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Abstract

Free variables occur frequently in mathematics and computer science with ad hoc and
altering semantics. We present here the most recent version of our free-variable frame-
work for two-valued logics with properly improved functionality, but only two kinds
of free variables left (instead of three): implicitly universally and implicitly existen-
tially quantified ones, now simply called “free atoms” and “free variables”, respectively.
The quantificational expressiveness and the problem-solving facilities of our framework
exceed standard first-order logic and even higher-order modal logics, and directly sup-
port Fermat’s descente infinie. With the improved version of our framework, we can
now model also Henkin quantification, neither using any binders (such as quantifiers
or epsilons) nor raising (Skolemization). Based only on the traditional ε-formula of
Hilbert–Bernays, we present our flexible and elegant semantics for Hilbert’s ε
as a choice operator with the following features: We avoid overspecification (such as
right-uniqueness), but admit indefinite choice, committed choice, and classical logics.
Moreover, our semantics for the ε supports reductive proof search optimally.

Keywords: Logical Foundations; Theories of Truth and Validity; Formalized Mathema-
tics; Choice; Human-Oriented Interactive Theorem Proving; Automated Theorem
Proving; Hilbert’s ε-Operator; Henkin Quantification; IF Logic; Fermat’s
Descente Infinie.
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1 Overview

1.1 What is new?

Driven by a weakness in representing Henkin quantification (described in [Wirth, 2012c,
§ 6.4.1]) and inspired by nominal terms (cf. e.g. [Urban &al., 2004]), in this paper we
significantly improve our semantic free-variable framework for two-valued logics:

1. We have replaced the two-layered construction of free δ+-variables on top of free
γ-variables over free δ−-variables of [Wirth, 2004; 2008; 2012c] with a one-layered
construction of free variables over free atoms :

• Free variables without choice-condition now play the former rôle of the γ-variables.

• Free variables with choice-condition play the former rôle of the δ+-variables.

• Free atoms now play the former rôle of the δ−-variables.

2. As a consequence, the proofs of the lemmas and theorems have shortened by more
than a factor of 2. Therefore, we can now present all the proofs in this paper and
make it self-contained in this aspect; whereas in [Wirth, 2008; 2012c], we had to
point to [Wirth, 2004] for most of the proofs.

3. The difference between free variables and atoms and their names are now more stan-
dard and more clear than those of the different free variables before; cf. § 2.1.

4. Compared to [Wirth, 2004], besides shortening the proofs, we have made the meta-
level presuppositions more explicit in this paper; cf. § 5.8.

5. Last but not least, we can now treat Henkin quantification in a direct way; cf. § 5.11.

Taking all these points together, the version of our free-variable framework presented in
this paper is the version we recommend for further reference, development, and application:
it is indeed much easier to handle than its predecessors.

And so we found it appropriate to present most of the material from [Wirth, 2008;
2012c] in this paper in the improved form; we have omitted only the discussions on the
tailoring of operators similar to our ε, and on the analysis of natural-language semantics.
The material on mathematical induction in the style of Fermat’s descente infinie in our
framework of [Wirth, 2004] is to be reorganized accordingly in a later publication.
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1.2 Organization

This paper is organized as follows. There are three introductory sections: to our free
variables and atoms (§ 2), to their relation to our reductive inference rules (§ 3), and to
Hilbert’s ε (§ 4). Afterward we explain and formalize our novel approach to the seman-
tics of our free variables and atoms and the ε (§ 5), and summarize and discuss it (§ 6).
We conclude in § 7. In an appendix, the reader can find an example on how we can do
Henkin quantification and formalize IF-logic quantifiers with our new positive/negative
variable-conditions (§A), as well as a discussion of the literature on extended semantics
given to Hilbert’s ε-operator in the 2nd half of the 20th century (§B), in particular on
Leisenring’s extensionality axiom (E2). The proofs of all lemmas and theorems can be
found in §C; and the acknowledgments, notes, and references as well as an index can be
found in the appendix as well.
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2 Introduction to Free Variables and Atoms

2.1 Outline

Free variables or free atoms occur frequently in practice of mathematics and computer
science. The logical function of these free symbols varies locally; it is typically determined
ad hoc by the context. And the intended semantics is given only implicitly and varies from
context to context. In this paper, however, we will make the semantics of our free variables
and atoms explicit by using disjoint sets of symbols for different semantic functions; namely
we will use the following sets of symbols:

V (the set of free variables),
A (the set of free atoms),
B (the set of bound1 atoms).

An atom typically stands for an arbitrary object in a proof attempt or in a discourse.
Nothing else is known on any atom. Atoms are invariant under renaming. And we will
never want to know anything about a possible atom but whether it is an atom, and, if yes,
whether it is identical to another atom or not. In our context here, for reasons of efficiency,
we would also like to know whether an atom is a free or a bound one. The name “atom”
for such an object has a tradition in set theories with atoms. (In German, besides “Atom”,
an atom is also called an “Urelement”, but that alternative name puts some emphasis on
the origin of creation, in which we are not interested here.)

A variable, however, in the sense we will use the word in this paper, is a place-holder
in a proof attempt or in a discourse, which gathers and stores information and which
may be replaced with a definition or a description during the discourse or proof attempt.
The name “free variable” for such a place-holder has a tradition in free-variable semantic
tableaus; cf. [Fitting, 1990; 1996].

Both variables and atoms may be instantiated with terms. Only variables, however,
may refer to other free variables and atoms, or may depend on them; and only variables
have the following properties w.r.t. instantiation:

1. If a variable is instantiated, then this affects all of its occurrences in the entire state
of the proof attempt (i.e. it is rigid in the terminology of semantic tableaus). Thus,
if the instantiation is executed eagerly, the variable must be replaced globally in all
terms of the entire state of the proof attempt with the same term; afterwards the
variable can be eliminated from the resulting proof forest completely — without any
further effect on the chance to complete it into a successful proof.

2. The instantiation may be relevant for the consequences of a proof because the global
replacement may strengthen the input proposition (or query) by providing a witness-
ing term for an existential property stated in the proposition (or by providing an
answer to the query).

By contrast to these properties of variables, atoms cannot refer to any other symbols, nor
depend on them in any form. Moreover, free atoms have the following properties w.r.t.
instantiation:
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1. A free atom may be

• globally renamed, or else
• locally and possibly repeatedly instantiated with arbitrary different terms in the

application of lemmas or induction hypotheses (provided that the instantiation
is admissible in the sense of Theorem5.26(7)).

We cannot eliminate a free atom safely, however. Indeed, neither global renaming
nor local instantiation can achieve that completely.

2. The question with which terms an atom was actually instantiated can never influence
the consequences of a proof (whereas it may be relevant for bookkeeping or for a
replay mechanism).

2.2 Notation

The classification as a (free) variable, (free) atom, or bound atom will be indicated by
adjoining a “V”, an “A”, or a “B”, respectively, as a label to the upper right of the
meta-variable for the symbol. If a meta-variable stands for a symbol of the union of some
of these sets, we will indicate this by listing all possible sets; e.g. “xVA ” is a meta-variable
for a symbol that may be either a free variable or a free atom.

Meta-variables with disjoint labels always denote different symbols; e.g. “xV ” and “xA ”
will always denote different symbols, whereas “xVA ” may denote the same symbol as “xA ”.
In formal discussions, also “xA ” and “yA ” may denote the same symbol. In concrete
examples, however, we will implicitly assume that different meta-variables denote different
symbols.

2.3 Semantics of Free Variables and Atoms

2.3.1 Semantics of Free Atoms

As already noted in [Russell, 1919, p.155], free symbols of a formula often have an
obviously universal intention in mathematical practice, such as the free symbols m, p,
and q in the formula

(m)(p+q) = (m)(p) ∗ (m)(q).

Moreover, the formula itself is not meant to denote a propositional function, but actually
stands for the explicitly universally quantified, closed formula

∀mB, pB, q B.
(

(mB)(pB+q B) = (mB)(pB) ∗ (mB)(q B)
)
.

In this paper, however, we indicate by

(mA)(pA+qA) = (mA)(pA) ∗ (mA)(qA),

a proper formula with free atoms, which — independent of its context — is equivalent to
the explicitly universally quantified formula, but which also admits the reference to the
free atoms, which is required for mathematical induction in the style of Fermat’s descente
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infinie, and which may also be beneficial for solving reference problems in the analysis
of natural language. So the third version combines the practical advantages of the first
version with the semantic clarity of the second version.

2.3.2 Semantics of Free Variables

Changing from universal to existential intention, it is somehow clear that the linear system
of the formula (

2 3
5 7

)(
x
y

)
=

(
11
13

)

asks us to find the set of solutions for x and y, say (x, y) ∈ {(−38, 29)}. The mere existence
of such solutions is expressed by the explicitly existentially quantified, closed formula

∃xB, y B.
( (

2 3
5 7

)(
xB

y B

)
=

(
11
13

) )
.

In this paper, however, we indicate by
(

2 3
5 7

)(
xV

yV

)
=

(
11
13

)

a proper formula with free variables, which — independent of its context — is equivalent
to the explicitly existentially quantified formula, but which admits also the reference to
the free variables, which is required for retrieving solutions for xV and yV as instantiations
for xV and yV chosen in a formal proof. So the third version again combines the practical
advantages of the first with the semantic clarity of the second.
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3 Reductive Inference Rules

We will now present the essential reductive inference rules for our free-variable framework.
Regarding form and notation, please note the following items:

• We choose a sequent-calculus representation to enhance the readability of the rules
and the explicitness of eliminability of formulas.

As we restrict ourselves to two-valued logics, we just take the right-hand side of
standard sequents. This means that our sequents are just disjunctive lists of formulas.

• We assume that all binders have minimal scope; e.g.

∀xB, y B. A ∧ B
reads

(∀xB. ∀y B. A) ∧ B.

• Our reductive inference rules will be written “reductively” in the sense that passing
the line means reduction. Note that in the good old days when trees grew upward,
Gerhard Gentzen (1909–1945) would have inverted the inference rules such that
passing the line means consequence. In our case, passing the line means reduction,
and trees grow downward.

• Raymond M. Smullyan (*1919) has classified reductive inference rules into α-, β-,
γ-, and δ-rules, and invented a uniform notation for them; cf. [Smullyan, 1968].

In the following rules, let A always be a formula and Γ and Π be sequents.

3.1 α- and β-Rules

α-rules are the non-branching propositional rules, such as

Γ ¬¬A Π

Γ A Π

Γ A ⇒ B Π

Γ ¬A B Π

β-rules are the branching propositional rules, which reduce a sequent to several sequents,
such as

Γ ¬(A ⇒ B) Π
Γ A Π
Γ ¬B Π
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3.2 γ-Rules

Suppose we want to prove an existential proposition ∃y B. A. Here “y B ” is a bound variable
according to standard terminology, but as it is an atom according to our classification
of § 2.1, we will speak of a “bound atom” instead. Then the γ-rules of old-fashioned
inference systems (such as [Gentzen, 1935] or [Smullyan, 1968]) enforce the choice of a
witnessing term t as a substitution for the bound atom immediately when eliminating the
quantifier.

γ-rules: Let t be any term:

Γ ∃y B. A Π

A{y B 7→t} Γ ∃y B. A Π

Γ ¬∀y B. A Π

¬A{y B 7→t} Γ ¬∀y B. A Π

More modern inference systems (such as the ones in [Fitting, 1996]) enable us to delay
the crucial choice of the term t until the state of the proof attempt may provide more
information to make a successful decision. This delay is achieved by introducing a special
kind of variable.

This special kind of variable is called “dummy” in [Prawitz, 1960] and [Kanger,
1963], “free variable” in [Fitting, 1990; 1996] and in Footnote 11 of [Prawitz, 1960],
“meta variable” in the field of planning and constraint solving, and “free γ-variable” in
[Wirth, 2004; 2006; 2008; 2012a; 2012c; 2014] and [Wirth &al., 2009; 2014].

In this paper, we call these variables simply “free variables” and write them like “yV ”.
When these additional variables are available, we can reduce ∃y B. A first to A{y B 7→ yV}
and then sometime later in the proof we may globally replace yV with an appropriate term.

The addition of these free variables changes the notion of a term, but not the notation
of the γ-rules, whereas it will become visible in the δ-rules.

3.3 δ−-Rules

A δ-rule may introduce either a free atom (δ−-rule) or an ε-constrained free variable
(δ+-rule, cf. § 3.4).

