The Descriptive Operators
lota, tau, and epsilon

— On their Origin,
Partial Axiomatization,
Model-Theoretic Semantics,
Practical Applicability

Claus-Peter Wirth

Claus-Peter Wirth, 10/06/2015, Montpellier -

Contents

m PART [: Motivation & Introduction
= PART Il: Origin & History

m PART Illl: Model-Theoretic Semantics

m PART IV: Wirth’s Free-Variable Framework

Claus-Peter Wirth, 10/06/2015, Montpellier -

PART |

= Motivation:
Problems with Quantifiers and Descriptive Operators

= Introduction:

The essential axiomatization of Peano’s . and Hilbert's 7 and ¢

Claus-Peter Wirth, 10/06/2015, Montpellier -

Descriptive Terms instead of Quantifiers

B NL contains no quantifiers, but free symbols and descriptive t.

® Proof theory and proof automation often profit from the
removal of quantifiers through partially specified terms,
such as e-terms and partially specified functions.

Claus-Peter Wirth, 10/06/2015, Montpellier -

Descriptive Terms instead of Quantifiers

B NL contains no quantifiers, but free symbols and descriptive t.

® Proof theory and proof automation often profit from the
removal of quantifiers through partially specified terms,
such as e-terms and partially specified functions.

B The Scoping of quantifiers and binders brings problems:
lack of expressiveness (Henkin quantification),
enforced overspecification,

Inefficiency of computation (no incrementality, no in situ
handling), e.g. in deep analysis of NL semantics.

Claus-Peter Wirth, 10/06/2015, Montpellier -

Descriptive Terms instead of Quantifiers

B NL contains no quantifiers, but free symbols and descriptive t.

® Proof theory and proof automation often profit from the
removal of quantifiers through partially specified terms,
such as e-terms and partially specified functions.

B The Scoping of quantifiers and binders brings problems:
lack of expressiveness (Henkin quantification),
enforced overspecification,

Inefficiency of computation (no incrementality, no in situ

handling), e.g. in deep analysis of NL semantics.

® Mathematics often needs (quantified) free symbols, e.g. for
Math. Induction (Descente infinie or for computat. of solutions.

Quantifiers are Frege’s artificial entities [1879] (not: quantification).

Claus-Peter Wirth, 10/06/2015, Montpellier -

Essential Axiomatizations of ¢, 7, ¢

mdla® A = A{x® — 2P A} (¢0)

Claus-Peter Wirth, 10/06/2015, Montpellier -

Essential Axiomatizations of ¢, 7, ¢

mdla® A = A{x® — 2P A} (¢0)

mdzP A = A{x®— ca® A} (€0)

Claus-Peter Wirth, 10/06/2015, Montpellier -

Essential Axiomatizations of ¢, 7, ¢

mdla® A = A{x® — 2P A} (¢0)
mdzP A = A{x®— ca® A} (€0)
Consequences:

J2%. A & A{x® — ex®. A} (e1)

Claus-Peter Wirth, 10/06/2015, Montpellier -

Essential Axiomatizations of ¢, T,

mdla® A = A{x® — 2P A}

mdz®. A = A{z®+— ex®. A}
Consequences:
Jz*. A & A{x"® — ex®. A}
-3z A & -A{x® — ex®. A}

Gy

(contrap(e1))

Claus-Peter Wirth, 10/06/2015, Montpellier -

Essential Axiomatizations of ¢, 7, ¢

mdla® A = A{x® — 2P A} (¢0)
mdzP A = A{x®— ca® A} (€0)
Consequences:
J2%. A & A{x® — ex®. A} (e1)
—dx® A & —A{x® — cx®. A} (contrap(e1))

Consequence in Classical Logic ({ A——B}):
Va*. B < B{z®+— ex®. B} (£2)

Claus-Peter Wirth, 10/06/2015, Montpellier -

Essential Axiomatizations of ¢, 7, ¢

mdla® A = A{x® — 2P A} (¢0)
mdz®. A = A{z®+— exP A} (€0)
Consequences:
J2%. A & A{x® — ex®. A} (e1)
—Jz?. A & —A{x® — ex®. A} (contrap(e1))
Consequence in Classical Logic ({ A——B}):
Va*. B < B{z®+— ex®. B} (£2)

mVa®. B < B{z®— 12 B} (70)

Claus-Peter Wirth, 10/06/2015, Montpellier -

PART Il

m Originsof ¢, 7,

= How to Specify them

m Choose the ¢

= History of Disappointed Expectations

Claus-Peter Wirth, 10/06/2015, Montpellier -

On the History of Peano’s ¢

W Frege [1893] writes a boldface backslash.
\¢ = 2® If there Is some x° s.th. Vy&. (£(y®) & (2® = y®));
\¢ = ¢ otherwise.

® Peano writes “z” [1896f.] or an inverted “.” [1899, German].
His “.” is “.(x) := {x}’, his “7” is the inverse function of his “.”.
Partial spec. according to (¢q), but sets instead of predicates.

Claus-Peter Wirth, 10/06/2015, Montpellier -

On the History of Peano’s ¢

W Frege [1893] writes a boldface backslash.
\¢ = 2® If there Is some x° s.th. Vy&. (£(y®) & (2® = y®));
\¢ = ¢ otherwise.

® Peano writes “z” [1896f.] or an inverted “.” [1899, German].

