The Descriptive Operators iota, tau, and epsilon

On their Origin,
 Partial Axiomatization,
 Model-Theoretic Semantics,
 Practical Applicability

Claus-Peter Wirth

Contents

- PART I: Motivation & Introduction
- PART II: Origin & History
- PART III: Model-Theoretic Semantics
- PART IV: Wirth's Free-Variable Framework

PART I

Motivation:

Problems with Quantifiers and Descriptive Operators

Introduction:

The essential axiomatization of Peano's ι and Hilbert's τ and ε

Descriptive Terms instead of Quantifiers

- NL contains no quantifiers, but free symbols and descriptive t.
- Proof theory and proof automation often profit from the removal of quantifiers through partially specified terms, such as ε -terms and partially specified functions.

Descriptive Terms instead of Quantifiers

- NL contains no quantifiers, but free symbols and descriptive t.
- Proof theory and proof automation often profit from the removal of quantifiers through partially specified terms, such as ε -terms and partially specified functions.
- The Scoping of quantifiers and binders brings problems:
 - lack of expressiveness (Henkin quantification),
 - enforced overspecification,
 - inefficiency of computation (no incrementality, no in situhandling), e.g. in deep analysis of NL semantics.

Descriptive Terms instead of Quantifiers

- NL contains no quantifiers, but free symbols and descriptive t.
- Proof theory and proof automation often profit from the removal of quantifiers through partially specified terms, such as ε -terms and partially specified functions.
- The Scoping of quantifiers and binders brings problems:
 - lack of expressiveness (Henkin quantification),
 - enforced overspecification,
 - inefficiency of computation (no incrementality, no in situhandling), e.g. in deep analysis of NL semantics.
- Mathematics often needs (quantified) free symbols, e.g. for Math. Induction (*Descente infinie*) or for computat. of solutions.

Quantifiers are Frege's artificial entities [1879] (not: quantification).

$$\exists! x^{\mathbb{B}}. A \Rightarrow A\{x^{\mathbb{B}} \mapsto \iota x^{\mathbb{B}}. A\}
 (\iota_0)$$

$$\blacksquare \exists! x^{\mathbb{B}}. A \Rightarrow A\{x^{\mathbb{B}} \mapsto \iota x^{\mathbb{B}}. A\} \tag{\iota_0}$$

$$\exists x^{\mathbb{B}}. A \Rightarrow A\{x^{\mathbb{B}} \mapsto \varepsilon x^{\mathbb{B}}. A\}$$
 (ε_0)

$$\exists! x^{\mathbb{B}}. A \Rightarrow A\{x^{\mathbb{B}} \mapsto \iota x^{\mathbb{B}}. A\} \tag{\iota_0}$$

$$\exists x^{\mathbb{B}}. A \Rightarrow A\{x^{\mathbb{B}} \mapsto \varepsilon x^{\mathbb{B}}. A\}$$
 (ε_0)

Consequences:

$$\exists x^{\mathbb{B}}. A \iff A\{x^{\mathbb{B}} \mapsto \varepsilon x^{\mathbb{B}}. A\} \tag{\varepsilon_1}$$

$$\exists! x^{\mathbb{B}}. A \Rightarrow A\{x^{\mathbb{B}} \mapsto \iota x^{\mathbb{B}}. A\} \tag{\iota_0}$$

$$\exists x^{\mathbb{B}}. A \Rightarrow A\{x^{\mathbb{B}} \mapsto \varepsilon x^{\mathbb{B}}. A\}$$
 (ε_0)

Consequences:

$$\exists x^{\mathbb{B}}. A \Leftrightarrow A\{x^{\mathbb{B}} \mapsto \varepsilon x^{\mathbb{B}}. A\}$$

$$(\varepsilon_{1})$$
$$\neg \exists x^{\mathbb{B}}. A \Leftrightarrow \neg A\{x^{\mathbb{B}} \mapsto \varepsilon x^{\mathbb{B}}. A\}$$

$$(contrap(\varepsilon_{1}))$$

$$\exists ! x^{\mathbb{B}}. A \Rightarrow A\{x^{\mathbb{B}} \mapsto \iota x^{\mathbb{B}}. A\} \tag{\iota_0}$$

$$\exists x^{\mathbb{B}}. A \Rightarrow A\{x^{\mathbb{B}} \mapsto \varepsilon x^{\mathbb{B}}. A\}$$
 (ε_0)

Consequences:

$$\exists x^{\mathbb{B}}. A \Leftrightarrow A\{x^{\mathbb{B}} \mapsto \varepsilon x^{\mathbb{B}}. A\}$$

$$(\varepsilon_{1})$$
$$\neg \exists x^{\mathbb{B}}. A \Leftrightarrow \neg A\{x^{\mathbb{B}} \mapsto \varepsilon x^{\mathbb{B}}. A\}$$

$$(contrap(\varepsilon_{1}))$$

Consequence in Classical Logic $(\{A \mapsto \neg B\})$:

$$\forall x^{\mathbb{B}}. B \Leftrightarrow B\{x^{\mathbb{B}} \mapsto \varepsilon x^{\mathbb{B}}. \neg B\} \tag{\varepsilon_2}$$

$$\exists !x^{\mathbb{B}}.A \Rightarrow A\{x^{\mathbb{B}} \mapsto \iota x^{\mathbb{B}}.A\} \tag{\iota_0}$$

$$\exists x^{\mathbb{B}}. A \Rightarrow A\{x^{\mathbb{B}} \mapsto \varepsilon x^{\mathbb{B}}. A\}$$
 (ε_0)

Consequences:

$$\exists x^{\mathbb{B}}. A \Leftrightarrow A\{x^{\mathbb{B}} \mapsto \varepsilon x^{\mathbb{B}}. A\} \qquad (\varepsilon_1)$$
$$\neg \exists x^{\mathbb{B}}. A \Leftrightarrow \neg A\{x^{\mathbb{B}} \mapsto \varepsilon x^{\mathbb{B}}. A\} \qquad (\text{contrap}(\varepsilon_1))$$

Consequence in Classical Logic $(\{A \mapsto \neg B\})$:

$$\forall x^{\mathbb{B}}. B \Leftrightarrow B\{x^{\mathbb{B}} \mapsto \varepsilon x^{\mathbb{B}}. \neg B\} \tag{\varepsilon_2}$$

PART II

Origins of $\iota, \, \tau, \, \varepsilon$

How to Specify them

 \blacksquare Choose the ε

History of Disappointed Expectations

Frege [1893] writes a boldface backslash.

```
\begin{aligned} & \begin{aligned} & \begin{aligned} & \begin{aligned} & \begin{aligned} & \xi \\ & \begin{aligned} & \bel
```

Peano writes " $\bar{\iota}$ " [1896f.] or an inverted " ι " [1899, German]. His " ι " is " ι (x) := {x}", his " $\bar{\iota}$ " is the inverse function of his " ι ". Partial spec. according to (ι 0), but sets instead of predicates.