δ−-rules: Let xA be a fresh free atom:

Γ ∀xB. A Π

A{xB 7→xA} Γ Π V(Γ ∀xB. A Π)× {xA}

Γ ¬∃xB. A Π

¬A{xB 7→xA} Γ Π V(Γ ¬∃xB. A Π)× {xA}

Note that V(Γ ∀xB. A Π) stands for the set of all symbols from V (in this case: the free
variables) that occur in the sequent Γ ∀xB. A Π.
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Let us recall that a free atom typically stands for an arbitrary object in a discourse
of which nothing else is known. The free atom xA introduced by the δ−-rules is some-
times also called “parameter”, “eigenvariable”, or “free δ-variable”. In Hilbert-calculi,
however, this free atom is called a “free variable”, because the non-reductive (i.e. generative)
deduction in Hilbert-calculi admits its unrestricted instantiation by the substitution rule,
cf. p. 63 of [Hilbert & Bernays, 1934] or p. 62 of [Hilbert & Bernays, 1968; 2017b].
The equivalents of the δ−-rules in Hilbert–Bernays’ predicate calculus are Schemata
(α) and (β) on p. 103f. of [Hilbert & Bernays, 1934] or on p. 102f. of [Hilbert &
Bernays, 1968; 2017b].

The occurrence of the free atom xA of the δ−-rules must be disallowed in the terms that
may be used to replace those free variables which have already been in use when xA was
introduced by application of the δ−-rule, i.e. the free variables of the upper sequent to which
the δ−-rule was applied. The reason for this restriction of instantiation of free variables
is that the dependencies (or scoping) of the quantifiers must be somehow reflected in the
dependencies of the free variables on the free atoms. In our framework, these dependencies
are to be captured in binary relations on the free variables and the free atoms, called
variable-conditions.

Indeed, it is sometimes unsound to instantiate a free variable xV with a term containing
a free atom yA that was introduced later than xV:

Example 3.1 (Soundness of δ−-rule)
The formula ∃y B. ∀xB. (y B = xB)

is not universally valid. We can start a reductive proof attempt as follows:

γ-step: ∀xB. (yV = xB), ∃y B. ∀xB. (y B = xB)

δ−-step: (yV = xA), ∃y B. ∀xB. (y B = xB)

Now, if the free variable yV could be replaced with the free atom xA, then we would get
the tautology (xA = xA), i.e. we would have proved an invalid formula. To prevent this,
as indicated to the lower right of the bar of the first of the δ−-rules, the δ−-step has to
record V(∀xB. (yV = xB), ∃y B. ∀xB. (y B = xB))× {xA} = {(yV, xA)}
in a variable-condition, where (yV, xA) means that yV is somehow “necessarily older” than xA,
so that we may never instantiate the free variable yV with a term containing the free atom xA.
Starting with an empty variable-condition, we extend the variable-condition during proof
attempts by δ-steps and by global instantiations of free variables. Roughly speaking,
this kind of global instantiation of these rigid free variables is consistent if the resulting
variable-condition (seen as a directed graph) has no cycle after adding, for each free vari-
able yV instantiated with a term t and for each free variable or atom xVA occurring in t,
the pair (xVA, yV). This consistency, however, would be violated by the cycle between
yV and xA if we instantiated yV with xA.
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3.4 δ+-Rules

There are basically two different versions of the δ-rules: standard δ−-rules (also simply
called “δ-rules”) and δ+-rules (also called “liberalized δ-rules”). They differ in the kind of
symbol they introduce and — crucially — in the way they enlarge the variable-condition,
depicted to the lower right of the bar:

δ+-rules: Let xV be a fresh free variable:

Γ ∀xB. A Π
(

xV, εxB. ¬A
)

A{xB 7→xV} Γ Π VA(∀xB. A)× {xV}

Γ ¬∃xB. A Π
(

xV, εxB. A
)

¬A{xB 7→xV} Γ Π VA(¬∃xB. A)× {xV}

While in the (first) δ−-rule, V(Γ ∀xB. A Π) denotes the set of the free variables occurring
in the entire upper sequent, in the (first) δ+-rule, VA(∀xB. A) denotes the set of all free
variables and all free atoms, but only the ones occurring in particular in the principal 2

formula ∀xB. A.

Therefore, the variable-conditions generated by the δ+-rules are typically smaller than
the ones generated by the δ−-rules. Smaller variable-conditions permit additional proofs.
Indeed, the δ+-rules enable additional proofs on the same level of γ-multiplicity (i.e. the
maximal number of repeated γ-steps applied to the identical principal formula); cf. e.g.
[Wirth, 2004, Example 2.8, p. 21]. For certain classes of theorems, these proofs are ex-
ponentially and even non-elementarily shorter than the shortest proofs which apply only
δ−-rules; for a short survey cf. [Wirth, 2004, § 2.1.5]. Moreover, the δ+-rules provide
additional proofs that are not only shorter but also more natural and easier to find, both
automatically and for human beings; see the discussion on design goals for inference sys-
tems in [Wirth, 2004, § 1.2.1], and the formal proof of the limit theorem for + in [Wirth,
2006; 2012b]. All in all, the name “liberalized” for the δ+-rules is indeed justified: They
provide more freedom to the prover.3

Moreover, note that the pairs indicated to the upper right of the bar of the δ+-rules are
to augment another global binary relation besides the variable-condition, namely a function
called the choice-condition. Roughly speaking, the addition of an element (xV, εxB. ¬A)
to the current choice-condition — as required by the first of the δ+-rules — is to be
interpreted as the addition of the equational constraint xV = εxB. ¬A. To preserve
the soundness of the δ+-step under subsequent global instantiation of the free variable xV,
this constraint must be observed in such instantiations. What this actually means will be
explained in § 4.12.

All of the three following systems are sound and complete for first-order logic: The
one that has (besides the straightforward propositional rules (α-, β-rules) and the γ-
rules) only the δ−-rules, the one that has only the δ+-rules, and the one that has both
the δ−- and δ+-rules.

For a replay of Example 3.1 using the δ+-rule instead of the δ−-rule, see Example 4.12
in § 4.12.
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3.5 Skolemization

Note that there is a popular alternative to variable-conditions, namely Skolemization,
where the δ−- and δ+-rules introduce functions (i.e. the logical order of the replacements
for the bound atoms is incremented) which are given the free variables of V(Γ ∀xB. A Π)
and V(∀xB. A) as initial arguments, respectively. Then, the occur-check of unification
implements the restrictions on the instantiation of free variables, which are required for
soundness. In some inference systems, however, Skolemization is unsound (e.g. for higher-
order systems such as the one in [Kohlhase, 1998] or the system in [Wirth, 2004] for
descente infinie) or inappropriate (e.g. in the matrix systems of [Wallen, 1990]).

We prefer inference systems that include variable-conditions to inference systems that
offer only Skolemization. Indeed, this inclusion provides a more general and often simpler
approach, which never results in a necessary reduction in efficiency. Moreover, note that
variable-conditions cannot add unnecessary complications here:

• If, in some application, variable-conditions are superfluous, then we can work with
empty variable-conditions as if there would be no variable-conditions at all.

• We will need the variable-conditions anyway for our choice-conditions, which again
are needed to formalize our approach to Hilbert’s ε-operator.
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4 Introduction to Hilbert’s ε

4.1 Motivation

Hilbert’s ε-symbol is an operator or binder that forms terms, just like Peano’s ι-symbol.
Roughly speaking, the term εxB. A, formed from a bound atom (or “bound variable”) xB

and a formula A, denotes just some object that is chosen such that — if possible —
A (seen as a predicate on xB) holds for this object.

For Ackermann, Bernays, and Hilbert, the ε was an intermediate tool in proof
theory, to be eliminated in the end. Instead of giving a model-theoretic semantics for
the ε, they just specified those axioms which were essential in their proof transformations.
These axioms did not provide a complete definition, but left the ε underspecified.

Descriptive terms such as εxB. A and ιxB. A are of universal interest and applicability.
Our more elegant and flexible treatment turns out to be useful in many areas where logic
is designed or applied as a tool for description and reasoning.

4.2 Requirements Specification

For the usefulness of such descriptive terms we consider the following requirements to be
the most important ones.

Requirement I (Indication of Commitment):
The syntax must clearly express where exactly a commitment to a choice of a particu-
lar object is required, and where, to the contrary, different objects corresponding with
the description may be chosen for different occurrences of the same descriptive term.

Requirement II (Reasoning):
It must be possible to replace a descriptive term with a term that corresponds with
its description. The correctness of such a replacement must be expressible and should
be verifiable in the original calculus.

Requirement III (Semantics):
The semantics should be simple, straightforward, natural, formal, and model-based.
Overspecification should be carefully avoided. Furthermore, the semantics should be
modular and abstract in the sense that it adds the operator to a variety of logics,
independent of the details of a concrete logic.

Our more elegant and flexible, indefinite treatment of the ε-operator is compatible with
Hilbert’s original one and satisfies these requirements. As it involves novel semantic
techniques, it may also serve as the paradigm for the design of similar operators.

4.3 Overview

In §B of the appendix, the reader can find an update of our review form [Wirth, 2008;
2012c] of the literature on extended semantics given to Hilbert’s ε-operator in the 2nd

half of the 20th century. In the current § 4, we will now introduce to the ι and the ε
(§§ 4.4 and 4.5), to the ε’s proof-theoretic origin (§ 4.6), and to our more general semantic
objective (§ 4.7) with its emphasis on indefinite and committed choice (§ 4.8).
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4.4 From the ι to the ε

As the ε-operator was developed as an improvement over the still very popular ι-operator,
a careful discussion of the ι in this section is required for a deeper understanding of the ε.

4.4.1 The Symbols for the ι-Operator

The probably first descriptive ι-operator occurs in [Frege, 1893/1903, Vol. I], written as a
boldface backslash. As a boldface version of the backslash is not easily available in standard
typesetting, we will use a simple backslash (\) in § 4.4.4.

A slightly different ι-operator occurs in [Peano, 1896f.], written as “ ῑ ”, i.e. as an
overlined ι. In its German translation [Peano, 1899b], we also find an alternative symbol
with the same denotation, namely an upside-down ι-symbol. Both symbols are meant to
indicate the inverse of Peano’s ι-function, which constructs the set of its single argument.

Nowadays, however, “{y}” is written for Peano’s “ιy ”, and thus — as a simplifying
convention to avoid problems in typesetting and automatic indexing — a simple ι should
be used to designate the descriptive ι-operator, without overlining or inversion.

4.4.2 The Essential Idea of the ι-Operator

Let us define the quantifier of unique existence by

∃!xB. A := ∃y B. ∀xB. ((y B=xB) ⇔ A),

for some fresh y B. All the slightly differing specifications of the ι-operator agree in the
following point: If there is the unique xB such that the formula A (seen as a predicate
on xB) holds, then the ι-term ιxB. A denotes this unique object:

∃!xB. A ⇒ A{xB 7→ ιxB. A} (ι0)

or in different notation (∃!xB. (A(xB))) ⇒ A(ιxB. (A(xB))).

Example 4.1 (ι-operator)
For an informal introduction to the ι-operator, consider Father to be a predicate for which
Father(Heinrich III, Heinrich IV) holds, i.e. “Heinrich III is father of Heinrich IV”.
Now, “the father of Heinrich IV” is designated by ιxB. Father(xB, Heinrich IV), and because
this is nobody but Heinrich III, i.e. Heinrich III = ιxB. Father(xB, Heinrich IV), we know
that Father(ιxB. Father(xB, Heinrich IV), Heinrich IV). Similarly,

Father(ιxB. Father(xB, Adam), Adam), (4.1.1)
and thus ∃y B. Father(y B, Adam), but, oops! Adam and Eve do not have any fathers.
If you do not agree, you probably appreciate the following problem that occurs when some-
body has God as an additional father.

Father(Holy Ghost, Jesus) ∧ Father(Joseph, Jesus). (4.1.2)
Then the Holy Ghost is the father of Jesus and Joseph is the father of Jesus:

Holy Ghost = ιxB. Father(xB, Jesus) ∧ Joseph = ιxB. Father(xB, Jesus) (4.1.3)
This implies something the Pope may not accept, namely Holy Ghost = Joseph,
and he anathematized Heinrich IV in the year 1076:

Anathematized(ιxB. Pope(xB), Heinrich IV, 1076). (4.1.4)
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4.4.3 Elementary Semantics Without Straightforward Overspecification

Semantics without a straightforward form of overspecification can be given to the ι-terms
in the following three elementary ways:

Russell’s non-referring ι-operator, [Russell, 1905]:

In Principia Mathematica [1910–1913] by Bertrand Russell (1872–1970) and
Alfred North Whitehead (1861–1947), an ι-term is given a meaning only in
form of quantifications over contexts C[· · ·] of the occurrences of the ι-term:

C[ιxB. A] is defined as a short form for ∃y B. (∀xB. (
(y B=xB) ⇔ A

) ∧ C[y B]
)
.

This definition is peculiar because the definiens is not of the expected form C[t] (for
some term t), and because an ι-term on its own — i.e. without a context C[· · ·] —
cannot directly refer to an object that it may be intended to denote.

This was first presented as a linguistic theory of descriptions in [Russell, 1905]
— but without using any symbol for the ι.

