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Abstract

Free variables occur frequently in mathematics and computer science with ad hoc
and altering semantics. We present here the most recent version of our free-variable
framework for two-valued logics with properly improved functionality, but only two
kinds of free variables left (instead of three): implicitly universally and implicitly exis-
tentially quantified ones, now simply called “free atoms” and “variables”, respectively.
The quantificational expressiveness and the problem-solving facilities of our framework
exceed standard first-order logic and even higher-order modal logics, and directly sup-
port Fermat’s descente infinie. With the improved version of our framework, we can
now model also Henkin quantification, neither using any binders (such as quantifiers
or epsilons) nor raising (Skolemization). Based only on the traditional ε-formula of
Hilbert–Bernays, we present our flexible and elegant semantics for Hilbert’s ε
as a choice operator with the following features: We avoid overspecification (such as
right-uniqueness), but admit indefinite choice, committed choice, and classical logics.
Moreover, our semantics for the ε supports reductive proof search optimally.

Keywords: Logical Foundations; Theories of Truth and Validity; Formalized Mathema-
tics; Choice; Human-Oriented Interactive Theorem Proving; Automated Theorem
Proving; Hilbert’s ε-Operator; Henkin Quantification; IF Logic; Fermat’s
Descente Infinie.
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1 Overview

1.1 Localizing Our Work in the Field of Artificial Intelligence (AI)

We wish human-assisted and automatic theorem proving to turn into a practical method by
means of human-style calculi, so that artificial intelligence can learn from human mathema-
ticians how to prove — i.e. to develop, formalize and verify — hard mathematical theorems
more and more automatically and with lesser and lesser human guidance.

In the middle of the 1990s, the exciting developments of AI during the second half of
the 20th century were gathered in the outstanding textbook [Russell & Norvig, 1995] in
the form of standard technologies nowadays taught already to the freshmen in informatics
and computer science. At the same time, after over twenty years of intensive ingenious
development, AI was just celebrating its biggest success in automated theorem proving up
to today with ACL2, an industrial-strength automated theorem prover with particular
strength in the area of the inductive data types of modern programming languages and
computer hardware, where inductive theorem proving was required for the verification of
software and hardware, cf. [Moore & Wirth, 2017].

Nowadays, the term “AI” most of the time addresses something completely different,
namely statistical methods that have reached unforeseen abilities in assessing natural-
language input for translation and query answering; and it seems to have been completely
forgotten that these statistical methods have no form of knowledge related to any form
of classical, mathematical or modern logic. To pass the border to which these statistical
methods converge, we will need logics that are much better than those that are known
nowadays: They must be, on the one hand, closer to automatic theorem proving and the
statistical AI and, on the other hand, more human-oriented in the sense that they must
be closer to the demands of deep natural-language analysis and to the actual practice of
human mathematicians. And we will present here a small but crucial step toward the latter
of these two goals.

1.2 New in the First Edition of 2011 compared to [Wirth, 2006b]

Driven by a weakness in representing Henkin quantification described in [Wirth, 2006b,
§ 6.4.1] and inspired by nominal terms (cf. e.g. [Urban &al., 2004]), in this paper we sig-
nificantly simplify and improve our semantic free-variable framework for two-valued logics:

1. We replace the two-layered construction of free δ+-variables on top of free γ-variables
over free δ−-variables of [Wirth, 2004; 2006b; 2008] with a one-layered construction
of variables over free atoms :

• Free atoms now play the former rôle of the δ−-variables.
• Variables without choice-condition play the former rôle of the γ-variables.
• Variables with choice-condition play the former rôle of the δ+-variables.

2. As a consequence, the proofs of the lemmas and theorems have shortened by more
than a factor of 2. Therefore, we can now present all the proofs in this paper and
make it self-contained in this aspect; whereas in [Wirth, 2006b; 2008], we had to
point to [Wirth, 2004] for most of the proofs.



6

3. The difference between variables and free atoms and their names are now more stan-
dard and more clear than those of the different free variables before; cf. § 2.1.

4. Compared to [Wirth, 2004], besides shortening the proofs, we have made the meta-
level presuppositions more explicit in this paper; cf. § 7.1.

5. Last but not least, we can now treat Henkin quantification in a direct way; cf. § 6.

Taking all these points together, the version of our free-variable framework presented in
this paper is the version we recommend for further reference, development, and application:
it is indeed much easier to handle than its predecessors.

And so we found it appropriate to present most of the material from [Wirth, 2006b;
2008] in this paper in the improved form; we have omitted only the discussions on the
tailoring of operators similar to our ε, and on the analysis of natural-language semantics.
The material on mathematical induction in the style of Fermat’s descente infinie in our
framework of [Wirth, 2004] is to be reorganized accordingly in a later publication.

1.3 New in This Edition of 2024 compared to the First Edition

This tenth edition has added two dozen pages compared to the ninth edition [Wirth, 2017c],
which already had added two dozen pages to the first edition of 2011. These extra pages
were strictly required to make this text sufficiently comprehensible for the large practically
or theoretically oriented audience of mathematicians, logicians and AI communities. Besides
countless corrections, removals of sloppiness, and improvement of representation, most of
the effort was directed to make this tenth edition much more easily accessible to a larger
audience. The next step will be to add Fermat’s descente infinie as found in [Wirth,
2004] explicitly to this text and to develop it into an advanced textbook.

1.4 Organization

This paper is organized as follows. There are three introductory sections: to our vari-
ables and free atoms (§ 2), to their relation to our reductive inference rules (§ 3), and to
Hilbert’s ε (§ 4). After formalizing all our syntactic ingredients (§ 5), we discuss our
most interesting example — which shows that we now can even formalize Henkin quantifi-
cation without raising and IF-logic quantifiers with our new positive/negative variable-con-
ditions — in § 6. Mostly for the skeptics and the developers of logic, but also for the admires
of technically difficult model theory, we formalize our novel approach to the semantics of
our variables, free atoms, and the ε after all in § 7. Of practical interest again is § 8, where
explain the consequences of our semantics for and reasoning with our reductive inference
rules, including lemma and induction-hypothesis application. Finally, we summarize and
discuss our whole approach in § 9, and conclude in § 10. In the Appendix, you can find
a surprising hint that the liberalized δ+-rules sometimes might be less liberalized than the
old-fashioned δ−-rules (§A), and discussions of the literature on extended semantics given to
Hilbert’s ε-operator in the 2ndhalf of the 20th century (§B), as well as of the design ques-
tions of variable-conditions (§C). Moreover, at the very end of the Appendix, you can find
a single common index and, before that, all references and all proofs — except the beautiful
high-level proof of Theorem8.6.
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2 Introduction to Free Atoms and Variables

2.1 Essential Notions and Notation

Free atoms and variables frequently occur in practice of mathematics and computer science.
The logical function of these free symbols varies locally; it is typically determined ad hoc
by the context. And the intended semantics is given only implicitly and varies from context
to context. In this paper, however, we will make the semantics of our free atoms and
variables explicit by using disjoint sets of symbols for different semantic functions; namely
we will use the following sets of symbols:

V (the set of (free) variables),
A (the set of free atoms),
B (the set of bound atoms).

A variable, in the sense we use the word in this paper, is a place-holder in a proof attempt
or in a discourse, which may gather and store information and may be concretized later on,
by a definition or a description. The name “(free) variable” for such a place-holder comes
from free-variable semantic tableaus ; cf. [Fitting, 1990; 1996].

In our paper here, variables are always free; only bound atoms (i.e. elements of B) can be
bound by binders, such as quantifiers or operators. Bound symbols had better be called
“bindable” instead of “bound”, because we will have to treat some unbound occurrences
of bound atoms occasionally. When the notion of bound symbols (actually, in German:
“gebundeneVariablen”, cf. § 4 of [Hilbert & Bernays, 1934; 2017b]) became standard
around the year 1930, however, neither “bindable” nor the German “bindbar” were considered
to be proper words of their respective languages, and so the past participle was chosen.

An atom stands for an arbitrary object in a proof attempt or a discourse. Atoms cannot
gather information and are invariant under renaming. And we will never want to know
anything about a possible atom but whether it is an atom, and — if yes— whether it is
identical to another atom or not, and possibly some elementary syntactical properties, such
as its name, sort or type. In our context here, for reasons of convenience and efficiency,
we would also like to know whether an atom is a free atom or a bound atom, i.e. whether
it is from A or B. The name “atom” for such an object has a tradition in set theories with
atoms. In German, nouns are always capitalized and an atom is also called an urelement
in the context of set theories, but that alternative name puts some emphasis on the origin
of creation, in which we are not interested for our atoms. Thus, in this paper, we use the
name “urelement” only in the context of set theories and “atom” only in the context of our
framework of variables and atoms.

The classification as a (free) variable, free atom, or bound atom will be indicated by
adjoining a “V”, an “A”, or a “B”, respectively, as a label to the upper right of the meta-
variable for the symbol. If a meta-variable stands for a symbol of the union of some of these
sets, we will indicate this by listing all possible sets; e.g. “xVA ” is a meta-variable for a symbol
that may be either a variable or a free atom. Of course, meta-variables with disjoint labels
always denote different symbols; e.g. “xV ” and “xA ” will always denote different symbols,
whereas “xVA ” may denote the same symbol as “xA ”. In formal discussions, also “xA ” and
“yA ” may denote the same symbol. In concrete examples, however, we will implicitly
assume that different meta-variables denote different symbols.
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2.2 Bound and Free Atoms

The following was already noted by Bertrand Russell in [Russell, 1919, p.155].

In mathematical practice, free symbols often have an obviously universal intention, such
as the free symbols m, p, and q in the formula

(m)(p+q) = (m)(p) ∗ (m)(q).
Then, this formula is not meant to denote a propositional function (say, from integers to
truth values), but actually stands for the explicitly universally quantified, closed formula

∀mB, pB, q B.
(

(mB)(pB+q B) = (mB)(pB) ∗ (mB)(q B)
)

with symbols mB, pB, and q B bound by the universal quantifier ∀.

In our framework, we call such symbols bound atoms, and bound atoms are the only symbols
that may be bound by any binders. Moreover, a bound atom may occur in a formula only
in the scope of a binder on it.

In this paper, improving mathematical practice, we write the first formula as

(mA)(pA+qA) = (mA)(pA) ∗ (mA)(qA),

which is a formula with free atoms. Independent of its context, it is logically equivalent to
the explicitly universally quantified formula, but also admits the reference to the free atoms,
which is required for mathematical induction in the style of Fermat’s descente infinie, and
also beneficial for solving reference problems in the analysis of natural language. So the
third version combines the practical advantages of the first version with the semantic clarity
of the second.

2.3 Variables

In mathematical practice, it is somehow clear that the linear system of the formula(
2 3
5 7

)(
x
y

)
=

(
11
13

)

asks us to find the set of solutions for the symbols x and y, say (x, y) ∈ {(−38, 29)}.
The mere existence of such a solution is expressed by the explicitly existentially quantified,
closed formula

∃xB, y B.
( (

2 3
5 7

)(
xB

y B

)
=

(
11
13

) )
.

In this paper, improving mathematical practice, we write the first formula as(
2 3
5 7

)(
xV

yV

)
=

(
11
13

)
,

which is a formula with (free) variables. Independent of its context, it is logically equiva-
lent to the explicitly existentially quantified formula, but it admits also the reference to
the variables, which is required for retrieving solutions for xV and yV as instantiations for
xV and yV chosen in a formal proof (or a query in logical programming). So the third version
again combines the practical advantages of the first with the semantic clarity of the second.
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2.4 Instantiation of Variables and Free Atoms

Both variables and atoms may be instantiated with terms. Only variables, however, may
refer to free atoms or other variables, or may depend on them as a working mathematician
would say. Moreover, only variables have the following properties w.r.t. instantiation:

Syntactic Restrictions: If a variable xV is instantiated with a term t, then this affects
all occurrences of xV in the entire state of the proof attempt (i.e. xV is rigid in
the terminology of semantic tableaus). Thus — provided that the instantiation is
executed eagerly— the variable must be replaced globally in all terms and formulas
of the entire state of the proof attempt with the same term t, and afterward the
variable can be completely eliminated from the current state of the proof attempt,
provided that the variable xV itself does not occur in the term t.

Overall effects: While the elimination of the variable xV after its eager instantiation
with such a term t cannot have any effect on the possibility to complete the proof
attempt into a successful proof, the choice of a wrong term t may well turn the proof
attempt into a necessarily failing one, in particular if the instantiation falsifies the
input proposition to be shown (or the query to be answered). On the other hand, the
instantiation may be relevant for the consequences of a successful proof because the
input proposition (or query) may be strengthened by the global replacement of one
of its variables with a term providing an actual witness for the existential property of
the original proposition (or an answer to the query).

By contrast to these properties of variables, atoms cannot refer to any other symbols, nor
depend on them in any form. Moreover, free atoms have the following properties w.r.t.
instantiation:

Syntactic Restrictions: A free atom may be

1. globally renamed to a fresh free atom, or else
2. locally and possibly repeatedly instantiated with arbitrary different terms in the

application of lemmas or induction hypotheses (provided that the instantiation
is admissible in the sense of Theorem8.5(7)).

Overall effects: Neither the possibility to complete a proof attempt, nor the consequences
of a successful proof can be changed by any of these two forms of instantiating a free
atom.
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3 Introduction to Reductive Inference Rules
We will now present the essential reductive inference rules for our free-variable framework.
Regarding form and notation, please note the following:

• To combine the following four aspects, we have to present our framework here with a
sequent-calculus : Our calculus must be easy to grasp and—at the same time— admit
explicit indication of γ-multiplicity, rule isomorphism, and eliminability of formulas.
As we restrict ourselves to two-valued logics here, we just take the right-hand side of
standard sequents. This means that our sequents are just disjunctive lists of formulas.

• We assume that all binders have minimal scope; e.g. ∀xB, y B. A ∧ B
reads (∀xB. ∀y B. A) ∧ B

• Our reductive inference rules will be written “reductively” in the sense that passing
the line means reduction, the reverse of deduction. Note that in the good old days
when trees grew upward, Gerhard Gentzen would have inverted the inference
rules such that passing the line means consequence. In our case, passing the line
means reduction, and trees grow downward.

• Raymond M. Smullyan has classified reductive inference rules into α-, β-, γ-,
and δ-rules, and invented a uniform notation for them; cf. [Smullyan, 1968].

In the following rules, let s, t be terms, A, B formulas, and Γ and Π sequents. The
notions of a principal formula (in German: Hauptformel) and a side formula (Seitenformel)
were introduced in [Gentzen, 1935] and refined in [Schmidt-Samoa, 2006]. Roughly
speaking, the principal formula of an inference rule is the formula that is reduced by that
rule, and the side formulas are the resulting pieces replacing the principal formula. In
our reductive inference rules here, the principal formulas are the formulas above the lines
except the ones in Γ , Π (which are called parametric formulas, in German: Nebenformeln),
and the side formulas are the formulas below the lines except the ones in Γ , Π.

3.1 Tautologies

Tautologies form reductive inference rules reducing a sequent to zero sequents. Applied to a
leaf of a proof tree, this leaf will not count as a leaf anymore, which becomes clear if we see
a rule application to a leaf as putting a node below this leaf, indicating the rule’s name and
actual parameters, which again has the new sequents as offspring. As tautologies we take
those sequents that list as formulas (among others) either two formulas of form A and ¬A,
or, in case we have a primitive equality symbol ‘=’ in our language, the formula (t = t).

3.2 α-Rules

Rules that reduce a sequent to a single sequent are called non-branching. The primitive
ones of the non-branching rules count as α-rules, such as the cancellation rule for double
negation and one elimination rule for each binary propositional operator of our language.

If the only such operator is implication, then the propositional such rules are the following
α-rules: Γ ¬¬A Π

Γ A Π

Γ A ⇒ B Π

Γ ¬A B Π
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Sometimes also other primitive non-branching rules count as α-rules, though these rules are
not propositional. For instance, in case we have a primitive equality symbol ‘=’ in our
language, a very useful rule that we should include among the α-rules is the the following.

Primitive contextual-rewriting rule: If ¬(s = t) or ¬(t = s) is listed as a formula in Γ
or Π, then: Γ A[s] Π

Γ A[t] Π

Here, A[s] denotes a formula context with a hole that is filled by the term s.

3.3 β-Rules

β-rules are the branching propositional rules, which reduce a sequent to several sequents,
such as Γ ¬(A ⇒ B) Π

Γ A Π
Γ ¬B Π

3.4 γ-Rules

Suppose we want to prove an existential proposition ∃y B. A. Here “y B ” is a bound variable
according to standard terminology, but as it is an atom according to our classification of
§ 2.1, we will speak of a “bound atom” instead. Then the γ-rules of old-fashioned inference
systems (such as [Gentzen, 1935] or [Smullyan, 1968]) enforce the choice of a witnessing
term t as a substitution for the bound atom immediately when incrementing the multiplicity
of a γ-quantification, here indicated by an occurrence of ∃ or ¬∀ at the root of a formula.

γ-rules: Let t be any term:

Γ ∃y B. A Π

A{y B 7→t} Γ ∃y B. A Π

Γ ¬∀y B. A Π

¬A{y B 7→t} Γ ¬∀y B. A Π

More modern inference systems (such as the ones in [Fitting, 1996]) enable us to delay
the crucial choice of the term t until the state of the proof attempt may provide more
information to make a successful decision. This delay is achieved by introducing a special
kind of variable.

This special kind of variable is called “dummy” in [Prawitz, 1960] and [Kanger,
1963], “free variable” in [Fitting, 1990; 1996] and in Footnote 11 of [Prawitz, 1960],
“meta variable” in the field of planning and constraint solving, and “free γ-variable” in
[Wirth, 2004; 2006a; 2008; 2012a; 2006b; 2014] and [Wirth &al., 2009; 2014].

In this paper, we call these free variables simply “variables” and write them like “xV ”.
If such additional variables are available, we can choose a fresh variable yV for the arbitrary
term t of the, say, first γ-rule, reduce Γ ∃y B. A Π first to A{y B 7→yV} Γ ∃y B. A Π,
and then anytime later in the proof we may globally replace yV with an appropriate term.

These variables join the inductive construction of admissible terms and therefore com-
plicate the notation of the δ-rules, but do not necessarily affect the above old-fashioned
form of notation of the γ-rules: Although we could restrict the term t to be a fresh variable,
for convenience we may still admit arbitrary terms; but now including variables, of course.
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3.5 δ−-Rules

A δ-rule may introduce either a fresh free atom (δ−-rule) or an ε-constrained fresh variable
(δ+-rule, cf. § 3.6).

δ−-rules: Let xA be a fresh free atom:

Γ ∀xB. A Π

A{xB 7→xA} Γ Π V(Γ ∀xB. A Π)× {xA}

Γ ¬∃xB. A Π

¬A{xB 7→xA} Γ Π V(Γ ¬∃xB. A Π)× {xA}
Note that, say, “V(Γ ∀xB. A Π)” stands for the set of all variables (i.e. symbols from the
setV) that occur in the sequent Γ ∀xB. A Π.

Let us recall that a free atom typically stands for an arbitrary object in a discourse
of which nothing else is known. The free atom xA introduced by the δ−-rules is some-
times also called “parameter”, “eigenvariable”, or “free δ-variable”. In Hilbert-calculi,
however, this free atom is called a “free variable”, because the non-reductive (i.e. generative)
deduction in Hilbert-calculi admits its unrestricted instantiation by the substitution rule,
cf. p. 63 of [Hilbert & Bernays, 1934] or p. 62 of [Hilbert & Bernays, 1968; 2017b].
The analogues of the δ−-rules in Hilbert–Bernays’ predicate calculus are Schemata
(α) and (β), to be found on p. 103f. of [Hilbert & Bernays, 1934] or on p. 102f. of
[Hilbert & Bernays, 1968; 2017b].

In our calculi, however, the occurrence of the free atom xA of the δ−-rules must be dis-
allowed in the terms that may be used to replace those variables which have already been
in use when xA was introduced by application of the δ−-rule, i.e. the variables of the upper
sequent to which the δ−-rule was applied. The reason for this restriction of instantiation of
variables is that the dependencies (or scoping) of the quantifiers must be somehow reflected
in the admissible dependencies of the variables on the free atoms. In our framework, these
dependencies are to be captured in a binary relation on the variables and the free atoms,
called variable-condition.

Indeed, it is sometimes unsound to admit the instantiation of a variable yV with a term
containing a free atom xA that was introduced later than yV:

Example 3.1 (Soundness of δ−-rule) The formula ∃y B. ∀xB. (y B = xB)

is valid in structures with only one single object, but not in general. We can start a reductive
proof attempt of it as follows: γ-step: ∀xB. (yV = xB), ∃y B. ∀xB. (y B = xB)

δ−-step: (yV = xA), ∃y B. ∀xB. (y B = xB)

Now, if the variable yV could be instantiated with the free atom xA, then we would get the
tautology (xA = xA), i.e. we would have proved an invalid formula. To prevent this, as
indicated to the lower right of the bar of the first of the δ−-rules, the δ−-step has to record

V(∀xB. (yV = xB), ∃y B. ∀xB. (y B = xB))× {xA} = {(yV, xA)}
in a variable-condition, where (yV, xA) means that the variable yV must not depend on the
free atom xA, or that yV is somehow “necessarily older” than xA, so that we may never
instantiate the variable yV with a term containing the free atom xA, simply because xA was
not available when yV was born.
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Starting with an empty variable-condition, we extend the variable-condition during
proof attempts by δ-steps and by global instantiations of variables. Roughly speaking,
such an instantiation is consistent if the resulting variable-condition (seen as a directed
graph) has no cycle after adding, for each variable yV instantiated with a term t and for
each variable or free atom xVA occurring in t, the pair (xVA, yV).

If we try to instantiate yV with xA in our example proof, however, this consistency re-
quirement is violated by the immediate cycle between yV and xA and therefore this instan-
tiation is not admissible and the proof attempt fails to show the invalid input proposition.
In this way, soundness of the δ−-rules is given by the sets of pairs to their lower right.

3.6 δ+-Rules

There are basically two kinds of δ-rules: standard δ−-rules (also simply called δ-rules) and
δ+-rules (also called liberalized δ-rules). They differ in the kind of symbol they introduce
and — crucially — in the way they enlarge the variable-condition, depicted to the lower
right of the bar:

δ+-rules: Let xV be a fresh variable:

Γ ∀xB. A Π
(

xV, εxB. ¬A
)

A{xB 7→xV} Γ Π VA(∀xB. A)× {xV}

Γ ¬∃xB. A Π
(

xV, εxB. A
)

¬A{xB 7→xV} Γ Π VA(¬∃xB. A)× {xV}
While in the, say, first δ−-rule, V(Γ ∀xB. A Π) denotes the set of variables occurring in the
entire upper sequent, in the first δ+-rule, VA(∀xB. A) denotes the set of variables and free
atoms occurring in only one of its formulas, namely the principal formula ∀xB. A. There-
fore, the variable-conditions generated by the δ+-rules are typically smaller than the ones
generated by the δ−-rules. Smaller variable-conditions permit additional proofs. Indeed,
the δ+-rules enable additional proofs on the same level of γ-multiplicity (i.e. the maximal
number of repeated γ-steps applied to the identical principal formula); cf. e.g. [Wirth,
2004, Example 2.8, p. 21]. For certain classes of theorems, these proofs are exponentially and
even non-elementarily shorter than the shortest proofs that apply only δ−-rules; for a short
survey see [Wirth, 2004, § 2.1.5]. Moreover, the δ+-rules provide additional proofs that are
not only shorter but also more natural and easier to find, both automatically and for human
beings; see the discussion on design goals for inference systems in [Wirth, 2004, § 1.2.1],
and the formal proof of the limit theorem for + in [Wirth, 2006a; 2012b]. Although we
explain in §A of the Appendix why δ+ may not always be more liberal than δ−, the name
“liberalized” is justified: δ+-rules provide more freedom to the prover in practice.

Moreover, the pairs indicated to the upper right of the bar of the δ+-rules are to augment
another global binary relation besides the variable-condition, namely a function called the
choice-condition. Roughly speaking, the addition of an element (xV, εxB. ¬A) to the
current choice-condition — as required by the first of the δ+-rules — is to be interpreted
as the addition of the equational constraint xV = εxB. ¬A. To preserve the soundness of
the δ+-step under subsequent global instantiation of the variable xV, this constraint must
be observed in such instantiations. What this actually means will be explained in § 4.14.

For a replay of Example 3.1 for the δ+- instead of the δ−-rule, see Example 4.13 in § 4.14.
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3.7 Global and Practical Aspects of Inference Systems

Assume that our calculus consists in the structural tautologies of the forms Γ A ∆ ¬A Π,
Γ ¬A ∆ A Π [as well as Γ t=t ∆], as described in § 3.1, and also in the γ-rules and the
primitive propositional β- and α-rules for all given propositional operators [as well as the
primitive contextual-rewriting rule], as described in §§ 3.4, 3.3, and 3.2. Then we can obtain
a sound and complete calculus (i.e. a calculus that derives only true formulas and all of them)
for classical classical first-order logic [with equality] by adding one of the following three
sets of rules: (1) only the δ−-rules,

(2) only the δ+-rules,
(3) both the δ−- and δ+-rules.

Note that, while soundness is a must for any calculus, completeness is a merely theoretical
cachet, because the ability to derive any true formula in principle does not mean that
we can do so within time. Soundness is typically a local property of a calculus and thus
rather easy to show; completeness, however, is always a global property and harder to show.
Although completeness proofs are among the favorites of the ivory-tower watchmen, we will
stay far away from them in the following, because our overall goals here are merely practical
ones, no matter how hard our proofs of strengthened soundness properties may get.

Indeed, even if we have the rare luck that there is a complete calculus (just as the one
described by our α-, β-, γ-, and δ-rules for classical first-order logic), uninformed search with
such a calculus may not be more reasonable than novel writing with the British Museum
algorithm. Neither recursively enumerating all possible proofs nor all possible sequences
of characters, ordered by size, is a practical method by any means —although the former
may be what some people still understand under the academic discipline of “automated
theorem proving”.

Moreover, for more advanced logics, recursive enumerability of the valid formulas cannot
always be taken for granted.

Although recursive enumerability is given for classical first-order logic, even for this logic
— as it is typical for non-trivial logics — the invalid formulas cannot be enumerated, and
thus the validity of a formula cannot be decided. This means that any sound prover will
have to run forever occasionally in case it tries to prove an invalid formula. This also
means that, in general, we cannot give a time limit for running a prover on a valid formula
successfully.

But how can this non-enumerability of invalid formulas actually occur with our pretty
trivial α-, β-, γ-, and δ-rules in classical first-order logic? If you do not find out yourself,
we will answer this question to you in § 3.8.

Furthermore note that even decidability would not necessary bring us efficiency and
tractability.

Last but not least, for advanced practical applications, it is definitely inappropriate
to confine oneself in the straitjackets of classical first-order logic without mathematical
induction, or of even more restrictive logics, such as “description logics”, a name which
actually cheats because these languages have only very minor descriptive power.
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3.8 γ-Multiplicity

The answer to the question left open in § 3.7 is given by the technical term “γ-multiplicity”.

When we apply an α-, β-, or δ-rule to an occurrence of a principal formula, then this
occurrence disappears from the leaves of our proof tree. Indeed, such a principal formula
is completely replaced with its side formulas and the occurrence of the principal logical
operator disappears, such that the application of these rules must terminate.

This is different, however, with the γ-rules, where the principal formula must not be
deleted in the resulting sequent in addition to its side formula — for completeness reasons.

Indeed, repeatedly increasing the multiplicity of the identical γ-quantified formula can-
not be avoided in principle, as shown in the following simple example.

Example 3.2
Suppose we want to prove in the natural numbers the one-formula sequent

∀xB. (xB≤ xB+1) ⇒ 0≤ 1000.
Further suppose that all we know is how to add 1 to the decimal representation of a natural
number and that ≤ is a reflexive ordering. We can reduce this sequent in one α- and two
γ-steps (choosing t to be 0 and 1, resp.) to

¬(0≤ 1) ¬(1≤ 2) ¬∀xB. (xB≤ xB+1) (0≤ 1000).
For transitivity of ≤ to obtain a ≤-tautology here, we will need to apply the γ-rule as before
again 998 times to the same γ-formula ¬∀xB. (xB≤ xB+1). Note that this procedure is
already informed by our knowledge, which instances of the bound atom xB will have to be
chosen for the proof to succeed. Of course, this is not a state-of-the-art specification of
natural numbers, but we have actually experienced that most famous automated-theorem-
proving systems typically fail in a very similar way when bigger natural numbers occur.

3.9 Skolemization

Note that there is a popular alternative to variable-conditions, namely Skolemization,
where the δ−- and δ+-rules introduce functions (i.e. the logical order of the replacements
for the bound atoms is incremented) which are given the variables of V(Γ ∀xB. A Π)
and V(∀xB. A) as initial arguments, respectively. Then, the occur-check of unification im-
plements the restrictions on the instantiation of variables, which are required for soundness.
In some inference systems, however, Skolemization is unsound (e.g. for higher-order sys-
tems such as the one in [Kohlhase, 1998] or the system in [Wirth, 2004] for descente
infinie) or inappropriate (e.g. in the matrix systems of [Wallen, 1990]).

We prefer inference systems that include variable-conditions to inference systems that
offer only Skolemization. Indeed, this inclusion provides a more general and often simpler
approach, which does not necessarily reduce efficiency in any case. Moreover, note that
variable-conditions cannot add unnecessary complications here:

• If, in some application, variable-conditions are superfluous, then we can work with
empty variable-conditions as if there would be no variable-conditions at all.

• We will need the variable-conditions anyway for our choice-conditions, which again
are needed to formalize our approach to Hilbert’s ε-operator.
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4 Introduction to Hilbert’s ε

4.1 Motivation

Hilbert’s ε-symbol is an operator or binder that forms terms, just like Peano’s ι-symbol.
Roughly speaking, the term εxB. A, formed from a bound atom xB and a formula A,
denotes just some object that is chosen such that — if possible — A (seen as a predicate
on xB) holds for this object.

For Ackermann, Bernays, and Hilbert, the ε was an intermediate tool in proof
theory, to be eliminated in the end. Instead of giving a model-theoretic semantics for
the ε, they just specified those axioms which were essential in their proof transformations.
These axioms did not provide a complete definition, but left the ε underspecified.

Descriptive terms such as εxB. A and ιxB. A are of general interest and applicability.
Our more elegant and flexible treatment turns out to be useful in many areas where logic
is designed or applied as a tool for description and reasoning.

4.2 Requirements Specification

For the usefulness of such descriptive terms we consider the following requirements to be
the most important ones.

Requirement I (Indication of Commitment):
The syntax must clearly express where exactly a commitment to a choice of a particu-
lar object is required, and where, to the contrary, different objects corresponding with
the description may be chosen for different occurrences of the same descriptive term.

Requirement II (Reasoning):
It must be possible to replace a descriptive term with a term that corresponds with
its description. The correctness of such a replacement must be expressible and should
be verifiable in the original calculus.

Requirement III (Semantics):
The semantics should be simple, straightforward, natural, formal, and model-based.
Overspecification should be carefully avoided. Furthermore, the semantics should be
modular and abstract in the sense that it adds the operator to a variety of logics,
independent of the details of a concrete logic.

Our more elegant and flexible, indefinite treatment of the ε-operator is compatible with
Hilbert’s original one and satisfies these requirements. As it involves novel semantic
techniques, it may also serve as the paradigm for the design of similar operators.