Frege [1893] writes a boldface backslash. $\xi = x^{\mathbb{B}}$ if there is some $x^{\mathbb{B}}$ s.th. $\forall y^{\mathbb{B}}$. $(\xi(y^{\mathbb{B}}) \Leftrightarrow (x^{\mathbb{B}} = y^{\mathbb{B}})$

```
\begin{aligned} & iglet \xi = x^{\mathbb{B}} \text{ if there is some } x^{\mathbb{B}} \text{ s.th. } \forall y^{\mathbb{B}}.(\xi(y^{\mathbb{B}}) \Leftrightarrow (x^{\mathbb{B}} = y^{\mathbb{B}})); \\ & \xi \in \xi \text{ otherwise.} \end{aligned}
```

- Peano writes " $\bar{\iota}$ " [1896f.] or an inverted " ι " [1899, German]. His " ι " is " $\iota(x) := \{x\}$ ", his " $\bar{\iota}$ " is the inverse function of his " ι ". Partial spec. according to (ι_0) , but sets instead of predicates.
- **Russell & Whitehead [1910ff.] write inverted** *ι*, but with the non-referring semantics of [Russell, 1905]: *On denoting.*

- Peano writes " $\bar{\iota}$ " [1896f.] or an inverted " ι " [1899, German]. His " ι " is " $\iota(x) := \{x\}$ ", his " $\bar{\iota}$ " is the inverse function of his " ι ". Partial spec. according to (ι_0) , but sets instead of predicates.
- Russell & Whitehead [1910ff.] write inverted ι, but with the non-referring semantics of [Russell, 1905]: On denoting.
- Hilbert & Bernays [1934] require the completion of a proof of $\exists ! x^{\mathbb{B}}$. A before the term $\iota x^{\mathbb{B}}$. A may be formed.

- - $\xi = x^{\mathbb{B}}$ if there is some $x^{\mathbb{B}}$ s.th. $\forall y^{\mathbb{B}}. (\xi(y^{\mathbb{B}}) \Leftrightarrow (x^{\mathbb{B}} = y^{\mathbb{B}}))$ $\xi = \xi$ otherwise.
- Peano writes " $\bar{\iota}$ " [1896f.] or an inverted " ι " [1899, German]. His " ι " is " $\iota(x) := \{x\}$ ", his " $\bar{\iota}$ " is the inverse function of his " ι ". Partial spec. according to (ι_0) , but sets instead of predicates.
- **Russell & Whitehead [1910ff.] write inverted** *ι*, but with the non-referring semantics of [Russell, 1905]: *On denoting.*
- Hilbert & Bernays [1934] require the completion of a proof of $\exists ! x^{\mathbb{B}}$. A before the term $\iota x^{\mathbb{B}}$. A may be formed.
- **Quine** and many others have ι s with explicit definitions.
- Only Peano has always denoting terms + the intended partial spec.

Implicit Partial vs. Explicit Definition

Peano with his preference on written languages for specification and communication (over calculi) stays within the proper limits:

Avoid any Overspecification! (with all its unintended consequences)

Implicit Partial vs. Explicit Definition

Peano with his preference on written languages for specification and communication (over calculi) stays within the proper limits:

Avoid any Overspecification! (with all its unintended consequences)

Frege, Quine, &c. in the tradition of unconditional explicit definition ("definiendum := definiens") (syntactic, always total):

Eliminability!

- Eliminability of the ι already requires absurdly powerful logical framework.
- Eliminability impossible in principle for the ε in general, because of its indefiniteness.

On the History of Hilbert's τ

[Hilbert, 1923]: *Die logischen Grundlagen der Mathematik.*Talk of Sept. 1922.

- \mathbf{r} stands for *transfinite function*
- au: (i o o) o i, A: i o o.
- Transfinite Axiom: 11. $A(\tau A) \Rightarrow A(a)$.
- Acknowledgment for Paul Bernays in footnote: "Die Erkenntnis, daß die eine Formel 11. zur Herleitung dieser sämtlichen Formeln genügt, verdanke ich P. Bernays."
- Warning 1: A different function is the " τ " in Kneser's private notes to Hilbert's 1921/22 lecture *Grundlagen der Mathematik*.
- Warning 2: An " ε " is written for the τ in Kneser's private notes to Hilbert's 1922/23 lecture Logische Grundlagen der Math.
- Warning 3: Nicolas Bourbaki writes " τ ", but it is an ε !

On the Early History of Hilbert's ε

- $lacksquare A(a) \Rightarrow A(\varepsilon A)$ (deduct. equivalent to (ε_0)) is called
 - transfinite axiom 1 (as binder) [Ackermann, 1925]
 - axiom of choice [Hilbert, 1926]
 - logical ε -axiom [Hilbert, 1928]
 - $\mathbf{\varepsilon}$ -formula (but as binder) [Hilbert & Bernays, 1939]
- $\mathbf{\varepsilon}$ is called the
 - transfinite logical choice function [Hilbert, 1926]
 - logical ε -function [Hilbert, 1928]
 - ε -symbol [Hilbert & Bernays, 1939]

[Ackermann, 1925]: Begründung des "t.n.d." mittels der Hilbert'schen Theorie der Widerspruchsfreiheit. Abstract PhD thesis 1924.

[Hilbert, 1926]: Über das Unendliche. Talk of June 1925.

[Hilbert, 1928]: Die Grundlagen der Mathematik. Talk of July 1927.

[Hilbert & Bernays, 1939]: Grundlagen der Mathematik, Vol. II.

The ε is The Choice in Practice

■ The ι is no use unless $\exists!x^{\mathbb{B}}.A.$

But given $\exists ! x^{\mathbb{B}}. A$, (ι_0) , (ε_0) , we have:

$$\iota x^{\mathbb{B}}.A = \varepsilon x^{\mathbb{B}}.A.$$

Thus — to obtain weaker proof obligations — always use the ε instead of ι (unless eliminability relevant):

- Less proof work!
- Easier generalization of proofs!

The ε is The Choice in Practice

■ The ι is no use unless $\exists!x^{\mathbb{B}}.A.$

But given $\exists ! x^{\mathbb{B}}. A$, (ι_0) , (ε_0) , we have:

$$\iota x^{\mathbb{B}}.A = \varepsilon x^{\mathbb{B}}.A.$$

Thus — to obtain weaker proof obligations — always use the ε instead of ι (unless eliminability relevant):

- Less proof work!
- Easier generalization of proofs!
- au instead of ε makes sense only in non-classical logics. No essential difference in classical logic.

Sharpened 1st ε -Theorem [H. & Bernays, 1939]

```
Given: a derivation of \exists x_1^{\mathbb{B}}....\exists x_r^{\mathbb{B}}.A (containing no bound variables besides the ones bound by the prefix \exists x_1^{\mathbb{B}}....\exists x_r^{\mathbb{B}}.) from the formulas P_1,\ldots,P_k (containing neither formula variables nor bound variables) in the predicate calculus (incl. \varepsilon-formula and =-substitutability as axiom schemes, plus =-reflexivity).
```

Sharpened 1st ε -Theorem [H. & Bernays, 1939]

Given: a derivation of $\exists x_1^{\mathbb{B}}. \ldots \exists x_r^{\mathbb{B}}. A$

(containing no bound variables besides the ones bound by the prefix $\exists x_1^{\mathbb{B}}.\ \ldots \exists x_r^{\mathbb{B}}.$)

from the formulas P_1, \ldots, P_k

(containing neither formula variables nor bound variables)

in the predicate calculus

(incl. ε -formula and =-substitutability as axiom schemes, plus =-reflexivity).

We can construct a (finite) disjunction of the form

$$\bigvee_{i=0}^s A\{x_1^{\mathbb{B}}, \dots, x_r^{\mathbb{B}} \mapsto t_{i,1}, \dots, t_{i,r}\}$$

and a derivation of it

- in which bound variables do not occur at all
- from P_1, \ldots, P_k and =-axioms

(containing neither formula variables nor bound variables)

in the quantifier-free predicate calculus (i.e. tautologies plus

the inference schema [of modus ponens] and the substitution rule).

Note that r, s range over natural numbers including 0, and that $A, t_{i,j}$, and P_i are ε -free because otherwise they would have to include (additional) bound variables.

ε — A History of Failures? ("twilight of his career")

[Gödel, 1931]: Gödel's second incompleteness theorem cuts down Hilbert's program.