Russell’s On Denoting [1905] became so popular that the term “non-referring” had
to be introduced to make aware of the fact that Russell’s ι-terms are not denoting
(in spite of the title), and that Russell’s theory of descriptions ignores the funda-
mental reference aspect of descriptive terms, cf. Strawson’s On Referring [1950].

Hilbert–Bernays’ presuppositional ι-operator [Hilbert & Bernays, 1934]:

To overcome the complex difficulties of Russell’s non-referring semantics, in § 8 of
the first volume of the two-volume monograph Foundations of Mathematics (Grund-
lagen der Mathematik, 1st edn. 1934, 2nd edn. 1968) by David Hilbert (1862–1943)
and Paul Bernays (1888–1977), a completed proof of ∃!xB. A is required to
precede each formation of a term ιxB. A, which otherwise is not considered a well-
formed term at all.

This way of defining the ι is nowadays called “presuppositional”. This word occurs
in relation to Hilbert–Bernays’ ι in [Slater, 2007a] and [Slater, 2009, §§ 1, 6,
and 8f.], but it does not occur in [Strawson, 1950], and we do not know where
it occurs first with this meaning.

Peano’s partially specified ι-operator [Peano, 1896f.]:

Since Hilbert–Bernays’ presuppositional treatment makes the ι quite impracti-
cal and the formal syntax of logic undecidable in general, in § 1 of the second vol-
ume of Hilbert–Bernays’ Foundations of Mathematics (1st edn. 1939, 2nd edn. 1970),
Hilbert’s ε, however, is already given a more flexible treatment: The simple idea
is to leave the ε-terms uninterpreted. This will be described below. In this paper,
we will present this more flexible treatment also for the ι.

After all, this treatment is the original one of Peano’s ι, found already in the article
Studii di Logica Matematica [1896f.] by Guiseppe Peano (1858–1932).4

It cannot surprise that it was Peano— interested in written languages for specification and
communication, but hardly in calculi — who came up with the only practical specification
of ι-terms (unlike Russell and Hilbert–Bernays).
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Moreover, by the partiality of his specification, Peano avoided also the other pitfall,
namely overspecification, and all its unintended consequences (unlike Frege and Quine,
cf. § 4.4.4). As the symbol “ι” was invented by Peano as well (cf. § 4.4.1), we have
good reason to speak of “Peano’s ι ”, at least as much as we have reason to speak of
“Hilbert’s ε ”.

It must not be overlooked that Peano’s ι — in spite of its partiality — always denotes:
It is not a partial operator, it is just partially specified.

At least in non-modal classical logics, it is a well justified standard that each term
denotes. More precisely — in each model or structure S under consideration — each
occurrence of a proper term must denote an object in the universe of S. Following that
standard, to be able to write down ιxB. A without further consideration, we have to
treat ιxB. A as an uninterpreted term about which we only know axiom (ι0) from § 4.4.2.

With (ι0) as the only axiom for the ι, the term ιxB. A has to satisfy A (seen as a
predicate on xB) only if there exists a unique object such that A holds for it. The price,
however, we have to pay for the avoidance of non-referringness, presuppositionality, and
overspecification is that — roughly speaking — the term ιxB. A is of no use unless the
unique existence ∃!xB. A can be derived.

Finally, let us come back to Example 4.1 of § 4.4.2. The problems presented there do
not actually appear if (ι0) is the only axiom for the ι, because (4.1.1) and (4.1.3) are not
valid. Indeed, the description of (4.1.1) lacks existence and the descriptions of (4.1.3) and
(4.1.4) lack uniqueness.

4.4.4 Overspecified ι-Operators

From Frege to Quine, we find a multitude of ι-operators with definitions that overspecify
the ι in different ways for the sake of complete definedness and syntactic eliminability.

As we already stated in Requirement III (Semantics) of § 4.2, overspecification should be
carefully avoided. Indeed, any overspecification leads to puzzling, arbitrary consequences,
which may cause harm to the successful application of descriptive operators in practice.

Frege’s arbitrarily overspecified ι-operator [Frege, 1893/1903]:

The first occurrence of a descriptive ι-operator in the literature seems to be in 1893,
namely in § 11 of the first volume of the two-volume monograph Grundgesetze
der Arithmetik — Begriffsschriftlich abgeleitet [1893/1903] by Gottlob Frege
(1848–1925):

For A seen as a function from objects to truth values, \A (in our notation ιxB. A)
is defined to be the object ∆ if A is extensionally equal to the function that checks
for equality to ∆, i.e. if A = λxB. (∆ = xB).

In the case that there is no such ∆, Frege overspecified his ι-operator pretty arbi-
trarily by defining \A to be A, which is not even an object, but a function.

(Note that Frege actually wrote an ε (having nothing to do with the ε-operator)
instead of our xB, and a spiritus lenis over it instead of a modern λ-operator before
and a dot after it. Moreover, he wrote a ξ for the A.)
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Quine’s overspecified ι-operator [Quine, 1981]:

In set theories without urelements, such as in [Quine, 1981], the ι-operator can be
defined by something like

ιxB. A :=
{

z B ∃y B. ( ∀xB. ((y B=xB) ⇔ A) ∧ z B ∈ y B
) }

,

for fresh y B and z B.

This is again an overspecification resulting in ιxB. A = ∅ if there is no such y B

(which otherwise is always unique).

4.4.5 A Completely Defined, but Not Overspecified ι-Operator

The complete definitions of the ι in § 4.4.4 take place in possibly inconsistent logical frame-
works, namely Frege’s Begriffsschrift and Quine’s set theory.

That neither overspecification nor possible inconsistency are necessary for complete
definitions of the ι is witnessed by the following complete, but non-elementary definition
of the ι, which is also referring and non-presuppositional.

The ε-calculus’ ι-operator [Hilbert & Bernays, 1939]:

In the ε-calculus, which is a conservative extension of first-order predicate calculus,
first elaborated in the second volume ofHilbert–Bernays’ Foundations of Mathema-
tics [1939], we can define the ι simply by

ιxB. A := εy B. ∀xB. ((y B = xB) ⇔ A)

(for a fresh y B), i.e. as a unique xB such that A holds (provided there is such an xB).

This definition is non-elementary, however, because it introduces ε-terms, which can-
not be eliminated in first-order logic in general.

Note that this definition is — to the best of our knowledge — the most useful and
elegant way to introduce the ι, although it is somehow ex eventu, because the develop-
ment of the ε was started two dozen years after the first publications on Frege’s and
Peano’s ι-operators.
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4.5 The ε as an Improvement over the ι

Compared to the ι, the ε is more useful because — instead of (ι0) — it comes with the
stronger axiom

∃xB. A ⇒ A{xB 7→ εxB. A} (ε0)

More specifically, as the formula ∃xB. A (which has to be true to guarantee an interpre-
tation of the ε-term εxB. A that is meaningful in the sense that it satisfies its formula A)
is weaker than the corresponding formula ∃!xB. A (for the respective ι-term), the area
of useful application is wider for the ε- than for the ι-operator. Indeed, we have already
seen in § 4.4.5 that the ι can be defined in terms of the ε, but not vice versa.

Moreover, in case of ∃!xB. A, the ε-operator picks the same element as the ι-operator:

∃!xB. A ⇒ (
εxB. A = ιxB. A

)
.

Thus, unless eliminability is relevant, we should replace all useful occurrences of the ι
with the ε : As a consequence, among other advantages, the arising proof obligations
become weaker and both human and automated generation and generalization of proofs
become more efficient.

4.6 On the ε’s Proof-Theoretic Origin

4.6.1 The ε-Formula and the Historical Sources of the ε

The main historical source on the ε is the second volume of the Foundations of Mathematics
[Hilbert & Bernays, 1934; 1939; 1968; 1970], the fundamental work which summarizes
the foundational and proof-theoretic contributions ofDavid Hilbert and his mathematical-
logic group.

The preferred specification for Hilbert’s ε in proof-theoretic investigations is not the
axiom (ε0), but actually the following formula:

A{xB 7→xA} ⇒ A{xB 7→ εxB. A} (ε-formula)

The ε-formula is equivalent to (ε0), but it gets along without any quantifier.

The name “ε-formula” originates in [Hilbert & Bernays, 1939, p. 13], where the
ε-operator is simply called “Hilbert’s ε-symbol”.

For historical correctness, note that the notation in the original is closer to
A(xA) ⇒ A(εxB. A(xB)),

where the A is a concrete singulary predicate atom (called “formula variable” in the original)
and comes with several extra rules for its instantiation, cf. [Hilbert & Bernays, 1939,
p. 13f.].

The exact notation actually is
A(a) ⇒ A(εx A(x)),

and the deductive equivalence is straightforward to the exact notation of (ε0), i.e. to
(Ex) A(x) ⇒ A(εx A(x)),

cf. [Hilbert & Bernays, 1939, pp. 13–15].
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In our notation, however, (ε0) and the ε-formula are axiom schemata where the A is a
meta-variable for a formula (which, contrary to the predicate atom, may contain occurrences
of xA). Nevertheless, their deductive equivalence is given for versions of (ε0) and the
ε-formula where the A is replaced with A{xA 7→yA} for some fresh (free) atom yA, from
which both (ε0) and the ε-formula can be obtained by instantiation.

The ε-formula already occurs, however under different names, in the pioneering pa-
pers on the ε, i.e. in [Ackermann, 1925] as “transfinite axiom1”, in [Hilbert, 1926] as
“axiom of choice” (in the operator form A(a) ⇒ A(εA), where the ε is called “transfinite
logical choice function”), and in [Hilbert, 1928] as “logical ε-axiom” (again in operator
form, where the ε is called “logical ε-function”).

4.6.2 The Original Explanation of the ε

As the basic methodology of Hilbert’s program is to treat all symbols as meaningless,
no semantics is required besides the one given by the single axiom (ε0). To further the
understanding, however, we read on p.12 of [Hilbert & Bernays, 1939; 1970]:

εxB. A . . . “ist ein Ding des Individuenbereichs, und zwar ist dieses Ding
gemäß der inhaltlichen Übersetzung der Formel (ε0) ein solches, auf das jenes
Prädikat A zutrifft, vorausgesetzt, daß es überhaupt auf ein Ding des Individuen-
bereichs zutrifft.”

εxB. A . . . “is a thing of the domain of individuals for which — according to
the contentual translation of the formula (ε0) — the predicate A holds, provided
that A holds for any thing of the domain of individuals at all.”

Example 4.2 (ε instead of ι) (continuing Example 4.1 of § 4.4.2)
Just as for the ι, for the ε we have Heinrich III = εxB. Father(xB, Heinrich IV) and

Father(εxB. Father(xB, Heinrich IV), Heinrich IV).
But, from the contrapositive of (ε0) and ¬Father(εxB. Father(xB, Adam), Adam), we now
conclude that ¬∃y B. Father(y B, Adam).

4.6.3 Defining the Quantifiers via the ε

Hilbert and Bernays did not need any semantics or precise intention for the ε-symbol
because it was introduced merely as a formal syntactic device to facilitate proof-theoretic
investigations, motivated by the possibility to get rid of the existential and universal quan-
tifiers via two direct consequences of axiom (ε0):

∃xB. A ⇔ A{xB 7→ εxB. A} (ε1)

∀xB. A ⇔ A{xB 7→ εxB. ¬A} (ε2)
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These equivalences can be seen as definitions of the quantifiers because innermost rewriting
with (ε1), (ε2) yields a normal form after as many steps as there are quantifiers in the input
formula. Moreover, also arbitrary rewriting is confluent and terminating, cf. [Wirth, 2016].

It should be noted, however, that rewriting with (ε1), (ε2) must not be taken for granted
under modal operators, at least not under the assumption that ε-terms are to remain rigid,
i.e. independent in their interpretation from their modal contexts. For this assumption
there are very good reasons, nicely explained e.g. in [Slater, 2007a; 2009].

Example 4.3 Consider the first-order modal logic formula ¤∃xB. A. Moreover, to
simplify matters, let us assume that we have constant domains, i.e. that all modal contexts
have the same domain of individuals.

Under this condition and for a formula of this structure, it is suggested in [Slater,
2007a, p.153] to apply (ε1) to the considered formula, resulting in ¤A{xB 7→ εxB. A},
from which we can doubtlessly conclude ∃xB. ¤A, e.g. by Formula (a) in § 4.6.4.

Let us interpret the ¤ as “believes” and A as “xB is the number of rice corns in my car”,
and let our constant domain be the one of the standard model of the natural numbers.
Note that I do not believe of any concrete and definite number that it numbers the rice
corns in my car just because I believe that their number is finite.

This interpretation shows that our rewriting with (ε1) under the operator ¤ is incorrect
for modal logic in general, at least for rigid ε-terms.

On the other hand, rewriting with (ε1), (ε2) above modal operators is uncritical: ∃xB. ¤A
is indeed equivalent to ¤A{xB 7→ εxB. ¤A}.