4.3 Overview

In §B of the Appendix, the reader can find an update of our review form [Wirth, 2008;
2006b] of the literature on extended semantics given to Hilbert’s ε-operator in the 2nd

half of the 20th century. In the current § 4, we will now introduce to the ι and the ε
(§§ 4.4 and 4.5), to the ε’s proof-theoretic origin (§ 4.6), and to our more general semantic
objective (§ 4.8) with its emphasis on indefinite and committed choice (§ 4.9).
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4.4 From the ι to the ε

As the ε-operator was developed as an improvement over the still very popular ι-operator,
a careful discussion of the ι in this section is required for a deeper understanding of the ε.

4.4.1 The Symbols for the ι-Operator

The probably first descriptive ι-operator occurs in [Frege, 1893/1903, Vol. I], written as a
boldface backslash. As a boldface version of the backslash is not easily available in standard
typesetting, we will use a simple backslash “\” in § 4.4.4.

A slightly different ι-operator occurs in [Peano, 1896f.], written as “ ῑ ”, i.e. as an
overlined ι. In its German translation [Peano, 1899b], we also find an alternative symbol
with the same denotation, namely an upside-down ι-symbol. Both symbols are meant to
indicate the inverse of Peano’s ι-function, which constructs the set of its single argument.

Nowadays, however, “{y}” is written for Peano’s “ιy ”, and thus — as a simplifying
convention to avoid problems in typesetting and automatic indexing — a simple ι should
be used to designate the descriptive ι-operator, without overlining or inversion.

4.4.2 The Essential Idea of the ι-Operator

Let us define the quantifier of unique existence by

∃!xB. A := ∃y B. ∀xB. ((y B=xB) ⇔ A),

for some fresh y B. All the slightly differing specifications of the ι-operator agree in the
following point: If there is the unique xB such that the formula A (seen as a predicate
on xB) holds, then the ι-term ιxB. A denotes this unique object:

∃!xB. A ⇒ A{xB 7→ ιxB. A} (ι0)

or in different notation (∃!xB. (A(xB))) ⇒ A(ιxB. (A(xB))).

Example 4.1 (ι-operator)
For an informal introduction to the ι-operator, consider Father to be a predicate for which
Father(Heinrich III, Heinrich IV) holds, i.e. “Heinrich III is father of Heinrich IV”.
Now, “the father of Heinrich IV” is designated by ιxB. Father(xB, Heinrich IV), and because
this is nobody but Heinrich III, i.e. Heinrich III = ιxB. Father(xB, Heinrich IV), we know
that Father(ιxB. Father(xB, Heinrich IV), Heinrich IV). Similarly,

Father(ιxB. Father(xB, Adam), Adam), (4.1.1)
and thus ∃y B. Father(y B, Adam), but, oops! Adam and Eve do not have any fathers.
If you do not agree, you probably appreciate the following problem that occurs when some-
body has God as an additional father.

Father(Holy Ghost, Jesus) ∧ Father(Joseph, Jesus). (4.1.2)
Then the Holy Ghost is the father of Jesus and Joseph is the father of Jesus:

Holy Ghost = ιxB. Father(xB, Jesus) ∧ Joseph = ιxB. Father(xB, Jesus) (4.1.3)
This implies something the Pope may not accept, namely Holy Ghost = Joseph,
and he anathematized Heinrich IV in the year 1076:

Anathematized(ιxB. Pope(xB), Heinrich IV, 1076). (4.1.4)
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4.4.3 Elementary Semantics Without Straightforward Overspecification

Semantics without a straightforward form of overspecification can be given to the ι-terms
in the following three elementary ways:

Russell’s non-referring ι-operator [Russell, 1905]

In Principia Mathematica [1910–1913] by Bertrand Russell and Alfred North
Whitehead, an ι-term is given a meaning only in form of quantifications over con-
texts C[· · ·] of the occurrences of the ι-term, mutatis mutandis by

C[ιxB. A] is defined as a short form for ∃y B. (∀xB. (
(y B=xB) ⇔ A

) ∧ C[y B]
)
.

This definition is peculiar because the definiens is not of the expected form C[t] (for
some term t), and because an ι-term on its own — i.e. without a context C[· · ·] —
cannot directly refer to an object that it may be intended to denote.

This was first presented as a linguistic theory of descriptions in [Russell, 1905]
— but without using any symbol for the ι.

Russell’s On denoting [1905] became so popular that the term “non-referring” had
to be introduced to make aware of the fact that Russell’s ι-terms are not denoting
(in spite of the title), and that Russell’s theory of descriptions ignores the funda-
mental reference aspect of descriptive terms, cf. Strawson’s On referring [1950].

Hilbert–Bernays’ presuppositional ι-operator [Hilbert & Bernays, 1934]

To overcome the complex difficulties of Russell’s non-referring semantics, in § 8 of
the first volume of the two-volume monograph Foundations of Mathematics (Grund-
lagen der Mathematik, 1st edn. 1934, 2nd edn. 1968) by David Hilbert and Paul
Bernays, a completed proof of ∃!xB. A is required to precede each formation
of a term ιxB. A, which otherwise is not considered a well-formed term at all.

This way of defining the ι is nowadays called “presuppositional”. This word occurs
in relation to Hilbert–Bernays’ ι in [Slater, 2007a] and [Slater, 2009, §§ 1, 6,
and 8f.], but it does not occur in [Strawson, 1950], and we do not know where
it occurs first with this meaning.

Peano’s partially specified ι-operator [Peano, 1896f.]

Since Hilbert–Bernays’ presuppositional treatment makes the ι quite impracti-
cal and the formal syntax of logic undecidable in general, in § 1 of the second vol-
ume of Hilbert–Bernays’ Foundations of Mathematics (1st edn. 1939, 2nd edn. 1970),
Hilbert’s ε, however, is already given a more flexible treatment: The simple idea
is to leave the ε-terms uninterpreted. This will be described below. In this paper,
we will present this more flexible treatment also for the ι.

After all, this treatment is the original one of Peano’s ι, found already in the article
Studii di Logica Matematica [1896f.] by Guiseppe Peano.1

It should come as no surprise that Peano (unlike Russell and Hilbert–Bernays!) in-
vented the only practical specification of ι-terms: After all he was most interested in written
languages for specification and communication — but hardly in calculi — and created also
the spoken artificial language Latino sine flexione, cf. e.g. [Kennedy, 2002].
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Moreover, by the partiality of his specification, Peano avoided also the other pitfall,
namely overspecification, and all its unintended consequences (unlike Frege and Quine,
cf. § 4.4.4). As the symbol “ι” was invented by Peano as well (cf. § 4.4.1), we have
good reason to speak of “Peano’s ι ”, at least as much as we have reason to speak of
“Hilbert’s ε ”.

It must not be overlooked that Peano’s ι — in spite of its partiality — always denotes:
It is not a partial operator, it is just partially specified.

At least in non-modal classical logics, it is a well justified standard that each term
denotes. More precisely — in each model or structure S under consideration — each
occurrence of a proper term denotes an object in the universe of S. Following that standard,
to be able to write down ιxB. A without further consideration, we have to treat ιxB. A
as an uninterpreted term about which we only know axiom (ι0) from § 4.4.2.

With (ι0) as the only axiom for the ι, the term ιxB. A has to satisfy A (seen as a
predicate on xB) only if there exists a unique object such that A holds for it. The price,
however, we have to pay for the avoidance of non-referringness, presuppositionality, and
overspecification is that — roughly speaking — the term ιxB. A is of no use unless the
unique existence ∃!xB. A can be derived.

Finally, let us come back to Example 4.1 of § 4.4.2. The problems presented there do
not actually appear if (ι0) is the whole specification for the ι, because then (4.1.1), (4.1.3),
and (4.1.4) are not generally valid. Indeed, the description of (4.1.1) lacks existence and
the descriptions of (4.1.3) and (4.1.4) lack uniqueness.

4.4.4 Overspecified ι-Operators

From Frege to Quine, we find a multitude of ι-operators with definitions that overspecify
the ι in different ways for the sake of complete definedness and syntactic eliminability.

As we already stated in Requirement III (Semantics) of § 4.2, overspecification should be
carefully avoided. Indeed, any overspecification leads to puzzling, arbitrary consequences,
which may cause harm to the successful application of descriptive operators in practice.

1(History of Peano and his ι)
In [Peano, 1896f.], Peano wrote ῑ instead of the ι of Example 4.1, and ῑ{x | A } instead of ιx.A. (We
have changed the class notation to modern standard here: Peano actually wrote x∈A instead of {x | A }.)
The bar above the ι (just as the alternative inversion of the ι) were to indicated that ῑ was implicitly defined
as the inverse of the operator ι defined by ιy := {y}, which occurred already in [Peano, 1890] and still
in [Quine, 1981].
The definition of ῑ reads literally [Peano, 1896f., Definition 22]:

a∈K . ∃a : x, y ∈ a . ⊃x,y . x = y : ⊃ : x = ῑa . = . a = ιx
This straightforwardly translates into more modern notation as follows:

For any class a: a 6= ∅ ∧ ∀x, y. (x, y ∈ a ⇒ x= y) ⇒ ∀x. (x = ῑa ⇔ a= ιx)
Giving up the flavor of an explicit definition of “x = ῑa ”, this can be simplified to the following equivalent
form: For any class a: ∃!x. x∈ a ⇒ ῑa∈ a (ῑ0)
Besides notational difference, this is (ι0) of our § 4.4.2.
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Frege’s haphazardly overspecified ι-operator [Frege, 1893/1903]

The first occurrence of a descriptive ι-operator in the literature seems to be in 1893,
namely in § 11 of the first volume of the two-volume monograph Grundgesetze der
Arithmetik — Begriffsschriftlich abgeleitet [1893/1903] by Gottlob Frege:
For A seen as a function from objects to truth values, \A (in our notation ιxB. A)
is defined to be the object ∆ if A is extensionally equal to the function that checks
for equality to ∆, i.e. if A = λxB. (∆ = xB).
In the case that there is no such ∆, Frege overspecified his ι-operator pretty hap-
hazardly by defining \A to be A, which is not even an object, but a function.
(Note that Frege actually wrote an ε (having nothing to do with the ε-operator)
instead of our xB, and a spiritus lenis over it instead of a modern λ-operator before
and a dot after it. Moreover, he wrote a ξ for the A.)

Quine’s overspecified ι-operator [Quine, 1981]

In set theories without urelements, such as in [Quine, 1981], the ι-operator can be
defined by something like

ιxB. A :=
{

z B ∃y B. ( ∀xB. ((y B=xB) ⇔ A) ∧ z B ∈ y B
) }

,
for fresh y B and z B.

This is again an overspecification resulting in ιxB. A = ∅ if there is no such y B

(which otherwise is always unique).

4.4.5 A Completely Defined, but Not Overspecified ι-Operator

The complete definitions of the ι in § 4.4.4 take place in possibly inconsistent logical frame-
works, namely Frege’s Begriffsschrift and Quine’s version of standard set theory without
urelements.

That neither overspecification nor possible inconsistency is necessary for complete defini-
tions of the ι is witnessed by the following complete, but non-elementary definition of the ι,
which is also referring and non-presuppositional.

The ε-calculus’ ι-operator [Hilbert & Bernays, 1939]

In the ε-calculus, which is a conservative extension of first-order predicate calculus,
first elaborated in the second volume ofHilbert–Bernays’ Foundations of Mathema-
tics [1939], we can define the ι simply by

ιxB. A := εy B. ∀xB. ((y B = xB) ⇔ A)

(for a fresh y B), i.e. as a unique xB such that A holds (provided there is such an xB).
Note that the simple definition ιxB. A := εxB. A, however, would already be an
overspecification in case A has multiple solutions.
This definition is non-elementary, however, in the sense that it introduces ε-terms,
which cannot be eliminated in first-order logic in general.
If the ε is given, this definition is the most useful and elegant way to introduce the ι,
although it is somehow ex eventu, because the development of the ε was started two
dozen years after the first publications on Frege’s and Peano’s ι-operators.
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4.5 The ε as an Improvement over the ι

Compared to the ι, the ε is more useful because — instead of (ι0) — it comes with the
stronger axiom

∃xB. A ⇒ A{xB 7→ εxB. A} (ε0)

More specifically, as the formula ∃xB. A (which has to be true to guarantee an interpre-
tation of the ε-term εxB. A that is meaningful in the sense that it satisfies its formula A)
is weaker than the corresponding formula ∃!xB. A (for the respective ι-term), the area
of useful application is wider for the ε- than for the ι-operator. Indeed, we have already
seen in § 4.4.5 that the ι can be defined in terms of the ε, but not vice versa.

Moreover, in case of ∃!xB. A, the ε-operator picks the same element as the ι-operator:

∃!xB. A ⇒ (
εxB. A = ιxB. A

)
.

Thus, unless eliminability is relevant, we should replace all useful occurrences of the ι
with the ε : As a consequence, among other advantages, the arising proof obligations
become weaker and both human and automated generation and generalization of proofs
become more efficient.

4.6 On the ε’s Proof-Theoretic Origin

4.6.1 The ε-Formula and the Historical Sources of the ε

The main historical source on the ε is the second volume of the Foundations of Mathematics
[Hilbert & Bernays, 1934; 1939; 1968; 1970], the fundamental work which summarizes
the foundational and proof-theoretic contributions ofDavid Hilbert and his mathematical-
logic group.

The preferred specification for Hilbert’s ε in proof-theoretic investigations is not the
axiom (ε0), but mutatis mutandis the following formula:

A{xB 7→xA} ⇒ A{xB 7→ εxB. A} (ε-formula)

The ε-formula is equivalent to (ε0), but gets along without any quantifier.

The name “ε-formula” originates in [Hilbert & Bernays, 1939, p. 13], where the
ε-operator is simply called Hilbert’s ε-symbol.

For historical correctness, note that the notation in the original is closer to
AA(xA) ⇒ AA(εxB. AA(xB)),

where the AA is a concrete singulary predicate atom (called formula variable in the original)
and comes with several extra rules for its instantiation, cf. [Hilbert & Bernays, 1939,
p. 13f.]. Verbatim the notation actually is

A(a) ⇒ A(εx A(x)),
and the deductive equivalence to (ε0), i.e. verbatim to

(Ex) A(x) ⇒ A(εx A(x)),
is straightforward, cf. [Hilbert & Bernays, 1939, pp. 13–15]. In our notation, however,
(ε0) and the ε-formula are axiom schemata where the A is a meta-variable for a formula.
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Note that those concrete formulas, which may be denoted by our meta-variable A and
which likewise may be used as a substitution for Hilbert–Bernays’ formula variable A,
may contain extra occurrences of xA and a, respectively, beside the one explicitly indicated
in the ε-formula. The instances of the ε-formula with such extra occurrences, however,
do not add to its strength, because they follow from the versions with fresh symbols at
these occurrences by instantiation of the fresh symbols with xA in our framework and
with a in Hilbert–Bernays’ predicate calculus, respectively.

The ε-formula already occurs, however under different names, in the pioneering pa-
pers on the ε, i.e. in [Ackermann, 1925] as “transfinite axiom1”, in [Hilbert, 1926] as
“axiom of choice” (in the operator form A(a) ⇒ A(εA), where the ε is called “transfinite
logical choice function”), and in [Hilbert, 1928] as “logical ε-axiom” (again in operator
form, where the ε is called “logical ε-function”).

4.6.2 The Original Explanation of the ε

As the basic methodology of Hilbert’s program is to treat all symbols as meaningless,
no semantics is required besides the one given by the single axiom (ε0). To further the
understanding, however, we read on p.12 of [Hilbert & Bernays, 1939; 1970]:

εxB. A . . . “ist ein Ding des Individuenbereichs, und zwar ist dieses Ding
gemäß der inhaltlichen Übersetzung der Formel (ε0) ein solches, auf das jenes
Prädikat A zutrifft, vorausgesetzt, daß es überhaupt auf ein Ding des Individuen-
bereichs zutrifft.”

εxB. A . . . “is a thing of the domain of individuals for which — according to
the contentual translation of the formula (ε0) — the predicate A holds, provided
that A holds for any thing of the domain of individuals at all.”

Example 4.2 (ε instead of ι) (continuing Example 4.1 of § 4.4.2)
Just as for the ι, for the ε we have Heinrich III = εxB. Father(xB, Heinrich IV) and

Father(εxB. Father(xB, Heinrich IV), Heinrich IV).
But, from the contrapositive of (ε0) and ¬Father(εxB. Father(xB, Adam), Adam), we now
conclude that ¬∃y B. Father(y B, Adam).

4.6.3 Defining the Quantifiers via the ε

Hilbert and Bernays did not need any semantics or precise intention for the ε-symbol
because it was introduced merely as a formal syntactic device to facilitate proof-theoretic
investigations, motivated by the possibility to get rid of the existential and universal quan-
tifiers via two direct consequences of axiom (ε0):

∃xB. A ⇔ A{xB 7→ εxB. A} (ε1)

∀xB. A ⇔ A{xB 7→ εxB. ¬A} (ε2)
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These equivalences can be seen as definitions of the quantifiers because innermost rewrit-
ing with (ε1), (ε2) yields a normal form after as many steps as there are quantifiers in the
input formula. Moreover, also arbitrary rewriting is confluent and terminating, cf. [Wirth,
2016; 2017a].

It should be noted, however, that rewriting with (ε1), (ε2) must not be taken for granted
under modal operators, at least not under the assumption that ε-terms are to remain rigid,
i.e. independent in their interpretation from their modal contexts. For this assumption
there are very good reasons, nicely explained e.g. in [Slater, 2007a; 2009].

Example 4.3 Consider the first-order modal logic formula ¤∃xB. A. Moreover, to
simplify matters, let us assume that we have constant domains, i.e. that all modal contexts
have the same domain of individuals.

Under this condition and for a formula of this structure, it is suggested in [Slater,
2007a, p.153] to apply (ε1) to the considered formula, resulting in ¤A{xB 7→ εxB. A},
from which we can doubtlessly conclude ∃xB. ¤A, e.g. by Formula (a) in § 4.6.4.

Let us interpret the ¤ as “believes” and A as “xB is the number of rice corns in my car”,
and let our constant domain be the one of the standard model of the natural numbers.
Note that I do not believe of any concrete and definite number that it numbers the rice
corns in my car just because I believe that their number is finite.

This interpretation shows that our rewriting with (ε1) under the operator ¤ is incorrect
for modal logic in general, at least for rigid ε-terms.

On the other hand, rewriting with (ε1), (ε2) above modal operators is uncritical: ∃xB. ¤A
is indeed equivalent to ¤A{xB 7→ εxB. ¤A}.

4.6.4 The ε-Theorems

When we remove all quantifiers in a derivation of the Hilbert-style predicate calculus of
the Foundations of Mathematics along (ε1) and (ε2), the following transformations occur:

Tautologies are turned into tautologies.

The axioms

A{xB 7→xA} ⇒ ∃xB. A (Formula (a))
and

∀xB. A ⇒ A{xB 7→xA} (Formula (b))

(cf. p. 100f. of [Hilbert & Bernays, 1934] or on p. 99f. of [Hilbert & Bernays, 1968;
2017b]) are turned into the ε-formula (cf. § 4.6.1) and, roughly speaking, its contrapositive,
respectively. Indeed, for the case of Formula (b), we can replace first all A with ¬A,
and after applying (ε2), replace ¬¬A with A, and thus obtain the contrapositive of the
ε-formula.

The inference steps are turned into inference steps: the inference schema into the in-
ference schema; the substitution rule for free atoms as well as quantifier introduction
(Schemata (α) and (β) on p. 103f. of [Hilbert & Bernays, 1934] or on p. 102f. of [Hilbert
& Bernays, 1968; 2017b]) into the substitution rule including ε-terms.

Finally, the ε-formula is taken as a new axiom scheme instead of (ε0) because it has the
advantage of being free of quantifiers.



25

The argumentation of the previous paragraphs is actually part of the proof trans-
formation that constructively proves the first of Hilbert–Bernays’ two theorems on
ε-elimination in first-order logic, the so-called 1st ε-Theorem. In its sharpened form, this
theorem can be stated as follows. Note that the original speaks of “bound variables” in-
stead of “bound atoms” and of “formula variables” instead of “predicate atoms”, because
what we call “variables” is not part of the formula languages of Hilbert–Bernays.

Theorem 4.4 (Sharpened 1st ε-Thm.) (p.79f. of [Hilbert & Bernays, 1939; 1970])
From a derivation of ∃xB1 . . . . ∃xBr . A (containing no bound atoms besides the ones bound
by the prefix ∃xB1 . . . . ∃xBr . ) from the formulas P1, . . . , Pk (containing neither predicate
atoms nor bound atoms) in the predicate calculus (incl. the ε-formula and =-substitutability
as axiom schemes, plus =-reflexivity), we can construct a (finite) disjunction of the form∨s

i=0 A{xB1 , . . . , xBr 7→ ti,1, . . . , ti,r} and a derivation of it

• in which bound atoms do not occur at all
• from P1, . . . , Pk and =-axioms (containing neither predicate atoms nor bound atoms)
• in the quantifier-free predicate calculus
(i.e. tautologies plus the inference schema and the substitution rule).

Note that r, s range over natural numbers including 0, and that A, ti,j, and Pi are ε-free
because otherwise they would have to include (additional) bound atoms.

Moreover, the 2nd ε-Theorem (in [Hilbert & Bernays, 1939; 1970]) states that the ε
(just as the ι, cf. [Hilbert & Bernays, 1934; 1968]) is a conservative extension of the
predicate calculus in the sense that each formal proof of an ε-free formula can be transformed
into a formal proof that does not use the ε at all.

For logics different from classical axiomatic first-order predicate logic, however, it is not
necessarily a conservative extension when we add the ε either with (ε0), with (ε1), or with
the ε-formula to other first-order logics — may they be weaker such as intuitionistic first-
order logic,2 or stronger such as first-order set theories with axiom schemes over arbitrary
terms including the ε ; cf. [Wirth, 2008, § 3.1.3]. Moreover, even in classical first-order
logic there is no translation from the formulas containing the ε to formulas not containing it.

2(Consequences of the ε-Formula in Intuitionistic Logic)
Adding the ε either with (ε0), with (ε1), or with the ε-formula (cf. § 4.6) to intuitionistic first-order logic is
equivalent on the ε-free fragment to adding Plato’s Principle, i.e. ∃y B. (∃xB. A ⇒ A{xB 7→y B}) with
y B not occurring in A, cf. [Meyer-Viol, 1995, § 3.3].
Moreover, the non-trivial direction of (ε2) is ∀xB. A ⇐ A{xB 7→ εxB. ¬A}.
Even intuitionistically, this entails its contrapositive ¬∀xB. A ⇒ ¬A{xB 7→ εxB. ¬A},
and then, e.g. by the trivial direction of (ε1) (when A is replaced with ¬A)

¬∀xB. A ⇒ ∃xB. ¬A (Q2)

which is not valid in intuitionistic logic in general. Thus, in intuitionistic logic, the universal quantifier
becomes strictly weaker by the inclusion of (ε2) or anything similar for the universal quantifier, such as
Hilbert’s τ -operator (cf. [Hilbert, 1923a]). More specifically, adding

∀xB. A ⇐ A{xB 7→ τxB. A} (τ0)

is equivalent on the τ -free theory to adding ∃y B. (∀xB. A ⇐ A{xB 7→y B}) with y B not occurring in A,
which again implies (Q2), cf. [Meyer-Viol, 1995, § 3.4.2].
From a semantic point of view (cf. [Gabbay, 1981]), the intuitionistic ∀ may be eliminated, however, by
first applying theGödel translation into the modal logic S4 with classical ∀ and ¬, cf. e.g. [Fitting, 1999],
and then adding the ε conservatively, e.g. by avoiding substitutions via λ-abstraction as in [Fitting, 1975].
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4.7 Quantifier Elimination and Subordinate ε-terms

Before we can introduce to our treatment of the ε, we had better get a bit more acquainted
with the ε in general and its well-known features.

The elimination of ∀- and ∃-quantifiers with the help of ε-terms (cf. § 4.6) may be more
difficult than expected when some ε-terms become “subordinate” to others.

Definition 4.5 (Subordinate) An ε-term εv B. B (or, more generally, a binder on v B

together with its scopeB) is superordinate to an (occurrence of an) ε-term εxB. A if

1. εxB. A is a subterm of B and

2. an occurrence of the bound atom v B in εxB. A is free in B
(i.e. the binder on v B binds an occurrence of v B in εxB. A ).

An (occurrence of an) ε-term εxB. A is subordinate to an ε-term εv B. B (or, more gen-
erally, to a binder on v B together with its scope B) if εv B. B is superordinate to εxB. A.

On p. 24 of [Hilbert & Bernays, 1939; 1970], these subordinate ε-terms, which are
responsible for the difficulty to prove the ε-theorems constructively, are called “unterge-
ordnete ε-Ausdrücke”. Note that — contrary to Hilbert–Bernays — we do not use a
special name for ε-terms with free occurrences of bound atoms here — such as “ε-Aus-
drücke” (“ε-expressions” or “quasi ε-terms”) instead of “ε-Terme” (“ε-terms”) — but simply
call them “ε-terms” as well.

Example 4.6 (Quantifier Elimination and Subordinate ε-Terms)
Let us repeat the formulas (ε1) and (ε2) from § 4.6 here:

∃xB. A ⇔ A{xB 7→ εxB. A} (ε1)
∀xB. A ⇔ A{xB 7→ εxB. ¬A} (ε2)

Let us consider the formula

∃w B. ∀xB. ∃y B. ∀z B. P(w B, xB, y B, z B)

and apply (ε1) and (ε2) to remove the four quantifiers completely in an equivalence trans-
formation.

We introduce the following abbreviations, where w B, xB, y B, z B are bound atoms,
wa, xb, yd, zh are terms and xa, ya, za are meta-level functions from terms to ε-terms:

za = λw B, xB, y B. εz B. ¬P(w B, xB, y B, z B)
ya = λw B, xB. εy B. P(w B, xB, y B, za(w

B, xB, y B))
xa = λw B. εxB. ¬P(w B, xB, ya(w

B, xB), za(w
B, xB, ya(w

B, xB))),
wa = εw B. P(w B, xa(w

B), ya(w
B, xa(w

B)), za(w
B, xa(w

B), ya(w
B, xa(w

B)))),
xb = xa(wa)
yd = ya(wa, xb)
zh = za(wa, xb, yd)

Innermost rewriting with (ε1) and (ε2) results in a unique normal form after at most as many
steps as there are quantifiers (cf. [Wirth, 2016; 2017a]). Thus, we eliminate inside-out,
i.e. we start with the elimination of ∀z B. The equivalence transformation is:
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∃w B. ∀xB. ∃y B. ∀z B. P(w B, xB, y B, z B),
∃w B. ∀xB. ∃y B. P(w B, xB, y B, za(w

B, xB, y B)),
∃w B. ∀xB. P(w B, xB, ya(w

B, xB), za(w
B, xB, ya(w

B, xB))),
∃w B. P(w B, xa(w

B), ya(w
B, xa(w

B)), za(w
B, xa(w

B), ya(w
B, xa(w

B)))),
P(wa, xa(wa), ya(wa, xa(wa)), za(wa, xa(wa), ya(wa, xa(wa)))),
P(wa, xb, yd, zh).

Note that the resulting formula P(wa, xb, yd, zh) is quite deep and has more than one thou-
sand occurrences of the ε-binder. Indeed, in general, n nested quantifiers result in an
ε-nesting depth of 2n−1. How can this be? After all, we wrote down only four ε-terms in
the three meta-level functions za, ya, and xa and the term wa, didn’t we? Well, these func-
tions occur in many different instances in the formula P(wa, xb, yd, zh), yielding different
ε-terms, each expressing a different choice with its own commitment.

To understand this, let us have a closer look a the structure of the resulting formula

P(wa, xb, yd, zh)

and display each of the top structures of its different ε-terms explicitly by means of a
meta-level function from terms to ε-terms. Then we have:
za = λw B, xB, y B. εz B. ¬P(w B, xB, y B, z B)
ya = λw B, xB. εy B. P(w B, xB, y B, za(w

B, xB, y B))
zb = λw B. λxB. εz B. ¬P(w B, xB, ya(w

B, xB), z B)
xa = λw B. εxB. ¬P(w B, xB, ya(w

B, xB), zb(w
B, xB))

zc = λw B, y B. εz B. ¬P(w B, xa(w
B), y B, z B),

yb = λw B. εy B. P(w B, xa(w
B), y B, zc(w

B, y B))
zd = λw B. εz B. ¬P(w B, xa(w

B), yb(w
B), z B)

wa = εw B. P(w B, xa(w
B), yb(w

B), zd(w
B))

ze = λxB, y B. εz B. ¬P(wa, x
B, y B, z B)

yc = λxB. εy B. P(wa, x
B, y B, ze(x

B, y B))
zf = λxB. εz B. ¬P(wa, x

B, yc(x
B), z B)

xb = εxB. ¬P(wa, x
B, yc(x

B), zf (x
B))

zg = λy B. εz B. ¬P(wa, xb, y
B, z B)

yd = εy B. P(wa, xb, y
B, zg(y

B))
zh = εz B. ¬P(wa, xb, yd, z

B)

First of all, note that the already defined symbols za, ya, xa, wa, xb, yd, zh still denote the
same terms as before, although the equations for xa, wa, xb, yd, zh differ from the previous
notation by using more specific terms.

Moreover, the ε-terms described by the above equations are exactly those that require
a commitment to their choice. This means that each of za, zb, zc, zd, ze, zf , zg, zh, each of
ya, yb, yc, yd, and each of xa, xb may be chosen differently without affecting soundness of
the equivalence transformation. Note that they are strictly nested into each other; so we
must choose in the order of

za, ya, zb, xa, zc, yb, zd, wa, ze, yc, zf , xb, zg, yd, zh.

Furthermore, for all ε-terms except wa, xb, yd, zh, we actually have to choose a function
instead of a simple object, which does not really matter on the actual term-level of the huge
formula P(wa, xb, yd, zh), because there each of these functions is always applied to the same
arguments. Indeed, each zi occurs only once in the directly following term, denoting an
ε-term; and, in the same way, each yj only in the two following terms, applied to the same
arguments; and each xk only in the four following terms applied to the same argument.

In Hilbert–Bernays’ view, however, there are neither functions nor objects at all,
but only terms (and expressions with free occurrences of bound atoms). For instance, in
non-abbreviating notation the term xa(w

B) reads:
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εxB. ¬P




w B,
xB,
εy B. P

(
w B, xB, y B, εz B. ¬P(w B, xB, y B, z B)

)
,

εz Bb . ¬P
(

w B, xB, εy B. P
(

w B, xB, y B, εz B. ¬P(w B, xB, y B, z B)
)
, z Bb

)


.

Note that we have renamed a bound atom z B to z Bb , because we do not want to have a
bound variable to be bound a second time in its scope. We chose z Bb because this subterm
corresponds to zb. Moreover, yb(w

B) reads

εyBb . P

0
BBBBBBBBBBBBBBBBBBBBBB@

wB,

εxB. ¬P

0
BBB@

wB,
xB,
εyB. P

`
wB, xB, yB, εz B. ¬P(wB, xB, yB, z B)

´
,

εz Bb . ¬P
“

wB, xB, εyB. P
`

wB, xB, yB, εz B. ¬P(wB, xB, yB, z B)
´
, z Bb

”

1
CCCA,

yBb ,

εz Bc . ¬P

0
BBBBBBBBB@

wB,

εxB. ¬P

0
BBB@

wB,
xB,
εyB. P

`
wB, xB, yB, εz B. ¬P(wB, xB, yB, z B)

´
,

εz Bb . ¬P
“

wB, xB, εyB. P
`

wB, xB, yB, εz B. ¬P(wB, xB, yB, z B)
´
, z Bb

”

1
CCCA,

yBb ,

z Bc

1
CCCCCCCCCA

1
CCCCCCCCCCCCCCCCCCCCCCA

.