ε — A History of Failures? ("twilight of his career")

- [Gödel, 1931]: Gödel's second incompleteness theorem cuts down Hilbert's program.
- New goal-directed calculi [Herbrand, 1930] (Modus Ponens-free) and [Gentzen, 1935] (Cut-free) do not have an ε .
- Consistency proofs in [Herbrand, 1932] and in [Gentzen, 1936, 1938, 1943] do not use the ε .
- The displaced Ackermann finally [1940] proves the termination of an improved ε -substitution method in arithmetic, only to draw level w.r.t. consistency proofs with [Gentzen, 1938].

ε — A History of Failures? ("twilight of his career")

- [Gödel, 1931]: Gödel's second incompleteness theorem cuts down Hilbert's program.
- New goal-directed calculi [Herbrand, 1930] (Modus Ponens-free) and [Gentzen, 1935] (Cut-free) do not have an ε .
- Consistency proofs in [Herbrand, 1932] and in [Gentzen, 1936, 1938, 1943] do not use the ε .
- The displaced Ackermann finally [1940] proves the termination of an improved ε -substitution method in arithmetic, only to draw level w.r.t. consistency proofs with [Gentzen, 1938].
- Kreisel's [1958] unwinding program (Constructive equiv. math.?) is not properly formulated and followed.
- Leisenring's textbook [1969] renders the ε as too impractical for computer sci. and autom. theorem proving.
- Several projects to translate ε 's main reference, Hilbert–Bernays *Grundlagen der Mathematik* [1934/39] [1968/70], failed.

PART III

Via Overspecification toward a Model-Theoretic Semantics for the ε

Choice: Have really indefinite choice+ committed choice as an option

Take Leisenring's Satisfiability, but not his Notion of Validity

Overspecification: Extensionality (E2)

Ackermann's (II,4), Bourbaki's (S7), Leisenring's (E2):

$$\forall x^{\mathbb{B}}. (A_0 \Leftrightarrow A_1) \implies \varepsilon x^{\mathbb{B}}. A_0 = \varepsilon x^{\mathbb{B}}. A_1$$

Good: Syntactical differences between A_1 and A_2 should not matter. Deterrent example: [Asser, 1957, type-3]

Overspecification: Extensionality (E2)

Ackermann's (II,4), Bourbaki's (S7), Leisenring's (E2):

$$\forall x^{\mathbb{B}}. (A_0 \Leftrightarrow A_1) \implies \varepsilon x^{\mathbb{B}}. A_0 = \varepsilon x^{\mathbb{B}}. A_1$$

- Good: Syntactical differences between A_1 and A_2 should not matter. Deterrent example: [Asser, 1957, type-3]
- Bad1: All classical theorems become intuitionistic ones.

Overspecification: Extensionality (E2)

Ackermann's (II,4), Bourbaki's (S7), Leisenring's (E2):

$$\forall x^{\mathbb{B}}. (A_0 \Leftrightarrow A_1) \implies \varepsilon x^{\mathbb{B}}. A_0 = \varepsilon x^{\mathbb{B}}. A_1$$

- Good: Syntactical differences between A_1 and A_2 should not matter. Deterrent example: [Asser, 1957, type-3]
- Bad1: All classical theorems become intuitionistic ones.
- Bad2: Committed choice should be an option, not a must. "A bishop met a bishop."
- Actually committed choice must be an option:

$$\exists x^{\mathbb{B}}. \ (x^{\mathbb{B}} \neq x^{\mathbb{B}})$$

$$\varepsilon x^{\mathbb{B}}. \ (x^{\mathbb{B}} \neq x^{\mathbb{B}}) \neq \varepsilon x^{\mathbb{B}}. \ (x^{\mathbb{B}} \neq x^{\mathbb{B}})$$

$$0 \neq \varepsilon x^{\mathbb{B}}. \ (x^{\mathbb{B}} \neq x^{\mathbb{B}})$$

$$0 \neq 1$$
Clause Properties

Model-Theoretic Semantics

- Motivation: Practical Applicability requires a Model-Theoretic Semantics.
- To define Satisfiability, the Existence of a (generalized) choice function works fine in the evaluation of ε -terms.
- ε -formula plus (E2) turn predicate calculus sound and complete for validity w.r.t. all possible choice functions, cf. [Asser, habil, 1957, type-1], [Leisenring, textbook, 1969]

Main Theses

Practical usefulness as well as formal adequacy of a straightforward model-theoretic specification of the ε require:

Both satisfiability and validity must refer to the existence of choice functions, not to all of them:

$$\mathsf{Bishop}(\mathsf{Tebarz}) \models \varepsilon x^{\mathbb{B}}. \; \mathsf{Bishop}(x^{\mathbb{B}}) = \mathsf{Tebarz}$$

Non-commitment to a choice must be possible where it is not required: $\models \varepsilon_i x^{\mathbb{B}}$. Bishop $(x^{\mathbb{B}}) \neq \varepsilon_j x^{\mathbb{B}}$. Bishop $(x^{\mathbb{B}})$ (Indexed ε à la Heusinger/Egli)

Better without choice functions: $\models x_0^{\mathbb{V}} = \mathsf{Tebarz}, \quad x_1^{\mathbb{V}} \neq x_2^{\mathbb{V}}$ with choice condition $C(x_i^{\mathbb{V}}) := \varepsilon x^{\mathbb{B}}$. $\mathsf{Bishop}(x^{\mathbb{B}})$ for $i \in \{0, 1, 2\}$.

 ε -substitution becomes subst. of free variables $x_i^{\mathbb{V}}$.

PART IV: Wirth's Free-Variable Framework

Quantification without Quantifiers

 \blacksquare Hilbert's ε

Liberalized δ -rules

Fermat's Descente infinie

Free Variables and Atoms

- Occur frequently in math & computer science
- Their function depends on context: varying, implicit, ad hoc
- Here: disjoint sets of symbols for different functions
- New: only two functions of free variables / atoms left: existentially / universally quantified.
- New:
 Henkin quantification can be modeled directly with positive/negative variable-conditions.

(1)
$$(m)^{(p+q)} = (m)^{(p)} * (m)^{(q)}$$

(1)
$$(m)^{(p+q)} = (m)^{(p)} * (m)^{(q)}$$

$$\textbf{(2)} \ \forall m^{\scriptscriptstyle \mathbb{B}}, p^{\scriptscriptstyle \mathbb{B}}, q^{\scriptscriptstyle \mathbb{B}}. \ \left(\ (m^{\scriptscriptstyle \mathbb{B}})^{(p^{\scriptscriptstyle \mathbb{B}}+q^{\scriptscriptstyle \mathbb{B}})} = (m^{\scriptscriptstyle \mathbb{B}})^{(p^{\scriptscriptstyle \mathbb{B}})} * (m^{\scriptscriptstyle \mathbb{B}})^{(q^{\scriptscriptstyle \mathbb{B}})} \ \right)$$

(1)
$$(m)^{(p+q)} = (m)^{(p)} * (m)^{(q)}$$

$$\textbf{(2)} \ \forall m^{\mathbb{B}}, p^{\mathbb{B}}, q^{\mathbb{B}}. \ \left(\ (m^{\mathbb{B}})^{(p^{\mathbb{B}} + q^{\mathbb{B}})} = (m^{\mathbb{B}})^{(p^{\mathbb{B}})} * (m^{\mathbb{B}})^{(q^{\mathbb{B}})} \ \right)$$

(3)
$$(m^{\mathbb{A}})^{(p^{\mathbb{A}}+q^{\mathbb{A}})} = (m^{\mathbb{A}})^{(p^{\mathbb{A}})} * (m^{\mathbb{A}})^{(q^{\mathbb{A}})}$$

(1)
$$(m)^{(p+q)} = (m)^{(p)} * (m)^{(q)}$$

$$\textbf{(2)} \ \forall m^{\mathbb{B}}, p^{\mathbb{B}}, q^{\mathbb{B}}. \ \left(\ (m^{\mathbb{B}})^{(p^{\mathbb{B}} + q^{\mathbb{B}})} = (m^{\mathbb{B}})^{(p^{\mathbb{B}})} * (m^{\mathbb{B}})^{(q^{\mathbb{B}})} \ \right)$$

(3)
$$(m^{\mathbb{A}})^{(p^{\mathbb{A}} + q^{\mathbb{A}})} = (m^{\mathbb{A}})^{(p^{\mathbb{A}})} * (m^{\mathbb{A}})^{(q^{\mathbb{A}})}$$

Advantage of (1) and (3): Mathematical induction (Fermat's *Descente infinie*) becomes possible because the induction hypothesis can refer to the conclusion by means of the free variables.