4.6.4 The ε-Theorems

When we remove all quantifiers in a derivation of the Hilbert-style predicate calculus of
the Foundations of Mathematics along (ε1) and (ε2), the following transformations occur:

Tautologies are turned into tautologies.

The axioms

A{xB 7→xA} ⇒ ∃xB. A (Formula (a))
and

∀xB. A ⇒ A{xB 7→xA} (Formula (b))

(cf. p. 100f. of [Hilbert & Bernays, 1934] or on p. 99f. of [Hilbert & Bernays, 1968;
2017b]), are turned into the ε-formula (cf. § 4.6.1) and, roughly speaking, its contrapositive,
respectively. Indeed, for the case of Formula (b), we can replace first all A with ¬A,
and after applying (ε2), replace ¬¬A with A, and thus obtain the contrapositive of the
ε-formula.

The inference steps are turned into inference steps: the inference schema [of modus
ponens] into the inference schema; the substitution rule for free atoms as well as quanti-
fier introduction (Schemata (α) and (β) on p. 103f. of [Hilbert & Bernays, 1934] or on
p. 102f. of [Hilbert & Bernays, 1968; 2017b]) into the substitution rule including ε-terms.
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Finally, the ε-formula is taken as a new axiom scheme instead of (ε0) because it has the
advantage of being free of quantifiers.

The argumentation of the previous paragraphs is actually part of the proof trans-
formation that constructively proves the first of Hilbert–Bernays’ two theorems on
ε-elimination in first-order logic, the so-called 1st ε-Theorem. In its sharpened form, this
theorem can be stated as follows. Note that the original speaks of “bound variables” in-
stead of “bound atoms” and of “formula variables” instead of “predicate atoms”, because
what we call (free) “variables” is not part of the formula languages of Hilbert–Bernays.

Theorem 4.4 (Sharpened 1st ε-Thm., p.79f. of [Hilbert & Bernays, 1939; 1970])
From a derivation of ∃xB1 . . . . ∃xBr . A (containing no bound atoms besides the ones bound
by the prefix ∃xB1 . . . . ∃xBr . ) from the formulas P1, . . . , Pk (containing neither predicate
atoms nor bound atoms) in the predicate calculus (incl. the ε-formula and =-substitutability
as axiom schemes, plus =-reflexivity), we can construct a (finite) disjunction of the form∨s

i=0 A{xB1 , . . . , xBr 7→ ti,1, . . . , ti,r} and a derivation of it

• in which bound atoms do not occur at all

• from P1, . . . , Pk and =-axioms (containing neither predicate atoms nor bound atoms)

• in the quantifier-free predicate calculus
(i.e. tautologies plus the inference schema [of modus ponens] and the substitution rule).

Note that r, s range over natural numbers including 0, and that A, ti,j, and Pi are ε-free
because otherwise they would have to include (additional) bound atoms.

Moreover, the 2nd ε-Theorem (in [Hilbert & Bernays, 1939; 1970]) states that the ε
(just as the ι, cf. [Hilbert & Bernays, 1934; 1968]) is a conservative extension of the
predicate calculus in the sense that each formal proof of an ε-free formula can be transformed
into a formal proof that does not use the ε at all.

For logics different from classical axiomatic first-order predicate logic, however, it is
not a conservative extension when we add the ε either with (ε0), with (ε1), or with the
ε-formula to other first-order logics — may they be weaker such as intuitionistic first-order
logic, or stronger such as first-order set theories with axiom schemes over arbitrary terms
including the ε ; cf. [Wirth, 2008, § 3.1.3]. Moreover, even in classical first-order logic
there is no translation from the formulas containing the ε to formulas not containing it.
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4.7 Our Objective

While the historiographical and technical research on the ε-theorems is still going on and
the methods of ε-elimination and ε-substitution did not die with Hilbert’s program, this
is not our subject here. We are less interested in Hilbert’s formal program and the
consistency of mathematics than in the powerful use of logic in creative processes. And,
instead of the tedious syntactic proof transformations, which easily lose their usefulness
and elegance within their technical complexity and which — more importantly — can only
refer to an already existing logic, we look for model-theoretic means for finding new logics
and new applications. And the question that still has to be answered in this field is:

What would be a proper semantics for Hilbert’s ε?

4.8 Indefinite and Committed Choice

Just as the ι-symbol is usually taken to be the referential interpretation of the definite
articles in natural languages, it is our opinion that the ε-symbol should be that of the
indefinite determiners (articles and pronouns) such as “a(n)” or “some”.

Example 4.5 (ε instead of ι again) (continuing Example 4.1)
It may well be the case that

Holy Ghost = εxB. Father(xB, Jesus) ∧ Joseph = εxB. Father(xB, Jesus)
i.e. that “The Holy Ghost is a father of Jesus and Joseph is a father of Jesus.” But this
does not bring us into trouble with the Pope because we do not know whether all fathers
of Jesus are equal. This will become clearer when we reconsider this in Example 4.14.

Closely connected to indefinite choice (also called “indeterminism” or “don’t care nondeter-
minism”) is the notion of committed choice. For example, when we have a new telephone,
we typically don’t care which number we get, but once a number has been chosen for our
telephone, we will insist on a commitment to this choice, so that our phone number is not
changed between two incoming calls.

Example 4.6 (Committed choice)
Suppose we want to prove ∃xB. (xB 6= xB)
According to (ε1) from § 4.6 this reduces to εxB. (xB 6= xB) 6= εxB. (xB 6= xB)
Since there is no solution to xB 6= xB we can replace
εxB. (xB 6= xB) with anything. Thus, the above reduces to 0 6= εxB. (xB 6= xB)
and then, by exactly the same argumentation, to 0 6= 1
which is true in the natural numbers.
Thus, we have proved our original formula ∃xB. (xB 6= xB), which, however, is false.
What went wrong? Of course, we have to commit to our choice for all occurrences of
the ε-term introduced when eliminating the existential quantifier: If we choose 0 on the
left-hand side, we have to commit to the choice of 0 on the right-hand side as well.
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4.9 Quantifier Elimination and Subordinate ε-terms

Before we can introduce to our treatment of the ε, we also have to get more acquainted
with the ε in general.

The elimination of ∀- and ∃-quantifiers with the help of ε-terms (cf. § 4.6) may be more
difficult than expected when some ε-terms become “subordinate” to others.

Definition 4.7 (Subordinate) An ε-term εv B. B (or, more generally, a binder on v B

together with its scope B) is superordinate to an (occurrence of an) ε-term εxB. A if

1. εxB. A is a subterm of B and
2. an occurrence of the bound atom v B in εxB. A is free in B

(i.e. the binder on v B binds an occurrence of v B in εxB. A ).

An (occurrence of an) ε-term εxB. A is subordinate to an ε-term εv B. B (or, more gen-
erally, to a binder on v B together with its scope B) if εv B. B is superordinate to εxB. A.

On p. 24 of [Hilbert & Bernays, 1939; 1970], these subordinate ε-terms, which are
responsible for the difficulty to prove the ε-theorems constructively, are called “unterge-
ordnete ε-Ausdrücke”. Note that — contrary to Hilbert–Bernays — we do not use a
special name for ε-terms with free occurrences of bound atoms here — such as “ε-Aus-
drücke” (“ε-expressions” or “quasi ε-terms”) instead of “ε-Terme” (“ε-terms”) — but simply
call them “ε-terms” as well.

Example 4.8 (Quantifier Elimination and Subordinate ε-Terms)
Let us repeat the formulas (ε1) and (ε2) from § 4.6 here:

∃xB. A ⇔ A{xB 7→ εxB. A} (ε1)
∀xB. A ⇔ A{xB 7→ εxB. ¬A} (ε2)

Let us consider the formula

∃w B. ∀xB. ∃y B. ∀z B. P(w B, xB, y B, z B)

and apply (ε1) and (ε2) to remove the four quantifiers completely.
We introduce the following abbreviations, where w B, xB, y B, w B

a , xBa, y Ba , z Ba are bound
atoms and wa, xa, ya, za are meta-level symbols for functions from terms to terms:

za(w
B)(xB)(y B) = εz Ba . ¬P(w B, xB, y B, z Ba )

ya(w
B)(xB) = εy Ba . P(w B, xB, y Ba , za(w

B)(xB)(y Ba))
xa(w

B) = εxBa. ¬P(w B, xBa, ya(w
B)(xBa), za(w

B)(xBa)(ya(w
B)(xBa))),

wa = εw B
a . P(w B

a , xa(w
B
a), ya(w

B
a)(xa(w

B
a)), za(w

B
a)(xa(w

B
a))(ya(w

B
a)(xa(w

B
a)))),

Innermost rewriting with (ε1) and (ε2) results in a unique normal form after at most as
many steps as there are quantifiers. Thus, we eliminate inside-out, i.e. we start with the
elimination of ∀z B. The transformation is:

∃w B. ∀xB. ∃y B. ∀z B. P(w B, xB, y B, z B),
∃w B. ∀xB. ∃y B. P(w B, xB, y B, za(w

B)(xB)(y B)),
∃w B. ∀xB. P(w B, xB, ya(w

B)(xB), za(w
B)(xB)(ya(w

B)(xB))),
∃w B. P(w B, xa(w

B), ya(w
B)(xa(w

B)), za(w
B)(xa(w

B))(ya(w
B)(xa(w

B)))),
P(wa, xa(wa), ya(wa)(xa(wa)), za(wa)(xa(wa))(ya(wa)(xa(wa)))).
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Note that the resulting formula is quite deep and has more than one thousand occurrences of
the ε-binder. Indeed, in general, n nested quantifiers result in an ε-nesting depth of 2n−1.

To understand this, let us have a closer look a the resulting formula. Let us write it as

P(wa, xb, yd, zh) (4.8.1)

then (after renaming some bound atoms) we have

zh = εz Bh . ¬P(wa, xb, yd, z
B
h), (4.8.2)

yd = εy Bd . P(wa, xb, y
B
d , zg(y

B
d )) (4.8.3)

with zg(y
B
d ) = εz Bg . ¬P(wa, xb, y

B
d , z Bg ), (4.8.4)

xb = εxBb . ¬P(wa, x
B
b , yc(x

B
b ), zf (x

B
b )) (4.8.5)

with zf (x
B
b ) = εz Bf . ¬P(wa, x

B
b , yc(x

B
b ), z

B
f )

and yc(x
B
b ) = εy Bc . P(wa, x

B
b , y

B
c , ze(x

B
b )(y

B
c ))

with ze(x
B
b )(y

B
c ) = εz Be . ¬P(wa, x

B
b , y

B
c , z Be ),

(4.8.6)
(4.8.7)
(4.8.8)

wa = εw B
a . P(w B

a , xa(w
B
a), yb(w

B
a), zd(w

B
a)) (4.8.9)

with zd(w
B
a) = εz Bd . ¬P(w B

a , xa(w
B
a), yb(w

B
a), z Bd )

and yb(w
B
a) = εy Bb . P(w B

a , xa(w
B
a), y Bb , zc(w

B
a)(y Bb ))

with zc(w
B
a)(y Bb ) = εz Bc . ¬P(w B

a , xa(w
B
a), y Bb , z Bc ),

xa(w
B
a) = εxBa. ¬P(w B

a , xBa, ya(w
B
a)(xBa), zb(w

B
a)(xBa))

with zb(w
B
a)(xBa) = εz Bb . ¬P(w B

a , xBa, ya(w
B
a)(xBa), z

B
b )

and ya(w
B
a)(xBa) = εy Ba . P(w B

a , xBa, y
B
a , za(w

B
a)(xBa)(y

B
a))

with za(w
B
a)(xBa)(y

B
a) =

εz Ba . ¬P(w B
a , xBa, y

B
a , z Ba ).

(4.8.10)
(4.8.11)
(4.8.12)
(4.8.13)
(4.8.14)
(4.8.15)

(4.8.16)

First of all, note that the bound atoms with free occurrences in the indented ε-terms
(i.e., in the order of their appearance, the bound atoms y Bd , xBb , y Bc , w B

a , y Bb , xBa, y Ba) are
actually bound by the next ε to the left, to which the respective ε-terms thus become
subordinate. For example, the ε-term zg(y

B
d ) is subordinate to the ε-term yd binding y Bd .

Moreover, the ε-terms defined by the above equations are exactly those that require a
commitment to their choice. This means that each of za, zb, zc, zd, ze, zf , zg, zh, each of
ya, yb, yc, yd, and each of xa, xb may be chosen differently without affecting soundness of
the equivalence transformation. Note that the variables are strictly nested into each other;
so we must choose in the order of

za, ya, zb, xa, zc, yb, zd, wa, ze, yc, zf , xb, zg, yd, zh.

Furthermore, in case of all ε-terms except wa, xb, yd, zh, we actually have to choose a
function instead of a simple object.