His “.” is “.(x) := {x}’, his “7” is the inverse function of his “.”.
Partial spec. according to (¢q), but sets instead of predicates.

® Russell & Whitehead [1910ff.] write inverted ¢, but with the
non-referring semantics of [Russell, 1905]. On denoting.

Claus-Peter Wirth, 10/06/2015, Montpellier -

On the History of Peano’s ¢

W Frege [1893] writes a boldface backslash.
\¢ = 2® If there Is some x° s.th. Vy&. (£(y®) & (2® = y®));
\¢ = ¢ otherwise.

® Peano writes “z” [1896f.] or an inverted “.” [1899, German].

His “.” is “.(x) := {x}’, his “7” is the inverse function of his “.”.
Partial spec. according to (¢q), but sets instead of predicates.

® Russell & Whitehead [1910ff.] write inverted ¢, but with the
non-referring semantics of [Russell, 1905]. On denoting.

¥ Hilbert & Bernays [1934] require the completion of a proof of
Jlz”. A before the term (x". A may be formed.

Claus-Peter Wirth, 10/06/2015, Montpellier -

On the History of Peano’s ¢

W Frege [1893] writes a boldface backslash.
\¢ = 2® If there Is some x° s.th. Vy&. (£(y®) & (2® = y®));
\¢ = ¢ otherwise.

® Peano writes “z” [1896f.] or an inverted “.” [1899, German].

His “.” is “.(x) := {x}’, his “7” is the inverse function of his “.”.
Partial spec. according to (¢q), but sets instead of predicates.

® Russell & Whitehead [1910ff.] write inverted ¢, but with the
non-referring semantics of [Russell, 1905]. On denoting.

¥ Hilbert & Bernays [1934] require the completion of a proof of
Jlz”. A before the term (x". A may be formed.

¥ Quine and many others have .s with explicit definitions.

Only Peano has always denoting terms + the intended partial spec.

Claus-Peter Wirth, 10/06/2015, Montpellier -

Implicit Partial vs. Explicit Definition

®m Peano with his preference on written languages for
specification and communication (over calculi) stays
within the proper limits:

Avoid any Overspecification!
(with all its unintended consequences)

Claus-Peter Wirth, 10/06/2015, Montpellier -

Implicit Partial vs. Explicit Definition

®m Peano with his preference on written languages for
specification and communication (over calculi) stays
within the proper limits:
Avoid any Overspecification!
(with all its unintended consequences)

m Frege, Quine, &c. in the tradition of unconditional explicit
definition (“definiendum:= definiens’) (syntactic, always total):

Eliminability!
Eliminability of the . already requires

absurdly powerful logical framework.

Eliminability impossible in principle for the ¢
In general, because of its indefiniteness.

Claus-Peter Wirth, 10/06/2015, Montpellier -

On the History of Hilbert's 7

[Hilbert, 1923]: Die logischen Grundlagen der Mathematik.
Talk of Sept. 1922.

= 7 stands for transfinite function
m7: (1—0) —1i, A:i—o.
= Transfinite Axiom: 11. A(TA) = A(a).

® Acknowledgment for Paul Bernays in footnote:

“Die Erkenntnis, daf3 die eine Formel 11. zur Herleitung dieser
samtlichen Formeln gentgt, verdanke ich P. Bernays.”

® Warning 1: A different function is the “r” in Kneser’s private
notes to Hilbert’'s 1921/22 lecture Grundlagen der Mathematik.

® Warning 2: An “c” is written for the 7 in Kneser’s private notes
to Hilbert’'s 1922/23 lecture Logische Grundlagen der Math.

® Warning 3: Nicolas Bourbaki writes “7’; but it is an &!

Claus-Peter Wirth, 10/06/2015, Montpellier -

On the Early History of Hilbert's ¢

m A(a) = A(eA) (deduct. equivalentto (y)) is called

transfinite axiom 1 (as binder) [Ackermann, 1925
axiom of choice [Hilbert, 1926]
logical e-axiom [Hilbert, 1928]
e-formula (but as binder) [Hilbert & Bernays, 1939]

® ¢ Is called the

transfinite logical choice function [Hilbert, 1926
logical e-function [Hilbert, 1928]
e-symbol [Hilbert & Bernays, 1939]

[Ackermann, 1925]: Begrindung des,, t.n.d" mittels der Hilbert'schen
Theorie der Widerspruchsfreiheit. Abstract PhD thesis 1924.

Hilbert, 1926]: Uber das Unendliche. Talk of June 1925.
[Hilbert, 1928]. Die Grundlagen der Mathematik. Talk of July 1927.
[Hilbert & Bernays, 1939]: Grundlagen der Mathematik, Vol. II.

Claus-Peter Wirth, 10/06/2015, Montpellier —

The € Is The Choice In Practice

®m The ¢ is no use unless dlx®. A.
But given 3lz®. A, (1), (g9), we have:
e A = ex®. A.
Thus — to obtain weaker proof obligations —
always use the ¢ instead of ¢ (unless eliminability relevant):

Less proof work!

Easier generalization of proofs!

Claus-Peter Wirth, 10/06/2015, Montpellier —

The € Is The Choice In Practice

®m The ¢ is no use unless dlx®. A.
But given 3lz®. A, (1), (g9), we have:
e A = ex®. A.
Thus — to obtain weaker proof obligations —
always use the ¢ instead of ¢ (unless eliminability relevant):

Less proof work!

Easier generalization of proofs!