(1)
$$(m)^{(p+q)} = (m)^{(p)} * (m)^{(q)}$$

$$\textbf{(2)} \ \forall m^{\mathbb{B}}, p^{\mathbb{B}}, q^{\mathbb{B}}. \ \left(\ (m^{\mathbb{B}})^{(p^{\mathbb{B}}+q^{\mathbb{B}})} = (m^{\mathbb{B}})^{(p^{\mathbb{B}})} * (m^{\mathbb{B}})^{(q^{\mathbb{B}})} \ \right)$$

(3)
$$(m^{\mathbb{A}})^{(p^{\mathbb{A}} + q^{\mathbb{A}})} = (m^{\mathbb{A}})^{(p^{\mathbb{A}})} * (m^{\mathbb{A}})^{(q^{\mathbb{A}})}$$

- Advantage of (1) and (3): Mathematical induction (Fermat's Descente infinie) becomes possible because the induction hypothesis can refer to the conclusion by means of the free variables.
- Semantics is uniquely expressed in (2) and (3).

$$\begin{pmatrix} 2 & 3 \\ 5 & 7 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 11 \\ 13 \end{pmatrix}$$

(1)
$$\begin{pmatrix} 2 & 3 \\ 5 & 7 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 11 \\ 13 \end{pmatrix}$$
(2)
$$\exists x^{\mathbb{B}}, y^{\mathbb{B}}. \begin{pmatrix} \begin{pmatrix} 2 & 3 \\ 5 & 7 \end{pmatrix} \begin{pmatrix} x^{\mathbb{B}} \\ y^{\mathbb{B}} \end{pmatrix} = \begin{pmatrix} 11 \\ 13 \end{pmatrix}$$

(1)
$$\begin{pmatrix} 2 & 3 \\ 5 & 7 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 11 \\ 13 \end{pmatrix}$$
(2)
$$\exists x^{\mathbb{B}}, y^{\mathbb{B}}. \begin{pmatrix} \begin{pmatrix} 2 & 3 \\ 5 & 7 \end{pmatrix} \begin{pmatrix} x^{\mathbb{B}} \\ y^{\mathbb{B}} \end{pmatrix} = \begin{pmatrix} 11 \\ 13 \end{pmatrix}$$
(3)
$$\begin{pmatrix} 2 & 3 \\ 5 & 7 \end{pmatrix} \begin{pmatrix} x^{\mathbb{V}} \\ y^{\mathbb{V}} \end{pmatrix} = \begin{pmatrix} 11 \\ 13 \end{pmatrix}$$

(1)
$$\begin{pmatrix} 2 & 3 \\ 5 & 7 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 11 \\ 13 \end{pmatrix}$$
(2)
$$\exists x^{\mathbb{B}}, y^{\mathbb{B}}. \begin{pmatrix} \begin{pmatrix} 2 & 3 \\ 5 & 7 \end{pmatrix} \begin{pmatrix} x^{\mathbb{B}} \\ y^{\mathbb{B}} \end{pmatrix} = \begin{pmatrix} 11 \\ 13 \end{pmatrix} \end{pmatrix}$$
(3)
$$\begin{pmatrix} 2 & 3 \\ 5 & 7 \end{pmatrix} \begin{pmatrix} x^{\mathbb{V}} \\ y^{\mathbb{V}} \end{pmatrix} = \begin{pmatrix} 11 \\ 13 \end{pmatrix}$$

Constraints on solutions may be retrieved from a proof by referring to the variables in (1) and (3).

$$\begin{pmatrix} 2 & 3 \\ 5 & 7 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 11 \\ 13 \end{pmatrix}$$

(2)
$$\exists x^{\mathbb{B}}, y^{\mathbb{B}}.$$
 $\begin{pmatrix} 2 & 3 \\ 5 & 7 \end{pmatrix} \begin{pmatrix} x^{\mathbb{B}} \\ y^{\mathbb{B}} \end{pmatrix} = \begin{pmatrix} 11 \\ 13 \end{pmatrix} \end{pmatrix}$

$$\begin{pmatrix}
2 & 3 \\
5 & 7
\end{pmatrix}
\begin{pmatrix}
x^{\mathbb{V}} \\
y^{\mathbb{V}}
\end{pmatrix} = \begin{pmatrix}
11 \\
13
\end{pmatrix}$$

- Constraints on solutions may be retrieved from a proof by referring to the variables in (1) and (3).
- Semantics is uniquely expressed in (2) and (3).

Free Atoms

- A, Universally quantified (implicitly)
- Arbitrary object in a discourse
- Atomic: black-box, no information on it ever
- Except: Is it an atom?
 Different from another atom?
- Origin of name:Set theories with atoms (or urelements)
- Instantiated locally and repeatedly in application of lemmas or induction hypotheses

Free Variables

- V, Existentially quantified (implicitly)
- Place-holder in a discourse
- Gather and store information
- Replaced with a definition or a description
- Origin of name:Fitting's free-variable semantic tableaus
- Rigid: Instantiated globally, once and for all, with possible effect on input theorem

(Reductive) Inference (Smullyan's classification)

 γ -rule:

$$\frac{\Gamma, \ \exists x^{\mathbb{B}}.A, \ \Delta}{A\{x^{\mathbb{B}} \mapsto x^{\mathbb{V}}\}, \ \Gamma, \ \exists x^{\mathbb{B}}.A, \ \Delta}$$

(Reductive) Inference (Smullyan's classification)

$$\gamma$$
-rule:
$$\frac{\Gamma, \ \exists x^{\mathbb{B}}.A, \ \varDelta}{A\{x^{\mathbb{B}} \mapsto x^{\mathbb{V}}\}, \ \Gamma, \ \exists x^{\mathbb{B}}.A, \ \varDelta}$$

$$\delta^-$$
-rule: $\Gamma, \ \forall y^{\mathbb{B}}.A, \ \varDelta$

$$A\{y^{\mathbb{B}} \mapsto y^{\mathbb{A}}\}, \ \Gamma, \ \Delta \qquad \mathbb{V}(\Gamma, \forall y^{\mathbb{B}}.A, \Delta) \times \{y^{\mathbb{A}}\}$$

(Reductive) Inference (Smullyan's classification)

 γ -rule:

 δ^- -rule:

$$egin{aligned} \mathcal{L} & \Gamma, \ orall y^{\mathbb{B}}.A, \ \Delta & \\ \hline & A\{y^{\mathbb{B}} \mapsto y^{\mathbb{A}}\}, \ \Gamma, \ \Delta & \mathbb{V}(\Gamma, orall y^{\mathbb{B}}.A, \Delta) imes \{y^{\mathbb{A}}\}, \end{aligned}$$

 δ^+ -rule:

 δ^- -rule:

$$rac{\Gamma,\;orall y^{\mathbb{B}}.A,\;\;arDelta}{A\{y^{\mathbb{B}}{\mapsto}y^{\mathbb{A}}\},\;\Gamma,\;\;arDelta}$$

$$\mathbb{V}(\varGamma,\forall y^{\mathbb{B}}.A,\varDelta)\times\{y^{\mathbb{A}}\}$$

$$\exists x^{\mathbb{B}}. \forall y^{\mathbb{B}}. (x^{\mathbb{B}} = y^{\mathbb{B}})$$

$$\delta^-$$
-rule:

$$\gamma$$
-step:

$$\exists x^{\mathbb{B}}.\forall y^{\mathbb{B}}.(x^{\mathbb{B}}=y^{\mathbb{B}})$$

$$\forall y^{\mathbb{B}}.(x^{\mathbb{V}}=y^{\mathbb{B}}), \quad \exists x^{\mathbb{B}}.\forall y^{\mathbb{B}}.(x^{\mathbb{B}}=y^{\mathbb{B}})$$

$$\delta^-$$
-rule:

$$\Gamma,\; orall y^{\mathbb{B}}.A,\; arDelta$$

$$A\{y^{\mathbb{B}}{\mapsto}y^{\mathbb{A}}\},\ \Gamma,\ \Delta$$

$$\mathbb{V}(\varGamma,\forall y^{\mathbb{B}}.A,\varDelta)\times\{y^{\mathbb{A}}\}$$

$$\gamma$$
-step:

$$\delta^-$$
-step:

$$\exists x^{\scriptscriptstyle \mathbb{B}}. \forall y^{\scriptscriptstyle \mathbb{B}}. (x^{\scriptscriptstyle \mathbb{B}} = y^{\scriptscriptstyle \mathbb{B}})$$

$$\forall y^{\mathbb{B}}.(x^{\mathbb{V}}=y^{\mathbb{B}}), \quad \exists x^{\mathbb{B}}.\forall y^{\mathbb{B}}.(x^{\mathbb{B}}=y^{\mathbb{B}})$$

$$(x^{\mathbb{V}} = y^{\mathbb{A}}), \quad \exists x^{\mathbb{B}}. \forall y^{\mathbb{B}}. (x^{\mathbb{B}} = y^{\mathbb{B}})$$

$$\delta^-$$
-rule:

$$rac{\Gamma, \ orall y^{\mathbb{B}}.A, \ arDelta}{\Lambda}$$

$$A\{y^{\mathbb{B}}{\mapsto}y^{\mathbb{A}}\},\ \Gamma,\ \Delta$$

$$\mathbb{V}(\varGamma,\forall y^{\mathbb{B}}.A,\varDelta)\times\{y^{\mathbb{A}}\}$$

$$\gamma$$
-step:

$$\delta^-$$
-step:

Apply
$$\{x^{\mathbb{V}} \mapsto y^{\mathbb{A}}\}$$
?

$$\exists x^{\mathbb{B}}. \forall y^{\mathbb{B}}. (x^{\mathbb{B}} = y^{\mathbb{B}})$$

$$\forall y^{\mathbb{B}}.(x^{\mathbb{V}}=y^{\mathbb{B}}), \quad \exists x^{\mathbb{B}}.\forall y^{\mathbb{B}}.(x^{\mathbb{B}}=y^{\mathbb{B}})$$

$$(x^{\mathbb{V}} = y^{\mathbb{A}}), \quad \exists x^{\mathbb{B}}. \forall y^{\mathbb{B}}. (x^{\mathbb{B}} = y^{\mathbb{B}})$$

$$\delta^-$$
-rule:

$$rac{\Gamma,\; orall y^{\mathbb{B}}.A,\; arDelta}{A\{y^{\mathbb{B}} {\mapsto} y^{\mathbb{A}}\},\; arGamma,\; arDelta}$$

$$\gamma$$
-step:

$$\delta^-$$
-step:

Apply
$$\{x^{\mathbb{V}} \mapsto y^{\mathbb{A}}\}$$
?

Record dependency in negative variable-condition N: $(x^{\mathbb{V}}, y^{\mathbb{A}}) \in N$

$$\exists x^{\mathbb{B}}. \forall y^{\mathbb{B}}. (x^{\mathbb{B}} = y^{\mathbb{B}})$$

 $\mathbb{V}(\Gamma, \forall y^{\mathbb{B}}.A, \Delta) \times \{y^{\mathbb{A}}\}$

$$\exists y^{\mathbb{B}}.(x^{\mathbb{V}}=y^{\mathbb{B}}), \quad \exists x^{\mathbb{B}}.\forall y^{\mathbb{B}}.(x^{\mathbb{B}}=y^{\mathbb{B}})$$

$$(x^{\mathbb{V}} = y^{\mathbb{A}}), \quad \exists x^{\mathbb{B}}. \forall y^{\mathbb{B}}. (x^{\mathbb{B}} = y^{\mathbb{B}})$$

$$\delta^+$$
-rule:

$$\frac{\Gamma, \ \forall y^{\mathbb{B}}.A, \ \varDelta}{A\{y^{\mathbb{B}} \mapsto y^{\mathbb{V}}\}, \ \Gamma, \ \varDelta} \qquad \begin{array}{c} (y^{\mathbb{V}}, \ \varepsilon y^{\mathbb{B}}. \ \neg A) \\ \mathbb{VA}(\forall y^{\mathbb{B}}.A) \times \{y^{\mathbb{V}}\} \end{array}$$

$$\gamma$$
-step:

$$\exists x^{\scriptscriptstyle{\mathbb{B}}}. \forall y^{\scriptscriptstyle{\mathbb{B}}}. (x^{\scriptscriptstyle{\mathbb{B}}} = y^{\scriptscriptstyle{\mathbb{B}}})$$

$$\forall y^{\mathbb{B}}.(x^{\mathbb{V}}=y^{\mathbb{B}}), \quad \exists x^{\mathbb{B}}.\forall y^{\mathbb{B}}.(x^{\mathbb{B}}=y^{\mathbb{B}})$$

$$\delta^+$$
-rule:

$$\frac{\Gamma, \ \forall y^{\mathbb{B}}.A, \ \varDelta}{A\{y^{\mathbb{B}} \mapsto y^{\mathbb{V}}\}, \ \Gamma, \ \varDelta} \qquad \begin{array}{c} (y^{\mathbb{V}}, \ \varepsilon y^{\mathbb{B}}. \ \neg A) \\ \mathbb{VA}(\forall y^{\mathbb{B}}.A) \times \{y^{\mathbb{V}}\} \end{array}$$

$$\gamma$$
-step:

$$\delta^+$$
-step:

$$\exists x^{\mathbb{B}}. \forall y^{\mathbb{B}}. (x^{\mathbb{B}} = y^{\mathbb{B}})$$

$$\forall y^{\mathbb{B}}.(x^{\mathbb{V}}=y^{\mathbb{B}}), \quad \exists x^{\mathbb{B}}.\forall y^{\mathbb{B}}.(x^{\mathbb{B}}=y^{\mathbb{B}})$$

$$(x^{\mathbb{V}} = y^{\mathbb{V}}), \quad \exists x^{\mathbb{B}}. \forall y^{\mathbb{B}}. (x^{\mathbb{B}} = y^{\mathbb{B}})$$

$$\delta^+$$
-rule:

$$\frac{\Gamma, \ \forall y^{\mathbb{B}}.A, \ \varDelta}{A\{y^{\mathbb{B}} \mapsto y^{\mathbb{V}}\}, \ \Gamma, \ \varDelta} \qquad (y^{\mathbb{V}}, \ \varepsilon y^{\mathbb{B}}. \ \neg A) \\ \mathbb{M}(\forall y^{\mathbb{B}}.A) \times \{y^{\mathbb{V}}\}$$

$$\gamma$$
-step:

$$\delta^+$$
-step:

Apply
$$\{x^{\mathbb{V}} \mapsto y^{\mathbb{V}}\}$$
?