In Hilbert–Bernays’ view, however, there are neither functions nor objects at all,
but only terms (and expressions with free occurrences of bound atoms):

In the standard notation the term xa(w
B
a) reads

εxBa. ¬P




w B
a ,

xBa,
εy Ba . P

(
w B

a , xBa, y Ba , εz Ba . ¬P(w B
a , xBa, y

B
a , z Ba )

)
,

εz Bb . ¬P
(

w B
a , xBa, εy Ba . P

(
w B

a , xBa, y Ba , εz Ba . ¬P(w B
a , xBa, y

B
a , z Ba )

)
, z Bb

)


.
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Moreover, yb(w
B
a) reads

εyBb . ¬P

0
BBBBBBBBBBBBBBBBBBBBBBB@

wBa,

εxBa. ¬P

0
BBB@

wBa,

xBa,
εyBa . P

`
wBa, xBa, yBa , εz Ba . ¬P(wBa, xBa, yBa , z Ba)

´
,

εz Bb . ¬P
“

wBa, xBa, εyBa . P
`

wBa, xBa, yBa , εz Ba . ¬P(wBa, xBa, yBa , z Ba)
´
, z Bb

”

1
CCCA,

yBb ,

εz Bc . ¬P

0
BBBBBBBBBB@

wBa,

εxBa. ¬P

0
BBB@

wBa,

xBa,
εyBa . P

`
wBa, xBa, yBa , εz Ba . ¬P(wBa, xBa, yBa , z Ba)

´
,

εz Bb . ¬P
“

wBa, xBa, εyBa . P
`

wBa, xBa, yBa , εz Ba . ¬P(wBa, xBa, yBa , z Ba)
´
, z Bb

”

1
CCCA,

yBb ,

z Bc

1
CCCCCCCCCCA

1
CCCCCCCCCCCCCCCCCCCCCCCA

.

Condensed data on the above terms read as follows:
ε-nesting depth number of ε-binders Ackermann rank Ackermann degree

za(wBa)(xBa)(yBa) 1 1 1 undefined
ya(wBa)(xBa) 2 2 2 undefined
zb(w

B
a)(xBa) 3 3 1 undefined

xa(wBa) 4 6 3 undefined
zc(wBa)(yBb ) 5 7 1 undefined
yb(w

B
a) 6 14 2 undefined

zd(wBa) 7 21 1 undefined
wa 8 42 4 1
ze(yBc )(wBa) 9 43 1 undefined
yc(xBb ) 10 86 2 undefined
zf (xBb ) 11 129 1 undefined
xb 12 258 3 2
zg(yBd) 13 301 1 undefined
yd 14 602 2 3
zh 15 903 1 4
P(wa, xb, yd, zh) 15 1805 undefined undefined

For ∀w B. ∀xB. ∀y B. ∀z B. P(w B, xB, y B, z B) instead of ∃w B. ∀xB. ∃y B. ∀z B. P(w B, xB, y B, z B),
we get the same exponential growth of nesting depth as in the example above, when we com-
pletely eliminate the quantifiers using (ε2). The only difference is that we get additional
occurrences of ‘¬’. If we have quantifiers of the same kind, however, we had better choose
them in parallel; e.g., for ∀w B. ∀xB. ∀y B. ∀z B. P(w B, xB, y B, z B), we choose

va := εv B. ¬P(1st(v B), 2nd(v B), 3rd(v B), 4th(v B)),

and then take P(1st(va), 2nd(va), 3rd(va), 4th(va)) as result of the elimination.
Roughly speaking, in today’s automated theorem proving, cf. e.g. [Fitting, 1996], the

exponential explosion of term depth of the example above is avoided by an outside-in re-
moval of δ-quantifiers without removing the quantifiers below ε-binders and by a replacement
of γ-quantified variables with free variables without choice-conditions. For the formula of
Example 4.8, this yields P(wV, xe, y

V, ze) with xe = εxBe . ¬∃y B. ∀z B. P(wV, xBe , y
B, z B) and

ze = εz Be . ¬P(wV, xe, y
V, z Be ). Thus, in general, the nesting of binders for the complete

elimination of a prenex of n quantifiers does not become deeper than 1
4
(n+1)2.

Moreover, if we are only interested in reduction and not in equivalence transformation
of a formula, we can abstract Skolem terms from the ε-terms and just reduce to the
formula P(wV, xA(wV), yV, zA(wV)(yV)). In non-Skolemizing inference systems with vari-
able-conditions we get P(wV, xA, yV, zA) instead, with {(wV, xA), (wV, zA), (yV, zA)} as an
extension to the variable-condition. Note that with Skolemization or variable-conditions
we have no growth of nesting depth at all, and the same will be the case for our approach
to ε-terms.
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4.10 Do not be afraid of Indefiniteness!

From the discussion in § 4.8, one could get the impression that an indefinite logical treatment
of the ε is not easy to find. Indeed, on the first sight, there is the problem that some standard
axiom schemes cannot be taken for granted, such as substitutability

s = t ⇒ f(s) = f(t)

and reflexivity

t = t

Note that substitutability is similar to the extensionality axiom

∀xB. (A0 ⇔ A1) ⇒ εxB. A0 = εxB. A1 (E2)

(cf. § B.1.1) when we take logical equivalence as equality. Moreover, note that

εxB. true = εxB. true (Reflex)

is an instance of reflexivity.

Thus, it seems that — in case of an indefinite ε — the replacement of a subterm with
an equal term is problematic, and so is the equality of syntactically equal terms.

It may be interesting to see that — in computer programs — we are quite used to
committed choice and to an indefinite behavior of choosing, and that the violation of sub-
stitutability and even reflexivity is no problem there:

Example 4.9 (Violation of Substitutability and Reflexivity in Programs)
In the implementation of the specification of the web-based hypertext system of [Mattick
& Wirth, 1999], we needed a function that chooses an element from a set implemented
as a list. Its ml code is:

fun choose s = case s of Set (i :: _) => i | _ => raise Empty;

And, of course, it simply returns the first element of the list. For another set that is equal
— but where the list may have another order — the result may be different. Thus, the
behavior of the function choose is indefinite for a given set, but any time it is called for
an implemented set, it chooses a particular element and commits to this choice, i.e.: when
called again, it returns the same value. In this case we have choose s = choose s,
but s = t does not imply choose s = choose t. In an implementation where some
parallel reordering of lists may take place, even choose s = choose s may be wrong.

From this example we may learn that the question of choose s = choose s may be
indefinite until the choice steps have actually been performed. This is exactly how we will
treat our ε. The steps that are performed in logic are related to proving: Reductive infer-
ence steps that make proof trees grow toward the leaves, and choice steps that instantiate
variables and atoms for various purposes.
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Thus, on the one hand, when we want to prove

εxB. true = εxB. true

we can choose 0 for both occurrences of εxB. true, get 0 = 0, and the proof is successful.

On the other hand, when we want to prove

εxB. true 6= εxB. true

we can choose 0 for one occurrence and 1 for the other, get 0 6= 1, and the proof is successful
again.

This procedure may seem wondrous again, but is very similar to something quite com-
mon for free variables with empty choice-conditions:

On the one hand, when we want to prove

xV = yV

we can choose 0 to replace both xV and yV, get 0 = 0, and the proof is successful.

On the other hand, when we want to prove

xV 6= yV

we can choose 0 to replace xV and 1 to replace yV, get 0 6= 1, and the proof is successful
again.
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4.11 Replacing ε-terms with Free Variables

There is an important difference between the inequations εxB. true 6= εxB. true and
xV 6= yV at the end of § 4.10: The latter does not violate the reflexivity axiom! And we are
going to cure the violation of the former immediately with the help of our free variables,
but now with non-empty choice-conditions. Instead of εxB. true 6= εxB. true we write
xV 6= yV and remember what these free variables stand for by storing this into a function C,
called a choice-condition:

C(xV) := εxB. true,

C(yV) := εxB. true.

For a first step, suppose that our ε-terms are not subordinate to any outside binder (cf. Defi-
nition 4.7). Then, we can replace an ε-term εz B. A with a fresh free variable zV and extend
the partial function C by

C(zV) := εz B. A.

By this procedure we can eliminate all ε-terms without loosing any syntactic information.

As a first consequence of this elimination, the substitutability and reflexivity axioms are
immediately regained, and the problems discussed in § 4.10 disappear.

A second reason for replacing the ε-terms with free variables is that the latter can solve
the question whether a committed choice is required: We can express

committed choice by repeatedly using the same free variable, and

choice without commitment by using several variables with the same choice-condition.

Indeed, this also solves our problems with committed choice of Example 4.6 of § 4.8: Now,
again using (ε1), ∃xB. (xB 6= xB) reduces to xV 6= xV with

C(xV) := εxB. (xB 6= xB)

and the proof attempt immediately fails because of the now regained reflexivity axiom.

As the second step, we still have to explain what to do with subordinate ε-terms. If the
ε-term εv Bl . A contains free occurrences of exactly the distinct bound atoms v B0 , . . . , v Bl−1,
then we have to replace this ε-term with the application term zV(v B0 ) · · · (v Bl−1) of the same
type as v Bl (for a fresh free variable zV) and to extend the choice-condition C by

C(zV) := λv B0 . . . . λv Bl−1. εv Bl . A.
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Example 4.10 (Higher-Order Choice-Condition) (continuing Example 4.8 of § 4.9)

In our framework, the complete elimination of ε-terms in (4.8.1) of Example 4.8 results in

P(wV
a, x

V
b , y

V
d, z

V
h) (cf. (4.8.1)!)

with the following higher-order choice-condition:

C(zVh) := εz Bh . ¬P(wV
a, x

V
b , y

V
d, z

B
h) (cf. (4.8.2)!)

C(yVd) := εy Bd . P(wV
a, x

V
b , y

B
d , zVc (y

B
d )) (cf. (4.8.3)!)

C(zVg) := λy Bd . εz Bg . ¬P(wV
a, x

V
b , y

B
d , z Bg ) (cf. (4.8.4)!)

C(xVb) := εxBb . ¬P(wV
a, x

B
b , y

V
c (x

B
b ), z

V
f (x

B
b )) (cf. (4.8.5)!)

C(zVf ) := λxBb . εz Bf . ¬P(wV
a, x

B
b , y

V
c (x

B
b ), z

B
f ) (cf. (4.8.6)!)

C(yVc ) := λxBb . εy Bc . P(wV
a, x

B
b , y

B
c , zVe (x

B
b )(y

B
c )) (cf. (4.8.7)!)

C(zVe ) := λxBb . λy Bc . εz Be . ¬P(wV
a, x

B
b , y

B
c , z Be ) (cf. (4.8.8)!)

C(wV
a) := εw B

a . P(w B
a , xVa(w

B
a), yVb (w

B
a), zVd(w

B
a)) (cf. (4.8.9)!)

C(zVd) := λw B
a . εz Bd . ¬P(w B

a , xVa(w
B
a), yVb (w

B
a), z Bd ) (cf. (4.8.10)!)

C(yVb ) := λw B
a . εy Bb . P(w B

a , xVa(w
B
a), y Bb , zVc (w

B
a)(y Bb )) (cf. (4.8.11)!)

C(zVc ) := λw B
a . λy Bb . εz Bc . ¬P(w B

a , xVa(w
B
a), y Bb , z Bc ) (cf. (4.8.12)!)

C(xVa) := λw B
a . εxBa. ¬P(w B

a , xBa, y
V
a(w

B
a)(xBa), z

V
b (w

B
a)(xBa)) (cf. (4.8.13)!)

C(zVb ) := λw B
a . λxBa. εz Bb . ¬P(w B

a , xBa, y
V
a(w

B
a)(xBa), z

B
b ) (cf. (4.8.14)!)

C(yVa) := λw B
a . λxBa. εy Ba . P(w B

a , xBa, y
B
a , zVa(w

B
a)(xBa)(y

B
a)) (cf. (4.8.15)!)

C(zVa) := λw B
a . λxBa. λy Ba . εz Ba . ¬P(w B

a , xBa, y
B
a , z Ba ) (cf. (4.8.16)!)

Note that this representation of (4.8.1) is smaller and easier to understand than all previous
ones. Indeed, by combination of λ-abstraction and term sharing via free variables, in our
framework the ε becomes practically feasible.

All in all, by this procedure we can replace all ε-terms in all formulas and sequents. The
only place where the ε still occurs is the range of the choice-condition C; and also there
it is not essential because, instead of

C(zV) = λv B0 . . . . λv Bl−1. εv Bl . A,
we could write

C(zV) = λv B0 . . . . λv Bl−1. A{v Bl 7→ zV(v B0 ) · · · (v Bl−1)}
as we have actually done in [Wirth, 2004; 2006; 2008; 2012b; 2012c].
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4.12 Instantiating Free Variables (“ε-Substitution”)

Having already realized Requirement I (Indication of Commitment) of § 4.2 in § 4.11, we are
now going to explain how to satisfy Requirement II (Reasoning). To this end, we have to
explain how to replace free variables with terms that satisfy their choice-conditions.