® 7 Instead of £ makes sense only in non-classical logics.
No essential difference in classical logic.

Claus-Peter Wirth, 10/06/2015, Montpellier —

Sharpened 1 ste-Theorem [H. & Bernays, 1939]

Given: a derivation of dz}. ...dz; . A
(containing no bound variables besides the ones bound by the prefix 3z}. ...3z;.)

r

from the formulas P, ..., P
(containing neither formula variables nor bound variables)
In the predicate calculus
(incl. e-formula and =-substitutability as axiom schemes, plus =-reflexivity).

Claus-Peter Wirth, 10/06/2015, Montpellier —

Sharpened 1 ste-Theorem [H. & Bernays, 1939]

Given: a derivation of dz}. ...dz; . A
(containing no bound variables besides the ones bound by the prefix 3z}. ...3z;.)

r

from the formulas P, ..., P

(containing neither formula variables nor bound variables)
In the predicate calculus

(incl. e-formula and =-substitutability as axiom schemes, plus =-reflexivity).

We can construct a (finite) disjunction of the form

\/f:O A{mllga s 73371? = t’i,la IO 7ti,r}
and a derivation of it

™ in which bound variables do not occur at all

= from P, ..., P, and =-axioms
(containing neither formula variables nor bound variables)

™ in the quantifier-free predicate calculus (i.e. tautologies plus
the inference schema [of modus ponens] and the substitution rule).

Note that r, s range over natural numbers including 0, and that A, ¢; ;, and P; are e-free
because otherwise they would have to include (additional) bound variables.

Claus-Peter Wirth, 10/06/2015, Montpellier —

e — A History of Failures? (twilight of his career”)

B [GOdel, 1931]: Godel’'s second incompleteness theorem
cuts down Hilbert’s program.

Claus-Peter Wirth, 10/06/2015, Montpellier —

e — A History of Failures? (twilight of his career”)

B [GOdel, 1931]: Godel’'s second incompleteness theorem
cuts down Hilbert’s program.

B New goal-directed calculi [Herbrand, 1930] (Modus Ponensree)
and [Gentzen, 1935] (Cut-free) do not have an «.

m Consistency proofs in [Herbrand, 1932] and Iin
[Gentzen, 1936, 1938, 1943] do not use the «.

W The displaced Ackermann finally [1940] proves the termination
of an improved e-substitution method in arithmetic, only
to draw level w.r.t. consistency proofs with [Gentzen, 1938].

Claus-Peter Wirth, 10/06/2015, Montpellier —

e — A History of Failures? (twilight of his career”)

B [GOdel, 1931]: Godel’'s second incompleteness theorem
cuts down Hilbert’s program.

B New goal-directed calculi [Herbrand, 1930] (Modus Ponensree)
and [Gentzen, 1935] (Cut-free) do not have an «.

m Consistency proofs in [Herbrand, 1932] and Iin
[Gentzen, 1936, 1938, 1943] do not use the «.

W The displaced Ackermann finally [1940] proves the termination
of an improved e-substitution method in arithmetic, only
to draw level w.r.t. consistency proofs with [Gentzen, 1938].

W Kreisel's[1958] unwinding program (Constructive equiv. math.?)
IS not properly formulated and followed.

M Leisenring’s textbook [1969] renders the ¢ as
too impractical for computer sci. and autom. theorem proving.

W Several projectsto translate c’s main reference, Hilbert—Bernays
Grundlagen der Mathematik [1934/39] [1968/70], failed.

Claus-Peter Wirth, 10/06/2015, Montpellier —

PART Il

= Via Overspecification toward a

Model-Theoretic Semantics for the ¢

= Choice: Have really indefinite choice
+ committed choice as an option

= Take Leisenring’s Satisfiabllity,
but not his Notion of Validity

Claus-Peter Wirth, 10/06/2015, Montpellier —

Overspecification: Extensionality (E2)

Ackermann’s (11,4), Bourbaki's (S7), Leisenring’s (E2):
VvVt (Ay & Ay) = ex®. Ay = ex®. A4

m Good: Syntactical differences between A; and A, should
not matter. Deterrent example: [Asser, 1957, type-3]

Claus-Peter Wirth, 10/06/2015, Montpellier —

Overspecification: Extensionality (E2)

Ackermann’s (11,4), Bourbaki's (S7), Leisenring’s (E2):
VvVt (Ay & Ay) = ex®. Ay = ex®. A4

m Good: Syntactical differences between A; and A, should
not matter. Deterrent example: [Asser, 1957, type-3]

m Badl: All classical theorems become intuitionistic ones.

Claus-Peter Wirth, 10/06/2015, Montpellier —

Overspecification: Extensionality (E2)

Ackermann’s (11,4), Bourbaki's (S7), Leisenring’s (E2):
VvVt (Ay & Ay) = ex®. Ay = ex®. A4

m Good: Syntactical differences between A; and A, should
not matter. Deterrent example: [Asser, 1957, type-3]

m Badl: All classical theorems become intuitionistic ones.

m Bad2: Committed choice should be an option, not a must.
“A bishop met a bishop.”

® Actually committed choice must be an option:
dzF. (x® # xP)

ex®. (2P #£x®) # ex®. (x®#x?)

0 # ex®. (x®F#x")

O #]' Claus-Peter Wirth, 10/06/2015, Montpellier —

Model-Theoretic Semantics

B Motivation:
Practical Applicability requires a Model-Theoretic Semantics.