Condensed data on the above terms read as follows:
ε-nesting depth number of ε-binders Ackermann rank Ackermann degree

za(wB, xB, yB) 1 1 1 undefined
ya(wB, xB) 2 2 2 undefined
zb(w

B, xB) 3 3 1 undefined
xa(wB) 4 6 3 undefined
zc(wB, yB) 5 7 1 undefined
yb(w

B) 6 14 2 undefined
zd(wB) 7 21 1 undefined
wa 8 42 4 1
ze(xB, yB) 9 43 1 undefined
yc(xB) 10 86 2 undefined
zf (xB) 11 129 1 undefined
xb 12 258 3 2
zg(yB) 13 301 1 undefined
yd 14 602 2 3
zh 15 903 1 4
P(wa, xb, yd, zh) 15 1805 undefined undefined

For ∀w B. ∀xB. ∀y B. ∀z B. P(w B, xB, y B, z B) instead of ∃w B. ∀xB. ∃y B. ∀z B. P(w B, xB, y B, z B),
we get the same exponential growth of nesting depth as in the example above, when we com-
pletely eliminate the quantifiers using (ε2). The only difference is that we get additional
occurrences of ‘¬’. If we have quantifiers of the same kind in a row, however, we had better
choose them in parallel; e.g., for ∀w B. ∀xB. ∀y B. ∀z B. P(w B, xB, y B, z B), we choose

va := εv B. ¬P(1st(v B), 2nd(v B), 3rd(v B), 4th(v B)),

and then take P(1st(va), 2nd(va), 3rd(va), 4th(va)) as result of the elimination.
Roughly speaking, in today’s automated theorem proving, the exponential explosion of

term depth of the example above is avoided by an outside-in removal of δ-quantifiers without
removing the quantifiers below ε-binders and by a replacement of γ-quantified bound atoms
with variables without choice-conditions. For the formula of Example 4.6, this yields
P(wV, x, yV, z) with x = εxB. ¬∃y B. ∀z B. P(wV, xB, y B, z B) and z = εz B. ¬P(wV, x, yV, z B).
Thus, in general, the nesting of binders for the complete elimination of a prenex of n
quantifiers does not become deeper than 1

4
(n+1)2.
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Moreover, if we are only interested in reduction and not in equivalence transformation,
we can get rid of the ε-terms by reducing to one of the formulas P(wV, xA(wV), yV, zA(wV, yV))
with Skolem terms or P(wV, xA, yV, zA) with {(wV, xA), (wV, zA), (yV, zA)} as an exten-
sion to the variable-condition. Note that neither with Skolemization nor variable-condi-
tions we have any non-constant growth of nesting depth, and the same will be the case for
our approach to ε-terms.

4.8 Our Objective

While the historiographical and technical research on the ε-theorems is still going on and
the methods of ε-elimination and ε-substitution did not die with Hilbert’s program, this
is not our subject here. We are less interested in Hilbert’s formal program and the
consistency of mathematics than in the powerful use of logic in creative processes. And,
instead of the tedious syntactic proof transformations, which easily lose their usefulness
and elegance within their technical complexity and which — more importantly — can only
refer to an already existing logic, we look for model-theoretic means for finding new logics
and new applications. And the question that still has to be answered in this field is:

What would be a proper semantics for Hilbert’s ε ?

4.9 Indefinite and Committed Choice

Just as the ι-symbol is usually taken to be the referential interpretation of the definite
articles in natural languages, it is our opinion that the ε-symbol should be that of the
indefinite determiners (articles and pronouns) such as “a(n)” or “some”.

Example 4.7 (ε instead of ι again) (continuing Example 4.1)
It may well be the case that

Holy Ghost = εxB. Father(xB, Jesus) ∧ Joseph = εxB. Father(xB, Jesus)
i.e. that “The Holy Ghost is a father of Jesus and Joseph is a father of Jesus.” But this
does not bring us into trouble with the Pope because we do not know whether all fathers
of Jesus are equal. This will become clearer when we reconsider this in Example 4.15.

Closely connected to indefinite choice (also called “indeterminism” or “don’t care nondeter-
minism”) is the notion of committed choice. For example, when we have a new telephone,
we typically don’t care which number we get, but once a number has been chosen for our
telephone, we will insist on a commitment to this choice, so that our phone number is not
changed between two incoming calls.

Example 4.8 (Committed choice)
Suppose we want to prove ∃xB. (xB 6= xB)
According to (ε1) from § 4.6 this reduces to εxB. (xB 6= xB) 6= εxB. (xB 6= xB)
Since there is no solution to xB 6= xB we can replace
εxB. (xB 6= xB) with anything. Thus, the above reduces to 0 6= εxB. (xB 6= xB)
and then, by exactly the same argumentation, to 0 6= 1
which is true in the natural numbers.
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Thus, we would have proved our original formula ∃xB. (xB 6= xB), which, however, is false.
What went wrong? Well, we have to commit to our choice for all occurrences of the ε-term
introduced when eliminating the existential quantifier: If we choose 0 on the left-hand side,
we have to commit to the choice of 0 on the right-hand side as well.

4.10 Do not be afraid of Indefiniteness!

From the discussion in § 4.9, one could get the impression that an indefinite logical treatment
of the ε is not easy to find. Indeed, at first sight, there is the problem that some standard
axiom schemes cannot be taken for granted, such as substitutability

s = t ⇒ f(s) = f(t)
and reflexivity

t = t

Note that substitutability is similar to the highly controversial extensionality axiom

∀xB. (A0 ⇔ A1) ⇒ εxB. A0 = εxB. A1 (E2)

(cf. § 8.4) when we take logical equivalence as equality. Moreover, note that

εxB. true = εxB. true (Reflex)

is an instance of reflexivity.

Thus, it seems that — in case of an indefinite ε — the replacement of a subterm with
an equal term is problematic, and so is the equality of syntactically equal terms.

It may be interesting to see that — in computer programs — we are quite used to
committed choice and to an indefinite behavior of choosing, and that the violation of sub-
stitutability and even reflexivity is no problem there:

Example 4.9 (Violation of Substitutability and Reflexivity in Programs)
In the implementation of the specification of the web-based hypertext system of [Mattick
& Wirth, 1999], we needed a function that chooses an element from a set implemented
as a list. Its ml code is:

fun choose s = case s of Set (i :: _) => i | _ => raise Empty;

And, of course, it simply returns the first element of the list. For another set that is equal
— but where the list may have another order — the result may be different. Thus, the
behavior of the function choose is indefinite for a given set, but any time it is called for
an implemented set, it chooses a particular element and commits to this choice, i.e.: when
called again, it returns the same value. In this case we have choose s = choose s,
but s = t does not imply choose s = choose t. In an implementation where some
parallel reordering of lists may take place, even choose s = choose s may be wrong.
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From this example we may learn that the question of a commitment of choose s is not
settled until its choice step has actually been implemented. This is also the case with our ε.
Indeed, in our treatment of an ε-term, the choice step may be implemented by a represen-
tation with commitment of choice or by one without.

Thus, on the one hand, when we want to prove
εxB. true = εxB. true

we can choose 0 for both occurrences of εxB. true, get 0 = 0, and the proof is successful.
On the other hand, suppose that we want to prove

εxB. true 6= εxB. true

without commitment, or, equivalently,
εxB. true 6= εy B. true,

because we consider equality of terms and formulas only up to renaming of bound atoms.
Then we can choose 0 for one occurrence and 1 for the other get 0 6= 1, and the proof is
successful again.

This procedure seems wondrous, but it is very similar to something altogether common-
place for the case of variables instead of ε-terms:

On the one hand, when we want to prove
xV = yV

we can choose 0 to replace both xV and yV, get 0 = 0, and the proof is successful.
On the other hand, when we want to prove

xV 6= yV

we can choose 0 to replace xV and 1 to replace yV, get 0 6= 1, and the proof is successful
again.

There is an important difference, however, between the inequations εxB. true 6= εxB. true
and xV 6= yV: The latter does not violate the reflexivity axiom!

And we are going to cure the violation of the former immediately with the help of our
variables, but now with non-empty choice-conditions. Instead of εxB. true 6= εxB. true we
write xV 6= yV and remember for what these variables stand, by storing this information
into a function C, called a choice-condition:

C(xV) := εxB. true,
C(yV) := εxB. true.

In the following, we will now describe how to do this in general.
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4.11 Replacing ε-Terms with Variables

For a first step, suppose that our ε-terms are not subordinate to any outside binder (cf.
Definition 4.5). Then, we can replace any ε-term εz B. A with a fresh variable zV and
extend the partial function C by

C(zV) := εz B. A.

Note that this does not change the syntax of the ε-term at all, which is to be appreciated
in particular if this term contains further ε-terms to be replaced in such steps later on.

The overall procedure eliminates all ε-terms in sequents, formulas and terms (except on top
of the values of choice-conditions) without loosing any information, but yielding the fol-
lowing two advantages:

• A crucial advantage of replacing ε-terms with fresh variables is that these variables
will clearly indicate whether a committed choice is required: We can express a
committed choice by repeatedly using the same variable, and a
choice without commitment by several variables with the same choice-condition.

• As another consequence of this elimination, the substitutability and reflexivity axioms
are immediately regained, and the problems discussed in § 4.10 disappear.

Example 4.10
This also solves our problems with committed choice of Example 4.8 of § 4.9:
Now, again using (ε1), ∃xB. (xB 6= xB) reduces to xV 6= xV with

C(xV) := εxB. (xB 6= xB)

and the proof attempt immediately fails because of the now regained reflexivity axiom.

As the second step, we still have to explain what to do with subordinate ε-terms. If the
ε-term εv Bl . A contains free occurrences of exactly the distinct bound atoms v B0 , . . . , v Bl−1,
then we have to replace this ε-term with the application term zV(v B0 , . . . , v Bl−1) (of the same
type as v Bl ) (for a fresh variable zV) and to extend the choice-condition C by

C(zV) := λv B0 , . . . , v Bl−1. εv Bl . A.

Notice that — even after subsequent renaming — the functional variable zV will occur in
our terms and formulas and in the ranges of our choice-conditions only followed by a tuple
providing all its l arguments, i.e. in the form zV(t0, . . . , tl−1), but never without such an
l-tuple, say in an equation like zV = xV or zV = λv B0 , . . . , v Bl−1. t. Thus, we do not
introduce higher-order language by our elimination of ε-terms, but use λ-notation only at
top level in the values C(zV) of our choice-conditions — to bind the free occurrences of the
bound atoms in the following ε-term.

Moreover, notice that no renaming of atoms or variables takes place in the formula A and
only fresh variables are introduced, so that the result of the complete replacement of all
ε-terms does not depend on any strategy, such as innermost or outermost.
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Example 4.11 (Choice-Condition) (continuing Example 4.6 of § 4.7)
Let us now do the elimination of quantifiers by innermost rewriting with (ε1) and (ε2)
from the beginning of Example 4.6 again, but now eliminate each ε-term immediately by
replacing it with a fresh variable with proper choice-condition. Then the equivalence trans-
formation looks hardly any different: The transformation reads
∃w B. ∀xB. ∃y B. ∀z B. P(w B, xB, y B, z B),
∃w B. ∀xB. ∃y B. P(w B, xB, y B, zVa(w

B, xB, y B)),
∃w B. ∀xB. P(w B, xB, yVa(w

B, xB), zVa(w
B, xB, yVa(w

B, xB))),
∃w B. P(w B, xVa(w

B), yVa(w
B, xVa(w

B)), zVa(w
B, xVa(w

B), yVa(w
B, xVa(w

B)))),
P(wV

a, x
V
a(w

V
a), y

V
a(w

V
a, x

V
a(w

V
a)), z

V
a(w

V
a, x

V
a(w

V
a), y

V
a(w

V
a, x

V
a(w

V
a)))),

and comes with the following choice-condition C:
C(zVa) := λw B, xB, y B. εz B. ¬P(w B, xB, y B, z B)

C(yVa) := λw B, xB. εy B. P(w B, xB, y B, zVa(w
B, xB, y B))

C(xVa) := λw B. εxB. ¬P(w B, xB, yVa(w
B, xB), zVa(w

B, xB, yVa(w
B, xB)))

C(wV
a) := εw B. P(w B, xVa(w

B), yVa(w
B, xVa(w

B)), zVa(w
B, xVa(w

B), yVa(w
B, xVa(w

B))))

If we again want to have an explicit representation of each and every ε-term that comes
with commitment to its choice, then this again looks hardly any different from Example 4.6:
The result is P(wV

a, x
V
b , y

V
d, z

V
h),

and it comes with the following alternative choice-condition C ′:
C ′(zVa) := λw B, xB, y B. εz B. ¬P(w B, xB, y B, z B)

C ′(yVa) := λw B, xB. εy B. P(w B, xB, y B, zVa(w
B, xB, y B))

C ′(zVb ) := λw B, xB. εz B. ¬P(w B, xB, yVa(w
B, xB), z B)

C ′(xVa) := λw B. εxB. ¬P(w B, xB, yVa(w
B, xB), zVb (w

B, xB))

C ′(zVc ) := λw B, y B. εz B. ¬P(w B, xVa(w
B), y B, z B)

C ′(yVb ) := λw B. εy B. P(w B, xVa(w
B), y B, zVc (w

B, y B))

C ′(zVd) := λw B. εz B. ¬P(w B, xVa(w
B), yVb (w

B), z B)

C ′(wV
a) := εw B. P(w B, xVa(w

B), yVb (w
B), zVd(w

B))

C ′(zVe ) := λxB, y B. εz B. ¬P(wV
a, x

B, y B, z B)

C ′(yVc ) := λxB. εy B. P(wV
a, x

B, y B, zVe (x
B, y B))

C ′(zVf ) := λxB. εz B. ¬P(wV
a, x

B, yVc (x
B), z B)

C ′(xVb) := εxB. ¬P(wV
a, x

B, yVc (x
B), zVf (x

B))

C ′(zVg) := λy B. εz B. ¬P(wV
a, x

V
b , y

B, z B)

C ′(yVd) := εy B. P(wV
a, x

V
b , y

B, zVg(y
B))

C(zVh) := εz B. ¬P(wV
a, x

V
b , y

V
d, z

B)

Both representations here are much smaller and easier to understand than any of those in
Example 4.6. Indeed, the λ-binders are not anymore a notation for huge meta-level terms,
but just part of our syntax for choice-conditions. Moreover, the formula P(wV

a, x
V
b , y

V
d, z

V
h)

has a term depth of 1 and no ε-binders, whereas P(wa, xb, yd, zh) in Example 4.6 had already
a mere ε-depth of 15 and 1805 ε-binders.
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4.12 Why We Do Not Abandon the ε-Symbol

By our just described rewriting procedure, we can replace explicit representations of ε-terms
in formulas and sequents completely with variables. The only places where the ε still occurs
is outermost under at most one λ-operator in the range of the choice-condition C; and also
there it is not essential because, instead of

C(zV) = λv B0 , . . . , v Bl−1. εv Bl . A,
we could write

C(zV) = λv B0 , . . . , v Bl−1. A{v Bl 7→ zV(v B0 , . . . , v Bl−1)}
as we have actually done previously in [Wirth, 2004; 2006a; 2008; 2012b; 2006b].

The old procedure, however, turned out to be a bit clumsy in several aspects, complicat-
ing definitions and procedures. For instance, it requires to eliminate innermost ε-terms first,
because otherwise the bound atoms v B0 , . . ., v Bl−1 could be newly introduced to the ε-terms
subordinate to εv Bl . A; and the variable for those subordinate ε-terms would then have to
take more λ-arguments than needed, which may make later proofs infeasible. Although
innermost rewriting would still yield the same result, there are too many other little, but
superfluous complications with our previous presentation of our choice-conditions. Last
but not least — although we neither presuppose any λ- nor any ε-calculus — our way of
writing the values of our choice-conditions with λ and ε immediately conveys the actual
intuition behind our choice-conditions to any logician.

4.13 Crucial Representational Change, but nothing more yet?

After all, Example 4.11 shows that — by combination of choice-conditions and term sharing
via variables — in our framework, Hilbert’s ε becomes practically feasible for the first time.

Up to here, however, one might still consider the effect of our free-variable framework
on Hilbert’s ε to be a merely representational one.

Indeed, as long as a fresh variable with choice-condition appears only once in a formula,
the original tree structure of formulas is kept in our framework up to isomorphism. Compu-
ter scientists will see this fresh variable just as a pointer to a central storage named “choice-
condition” of all objects of data type “Hilbert’s ε”, where they can find the sub-tree for
this variable’s ε-term with its sub-formula. And a user-friendly interface could still be
configured to present only the traditional ε-terms to a die-hard conservative user.

As we can glimpse from the last formula of the initial transformation of Example 4.11,
however, quantifier-elimination does not stay with single occurrence of any fresh variable.
Thus, the effect of committed choice by multiple occurrences of variables does not only
sneak in from modern application areas of the ε, but already from the most traditional of
its applications! And then we have to admit that the tree structure of formulas has actually
turned into a more efficient, well-know data structure called a DAG (directed acyclic graph).

In the following sections we will also go beyond the mostly representational character of
our treatment of Hilbert’s ε, which already now comes with the traditionally not available
option of ε-terms without committed choice (via two different variables with identical values
under the choice-condition) and a nice stepwise rewriting procedure without any strategic
restrictions by which we can flexibly and even partially generate our new representation.
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4.14 Instantiating Choice-Conditioned Variables (“ε-Substitution”)

Having already realized Requirement I (Indication of Commitment) of § 4.2 in § 4.11, we are
now going to explain how to satisfy Requirement II (Reasoning). To this end, we have to
explain how to replace variables with terms that satisfy their choice-conditions.

The first thing to know about variables with choice-conditions is: Just like the variables
without choice-conditions (introduced by γ-rules e.g.) and contrary to free atoms, the
variables with choice-conditions (introduced by δ+-rules e.g.) are rigid in the sense that
the only way to replace a variable is to do it globally, i.e. in all formulas and all choice-
conditions with the same term in an atomic transaction.

In reductive theorem proving, such as in sequent, tableau, matrix, or indexed-formula-
tree calculi, we are in the following situation: While a variable without choice-condition
can be replaced with everything (satisfying the current variable-condition), the replacement
of a variable with a choice-condition requires some proof work, and a free atom cannot be
instantiated at all.

Contrariwise, when formulas are used as tools instead of tasks, free atoms can indeed
be replaced — and this even locally (i.e. non-rigidly) and repeatedly. This is the case
not only for purely generative calculi (such as resolution and paramodulation calculi) and
Hilbert-style calculi (such as the predicate calculus of [Hilbert & Bernays, 1934; 1939;
1968; 1970]), but also for the lemma and induction hypothesis application in the otherwise
reductive calculi of [Wirth, 2004], cf. [Wirth, 2004, § 2.5.2].

More precisely — again considering reductive theorem proving, where formulas are proof
tasks — a variable without choice-condition may be instantiated with any term (of appro-
priate type) that does not violate the current variable-condition, cf. § 5.5 for formal details.
The instantiation of a variable with choice-condition additionally requires some proof work
depending on the current choice-condition, cf. Definition 5.12 for formal details. In general,
if a substitution σ replaces the variable yV in the domain of the choice-conditionC, then
— to know that the global instantiation of the entire proof attempt with σ satisfies the
choice-conditionC — we have to prove (QC(yV))σ, where QC is given as follows:

Definition 4.12 (QC , Q′
C)

QC or else Q′
C are the functions that map every zV ∈ dom(C) with

C(zV) = λv B0 , . . . , v Bl−1. εv Bl . B
for some types α0, . . . , αl, some mutually distinct bound atoms v B0 , . . . , v Bl ∈ B, and some
formula B with zV : α0, . . . , αl−1 → αl, v B0 : α0, . . . , v Bl : αl, and B(B)⊆{v B0 , . . . , v Bl }
(otherwise QC and Q′

C are undefined) to the single-formula sequent
∀v B0 . . . . ∀v Bl−1.

( ∃v Bl . B ⇒ B{v Bl 7→ zV(v B0 , . . . , v Bl−1)}
)
,

or else to the two-formula sequent
¬Bµ{v Bl 7→vAl } Bµ{v Bl 7→zV(vA0 , . . . , vAl−1)},

for the substitution µ = {v B0 7→ vA0 , . . . , v Bl−1 7→ vAl−1} and for mutually different fresh free
atoms vA0 , . . . , vAl ∈ A with vA0 : α0, . . . , vAl : αl.

First of all, note that QC(zV) is nothing but a formulation ofHilbert–Bernays’ axiom (ε0)
(cf. § 4.5) in our framework. Moreover, Lemma7.10 will state the validity of QC(zV). This
means that the satisfaction of the ε’s specification depends only on the substitution σ.
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Indeed, regarding the σ-instance of QC(zV) whose provability is required, it is only the
arbitrariness of the substitution σ that poses the question of satisfying the choice-condition.

Furthermore, note that B(σ) = ∅ = A(σ,B) ∩ {vA0 , . . . , vAl } and that, by l−1 δ−-steps,
one α-step, and then one more δ−-step, the sequent QC(zV) reduces to the sequent Q′

C(zV)
as well as the sequent (QC(zV))σ to the sequent (Q′

C(zV))σ with V((Q′
C(zV))σ)×{vA0 , . . . , vAl }

as the extension to the negative part N of our positive/negative variable-condition (P,N).
We will often have to introduce (QC(zV))σ as a new lemma to our proof forest and then we
prefer its more technical version (Q′

C(zV))σ because this has the first l+1 steps of its proof
already done and — more important — its many free atoms can all be arbitrarily instan-
tiated whenever we will apply the lemma elsewhere, cf. Theorem8.3(3) and Example 4.14.

Now, as an example for QC , we can replay Example 3.1 in § 3.5 and use it for a discussion
of the δ+-rule instead of the δ−-rule:

Example 4.13 (Soundness of δ+-rule) The formula ∃y B. ∀xB. (y B = xB)

is valid in structures with only one single object, but not in general. We can again start a
reductive proof attempt of it, but now with a δ+-step instead of the δ−-step in Example 3.1:

γ-step: ∀xB. (yV = xB), ∃y B. ∀xB. (y B = xB)
δ+-step: (yV = xV), ∃y B. ∀xB. (y B = xB)

Now, if the variable yV could be replaced with the variable xV, then we would get the tauto-
logy (xV = xV), i.e. we would have proved an invalid formula. To prevent this, as indicated
to the lower right of the bar of the first of the δ+-rules in § 3.6 on Page 14, the δ+-step has
to record VA(∀xB. (yV = xB))× {xV} = {(yV, xV)}
in a positive variable-condition, where (yV, xV) means that “xV positively depends on yV ”
(or that “yV is a subterm of the description of xV ”), so that we may never instantiate the
variable yV with a term containing the variable xV, because this instantiation would result
in cyclic dependencies (or in a cyclic term).

Contrary to Example 3.1, we have a further opportunity here to complete this proof
attempt into a successful proof: If the substitution σ := {xV 7→yV} could be applied,
then we would get the tautology (yV = yV), i.e. we would have proved an invalid formula.
To prevent this — as indicated to the upper right of the bar of the first of the δ+-rules
in § 3.6 on Page 14 — the δ+-step has to record(

xV, εxB. ¬(yV = xB)
)

in the choice-condition C. If we take this pair as an equation, then the intuition behind the
above statement that yV is somehow a subterm of the description of xV becomes immediately
clear. If we take it as an element of the graph of the function C, however, then we can com-
pute (QC(xV))σ and try to prove it. QC(xV) is ∃xB. ¬(yV = xB) ⇒ ¬(yV = xV);
so (QC(xV))σ is ∃xB. ¬(yV = xB) ⇒ ¬(yV = yV).
In classical logic with equality this is equivalent to ∃xB. ¬(yV = xB) ⇒ false, and then to
∀xB. (yV = xB). If we were able to show the truth of this formula, then it would be sound to
apply the substitution σ to prove the above sequent resulting from the γ-step. That sequent,
however, already lists this formula as an element of its disjunction. Thus, no progress is
possible by means of the δ+-rules here; and so this example is not a counterexample to the
soundness of the δ+-rules.



37

Example 4.14 (Predecessor Function)

Suppose that our domain is natural numbers and that yV has the choice-condition

C(yV) = λv B0 . εv B1 .
(
v B0 = v B1 + 1

)
.

Then the single-formula sequent QC(yV) reads

∀v B0 .
(
∃v B1 .

(
v B0 = v B1 + 1

) ⇒ (
v B0 = yV(v B0 ) + 1

))
.

Then, before we may instantiate yV with the symbol p for the predecessor function, partially
specified by the single defining equation

p(xA+1) = xA,

we have to prove the single-formula sequent (QC(yV)){yV 7→p}, which reads

∀v B0 .
(
∃v B1 .

(
v B0 = v B1 + 1

) ⇒ (
v B0 = p(v B0 ) + 1

))
.

Let us move out the existential quantifier one step. Then, by contextual rewriting of p(v B0 ),
first with v B0 = v B1 + 1 and then with the defining equation for p, which functions here as
a lemma and thus admits the instantiation via {xA 7→ v B1}, we can reduce this proof task to

∀v B0 . ∃v B1 .
((

v B0 = v B1 + 1
) ⇒ (

v B0 = v B1 + 1
))

,

which reduces to the tautology A⇒ A. This completes the proof and we now may globally
apply the substitution {yV 7→p}, because our variable-condition is not changed by this
substitution because its value is only a constant without any variables or free atoms.

For a comparison and as an exercise, let us do this proof again, but start — instead of
the single-formula sequent (QC(yV)){yV 7→p} — directly with its reduct, the two formula
sequent (Q′

C(yV)){yV 7→p}. Here (Q′
C(yV)){yV 7→p} reads

¬(v B0 = v B1 + 1
){v B0 7→vA0}{v B1 7→vA1}{yV 7→p} (

v B0 = v B1 + 1
){v B0 7→vA0}{v B1 7→yV(vA0 )}{yV 7→p},

i.e. ¬(
vA0 = vA1 + 1

) (
vA0 = p(vA0 ) + 1

)
.

By our primitive contextual-rewriting rule of § 3.2, we can rewrite the second formula first
with the first one and then with the defining equation for p, and obtain the tautology

¬(vA0 = vA1 + 1
) (

vA0 = vA1 + 1
)
.

Thus, we have seen that proving (Q′
C(yV)){yV 7→p} formally is indeed a bit simpler than

proving (QC(yV)){yV 7→p} and that — with its two free atoms — the former is useful when
activated as a rewrite lemma, whereas the latter is hardly of any use as a lemma.

Finally, note that the fact that p(0) is not specified here is no problem at all, simply because
the value of p(0) is not required in this proof. In general, it is not necessary to specify it
in any equation, as the total function p may be left just as underspecified as our ε. For an
elaborate framework of partial specification with positive/negative-conditional equations,
see [Wirth, 2009].
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Before we end § 4, our introduction to Hilbert’s ε, let us jump back to the first example
of it, namely Example 4.1 in § 4.4.2.

This first example, as you will have noticed, referred to the omnipresent legend on what
happened in Canossa in the year 1077, after the Pope had anathematized the German
king Heinrich IV, which was a highly debated subject among leading historians for nearly
thousand years, until [Fried, 2012] clearly settled the possibilities and their likelihoods in
a spectacular way.

Instead of our first example, which dealt with the ι yet, we will now finally reconsider the
ε-version of this example, namely Example 4.7 in § 4.9.

Example 4.15 (Canossa 1077) (continuingExample 4.1 (§ 4.4.2) andExample 4.7 (§ 4.9)

After complete elimination of the ε-terms in the formula displayed in Example 4.7 by our
rewriting procedure, this formula reads:

Holy Ghost = zV0 ∧ Joseph = zV1 (4.15.1)

with C(zV0) = εxB. Father(xB, Jesus),
and C(zV1) = εxB. Father(xB, Jesus).

This does not bring us into the old trouble with the Pope because nobody knows whether
zV0 = zV1 holds or not. Indeed, the identical value of zV0 and zV1 under the choice-condition C
does not at all imply any commitment of choice here! When the identical ε-term occurred in
the traditional framework of Hilbert–Bernays, however, it always expressed a committed
choice for all occurrences. This was necessary to get the quantifier elimination by means
of the ε going (cf. Example 4.8), but it was not a good style: Even the conservative
traditionalists never agreed on whether the commitment remains active after renaming of
bound atoms inside the ε-term. We would definitely say that renaming of atoms must not
do any harm to a given commitment.

On the one hand, knowing (4.1.2) from Example 4.1 of § 4.4.2, we can even prove (4.15.1)
as follows: Let us replace zV0 with Holy Ghost because, for σ0 := {zV0 7→ Holy Ghost}, from
Father(Holy Ghost, Jesus) we conclude

∃xB. Father(xB, Jesus) ⇒ Father(Holy Ghost, Jesus),

which is nothing but the required (QC(zV0))σ0.

Analogously, we replace zV1 with Joseph because, for σ1 := {zV1 7→ Joseph}, from (4.1.2)
we conclude the required (QC(zV1))σ1. After these replacements, (4.15.1) becomes the
tautology

Holy Ghost = Holy Ghost ∧ Joseph = Joseph

On the other hand, if we want to have trouble, we can apply the substitution

σ′ = {zV0 7→ Joseph, zV1 7→ Joseph}
to (4.15.1) because both (QC(zV0))σ

′ and (QC(zV1))σ
′ are equal to (QC(zV1))σ1. Then our

task is to show
Holy Ghost = Joseph ∧ Joseph = Joseph.

Note that this course of action is stupid, even under the aspect of theorem proving alone.
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5 Formal Presentation of Our Syntax
After some preliminary subsections, we formalize our novel positive/negative variable-con-
ditions and their consistency (§ 5.4), extensions, σ-updates, and admissibility of substitu-
tions (§ 5.5). Moreover, we formalize or choice-conditions (§ 5.6) and their extensions and
σ-updates (§ 5.7). All in all, we formalize all our required syntactic ingredients here.

5.1 Basic Notions and Notation

‘N’ denotes the set of natural numbers and ‘≺’ the ordering on N. Let N+ := { n∈N |
0 6= n }. We use ‘]’ for the union of disjoint classes and ‘id’ for the identity function. For
classes R, A, and B we define:

dom(R) := { a | ∃b. (a, b)∈R } domain
A»R := { (a, b)∈R | a∈A } (domain-) restriction to A
〈A〉R := { b | ∃a∈A. (a, b)∈R } image of A, i.e. 〈A〉R = ran(A»R)

And the dual ones:

ran(R) := { b | ∃a. (a, b)∈R } range
R¹B := { (a, b)∈R | b∈B } range-restriction to B
R〈B〉 := { a | ∃b∈B. (a, b)∈R } reverse-image of B, i.e. R〈B〉 = dom(R¹B)

Furthermore, we use ‘∅’ to denote the empty set as well as the empty function. Func-
tions are (right-) unique relations, and so the meaning of “f◦g ” is extensionally given by
(f◦g)(x) = g(f(x)). The class of total functions from A to B is denoted as A→ B. The
class of (possibly) partial functions from A to B is denoted as A ; B. Both → and ;

associate to the right, i.e. A ; B → C reads A ; (B → C).