The first thing to know about free variables with choice-conditions is: Just like the free
variables without choice-conditions (introduced by γ-rules e.g.) and contrary to free atoms,
the free variables with choice-conditions (introduced by δ+-rules e.g.) are rigid in the sense
that the only way to replace a free variable is to do it globally, i.e. in all formulas and all
choice-conditions with the same term in an atomic transaction.

In reductive theorem proving, such as in sequent, tableau, matrix, or indexed-formula-
tree calculi, we are in the following situation: While a free variable without choice-condition
can be replaced with nearly everything, the replacement of a free variable with a choice-
condition requires some proof work, and a free atom cannot be instantiated at all.

Contrariwise, when formulas are used as tools instead of tasks, free atoms can indeed
be replaced — and this even locally (i.e. non-rigidly) and repeatedly. This is the case
not only for purely generative calculi (such as resolution and paramodulation calculi) and
Hilbert-style calculi (such as the predicate calculus of [Hilbert & Bernays, 1934; 1939;
1968; 1970]), but also for the lemma and induction hypothesis application in the otherwise
reductive calculi of [Wirth, 2004], cf. [Wirth, 2004, § 2.5.2].

More precisely — again considering reductive theorem proving, where formulas are proof
tasks — a free variable without choice-condition may be instantiated with any term (of ap-
propriate type) that does not violate the current variable-condition, cf. § 5.7 for details.
The instantiation of a free variable with choice-condition additionally requires some proof
work depending on the current choice-condition, cf. Definition 5.13 for the formal details.
In general, if a substitution σ replaces the free variable yV in the domain of the choice-
condition C, then — to know that the global instantiation of the entire proof forest with σ
is correct — we have to prove (QC(yV))σ, where QC is given as follows:

Definition 4.11 (QC)
QC is the function that maps every zV ∈ dom(C) with C(zV) = λv B0 . . . . λv Bl−1. εv Bl . B
(for some bound atoms v B0 , . . . , v Bl and some formula B) to the single-formula sequent

∀v B0 . . . . ∀v Bl−1.
( ∃v Bl . B ⇒ B{v Bl 7→ zV(v B0 ) · · · (v Bl−1)}

)
,

and is otherwise undefined.

Note that QC(yV) is nothing but a formulation of Hilbert–Bernays’ axiom (ε0) in our
framework. (See our § 4.5 for (ε0)).

Moreover, Lemma5.19 will state the validity of QC(yV). Therefore, the commitment to
a choice comes only with the substitution σ. Indeed, regarding the σ-instance of QC(yV)
whose provability is required, it is only the arbitrariness of the substitution σ that realizes
the indefiniteness of the choice for the ε.
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Now, as an example for QC , we can replay Example 3.1 and use it for a discussion of
the δ+-rule instead of the δ−-rule:

Example 4.12 (Soundness of δ+-rule)
The formula ∃y B. ∀xB. (y B = xB)

is not universally valid. We can start a reductive proof attempt as follows:

γ-step: ∀xB. (yV = xB), ∃y B. ∀xB. (y B = xB)

δ+-step: (yV = xV), ∃y B. ∀xB. (y B = xB)

Now, if the free variable yV could be replaced with the free variable xV, then we would get
the tautology (xV = xV), i.e. we would have proved an invalid formula. To prevent this,
as indicated to the lower right of the bar of the first of the δ+-rules in § 3.4 on Page 13, the
δ+-step has to record

VA(∀xB. (yV = xB))× {xV} = {(yV, xV)}
in a positive variable-condition, where (yV, xV) means that “xV positively depends on yV ”
(or that “yV is a subterm of the description of xV ”), so that we may never instantiate the
free variable yV with a term containing the free variable xV, because this instantiation would
result in cyclic dependencies (or in a cyclic term).

Contrary to Example 3.1, we have a further opportunity here to complete this proof
attempt into a successful proof: If the the substitution σ := {xV 7→yV} could be applied,
then we would get the tautology (yV = yV), i.e. we would have proved an invalid formula.
To prevent this — as indicated to the upper right of the bar of the first of the δ+-rules
in § 3.4 on Page 13 — the δ+-step has to record(

xV, εxB. ¬(yV = xB)
)

in the choice-condition C. If we take this pair as an equation, then the intuition behind the
above statement that yV is somehow a subterm of the description of xV becomes immediately
clear. If we take it as element of the graph of the function C, however, then we can compute
(QC(xV))σ and try to prove it. QC(xV) is

∃xB. ¬(yV = xB) ⇒ ¬(yV = xV);
so (QC(xV))σ is

∃xB. ¬(yV = xB) ⇒ ¬(yV = yV).

In classical logic with equality this is equivalent to ∃xB. ¬(yV = xB) ⇒ false, and then
to ∀xB. (yV = xB). If we were able to show the truth of this formula, then it would be
sound to apply the substitution σ to prove the above sequent resulting from the γ-step.
That sequent, however, already includes this formula as an element of its disjunction.
Thus, no progress is possible by means of the δ+-rules here; and so this example is not a
counterexample to the soundness of the δ+-rules.



34

Example 4.13 (Predecessor Function)
Suppose that our domain is natural numbers and that yV has the choice-condition

C(yV) = λv B0 . εv B1 .
(

v B0 = v B1 + 1
)
.

Then, before we may instantiate yV with the symbol p for the predecessor function speci-
fied by

∀xB. (
p(xB+1) = xB

)
,

we have to prove the single-formula sequent (Q(yV)){yV 7→ p}, which reads

∀v B0 .
(
∃v B1 .

(
v B0 = v B1 + 1

) ⇒ (
v B0 = p(v B0 ) + 1

) )
.

In fact, the single formula of this sequent immediately follows from the specification of p.

Note that the fact that p(0) is not specified here is no problem in this ε-substitution because
εv B1 . (0 = v B1 + 1) is not specified by (ε0) either.

Example 4.14 (Canossa 1077) (continuing Example 4.5)

(See [Fried, 2012] if you want to look behind the omnipresent legend and find out what
really seems to have happened at Canossa in January 1077.)

The situation of Example 4.5 now reads

Holy Ghost = zV0 ∧ Joseph = zV1 (4.14.1)

with C(zV0) = εz B0 . Father(z B0 , Jesus),
and C(zV1) = εz B1 . Father(z B1 , Jesus).

This does not bring us into the old trouble with the Pope because nobody knows whether
zV0 = zV1 holds or not.

On the one hand, knowing (4.1.2) from Example 4.1 of § 4.4, we can prove (4.14.1) as
follows: Let us replace zV0 with Holy Ghost because, for σ0 := {zV0 7→ Holy Ghost}, from
Father(Holy Ghost, Jesus) we conclude

∃z B0 . Father(z B0 , Jesus) ⇒ Father(Holy Ghost, Jesus),

which is nothing but the required (QC(zV0))σ0.

Analogously, we replace zV1 with Joseph because, for σ1 := {zV1 7→ Joseph}, from (4.1.2)
we conclude the required (QC(zV1))σ1. After these replacements, (4.14.1) becomes the
tautology

Holy Ghost = Holy Ghost ∧ Joseph = Joseph

On the other hand, if we want to have trouble, we can apply the substitution

σ′ = {zV0 7→ Joseph, zV1 7→ Joseph}
to (4.14.1) because both (QC(zV0))σ

′ and (QC(zV1))σ
′ are equal to (QC(zV1))σ1 up to renaming

of bound atoms. Then our task is to show

Holy Ghost = Joseph ∧ Joseph = Joseph.

Note that this course of action is stupid, even under the aspect of theorem proving alone.
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5 Formal Presentation of Our Semantics

To satisfy Requirement III (Semantics) of § 4.2, we will now present our novel semantics for
Hilbert’s ε formally. This is required for precision and consistency. As consistency of
our new semantics is not trivial at all, technical rigor cannot be avoided. From §§ 2 and 4,
the reader should have a good intuition of our intended representation and semantics of
Hilbert’s ε, free variables, atoms, and choice-conditions in our framework.

5.1 Organization of § 5

After some preliminary subsections, we formalize variable-conditions and their consistency
(§ 5.5) and discuss alternatives to the design decisions in the formalization of variable-con-
ditions (§ 5.6).

Moreover, we explain how to deal with free variables syntactically (§ 5.7) and semanti-
cally (§§ 5.8 and 5.9).

After formalizing choice-conditions and their compatibility (§ 5.10), we define our notion
of validity and discuss some examples (§ 5.11). One of these examples is especially interest-
ing because we show that — with our new more careful treatment of negative information
in our positive/negative variable-conditions — we can now model Henkin quantification
directly.

Our interest goes beyond soundness in that we want to have “preservation of solutions”.
By this we mean the following: All closing substitutions for the free variables — i.e. all
solutions that transform a proof attempt (to which a proposition has been reduced) into
a closed proof — are also solutions of the original proposition. This is similar to a proof
in Prolog (cf. [Kowalski, 1974], [Clocksin & Mellish, 2003]), computing answers
to a query proposition that contains free variables. Therefore, we discuss this solution-
preserving notion of reduction (§ 5.15), in particular under the aspect of extensions of vari-
able-conditions and choice-conditions (§ 5.12), and under the aspect of global instantiation
of free variables with choice-conditions (“ε-substitution”) (§ 5.13).

Finally, in § 5.16, we show soundness, safeness, and solution-preservation for our
γ-, δ−, and δ+-rules of §§ 3.2, 3.3, and 3.4.

All in all, we extend and simplify the presentation of [Wirth, 2008], which already
simplifies and extends the presentation of [Wirth, 2004] and which is extended with ad-
ditional linguistic applications in [Wirth, 2012c]. Note, however, that [Wirth, 2004]
additionally contains some comparative discussions and compatible extensions for descente
infinie, which also apply to our new version here.
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5.2 Basic Notions and Notation

‘N’ denotes the set of natural numbers and ‘≺’ the ordering on N. Let N+ := { n∈N |
0 6= n }. We use ‘]’ for the union of disjoint classes and ‘id’ for the identity function. For
classes R, A, and B we define:

dom(R) := { a | ∃b. (a, b)∈R } domain
A»R := { (a, b)∈R | a∈A } (domain-) restriction to A
〈A〉R := { b | ∃a∈A. (a, b)∈R } image of A, i.e. 〈A〉R = ran(A»R)

And the dual ones:
ran(R) := { b | ∃a. (a, b)∈R } range
R¹B := { (a, b)∈R | b∈B } range-restriction to B
R〈B〉 := { a | ∃b∈B. (a, b)∈R } reverse-image of B, i.e. R〈B〉 = dom(R¹B)

Furthermore, we use ‘∅’ to denote the empty set as well as the empty function. Func-
tions are (right-) unique relations, and so the meaning of “f◦g ” is extensionally given by
(f◦g)(x) = g(f(x)). The class of total functions from A to B is denoted as A→ B. The
class of (possibly) partial functions from A to B is denoted as A ; B. Both → and ;

associate to the right, i.e. A ; B → C reads A ; (B → C).

Let R be a binary relation. R is said to be a relation on A if dom(R) ∪ ran(R) ⊆ A.
R is irreflexive if id∩R = ∅. It is A-reflexive if A»id ⊆ R. Speaking of a reflexive relation
we refer to the largest A that is appropriate in the local context, and referring to this A
we write R0 to ambiguously denote A»id. With R1 := R, and Rn+1 := Rn◦R for n ∈ N+,
Rm denotes the m-step relation for R. The transitive closure of R is R+ :=

⋃
n∈N+

Rn.
The reflexive transitive closure of R is R∗ :=

⋃
n∈N Rn. A relation R (on A) is well-founded

if every non-empty class B (⊆A) has an R-minimal element, i.e. ∃a∈B. ¬∃a′ ∈B. a′R a.

5.3 Choice Functions

To be useful in context with Hilbert’s ε, the notion of a “choice function” must be gen-
eralized: We need a total function on the power-set of any universe. Thus, a value must
be supplied even for the empty set:

Definition 5.1 ([Generalized] [Function-] Choice Function)
f is a choice function [on A] if f is a function with [A ⊆ dom(f) and]

f : dom(f)→ ⋃
(dom(f)) and ∀Y ∈ dom(f).

(
f(Y ) ∈ Y

)
.

f is a generalized choice function [on A] if f is a function with [A ⊆ dom(f) and]
f : dom(f)→ ⋃

(dom(f)) and ∀Y ∈ dom(f).
(

f(Y ) ∈ Y ∨ Y = ∅ )
.

f is a function-choice function for a function F if f is a function with dom(F ) ⊆ dom(f)
and ∀x∈ dom(F ).

(
f(x) ∈ F (x)

)
.