B To define Satisfiablility, the Existence of

a (generalized) choice function
works fine in the evaluation of e-terms.

W e-formula plus (E2) turn predicate calculus sound and
complete for validity w.r.t. all possible choice functions,
cf. [Asser, habil, 1957, type-1], [Leisenring, textbook, 1969]

Claus-Peter Wirth, 10/06/2015, Montpellier —

Main Theses

Practical usefulness as well as formal adequacy of a straightforward
model-theoretic specification of the ¢ require:

B Both satisfiability and validity must refer to the existence of
choice functions, not to all of them:

Bishop(Tebarz) = ex®. Bishop(x®) = Tebarz

® Non-commitment to a choice must be possible where it is not
required: = ¢&;x°. Bishop(z®) # e;x”. Bishop(x?®)
(Indexed ¢ a la Heusinger/Egli)

Better without choice functions: = xj = Tebarz, x{ # g
with choice condition C'(x) := ex®. Bishop(x*®) foriec {0,1,2}.

e-substitution becomes subst. of free variables z;.

Claus-Peter Wirth, 10/06/2015, Montpellier —

PART IV: Wirth's Free-Variable Framework

= Quantification without Quantifiers

m Hilbert's ¢

m Liberalized §-rules

» Fermat’'s Descente infinie

Claus-Peter Wirth, 10/06/2015, Montpellier —

Free Variables and Atoms

m Occur frequently in math & computer science

= Their function depends on context:
varying, implicit, ad hoc

m Here:
disjoint sets of symbols for different functions

m New:
only two functions of free variables / atoms left:
existentially / universally quantified.

m New:
Henkin quantification can be modeled directly
with positive/negative variable-conditions.

Claus-Peter Wirth, 10/06/2015, Montpellier —

Free Atoms (=“parameters’="eigenvariables’=* §~")

(1) (m)(p+CI) _ (m)(p) " (m)(q)

Claus-Peter Wirth, 10/06/2015, Montpellier —

Free Atoms (=“parameters’="eigenvariables’=* §~")

(1) (m)(p+CI) _ (m)(p) " (m)(q)
T R

Claus-Peter Wirth, 10/06/2015, Montpellier —

Free Atoms (=“parameters’="eigenvariables’=* §~")

(1) (m)(p+CI) _ (m)(p) " (m)(q)
%)
(3) (mA)(pA+QA) _ (mA>(pA) . (mA>(C]A)

Claus-Peter Wirth, 10/06/2015, Montpellier —

Free Atoms (=“parameters’="eigenvariables’=* §~")

(1) (m)(p+CI) _ (m)(p) " (m)(q)
%)
(3) (mA)(pA‘HIA) _ (mA>(pA) . (mA>(C]A)

= Advantage of (1) and (3): Mathematical induction
(Fermat’'s Descente infinie) becomes possible
because the induction hypothesis can refer to the
conclusion by means of the free variables.

Claus-Peter Wirth, 10/06/2015, Montpellier —

Free Atoms (=“parameters’="eigenvariables’=* §~")

(1) (m)(p+CI) _ (m)(p) " (m)(q)
%)
(3) (mA)(pA‘HIA) _ (mA>(pA) . (mA>(C]A)

= Advantage of (1) and (3): Mathematical induction
(Fermat’'s Descente infinie) becomes possible
because the induction hypothesis can refer to the
conclusion by means of the free variables.

= Semantics is uniguely expressed in (2) and (3).

Claus-Peter Wirth, 10/06/2015, Montpellier —

Free Variables (=‘meta’="dummy’=" +"="5+")

o (906

Claus-Peter Wirth, 10/06/2015, Montpellier —

Free Variables (=‘meta’="dummy’=" +"="5+")

o ()()-()
@ 3" (()(y) (E))

Claus-Peter Wirth, 10/06/2015, Montpellier —

Free Variables (=‘meta’="dummy’=" +"="5+")

o (906
o= () ()
o (966

Claus-Peter Wirth, 10/06/2015, Montpellier —

Free Variables (=‘meta’="dummy’=" +"="5+")
o (3)0)-()
5! Y 13
()6)-6))
(2) dz*, y”°. =
7 y" 13
x' (1
5 7) \yv) \13

= Constraints on solutions may be retrieved from a
proof by referring to the variables in (1) and (3).

Claus-Peter Wirth, 10/06/2015, Montpellier —

Free Variables (=‘meta’="dummy’=" +"="5+")

o ()00
) 32" (()(y) (E))
) G)- G

= Constraints on solutions may be retrieved from a
proof by referring to the variables in (1) and (3).

= Semantics is uniguely expressed in (2) and (3).

Claus-Peter Wirth, 10/06/2015, Montpellier —

Free Atoms

= A, Universally quantified (implicitly)
= Arbitrary object in a discourse
= Atomic: black-box, no information on it ever

= Except: Is it an atom?
Different from another atom?