Let R be a binary relation. R is said to be a relation on A if dom(R) ∪ ran(R) ⊆ A.
R is irreflexive if id∩R = ∅. It is A-reflexive if A»id ⊆ R. Speaking of a reflexive relation
we refer to the largest A that is appropriate in the local context, and referring to this A
we write R0 ambiguously to denote A»id. With R1 := R, and Rn+1 := Rn◦R for n ∈ N+,
Rm denotes the m-step relation for R. The transitive closure of R is R+ :=

⋃
n∈N+

Rn. The
reflexive transitive closure of R is R∗ :=

⋃
n∈N Rn. The reverse of R is R−1 := { (b, a) |

(a, b)∈R }. A relation R [on A] is well-founded if every non-empty class B [⊆A] has an
R-minimal element, i.e. ∃a∈B. ¬∃a′ ∈B. a′R a. A sequence (si)i∈N is non-terminating
in R if si R si+1 for all i ∈ N. R is terminating if there are no non-terminating
sequences in R.

A quasi-ordering ‘.’ on a class A is an A-reflexive and transitive (binary) relation on A,
and we define its reverse by & := .−1 And its equivalence by ≈ := .∩&. By an
ordering ‘<’ we mean an irreflexive and transitive relation, sometimes called “strict partial
ordering” by others. A reflexive ordering ‘≤’ on A is an A-reflexive, antisymmetric, and
transitive relation on A, sometimes called “partial ordering” by others. The ordering < of
a quasi-ordering or a reflexive ordering . is .\&, and . is called well-founded if < is
well-founded.

Lemma 5.1 (Lemma2.1 in [Wirth, 2004, p. 17])
For a binary relation R we have the following equivalences:
R is well-founded iff R+ is well-founded iff R+ is a well-founded ordering.
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5.2 Choice Functions

To be more useful in the context of Hilbert’s ε, the standard notion of a “choice function”f
needs to be slightly modified to admit ∅∈ dom(f) in spite of f(∅) 6∈ ∅ :

Definition 5.2 ([Generalized / Function-] Choice Function)
f is a choice function [on A] if f is a function with [A ⊆ dom(f) and]

f : dom(f)→ ⋃
(dom(f)) and ∀Y ∈ dom(f).

(
f(Y ) ∈ Y

)
.

f is a generalized choice function [on A] if f is a function with [A ⊆ dom(f) and]
f : dom(f)→ ⋃

(dom(f)) and ∀Y ∈ dom(f).
(

f(Y ) ∈ Y ∨ Y = ∅ )
.

f is a function-choice function for a function F if f is a function with dom(F ) ⊆ dom(f)
and ∀x∈ dom(F ).

(
f(x) ∈ F (x)

)
.

Corollary 5.3
The empty function ∅ is both a choice function and a generalized choice function on ∅.
If dom(f) = {∅}, then f is neither a choice function nor a generalized choice function.
If ∅ /∈ dom(f), then f is a generalized choice function if and only if f is a choice function.
If ∅ ∈ dom(f), then f is a generalized choice function if and only if

there is a choice function f ′ and an x ∈ ⋃
(dom(f ′)) such that f = f ′ ] {(∅, x)}.

5.3 Variables, Atoms, Constants, and Substitutions

We assume the following sets of symbols to be disjoint:
V (free) (rigid) variables, which serve as unknowns or

the free variables of [Fitting, 1990; 1996]
A free atoms, which serve as parameters and must not be bound
B bound atoms, which may be bound
Σ constants, i.e. the function and predicate symbols from the signature

We define:
VA := V ] A
VAB := V ] A ] B

By slight abuse of notation, for S ∈ {V,A,B,VA,VAB}, we write “S(Γ )” to denote the set
of symbols from S that have free occurrences in Γ .

Let σ be a substitution. σ is a substitution on V if dom(σ) ⊆ V. Unless explicitly
stated otherwise, we use only substitutions on subsets of VAB.
The following crucial statement (as simple as it is) will require some discussion.

The Substitution Statement:

We denote with “Γσ ” the result of replacing each free occurrence of a symbol x ∈
dom(σ) in Γ with σ(x); possibly after renaming in Γ some symbols that are bound
in Γ, in particular because a capture of their free occurrences in σ(x) must be avoided.
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We bind only symbols from the set B of bound atoms. And — unless explicitly stated other-
wise — we tacitly assume that all occurrences of atoms from B in a term or formula or in
the range of a substitution are bound occurrences, i.e. that an atom xB ∈ B occurs in these
contexts only in the scope of a binder on xB.

Therefore, a renaming of symbols bound inΓ, as mentioned in the substitution state-
ment, is hardly required in this paper because, in standard situations, even without re-
naming, no additional occurrences can become bound (i.e. captured) when applying a sub-
stitution; with the exception of non-outermost substitutions, inside the context of a term
or formula. For instance, if we implement λ-reduction in such a context via reduction of
(λxB. s)(t) to s{xB 7→t}, then, for each atom y B ∈ B(t) (i.e. for each bound atom y B with
free occurrences in t), each of the binders of y B in s — with a free occurrence of xB within
the scope of this binder — has to be renamed to a fresh bound atom before we apply the
substitution {xB 7→t}.

This situation is avoided in Hilbert–Bernays by requiring (1) exactly the occurrences
of bound atoms to be bound (as we do as well) and by (2) forbidding binders of a bound
atom in the scope of a binder on the same atom (what we do not forbid). Then indeed,
if y B occurs free in t, it must have a binder in the context of (λxB. s)(t), and thus cannot
have a binder in s according to requirement (2). Even with Hilbert–Bernays’ require-
ments (1, 2), however, we cannot get rid of renaming of atoms bound in Γ completely: Let
Γ be the formula ∀xB.(xB = yV) and σ be {yV 7→ εxB.(xB = xB)}. To maintain Hilbert–
Bernays’ requirements, Γσ must not be ∀xB.(xB = εxB.(xB = xB)), although we accept such
a formula in this paper. To satisfy Hilbert–Bernays’ requirements, however, xB must be
renamed in Γ before substitution, say to z B, so that Γσ becomes ∀z B.(z B = εxB.(xB = xB)),
which we prefer as well because it is easier to read.

5.4 Consistent Positive/Negative Variable-Conditions

Variable-conditions are binary relations on variables and free atoms. They put conditions on
the possible substitutions on variables, and on the dependencies of their valuations. To gain
clearer expression and higher expressiveness, in this paper, a variable-condition is formalized
as a pair (P, N) of binary relations, called a “positive/negative variable-condition”:

• P , the first component of such a pair, is a binary relation that is meant to express
positive dependencies. It comes with the intention of transitivity, although it will
typically not be closed up to transitivity for reasons of presentation and efficiency.
The overall idea is that the occurrence of a pair (xVA, yV) in this positive relation means
something like “ the admissibility of a value for yV may depend on xVA ”
or

“xVA is considered to be part of the specification of the values admissible for yV ”.

• N , the second component, however, is meant to capture negative dependencies. The
overall idea is that the occurrence of a pair (xV, yA) in this negative relation means
something like “ the value of xV must not depend on yA ”
or “yA is fresh for xV ”.
or

“the variable xV must not be substituted with a term in which xA

could ever appear — not even after subsequent substitutions on its variables ”.
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Relations similar to this negative relation already occurred as the only component
of a variable-condition in [Wirth, 1998], and later — with a completely different
motivation — as “freshness conditions” also in [Gabbay & Pitts, 2002].

Definition 5.4 (Positive/Negative Variable-Condition)
A positive/negative variable-condition is a pair (P,N) with

and
P ⊆ VA × V
N ⊆ V × A .

In a positive/negative variable-condition (P,N), the relations P and N are always disjoint
because their ranges are subsets of the disjoint sets V and A, respectively. Moreover,
note that in this paper, the only changes on the set N come from applications of the δ−-
rules (introducing elements of V×A), whereas the only changes on the set P come from
applications of the δ+-rules and from the global instantiations of variables (both introducing
elements from VA×V).

A relation exactly like this positive relation P was the only component of a variable-con-
dition as defined and used identically throughout [Wirth, 2002; 2004; 2006a; 2008; 2012b;
2006b]. Note, however, that, in these publications, we had to admit this single positive
relation to be a subset of VA×VA (instead of the restriction to VA×V of Definition 5.4
in this paper), because it had to simulate the negative relation (N) in addition; thereby
losing some expressive power as compared to our positive/negative variable-conditions here
(cf. Example 6.1). For further considerations on the design of our special form of variable-
conditions here, see §C.

In the following definition, the well-foundedness guarantees that all dependencies can
be traced back to independent symbols and that no variable may transitively depend on
itself, whereas the irreflexivity makes sure that no contradictious dependencies can occur.

Definition 5.5 (Consistency)
A pair (P, N) is consistent if P is well-founded and P +◦N is irreflexive.

Let (P, N) be a positive/negative variable-condition. Let us think of our (binary) relations
P and N as edges of a directed graph whose vertices are the symbols for variables and free
atoms currently in use. Then, P + ◦N is irreflexive if and only if there is no cycle in P ∪N
that contains exactly one edge from N . Moreover, in practice, a positive/negative vari-
able-condition (P,N) can always be chosen to be finite in both its components. In the case
that P is finite, P is well-founded if and only if P is acyclic. Thus we get:

Corollary 5.6
Let (P, N) be a positive/negative variable-condition with |P | ∈ N.
(P, N) is consistent if and only if

each cycle in the directed graph of P ]N contains more than one edge from N.
In case of |N | ∈ N, the right-hand side of this equivalence can be effectively tested with
an asymptotic time complexity of |P | + |N | .

Note that, in the finite case, the test of Corollary 5.6 seems to be both the most efficient and
the most human-oriented way to represent the question of consistency of positive/negative
variable-conditions.
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5.5 Extensions, σ-Updates, and (P, N)-Substitutions

Within a progressing reasoning process, positive/negative variable-conditions may be sub-
ject to only one kind of transformation, which we simply call an “extension”.

Definition 5.7 ([Weak] Extension)
(P ′, N ′) is an [weak ] extension of (P, N) if (P ′, N ′) is a positive/negative variable-condition,
P ⊆ P ′ [or at least P ⊆ (P ′)+], and N ⊆ N ′.

As immediate corollaries of Definitions 5.7 and 5.5 and Lemma5.1 we get:

Corollary 5.8
Being an extension is a reflexive ordering.
Being a weak extension is a quasi-ordering, and its equivalence is given by identity of both
the negative relation and the transitive closure of the positive relation.

Corollary 5.9 If (P ′, N ′) is a consistent positive/negative variable-condition and an [weak ]
extension of (P,N), then (P,N) is a consistent positive/negative variable-condition as well.

A σ-update is a special form of an extension:

Definition 5.10 (σ-Update, Dependence Relation)
Let (P, N) be a positive/negative variable-condition and σ be a substitution on V.
The dependence relation of σ is Dσ :={

(zVA, xV) xV ∈ dom(σ) ∧ zVA ∈VA(σ(xV))
}
.

The σ-update of (P, N) is
(

P ∪Dσ, N
)
. 3

Definition 5.11 ((P, N)-Substitution)
Let (P, N) be a positive/negative variable-condition. σ is a (P, N)-substitution if

σ is a substitution on V and the σ-update of (P, N) is consistent.

Syntactically, (xV, aA)∈N is to express that a (P,N)-substitution σ must not replace xV

with a term in which aA could ever occur; i.e. that aA is fresh for xV: aA # xV. This
is indeed guaranteed if any σ-update (P ′, N ′) of (P, N) is again required to be consistent,
and so on. We can see this as follows: For zV ∈ V(σ(xV)), we get

zV P ′ xV N ′ aA.

If we now try to apply a second substitution σ′ with aA ∈ A(σ′(zV)) (so that aA occurs
in (xVσ)σ′, contrary to what we initially expressed as our freshness intention), then σ′ is
not a (P ′, N ′)-substitution because, for the σ′-update (P ′′, N ′′) of (P ′, N ′), we have

aA P ′′ zV P ′′ xV N ′′ aA ;

so (P ′′)+ ◦N ′′ is not irreflexive. All in all, the positive/negative variable-condition

• (P ′, N ′) blocks any instantiation of (xVσ) resulting in a term containing aA, just as

• (P, N) blocked xV before the application of σ.
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5.6 Choice-Conditions

In the following we define choice-conditions as syntactic objects. They influence our seman-
tics by a compatibility requirement, which will be described in Definition 7.4.

Definition 5.12 (Choice-Condition, Choice Type)
C is a (P,N)-choice-condition if

• (P, N) is a consistent positive/negative variable-condition and

• C is a partial function on V

such that, for every yV ∈ dom(C), the following items hold for some types α0, . . . , αl:

1. The value C(yV) is of the form
λv B0 , . . . , v Bl−1. εv Bl . B

for some formula B and for some mutually distinct bound atoms v B0 , . . . , v Bl ∈ B
with B(B) ⊆ {v B0 , . . . , v Bl } and v B0 : α0, . . . , v Bl : αl.

2. yV : α0, . . . , αl−1 → αl.

3. zVA P + yV for all zVA ∈ VA(C(yV)).

In the situation described, αl is the choice type of C(yV).
β is a choice type of C if there is a zV ∈ dom(C) such that β is the choice type of C(zV).

Example 5.13 (Choice-Condition) (continuing Example 4.11)

(a) If (P, N) is a consistent positive/negative variable-condition that satisfies

zVa P yVa P zVb P xVa P zVc P yVb P zVd P wV
a P zVe P yVc P zVf P xVb P zVg P yVd P zVh,

then the C of Example 4.11 is a (P, N)-choice-condition, indeed.

3(σ-Updates Admitting Variable-Reuse and -Permutation)
For a version of σ-updates that admits variable-reuse and -permutation as explained in Note 10 of [Wirth,
2004] and executed in Notes 26–30 of [Wirth, 2004], the σ-update has to forget about the old meaning
of the variables in dom(σ). To this end — instead of the simpler (P ∪ D, N) — we have to chose a
σ-update admitting variable-reuse and -permutation to be( (

VA\dom(σ)»P ∪ P ′ ◦ P
)
¹V\dom(σ), V\dom(σ)»N ∪ V»P ′ ◦N

)

for P ′ := D ∪ VA\dom(σ)»(P ¹dom(σ))
+.

Note that P ′ can be simplified to D here by taking as the σ-update admitting Vγ-reuse and -permutation:( (
A∪Vδ+∪(Vγ\dom(σ))»P ∪ D ◦ P ∪ D¹Vδ+

)
, Vδ+∪(Vγ\dom(σ))»N ∪ V»D¹Vγ∩dom(σ) ◦N

)
,

provided that we partition V into two sets Vδ+ ] Vγ , use Vδ+ as the possible domain of the choice-
conditions, and admit variable-reuse and -permutation only on Vγ , similar to what we already did in
Note 10 of [Wirth, 2004]. (The crucial restriction becomes here the following: For a (positive/negative)
σ-update (P ′′, N ′′) admitting Vγ-reuse and -permutation we have P ′′ ⊆ VA×Vδ+ and N ′′ ⊆ V× A ).
Note, however, that it is actually better to work with the more complicated P ′, simply because it is more
general and because the transitive closure will not be computed in practice, but a graph will be updated
just as exemplified in Note 10 of [Wirth, 2004].
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(b) If some clever person tried to do the entire quantifier elimination of Example 4.11 by

C ′(zVh) := εz Bh . ¬P(wV
a, x

V
b , y

V
d, z

B
h)

C ′(yVd) := εy Bd . P(wV
a, x

V
b , y

B
d , zVh)

C ′(xVb) := εxBb . ¬P(wV
a, x

B
b , y

V
d, z

V
h)

C ′(wV
a) := εw B

a . P(w B
a , xVb , y

V
d, z

V
h)

then he would — among other constraints — have to satisfy zVh P + yVd P + zVh, because
of item3 of Definition 5.12 and the values of C ′ at yVd and zVh. This would make P
non-well-founded. Thus, this C ′ cannot be a (P,N)-choice-condition for any (P, N),
because the consistency of (P,N) is required in Definition 5.12. Note that the choices
required by C ′ for yVd and zVh are in an unsolvable conflict, indeed.

(c) For a more elementary example, take

C ′′(xV) := εxB. (xB = yV) C ′′(yV) := εy B. (xV 6= y B)

Then xV and yV form a vicious circle of conflicting choices for which no valuation can
be found that is compatible with C ′′. But C ′′ is no choice-condition at all because
there is no consistent positive/negative variable-condition (P, N) such that C ′′ is a
(P, N)-choice-condition.

5.7 Extending Extensions and σ-Updates to Choice-Conditions

Just like the positive/negative variable-condition (P,N), the (P, N)-choice-condition C
may be extended during proofs. This kind of extension plays an important rôle in inference:

Definition 5.14 (Extended Extension)
(C ′, (P ′, N ′)) is an extended extension of (C, (P, N)) if

• C is a (P,N)-choice-condition (cf. Definition 5.12),

• C ′ is a (P ′, N ′)-choice-condition,

• (P ′, N ′) is an extension of (P, N) (cf. Definition 5.7), and

• C ⊆ C ′.

Corollary 5.15 Being an extended extension is a reflexive ordering.

After global application of a (P,N)-substitutionσ, we now have to update both (P,N) andC:

Definition 5.16 (Extended σ-Update)
Let C be a (P, N)-choice-condition and let σ be a (P, N)-substitution.
The extended σ-update (C ′, (P ′, N ′)) of (C, (P, N)) is given as follows:

C ′ := { (xV, Aσ) | (xV, A)∈C ∧ xV 6∈ dom(σ) },
(P ′, N ′) is the σ-update of (P, N) (cf. Definition 5.10).
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Note that a σ-update (cf. Definition 5.10) is an extension (cf. Definition 5.7), whereas an
extended σ-update is not an extended extension in general, because entries of the choice-
condition may be modified or even deleted, such that we may have ran(C) * ran(C ′) and
dom(C) * dom(C ′). In case of xV ∈ dom(σ)∩dom(C) we get xV 6∈ dom(C ′), which is no
problem because of xV 6∈V(σ(xV)) (as σ is a (P, N)-substitution), and thus xV disappears
from the whole proof attempt after global application of σ. The remaining properties of
an extended extension, however, are satisfied:

Lemma 5.17 (Extended σ-Update) Let C be a (P,N)-choice-condition.
Let σ be a (P,N)-substitution. Let (C ′, (P ′, N ′)) be the extended σ-update of (C, (P, N)).
Then C ′ is a (P ′, N ′)-choice-condition.
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6 Example: Henkin Quantification

If the previous examples were sufficient for understanding variable-conditions and there is
no interest in Henkin quantification and the extra powers of our positive/negative vari-
able-condition, then this § 6 should be skipped; the later sections to not depend on it.

In [Wirth, 2006b, § 6.4.1], we showed that Henkin quantification was problematic for
the variable-conditions of that paper, which had only one component, namely the positive
one of our positive/negative variable-conditions here: Indeed, there the only way to model
an example of a Henkin quantification precisely was to increase the order of some variables
by raising. Let us consider the same example here again and show that now we can model
its Henkin quantification directly with a consistent positive/negative variable-condition,
even without raising.

Example 6.1 (Henkin Quantification) In [Hintikka, 1974], quantifiers in first-order
logic were found insufficient to give the precise semantics of some English sentences. In
[Hintikka, 1996], IF logic, i.e. Independence-Friendly logic — a first-order logic with
more flexible quantifiers in the sense that their quantifier elimination can result in smaller
variable-conditions — was presented to overcome this weakness. In [Hintikka, 1974], we
find the following sentence:

Some relative of each villager and
some relative of each townsman hate each other. (H0)

Let us first change to a lovelier subject:

Some potential loved one of each woman and
some potential loved one of each man could love each other. (H1)

For our purposes here, we consider (H1) to be equivalent to the following sentence, which
may be more meaningful and easier to understand:

For each person, one of those this person could love can be chosen, such that
the choice for any woman and the choice for any man could love each other.

(H1) can be represented by the following Henkin-quantified IF-logic formula:

∀xB0 . ∀y B0 .




(
Female(xB0)

∧ Male(y B0 )

)
⇒ ∃y B1/y B0 . ∃xB1/xB0 .




Loves(xB0 , y
B
1 )

∧ Loves(y B0 , xB1)
∧ Loves(y B1 , xB1)
∧ Loves(xB1 , y

B
1 )





 (H2)

Let us refer to the standard game-theoretic semantics for quantifiers (cf. e.g. [Hintikka,
1996]), which is defined as follows: Witnesses have to be picked for the quantified variables
outside-in. We have to pick the witnesses for the γ-quantifiers (i.e., in (H2), for the existen-
tial quantifiers), and our opponent in the game picks the witnesses for the δ-quantifiers
(i.e. for the universal quantifiers in (H2)). We win if the resulting quantifier-free formula
evaluates to true. A formula is true if we have a winning strategy.

Then an IF-logic quantifier such as “∃y B1/y B0 .” in (H2) is a special quantifier, which is
a bit different from “∃y B1 .”. Game-theoretically, it has the following semantics: It asks us
to pick the love y B1 independently from the choice of the man y B0 (by our opponent in the
game), although the IF-logic quantifier occurs in the scope of the quantifier “∀y B0 .”.
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Note that Formula (H2) is already close to anti-prenex form. In fact, if we move its
quantifiers closer toward the leaves of the formula tree, this does not admit us to reduce
their dependencies. It is more interesting, however, to move the quantifiers of (H2) out
— to obtain prenex form — and then to simplify the prenex by using the equivalence of
“∀y B0 . ∃y B1/y B0 .” and “∃y B1 . ∀y B0 .”, resulting in:

∀xB0 . ∃y B1 . ∀y B0 . ∃xB1/xB0 .




(
Female(xB0)

∧ Male(y B0 )

)
⇒




Loves(xB0 , y
B
1 )

∧ Loves(y B0 , xB1)
∧ Loves(y B1 , xB1)
∧ Loves(xB1 , y

B
1 )





 (H2′)

Note that this formula is stronger than the following formula with standard quantifiers:

∀xB0 . ∃y B1 . ∀y B0 . ∃xB1 .




(
Female(xB0)

∧ Male(y B0 )

)
⇒




Loves(xB0 , y
B
1 )

∧ Loves(y B0 , xB1)
∧ Loves(y B1 , xB1)
∧ Loves(xB1 , y

B
1 )





 (S2′)

An alternative way to define the semantics of IF-logic quantifiers is by describing their effect
on the equivalent raised forms of the formulas in which they occur. Raising is a dual of
Skolemization, cf. [Miller, 1992]. The raised form of (S2′) is the following:

∃y B1 . ∃xB1 . ∀xB0 . ∀y B0 .




(
Female(xB0)

∧ Male(y B0 )

)
⇒




Loves(xB0 , y
B
1 (xB0))

∧ Loves(y B0 , xB1(y
B
0 , xB0))

∧ Loves(y B1 (xB0), x
B
1(y

B
0 , xB0))

∧ Loves(xB1(y
B
0 , xB0), y

B
1 (xB0))





 (S3)

For Henkin-quantified IF-logic formulas, the raised form is defined as usual, besides that
a γ-quantifier, say “∃xB1 .”, followed by a slash as in “∃xB1/xB0 .”, is raised such that xB0 does
not appear as an argument to the raising function for xB1 . Accordingly, mutatis mutandis,
(H2) as well as (H2′) are equivalent to their common raised form (H3) below, where xB0 does
not occur as an argument to the raising function xB1 — contrary to (S3), which is strictly
implied by (H3) because we can choose the love of the woman differently for different men.

∃y B1 . ∃xB1 . ∀xB0 . ∀y B0 .




(
Female(xB0)

∧ Male(y B0 )

)
⇒




Loves(xB0 , y
B
1 (xB0))

∧ Loves(y B0 , xB1(y
B
0 ))

∧ Loves(y B1 (xB0), x
B
1(y

B
0 ))

∧ Loves(xB1(y
B
0 ), y B1 (xB0))





 (H3)

Now, (H3) looks already very much like the following tentative representation of (H1) in
our framework of variables and free atoms:

(
Female(xA0)

∧ Male(yA0 )

)
⇒




Loves(xA0 , y
V
1)

∧ Loves(yA0 , xV1)
∧ Loves(yV1 , x

V
1)

∧ Loves(xV1, y
V
1)


 (H1′)

with choice-condition C given by

C(yV1) := εy B1 . (Female(xA0) ⇒ Loves(xA0 , y
B
1 ))

C(xV1) := εxB1 . (Male(yA0 ) ⇒ Loves(yA0 , xB1))

which requires our positive/negative variable-condition (P, N) to contain (xA0 , y
V
1) and (yA0 , xV1)

in the positive relation P (by item3 of Definition 5.12). This choice-condition mirrors the
structure of the natural-language sentence (H1) as close as possible. Actually, however,
we do not need any non-empty choice-condition here at all. Indeed, to find a representa-
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tion in our framework, we can also work with an empty choice-condition. Crucial for our
discussion, however, is that we can have

(xA0 , y
V
1), (y

A
0 , xV1)∈P .

Indeed: Otherwise the loves could not depend on their lovers. And this means that in a proof
attempt for this sentence we cannot choose the woman’s love according to the woman we are
treating, such that we would have to select the loves of Bloody Mary and Audrey Hepburn
by means of the same description. Thus, in the following, let us definitely put these two
pairs into P , no matter whether we do this because of the choice-conditions supporting
natural language representation or because we want to have a chance to complete a proof
of this sentence later.

In any case, we can add (yV1 , y
A
0 ) to the negative relation N here, namely to express that

yV1 must not read yA0 . Then we obtain:

yV1
N

((

xA0
Poo

xV1 yA0
Poo

The same variable-condition is also obtained if we start with the empty variable-condition
(P, N) := (∅, ∅), remove all quantifiers from (S2′) with our γ- and δ−-rules, and then add
{(xA0 , yV1), (yA0 , xV1)} to P.

The corresponding procedure for (H2′), however, has to add also (xV1, x
A
0) to N as part

of the last γ-step that removes the IF-logic quantifier “∃xB1/xA0 .” and replaces xB1 with xV1.
After this procedure, our current positive/negative variable-condition is now given as (P, N)
with P = {(xA0 , yV1), (yA0 , xV1)} and N = {(yV1 , yA0 ), (xV1, x

A
0)}. Thus, we have a single cycle

in the graph, namely the following one:

yV1
N

((

xA0
Poo

xV1

N

66

yA0
Poo

But this cycle necessarily has two edges from the negative relation N . Thus, in spite of
this cycle, our positive/negative variable-condition (P, N) is consistent by Corollary 5.6.

With the variable-conditions of [Wirth, 2002; 2004; 2006a; 2008; 2012b; 2006b], how-
ever, this cycle necessarily destroys the consistency, because they have no distinction be-
tween the edges of N and P .

Therefore — if the discussion in [Wirth, 2006b, § 6.4.1] is sound — our new framework
of this paper with positive/negative variable-conditions is the only one among all approaches
suitable for describing the semantics of noun phrases in natural languages that admits us
to model IF-logic and Henkin quantifiers without raising.

While the rules for δ-quantifiers of IF logic work just like our normal δ-rules (indeed,
the law of the excluded middle fails to hold in IF logic in general), we can now formalize
the inference rule for the γ-quantifiers of IF logic as follows:
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Let xVA be a variable or a free atom.
Let t be any term not containing xVA (i.e. xVA 6∈VA(t)):

Γ ∃y B/xVA. A Π

A{y B 7→t} Γ ∃y B/xVA. A Π V(t)× {xVA}
Γ ¬∀y B/xVA. A Π

¬A{y B 7→t} Γ ¬∀y B/xVA. A Π V(t)× {xVA}
Here, V(t)×{xVA} should be added to N, the negative part of the current positive/negative
variable-condition (P, N) — no matter whether we have the case xVA ∈V or actually xVA ∈A.
Note that the first of these two cases may violate our range restriction for the negative part
given in Definition 5.4, but this range restriction was chosen here mainly for technical
simplification (cf. § C).

Moreover, note that, because xVA is not fresh but was typically introduced by a previous
application of a δ−- or δ+-rule, the application of a γ-rule for IF-logic quantifiers could
result in an inconsistent positive/negative variable-condition. Thus, we have to add the
requirement for the consistency of the resulting variable-condition as a precondition for the
application of these new inference rules.

With these γ-rules for IF-logic quantifiers, we can obtain the cyclic graph above from
(H2) or (H2′) just as we obtained the non-cyclic graph above from (S2′). If we replace
the two applications of δ−-rules here with two applications of δ+-rules and start from (H2),
then the resulting graph becomes

yV1
N

((

xV0
Poo

P
²²

xV1

N

66

yV0
Poo

If we start from (H2′), we obtain
yV1

P

((RRRRRRRRRRRRRRRRRRR xV0
Poo

P
²²

xV1

N

66

yV0
Poo

Each of these graphs has the same cycle with only one edge from the negative part N, which
means that each of the variable-conditions is inconsistent. Thus, it seems that the applica-
tion of δ+-rules to δ-quantifiers with IF-logic γ-quantifiers in their scope is not to be recom-
mended and the δ−-rules should be used instead, just as for outer δ-quantifiers over which
we want to do mathematical induction in the style of descente infinie. If we always do so,
variables will hardly occur in the second component of IF-logic quantifiers, and then we
can get along with the case of xVA ∈A in the above new γ-rules and do not have to modify
our range restriction on the negative part of our positive/negative variable-conditions.

The other direction in which one might cure the inconsistency is to liberalize our δ+-rules
further. The variables and free atoms these rules introduce to the domain of the positive
variable-condition have to cover exactly the ones occurring in the ε-term of its choice-
condition. But we can simplify this ε-term in this case to

εy B0 . ¬∃xB1/xV0. (Male(y B0 ) ⇒ Loves(y B0 , xB1)).
If we managed to liberalize our δ+-rules to work with this choice-condition here, in which
neither xV0 nor yV1 occur (as the one in “/xV0 ” does not count), then we could remove the
downward edges forP in each of the latter two diagrams, and consistency would be regained.
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7 Formal Presentation of our Semantics

To satisfy Requirement III (Semantics) of § 4.2, we will now present our novel semantics
for Hilbert’s ε formally. In §§ 7.1 and 7.2, we explain how to deal with variables. After
formalizing the compatibility of choice-conditions (§ 7.3), we define our notion of validity
and discuss some examples (§ 7.5). Our interest goes beyond soundness in that we want to
have “preservation of solutions”. By this we mean the following: All closing substitutions
for the variables — i.e. all solutions that transform a proof attempt (to which a proposi-
tion has been reduced) into a closed proof — are also solutions of the original proposition.
This is similar to a proof in Prolog (cf. [Kowalski, 1974], [Clocksin & Mellish, 2003]),
computing answers to a query proposition that contains variables. Therefore, we discuss
this solution-preserving notion of reduction (§ 8), in particular under the aspect of exten-
sions of choice-conditions, and under the aspect of global instantiation of variables with
choice-conditions (“ε-substitution”). Finally, in § 8.1, we show soundness, safeness, and
solution-preservation for our γ-, δ−, and δ+-rules of §§ 3.4, 3.5, and 3.6.

All in all, we extend and simplify the presentation of [Wirth, 2008], which already
simplifies and extends the presentation of [Wirth, 2004] and which is extended with ad-
ditional linguistic applications in [Wirth, 2006b]. Note, however, that [Wirth, 2004]
additionally contains some comparative discussions and compatible extensions for descente
infinie, which also apply to our new version here.

7.1 Semantic Presuppositions

Instead of defining truth from scratch, we require some abstract properties typically holding
in two-valued model semantics.