Corollary 5.2
The empty function ∅ is both a choice function and a generalized choice function.
If dom(f) = {∅}, then f is neither a choice function nor a generalized choice function.
If ∅ /∈ dom(f), then f is a generalized choice function if and only if f is a choice function.
If ∅ ∈ dom(f), then f is a generalized choice function if and only if

there is a choice function f ′ and an x ∈ ⋃
(dom(f ′)) such that f = f ′ ] {(∅, x)}.
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5.4 Variables, Atoms, Constants, and Substitutions

We assume the following sets of symbols to be disjoint:

V (free) (rigid) variables, which serve as unknowns or
the free variables of [Fitting, 1990; 1996]

A (free) atoms, which serve as parameters and must not be bound
B bound atoms, which may be bound
Σ constants, i.e. the function and predicate symbols from the signature

We define:

VA := V ] A
VAB := V ] A ] B

By slight abuse of notation, for S ∈ {V,A,B,VA,VAB}, we write “S(Γ )” to denote the set
of symbols from S that have free occurrences in Γ .

Let σ be a substitution.

σ is a substitution on V if dom(σ) ⊆ V.

The following indented statement (as simple as it is) will require some discussion.

We denote with “Γσ ” the result of replacing each (free) occurrence of a sym-
bol x ∈ dom(σ) in Γ with σ(x); possibly after renaming in Γ some symbols
that are bound in Γ, in particular because a capture of their free occurrences
in σ(x) must be avoided.

Note that such a renaming of symbols that are bound in Γ will hardly be required for
the following reason: We will bind only symbols from the set B of bound atoms. And
— unless explicitly stated otherwise — we tacitly assume that all occurrences of bound
atoms from B in a term or formula or in the range of a substitution are bound occurrences
(i.e. that a bound atom xB ∈ B occurs only in the scope of a binder on xB). Thus, in
standard situations, even without renaming, no additional occurrences can become bound
(i.e. captured) when applying a substitution.

Only if we want to exclude the binding of a bound atom within the scope of another bind-
ing of the same bound atom (e.g. for the sake of readability and in the tradition of Hilbert–
Bernays), then we may still have to rename some of the bound atoms in Γ. For example,
for Γ being the formula ∀xB. (xB = yV) and σ being the substitution {yV 7→ εxB. (xB = xB)},
we may want the result of Γσ to be something like ∀z B. (z B = εxB. (xB = xB)) instead
of ∀xB. (xB = εxB. (xB = xB)).

Moreover — unless explicitly stated otherwise — in this paper we will use only substi-
tutions on subsets of V. Thus, also the occurrence of “(free)” in the statement indented
above is hardly of any relevance here, because we will never bind elements of V.
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5.5 Consistent Positive/Negative Variable-Conditions

Variable-conditions are binary relations on free variables and free atoms. They put con-
ditions on the possible instantiation of free variables, and on the dependencies of their
valuations. In this paper, for clarity of presentation, a variable-condition is formalized as
a pair (P,N) of binary relations, which we will call a “positive/negative variable-condition”:

• The first component (P ) of such a pair is a binary relation that is meant to express
positive dependencies. It comes with the intention of transitivity, although it will
typically not be closed up to transitivity for reasons of presentation and efficiency.

The overall idea is that the occurrence of a pair (xVA, yV) in this positive relation means
something like

“ the value of yV may well depend on xVA ”
or

“ the value of yV is described in terms of xVA ”.

• The second component (N), however, is meant to capture negative dependencies.

The overall idea is that the occurrence of a pair (xV, yA) in this negative relation means
something like

“ the value of xV has to be fixed before the value of yA can be determined”
or

“ the value of xV must not depend on yA ”
or

“yA is fresh for xV ”.

Relations similar to this negative relation (N) already occurred as the only component
of a variable-condition in [Wirth, 1998], and later — with a completely different
motivation — as “freshness conditions” also in [Gabbay & Pitts, 2002].

Definition 5.3 (Positive/Negative Variable-Condition)
A positive/negative variable-condition is a pair (P,N) with

and
P ⊆ VA × V
N ⊆ V × A .

A relation exactly like this positive relation (P ) was the only component of a variable-con-
dition as defined and used identically throughout [Wirth, 2002; 2004; 2006; 2008; 2012b;
2012c]. Note, however, that, in these publications, we had to admit this single positive
relation to be a subset of VA×VA (instead of the restriction to VA×V of Definition 5.3
in this paper), because it had to simulate the negative relation (N) in addition; thereby
losing some expressive power as compared to our positive/negative variable-conditions here
(cf. ExampleA.1).

In the following definition, the well-foundedness guarantees that all dependencies can be
traced back to independent symbols and that no variable may transitively depend on itself,
whereas the irreflexivity makes sure that no contradictious dependencies can occur.
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Definition 5.4 (Consistency)
A pair (P,N) is consistent if

and
P is well-founded

P + ◦N is irreflexive.

Let (P,N) be a positive/negative variable-condition. Let us think of our (binary) relations
P and N as edges of a directed graph whose vertices are the symbols for atoms and variables
currently in use. Then, P + ◦N is irreflexive if and only if there is no cycle in P ∪N that
contains exactly one edge from N . Moreover, in practice, a positive/negative variable-
condition (P,N) can always be chosen to be finite in both its components. In the case that
P is finite, P is well-founded if and only if P is acyclic. Thus we get:

Corollary 5.5
Let (P,N) be a positive/negative variable-condition with |P | ∈ N.
(P, N) is consistent if and only if

each cycle in the directed graph of P ]N contains more than one edge from N.
In case of |N | ∈ N, the right-hand side of this equivalence can be effectively tested with
an asymptotic time complexity of |P | + |N | .

Note that, in the finite case, the test of Corollary 5.5 seems to be both the most efficient and
the most human-oriented way to represent the question of consistency of positive/negative
variable-conditions.
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5.6 Further Discussion of our Formalization of Variable-Conditions

Note that the two relations P and N of a positive/negative variable-condition (P,N) are
always disjoint because their ranges must be disjoint according to Definition 5.3. Thus,
from a technical point of view, we could merge P and N into a single relation, but we prefer
to have two relations for the two different functions (the positive and the negative one) of
the variable-conditions in this paper, instead of the one relation for one function of [Wirth,
2002; 2004; 2006; 2008; 2012b; 2012c], which realized the negative function only with a
significant loss of relevant information. Our main reason to have two different relations is
that it makes sense to relax the restriction on the negative relation in future publications to

N ⊆ V× VA,
cf. e.g. ExampleA.1.

Moreover, in Definition 5.3, we have excluded the possibility that two atoms aA, bA ∈ A
may be related to each other in any of the two components of a positive/negative variable-
condition (P, N):

• yVA P aA is excluded for intentional reasons: An atom aA cannot depend on any other
symbol yVA. In this sense an atom is indeed atomic and can be seen as a black box.

• bA N aA, however, is excluded for technical reasons only.
Two distinct atoms aA, bA in nominal terms [Urban &al., 2004] are indeed always
fresh for each other: aA # bA. In our notation, this would read: bA N aA.
The reason why we did not include (A×A) \ A»id into the negative component N is
simply that we want to be close to the data structures of a both efficient and human-
oriented graph implementation.
Furthermore, consistency of a positive/negative variable-condition (P, N) is equivalent
to consistency of

(
P, N ] ((A×A) \ A»id)

)
.

Indeed, if we added (A×A) \ A»id to N, the result of the acyclicity test of Corollary 5.5
would not be changed: If there were a cycle with a single edge from (A×A) \ A»id,
then its previous edge would have to be one of the original edges of N ; and so this
cycle would have more than one edge from N ] ((A×A) \ A»id), and thus would not
count as a counterexample to consistency.

Furthermore, we could remove the set B of bound atoms from our sets of symbols and
consider its elements to be elements of the set A of atoms. Besides some additional care
on free occurrences of atoms in § 5.4, an additional price we would have to pay for this
removal is that we would have to include V×B as a subset into the second component (N)
of all our positive/negative variable-conditions (P,N). The reason for this inclusion is
that we must guarantee that it is not possible that a bound atom bB can be read by some
variable xV, in particular after an elimination of binders. Then, by this inclusion, in case
of bB P + xV, we would get a cycle bB P + xV N bB with only one edge from N. Although,
in practical contexts, we can always get along with a finite subset of V×B, the essential
pairs of this subset would still be quite many and would be most confusing already in small
examples. For instance, for the higher-order choice-condition of Example 4.10, almost four
dozen pairs from V×B are technically required, compared to only a good dozen pairs that
are actually relevant to the problem (cf. Example 5.14(a)).
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5.7 Extensions, σ-Updates, and (P, N)-Substitutions

Within a progressing reasoning process, positive/negative variable-conditions may be sub-
ject to only one kind of transformation, which we simply call an “extension”.

Definition 5.6 ([Weak] Extension)
(P ′, N ′) is an [weak ] extension of (P,N) if
(P ′, N ′) is a positive/negative variable-condition, P ⊆ P ′ [or at least P ⊆ (P ′)+], and
N ⊆ N ′.

As an immediate corollary of Definitions 5.6 and 5.4 we get:

Corollary 5.7
If (P ′, N ′) is a consistent positive/negative variable-condition and an [weak ] extension
of (P,N), then (P, N) is a consistent positive/negative variable-condition as well.

A σ-update is a special form of an extension:

Definition 5.8 (σ-Update, Dependence Relation)
Let (P, N) be a positive/negative variable-condition and σ be a substitution on V.

The dependence relation of σ is

D := { (zVA, xV) | xV ∈ dom(σ) ∧ zVA ∈VA(σ(xV)) }.
The σ-update of (P, N) is (P ∪D, N). 5

Definition 5.9 ((P,N)-Substitution)
Let (P, N) be a positive/negative variable-condition. σ is a (P, N)-substitution if

σ is a substitution on V and the σ-update of (P, N) is consistent.

Syntactically, (xV, aA)∈N is to express that a (P,N)-substitution σ must not replace xV

with a term in which aA could ever occur; i.e. that aA is fresh for xV: aA # xV. This
is indeed guaranteed if any σ-update (P ′, N ′) of (P, N) is again required to be consistent,
and so on. We can see this as follows: For zV ∈ V(σ(xV)), we get

zV P ′ xV N ′ aA.

If we now try to apply a second substitution σ′ with aA ∈ A(σ′(zV)) (so that aA occurs
in (xVσ)σ′, contrary to what we initially expressed as our freshness intention), then σ′ is
not a (P ′, N ′)-substitution because, for the σ′-update (P ′′, N ′′) of (P ′, N ′), we have

aA P ′′ zV P ′′ xV N ′′ aA ;

so (P ′′)+ ◦N ′′ is not irreflexive. All in all, the positive/negative variable-condition

• (P ′, N ′) blocks any instantiation of (xVσ) resulting in a term containing aA, just as

• (P, N) blocked xV before the application of σ.
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5.8 Semantic Presuppositions

Instead of defining truth from scratch, we require some abstract properties typically holding
in two-valued model semantics.

Truth is given relative to a Σ-structure S, which provides some non-empty set as the
universe (or “carrier”, “domain”) (for each type). Moreover, we assume that every Σ-struc-
ture S is not only defined on the predicate and function symbols of the signature Σ, but is
defined also on the symbols ∀ and ∃ such that S(∃) serves as a function-choice function
for the universe function S(∀) in the sense that, for each type α of Σ, the universe for the
type α is denoted by S(∀)α and

S(∃)α ∈ S(∀)α .

For X ⊆ VAB, we denote the set of total S-valuations of X (i.e. functions mapping atoms
and variables in X to objects of the universe of S) with

X→ S ,
and the set of (possibly) partial S-valuations of X with

X ; S .
Here we expect types to be respected in the sense that, for each δ : X→ S and for each
xVAB ∈ X with xVAB : α (i.e. xVAB has type α), we have δ(xVAB) ∈ S(∀)α.

For δ : X→ S, we denote with “S ] δ ” the extension of S to X. More precisely,
we assume some evaluation function “eval” such that eval(S]δ) maps every term whose
free-occurring symbols are from Σ]X into the universe of S (respecting types). Moreover,
eval(S]δ) maps every formula B whose free-occurring symbols are from Σ]X to TRUE or
FALSE, such that:

B is true in S]δ iff eval(S]δ)(B) = TRUE.

We leave open what our formulas and what our Σ-structures exactly are. The latter can
range from first-order Σ-structures to higher-order modal Σ-models; provided that the
following three properties — which (explicitly or implicitly) belong to the standard of
most logic textbooks — hold for every term or formula B, every Σ-structure S, and every
S-valuation δ : VAB; S .

Explicitness Lemma
The value of the evaluation of B depends only on the valuation of those variables and atoms
that actually have free occurrences in B; i.e., for X := VAB(B), if X ⊆ dom(δ), then:

eval(S ] δ)(B) = eval(S ] X»δ)(B).