= Origin of name:
Set theories with atoms (or urelements)

= Instantiated locally and repeatedly in application
of lemmas or induction hypotheses

Claus-Peter Wirth, 10/06/2015, Montpellier —

Free Variables

= VY, Existentially quantified (implicitly)

= Place-holder in a discourse

= Gather and store information

= Replaced with a definition or a description

= Origin of name:
Fitting’s free-variable semantic tableaus

= Rigid: Instantiated globally, once and for all,
with possible effect on input theorem

Claus-Peter Wirth, 10/06/2015, Montpellier —

(Reductive) Inference (Smullyan’s classification)

I, dx®. A, A
A{zP—a"}, ', dxP A, A

~v-rule:

Claus-Peter Wirth, 10/06/2015, Montpellier —

(Reductive) Inference (Smullyan’s classification)

I, dx®. A, A
A{zP—a"}, ', dxP A, A

~v-rule:

0~ -rule: Iyt A A

A{yP—y*t, I, A V(I Vy® A, A) x {y*}

Claus-Peter Wirth, 10/06/2015, Montpellier —

(Reductive) Inference (Smullyan’s classification)

I, dx®. A, A
~v-rule:
A{zP—a"}, ', dxP A, A
0~ -rule: Iyt A A
A{yP—y*t, I, A V(I Vy® A, A) x {y*}
ot -rule:

I', Yy A, A (y", ey®. —A)
A{yP—y"}, I, A VA (Vy®.A) x {y"}

Claus-Peter Wirth, 10/06/2015, Montpellier —

1st Example Proof Attempt

0~ -rule: I Yyt A A

A{yP—y*}, ', A V(I,Vy® A, A) x {y*}

Proof task: Jz®.Vy®.(2° =y"®)

Claus-Peter Wirth, 10/06/2015, Montpellier —

1st Example Proof Attempt

0~ -rule: I Yyt A A

A{yP—y*}, ', A V(I,Vy® A, A) x {y*}

Proof task: Jz®.Vy®.(2° =y"®)
~-step: VyP.(x"=y®), JxP.VyP.(x*=y")

Claus-Peter Wirth, 10/06/2015, Montpellier —

1st Example Proof Attempt

0~ -rule: I Yyt A A

A{yP—y*}, ', A V(I,Vy® A, A) x {y*}

Proof task: 32" Vy®. (27 = y”)
v-step: VyE. (2" =9y®), dax®Vy®.(zf=y"®)
6~ -step: (¥ =y*), dxBVy®.(z®=y")

Claus-Peter Wirth, 10/06/2015, Montpellier —

1st Example Proof Attempt

0~ -rule: I Yyt A A

A{yP—y*}, ', A V(I,Vy® A, A) x {y*}

Proof task: Jz®.Vy®.(2° =y"®)
v-step: VyP.(x"=y®), JxP.VyP.(x*=y")
0~ -step: (" =y*), dxPVy".(x*=y")

Apply {z"—y"}?

Claus-Peter Wirth, 10/06/2015, Montpellier —

1st Example Proof Attempt

0~ -rule: I Yyt A A

A{yP—y*}, ', A V(I,Vy® A, A) x {y*}

Proof task: 32" Vy®. (27 = y”)
v-step: VyE. (2" =9y®), dax®Vy®.(zf=y"®)
6~ -step: (¥ =y*), dxBVy®.(z®=y")

Apply {z"—y"}?
Record dependency in
negative variable-condition N: (z",y*) € N

Claus-Peter Wirth, 10/06/2015, Montpellier —

2" Example Proof Attempt

3 Wy A, A (3, ey®. —A)
Aly* =y, I, A VA(VYRA) Xy}

Proof task: Jz®.Vy®.(2° =y"®)

~-step: VyP.(x"=y®), JxP.VyP.(x*=y")

Claus-Peter Wirth, 10/06/2015, Montpellier —

2" Example Proof Attempt

4+ :
o -rule: F, \V/yB.A7 A (yV7 gy]B%. ﬂA)

A{yP—y"}, I, A VA(Vy®. A) x {y"}

Proof task: 2" Vy®. (27 = y")
v-step: VyE. (2" =y®), dax®Vy®.(zf=y"®)
6T -step: (¥ =y"), dxEVy®.(z®=y")

Claus-Peter Wirth, 10/06/2015, Montpellier —

2" Example Proof Attempt

dT-rule: I Yyt A A (yv7 cyy®. ﬂA)
Aly*—y'}, I, A VA(Vy®.A) x {y"}
Proof task: 2" Vy®. (27 = y")
v-step: Vyb.(z¥" =y®), dxPVy®.(z®=y")
5 t-step: (z"=y"), Jz*Vy®.(z®=y")

Apply {z"—y"} ?

Claus-Peter Wirth, 10/06/2015, Montpellier —

2" Example Proof Attempt

4+ :
o -rule: F, VyB.A, A (yV7 gy]B%. ﬂA)

A{yP—y"}, I, A VA(Vy®. A) x {y"}

Proof task: 2" Vy®. (27 = y")
v-step: VyE. (2" =y®), dax®Vy®.(zf=y"®)
6T -step: (¥ =y"), dxEVy®.(z®=y")

Apply {z"—y"} ?
Record dependency in
positive variable-condition P: (z",y") € P

Claus-Peter Wirth, 10/06/2015, Montpellier —

2" Example Proof Attempt

dT-rule: I Yyt A A (yv7 cyy®. ﬂA)
Aly*—y'}, I, A VA(Vy®.A) x {y"}
Proof task: 2" Vy®. (27 = y")
v-step: Vyb.(z¥" =y®), dxPVy®.(z®=y")
5 t-step: (z"=y"), Jz*Vy®.(z®=y")

Apply {y'—x"}?