Truth is given relative to a Σ-structure S, which provides some non-empty set as the
universe (or “carrier”, “domain”) (for each type). Moreover, we assume that every Σ-struc-
ture S is not only defined on the predicate and function symbols of the signature Σ, but is
defined also on the symbols ∀ and ∃ such that S(∃) serves as a function-choice function
for the universe function S(∀) in the sense that, for each type α of Σ, the universe for the
type α is denoted by S(∀)α and S(∃)α ∈ S(∀)α.

For X ⊆ VAB, we denote the set of partial S-valuations of X (i.e. the set of functions
mapping a (possibly non-proper) subset of X to objects of the universe of S) with

X ; S ,
and the set of (total) S-valuations of X with

X→ S ,
the subset of those δ : X ; S that are total on X, i.e. those δ ∈ X ; S with dom(δ) = X.
Here we always expect types to be respected in the sense that, for each δ : X ; S and for
each xVAB ∈ dom(δ) with xVAB : α (i.e. xVAB has type α), we have δ(xVAB) ∈ S(∀)α.

For δ : X→ S, we denote with “S ] δ ” the extension of S to X. More precisely,
we assume some evaluation function “eval” such that eval(S]δ) maps every term whose
free-occurring symbols are from Σ]X into the universe of S (respecting types). Moreover,
eval(S]δ) maps every formula B whose free-occurring symbols are from Σ]X to TRUE or
FALSE, such that:

B is true in S]δ iff eval(S]δ)(B) = TRUE.
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We leave open what our formulas and what our Σ-structures exactly are. The latter can
range from first-order Σ-structures to higher-order modal Σ-models; provided that the
following three properties — which (explicitly or implicitly) belong to the standard of
most logic textbooks — hold for every term or formula B, every Σ-structure S, and every
S-valuation δ : VAB; S .
Explicitness Lemma
The value of the evaluation of B depends only on the valuation of those variables and atoms
that actually have free occurrences in B; i.e., for X := VAB(B), if X ⊆ dom(δ), then:

eval(S ] δ)(B) = eval(S ] X»δ)(B).

Substitution [Value] Lemma
Let σ be a substitution on VAB. If VAB(Bσ) ⊆ dom(δ), then:

eval(S ] δ)(Bσ) = eval
(
S ] (

( σ ] VAB\dom(σ)»id ) ◦ eval(S ] δ)
) )(

B
)
.

Valuation-Lemma(l ∈ N)
The evaluation function treats application terms from VAB straightforwardly in the sense
that for every vVAB0 , . . . , vVABl−1, y

VAB ∈ dom(δ) with vVAB0 : α0, . . . , vVABl−1 : αl−1,
yVAB : α0, . . . , αl−1 → αl for some types α0, . . . , αl−1, αl, we have:

eval(S ] δ)(yVAB(vVAB0 , . . . , vVABl−1)) = δ(yVAB)(δ(vVAB0 ), . . . , δ(vVABl−1)).

In the case of l = 0, this equation is meant to be read as eval(S ] δ)(yVAB) = δ(yVAB). For
the case of lÂ 0 — a case we only need if choice-conditions with a non-empty λ-prefix
in front of the ε-binder occur, such as in the proof of Theorem7.5 — the variable yVAB is
a higher-order symbol. Besides this, however, the basic language of the general reasoning
framework may well be first-order and does not have to include function application.

Moreover, in the cases where we explicitly refer to quantifiers, implication, or negation,
such as in our inference rules of §§ 3.4, 3.5, and 3.6, or in our version of axiom (ε0) (cf. Defini-
tion 4.12), and in the lemmas and theorems that refer to these (namely Lemmas 7.10
and 7.11 and Theorems 8.3, 8.5(6)),4 we have to know that the quantifiers, the implication,
and the negation show the standard semantic behavior of classical logic:

∀-Lemma
Assume VAB(∀xB. A) ⊆ dom(δ). The following two are equivalent:
• eval(S ] δ)(∀xB. A) = TRUE
• eval(S ] VAB\{xB}»δ ] χ)(A) = TRUE for every χ : {xB} → S

∃-Lemma
Assume VAB(∃xB. A) ⊆ dom(δ). The following two are equivalent:
• eval(S ] δ)(∃xB. A) = TRUE,
• eval(S ] VAB\{xB}»δ ] χ)(A) = TRUE for some χ : {xB} → S

⇒-Lemma
Assume VAB(A⇒B) ⊆ dom(δ). The following two are equivalent:
• eval(S ] δ)(A⇒B) = TRUE
• eval(S ] δ)(A) = FALSE or eval(S ] δ)(B) = TRUE

¬-Lemma
Assume VAB(A) ⊆ dom(δ). The following two are equivalent:
• eval(S ] δ)(A) = TRUE
• eval(S ] δ)(¬A) = FALSE
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7.2 Semantic Relations and S-Raising-Valuations

We now come to some technical definitions required for our semantic (model-theoretic)
counterparts of our syntactic (P, N)-substitutions.

Let S be a Σ-structure. An S-raising-valuation π plays the rôle of a raising function,
a dual of a Skolem function as defined in [Miller, 1992]. This means that π does not
simply map each variable directly to an object of S (of the same type), but may additionally
read the values of some free atoms under an S-valuation τ : A→ S. More precisely, we
assume that π takes some restriction of τ as a second argument, say τ ′ : A ; S with
τ ′ ⊆ τ . In short:

π : V→ (A ; S) ; S.
Moreover, for each variable xV, we require that the set dom(τ ′) of atoms read by π(xV) is
identical for all τ . This identical set will be denoted with Sπ〈{xV}〉 below. Technically,
we require that there is some “semantic relation” Sπ ⊆ A×V such that for all xV ∈ V:

π(xV) : (Sπ〈{xV}〉 → S)→ S.

This means that π(xV) can read the τ -value of yA if and only if (yA, xV)∈Sπ. Note that,
for each π : V→ (A ; S) ; S, at most one such semantic relation exists, namely the
one of the following definition.

Definition 7.1 (Semantic Relation (Sπ))
The semantic relation for π is

Sπ := { (yA, xV) | xV ∈V ∧ yA ∈ dom(
⋃

(dom(π(xV)))) }.
Let us explain our intention with the operator sequence of the set from which yA is taken
here: For π : V→ (A ; S) ; S and xV ∈V we first get that dom(π(xV)) is a subset
of A ; S, which again is a subset of the power-set of A × ⋃

α S(∀)α; therefore we get⋃
dom(π(xV)) ⊆ A×⋃

α S(∀)α and dom(
⋃

dom(π(xV))) ⊆ A. This means that Sπ〈{xV}〉
collects all atoms yA which may ever occur in the domain of some τ : A ; S on which
π(xV) is defined. Yet, we still have to specify that these τ have all the same domain:

Definition 7.2 (S-Raising-Valuation)
Let S be a Σ-structure. π is an S-raising-valuation if

π : V→ (A ; S) ; S
and, for all xV ∈ dom(π):

π(xV) : (Sπ〈{xV}〉 → S)→ S.

Finally, we need the technical means to turn an S-raising-valuation π together with an
S-valuation τ of the atoms into an S-valuation e(π)(τ) of the variables:

Definition 7.3 (e)
We define the function e : (V ; (A ; S) ; S) → (A→ S) → V ; S
for π : V ; (A ; S) ; S, τ : A→ S, xV ∈ V
by e(π)(τ)(xV) := π(xV)(Sπ〈{xV}〉»τ).

The “e” stands for “evaluation” and replaces an “ε” used in previous publications, which
was too easily confused with the symbol for Hilbert’s ε.
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7.3 Compatibility of Choice-Conditions

Definition 7.4 (Compatibility)
Let C be a (P,N)-choice-condition. Let S be a Σ-structure.
π is S-compatible with (C, (P, N)) if the following items hold:

1. π is an S-raising-valuation and (P ∪Sπ, N) is a consistent positive/negative variable-
condition, cf. Definitions 7.2, 7.1, and 5.5.

2. For every yV ∈ dom(C), with C(yV) = λv B0 , . . . , v Bl−1. εv Bl . B and B(B)⊆{v B0 , . . . , v Bl }
for some formula B, and for every τ : A→ S, and for every χ : {v B0 , . . . , v Bl } → S:

If B is true in S ] e(π)(τ) ] τ ] χ,
then B{v Bl 7→ yV(v B0 , . . . , v Bl−1)} is true in S ] e(π)(τ) ] τ ] χ as well.

To understand item2 of Definition 7.4, let us consider a (P, N)-choice-condition
C := {(yV, λv B0 , . . . , v Bl−1. εv Bl . B)},

which restricts the value of yV according to the term λv B0 , . . . , v Bl−1. εv Bl . B. Then, roughly
speaking, this choice-condition C requires that whenever there is a χ-value of v Bl such that
B is true in S ] e(π)(τ) ] τ ] χ, the π-value of yV is chosen in such a way that

B{v Bl 7→ yV(v B0 , . . . , v Bl−1)}
becomes true in S ] e(π)(τ) ] τ ] χ as well. Note that the variables of the formula
B{v Bl 7→ yV(v B0 , . . . , v Bl−1)} cannot read the χ-value of any of the bound atoms v B0 , . . . , v Bl ,
because variables can never depend on (the values of) any bound atoms.

Moreover, item2 of Definition 7.4 is closely related to Hilbert’s ε-operator in the sense
that — roughly speaking — yV must be given one of the values admissible for

λv B0 , . . . , v Bl−1. εv Bl . B.
As the choice for yV depends on the symbols that have a free occurrence in that term,
we included these dependencies into the positive relation P of the consistent positive/ne-
gative variable-condition (P,N) in item3 of Definition 5.12 (Choice-Condition). By this
inclusion, conflicts like the one shown in Example 5.13(c) are obviated.

7.4 Existence of Compatible Raising-Valuations

Let (P,N) be a consistent positive/negative variable-condition. Then the empty func-
tion ∅ is a (P, N)-choice-condition. Moreover, each π : V→ {∅} → S is S-compatible
with (∅, (P, N)) because of Sπ = ∅.

Furthermore, assuming an adequate Axiom of Choice on the meta level, a compatible π
always exists according to the following Theorem7.5. This existence mainly relies on
item3 of Definition 5.12 and on the well-foundedness of P. This theorem is only technically
complicated and, roughly speaking, just says that we have formalized our (P, N)-choice-
conditions well, in the sense that, for any (P, N)-choice-condition C, we can always define
an S-compatible S-raising-valuation π by recursion over the well-founded ordering P +.

4(Which directions of the equivalences ∀-, ∃-, ⇒-, and ¬-lemmas are needed where?)
Lemma7.10 depends on the backward directions of the ∀-Lemma and the ⇒-Lemma, and on the forward
direction of the ∃-Lemma. Lemma7.11 and Theorem8.5(6) depend on the forward directions of the ∀-
Lemma and the ⇒-Lemma, and on the backward direction of the ∃-Lemma. Theorem8.3 depends on
both directions of the ∀-Lemma, of the ∃-Lemma, and of the ¬-Lemma.
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We can choose between two variants of π. For the one reading only the free atoms
it must read, we set R := A»(P +); for the one reading all free atoms it may read without
violating the compatibility requirements, we set R := (A×V) \ (P ∗◦N)−1.

Moreover, π can be defined even if its values onV \dom(C) are already fixed, say by an
S-raising-valuation ρ with Sρ ⊆ R.

Theorem 7.5 (Existence of Two S-Compatible S-Raising-Valuations)
Let C be a (P, N)-choice-condition. Let S be a Σ-structure. Assume that, for every choice
type α of C, there is a generalized choice function on the power-set of S(∀)α.

Let the binary relation R be defined according to one of the two alternatives mentioned above,
i.e. either by R := A»(P +), or else by R := (A×V) \ (P ∗◦N)−1.

[Let ρ be an S-raising-valuation with Sρ ⊆ R. ]

Then there is an S-raising-valuation π such that the following hold:

• π is S-compatible with (C, (P,N)).

• Sπ = R.

[• For all τ : A→ S and all yV ∈ V \ dom(C): e(π)(τ)(yV) = e(ρ)(τ)(yV). ]

In § 5.5 we were able to state in Corollary 5.9 that consistency of an extension implies the
consistency of the original positive/negative variable-condition. The analogous property
for an extended extension, however, could not be stated in § 5.7 because it is a semantic
property that requires Definition 7.4 (Compatibility) to be already given. So here comes
this simple soundness property for extended extensions:

Lemma 7.6 (Extended Extension)
Let (C ′, (P ′, N ′)) be an extended extension of (C, (P, N)).
If π is S-compatible with (C ′, (P ′, N ′)), then π is S-compatible with (C, (P, N)) as well.

7.5 (C, (P, N))-Validity

Definition 7.7 ((C, (P, N))-Validity, K)
Let C be a (P, N)-choice-condition. Let G be a set of sequents.
Let S be a Σ-structure. Let δ : VA; S be an S-valuation.
G is (C, (P, N))-valid in S if

G is (π,S)-valid for some π that is S-compatible with (C, (P, N)).
G is (π,S)-valid if G is true in S ] e(π)(τ) ] τ for every τ : A→ S.
G is true in S]δ if Γ is true in S]δ for all Γ ∈ G.
A sequent Γ is true in S]δ if there is some formula listed in Γ that is true in S]δ.
Validity in a class of Σ-structures is understood as validity in each of the Σ-structures of
that class. If we omit the reference to a special Σ-structure we mean validity in some fixed
class K of Σ-structures, such as the class of all Σ-structures or the class of Herbrand
Σ-structures.



56

Note that the quantification over π in Definition 7.7 is an existential one. Such a definition
of validity makes sense only if such a π is always known to exist, simply because otherwise
even the standard tautologies would not be valid. In our framework this existence is guar-
anteed by Theorem7.5. The price we have to pay for this theorem is that — according to
the definition of choice-conditions (Definition 5.12) — for any (P,N)-choice-condition C,
for any zV ∈ dom(C) and yVA ∈ VA(C(zV)), we have yVAP +zV in the well-founded order-
ing P +, cf. Definition 5.12. Thus, as a corollary of Theorem7.5 we get:

Corollary 7.8 (Validity of Tautologies)
The set of the tautologies described in § 3.1 is (C, (P,N))-valid in S
for any (P, N)-choice-condition C and any Σ-structureS, provided that for every choice
type α of C, there is a generalized choice function on the power-set of S(∀)α.

Under this assumption on the existence of generalized choice functions, we can now consider
some very elementary examples on the basic ideas behind our notion of validity.

Example 7.9 ((∅, (P,N))-Validity)

For xV ∈ V, yA ∈ A, the single-formula sequent xV = yA is (∅, (∅, ∅))-valid in any Σ-struc-
ture S because we can choose Sπ := A×V and π(xV)(τ) := τ(yA) for τ : A→ S, resulting in

e(π)(τ)(xV) = π(xV)(Sπ〈{xV}〉»τ) = π(xV)(A»τ) = π(xV)(τ) = τ(yA).

This means that (∅, (∅, ∅))-validity of xV = yA is equivalent to validity of

∀y B0 . ∃xB0 . (xB0 = y B0 ). (1)

Moreover, note that e(π)(τ) has access to the τ -value of yA just as a raising function xB1
for xB0 has access to y B0 in the raised (i.e. dually Skolemized) form ∃xB1 . ∀y B0 . (xB1(y

B
0 ) = y B0 )

of (1).

Contrary to this, for P := ∅ and N := V×A, the same single-formula sequent xV = yA

is not (∅, (P,N))-valid in general, because then the required consistency of (P ∪ Sπ, N)
implies Sπ = ∅; otherwise P ∪Sπ∪N has a cycle of length 2 with exactly one edge
from N . Thus, the value of xV cannot depend on τ(yA) anymore:

π(xV)(Sπ〈{xV}〉»τ) = π(xV)(∅»τ) = π(xV)(∅).
This means that (∅, (∅,V×A))-validity of xV = yA is equivalent to validity of

∃xB0 . ∀y B0 . (xB0 = y B0 ). (2)

Moreover, note that e(π)(τ) has no access to the τ -value of yA just as a raising function xB1
for xB0 has no access to y B0 in the raised form ∃xB1 . ∀y B0 . (xB1() = y B0 ) of (2).

For a more general example let G = { Ai,0 . . . Ai,ni−1 | i∈ I }, where, for i ∈ I and
j≺ni, the Ai,j are formulas with variables from v and atoms from a.
Then (∅, (∅,V×A))-validity of G means validity of ∃v. ∀a. ∀i∈ I. ∃j≺ni. Ai,j

whereas (∅, (∅, ∅))-validity of G means validity of ∀a. ∃v. ∀i∈ I. ∃j≺ni. Ai,j
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For a further example on validity, see Example 6.1, which treats Henkin quantification and
IF-logic quantifiers.

Ignoring the question of γ-multiplicity, also any other sequence of universal and exis-
tential quantifiers can be represented by a consistent positive/negative variable-condition,
simply by starting from the consistent positive/negative variable-condition (∅, ∅) and apply-
ing the γ- and δ-rules from §§ 3.4, 3.5, and 3.6. A reverse translation of a positive/negative
variable-condition (P, N) into a sequence of quantifiers, however, may require a strengthen-
ing of dependencies, in the sense that a subsequent backward translation would result in a
more restrictive consistent positive/negative variable-condition (P ′, N ′) with P ⊆ P ′ and
N ⊆ N ′. This means that our framework can express quantificational dependencies more
fine-grained than standard quantifiers; cf. Example 6.1.

7.6 Validity of Our Version QC of Hilbert–Bernays’ Axiom (ε0)

As already explained in § 4.14, the single-formula sequent QC(yV) of Definition 4.12 is the
formulation of axiom (ε0) of § 4.6 in our framework. In § 4.14, we already stated its validity,
which we have formalized just now in Definition 7.7. It is now high time to show this
validity:

Lemma 7.10 ((C, (P,N))-Validity of QC(yV))
Let C be a (P,N)-choice-condition. Let yV ∈ dom(C). Let S be a Σ-structure.

1. QC(yV) is (π,S)-valid for every π that is S-compatible with (C, (P, N)).

2. QC(yV) is (C, (P,N))-valid in S; provided that for every choice type α of C (cf. Defini-
tion 5.12), there is a generalized choice function on the power-set of S(∀)α.

7.7 The Main Lemma on Substitution of Variables

Suppose we have a (P,N)-choice-condition C and formula B as our current state of the proof
attempt. Let us apply a (P, N)-substitution σ to this whole state. Then our new choice-
condition (C ′, (P ′, N ′)) will be the extended σ-update of (C, (P, N)). Now assume that,
for some Σ-structure S, we have found some S-raising-valuation π′ which is S-compatible
with (C ′, (P ′, N ′)) and for which the formula Bσ is (π′,S)-valid. To show that the original
proof attempt reduces to the new one, we have to construct an S-raising-valuation π which is
S-compatible with (C, (P,N)) and for which B is (π,S)-valid. Critical for this construction
is a set O ⊆ dom(σ) ∩ dom(C) for which our way of expressing the axiom (ε0), i.e. the set
of single-formula sequents (〈O〉QC)σ, has to be added to the set with the single-formula
sequent Bσ of our new state. Luckily, the reverse of O ⊆ dom(σ)∩dom(C) is not required,
provided that we find some set O′ ⊆ dom(C)\(O ∪ V(B)) (i.e. of variables irrelevant for B)
such that dom(σ) ∩ dom(C) ⊆ O′ ]O.
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For easy look-up we represent the situation described here not with one of the popular
Venn diagrams, but with a much clearer Lambert diagram [Lambert, 1764, Dianoiologie,
§§ 173–194]:

←−−−−−−−−−−−−−−−−−−−−−−−V−−−−−−−−−−−−−−−−−−−−−−−→
←−−−−−−−−dom(C)−−−−−−−−→

←−−−−−−−−dom(σ)−−−−−−−−→
←−−−−O′−−−−→←−O−→

In general, a Lambert diagram expresses nothing but the following: If — in vertical
projection — each point of the overlap of the lines for classes A1, . . . , Am on different
levels is covered by a line for the classes B1, . . . , Bn then A1 ∩ · · · ∩ Am ⊆ B1 ∪ · · · ∪ Bn;
moreover, on each level, the points not covered by a line for A are considered to be covered
by a line for the complement A .

Lemma 7.11 ((P,N)-Substitutions and (C, (P, N))-Validity)
Let C be a (P, N)-choice-condition.
Let σ be a (P,N)-substitution. Let (C ′, (P ′, N ′)) be the extended σ-update of (C, (P, N)).
Let S be a Σ-structure. Let π′ be S-compatible with (C ′, (P ′, N ′)).
Let O and O′ be two disjoint sets with O ⊆ dom(σ) ∩ dom(C) and O′ ⊆ dom(C) \O.
Moreover, assume that σ respects C on O in the given semantic context in the sense that
(〈O〉QC)σ is (π′,S)-valid. Furthermore, regarding the set O′ (where σ may disrespect C),
assume the following items to hold:

• O′ covers the variables in dom(σ) ∩ dom(C) besides O in the sense of
dom(σ) ∩ dom(C) ⊆ O′ ]O.

• O′ satisfies the closure condition 〈O′〉P + ∩ dom(C) ⊆ O′.

• For every yV ∈ O′, for α being the choice type of C(yV) (cf. Definition 5.12),
there is a generalized choice function on the power-set of S(∀)α.

Then there is an S-raising-valuation π that is S-compatible with (C, (P, N)) and satisfies
the following:

1. For every term or formula B with O′ ∩ V(B) = ∅ and possibly with some unbound
occurrences of bound atoms from a set W ⊆ B, and for every τ : A→ S and every
χ : W → S: eval(S ] e(π′)(τ) ] τ ] χ)(Bσ) = eval(S ] e(π)(τ) ] τ ] χ)(B).

2. For every set of sequents G with O′ ∩ V(G) = ∅ we have:

Gσ is (π′,S)-valid iff G is (π,S)-valid.

Note that Lemma7.11 gets a lot simpler when we require the entire (P,N)-substitution σ
to respect the (P, N)-choice-condition C by setting O := dom(σ) ∩ dom(C) and O′ := ∅;
in particular all requirements on O′ are trivially satisfied then. Moreover, note that the
(still quite long) proof of Lemma7.11 is more than a factor of 2 shorter than the proof
of the analogous LemmaB.5 in [Wirth, 2004] (together with LemmaB.1, its additionally
required sub-lemma).



59

8 Reduction

Reduction is the reverse of consequence. It is the backbone of logical reasoning, especially
of abduction and goal-directed deduction. In our case, a reduction step does not only
reduce a set of problems describing a state to another set of problems, but also guaran-
tees that the solutions of the latter also solve the former; here “solutions” means those
S-raising-valuations of the variables from V which are S-compatible with (C, (P,N)) for
the positive/negative variable-condition (P,N) and the (P, N)-choice-condition C given as
the context of the states.

Definition 8.1 (Reduction)
Let (P, N) be a positive/negative variable-condition. Let C be a (P,N)-choice-condition.
Let G0 and G1 be sets of sequents. Let S be a Σ-structure.
G0 (C, (P, N))-reduces to G1 in S if for every π that is S-compatible with (C, (P, N)):

If G1 is (π,S)-valid, then G0 is (π,S)-valid as well.

The most obvious requirements on logical problem reduction are the following:

1. Validity: If the reduct of a goal is valid, so is the goal.

2. Reflexivity: Any superset of the problems of a goal is a reduct of this goal. This
includes reflexivity of reduction by the case of a non-proper superset.

3. Transitivity: The reduct of the reduct of a goal is a reduct of the goal.

4. Additivity: The union of the reducts of two goals is a reduct of the union of these
goals.

These requirements are satisfied by our notion of reduction, of course:

Corollary 8.2 (Reduction)
Let (P,N) be a positive/negative variable-condition. Let C be a (P, N)-choice-condition.
Let G0, G1, G2, and G3 be sets of sequents. Let S be a Σ-structure.
1. (Validity) If G0 (C, (P, N))-reduces to G1 in S and G1 is (C, (P, N))-valid in S,

then G0 is (C, (P,N))-valid in S, too.
2. (Reflexivity) In case of G0⊆G1: G0 (C, (P, N))-reduces to G1 in S.
3. (Transitivity) If G0 (C, (P,N))-reduces to G1 in S

and G1 (C, (P,N))-reduces to G2 in S,
then G0 (C, (P,N))-reduces to G2 in S.

4. (Additivity) If G0 (C, (P,N))-reduces to G2 in S
and G1 (C, (P,N))-reduces to G3 in S,
then G0∪G1 (C, (P,N))-reduces to G2∪G3 in S.
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8.1 Mutual Reduction of α-, β-, γ-, δ-Rules

Soundness of inference rules has the global effect that if we reduce a set of sequents to an
empty set, then we know that the original set is valid. Soundness is an essential property
of inference rules.

Safeness of inference rules has the global effect that if we reduce a set of sequents to an
invalid set, then we know that already the original set was invalid. Safeness is helpful in
rejecting false assumptions and in patching failed proof attempts.

As explained before, for a reduction step in our framework, we are not contend with
soundness: We want solution-preservation in the sense that an S-raising-valuation π that
makes the set of sequents of the reduced proof state (π,S)-valid is guaranteed to do the
same for the original input proposition, provided that π is S-compatible with (C, (P,N))
for the positive/negative variable-condition (P, N) and the (P, N)-choice-condition C given
as the context of the states.

All our inference rules of § 3 have all of these three properties. This is obvious for the
trivial α- and β-rules. For the inference rules where this is not obvious, i.e. our γ- and δ−-
and δ+-rules of §§ 3.4, 3.5, and 3.6, we state these properties in the following theorem.

Theorem 8.3 (All γ- and δ-rules are sound and safe (besides α- and β-rules))
Let (P, N) be a positive/negative variable-condition. Let C be a (P,N)-choice-condition.
Let us consider any of the γ-, δ−-, and δ+-rules of §§ 3.4, 3.5, and 3.6.
Let G0 and G1 be the sets of the sequent above and of the sequents below the bar of that
rule, respectively.
Let C ′′ be the set of the pair indicated to the upper right of the bar if there is any (which is
the case only for the δ+-rules) or the empty set otherwise.
Let V be the relation indicated to the lower right of the bar if there is any (which is the case
only for the δ−- and δ+-rules) or the empty set otherwise.
Let us weaken the informal requirement “Let xA be a fresh free atom” of the δ−-rules to its
technical essence “xA ∈ A \ (

dom(P ) ∪ A(Γ, A, Π)
)
”.

Let us weaken the informal statement “Let xV be a fresh variable” of the δ+-rules to its
technical essence “xV ∈ V \ (

dom(C ∪ P ∪N) ∪ V(A)
)
”.

Let us set C ′ := C ∪ C ′′, P ′ := P ∪ V ¹V, N ′ := N ∪ V ¹A.
Then (C ′, (P ′, N ′)) is an extended extension of (C, (P, N)) (cf. Definition 5.14).
Moreover, for the considered inference rule, in every Σ-structure S, S-validity below and
above the bar mutually imply each other (i.e. the rule is sound and save), even in the stronger
form of solution-preservation in the sense that G0 and G1 mutually (C ′, (P ′, N ′))-reduce to
each other.

8.2 From Safe Proof Steps to Lemma Application and
Instantiation of Variables

We may have come along with the idea that deduction is drawing formulas out of a heap of
valid formulas to sew them together into a new valid formula, and that reduction is taking
a formula to pieces with the guarantee that an invalid formula produces at least one invalid
formula again.
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After Theorem8.3 of § 8.1 — implying that all our α-, β-, γ-, and δ-rules describe logical
equivalence transformations — it may now seem, however, that deduction and reduction
do not differ for our rules as they are all both sound and safe. After all, these few rules,
all by themselves, joined with the structural tautologies of § 3.1, are complete for classical
first-order logic [with equality].

So how can unsafe steps occur in our proof trees? Well, to end up with the obligation
to prove an invalid set of goals to which we have reduced an initially valid goal, there are
the following two ways.

8.2.1 Application of Induction Hypotheses and Lemmas

The first is the application of induction hypotheses or lemmas. In such proof steps we may
apply the root sequent of a proof tree to a leaf of some proof tree as an induction hypothesis
or as a lemma. For soundness, the lemma-application relation among proof trees must be
acyclic. In particular, we must not apply a lemma to its own proof tree. With induction
hypotheses there is no such acyclicity requirement and an induction hypothesis will typically
be applied in its own proof tree; soundness must be guaranteed for induction hypotheses,
however, by a weight term with which each sequent is augmented and which generates
an additional goal at the leaf to guarantee that the weight of the induction hypothesis
is smaller in a well-founded ordering than the weight of the goal to which it is applied.

Technically, the standard way of applying the sequent A0 . . . Al as a lemma instanti-
ated via a substitution ν on A — with V(A0, . . . , Al)×dom(ν) ⊆ N for our positive/ne-
gative variable-condition (P, N) — to a leaf with the sequent Π is to add to this leaf the
child nodes with the sequents Π ¬Aoν,

Π ¬A1ν A0ν,...
...

... . . .
Π ¬Alν Al−1ν . . . A0ν.

As the former leaf sequent Π is a sub-sequent of all the sequents of its child nodes, such a
lemma application is safe. If it is unsound, then Π must be false and all the child sequents
true for some valuation and some structure, and then the sequent A0ν . . . Alν must be
false. Then, by Theorem8.5(3) in the following § 8.3, the lemma A0 . . . Al must be false
itself. Therefore, when the lemma has been shown, lemma application is sound.

The generation of lemmas is an essential element for structuring bigger proofs. If
a lemma is generated to close an open goal, it will typically be stronger than what is
required for actually closing that goal. This means that the open goal is generalized in
the generation of the lemma, so that it will be applicable to many other open goals in the
future as well. Moreover, lemmas should always capture the semantic knowledge about a
reasoning domain in the strongest possible form, because then they inform the prover and
its human user optimally about this domain. While generalization is a good practice in the
formation of lemmas, it is a must for the generalization of induction hypotheses, because
a stronger induction hypothesis provides a stronger tool in its own proof and because this
additional strength is typically required for the induction proof to succeed.

An induction-hypothesis or lemma application step may be unsound if and only if it ap-
plies an invalid conjecture, typically resulting from “over-generalization”, which is the main
source for the obligation to prove an invalid conjecture for showing an initially valid goal.
Along the above argumentation, however, induction-hypothesis and lemma application steps
are always safe within their proof tree and never turn safe proof steps into unsafe ones.
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8.2.2 Instantiation of Variables

The second possible source for the obligation to prove an invalid goal for showing an initially
valid one is the invalidating instantiation of variables via a (P, N)-substitution σ in the
context of a (P,N)-choice-condition C. Let us set M := dom(σ)∩ dom(C). Thus, M is
the set of those variables that are instantiated by σ although the choice of their values is
restricted by C.

In most practical cases, the possibility in the Theorem8.5(2) of the following § 8.3 to
reduce the set M to a set O is not required because we can cut down the domain of σ to the
actually occurring variables. Thus, let us take V := V. Then we get O = M and O′= ∅,
and Theorem8.5(2) simplifies to its following corollary.

Corollary 8.4 (Instantiation of Variables)
Let (P,N) be a positive/negative variable-condition. Let C be a (P, N)-choice-condition.
Let G0 and G1 be sets of sequents. Let S be a Σ-structure. Let σ be a (P, N)-substitution.
Set M := dom(σ) ∩ dom(C). Let (C ′, (P ′, N ′)) be the extended σ-update of (C, (P, N)).
(a) If G0σ ∪ (〈M〉QC)σ is (C ′, (P ′, N ′))-valid in S, then G0 is (C, (P,N))-valid in S.
(b) If G0 (C, (P,N))-reduces to G1 in S,

then G0σ (C ′, (P ′, N ′))-reduces to G1σ ∪ (〈M〉QC)σ in S.