$$\exists x^{\mathbb{B}}. \forall y^{\mathbb{B}}. (x^{\mathbb{B}} = y^{\mathbb{B}})$$

$$\forall y^{\mathbb{B}}.(x^{\mathbb{V}}=y^{\mathbb{B}}), \quad \exists x^{\mathbb{B}}.\forall y^{\mathbb{B}}.(x^{\mathbb{B}}=y^{\mathbb{B}})$$

$$(x^{\mathbb{V}} = y^{\mathbb{V}}), \quad \exists x^{\mathbb{B}}. \forall y^{\mathbb{B}}. (x^{\mathbb{B}} = y^{\mathbb{B}})$$

$$\delta^+$$
-rule:

$$\frac{\Gamma, \ \forall y^{\mathbb{B}}.A, \ \varDelta}{A\{y^{\mathbb{B}} \mapsto y^{\mathbb{V}}\}, \ \Gamma, \ \varDelta} \qquad (y^{\mathbb{V}}, \ \varepsilon y^{\mathbb{B}}. \ \neg A) \\ \mathbb{VA}(\forall y^{\mathbb{B}}.A) \times \{y^{\mathbb{V}}\}$$

Proof task:

$$\exists x^{\scriptscriptstyle{\mathbb{B}}}. \forall y^{\scriptscriptstyle{\mathbb{B}}}. (x^{\scriptscriptstyle{\mathbb{B}}} = y^{\scriptscriptstyle{\mathbb{B}}})$$

$$\gamma$$
-step:

$$\forall y^{\mathbb{B}}.(x^{\mathbb{V}}=y^{\mathbb{B}}), \quad \exists x^{\mathbb{B}}.\forall y^{\mathbb{B}}.(x^{\mathbb{B}}=y^{\mathbb{B}})$$

$$\delta^+$$
-step:

$$(x^{\mathbb{V}} = y^{\mathbb{V}}), \quad \exists x^{\mathbb{B}}. \forall y^{\mathbb{B}}. (x^{\mathbb{B}} = y^{\mathbb{B}})$$

Apply
$$\{x^{\mathbb{V}} \mapsto y^{\mathbb{V}}\}$$
?

Record dependency in positive variable-condition P: $(x^{\mathbb{V}}, y^{\mathbb{V}}) \in P$

$$\delta^+$$
-rule:

$$\gamma$$
-step:

$$\delta^+$$
-step:

Apply
$$\{y^{\mathbb{V}} \mapsto x^{\mathbb{V}}\}$$
?

$$\exists x^{\mathbb{B}}. \forall y^{\mathbb{B}}. (x^{\mathbb{B}} = y^{\mathbb{B}})$$

$$\forall y^{\mathbb{B}}.(x^{\mathbb{V}}=y^{\mathbb{B}}), \quad \exists x^{\mathbb{B}}.\forall y^{\mathbb{B}}.(x^{\mathbb{B}}=y^{\mathbb{B}})$$

$$(x^{\mathbb{V}} = y^{\mathbb{V}}), \quad \exists x^{\mathbb{B}}. \forall y^{\mathbb{B}}. (x^{\mathbb{B}} = y^{\mathbb{B}})$$

$$\delta^+$$
-rule:

Proof task:

$$\exists x^{\scriptscriptstyle{\mathbb{B}}}. \forall y^{\scriptscriptstyle{\mathbb{B}}}. (x^{\scriptscriptstyle{\mathbb{B}}} = y^{\scriptscriptstyle{\mathbb{B}}})$$

$$\gamma$$
-step:

$$\forall y^{\mathbb{B}}.(x^{\mathbb{V}}=y^{\mathbb{B}}), \quad \exists x^{\mathbb{B}}.\forall y^{\mathbb{B}}.(x^{\mathbb{B}}=y^{\mathbb{B}})$$

$$\delta^+$$
-step:

$$(x^{\mathbb{V}} = y^{\mathbb{V}}), \quad \exists x^{\mathbb{B}}. \forall y^{\mathbb{B}}. (x^{\mathbb{B}} = y^{\mathbb{B}})$$

Apply $\{y^{\mathbb{V}} \mapsto x^{\mathbb{V}}\}$?

We have to prove in advance $\{y^{\mathbb{V}} \mapsto x^{\mathbb{V}}\}$ -instance of:

$$(\varepsilon_0)$$

$$\exists y^{\mathbb{B}}.\neg A \Rightarrow \neg A\{y^{\mathbb{B}} \mapsto y^{\mathbb{V}}\}$$

$$\delta^+$$
-rule:

$$\frac{\Gamma, \ \forall y^{\mathbb{B}}.A, \ \varDelta}{A\{y^{\mathbb{B}} \mapsto y^{\mathbb{V}}\}, \ \Gamma, \ \varDelta} \qquad \begin{array}{c} (y^{\mathbb{V}}, \ \varepsilon y^{\mathbb{B}}. \ \neg A) \\ \mathbb{VA}(\forall y^{\mathbb{B}}.A) \times \{y^{\mathbb{V}}\} \end{array}$$

Proof task:

$$\exists x^{\mathbb{B}}. \forall y^{\mathbb{B}}. (x^{\mathbb{B}} = y^{\mathbb{B}})$$

$$\gamma$$
-step:

$$\forall y^{\mathbb{B}}.(x^{\mathbb{V}}=y^{\mathbb{B}}), \quad \exists x^{\mathbb{B}}.\forall y^{\mathbb{B}}.(x^{\mathbb{B}}=y^{\mathbb{B}})$$

$$\delta^+$$
-step:

$$(x^{\mathbb{V}} = y^{\mathbb{V}}), \quad \exists x^{\mathbb{B}}. \forall y^{\mathbb{B}}. (x^{\mathbb{B}} = y^{\mathbb{B}})$$

Apply $\{y^{\mathbb{V}} \mapsto x^{\mathbb{V}}\}$?

We have to prove in advance $\{y^{\mathbb{V}} \mapsto x^{\mathbb{V}}\}$ -instance of:

$$(\varepsilon_0)$$

$$\exists y^{\mathbb{B}}.\neg A \Rightarrow \neg A\{y^{\mathbb{B}} \mapsto y^{\mathbb{V}}\}$$

i.e.

$$\exists y^{\mathbb{B}}.\neg(x^{\mathbb{V}}=y^{\mathbb{B}}) \Rightarrow \neg(x^{\mathbb{V}}=x^{\mathbb{V}})$$

Variable-Conditions in the Literature

- Wolfgang Bibel's book *Automated Theorem Proving* 1982, (2nd edn. 1987):
 - Two positive relations: awkward & inefficient
 - No liberalized δ -rules

Variable-Conditions in the Literature

- Wolfgang Bibel's book Automated Theorem Proving 1982, (2nd edn. 1987):
 - Two positive relations: awkward & inefficient
 - No liberalized δ -rules
- Lincoln A. Wallen 1990:
 - Single positive relation
 - No liberalized δ -rules

Variable-Conditions in the Literature (contd.)

- Michael Kohlhase's articles
 - lue With liberalized δ -rules
 - Higher-Order Tableaux [TABLEAUX'1995]: Unsound!
 - Higher-Order Theorem Proving [Bibel & Schmitt,

 Automated Deduction, Vol. I, 1998]:
 Unsound!

Variable-Conditions in the Literature (contd.)