Claus-Peter Wirth, 10/06/2015, Montpellier —

2" Example Proof Attempt

4+ :
o -rule: F, \V/yB.A7 A (yV7 gy]B%. ﬂA)

A{yP—y"}, I, A VA(Vy®. A) x {y"}

Proof task: " Vy®.(x* =y")
-step: Vy®. (2" =y"), Jx®Vyt.(z"=y")
6T -step: (" =y9"), JxPNVy®. (x®=y")

Apply {y"—z"}?
We have to prove in advance {y"+—z" }-instance of:
(€0) Jy*.—A = ~A{y"—y'}

Claus-Peter Wirth, 10/06/2015, Montpellier —

2" Example Proof Attempt

4+ :
o -rule: F, \V/yB.A7 A (yV7 gy]B%. ﬂA)

A{yP—y"}, I, A VA(Vy®. A) x {y"}

Proof task: " Vy®.(x* =y")
-step: Vy®. (2" =y"), Jx®Vyt.(z"=y")
6T -step: (" =y9"), JxPNVy®. (x®=y")

Apply {y"—z"}?
We have to prove in advance {y"+—z" }-instance of:
(€0) Jy*.—A = ~A{y"—y'}

i.e. Jy*. (2" =y") = (2" =2")

Claus-Peter Wirth, 10/06/2015, Montpellier —

Variable-Conditions in the Literature

= Wolfgang Bibel’s book Automated Theorem
Proving 1982, (2" edn. 1987):

Two positive relations: awkward & inefficient
No liberalized o-rules

Claus-Peter Wirth, 10/06/2015, Montpellier —

Variable-Conditions in the Literature

= Wolfgang Bibel’s book Automated Theorem
Proving 1982, (2" edn. 1987):

Two positive relations: awkward & inefficient
No liberalized o-rules

m Lincoln A. Wallen 1990:
Single positive relation
No liberalized o-rules

Claus-Peter Wirth, 10/06/2015, Montpellier —

Variable-Conditions in the Literature (contd.)

m Michael Kohlhase’s articles
With liberalized d-rules

Higher-Order Tableaux [TABLEAUX’'1995].
Unsound!

Higher-Order Theorem Proving [Bibel & Schmitt,

Automated Deduction, Vol. I, 1998]:
Unsound!

Claus-Peter Wirth, 10/06/2015, Montpellier —

Variable-Conditions in the Literature (contd.)

m Michael Kohlhase’s articles
With liberalized d-rules

Higher-Order Tableaux [TABLEAUX’'1995].
Unsound!

Higher-Order Theorem Proving [Bibel & Schmitt,

Automated Deduction, Vol. I, 1998]:
Unsound!

= Wirth’s previous versions with single relation
Negative relation [FTP’1998]
Positive relation with Variable reuse [J. IGPL 2004]

Standard positive relation [J. IGPL 2004], [J. Appl. L.2008],
SEKI-Report SR-2006-02 [2012]

Claus-Peter Wirth, 10/06/2015, Montpellier —

Positive/Negative Variable-Condition (P, N)

B>
M

(VWA) x V
\% X A

=
N

Claus-Peter Wirth, 10/06/2015, Montpellier —

Positive/Negative Variable-Condition (P, N)

P
Y

I

(VWA) x V
\% X A

I

m Consistency:

Each cycle in the directed graph of P U N has more than
one edge from V.

Claus-Peter Wirth, 10/06/2015, Montpellier —

Positive/Negative Variable-Condition (P, N)

P
Y

I

(VWA) x V
\% X A

I

m Consistency:

Each cycle in the directed graph of P U N has more than
one edge from V.
m Admissible substitution o: (P U D, N) is consistent.
(™, y") € D iff
y" € dom(o) and

2™ 1s a free variable or free atom in o(y")

Claus-Peter Wirth, 10/06/2015, Montpellier —

Whole Proof Search Framework

DATA STRUCTURES:

= A Forest of and/or proof-attempt trees.
Root of each tree carries an [open] proposition.

Claus-Peter Wirth, 10/06/2015, Montpellier —

Whole Proof Search Framework

DATA STRUCTURES:

= A Forest of and/or proof-attempt trees.
Root of each tree carries an [open] proposition.

= A Positive/Negative Variable-Condition (P, N)
= A Choice-Condition C

Claus-Peter Wirth, 10/06/2015, Montpellier —

Whole Proof Search Framework

DATA STRUCTURES:

= A Forest of and/or proof-attempt trees.
Root of each tree carries an [open] proposition.

= A Positive/Negative Variable-Condition (P, N)
= A Choice-Condition C

PS-INVARIANT (“Preservation of solutions™):
“The the solutions of the leaves solve the root.”

Claus-Peter Wirth, 10/06/2015, Montpellier —

Whole Proof Search Framework

DATA STRUCTURES:

= A Forest of and/or proof-attempt trees.
Root of each tree carries an [open] proposition.

= A Positive/Negative Variable-Condition (P, N)
= A Choice-Condition C

PS-INVARIANT (“Preservation of solutions™):
“The the solutions of the leaves solve the root.”
The root (C, (P, N))-reduces to the leaves.

Claus-Peter Wirth, 10/06/2015, Montpellier —

Whole Proof Search Framework

DATA STRUCTURES:

= A Forest of and/or proof-attempt trees.
Root of each tree carries an [open] proposition.

= A Positive/Negative Variable-Condition (P, N)
= A Choice-Condition C

PS-INVARIANT (“Preservation of solutions™):

T

“The the solutions of the leaves solve the root.”

ne root (C, (P, N))-reduces to the leaves.