In case of M= ∅, item (b) of Corollary 8.4 further simplifies to

If G0 (C, (P, N))-reduces to G1 in S,
then G0σ (C ′, (P ′, N ′))-reduces to G1σ in S.

Thus, in case of M= ∅, global application of σ neither can turn any safe proof step in a
proof tree into an unsafe one, nor a sound proof step into an unsound one. Therefore, if a
sequent of a leaf with a safe branch up to the root is invalidated, so are all sequents of this
branch, including the original input sequent at the root; thus, at least one of the variables
occurring in the input sequent must be instantiated via σ, and thereby invalidate the valid
original input sequent by providing a wrong witness for an existential property.

Now, let (C ′, (P ′, N ′)) be the extended σ-update of (C, (P, N)). Moreover, be re-
minded that, for a variable zV ∈ dom(C), the single-formula sequent QC(zV) is our for-
mulation of Hilbert–Bernays’ axiom (ε0) in our framework, cf. Definition 4.12 in § 4.14.
Moreover, up to some assumption related to the Axiom of Choice, by Lemma5.17 in § 5.7
and Lemma7.10 in § 7.5, QC(zV) is both (C, (P, N))-valid and (C ′, (P ′, N ′))-valid in S.

In the remaining case of M 6= ∅, the following terrifying situation may occur for zV ∈M :
(QC(zV))σ is not (C ′, (P ′, N ′))-valid in S anymore.

This means that σ instantiated the variable zV globally with a term that does not satisfy
our choice-condition C on which the safeness and soundness of all our proof steps up to
now rely. Thus, by global application of σ, every proof tree in which zV occurs might
lose its soundness and safeness. For instance, in Example 4.13, the δ+-step becomes an
unsound step after global application of σ.

Therefore, it is strictly necessary have (QC(zV))σ as a root of a proof tree and register
the application of this proof tree in our lemma-application relation as being applied to all
proof trees in which the variable zV occurs; in case that there is no proof tree with this
root sequence yet, we will have to introduce a new tree for the open lemma (QC(zV))σ.
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Finally, even if (QC(zV))σ is valid, this does not mean that the chosen term σ(zV)
results in a valid set of goals; instead the situation is just like in the case of M= ∅ above
and an invalidated goal in a previously safe branch results again in an invalidation of the
original input theorem. The substitution σ′ in Example 4.15 is an example for this case.

8.3 Monotonicity, Instantiation of Variables and Free Atoms

The following Theorem8.5 will formalize that all the typical non-trivial properties of logical
problem reduction (in addition to the trivial ones of Corollary 8.2) are given for our notion
of reduction as well:

1. Monotonicity: Reduction is monotonic under extended extensions of choice-conditions.

2. Instantiation of variables: For any substitution σ on V, the σ-instantiation of the
reduct of a goal united with the QC-formulas for satisfying the choice-condition C
on dom(σ) ∩ dom(C) is a reduct of the σ-instantiation of this goal, provided that we
switch to the extended σ-update.

3. Instantiation of free atoms: If we instantiate the atoms of a lemma, then this instance
reduces to the original lemma, provided that the variables of the lemma cannot depend
on the instantiated atoms due to the negative second component of the current vari-
able-condition.

Theorem 8.5 (Reduction)

Let (P,N) be a positive/negative variable-condition. Let C be a (P, N)-choice-condition.
Let G0, G1, G2, and G3 be sets of sequents. Let S be a Σ-structure.

1. (Monotonicity) For (C ′, (P ′, N ′)) being an extended extension of (C, (P,N)):
(a) If G0 is (C ′, (P ′, N ′))-valid in S, then G0 is also (C, (P,N))-valid in S.
(b) If G0 (C, (P, N))-reduces to G1 in S, then G0 also (C ′, (P ′, N ′))-reduces to G1 in S.

2. (Instantiation of Variables) Let σ be a (P,N)-substitution.
Let (C ′, (P ′, N ′)) be the extended σ-update of (C, (P,N)).
Set M := dom(σ) ∩ dom(C). Choose some V ⊆ V with V(G0, G1) ⊆ V .
Set O := M ∩ P ∗〈V 〉. Set O′ := dom(C) ∩ 〈M\O〉P ∗.
Assume that for every yV ∈ O′, for α being the choice type of C(yV) (cf. Definition 5.12),
there is a generalized choice function on the power-set of S(∀)α.

(a) If G0σ ∪ (〈O〉QC)σ is (C ′, (P ′, N ′))-valid in S, then G0 is (C, (P,N))-valid in S.
(b) If G0 (C, (P, N))-reduces to G1 in S,

then G0σ (C ′, (P ′, N ′))-reduces to G1σ ∪ (〈O〉QC)σ in S.

3. (Instantiation of Free Atoms) Let ν be a substitution on A.
If V(G0)× dom(ν) ⊆ N , then G0ν (C, (P,N))-reduces to G0 in S.
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8.4 Leisenring’s Axiom (E2) becomes Valid

We mentioned the controversial extensionality axiom (E2) of Al(bert) C. Leisenring
already in § 4.11 in connection with substitutability problems, which disappeared when
we replaced all ε-terms with variables in § 4.14, and we will have to come back to this
axiom again in §B.1.1, where we will discuss its problems and historical controversies.

In this § 8.4, however, we will argue that this axiom is actually a very straightforward and
unproblematic one, which just states that the usual substitutability in case of logical equiva-
lence also holds under the ε-binder. In fact, this axiom is problematic only in connection
with Leisenring’s universal treatment of Hilbert’s ε on the one hand and with the mis-
guiding historical idea to escape from misperceived problems with Hilbert’s ε by giving
the mere syntax of the scopes of the ε-binders new semantics in logic on the other hand.

Evidence for the straightforwardness of this axiom is given already by the fact that it
occurred long before [Leisenring, 1969], though not under Leisenring’s new label (E2),
but as (S7) in [Bourbaki, 1939ff.] (where τ is written for the ε, which must not be confused
with Hilbert’s τ -operator, cf. Note 2) and as (II,4) already in 1937 in [Ackermann, 1938].
Repeated reinvention of a labeled axiom strongly indicates that it is straightforward indeed.

We will now show that the axiom becomes valid in our framework. This is an even
stronger indication for the straightforwardness of this axiom. The crucial difference of our
framework is that we treat the semantics of Hilbert’s ε existentially; whereas Leisen-
ring treated it universally, taking validity as truth for all generalized choice functions on
the universe.

To put ∀xB. (A0 ⇔ A1) ⇒ εxB. A0 = εxB. A1 (E2)

into our framework, we first have to put the ε-binders into our choice-condition. Thus,
suppose we have some (P,N)-choice-condition C and two ε-free formulas A0, A1 with
B(A0, A1) ⊆ {xB}. Then we get two different fresh variables xV0, x

V
1 ∈ V \V(A0, A1, C, P,N)

of the same type as xB. Then we set P ′ := P ∪ ⋃1
i=0 (VA(Ai)×{xVi }), N ′ := N , and

C ′ := C ∪⋃1
i=0{(xVi , εxB. Ai)}.

As the variables xV0, xV1 are globally fresh and not identical, the new pairs in the positive/
negative variable-condition (P ′, N ′) cannot be part of any cycle and C ′ is a partial function
on V, and therefore (P ′, N ′) is a consistent extension of the positive/negative variable-
condition (P, N) and C ′ is a (P ′, N ′)-choice-condition and (C ′, (P ′, N ′)) is an extended
extension of (C, (P, N)).

These details defined, we can now state our version of Leisenring’s (E2) as the follow-
ing ε-free formula:

∀xB. (A0 ⇔ A1) ⇒ xV0 = xV1 (E2′)

Theorem 8.6 (Validity of (E2′))
Under the above settings, the (set of the single-formula sequent given by) the formula (E2′)
is (C ′, (P ′, N ′))-valid in all Σ-structures S; provided that for every choice type α of C,
there is a generalized choice function on the power-set of S(∀)α.

The following proof is not put it into the appendix, because it introduces to high-level
proof techniques with our theorems on reduction — based on the elegant and powerful
introduction of new choice-conditions.
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High-Level Proof of Theorem8.6

An elegant way to prove Theorem8.6 seems to be the application of Corollary 8.4(a) to the
(P ′, N ′)-substitution {xV1 7→xV0}, because then the conclusion of the instantiated formula
(E2′){xV1 7→xV0} is the tautology xV0 = xV0.

As required in Corollary 8.4(a), we can set (C ′′, (P ′′, N ′′)) to the extended {xV1 7→xV0}-update
of (C ′, (P ′, N ′)) and M := dom({xV1 7→xV0}) ∩ dom(C ′) = {xV1}. Now all we have left
to show is the (C ′′, (P ′′, N ′′))-validity of (QC′(x

V
1)){xV1 7→xV0}, i.e., by Definition 4.12, of

(∃xB. A1 ⇒ A1{xB 7→xV1}){xV1 7→xV0}, i.e. of ∃xB. A1 ⇒ A1{xB 7→xV0}. But we can show this
only if the condition of (E2′) holds, which we cannot even assume to be valid.

As there is nothing like a conditional application of the substitution {xV1 7→xV0}, all we can do
to patch this failed proof attempt is to use a substitution {xV1 7→yV} and a conditional choice-
condition for yV. Thus, for another fresh variable yV ∈ V \V(A0, A1, C

′, P ′, N ′, xV0, x
V
1) of

the same type as xB, let us first redefine P ′′ := P ′ ∪ VA(A0, A1, x
V
0)×{yV}, N ′′ := N , and

C ′′ := C ′ ∪
{(

yV, εy B.

( ( ∀xB. (A0 ⇔ A1) ⇒ xV0 = y B
)

∧ ( ¬∀xB. (A0 ⇔ A1) ⇒ A1{xB 7→y B} )
) )}

,

Now (P ′′, N ′′) is a consistent extension of (P ′, N ′), {xV1 7→yV} is a (P ′′, N ′′)-substitution, C ′′

is a (P ′′, N ′′)-choice-condition and (C ′′, (P ′′, N ′′)) is an extended extension of (C ′, (P ′, N ′)).
ByTheorem8.5(1a) it suffices to show that (E2′) is (C ′′, (P ′′, N ′′))-valid in all Σ-structuresS.
As required in Corollary 8.4(a), we can now set (C ′′′, (P ′′′, N ′′′)) to the {xV1 7→yV}-update of
(C ′′, (P ′′, N ′′)) and M := dom({xV1 7→yV})∩dom(C ′′) = {xV1}. Nowagain, byCorollary 8.4(a),
it suffices to show the (C ′′′, (P ′′′, N ′′′))-validity of two formulas:

(1) (E2′){xV1 7→yV}, i.e. ∀xB. (A0⇔A1) ⇒ xV0 = yV.

(2) (QC′′(x
V
1)){xV1 7→yV}, i.e. of (∃xB. A1 ⇒ A1{xB 7→xV1}){xV1 7→yV}, i.e. of

∃xB. A1 ⇒ A1{xB 7→yV}.
Now a simple case analysis on ∀xB. (A0⇔A1) shows that the set of these two single-formula
sequents (C ′′′, (P ′′′, N ′′′))-reduces to the set of the following two single-formula sequents:

∃y B.
(

( ∀xB.(A0⇔A1) ⇒ xV0 = y B)
∧ (¬∀xB.(A0⇔A1) ⇒ A1{xB 7→ y B})

)
⇒

(
( ∀xB.(A0⇔A1) ⇒ xV0 = yV)

∧ (¬∀xB.(A0⇔A1) ⇒ A1{xB 7→ yV})
)

and ∃xB. A0 ⇒ A0{xB 7→ xV0}.
Indeed, in case of ∀xB. (A0⇔A1), because ∃y B. (xV0 = y B) is true, the former of the two latter
formulas as well as formula (1) simplify to xV0 = yV; and given this equation and the case as-
sumption, also the latter becomes logically equivalent to formula (2), because they can be re-
written into each other. In the complementary case, however, the formula (1) becomes true;
moreover, the former of the two latter formulas simplifies to ∃y B. A1{xB 7→y B}⇒A1{xB 7→yV},
which is formula (2) with xB under ∃ renamed to y B.

Notice that this was the case where the first proof attempt failed, because we had to show
∃xB. A1 ⇒ A1{xB 7→xV0} , although we can neither rewrite A1 to A0 nor xV0 to xV1 in this case.
yV instead of xV0 in this formula, however, just follows the choice-condition of xV1.

The latter two formulas, however, are nothing but the formulas QC′′′(y
V) and QC′′′(x

V
0),

respectively, which are (C ′′′, (P ′′′, N ′′′))-valid by Lemma7.10; provided that for every choice
type α of C (cf. Definition 5.12), there is a generalized choice function on the power-
set of S(∀)α. Thus, under the same provision of Theorem8.6, formulas (1) and (2) are
(C ′′′, (P ′′′, N ′′′))-valid by Corollary 8.2(1) as well. Q.e.d. (Theorem8.6)
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9 Summary and Discussion

9.1 Positive/Negative Variable-Conditions

We take a sequent to be a list of formulas which denotes the disjunction of these formulas.
We admit explicit quantification to bind only bound atoms (written xB). In addition to stan-
dard frameworks of two-valued logics, our formulas may contain variables and free atoms,
which are implicitly quantified according to a context-independent semantics: Our variables
(written xV) are quantified existentially, our free atoms (written xA) universally. The struc-
ture of this implicit form of quantification without quantifiers and without binders is re-
presented globally in a positive/negative variable-condition (P,N), which can be seen as a
directed graph on variables and free atoms whose edges are elements of either P or N.

Without loss of generality in practice, let us assume that P is finite. Then, a positive/
negative variable-condition (P,N) is consistent if each cycle of its directed graph has more
than one edge from N .

Roughly speaking, on the one hand, a variable yV is put into the scope of another
variable or free atom xVA by an edge (xVA, yV) in P ; and, on the other hand, a free atom xA

is put into the scope of a variable yV by an edge (yV, xA) in N.

On the one hand, an edge (xVA, yV) must be put into P

• if yV is introduced in a δ+-step where xVA occurs in the principal formula (cf. § 3), and
also

• if yV is globally replaced with a term in which xVA occurs.

On the other hand, an edge (yV, xA) must be put into N if xA is introduced in a δ−-step
where yV occurs in the sequent (i.e. in the principal or parametric formulas, cf. § 3).

Furthermore, such edges may always be added to the positive/negative variable-con-
dition, as long as it remains consistent. Such an unforced addition of edges might be
appropriate especially in the formulation of a new proposition:

• partly, because we may need this for modeling the intended semantics by representing
the intended quantificational structure for the variables and free atoms of the new
proposition;

• partly, because we may need this for enabling induction in the form of Fermat’s des-
cente infinie on the free atoms of the proposition; cf. [Wirth, 2004, §§ 2.5.2 and 3.3].
(This is closely related to the satisfaction of the condition on N in Theorem8.5(3).)

9.2 Semantics of Positive/Negative Variable-Conditions

The value assigned to a variable yV by an S-raising-valuation π may depend on the value
assigned to an atom xA by an S-valuation. In that case, the semantic relation Sπ contains
an edge (xA, yV). Moreover, π is enforced to obey the quantificational structure by the
requirement that (P ∪ Sπ, N) must be consistent; cf. Definitions 7.1 and 7.4.
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9.3 Replacing ε-Terms with Variables

Suppose that an ε-term εz B. B has free occurrences of exactly the bound atoms v B0 , . . . , v Bl−1

which are not free atoms of our framework, but are actually bound in the syntactic context
in which this ε-term occurs. Then we can replace it in this context with the application
term zV(v B0 , . . . , v Bl−1) for a fresh variable zV and set the value of a global function C (called
the choice-condition) at zV according to

C(zV) := λv B0 , . . . , v Bl−1. εz B. B,

and augment P with an edge (yVA, zV) for each variable or free atom yVA occurring in B.

9.4 Semantics of Choice-Conditions

A variable zV in the domain of the global choice-condition C must take a value that
makes C(zV) true — if such a choice is possible. This can be formalized as follows.
Let “eval” be the standard evaluation function. Let S be any of the semantic struc-
tures (or models) under consideration. Let δ be a valuation of the variables and free atoms
(resulting from an S-raising-valuation of the variables and an S-valuation of the atoms).
Let χ be an arbitrary S-valuation of the bound atoms v B0 , . . . , v Bl−1, z

B. Then δ(zV) must
be a function that chooses a value that makes B true whenever possible, in the sense that
eval(S]δ]χ)(B) = TRUE implies eval(S]δ]χ)(Bµ) = TRUE for

µ := {z B 7→ zV(v B0 , . . . , v Bl−1)}.

9.5 Substitution of Variables (“ε-Substitution”)

The kind of logical inference we essentially need is (problem-) reduction, the backbone of
abduction and goal-directed deduction; cf. § 8. In a tree of reduction steps our variables
and free atoms show the following behavior with respect to their instantiation:

Atoms behave as constant parameters. A variable yV, however, may be globally in-
stantiated with any term by application of a substitution σ; unless, of course, in case
yV is in the domain of the global choice-condition C, in which case σ must additionally
satisfy C(yV), in a sense to be explained below.

In addition, the applied substitution σ must always be an (P, N)-substitution. This
means that the current positive/negative variable-condition (P,N) remains consistent when
we extend it to its so-called σ-update, which augments P with the edges from the variables
and free atoms in σ(zV) to zV, for each variable zV in the domain dom(σ).

Moreover, the global choice-condition C must be updated by removing zV from its
domain dom(C) and by applying σ to the C-values of the variables remaining in dom(C).

Now, in case of a variable zV ∈ dom(σ) ∩ dom(C), σ satisfies the current choice-
condition C if (QC(zV))σ is valid in the context of the updated variable-condition and
choice-condition. Here, for a choice-condition C(zV) and substitution µ given as above,
QC(zV) denotes the formula

∀v B0 . . . . ∀v Bl−1.
( ∃z B. B ⇒ Bµ

)
,

which is nothing but our version of Hilbert’s axiom (ε0); cf. Definition 4.12. Under these
conditions, the invariance of reduction under substitution is stated in Corollary 8.4(b).

Finally, note that QC(zV) itself is always valid in our framework; cf. Lemma7.10.
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9.6 Where Have All the ε-Terms Gone?

After the replacement described in § 9.3 and, in more detail, in § 4.11, the ε-symbol occurs
neither in our terms, nor in our formulas, but only in the range of the current choice-
condition, where its occurrences are inessential, as explained at the end of § 4.11.

As a consequence of this removal, our formulas are much more readable than in the stan-
dard approach of in-line presentation of ε-terms, which always was nothing but a theoretical
presentation because in practical proofs the ε-terms would have grown so large that the
mere size of them made them inaccessible to human inspection. To see this, compare our
presentation in Example 4.11 to the one in Example 4.6, and note that the latter is still hard
to read although we have invested some efforts in finding a readable form of presentation.

From a mathematical point of view, however, the original ε-terms are still present in
our approach; up to isomorphism and with the exception of some irrelevant term sharing.
To make these ε-terms explicit in a formula A for a given (P,N)-choice-condition C, do:

Step 1: Let us consider the relation C not as a function, but as a ground term rewriting
system: This means that we read

(
zV, λv B0 , . . . , v Bl−1. εz B. B

) ∈ C as a rewrite rule
saying that we may replace the variable zV (the left-hand side of the rule, which is
not a variable but a constant w.r.t. the rewriting system) with the right-hand side
λv B0 , . . . , v Bl−1. εz B. B in any given context.

By Definition 5.12(3), we know that all variables in B are smaller than zV in P +. By the
consistency of our positive/negative variable-condition (P, N) (according to Definition 5.12),
we know that P + is a well-founded ordering. Thus its multi-set extension is a well-founded
ordering as well. Moreover, the multi-set of the variable zV of the left-hand side is bigger
than the multi-set of the occurrences of variables in the right-hand side in the well-founded
multi-set extension of P +. Thus, if we rewrite a formula, the multi-set of the occurrences
of variables in the rewritten formula is smaller than the multi-set of the occurrences of
variables in the original formula. Therefore, normalization of any formula A with these
rewrite rules terminates with a formula A′.

Step 2: As typed λαβ-reduction is also terminating, we can apply it to remove the λ-terms
introduced to A′ by the rewriting of Step 1, resulting in a formula A′′.

Then — with the proper semantics for the ε-binder — the formulas A′ and A′′ are equivalent
to A, but do not contain any variables that are in the domain of C. This means that A′′

is equivalent to A, but does not contain ε-constrained variables anymore. Moreover, if the
variables in A resulted from the elimination of ε-terms as described in §§ 4.11 and 9.3,
then all λ-terms that were not already present in A are provided with arguments and are
removed by the rewriting of Step 2. Therefore, no λ-symbol occurs in the formula A′′ if
the formula A resulted from a first-order formula: If we normalize P(wV

a, x
V
b , y

V
d, z

V
h) with

respect to the rewriting system given by the (P,N)-choice-condition C of of Example 4.11,
and then by λαβ-reduction, we end up in a normal form which is the first-order formula
P(wa, xb, yd, zh) of Example 4.6, with the exception of the renaming of some bound atoms
that are bound by ε. If each element zV in the domain of C binds a unique bound atom z B

by the ε in the ε-term C(zV), then the normal form A′′ can even preserve our information
on committed choice when we consider any ε-term binding an occurrence of a bound atom
of the same name to be committed to the same choice. In this sense, the representation
given by the normal form is equivalent to our original one given by P(wV

a, x
V
b , y

V
d, z

V
h) and C.
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9.7 Are We Breaking with Traditional Treatment of Hilbert’s ε?

Our new semantic free-variable framework was originally developed to meet the require-
ments analysis for the combination of mathematical induction in the liberal style of
Fermat’s descente infinie with state-of-the-art logical deduction. The framework provides
a formal system in which working mathematicians can straightforwardly develop their proofs
supported by powerful automation; cf. [Wirth, 2004].

If traditionalism meant restriction to the expressional means of the past — say the first
half of the 20th century with its foundational crisis and specific emphasis on constructivism,
intuitionism, and finitism— then our approach would not classify as traditional andGrigo-
ri Mints would have been right to blame our framework as anti-traditional. Although we
offer the extras of non-committed choice and a model-theoretic notion of validity, we never-
theless see our framework based on QC as a form of (ε0) (cf. § 4.14) as a backward compatible
extension of Hilbert–Bernays’ original framework with (ε0) as the only axiom for the ε.
And with its equivalents for the traditional ε-terms (cf. § 9.6) and with its support for the
global proof transformation given by the ε-substitution methods (cf. §§ 4.14, 8, and 9.5),
our framework is indeed deeply rooted in the Hilbert–Bernays tradition.

Note that the fear of inconsistency should have been soothed anyway in the meantime
by Wittgenstein, cf. e.g. [Diamond, 1976]. The main disadvantage of an exclusively
axiomatic framework as compared to one that also offers a model-theoretic semantics is the
following: Constructive proofs of practically relevant theorems easily become too huge and
too tedious, whereas semantic proofs are smaller and easier to handle. More important is
the possibility to invent new and more suitable logics for new applications with semantic
means, whereas proof transformations can refer only to already existing logics (cf. § 4.8).

We intend to pass the heritage of Hilbert’s ε on to new generations interested in
computational linguistics, automated theorem proving, and mathematics assistance sys-
tems; fields in which — with very few exceptions — the overall common opinion still is
(the wrong one) that the ε hardly can be of any practical benefit.

The differences, however, between our free-variable framework for the ε and Hilbert’s
original underspecified ε-operator, in the order of increasing importance, are the following:

1. The term-sharing of ε-terms with the help of variables improves the readability of our
formulas considerably.

2. We do not have the requirement of globally committed choice for any ε-term:
Different variables with the same choice-condition may take different values. Never-
theless, ε-substitution works at least as well as in the original framework.

3. Opposed to all other classical validities for the ε (including the semantics of [Asser,
1957], [Hermes, 1965], and [Leisenring, 1969]), the implicit quantification over the
choice of our variables is existential instead of universal. This change simplifies formal
reasoning in all relevant contexts, because we have to consider only an arbitrary single
solution (or choice, substitution) instead of checking all of them.
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10 Conclusion

Our more flexible semantics for Hilbert’s ε and our choice-conditions presented in this
paper were originally developed to combine mathematical induction in the liberal style of
Fermat’s descente infinie with state-of-the-art deduction, where the well-foundedness re-
quired for the soundness of descente infinie enforced a notion of reduction with preservation
of solutions, which the liberalized δ-rules as found in [Fitting, 1996] cannot satisfy without
something like our variables with choice-conditions, cf. [Wirth, 2004].

Thus, by providing soundness to the first formal combination of goal-directed deduction and
descente infinie, our choice-conditions had passed an evaluation of their usefulness even be-
fore they were recognized as a candidate for the semantics that Hilbert’s school in logic
may have had in mind for their ε. While this will remain speculation, the semantic frame-
work for Hilbert’s ε proposed in this paper definitely has the following advantages:

Indication of Commitment: The requirement of a commitment to a choice is expressed
syntactically and most clearly by the sharing of a variable; cf. § 4.11.

Semantics: The semantics of the ε is simple and straightforward in the sense that the
ε-operator becomes similar to the referential use of indefinite articles and determiners
in natural languages, cf. [Wirth, 2006b].
Our semantics for the ε is based on an abstract formal approach extending a semantics
for closed formulas (satisfying only very weak requirements, cf. § 7.1) to a semantics
with existentially quantified variables and universally quantified free atoms replacing
the three kinds of free variables of [Wirth, 2004; 2006a; 2008; 2012b; 2006b], i.e.
existential (free γ-variables), universal (free δ−-variables), and ε-constrained (free
δ+-variables). The simplification achieved by the reduction from three to two kinds
of free variables results in a remarkable reduction of the complexity of our framework
and will make its adaptation to applications much easier.
In spite of this simplification, we have enhanced the expressiveness of our frame-
work by replacing the variable-conditions of [Wirth, 2002; 2004; 2006a; 2008; 2012b;
2006b] with our positive/negative variable-conditions here, such that our framework
now admits us to represent Henkin quantification directly; cf. Example 6.1. From
a philosophical point of view, this clearer differentiation also provides a deep insight
into the true nature and the relation of the δ−- and the δ+-rules.

Reasoning: Our representation of an ε-term εxB. A can be replaced with any term t that
satisfies ∃xB. A ⇒ A{xB 7→t}, cf. § 4.14. Thus, the correctness of such a replacement
is likely to be expressible and verifiable in the original calculus.
Our framework for the ε is especially convenient for developing proofs in the style of
a working mathematician (cf. [Wirth, 2004; 2006a; 2012b]) and makes proof work
most simple because we do not have to consider all proper choices t for x (as in all
other model-theoretic approaches), but only a single arbitrary one, fixed in a global
proof transformation step of ε-substitution.

Adaptability: We hope that our new semantic framework will help to solve further prac-
tical and theoretical problems with the ε and improve the applicability of the ε as a
logic tool for description and reasoning.
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And already without the ε (i.e. for the case that the choice-condition is empty, cf. e.g.
[Wirth, 2012a; 2014]), our framework with its variables and free atoms of very high
quantificational expressiveness (even without any quantifiers!) should find a multitude
of applications in all areas of computer-supported reasoning.

Finally, a tailoring of operators similar to our ε — to meet the special demands of
specification and computation in various areas — is promising, in particular for de-
scribing semantics of discourses in natural language, cf. [Wirth, 2006b, §§ 5.8 and 6].

Acknowledgments: I would like to thank Murdoch J. Gabbay for inspiring and en-
couraging me to write this paper, for reviewing it, and for much more.
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A Are Liberalized δ-Rules Always More Liberal?

We could object with the following two points to the classification in § 3.6, stating that the
δ+-rules are more “liberal” than the δ−-rules, in the sense that they provide more freedom
to the prover or that they admit proofs that are shorter or easier to find:

1. VA(∀xB. A) is not necessarily a subset of V(Γ ∀xB. A Π), because VA(∀xB. A)
may include some additional free atoms.

2. Regarding our positive/negative variable-condition (P,N), the δ+-rule may con-
tribute a P -edge to a cycle with exactly one edge from N , whereas the analogous
δ−-rule would contribute an N -edge instead. Thus, the analogous cycle would then
not count as counterexample to the consistency of the positive/negative variable-con-
dition because it has two edges from N .

Be reminded that this is a merely theoretical question, because the δ+-rules are clearly
superior in practice if variables occur in the sequent that is to be reduced. Thus, in practice
we apply δ−-rules only at the beginning of a proof before the first γ- or δ+-rule has been
applied. And the main motivation for the δ−-rules is the generation of strong induction
hypotheses and lemmas with as many free atoms as possible.

According to our merely practical intentions here (cf. § 3.6), we will not try to present
a proof for δ+ to be always more liberalized than δ−, but just discuss some proof ideas and
explain why it may be hard to find such a proof.

ad 1. First note that δ−-rules and the free atoms did not occur in inference systems with
δ+-rules before the publication of [Wirth, 2004]; so in the earlier systems with free
δ+-rules only, VA(∀xB. A) was indeed a subset of V(Γ ∀xB. A Π). Moreover,
the additional atoms blocked by the δ+-rules (as compared to the δ−-rules) can
hardly block any reductive proofs of formulas without free atoms and variables for
the following reason:

If a proof uses only δ+-reductions, then there will be no (free) atoms around and the
critical subset relation holds anyway. So a critical variable-condition can only arise
if a δ+-step follows a δ−-step on the same branch. With a reasonably minimal posi-
tive/negative variable-condition (P, N), the only additional cycles that could occur
by the δ+-rule as compared to the alternative application of a δ−-rules are of the form

yV N zA P xV P ∗ wV P yV,
resulting from the following scenario: yV N zA results from a δ−-step, zA P xV re-
sults from a subsequent δ+-step on the same branch, xV P ∗ wV results from possible
further δ+-steps (δ−-steps cannot produce a relevant cycle!) and instantiations of
variables, and wV P yV finally results from an instantiation of yV.
Let us now see what happens if we replace the δ+-step with a δ−-step with xA replac-
ing xV, ceteris paribus. Note that this is only possible if xV was never instantiated,
which again explains why there must be at least one step of P between xV and yV.
If the variable yV occurs in the upper sequent of this changed step, then new proof
immediately fails due to the new cycle

yV N xA P ∗ wV P yV.
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Otherwise, yV was lost on this branch; but then we must ask ourselves why we instanti-
ated it with a term containing wV. If wV is essentially shared with another branch, on
which yV has survived, then it must occur in the sequent before the original δ+-step,
and so we get the cycle

wV N xA P ∗ wV.
Otherwise, if wV is not shared with another branch, we do not see any reason to instan-
tiate yV with a term containing wV. Indeed, if wV is only on this branch, then there
is no reason; if wV occurs only on another branch, then a good reason for xV P ∗ wV

can be rejected just as for yV before.

If we start with an input theorem in which variables and free atoms occur with non-
empty variable-condition, it may become very hard to survey the situation and a
proof will tend to be faulty.

ad 2. Also in this case we conjecture that, under side-conditions that can be easily met in
practice, δ−-rules do not admit any successful proofs that are not possible with the
analogous δ+-rules without extra complexity.

A proof of this conjecture, however, cannot be easy:

First, it is a global property which requires us to consider the entire inference system.

Second, δ−-rules actually do admit some extra (P, N)-substitutions, which have to be
shown not to generate essential additional proofs. E.g., if we want to prove

∀y B. Q(aV, y B) ∧ ∀xB. Q(xB, bV),
which is true for a reflexive ordering Q with a minimal and a maximal element,
β- and δ−-rules reduce this to the two goals Q(aV, yA) and Q(xA, bV), extending
the variable-condition with the positive/negative variable-condition (P,N) given by
P = ∅ and N = {(aV, yA), (bV, xA)}. Then σA := {aV 7→xA, bV 7→yA} is a (P,N)-
substitution because the cycle

yA DσA bV N xA DσA aV N yA

needs more than one edge from N .