- Michael Kohlhase's articles
 - lue With liberalized δ -rules
 - Higher-Order Tableaux [TABLEAUX'1995]: Unsound!
 - Higher-Order Theorem Proving [Bibel & Schmitt,

 Automated Deduction, Vol. I, 1998]:
 Unsound!
- Wirth's previous versions with single relation
 - Negative relation [FTP'1998]
 - Positive relation with Variable reuse [J. IGPL 2004]
 - Standard positive relation [J. IGPL 2004], [J. Appl. L. 2008], SEKI-Report SR–2006–02 [2012]

Positive/Negative Variable-Condition (P, N)

$$\begin{array}{cccc} P & \subseteq & (\mathbb{V} \uplus \mathbb{A}) & \times & \mathbb{V} \\ N & \subseteq & \mathbb{V} & \times & \mathbb{A} \end{array}$$

Positive/Negative Variable-Condition (P, N)

$$P \subseteq (\mathbb{V} \oplus \mathbb{A}) \times \mathbb{V}$$

$$N \subseteq \mathbb{V} \times \mathbb{A}$$

Consistency:

Each cycle in the directed graph of $P \cup N$ has more than one edge from N.

Positive/Negative Variable-Condition (P, N)

$$P \subseteq (\mathbb{V} \oplus \mathbb{A}) \times \mathbb{V}$$

$$N \subseteq \mathbb{V} \times \mathbb{A}$$

- Consistency:
 - Each cycle in the directed graph of $P \cup N$ has more than one edge from N.
- **Admissible substitution** σ : $(P \cup D, N)$ is consistent.

$$(x^{\mathbb{N}},y^{\mathbb{V}})\in D$$
 iff $y^{\mathbb{V}}\in \mathrm{dom}(\sigma)$ and

 $x^{\mathbb{N}}$ is a free variable or free atom in $\sigma(y^{\mathbb{V}})$

Whole Proof Search Framework

DATA STRUCTURES:

A Forest of and/or proof-attempt trees.
Root of each tree carries an [open] proposition.

Whole Proof Search Framework

DATA STRUCTURES:

- A Forest of and/or proof-attempt trees.
 Root of each tree carries an [open] proposition.
- \blacksquare A Positive/Negative Variable-Condition (P, N)
- A Choice-Condition C

Whole Proof Search Framework

DATA STRUCTURES:

- A Forest of and/or proof-attempt trees.
 Root of each tree carries an [open] proposition.
- **A** Positive/Negative Variable-Condition (P, N)
- A Choice-Condition C

PS-INVARIANT ("Preservation of solutions"):
"The the solutions of the leaves solve the root."

Whole Proof Search Framework

DATA STRUCTURES:

- A Forest of and/or proof-attempt trees.
 Root of each tree carries an [open] proposition.
- **A** Positive/Negative Variable-Condition (P, N)
- A Choice-Condition C

PS-INVARIANT ("Preservation of solutions"): "The the solutions of the leaves solve the root." The root (C, (P, N))-reduces to the leaves.

Whole Proof Search Framework

DATA STRUCTURES:

- A Forest of and/or proof-attempt trees.
 Root of each tree carries an [open] proposition.
- \blacksquare A Positive/Negative Variable-Condition (P, N)
- A Choice-Condition C

PS-INVARIANT ("Preservation of solutions"):

"The the solutions of the leaves solve the root."

The root (C, (P, N))-reduces to the leaves.

This is more than soundness of problem reduction!

OPERATIONS:

New conjectures get trivial proof-attempt tree.

- New conjectures get trivial proof-attempt tree.
- Analytic proof steps local to a tree.

- New conjectures get trivial proof-attempt tree.
- Analytic proof steps local to a tree.
- Generative application of open lemmas, either deductively or inductively.

- New conjectures get trivial proof-attempt tree.
- Analytic proof steps local to a tree.
- Generative application of open lemmas, either deductively or inductively.
- Global substitution of rigid variables.

- New conjectures get trivial proof-attempt tree.
- Analytic proof steps local to a tree.
- Generative application of open lemmas, either deductively or inductively.
- Global substitution of rigid variables.
 PS-INVARIANT!

- New conjectures get trivial proof-attempt tree.
- Analytic proof steps local to a tree.
- Generative application of open lemmas, either deductively or inductively.
- Global substitution of rigid variables.
 PS-INVARIANT! But:
 - $x^{\mathbb{V}} \neq y^{\mathbb{V}}$ means that the universe is non-trivial.

OPERATIONS:

- New conjectures get trivial proof-attempt tree.
- Analytic proof steps local to a tree.
- Generative application of open lemmas, either deductively or inductively.
- Global substitution of rigid variables.
 PS-INVARIANT! But:

 $x^{\mathbb{V}} \neq y^{\mathbb{V}}$ means that the universe is non-trivial.

It becomes false after application of $\{x^{\mathbb{V}} \mapsto y^{\mathbb{V}}\}$

Henkin Quantification

"Every woman could love someone and every man could love someone, such that these loved ones could love each other."

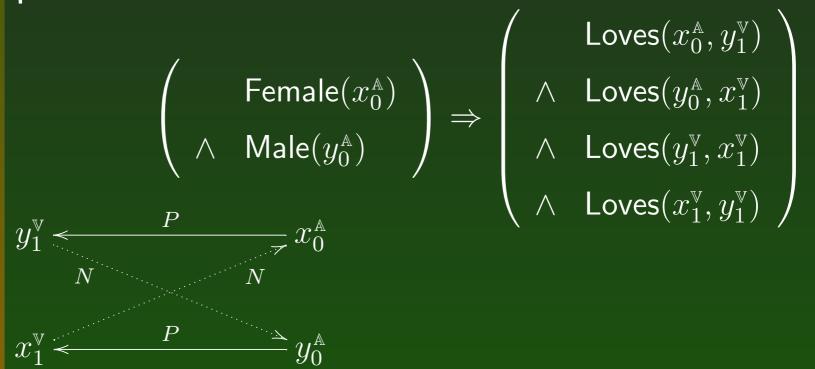
Henkin Quantification

- "Every woman could love someone and every man could love someone, such that these loved ones could love each other."
- As a Henkin-quantified IF-logic formula:

$$\forall x_0^{\mathbb{B}}. \ \forall y_0^{\mathbb{B}}. \\ \Rightarrow \ \exists y_1^{\mathbb{B}}/y_0^{\mathbb{B}}. \ \exists x_1^{\mathbb{B}}/x_0^{\mathbb{B}}. \\ \left(\begin{array}{c} \mathsf{Loves}(x_0^{\mathbb{B}}, y_1^{\mathbb{B}}) \\ \land \ \mathsf{Loves}(y_0^{\mathbb{B}}, x_1^{\mathbb{B}}) \\ \land \ \mathsf{Loves}(y_1^{\mathbb{B}}, x_1^{\mathbb{B}}) \\ \land \ \mathsf{Loves}(x_1^{\mathbb{B}}, y_1^{\mathbb{B}}) \end{array}\right)$$

Henkin Quantification

- "Every woman could love someone and every man could love someone, such that these loved ones could love each other."
- Represented in our Framework:



Binders are Bad:

- ullet Quantifiers and the arepsilon mess up formulas
- $lue{}$ Quantifiers and the arepsilon make reasoning difficult
- Quantifiers enforce a too primitive form of scoping
- The ε -binder produces terms of unmanageable size

Binding without Binders is Great:

- Free variables and atoms are what we need to manage practical applications
- Positive/Negative Variable-Conditions enable sophisticated scoping
- The term-sharing of free variables admits ε -binding that is manageable w.r.t. term size
- Our semantics for the ε is existential (!) and admits indefinite committed choice
- Free atoms admit mathematical induction in the liberal style of Fermat's Descente Infinie

Conclusion

Want your reasoning applications to be successful in practice?