T

nis IS more than soundness of problem reduction!

Claus-Peter Wirth, 10/06/2015, Montpellier —

Whole Proof Search Framework (contd.)

OPERATIONS:

= New conjectures get trivial proof-attempt tree.

Claus-Peter Wirth, 10/06/2015, Montpellier —

Whole Proof Search Framework (contd.)

OPERATIONS:

= New conjectures get trivial proof-attempt tree.

= Analytic proof steps local to a tree.

Claus-Peter Wirth, 10/06/2015, Montpellier —

Whole Proof Search Framework (contd.)

OPERATIONS:

= New conjectures get trivial proof-attempt tree.

= Analytic proof steps local to a tree.

= Generative application of open lemmas,
either deductively or inductively.

Claus-Peter Wirth, 10/06/2015, Montpellier —

Whole Proof Search Framework (contd.)

OPERATIONS:

= New conjectures get trivial proof-attempt tree.

= Analytic proof steps local to a tree.

= Generative application of open lemmas,
either deductively or inductively.

= Global substitution of rigid variables.

Claus-Peter Wirth, 10/06/2015, Montpellier —

Whole Proof Search Framework (contd.)

OPERATIONS:

= New conjectures get trivial proof-attempt tree.

= Analytic proof steps local to a tree.

= Generative application of open lemmas,
either deductively or inductively.

= Global substitution of rigid variables.
PS-INVARIANT!

Claus-Peter Wirth, 10/06/2015, Montpellier —

Whole Proof Search Framework (contd.)

OPERATIONS:

= New conjectures get trivial proof-attempt tree.

= Analytic proof steps local to a tree.

= Generative application of open lemmas,
either deductively or inductively.

= Global substitution of rigid variables.
PS-INVARIANT! But:
x'#y’ means that the universe is non-trivial.

Claus-Peter Wirth, 10/06/2015, Montpellier —

Whole Proof Search Framework (contd.)

OPERATIONS:

= New conjectures get trivial proof-attempt tree.

= Analytic proof steps local to a tree.

= Generative application of open lemmas,
either deductively or inductively.

= Global substitution of rigid variables.
PS-INVARIANT! But:
x'#y’ means that the universe is non-trivial.
It becomes false after application of {z"—y"}

Claus-Peter Wirth, 10/06/2015, Montpellier —

Henkin Quantification

m “Every woman could love someone and
every man could love someone,
such that these loved ones could love each other.”

Claus-Peter Wirth, 10/06/2015, Montpellier —

Henkin Quantification

® “Every woman could love someone and
every man could love someone,
such that these loved ones could love each other.”
= As a Henkin-quantified IF-logic formula:
/ / Female(z;) \
\ A Male(ys)

VazE. VyE.
= Jyi'/Yo- Fx1/ %0

.97)))

Claus-Peter Wirth, 10/06/2015, Montpellier —

Henkin Quantification

m “Every woman could love someone and
every man could love someone,
such that these loved ones could love each other.”

= Represented in our Framework:

/ Loves(x, vy) \
Female(x}) N A Loves(yg, x)
A Male(y)) A Loves(yy, zy)
. b) \/\ Loves(xY, y7))
Y > L0

Claus-Peter Wirth, 10/06/2015, Montpellier —

Binders are Bad:

= Quantifiers and the £ mess up formulas
= Quantifiers and the £ make reasoning difficult

= Quantifiers enforce a too primitive form of
scoping

= The e-binder produces terms of unmanageable
Size

Claus-Peter Wirth, 10/06/2015, Montpellier —

Binding without Binders is Great:

m Free variables and atoms are what we need to manage
practical applications

m Positive/Negative Variable-Conditions enable
sophisticated scoping

®m The term-sharing of free variables admits <-binding that
IS manageable w.r.t. term size

®m Our semantics for the ¢ Is existential (!) and admits
Indefinite committed choice

® Free atoms admit mathematical induction in the liberal
style of Fermat’s Descente Infinie

Claus-Peter Wirth, 10/06/2015, Montpellier —

Conclusion

Want your reasoning applications to be successful in practice?
m Ask for a tailored version of a free-variable framework!

®m Do not introduce free variables and atoms ad hoc for
operational purposes,
but give them a clear semantics

® Get both free variables and free atoms:

® The liberalized §-rule (6" -rule) is a practical improvement
only if the non-liberalize §-rule (6 —-rule) remains available
(Henkin, Fermat)

® Use an with existential semantics

Claus-Peter Wirth, 10/06/2015, Montpellier —

Related Publications

m Descente Infinie + Deduction
Logic J. of the IGPL 12:1-96, 2004, Oxford Univ. Press

= Hilbert’s epsilon as an Operator of
Indefinite Committed Choice (IDC)
J. Applied Logic 6:287-317, 2008, Elsevier

= A Simplified and Improved Free-Variable
Frameword of Hilbert's £ as an Operator of IDC
SEKI-Report SR-2011-01, Revised May 2015.
http://arxiv.org/ abs/1104. 2444

= Hilbert—Bernays: Grundlagen der Mathematik.
1St English translation. With comments and German facsimile.
http://wrth. bpl aced. net/p/ hil bert ber nays

