1976. IEEE Computer
Sci. Press, Los Alamitos (CA), 1976. http://dl.acm.org/citation.cfm?id=800253.

[Young, 1989] William D. Young. A mechanically verified code generator. J. Automated Rea-
soning, 5:493–518, 1989.

[Zhang et al., 1988] Hantao Zhang, Deepak Kapur, and Mukkai S. Krishnamoorthy. A mecha-
nizable induction principle for equational specifications. 1988. In [Lusk and Overbeek, 1988,
pp. 162–181].

[Zygmunt, 1991] Jan Zygmunt. Mojżesz Presburger: Life and work. History and Philosophy of
Logic, 12:211–223, 1991.

INDEX

accessor functions, 54
Acerbi, Fabio, 9, 89, 90
Ackermann function, 13, 14, 36, 52, 68
Ackermann, Wilhelm (1896–1962), 13,

18, 90
ACL2, 6–8, 42, 53, 60, 73, 75–79, 86,

88, 89, 98
Anellis, Irving H. (1946–2013), 97
Aristotelian logic, 13
Aristotle (384–322 b.c.), 9
Aubin, Raymond, 27, 81, 82, 90
Axiom of Choice, see choice, Axiom of

Choice
Axiom of Structural Induction, see in-

duction, structural

Barner, Klaus, 10, 89–91
Benzmüller, Christoph (*1968), 2, 91,

98, 103
Bernays, Paul (1888–1977), 13, 18, 97
Bledsoe, W. W. (1921–1995), 3, 4, 42–

44, 91, 93
Bourbaki, Nicolas, 11, 91, 92, 94
Boyer, Robert S. (*1946), 1–8, 16, 23–

28, 31–34, 37, 39, 42–60, 62–
66, 68–70, 72, 75–80, 82, 86,
89, 91–93, 104

Boyer–Moore machines, 7
Boyer–Moore theorem provers, 6, 8, 24–

28, 31–34, 43, 44, 47–50, 52,
58, 60, 76, 78, 79, 89

Boyer–Moore waterfall, 1, 2, 23–27, 43,
45–47, 51, 56, 72

Buldt, Bernd, 97
Bundy, Alan (*1947), 1, 3–5, 8, 73, 78–

81, 89, 94, 98, 101, 103
Burstall, Rod M. (*1934), 3–5, 42, 44,

94

changeable positions, 37–40, 69
choice

Axiom of Choice, 10, 12

Principle of Dependent Choice, 10
Church–Rosser property, 25, 30
Church–Rosser Theorem, 25
Common Lisp, 6, 7, 76, 86, 102
confluence, 18, 25, 30–34, 45, 85
consistency, 18, 29, 30, 33, 82, 85
constructor function symbols, 12, 33, 46,

66
constructor style, 13, 17, 26, 31, 50, 62,

63
constructor substitutions, 26, 38, 40
constructor variables, 7, 32–34, 36, 45,

85
Coq, 97, 102
cross-fertilization, 1, 24, 46, 48–49, 62,

65

Dawson, John W., Jr. (*1944), 96
Dedekind, Richard (1831–1916), 13, 95
descente infinie, 9, 10, 19–21, 24, 25, 29,

67, 72, 81, 83, 84, 86, 87, 102,
103

destructor elimination, 1, 47, 61–65, 72
destructor style, 13, 17, 31, 35, 36, 50,

51, 59, 61–63, 67–69

elimination of irrelevance, 1, 27, 66
Euclid, 9, 95

Feferman, Sol(omon) (*1928), 96
Fermat, Pierre (160?–1665), 9, 10, 19,

29, 90, 96, 100
Fries, Jakob Friedrich (1773–1843), 13,

96

Gabbay, Dov (*1945), 96, 97, 103
generalization, 1, 27–28, 49, 65
Gentzen, Gerhard (1909–1945), 96
Gerson, Levi ben (1288–1344), 9, 101
Gödel, Kurt (1906–1978), 90, 96
Goldfarb, Warren, 96
Goldstein, Catherine (*1958), 10, 89, 96

106 Index

Gordon, Mike J. C. (*1948), 3, 4, 7, 96
Gramlich, Bernhard (*1959), 1, 7, 18,

33, 82–85, 89, 94, 97, 103
ground terms, 30

Haskell, 7, 97
Hayes, Pat(rick) J. (*1944), 3, 4, 6
Heijenoort, Jean van (1912–1986), 13,

96, 97, 104
Herbrand, Jacques (1908–1938), 103
Hilbert, David (1862–1943), 13, 18, 97
Hillenbrand, Thomas, 1, 94, 97
Hippasus of Metapontum (ca. 550 b.c.),

9, 96
hitting ratio, 39, 40, 69, 70
HOL, 96
Hope Park, 3–5
Hunt, Warren A., 76, 77, 89, 91, 93, 98
Hutter, Dieter (*1959), 78, 79, 81, 90,

91, 94, 98, 103
Huygens, Christiaan (1629–1695), 19

induction
complete, 11, 13
course-of-values, 11
descente infinie, see descente infinie
explicit, 22–30, 34, 37–87
implicit, 80, 82–85
inductionless, 83
lazy, 39, 78, 83, 84, 87
Noetherian, 10–12, 18–23, 26
structural, 9, 11–14, 18, 24–26, 42,