The analogous δ+-rules would have resulted in an extension with the positive/nega-
tive variable-condition (P ′, N ′) given by P ′ = {(aV, yV), (bV, xV)} and N ′ = ∅. But
then σV := {aV 7→xV, bV 7→yV} is not a (P ′, N ′)-substitution due to the circle

yV DσV bV P ′ xV DσV aV P ′ yV.
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B Semantics for Hilbert’s ε in the Literature

Here in §B of the appendix, we will review the literature on the ε’s semantics with an
emphasis on practical adequacy and the intentions of Hilbert’s school in logic.

B.1 Right-Unique Semantics

In contrast to the indefiniteness we suggested in § 4.9, nearly all semantics for Hilbert’s ε
found elsewhere in the literature are functional, i.e. [right-] unique; cf. e.g. [Leisenring,
1969] and the references there.

B.1.1 Extensionality:
Ackermann’s (II,4) = Bourbaki’s (S7) = Leisenring’s (E2)

and in [Leisenring, 1969] under the label (E2), we find the following axiom scheme, which
we presented already in § 4.10:

∀xB. (A0 ⇔ A1) ⇒ εxB. A0 = εxB. A1 (E2)

This axiom (E2) must not be confused with the similar formula (E2′) from [Wirth, 2008,
Lemma31, § 5.6] and [Wirth, 2006b, Lemma5.18, § 5.6], which reads in our new framework
here as follows: ∀xB. (A0 ⇔ A1) ⇒ xV0 = xV1 (E2′)

For more detail, suppose that we have some (P,N)-choice-condition C and two ε-free for-
mulas A0, A1 with B(A0, A1) ⊆ {xB}. Then we get two different fresh variables xV0, x

V
1 ∈

V \V(A0, A1, C, P, N) of the same type as xB. Then we set P ′ := P ∪⋃1
i=0 (VA(Ai)×{xVi }),

N ′ := N , and C ′ := C ∪⋃1
i=0{(xVi , εxB. Ai)}.

These details defined, our (E2′) turns out to be (C ′, (P ′, N ′))-valid in any Σ-structureS
according to Theorem8.6, up to some assumption related to the Axiom of Choice.

Contrary to the valid proposition (E2′), however, (E2) is an axiom that imposes a
right-unique behavior for the ε (in the standard framework), depending on the extension
of the formula forming the scope of an ε-binder on xB, seen as a predicate on xB. Indeed
— from a semantic point of view — the value of εxB. A in each Σ-structure S is function-
ally dependent on the extension of the formula A, i.e. on

{ o | eval(S ] {xB 7→o})(A) = TRUE }.
Therefore, axiomatizations that have (E2) as an axiom or as a consequence of other

axioms are called extensional.

Note that (E2) has a disastrous effect in intuitionistic logic: The contrapositive of (E2)
— together with (ε0) and say “0 6= 1” — turns every classical validity into an intuitionistic
one.5 For the strong consequences of the ε-formula in intuitionistic logic, see also Note 2.
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B.1.2 Weaker than (E2), but still Right-Unique

To overcome this disastrous effect and to get more options for the definition of a semantics
of the ε in general, in [Asser, 1957], [Meyer-Viol, 1995], and [Giese & Ahrendt,
1999] the value of εxB. A may additionally depend on the syntax besides the semantics
of the formula in the scope of the ε. The semantics of the ε is then given as a function
depending on a Σ-structure and on the syntactic details of the term εxB. A. In [Giese
& Ahrendt, 1999, p.177] we read: “This definition contains no restriction whatsoever on
the valuation of ε-terms.” This claim, however, is not justified in its universality, because
all considered options do still impose the restriction of a right-unique behavior; thereby
the claim denies the possibility of an indefinite behavior as given in §§ 4.10 and 4.11. See
also §B.2 for an alternative realization of an indefinite semantics.

B.1.3 Overspecification even beyond (E2)

In [Hermes, 1965, p.18], the ε suffers further overspecification in addition to (E2):

εx. false = εx. true (ε5)
Roughly speaking, this axiom sets the value of a generalized choice function on the empty
set to its value on the whole universe. For classical logic, we can combine (E2) and (ε5)
into the following axiom of [DeVidi, 1995] for “very extensional” semantics:

∀x.

(
(∃y. A0{x 7→y} ⇒ A0)

⇔ (∃y. A1{x 7→y} ⇒ A1)

)
⇒ εx.A0 = εx.A1 (vext)

5( 0 6=1, εxB. A0 6= εxB. A1 ⇒ ¬(∀xB. A0 ∧ ∀xB. A1) ` B ∨ ¬B in Intuitionistic Logic)
For the proof of the slightly weaker result 0 6= 1, (E2) ` B ∨ ¬B for any formula B, cf. [Bell &al.,
2001, Proof of Theorem6.4], which already occurs in more detail in [Bell, 1993a, § 3], and sketched in
[Bell, 1993b, § 7].
Note that, for any implication A ⇒ B, its contrapositive ¬B ⇒ ¬A is a consequence of it, and
— in intuitionistic logic — a proper consequence in general.
Let B be an arbitrary formula. By renaming we may w.l.o.g. assume that the free atom xA of the ε-formula
does not occur in B. We are going to show that ` B ∨ ¬B holds in intuitionistic logic under the assump-
tions of reflexivity, symmetry, and transitivity of “=”, the ε-formula (or (ε0)), and of the formulas 0 6= 1
and εxB. A0 6= εxB. A1 ⇒ ¬(∀xB. A0 ∧ ∀xB. A1).
Let xB be a bound atom not occurring in B. Set Ai := (B ∨ xB= i) for i ∈ {0, 1}.
Now all that we have to show is a trivial consequence of the following Claims 1 and 2,

εxB. A0 6= εxB. A1 ⇒ ¬(∀xB. A0 ∧ ∀xB. A1), and Claim 3.
Claim 1: 0= 0, 1 =1, (ε-formula){A7→A0}{xA 7→0}, (ε-formula){A7→A1}{xA 7→1}

` B ∨ (εxB. A0 = 0 ∧ εxB. A1 = 1).
Claim2: εxB. A0 = 0 ∧ εxB. A1 = 1, 0 6=1, ∀xB, y B, z B. (y B=xB ∧ y B= z B ⇒ xB= z B)

` εxB. A0 6= εxB. A1.
Claim3: ¬(∀xB. A0 ∧ ∀xB. A1) ` ¬B.
Proof of Claim 1: Because neither xA nor xB occur in B, and because xA does not occur in Ai, the instances
of the ε-formulas read (B ∨ i = i) ⇒ (B ∨ εxB. Ai = i). Thus, from i = i , we get B ∨ εxB. Ai = i.
Thus, we get (B ∨ εxB. A0 = 0) ∧ (B ∨ εxB. A1 = 1), thus B ∨ (εxB. A0 = 0 ∧ εxB. A1 = 1)
by distributivity. Q.e.d. (Claim 1)
Proof of Claim 2: Trivial. Q.e.d. (Claim 2)
Proof of Claim 3: As xB does not occur in B, we get B ` ∀xB. Ai. The rest is trivial. Q.e.d. (Claim 3)
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Indeed, (vext) implies (E2) and (ε5). The other direction, however, does not hold for
intuitionistic logic, where, roughly speaking, (vext) additionally implies that if the same
elements make A0 and A1 as true as possible, then the ε-operator picks the same element of
this set, even if the suprema ∃y. A0{x 7→y} and ∃y.A1{x 7→y} (in the complete Heyting
algebra) are not equally true.

B.1.4 Strengthening Semantics to Turn Axiomatizations Complete

Although we have been concerned with soundness and safeness of our inference systems,
we always accepted their incompleteness as the natural companion of semantics that are
sufficiently weak to be useful in practice. Of course, completeness is the theoreticians’
favorite puzzle because — as a global property of inference systems — it may be hard
to prove, even for inconsistent systems. The objective of completeness gets particularly
detached from practical usefulness, if a useful semantics is strengthened to obtain the
completeness of a given inference system. Let us look at two examples for this procedure,
resulting in practically useless semantics for the ε.

Different possible choices for the value of the generalized choice function on the empty
set are discussed in [Leisenring, 1969]. As the consequences of any special choice are
quite queer, the only solution that is found to be sufficiently adequate in [Leisenring,
1969] is validity in all models given by all generalized choice functions on the power-set of
the universe. Note, however, that even in this case, in each model, the value of εx.A is
functionally dependent on the extension of A.

Roughly speaking, in the textbook [Leisenring, 1969], the axioms (ε1) and (ε2) from
§ 4.6 and (E2) from § 4.10 are shown to be complete w.r.t. this semantics of the ε in first-
order logic.

This completeness makes it unlikely that extensional semantics matches the intentions of
Hilbert’s school in logic. Indeed, if their intended semantics for the ε could be completely
captured by adding the single and straightforward axiom (E2), this axiom would not have
been omitted in [Hilbert & Bernays, 1939]; it would at least be possible to derive (E2)
from some axiomatization in [Hilbert & Bernays, 1939].

What makes Leisenring’s notion of validity problematic for theorem proving is that a
proof has to consider all appropriate choice functions and cannot just pick an advantageous
single one of them. More specifically, when Leisenring does the step from satisfiability
to validity he does the double duality switch from existence of a model and the existence
of a choice function to all models and to all choice functions. Our notion of validity in
Definition 7.7 does not switch the second duality, but stays with the existence of a choice
function. Considering the influence that [Leisenring, 1969] still has today, our avoidance
of the universality requirement for choice functions in the definition of validity may be
considered our practically most important conceptual contribution to the ε’s semantics.
If we stuck to Leisenring’s definition of validity, then we would either have to give up the
hope of finding proofs in practice, or have to avoid considering validity (beyond truth) in
connection with Hilbert’s ε, which is Hartley Slater’ solution, carefully observed in
[Slater, 1994; 2002; 2007b; 2009; 2011].

The misguiding procedure of strengthening semantics to obtain completeness for ax-
iomatizations of the ε actually originates in [Asser, 1957]. The main objective of [Asser,
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1957], however, is to find a semantics such that already the basic ε-calculus of [Hilbert &
Bernays, 1939] — not containing (E2) — is sound and complete for it. This semantics,
however, has to depend on the details of the syntactic form of the ε-terms and, moreover,
turns out to be necessarily so artificial that Asser [1957] does not recommend it himself and
admits that he thinks that it could not have been intended in [Hilbert & Bernays, 1939].

“Allerdings ist dieser Begriff von Auswahlfunktion so kompliziert, daß sich seine
Verwendung in der inhaltlichen Mathematik kaum empfiehlt.”

[Asser, 1957, p. 59]

“This notion of a choice function, however,” (i.e. the type-3 choice function,
providing a semantics for the ε-operator) “is so intricate that its application in
contentual mathematics is hardly to be recommended.”

“Angesichts der Kompliziertheit des Begriffs der Auswahlfunktion dritter Art
ergibt sich die Frage, ob bei Hilbert–Bernays (” . . . “) wirklich beabsichtigt
war, diesen Begriff von Auswahlfunktion axiomatisch zu beschreiben. Aus der
Darstellung bei Hilbert–Bernays glaube ich entnehmen zu können, daß das
nicht der Fall ist,” [Asser, 1957, p. 65]

“The intricacy of the notion of the type-3 choice function puts up the question
whether the intention in [Hilbert & Bernays, 1939] (” . . . “) really was to
describe this notion of choice function axiomatically. I believe I can draw from
the presentation in [Hilbert & Bernays, 1939] that that is not the case,”

B.1.5 Roots of the Misunderstanding of a Right-Uniqueness Requirement

The described prevalence of the right-uniqueness requirement may have its historical justifi-
cation in the fact that, if we expand the dots “. . . ” in the quotation preceding Example 4.2
in § 4.6.2, the full quotation on p.12 of [Hilbert & Bernays, 1939; 1970] reads:

“Das ε-Symbol bildet somit eine Art der Verallgemeinerung des µ-Symbols für
einen beliebigen Individuenbereich. Der Form nach stellt es eine Funktion eines
variablen Prädikates dar, welches außer demjenigen Argument, auf welches sich
die zu dem ε-Symbol gehörige gebundene Variable bezieht, noch freie Variable
als Argumente (“Parameter”) enthalten kann. Der Wert dieser Funktion für ein
bestimmtes Prädikat A (bei Festlegung der Parameter) ist ein Ding des Indivi-
duenbereichs, und zwar ist dieses Ding gemäß der inhaltlichen Übersetzung der
Formel (ε0) ein solches, auf das jenes Prädikat A zutrifft, vorausgesetzt, daß es
überhaupt auf ein Ding des Individuenbereichs zutrifft.”

“Thus, the ε-symbol forms a kind of generalization of the µ-symbol for an arbi-
trary domain of individuals. According to its form, it constitues a function
of a variable predicate, which may contain free variables as arguments (“para-
meters”) in addition to the argument to which the bound variable of the ε-symbol
refers. The value of this function for a given predicate A (for fixed parameters)
is a thing of the domain of individuals for which — according to the contentual
translation of the formula (ε0) — the predicate A holds, provided that A holds
for any thing of the domain of individuals at all.”
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Here the word “function” could be misunderstood in its narrower mathematical sense,
namely to denote a (right-) unique relation. It is stated to be a function, however, only
“according to its form”, which — in the vernacular that becomes obvious from reading
[Hilbert & Bernays, 2017b] — means nothing but “with respect to the process of the
formation of formulas”. Thus, Hilbert–Bernays’ notation of the ε takes the syntactic
form of a function. This syntactic weakness was not bothering the work of Hilbert’s
school in logic in the field of proof theory. With our more practical intentions, the ε’s
form of a function turns out as a problem even regarding syntax alone, cf. §§ 4.10 and 4.11.
And we are not the only ones who have seen this applicational problem: For instance, in
[Heusinger, 1997], an index was introduced to the ε to overcome right-uniqueness.

If we nevertheless read “function” as a right-unique relation in the above quotation, what
kind of function could be meant but a choice function, choosing an element from the set
of objects that satisfy A, i.e. from its extension { o | eval(S ] {xB 7→o})(A) = TRUE }.
Accordingly, in the earlier publication [Hilbert, 1928], we read (p. 68):

“Darüber hinaus hat das ε die Rolle der Auswahlfunktion, d. h. im Falle, wo
Aa auf mehrere Dinge zutreffen kann, ist ε A irgendeines von den Dingen a,
auf welche Aa zutrifft.”

“Beyond that, the ε has the rôle of the choice function, i.e., if Aa may hold for
several objects, εA is an arbitrary one of the things a for which Aa holds.”

Regarding the notation in this quotation, the syntax of the ε is not that of a binder here,
but a functional ε : (i→ o)→ i, applied to A : i→ o.

The meaning of having “the rôle of the choice function” is defined by the text that
follows in the quotation. Thus, it is obvious that Hilbert wants to state the arbitrariness
of choice as given by an arbitrary choice function, and that the word “function” does not
refer to a requirement of right-uniqueness here.

Moreover, note that the definite article in “the choice function” (instead of the indefinite
one) is in conflict with an interpretation as a mathematical function in the narrower sense
as well.

Furthermore, David Hilbert was sometimes pretty sloppy with the usage of choice
functions in general: For instance, he may well have misinterpreted the consequences of
the ε on the Axiom of Choice (cf. [Rubin & Rubin, 1985], [Howard & Rubin, 1998]) in
the one but last paragraph of [Hilbert, 1923a]. Let us therefore point out the following:
Although the ε supplies us with a syntactic means for expressing an indefinite univer-
sal (generalized) choice function (cf. § 5.1), the axioms (E2), (ε0), (ε1), and (ε2) do not
imply the Axiom of Choice in set theories, unless the axiom schemes of Replacement (Col-
lection) and Comprehension (Separation, Subset) also range over expressions containing
the ε; cf. [Leisenring, 1969, § IV 4.4].

Hilbert’s school in logic may well have wanted to express what we call “committed
choice” today, but they simply used the word “function” for the following three reasons:

1. They were not too much interested in semantics anyway.
2. The technical term “committed choice” did not exist at their time.
3. Last but not least, right-uniqueness conveniently serves as a global commitment to

any choice and thereby avoids the problem illustrated in Example 4.8 of § 4.9.
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B.2 Indefinite Semantics in the Literature

The only occurrence of an indefinite semantics for Hilbert’s ε in the literature seems to be
[Blass & Gurevich, 2000] (and the references there), unless we count the indexed ε of
[Heusinger, 1997] for indefinite indices as such a semantics as well. The right-uniqueness
is actually so prevalent in the literature that a “δ ” is written instead of an “ε ” in [Blass
& Gurevich, 2000], because there the right-unique behavior is considered to be essential
for the ε.

Consider the formula εx. (x = x) = εx. (x = x) from [Blass & Gurevich, 2000]
or the even simpler εx. true = εx. true (discussed already in § 4.10), which may be valid
or not, depending on the question whether the same object is taken on both sides of the
equation or not. In natural language this like “Something is equal to something.”, whose
truth is indefinite. If you do not think so, consider εx. true 6= εx. true in addition,
i.e. “Something is unequal to something.”, and notice that the two sentences seem to be
contradictory.

In [Blass & Gurevich, 2000], Kleene’s strong three-valued logic is taken as a
mathematically elegant means to solve the problems with indefiniteness. In spite of the the-
oretical significance of this solution, however, Kleene’s strong three-valued logic severely
restricts its applicability from a practical point of view: In applications, a logic is not
an object of investigation but a meta-logical tool, and logical arguments are never made
explicit because the presence of logic is either not realized at all or taken to be trivial, even
by academics (unless they are formalists); see, for instance, [Pinkal &al., 2001, p.14f.]
for Wizard of Oz studies with young students.

Therefore, regarding applications, we had better stick to our common meta-logic, which
in the western world is a subset of (modal) classical logic: A western court may accept that
Lee Harvey Oswald killed John F. Kennedy as well as that he did not — but cannot
accept a third possibility, a tertium, as required for Kleene’s strong three-valued logic,
and especially not the interpretation given in [Blass & Gurevich, 2000], namely that
he both did and did not kill him, which contradicts any common sense.
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C On Formalizing Variable-Conditions

Note that the two relations P and N of a positive/negative variable-condition (P, N) are
always disjoint because their ranges must be disjoint according to Definition 5.4.

Thus, from a technical point of view, we could merge P and N into a single relation,
but we prefer to have two relations for the two different functions (the positive and the
negative one) of the variable-conditions in this paper, instead of the one relation for one
function of [Wirth, 2002; 2004; 2006a; 2008; 2012b; 2006b], which realized the negative
function only with a significant loss of relevant information.

Our main reason to have two different relations is that it may make sense to relax the
restriction on the negative relation in future publications to

N ⊆ V× VA,
cf. e.g. Example 6.1. We do not know of any of our theorems that its proof would get into
serious problems by this relaxation, but we have not meticulously checked this yet.

Moreover, in Definition 5.4, we have excluded the possibility that two free atoms aA, bA ∈ A
may be related to each other in any of the two components of a positive/negative variable-
condition (P, N):

• yVA P aA is excluded for intentional reasons: An atom aA cannot depend on any other
symbol yVA. In this sense an atom is indeed atomic and can be seen as a black box.

• bA N aA, however, is excluded for technical reasons only.
Two distinct atoms aA, bA in nominal terms [Urban &al., 2004] are indeed always
fresh for each other: aA # bA. In our notation, this would read: bA N aA.
The reason why we did not include (A×A) \ A»id into the negative component N is
simply that we want to be close to the data structures of a both efficient and human-
oriented graph implementation.
Furthermore, consistency of a positive/negative variable-condition (P,N) is equivalent
to consistency of

(
P, N ] ((A×A) \ A»id)

)
.

Indeed, if we added (A×A) \ A»id to N, the result of the acyclicity test of Corollary 5.6
would not be changed: If there were a cycle with a single edge from (A×A) \ A»id,
then its previous edge would have to be one of the original edges of N ; and so this
cycle would have more than one edge from N ] ((A×A) \ A»id), and thus would not
count as a counterexample to consistency.

Furthermore, we could remove the set B of bound atoms from our sets of symbols and
consider its elements to be elements of the set A of atoms. Besides some additional care
on free occurrences of atoms in § 5.3, an additional price we would have to pay for this
removal is that we would have to include V×B as a subset into the negative component N
of each of our positive/negative variable-conditions (P, N).
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The reason for this inclusion is that we must guarantee that it is not possible that a
bound atom bB can be read by some variable xV, in particular after an elimination of binders.
Then, by this inclusion, in case of bB P + xV, we would get a cycle bB P + xV N bB with
only one edge from N.

Although, in practical contexts, we can always get along with a finite subset of V×B,
the essential pairs of this subset would still be quite many and would be most confusing
already in small examples. For instance, for the choice-condition of Example 4.11, almost
four dozen pairs from V×B are technically required, compared to only a good dozen pairs
that are actually relevant to the problem according to Example 5.13(a).
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Proofs

Proof of Lemma5.1
The backward implications are trivial, the first because R+-minimality in a class A implies
R-minimality in A due to R ⊆ R+.
For the forward implications, since R+ is clearly transitive and any well-founded relation is
irreflexive, it suffices to show that R+ is well-founded.
Thus, assume that R is well-founded and suppose that there is some class A with ∀a∈A.
∃a′ ∈A. a′R+a. It suffices to show that A must be empty. Set B := { b | ∃a∈A. a R∗ b }.
Claim 1: For any b ∈ B, there is some b′ ∈ B with b′ R b.
Proof of Claim 1: Assume b∈B. By definition of B and our supposition on A, there are
some a, a′ ∈ A with a′ R+ a R∗ b. Thus, a′ R+ b. Thus, there is some b′ with a′ R∗ b′ R b.
And we also have b′ ∈ B then. Q.e.d. (Claim 1)

By Claim 1 and the assumption that R is well-founded, we get B = ∅. Then, we also have
A = ∅ due to A ⊆ B. Q.e.d. (Lemma5.1)

Proof of Lemma5.17
By assumption, (C ′, (P ′, N ′)) is the extended σ-update of (C, (P, N)). Thus, (P ′, N ′) is
the σ-update of (P,N). Thus, because σ is a (P, N)-substitution, (P ′, N ′) is a consistent
positive/negative variable-condition by Definition 5.11. Moreover, C is a (P,N)-choice-
condition. Thus, C is a partial function on V, such that Items 1, 2, and 3 of Definition 5.12
hold. Thus, C ′ is a partial function on V satisfying items 1 and 2 of Definition 5.12 as well.
For C ′ to satisfy also item3 of Definition 5.12, it now suffices to show the following Claim 1.

Claim 1: Let yV ∈ dom(C ′) and zVA ∈ VA(C ′(yV)). Then we have zVA (P ′)+ yV.
Proof of Claim 1: By the definition of C ′, we have zVA ∈VA(C(yV)) or else there is some
xV ∈ dom(σ) ∩ V(C(yV)) with zVA ∈VA(σ(xV)). Thus, as C is a (P,N)-choice-condition,
we have either zVA P + yV or else xV P + yV and zVA ∈VA(σ(xV)). Then, as (P ′, N ′) is the
σ-update of (P,N), by Definition 5.10, we have either zVA (P ′)+ yV or else xV (P ′)+ yV and
zVA P ′ xV. Thus, in any case, zVA (P ′)+ yV. Q.e.d. (Claim 1)

Q.e.d. (Lemma5.17)
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Proof of Theorem7.5

Under the given assumptions, set ¢ := P + and Sπ := R.

ClaimA: ¢ = P + and (P ∪ Sπ)+ are a well-founded orderings.

ClaimB: (P,N) and (P ∪ Sπ, N) are consistent positive/negative variable-conditions.

Proof of Claims A and B: (P,N) is a consistent variable-condition because C is a (P,N)-
choice-condition by assumption of the theorem. Thus, by Definition 5.5, P is well-founded
and P +◦N is irreflexive. Thus, by Lemma5.1, ¢ = P + is a well-founded ordering.
R = A»(P +): In this case, we have Sπ ⊆ ¢. Thus, (P ∪ Sπ)+ = ¢ holds and (P, N) is
a weak extension of (P ∪ Sπ, N). Thus, by Corollary 5.9, (P ∪ Sπ, N) is a consistent
positive/negative variable-condition as well.
R = (A×V) \ (P ∗◦N)−1: In this case, we have Sπ = (A×V) \ (P ∗◦N)−1. To show that
P ∪ Sπ is well-founded, assume an arbitrary non-empty set B ⊆ VA. As P is well-founded
there is a P -minimal bVA ∈ B. If bVA is Sπ-minimal, then it is also (P ∪ Sπ)-minimal as
required. Otherwise there is some aVA ∈ B with aVASπbVA. Then we have aVA ∈A and thus
it must be (P ∪ Sπ)-minimal as required, because of ran(P ∪ Sπ) ⊆ V.
Thus, P ∪ Sπ is well-founded, and, again by Lemma5.1, (P ∪ Sπ)+ is a well-founded
ordering.
To show that (P ∪ Sπ)+◦N is irreflexive, let us assume the contrary: xA(P ∪ Sπ)+yVNxA.
Because of N ⊆ V×A, we indeed have yV ∈V and xA ∈A. If the first step in this
assumption is a P -step, then, because of ran(P ) ⊆ V and dom(Sπ) ⊆ A, we actually
have xAP +yVNxA, contradicting the irreflexivity of P +◦N . Otherwise, the first step must
be an Sπ-step, and then, because of ran(P ∪ Sπ) ⊆ V and dom(Sπ) ⊆ A, we actually have
xASπzVP ∗yVNxA for some zV ∈ V. Then, skipping the first step, we have xA(P ∗◦N)−1zV,
contradicting the first step xASπzV by our case for R.
Thus, (P ∪ Sπ, N) is a consistent positive/negative variable-condition.

Q.e.d. (Claims A and B)
ClaimC: [Sρ ⊆ Sπ.]

Proof of ClaimC: [Sρ ⊆ R holds by assumption of the theorem. Thus ClaimC holds by
our definition of Sπ. ] Q.e.d. (ClaimC)

ClaimD: Sπ ◦¢ ⊆ Sπ.

Proof of ClaimD:
R = A»(P +): In this case, we have Sπ = A»¢, and thus Sπ ◦¢ = A»¢ ◦¢ ⊆ A»¢ = Sπ.
R = (A×V) \ (P ∗◦N)−1: In this case, we have Sπ = (A×V) \ (P ∗◦N)−1. Let us as-
sume xASπyVP +zV. Because of Sπ ⊆ A×V and ran(P ) ⊆ V, we indeed have xA ∈A and
yV, zV ∈V. From the first step and our case for R, we conclude that yVP ∗◦NxA cannot
hold. Thus, by the second step, neither zVP ∗◦NxA nor xA(P ∗◦N)−1zV can be the case.
Thus, we have xASπzV, as was to be shown. Q.e.d. (ClaimD)

By recursion on yV ∈ V in ¢, we can define π(yV) : (Sπ〈{yV}〉 → S)→ S as follows.

Let τ ′ : Sπ〈{yV}〉 → S be arbitrary.
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yV ∈ V\dom(C): [If an S-raising-valuation ρ is given, then we set
π(yV)(τ ′) := ρ(yV)(Sρ〈{yV}〉»τ ′);

which is well-defined according to ClaimC.]
Otherwise, we choose an arbitrary value for π(yV)(τ ′) from the universe of S (of the appro-
priate type). Note that S is assumed to provide some function-choice function S(∃) for
the universe function S(∀) according to § 7.1. Thus, for yV : α, we take:

π(yV)(τ ′) := S(∃)α.

yV ∈ dom(C): In this case, we have the following situation: C(yV) = λv B0 , . . . , v Bl−1. εv Bl . B
for some formula B and some v B0 , . . . , v Bl ∈ B with v B0 : α0, . . . , v Bl : αl,

B(B) ⊆ {v B0 , . . . , v Bl }, yV : α0, . . . , αl−1 → αl, and zVA¢yV for all zVA ∈ VA(B), because C is
a (P,N)-choice-condition, cf. item3 of Definition 5.12. In particular, by ClaimA, yV 6∈V(B).

Let τ ′′ : (A\dom(τ ′))→ S be arbitrary and
set δ := e(¢〈{yV}〉»π)(τ ′ ] τ ′′) ] τ ′ ] τ ′′ .

In this case, with the help of the assumed generalized choice function on the power-set of
the universe S(∀)αl

for the choice type αl, for an arbitrary χ : {v B0 , . . . , v Bl−1} → S, we
choose the object iχ ∈ S(∀)αl

from the set
{

i′ ∈ S(∀)αl
eval(S ] δ ] χ ] {v Bl 7→i′})(B) = TRUE

}
,

and then let π(yV)(τ ′) be the function f given by

f(χ(v B0 ), . . . , χ(v Bl−1)) = iχ.

This point-wise definition of f over the single arbitrary point (χ(v B0 ), . . . , χ(v Bl−1)) is correct.
Indeed, by the Explicitness Lemma and because of yV /∈ V(B), the choice of the value of
f(χ(v B0 ), . . . , χ(v Bl−1)) does not depend on the values of f(χ′′(v B0 ), . . . , χ′′(v Bl−1)) for a different
χ′′ : {v B0 , . . . , v Bl−1} → S. Therefore, the function f is well-defined because it also does not
depend on τ ′′ according to the Explicitness Lemma and Claim 1 below. Finally, π is
well-defined by induction on ¢ according to Claim 2 below.

Claim 1: For zVA ¢ yV, the application term (δ ] χ)(zVA) has the value τ ′(zVA) in case of
zVA ∈ A, and the value π(zVA)(Sπ〈{zVA}〉»τ ′) in case of zVA ∈ V.

Claim2: The definition of π(yV)(τ ′) depends only on such values of π(vV) with vV ¢ yV,
and does not depend on τ ′′ at all.

Proof of Claim 1: Assume zVA¢yV. For zVA ∈ V, we have Sπ〈{zVA}〉 ⊆ Sπ〈{yV}〉 by ClaimD,
and thus the applicative term has the value π(zVA)(Sπ〈{zVA}〉»(τ ′ ] τ ′′)) = π(zVA)(Sπ〈{zVA}〉»τ ′).
Moreover, for zVA ∈ A, to show that the application term has the value τ ′(zVA), it suffices
to show zVA ∈Sπ〈{yV}〉. For the case of R = A»(P +), this is trivial. For the case of
R = (A×V) \ (P ∗◦N)−1, the contrary assumption zVA 6∈Sπ〈{yV}〉 can be refuted as follows:
By definition of Sπ in this case, we first get zVA(P ∗◦N)−1yV. Then, from this yVP ∗◦NzVA.
Finally, from zVAP +yV, we get zVAP +◦NzVA, contradicting the irreflexivity given by ClaimB.

Q.e.d. (Claim 1)

Proof of Claim 2: In case of yV 6∈ dom(C), the definition of π(yV)(τ ′) is immediate and
independent. Otherwise, we have zVA ¢ yV for all zVA ∈ VA(C(yV)). Thus, Claim 2 follows
from the Explicitness Lemma and Claim 1. Q.e.d. (Claim 2)
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Moreover, π : V→ (A ; S) ; S is obviously an S-raising-valuation. Thus, item1 of
Definition 7.4 is satisfied for π by ClaimB.