Claus-Peter Wirth, 10/06/2015, Montpellier —

Semantic treatment of Variable-Conditions

e(7)(9)(z") == 7m(x")(s, gavpl0)-
T:Va~s (A S)~ S, 0 :A~S, ze€V
e : Vs (AwS)~S) - AwS) — V - S

Claus-Peter Wirth, 10/06/2015, Montpellier —

Semantic treatment of Variable-Conditions

e(7)(9)(z") == 7m(x")(s, gavpl0)-
T:Va~s (A S)~ S, 0 :A~S, ze€V
e : Vs (AwS)~S) - AwS) — V - S

Sy = { (y*,2") | ¥ €dom(w) A y* € dom(|J(dom(7(x")))) }

Claus-Peter Wirth, 10/06/2015, Montpellier —

Semantic treatment of Variable-Conditions

e(7)(9)(z") == 7m(x")(s, gavpl0)-
T:Va~s (A S)~ S, 0 :A~S, ze€V
e : Vs (AwS)~S) - AwS) — V - S

Sy = { (y*,2") | ¥ €dom(w) A y* € dom(|J(dom(7(x")))) }

7 IS S-compatible with (C, (P, N)) if ... and
(PU.S;, N) is consistent and
w respects C'in S

Claus-Peter Wirth, 10/06/2015, Montpellier —

Reduction, Def.

Gy (C, (P, N))-reduces to Gy in S if

Claus-Peter Wirth, 10/06/2015, Montpellier —

Reduction, Def.

Let Gy and (G; be sets of sequents.

Gy (C, (P, N))-reducesto GG in S if

Claus-Peter Wirth, 10/06/2015, Montpellier —

Reduction, Def.

Let Gy and (G; be sets of sequents.
Let S be a X.-structure.

Gy (C, (P, N))-reduces to GGy in S if

Claus-Peter Wirth, 10/06/2015, Montpellier —

Reduction, Def.

_et Gy and G be sets of sequents.
et S be a Y-structure.
_et C' be an (P, N)-choice-condition.

Gy (C, (P, N))-reduces to GGy in S if

Claus-Peter Wirth, 10/06/2015, Montpellier —

Reduction, Def.

_et Gy and G be sets of sequents.
et S be a Y-structure.
_et C' be an (P, N)-choice-condition.

Gy (C, (P, N))-reduces to GGy in S if
for each 7 that is S-compatible with (C, (P, N)):

if Gy is (m,S)-valid,
then Gy is (w, §)-valid.

Claus-Peter Wirth, 10/06/2015, Montpellier —

Reduction PS-Invariant under Substitution

If Gy (C, (P, N))-reduces to G; in S,
then Gyo (C7, (P, N'))-reduces to Gio U ({O)Q¢)o
inS.

Claus-Peter Wirth, 10/06/2015, Montpellier —

Reduction PS-Invariant under Substitution

For an (P, N)-substitution ¢ on V,
for the extended o-update (C’, (P, N'))
of (C,(P,N)):

If Gy (C, (P, N))-reduces to G; in S,
then Gyo (C7, (P, N'))-reduces to Gio U ({O)Q¢)o
inS.

Claus-Peter Wirth, 10/06/2015, Montpellier —

Example

In case of C'(y") = \vf. ey®. (v5 =y*+1):

Claus-Peter Wirth, 10/06/2015, Montpellier —

Example

In case of C'(y") = \f. ey®. (v§ = y®+1)
Qc(y’)

Jy®. (v = y®+1
— W Y (0 Y)

= (vg = y"(v5)+1)

Claus-Peter Wirth, 10/06/2015, Montpellier —

Example

In case of C'(y") = \f. ey®. (v§ = y®+1)
Qc(y’)
Fy®. (v = yP+1)
= (vg = y"(vg)+1)
(@Qcly")y'—p)

Jy®. (v = y®+1)
= (vg = p(vg)+1)

- B
= V.

- B
= V.

Claus-Peter Wirth, 10/06/2015, Montpellier —

	Contents
	PART I
	Descriptive Terms instead of Quantifiers
	Essential Axiomatizations of maths iota , maths 	au , math varepsilon
	PART II
	On the History of peano 's math iota
	Implicit Partial vs Explicit Definition
	On the History of hilbert 's math 	au
	On the Early History of hilbert 's math varepsilon
	The math varepsilon is The Choice in Practice
	Sharpened,
th 1,math varepsilon -Theorem,[H.,&,�ernays ,,1939]
	math varepsilon --- A History of Failures? {�ootnotesize (``twilight of his career'')}
	PART III
	Overspecification: Extensionality (E2)
	Model-Theoretic Semantics
	Main Theses
	PART IV: wirth 's Free-Variable Framework
	Free Variables and Atoms
	Free Atoms {small (=``parameters''=``eigenvariables''=``deltaminus '')}
	Free Variables {small (=``meta''=``dummy''=''math gamma ''=''deltaplus '')}
	Free Atoms
	Free Variables
	{small (Reductive)}
Inference {small (smullyan 's classification)}
	
th 1 Example Proof Attempt
	
th 2 Example Proof Attempt
	VC s in the Literature
	VC s,in,the,Literature,(contd)
	Positive/Negative VC pair P N
	Whole Proof Search Framework
	Whole Proof Search Framework (contd)
	henkin Quantification
	Binders are Bad:
	Binding without Binders is Great:
	Conclusion
	Related Publications
	Semantic treatment of VC s
	Reduction, Def.
	Reduction PS-Invariant under Substitution
	Example