- Ask for a tailored version of a free-variable framework!
- Do not introduce free variables and atoms ad hoc for operational purposes, but give them a clear semantics
- Get both free variables and free atoms:
- The liberalized δ -rule (δ^+ -rule) is a practical improvement only if the non-liberalize δ -rule (δ^- -rule) remains available (Henkin, Fermat)
- Use an ε with existential semantics

Related Publications

- Descente Infinie + Deduction Logic J. of the IGPL 12:1–96, 2004, Oxford Univ. Press
- Hilbert's epsilon as an Operator of Indefinite Committed Choice (IDC)
 - J. Applied Logic 6:287–317, 2008, Elsevier
- A Simplified and Improved Free-Variable Frameword of Hilbert's ε as an Operator of IDC SEKI-Report SR–2011–01, Revised May 2015.

http://arxiv.org/abs/1104.2444

- Hilbert-Bernays: Grundlagen der Mathematik.
 - 1st English translation. With comments and German facsimile.

http://wirth.bplaced.net/p/hilbertbernays

Semantic treatment of Variable-Conditions

$$\mathbf{e}(\pi)(\delta)(x^{\mathbb{V}}) := \pi(x^{\mathbb{V}})(S_{\pi\langle\{x^{\mathbb{V}}\}\rangle}|\delta).$$

$$\pi: \mathbb{V} \leadsto (\mathbb{A} \leadsto \mathcal{S}) \leadsto \mathcal{S}, \quad \delta: \mathbb{A} \leadsto \mathcal{S}, \quad x \in \mathbb{V}$$

$$\mathbf{e}: (\mathbb{V} \leadsto (\mathbb{A} \leadsto \mathcal{S}) \leadsto \mathcal{S}) \quad \to \quad (\mathbb{A} \leadsto \mathcal{S}) \quad \to \quad \mathbb{V} \quad \leadsto \quad \mathcal{S}$$

Semantic treatment of Variable-Conditions

$$\mathbf{e}(\pi)(\delta)(x^{\mathbb{V}}) := \pi(x^{\mathbb{V}})(_{S_{\pi}\langle\{x^{\mathbb{V}}\}\rangle}|\delta).$$

$$\pi : \mathbb{V} \leadsto (\mathbb{A} \leadsto \mathcal{S}) \leadsto \mathcal{S}, \quad \delta : \mathbb{A} \leadsto \mathcal{S}, \quad x \in \mathbb{V}$$

$$\mathbf{e} : (\mathbb{V} \leadsto (\mathbb{A} \leadsto \mathcal{S}) \leadsto \mathcal{S}) \rightarrow (\mathbb{A} \leadsto \mathcal{S}) \rightarrow \mathbb{V} \leadsto \mathcal{S}$$

$$S_{\pi} := \{ (y^{\mathbb{A}}, x^{\mathbb{V}}) \mid x^{\mathbb{V}} \in \mathrm{dom}(\pi) \land y^{\mathbb{A}} \in \mathrm{dom}(\bigcup(\mathrm{dom}(\pi(x^{\mathbb{V}})))) \}$$

Semantic treatment of Variable-Conditions

$$\begin{array}{c} \mathsf{e}(\pi)(\delta)(x^{\mathbb{V}}) := \pi(x^{\mathbb{V}})(_{S_{\pi}\langle\{x^{\mathbb{V}}\}\rangle}|\delta). \\ \\ \pi : \mathbb{V} \leadsto (\mathbb{A} \leadsto \mathcal{S}) \leadsto \mathcal{S}, \quad \delta : \mathbb{A} \leadsto \mathcal{S}, \quad x \in \mathbb{V} \\ \\ \mathsf{e} : (\mathbb{V} \leadsto (\mathbb{A} \leadsto \mathcal{S}) \leadsto \mathcal{S}) \rightarrow (\mathbb{A} \leadsto \mathcal{S}) \rightarrow \mathbb{V} \leadsto \mathcal{S} \\ \\ S_{\pi} := \{ (y^{\mathbb{A}}, x^{\mathbb{V}}) \mid x^{\mathbb{V}} \in \mathrm{dom}(\pi) \land y^{\mathbb{A}} \in \mathrm{dom}(\bigcup(\mathrm{dom}(\pi(x^{\mathbb{V}})))) \} \end{array}$$

 π is \mathcal{S} -compatible with (C,(P,N)) if ... and $(P \cup S_{\pi},N)$ is consistent and π respects C in \mathcal{S}

 $G_0(C,(P,N))$ -reduces to G_1 in S if

Let G_0 and G_1 be sets of sequents.

 $G_0(C,(P,N))$ -reduces to G_1 in S if

Let G_0 and G_1 be sets of sequents. Let S be a Σ -structure.

 G_0 (C, (P, N))-reduces to G_1 in S if

Let G_0 and G_1 be sets of sequents.

Let S be a Σ -structure.

Let C be an (P, N)-choice-condition.

 $G_0(C,(P,N))$ -reduces to G_1 in S if

Let G_0 and G_1 be sets of sequents.

Let S be a Σ -structure.

Let C be an (P, N)-choice-condition.

 $G_0(C,(P,N))$ -reduces to G_1 in S if for each π that is S-compatible with (C,(P,N)):

if G_1 is (π, \mathcal{S}) -valid, then G_0 is (π, \mathcal{S}) -valid.

Reduction PS-Invariant under Substitution

If G_0 (C,(P,N))-reduces to G_1 in \mathcal{S} , then $G_0\sigma$ (C',(P',N'))-reduces to $G_1\sigma\cup(\langle O\rangle Q_C)\sigma$ in \mathcal{S} .

Reduction PS-Invariant under Substitution

For an (P,N)-substitution σ on \mathbb{V} , for the extended σ -update (C',(P',N')) of (C,(P,N)):

If G_0 (C,(P,N))-reduces to G_1 in \mathcal{S} , then $G_0\sigma$ (C',(P',N'))-reduces to $G_1\sigma\cup(\langle O\rangle Q_C)\sigma$ in \mathcal{S} .

Example

In case of $C(y^{\mathbb{V}})=\lambda v_0^{\mathbb{B}}.\ \varepsilon y^{\mathbb{B}}.\ (v_0^{\mathbb{B}}=y^{\mathbb{B}}+1)$:

Example

In case of
$$C(y^{\mathbb{V}}) = \lambda v_0^{\mathbb{B}}$$
. $\varepsilon y^{\mathbb{B}}$. $(v_0^{\mathbb{B}} = y^{\mathbb{B}} + 1)$: $Q_C(y^{\mathbb{V}})$

$$= \forall v_0^{\mathbb{B}}. \left(\begin{array}{c} \exists y^{\mathbb{B}}. \ (v_0^{\mathbb{B}} = y^{\mathbb{B}} + 1) \\ \Rightarrow \ (v_0^{\mathbb{B}} = y^{\mathbb{V}}(v_0^{\mathbb{B}}) + 1) \end{array} \right)$$

Example

$$\begin{array}{l} \text{In case of} \ \ C(y^{\mathbb{V}}) = \lambda v_0^{\mathbb{B}}. \ \varepsilon y^{\mathbb{B}}. \ (v_0^{\mathbb{B}} = y^{\mathbb{B}} + 1) \ \\ Q_C(y^{\mathbb{V}}) \\ = \ \ \forall v_0^{\mathbb{B}}. \ \left(\begin{array}{c} \exists y^{\mathbb{B}}. \ (v_0^{\mathbb{B}} = y^{\mathbb{B}} + 1) \\ \Rightarrow \ (v_0^{\mathbb{B}} = y^{\mathbb{V}}(v_0^{\mathbb{B}}) + 1) \end{array} \right) \\ (Q_C(y^{\mathbb{V}})) \{ y^{\mathbb{V}} \mapsto \mathsf{p} \} \\ = \ \ \forall v_0^{\mathbb{B}}. \ \left(\begin{array}{c} \exists y^{\mathbb{B}}. \ (v_0^{\mathbb{B}} = y^{\mathbb{B}} + 1) \\ \Rightarrow \ (v_0^{\mathbb{B}} = \mathsf{p}(v_0^{\mathbb{B}}) + 1) \end{array} \right) \end{array}$$