44, 51, 52, 79
induction schemes, 38–40, 49, 54, 62, 66,

69–74, 86, 87
induction templates, 34–40, 50, 59, 67–

69, 72, 74, 75, 77, 86
induction variables, 26, 39, 40, 50, 69–

72, 86
Inka, 78, 79, 84, 90, 98, 99

Kant, Immanuel (1724–1804), 9
Kaufmann, Matt (*1952), 8, 53, 57, 60,

76, 77, 89, 98, 100
Kleene, Stephen C. (1909–1994), 96
Kowalski, Robert A. (*1941), 3, 4, 6, 91,

96, 99
Kühler, Ulrich (*1964), 33, 79, 83–87,

89, 90, 99, 103

LCF, 7, 96
Leo-II, 2, 91
lexicographic combination, 17
linear arithmetic, 75, 87, 93, 102
linear resolution, 4
linear terms, 13
LISP, 2, 4–8, 25, 26, 28, 31–34, 42–54,

56–60, 62, 65–67, 71, 72, 75,
76, 88, 93, 100

Löchner, Bernd (*1967), 1, 85, 86, 97,
99

Maurolico, Francesco (1494–1575), 9
McCarthy, John (1927–2011), 4
measured positions, 17, 35–39, 52, 59,

68, 69
Meltzer, Bernard (1916?–2008), 3, 92,

96, 100
Michie, Donald (1923–2007), 3, 92, 95,

97, 100
Milner, Robin (1934–2010), 3, 4, 101
ml, 7, 101
Moore, J Strother (*1947), 1–8, 16, 23–

28, 31–34, 37, 39, 42–60, 62–
66, 68–70, 72, 75–80, 82, 86,
89, 91–93, 98, 100, 104

Newman Lemma, 25
Newman, Max(well) H. A. (1897–1984),

25
Noether, Emmy (1882–1935), 11, 95
Noetherian induction, see induction, Noethe-

rian
normalation, 45
Nqthm, 6, 8, 53, 60, 73–77, 79, 84, 88,

93, 99
Nuprl, 79, 95

Oyster/CLaM, 78, 79, 94

Péter, Rósza (1905–1977), 13, 101
Padoa, Alessandro (1868–1937), 14, 101
Parsons, Charles (*1933), 96, 97
Pascal, Blaise (1623–1662), 9
Peano axioms, 14
Peano, Guiseppe (1858–1932), 14, 16,

18, 26, 79, 101
Peckhaus, Volker (*1955), 97

Index 107

Pieri, Mario (1860–1913), 14, 16, 18, 26,
57, 100, 101

Plato (427–347 b.c.), 9
position sets, 39, 40, 69, 70
Presburger Arithmetic, see linear arith-

metic
Presburger, Mojżesz (1904–1943?), 75,

101, 102, 104
proof by consistency, 82–84
proof planning, 80
Protzen, Martin (*1962), 78, 84, 101
Pure LISP Theorem Prover, 2, 4–

6, 8, 25, 26, 28, 33, 34, 42–54,
56–59, 62, 65–67, 71, 72, 76,
88, 100

Qthm, 53
QuodLibet, 47, 79, 80, 83–87, 90

recognizer functions, 54
recursion, 30
recursion analysis, 48, 52, 67–72, 80, 81,

86, 87
reducibility, 32
relational descriptions, 35–40, 68, 69
rewrite relation, 30
ripple analysis, 80
rippling, 78–81
Robinson, J. Alan (*1930?), 4, 94–96,

99, 101
Rrl, 78, 80, 84, 98, 99
Russell’s Paradox, 33

Satallax, 2, 94
Schmidt-Samoa, Tobias (*1973), 33, 47,

60, 86, 87, 89, 90, 102
Scott, Dana S. (*1932), 4, 7, 102
Shankar, Natarajan, 25, 76, 102
shell principle, 16, 54–56
shells, 8, 16, 54–57, 66, 68
Sieg, Wilfried, 96, 97
Siekmann, Jörg (*1941), 91, 97, 98, 100,

102
Simonyi, Charles, 5, 102
simplification, 1, 45–48, 57–60
Smith, James T., 14, 100, 101
step-case descriptions, 39, 40, 69–72
structural induction, see induction, struc-

tural

Tait, William W. (*1929), 97
Tapp, Christian, 97
termination, 10, 32, 34–37
Theorem of Noetherian Induction, see

induction, Noetherian
Thm, 6, 8, 26, 34, 42, 43, 52–76, 87, 88

Unicom, 82, 84, 97, 99

WaldMeister, 1, 94, 97
Walther, Christoph (*1950), 5, 8, 24, 35,

73, 78, 91, 103
well-foundedness, 10
Wirth, Claus-Peter (*1963), 1, 7–10, 14,

17–19, 25, 28, 30, 32, 33, 39,
43, 45, 66, 83–87, 89, 90, 93,
97, 99, 103, 104

Zach, Richard, 97