To show that also item2 of Definition 7.4 is satisfied, let us assume yV ∈ dom(C) and
τ : A→ S to be arbitrary with C(yV) = λv B0 , . . . , v Bl−1. εv Bl . B, and let us then assume to
the contrary of item2 that, for some χ′ : {v B0 , . . . , v Bl } → S and for δ′ := e(π)(τ) ] τ]χ′ and
σ:={v Bl 7→yV(v B0 , . . . , v Bl−1)}, we have eval(S ] δ′)(B) = TRUE, but eval(S ] δ′)(Bσ) = FALSE.

Set τ ′ := Sπ〈{yV}〉»τ , δ := VA»δ′, χ := {v0,...,vl−1}»χ′, and ι := {v Bl 7→π(yV)(τ ′)(χ(v B0 ), . . . , χ(v Bl−1))}.
Then δ ] χ′ = δ′, and thus

eval(S ] δ ] χ ] {v Bl }»χ
′)(B) = eval(S ] δ ] χ′)(B) = eval(S ] δ′)(B) = TRUE.

This means that χ′(v Bl ) is an element of the set that was defined for the definition of f , and
therefore f(χ(v B0 ), . . . , χ(v Bl−1)) must be from that set as well, i.e.

eval(S ] δ ] χ ] ι)(B) = TRUE.

By the Valuation-Lemma(l), we have

eval(S ] δ′)(yV(v B0 , . . . , v Bl−1))
= δ′(yV)(δ′(v B0 ), . . . , δ′(v Bl−1))
= e(π)(τ)(yV)(χ′(v B0 ), . . . , χ′(v Bl−1))
= π(yV)(τ ′)(χ(v B0 ), . . . , χ(v Bl−1)).

Then we get
ι = σ ◦ eval(S ] δ′).

Moreover, δ ] χ = VAB\{v Bl }»δ
′ = VAB\{v Bl }»id ◦ eval(S ] δ′) by the Valuation-Lemma(0).

Thus δ ] χ ] ι = ι ] δ ] χ = (σ ] VAB\{v Bl }»id) ◦ eval(S ] δ′). Thus, we have:

eval(S ] δ ] χ ] ι)(B) = eval(S ] ((σ ] VAB\{v Bl }»id) ◦ eval(S ] δ′)))(B)

= eval(S ] δ′)(Bσ) = FALSE,

where the second equation holds by the Substitution [Value] Lemma.

Thus we get the contradiction TRUE = FALSE. Q.e.d. (Theorem7.5)

Proof of Lemma7.6
Let us assume that π is S-compatible with (C ′, (P ′, N ′)).
Then, by item1 of Definition 7.4, π : V→ (A ; S) ; S is an S-raising-valuation and
(P ′ ∪ Sπ, N ′) is consistent. As (P ′, N ′) is an extension of (P,N), we have P⊆P ′ and
N⊆N ′. Thus, (P ′ ∪Sπ, N ′) is an extension of (P ∪Sπ, N). Thus, (P ∪Sπ, N) is consistent
by Corollary 5.9.
For π to be S-compatible with (C, (P, N)), it now suffices to show item2 of Definition 7.4.
As this property does not depend on the positive/negative variable-conditions anymore,
it suffices to note that it actually holds because it holds for C ′ by assumption and we also
have C⊆C ′ by assumption. Q.e.d. (Lemma7.6)
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Proof of Lemma7.10

Let C be a (P, N)-choice-condition. Let yV ∈ dom(C). Let S be a Σ-structure.

Then, by Definition 5.12 (Choice-Condition), for some mutually distinct variables v B0 , . . . , v Bl
and some formula B, we have

B(B) ⊆ {v B0 , . . . , v Bl } (1)
and

C(yV) = λv B0 , . . . , v Bl−1. εv Bl . B.

Set σ := {v Bl 7→ yV(v B0 , . . . , v Bl−1)}. Then, by Definition 4.12, we have

QC(yV) = ∀v B0 . . . . ∀v Bl−1.
( ∃v Bl . B ⇒ Bσ

)
.

Let π be S-compatible with (C, (P, N)); namely, in the case of item1, the arbitrary π men-
tioned in the lemma, or, in the case of item2, the π that exists according to Theorem7.5.
Let τ : A→ S be arbitrary. It now suffices to show

eval(S ] e(π)(τ) ] τ)(QC(yV)) = TRUE.

By the backward direction of the ∀-Lemma, it suffices to show

eval(S ] δ)(∃v Bl . B ⇒ Bσ) = TRUE

for an arbitrary χ : {v B0 , . . . , v Bl−1} → S, setting δ := e(π)(τ) ] τ ] χ. By the backward
direction of the ⇒-Lemma, it suffices to show

eval(S ] δ)(Bσ) = TRUE (2)

under the assumption of eval(S ] δ)(∃v Bl . B) = TRUE. By the latter and the forward
direction of the ∃-Lemma, there is a χ′ : {v Bl } → S such that eval(S ] δ ] χ′)(B) = TRUE.
By the S-compatibility of π with (C, (P,N)) and by item2 of Definition 7.4, we get

eval(S ] δ ] χ′)(Bσ) = TRUE. (3)

Set X := VAB(Bσ). By mutual distinctness of the variables v B0 , . . . , v Bl and by (1), we have

X = (VAB(B)\{v Bl }) ∪ VAB(yV(v B0 , . . . , v Bl−1))
⊆ VA ∪ (B(B)\{v Bl }) ∪ {v B0 , . . . , v Bl−1}
⊆ VA ∪ ({v B0 , . . . , v Bl }\{v Bl }) ∪ {v B0 , . . . , v Bl−1}
= VA ∪ {v B0 , . . . , v Bl−1}
= dom(δ)

Now, all we have to do to show (2) is to apply the Explicitness Lemma twice, first in
forward direction due to X ⊆ dom(δ), then in backward direction due to X ⊆ dom(δ ] χ′),
and finally apply (3):

eval(S ] δ)(Bσ) = eval(S ] X»δ)(Bσ)
= eval(S ] X»(δ ] χ′))(Bσ)
= eval(S ] δ ] χ′)(Bσ)
= TRUE.

Q.e.d. (Lemma7.10)



88

Proof of Lemma7.11

Let us assume the situation described in the lemma.

We set A := dom(σ)\(O′]O). As σ is a substitution on V, we have dom(σ) ⊆ O′]O]A ⊆ V.
←−−−−−−−−−−−−−−−−−−−−−−−V−−−−−−−−−−−−−−−−−−−−−−−→

←−−−−−−−−dom(C)−−−−−−−−→
←−−−−−−−−dom(σ)−−−−−−−−→

←−−−−O′−−−−→←−O−→←−−−−A−−−−→

Note that C ′ is a (P ′, N ′)-choice-condition by Lemma5.17.

As π′ is S-compatible with (C ′, (P ′, N ′)), we know that (P ′ ∪ Sπ′ , N
′) s a consistent posi-

tive/negative variable-condition. Thus, ¢ := (P ′ ∪ Sπ′)
+ is a well-founded ordering.

Let D be the dependence relation of σ. Set Sπ := A»¢.

Claim 1: We have P ′, Sπ′ , P,D, Sπ ⊆ ¢ and
(P ′∪Sπ′ , N

′) is a weak extension of (P ∪ Sπ, N) and of (¢, N) (cf. Definition 5.7).

Proof of Claim 1: As (P ′, N ′) is the σ-update of (P, N), we have P ′ = P ∪D and N ′ = N .
Thus, P ′, Sπ′ , P,D, Sπ ⊆ (P ′ ∪ Sπ′)

+ = ¢. Q.e.d. (Claim 1)

Claim 2: (P ∪ Sπ, N) and (¢, N) are consistent positive/negative variable-conditions.

Proof of Claim 2: This follows from Claim 1 by Corollary 5.9. Q.e.d. (Claim 2)

Claim 3: O′»C is an (¢, N)-choice-condition.

Proof of Claim 3: By Claims 1 and 2 and the assumption that C is a (P, N)-choice-
condition. Q.e.d. (Claim 3)

The plan for defining the S-raising-valuation π (which we have to find) is to give
π(yV)(Sπ〈{yV}〉»τ) a value as follows:

(α) For yV ∈V\(O′]O]A), we take this value to be
π′(yV)(Sπ′ 〈{yV}〉»τ).

This is indeed possible because of Sπ′ ⊆ A»¢ = Sπ, so Sπ′ 〈{yV}〉»τ ⊆ Sπ〈{yV}〉»τ .
(β) For yV ∈O]A, we take this value to be

eval(S ] e(π′)(τ) ] τ)(σ(yV)).
Note that, in case of yV ∈O, we know that (QC(yV))σ is (π′,S)-valid by assumption of
the lemma. Moreover, the case of yV ∈A is unproblematic because of yV 6∈ dom(C).
Again, π is well-defined in this case because the only part of τ that is accessed by
the given value is Sπ〈{yV}〉»τ . Indeed, this can be seen as follows: By Claim 1 and the
transitivity of ¢, we have: A»D ∪ Sπ′◦D ⊆ A»¢ = Sπ.

(γ) For yV ∈O′, however, we have to take care of S-compatibility with (C, (P,N))
explicitly in an ¢-recursive definition on the basis a function ρ implementing (α)
and (β). This disturbance does not interfere with the semantic invariance stated
in the lemma because occurrences of variables from O′ are explicitly excluded in the
relevant terms and formulas and, according to the statement of lemma, O′ satisfies
the appropriate closure condition.
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Set Sρ := Sπ. Let ρ be defined by (yV ∈V, τ : A→ S)

ρ(yV)(Sπ〈{yV}〉»τ) :=

{
π′(yV)(Sπ′ 〈{yV}〉»τ) if yV ∈ V\(O]A)
eval(S ] e(π′)(τ) ] τ)(σ(yV)) if yV ∈O]A

Let π be the S-raising-valuation that exists according to Theorem7.5 for the S-raising-valu-
ation ρ and the (¢, N)-choice-condition O′»C (cf. Claim 3). Note that the assumptions
of Theorem7.5 are indeed satisfied here and that the resulting semantic relation Sπ of
Theorem7.5 is indeed identical to our pre-defined relation of the same name, thereby jus-
tifying our abuse of notation: Indeed, by assumption of Lemma7.11, for every choice
type α of O′»C, there is a generalized choice function on the power-set of the universe of S
for the type α; and we have

Sρ = Sπ = A»¢ = A»(¢+).

Because of dom(O′»C) = O′, according to Theorem7.5, we then have

V\O′»π = V\O′»ρ
and π is S-compatible with (O′»C, (¢, N)).

Claim 4: For all yV ∈ O]A and τ : A→ S, when we set δ′ := e(π′)(τ) ] τ :
e(π)(τ)(yV) = eval(S ] δ′)(σ(yV)).

Proof of Claim 4: We have O]A ⊆ V\O′. Thus, Claim 4 follows immediately from the
definition of ρ. Q.e.d. (Claim 4)

Claim5: For all yV ∈ V\(O′]O]A) and τ : A→ S: e(π)(τ)(yV) = e(π′)(τ)(yV).

Proof of Claim 5: For yV ∈ V\(O′]O]A), we have yV ∈ V\O′ and yV ∈ V\(O]A).
Thus, e(π)(τ)(yV) = π(yV)(Sπ〈{yV}〉»τ) = ρ(yV)(Sπ〈{yV}〉»τ) = π′(yV)(Sπ′ 〈{yV}〉»τ) = e(π′)(τ)(yV).

Q.e.d. (Claim 5)

Claim6: For any term or formula B (possibly with some unbound occurrences of bound
atoms from the set W ⊆ B) with O′ ∩V(B) = ∅, and for every τ : A→ S and

every χ : W → S, when we set δ := e(π)(τ) ] τ and δ′ := e(π′)(τ) ] τ , we have

eval(S ] δ′ ] χ)(Bσ) = eval(S ] δ ] χ)(B).

Proof of Claim 6: eval(S ] δ′ ] χ)(Bσ) = (by the Substitution [Value] Lemma)
eval(S ] (σ ] VAB\dom(σ)»id) ◦ eval(S ] δ′ ] χ))(B) =

(by the Explicitness Lemma and the Valuation-Lemma(0))
eval(S ] (σ ◦ eval(S ] δ′)) ] VA\dom(σ)»δ′ ] χ)(B) =

(by O]A ⊆ dom(σ) ⊆ O′]O]A, O′∩V(B) = ∅, and the Explicitness Lemma)
eval(S ] O]A»σ ◦ eval(S ] δ′) ] VA\(O′]O]A)»δ′ ] χ)(B) = (by Claim 4 and Claim 5)
eval(S ] O]A»δ ] VA\(O′]O]A)»δ ] χ)(B) =

(by O′∩V(B) = ∅ and the Explicitness Lemma)
eval(S ] δ ] χ)(B). Q.e.d. (Claim 6)

Claim7: For every set of sequents G (possibly with some unbound occurrences of bound
atoms from the set W ⊆ B) with O′ ∩ V(G) = ∅, and for every τ : A→ S and

for every χ : W → S: Truth of G in S ] e(π)(τ) ] τ ] χ is equivalent to
truth of Gσ in S ] e(π′)(τ) ] τ ] χ.
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Proof of Claim 7: This is a trivial consequence of Claim 6. Q.e.d. (Claim 7)

Claim 8: For yV ∈ dom(C) \O′, we have O′ ∩ V(C(yV)) = ∅.
Proof of Claim 8: Otherwise there is some yV ∈ dom(C) \O′ and some zV ∈ O′ ∩V(C(yV)).
Then zVP +yV because C is a (P,N)-choice-condition, and then, as 〈O′〉P + ∩ dom(C) ⊆ O′

by assumption of the lemma, we have the contradicting yV ∈O′. Q.e.d. (Claim 8)

Claim 9: Let yV ∈ dom(C) and C(yV) = λv B0 , . . . , v Bl−1. εv Bl . B. Let τ : A→ S and
χ : {v B0 , . . . , v Bl } → S. Set δ := e(π)(τ)]τ]χ. Set µ := {v Bl 7→ yV(v B0 ) · · · (v Bl−1)}.

If B is true in S]δ, then Bµ is true in S]δ as well.

Proof of Claim 9: Set δ′ := e(π′)(τ) ] τ ] χ.

yV 6∈O′]O: In this case, because of dom(σ) ∩ dom(C) ⊆ O′]O, we have yV 6∈ dom(σ).
Thus, as (C ′, (P ′, N ′)) is the extended σ-update of (C, (P,N)), we have

C ′(yV) = (C(yV))σ. By Claim 8, we have O′ ∩ V(B) = ∅.
And then, by our case assumption, also O′ ∩ V(Bµ) = ∅.
By assumption of Claim 9, B is true in S]δ. Thus, by Claim 7, Bσ is true in S]δ′. Thus,
as π′ is S-compatible with (C ′, (P ′, N ′)), we know that (Bσ)µ is true in S]δ′. Because of
yV 6∈ dom(σ), v B0 , . . . , v Bl ∈B, and B(dom(σ)∪ran(σ)) = ∅, we have (Bσ)µ = B(σ]µ) = (Bµ)σ.
Thus, (Bµ)σ is true in S]δ′ as well. Thus, by Claim 7, Bµ is true in S]δ.

yV ∈O: By Claim 8, we have O′ ∩ V(B) = ∅.
And then, by our case assumption, also O′ ∩ V(Bµ) = ∅.

Moreover, (QC(yV))σ is equal to ∀v B0 . . . . ∀v Bl−1.
( ∃v Bl . B ⇒ Bµ

)
σ and (π′,S)-valid

by assumption of the lemma. Thus, by the forward direction of the ∀-Lemma,( ∃v Bl . B ⇒ Bµ
)
σ is true in S]δ′. Thus, by Claim 7, ∃v Bl . B ⇒ Bµ is true in S]δ.

As, by assumption of Claim 9, B is true in S]δ, by the backward direction of the ∃-Lemma,
∃v Bl . B is true in S]δ as well. Thus, by the forward direction of the ⇒-Lemma, Bµ is
true in S]δ as well.

yV ∈O′: π is S-compatible with (O′»C, (¢, N)) by definition, as explicitly stated before
Claim 4. Thus, in this case, Claim 9 is just the respective item2 of Defini-

tion 7.4 (Compatibility). Q.e.d. (Claim 9)

By Claims 2 and 9, π is S-compatible with (C, (P, N)). And then items 1 and 2 of the
lemma are trivial consequences of Claims 6 and 7, respectively.

Q.e.d. (Lemma7.11)
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Proof of Theorem8.3

To illustrate our techniques, we only treat the first rule of each kind; the other rules can
be treated most similarly. In the situation described in the theorem, it suffices to show that
C ′ is a (P ′, N ′)-choice-condition (because the other properties of an extended extension are
trivial), and that, for every S-raising-valuation π that is S-compatible with (C ′, (P ′, N ′)),
the sets G0 and G1 of the upper and lower sequents of the inference rule are equivalent
w.r.t. their (π,S)-validity.

γ-rule: In this case we have (C ′, (P ′, N ′)) = (C, (P, N)). Thus, C ′ is a (P ′, N ′)-
choice-condition by assumption of the theorem. Moreover, for every S-valuation

τ : A→ S, and for δ := e(π)(τ) ] τ , the truths of
{Γ ∃y B. A Π} and {A{y B 7→t} Γ ∃y B. A Π}

in S]δ are indeed equivalent. The implication from left to right is trivial because the
former sequent is a sub-sequent of the latter.

For the other direction, assume that A{y B 7→t} is true in S]δ. Thus, by the Substitution
[Value] Lemma (second equation) and the Valuation-Lemma(0) (third equation):

TRUE = eval(S ] δ)(A{y B 7→t})
= eval(S ] (({y B 7→t} ] VAB\{y B}»id) ◦ eval(S]δ)))(A)
= eval(S ] {y B 7→eval(S]δ)(t)} ] δ)(A)

Thus, by the backward direction of the ∃-Lemma, ∃y B. A is true in S]δ. Thus, the
upper sequent is true S]δ.
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δ−-rule: In this case, we have xA ∈ A \ (dom(P ) ∪ A(Γ,A, Π)), C ′′ = ∅, and
V = V(Γ ∀xB. A Π)× {xA}. Thus, C ′ = C, P ′ = P , and N ′ = N ∪ V .

Claim 1: C ′ is a (P ′, N ′)-choice-condition.
Proof of Claim 1: By assumption of the theorem, C is a (P,N)-choice-condition. Thus,
(P, N) is a consistent positive/negative variable-condition. By Definition 5.5, P is well-
founded and P +◦N is irreflexive. Since xA /∈ dom(P ), we have xA /∈ dom(P +). Thus,
because of ran(V ) = {xA}, also P +◦N ′ is irreflexive. Thus, (P ′, N ′) is a consistent posi-
tive/negative variable-condition, and C ′ is a (P ′, N ′)-choice-condition. Q.e.d. (Claim 1)

Now, for the soundness direction, it suffices to show the contrapositive, namely to assume
that there is an S-valuation τ : A→ S such that {Γ ∀xB. A Π} is false in S]e(π)(τ) ] τ ,
and to find an S-valuation τ ′ : A→ S such that {A{xB 7→xA} Γ Π} is false in S]e(π)(τ ′)]τ ′.
Under this assumption, the sequent ΓΠ is false in S ] e(π)(τ)]τ .
Claim 2: ΓΠ is false in S]e(π)(τ ′)]τ ′ for all τ ′ : A→ S with A\{xA}»τ ′ = A\{xA}»τ .
Proof of Claim 2: Because of xA /∈ A(ΓΠ), by the Explicitness Lemma, if Claim 2
did not hold, there would have to be some uV ∈ V(ΓΠ) with xA Sπ uV. Then we have
uV N ′ xA. Thus, we know that (P ′ ∪ Sπ)+ ◦N ′ is not irreflexive, which contradicts π being
S-compatible with (C ′, (P ′, N ′)). Q.e.d. (Claim 2)

Moreover, under the above assumption, also ∀xB. A is false in S]e(π)(τ)]τ . By the
backward direction of the ∀-Lemma, this means that there is some object o such that A
is false in S]{xB 7→o}]e(π)(τ)]τ . Set τ ′ := A\{xA}»τ ] {xA 7→o}. Then, by the Substi-
tution [Value] Lemma (1st equation), by the Valuation-Lemma(0) (2nd equation), and
by the Explicitness Lemma and xA /∈ A(A) (3rd equation), we have:

eval(S ] e(π)(τ) ] τ ′)(A{xB 7→xA}) =
eval(S ] (({xB 7→xA} ] VAB\{xB}»id) ◦ eval(S ] e(π)(τ) ] τ ′)))(A) =

eval(S ] {xB 7→o} ] e(π)(τ) ] τ ′)(A) =
eval(S ] {xB 7→o} ] e(π)(τ) ] τ)(A) = FALSE.

Claim4: A{xB 7→xA} is false in S]e(π)(τ ′)]τ ′.
Proof of Claim 4: Otherwise, because of the Explicitness Lemma and the entire previous
equation, there must be some uV ∈ V(A{xB 7→xA}) with xA Sπ uV. Then we have uV N ′ xA.
Thus, we know that (P ′ ∪ Sπ)+◦N ′ is not irreflexive, which contradicts π being S-compatible
with (C ′, (P ′, N ′)). Q.e.d. (Claim 4)

By the Claims 4 and 2, {A{xB 7→xA} Γ Π} is false in S ] e(π)(τ ′) ] τ ′, as was to be
show for the soundness direction of the proof.

Finally, for the safeness direction, assume that the sequent Γ ∀xB. A Π is (π,S)-valid.
For arbitrary τ : A→ S, we have to show that the lower sequent A{xB 7→xA} Γ Π is
true in S]δ for δ := e(π)(τ) ] τ . If some formula in ΓΠ is true in S]δ, then the lower
sequent is true in S]δ as well. Otherwise, ∀xB. A is true in S]δ. Then, by the
forward direction of the ∀-Lemma, this means that A is true in S]χ]δ for all S-valuations
χ : {xB} → S. Then, by the Substitution [Value] Lemma (1st equation), and by the
Valuation-Lemma(0) (2nd equation), we have:

eval(S ] δ)(A{xB 7→xA}) =
eval(S ] (({xB 7→xA} ] VAB\{xB}»id) ◦ eval(S ] δ)))(A) =

eval(S ] {xB 7→δ(xA)} ] δ)(A) = TRUE.
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δ+-rule: In this case, we have xV ∈ V \ (dom(C ∪ P ∪N) ∪ V(A)),
C ′′ = {(xV, εxB. ¬A)}, and V = VA(∀xB. A)× {xV} = VA(A)× {xV}.

Thus, C ′ = C ∪ {(xV, εxB. ¬A)}, P ′ = P ∪ V , and N ′ = N .
By assumption of the theorem, C is a (P, N)-choice-condition. Thus, (P, N) is a consistent
positive/negative variable-condition. Thus, by Definition 5.5, P is well-founded and P +◦N
is irreflexive.

Claim 5: P ′ is well-founded.
Proof of Claim 5: Let B be a non-empty class. We have to show that there is a P ′-minimal
element in B. Because P is well-founded, there is some P -minimal element in B. If this
element is V -minimal in B, then it is a P ′-minimal element in B. Otherwise, this element
must be xV and there is an element nVA ∈ B ∩ VA(A). Set B′ := { bVA ∈B | bVA P ∗ nVA }.
Because of nVA ∈B′, we know that B′ is a non-empty subset of B. Because P is well-
founded, there is some P -minimal element mVA in B′. Then mVA is also a P -minimal element
in B. Because of xV /∈ VA(A)∪ dom(P ), we know that xV /∈ B′. Thus, mVA 6= xV. Thus,
mVA is also a V -minimal element of B. Thus, mVA is also a P ′-minimal element of B.

Q.e.d. (Claim 5)
Claim6: (P ′)+ ◦N ′ is irreflexive.
Proof of Claim 6: Suppose the contrary. Because P +◦N is irreflexive, P ∗◦(V ◦ P ∗)+◦N
must be reflexive. Because of ran(V ) = {xV} and {xV} ∩ dom(P ∪N) = ∅, we have
V ◦P = ∅ and V ◦N = ∅. Thus, P ∗ ◦ (V ◦ P ∗)+ ◦N = P ∗ ◦V + ◦N = ∅. Q.e.d. (Claim 6)

Claim7: C ′ is a (P ′, N ′)-choice-condition.
Proof of Claim 7: By Claims 5 and 6, (P ′, N ′) is a consistent positive/negative variable-
condition. As xV ∈ V\dom(C), we know that C ′ is a partial function on V just as C.
Moreover, for yV ∈ dom(C ′), we either have yV ∈ dom(C) and then
VA(C ′(yV))× {yV} = VA(C(yV))× {yV} ⊆ P + ⊆ (P ′)+, or yV = xV and then
VA(C ′(yV))× {yV} = VA(εxB. ¬A)× {xV} = V ⊆ P ′ ⊆ (P ′)+. Q.e.d. (Claim 7)

Now it suffices to show that, for each τ : A→ S, and for δ := e(π)(τ) ] τ , the truth of
{Γ ∀xB. A Π} in S ] δ is equivalent that of {A{xB 7→xV} Γ Π}.
For the soundness direction, it suffices to show that the former sequent is true in S]δ under
the assumption that the latter is. If some formula in ΓΠ is true in S]δ, then the former
sequent is true in S]δ as well. Otherwise, this means that A{xB 7→xV} is true in S]δ.
Then, by the forward direction of the ¬-Lemma, ¬A{xB 7→xV} is false in S]δ. By the
Explicitness Lemma, ¬A{xB 7→xV} is false in S]δ]χ for all χ : {xB} → S. Because
π is S-compatible with (C ′, (P ′, N ′)) and because of C ′(xV) = εxB. ¬A, by Item2 of
Definition 7.4, ¬A is false in S]δ]χ for all χ : {xB} → S. Then, by the backward direction
of the ¬-Lemma, A is true in S]δ]χ for all χ : {xB} → S. Then, by the backward direction
of the ∀-Lemma, ∀xB. A is true in S]δ.

The safeness direction is perfectly analogous to the case of the δ−-rule.

Q.e.d. (Theorem8.3)
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Proof of Theorem8.5

(1a): If G0 is (C ′, (P ′, N ′))-valid in S, then there is some π that is S-compatible with
(C ′, (P ′, N ′)) such that G0 is (π,S)-valid. By Lemma7.6, π is also S-compatible

with (C, (P, N)). Thus, G0 is (C, (P, N))-valid, in S.

(1b): Suppose that π is S-compatible with (C ′, (P ′, N ′)), and that G1 is (π,S)-valid. By
Lemma7.6, π is also S-compatible with (C, (P,N)). Thus, since G0 (C, (P,N))-

reduces to G1, also G0 is (π,S)-valid as was to be shown.

(2): Assume the situation described in the lemma.

Claim 1: O′ ⊆ dom(C) \O.

Proof of Claim 1: By definition, O′ ⊆ dom(C). It remains to show O′ ∩O = ∅. To the
contrary, suppose that there is some yV ∈ O′ ∩ O. Then, by the definition of O′, there
is some zV ∈ M\O with zV P ∗ yV. By definition of O, however, we have yV ∈ P ∗〈V 〉.
Thus, zV ∈ P ∗〈V 〉. Thus, zV ∈O, a contradiction. Q.e.d. (Claim 1)

Claim 2: 〈O′〉P + ∩ dom(C) ⊆ O′.

Proof of Claim 2: Assume yV ∈ O′ and zV ∈ dom(C) with yV P + zV. It now suffices to
show zV ∈O′. Because of yV ∈ O′, there is some xV ∈ M\O with xV P ∗ yV. Thus,
xV P ∗ zV. Thus, zV ∈O′. Q.e.d. (Claim 2)

Claim 3: dom(σ) ∩ dom(C) ⊆ O′ ∪O.

Proof of Claim 3: dom(σ) ∩ dom(C) = dom(C) ∩ M ⊆ O ∪ (dom(C) ∩ (M\O)) ⊆
O ∪ (dom(C) ∩ 〈M\O〉P ∗) = O ∪O′. Q.e.d. (Claim 3)

Claim 4: O′ ∩ V(G0, G1) = O′ ∩ V = ∅.
Proof of Claim 4: Because of V(G0, G1) ⊆ V, it suffices to show the second equality.
To the contrary of the second equality, suppose that there is some yV ∈ O′ ∩ V . Then,
by the definition of O′, there is some zV ∈ M\O with zV P ∗ yV. By definition of O,
however, we have zV ∈O, a contradiction. Q.e.d. (Claim 4)

(2a): In case that G0σ ∪ (〈O〉QC)σ is (C ′, (P ′, N ′))-valid in S, there is some π′ that is
S-compatible with (C ′, (P ′, N ′)) such that G0σ ∪ (〈O〉QC)σ is (π′,S)-valid. Then

both G0σ and (〈O〉QC)σ are (π′,S)-valid. By Claims 1, 2, 3, and 4, let π be given as in
Lemma7.11. Then G0 is (π,S)-valid. Moreover, as π is S-compatible with (C, (P,N)),
G0 is (C, (P, N))-valid in S.
(2b): Let π′ be S-compatible with (C ′, (P ′, N ′)), and suppose that G1σ ∪ (〈O〉QC)σ is

(π′,S)-valid. Then both G1σ and (〈O〉QC)σ are (π′,S)-valid. By Claims 1, 2, 3,
and 4, let π be given as in Lemma7.11. Then π is S-compatible with (C, (P, N)), and
G1 is (π,S)-valid. By assumption, G0 (C, (P,N))-reduces to G1. Thus, G0 is (π,S)-valid,
too. Thus, by Lemma7.11, G0σ is (π′,S)-valid as was to be shown.
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(3): Let π be S-compatible with (C, (P, N)), and suppose that G0 is (π,S)-valid. Let
τ : A→ S be an arbitrary S-valuation. Set δ := e(π)(τ) ] τ . It now suffices to

show the equation eval(S ] δ)(G0ν) = TRUE.

Define τ ′ : A→ S via τ ′(yA) :=

{
τ(yA) for yA ∈ A\dom(ν)
eval(S ] δ)(ν(yA)) for yA ∈ dom(ν)

}
.

Claim 5: For vV ∈ V(G0) we have e(π)(τ)(vV) = e(π)(τ ′)(vV).
Proof of Claim 5: Otherwise there must be some yA ∈ dom(ν) with yA Sπ vV. Because of
vV ∈V(G0) and V(G0) × dom(ν) ⊆ N , we have vV N yA. But then (P ∪ Sπ, N) is not
consistent, which contradicts π being S-compatible with (C, (P,N)). Q.e.d. (Claim 5)

Then, all in all, we get the sufficient equation:

eval(S ] δ)(G0ν) = eval
(
S ] (

( ν ] VA\dom(ν)»id ) ◦ eval(S ] δ)
) )(

G0

)

= eval
(
S ] (

ν ◦ eval(S ] δ)
) ] VA\dom(ν)»δ

)(
G0

)

= eval
(
S ] τ ′ ] e(π)(τ)

)(
G0

)

= eval
(
S ] τ ′ ] V(G0)»(e(π)(τ))

)(
G0

)

= eval
(
S ] τ ′ ] V(G0)»(e(π)(τ ′))

)(
G0

)

= eval
(
S ] τ ′ ] e(π)(τ ′)

)(
G0

)

= TRUE,

as follows: 1st equation by the forward direction of the Substitution [Value] Lemma,
2nd equation by the Valuation-Lemma(0),
3rd equation by definition of τ ′ and δ,
4th equation by the forward direction of the Explicitness Lemma,
5th equation by Claim 5,
6th equation by the backward direction of the Explicitness Lemma, and
7th equation by the (π,S)-validity of G0.

Q.e.d. (Theorem8.5)
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