Substitution [Value] Lemma
Let σ be a substitution on VAB. If VAB(Bσ) ⊆ dom(δ), then:

eval(S ] δ)(Bσ) = eval
(
S ] (

( σ ] VAB\dom(σ)»id ) ◦ eval(S ] δ)
) )(

B
)
.
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Valuation Lemma
The evaluation function treats application terms from VAB straightforwardly in the sense
that for every vVAB0 , . . . , vVABl−1, y

VAB ∈ dom(δ) with vVAB0 : α0, . . . , vVABl−1 : αl−1,
yVAB : α0 → · · · → αl−1 → αl for some types α0, . . . , αl−1, αl, we have:

eval(S ] δ)(yVAB(vVAB0 ) · · · (vVABl−1)) = δ(yVAB)(δ(vVAB0 )) · · · (δ(vVABl−1)).

Note that we need the case of the Valuation Lemma where yVAB is a higher-order symbol
(i.e. the case of lÂ 0) only when higher-order choice-conditions are required. Besides this,
the basic language of the general reasoning framework, however, may well be first-order
and does not have to include function application.

Moreover, in the few cases where we explicitly refer to quantifiers, implication, or nega-
tion, such as in our inference rules of §§ 3.2, 3.3, and 3.4. or in our version of axiom (ε0)
(cf. Definition 4.11), and in the lemmas and theorems that refer to these (namely Lem-
mas 5.19 and 5.24, Theorem5.26(6), and Theorem5.27),6 we have to know that the quan-
tifiers, the implication, and the negation show the standard semantic behavior of classical
logic:

∀-Lemma
Assume VAB(∀xB. A) ⊆ dom(δ). The following two are equivalent:

• eval(S ] δ)(∀xB. A) = TRUE

• eval(S ] VAB\{xB}»δ ] χ)(A) = TRUE for every χ : {xB} → S

∃-Lemma
Assume VAB(∃xB. A) ⊆ dom(δ). The following two are equivalent:

• eval(S ] δ)(∃xB. A) = TRUE,

• eval(S ] VAB\{xB}»δ ] χ)(A) = TRUE for some χ : {xB} → S

⇒-Lemma
Assume VAB(A⇒B) ⊆ dom(δ). The following two are equivalent:

• eval(S ] δ)(A⇒B) = TRUE

• eval(S ] δ)(A) = FALSE or eval(S ] δ)(B) = TRUE

¬-Lemma
Assume VAB(A) ⊆ dom(δ). The following two are equivalent:

• eval(S ] δ)(A) = TRUE

• eval(S ] δ)(¬A) = FALSE



44

5.9 Semantic Relations and S-Raising-Valuations

We now come to some technical definitions required for our semantic (model-theoretic)
counterparts of our syntactic (P, N)-substitutions.

Let S be a Σ-structure. An S-raising-valuation π plays the rôle of a raising function,
a dual of a Skolem function as defined in [Miller, 1992]. This means that π does not
simply map each variable directly to an object of S (of the same type), but may additionally
read the values of some atoms under an S-valuation τ : A→ S. More precisely, we assume
that π takes some restriction of τ as a second argument, say τ ′ : A ; S with τ ′ ⊆ τ .
In short:

π : V→ (A ; S) ; S.
Moreover, for each variable xV, we require that the set dom(τ ′) of atoms read by π(xV) is
identical for all τ . This identical set will be denoted with Sπ〈{xV}〉 below. Technically,
we require that there is some “semantic relation” Sπ ⊆ A×V such that for all xV ∈ V:

π(xV) : (Sπ〈{xV}〉 → S)→ S.

This means that π(xV) can read the τ -value of yA if and only if (yA, xV)∈Sπ. Note that,
for each π : V→ (A ; S) ; S, at most one such semantic relation exists, namely the
one of the following definition.

Definition 5.10 (Semantic Relation (Sπ))
The semantic relation for π is

Sπ := { (yA, xV) | xV ∈V ∧ yA ∈ dom(
⋃

(dom(π(xV)))) }.

Definition 5.11 (S-Raising-Valuation)
Let S be a Σ-structure. π is an S-raising-valuation if

π : V→ (A ; S) ; S
and, for all xV ∈ dom(π):

π(xV) : (Sπ〈{xV}〉 → S)→ S.

Finally, we need the technical means to turn an S-raising-valuation π together with an
S-valuation τ of the atoms into an S-valuation e(π)(τ) of the variables:

Definition 5.12 (e)
We define the function e : (V→ (A ; S) ; S) → (A→ S) → V ; S
for π : V→ (A ; S) ; S, τ : A→ S, xV ∈ V
by e(π)(τ)(xV) := π(xV)(Sπ〈{xV}〉»τ).

The “e” stands for “evaluation” and replaces an “ε ” used in previous publications, which
was too easily confused with Hilbert’s ε.
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5.10 Choice-Conditions and Compatibility

In the following definition, we define choice-conditions as syntactic objects. They influence
our semantics by a compatibility requirement, which will be described in Definition 5.15.

Definition 5.13 (Choice-Condition, Return Type)
C is a (P, N)-choice-condition if

• (P, N) is a consistent positive/negative variable-condition and

• C is a partial function from V into the set of higher-order ε-terms

such that, for every yV ∈ dom(C), the following items hold for some types α0, . . . , αl:

1. The value C(yV) is of the form
λv B0 . . . . λv Bl−1. εv Bl . B

for some formula B and for some mutually distinct bound atoms v B0 , . . . , v Bl ∈ B
with B(B) ⊆ {v B0 , . . . , v Bl } and v B0 : α0, . . . , v Bl : αl.

2. yV : α0 → · · · → αl−1 → αl.
3. zVA P + yV for all zVA ∈ VA(C(yV)).

In the situation described, αl is the return type of C(yV).
β is a return type of C if there is a zV ∈ dom(C) such that β is the return type of C(zV).

Example 5.14 (Choice-Condition) (continuing Example 4.10)

(a) If (P,N) is a consistent positive/negative variable-condition that satisfies
zVa P yVa P zVb P xVa P zVc P yVb P zVd P wV

a P zVe P yVc P zVf P xVb P zVg P yVd P zVh,
then the C of Example 4.10 is a (P,N)-choice-condition, indeed.

(b) If some clever person tried to do the entire quantifier elimination of Example 4.10 by
C ′(zVh) := εz Bh . ¬P(wV

a, x
V
b , y

V
d, z

B
h)

C ′(yVd) := εy Bd . P(wV
a, x

V
b , y

B
d , zVh)

C ′(xVb) := εxBb . ¬P(wV
a, x

B
b , y

V
d, z

V
h)

C ′(wV
a) := εw B

a . P(w B
a , xVb , y

V
d, z

V
h)

then he would — among other constraints — have to satisfy zVh P + yVd P + zVh, because
of item3 of Definition 5.13 and the values of C ′ at yVd and zVh. This would make P
non-well-founded. Thus, this C ′ cannot be a (P,N)-choice-condition for any (P, N),
because the consistency of (P,N) is required in Definition 5.13. Note that the choices
required by C ′ for yVd and zVh are in an unsolvable conflict, indeed.

(c) For a more elementary example, take
C ′′(xV) := εxB. (xB = yV) C ′′(yV) := εy B. (xV 6= y B)

Then xV and yV form a vicious circle of conflicting choices for which no valuation can
be found that is compatible with C ′′. But C ′′ is no choice-condition at all because
there is no consistent positive/negative variable-condition (P, N) such that C ′′ is a
(P, N)-choice-condition.
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Definition 5.15 (Compatibility)
Let C be a (P,N)-choice-condition. Let S be a Σ-structure.
π is S-compatible with (C, (P, N)) if the following items hold:

1. π is an S-raising-valuation (cf. Definition 5.11) and
(P ∪ Sπ, N) is consistent (cf. Definitions 5.4 and 5.10).

2. For every yV ∈ dom(C) with C(yV) = λv B0 . . . . λv Bl−1. εv Bl . B for some formula B,
and for every τ : A→ S, and for every χ : {v B0 , . . . , v Bl } → S:

If B is true in S ] e(π)(τ) ] τ ] χ,
then B{v Bl 7→ yV(v B0 ) · · · (v Bl−1)} is true in S ] e(π)(τ) ] τ ] χ as well.

(For e, see Definition 5.12.)

To understand item2 of Definition 5.15, let us consider a (P, N)-choice-condition

C := {(yV, λv B0 . . . . λv Bl−1. εv Bl . B)},
which restricts the value of yV according to the higher-order ε-term λv B0 . . . . λv Bl−1. εv Bl . B.
Then, roughly speaking, this choice-condition C requires that whenever there is a χ-value
of v Bl such that B is true in S ] e(π)(τ) ] τ ] χ, the π-value of yV is chosen in such a way
that B{v Bl 7→ yV(v B0 ) · · · (v Bl−1)} becomes true in S ] e(π)(τ) ] τ ] χ as well. Note that
the free variables of the formula B{v Bl 7→ yV(v B0 ) · · · (v Bl−1)} cannot read the χ-value of any
of the bound atoms v B0 , . . . , v Bl , because free variables can never depend on the value of any
bound atoms.

Moreover, item2 of Definition 5.15 is closely related to Hilbert’s ε-operator in the
sense that — roughly speaking — yV must be given one of the values admissible for

λv B0 . . . . λv Bl−1. εv Bl . B.

As the choice for yV depends on the symbols that have a free occurrence in that higher-
order ε-term, we included these dependencies into the positive relation P of the consistent
positive/negative variable-condition (P, N) in item3 of Definition 5.13. By this inclusion,
conflicts like the one shown in Example 5.14(c) are obviated.

Let (P,N) be a consistent positive/negative variable-condition. Then the empty func-
tion ∅ is a (P, N)-choice-condition. Moreover, each π : V→ {∅} → S is S-compatible
with (∅, (P, N)) because of Sπ = ∅. Furthermore, assuming an adequate principle of choice
on the meta level, a compatible π always exists according to the following lemma. This
existence relies on item3 of Definition 5.13 and on the well-foundedness of P.

Lemma 5.16 Let C be a (P, N)-choice-condition. Let S be a Σ-structure. Assume that,
for every return type α of C, there is a generalized choice function on the power-set of S(∀)α.
[Let ρ be an S-raising-valuation with Sρ ⊆ P +.]
Then there is an S-raising-valuation π such that the following hold:

• π is S-compatible with (C, (P, N)).

• Sπ = A»(P +).

[• V\dom(C)»π = V\dom(C)»ρ. ]
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5.11 (C, (P,N))-Validity

Definition 5.17 ((C, (P, N))-Validity, K)

Let C be a (P, N)-choice-condition. Let G be a set of sequents.
Let S be a Σ-structure. Let δ : VA; S be an S-valuation.
G is (C, (P, N))-valid in S if

G is (π,S)-valid for some π that is S-compatible with (C, (P, N)).
G is (π,S)-valid if G is true in S ] e(π)(τ) ] τ for every τ : A→ S.
G is true in S]δ if Γ is true in S]δ for all Γ ∈ G.
A sequent Γ is true in S]δ if there is some formula listed in Γ that is true in S]δ.

Validity in a class of Σ-structures is understood as validity in each of the Σ-structures of
that class. If we omit the reference to a special Σ-structure we mean validity in some fixed
class K of Σ-structures, such as the class of all Σ-structures or the class of Herbrand
Σ-structures.

Example 5.18 ((∅, (P, N))-Validity)

For xV ∈ V, yA ∈ A, the single-formula sequent xV = yA is (∅, (∅, ∅))-valid in any Σ-struc-
ture S because we can choose Sπ := A×V and π(xV)(τ) := τ(yA) for τ : A→ S, resulting in

e(π)(τ)(xV) = π(xV)(Sπ〈{xV}〉»τ) = π(xV)(A»τ) = π(xV)(τ) = τ(yA).

This means that (∅, (∅, ∅))-validity of xV = yA is equivalent to validity of

∀y B0 . ∃xB0 . (xB0 = y B0 ). (1)

Moreover, note that e(π)(τ) has access to the τ -value of yA just as a raising function xB1
for xB0 has access to y B0 in the raised (i.e. dually Skolemized) form ∃xB1 . ∀y B0 . (xB1(y

B
0 ) = y B0 )

of (1).

Contrary to this, for P := ∅ and N := V×A, the same single-formula sequent xV = yA

is not (∅, (P, N))-valid in general, because then the required consistency of (P ∪ Sπ, N)
implies Sπ = ∅; otherwise P ∪Sπ∪N has a cycle of length 2 with exactly one edge
from N . Thus, the value of xV cannot depend on τ(yA) anymore:

π(xV)(Sπ〈{xV}〉»τ) = π(xV)(∅»τ) = π(xV)(∅).
This means that (∅, (∅,V×A))-validity of xV = yA is equivalent to validity of

∃xB0 . ∀y B0 . (xB0 = y B0 ). (2)

Moreover, note that e(π)(τ) has no access to the τ -value of yA just as a raising function xB1
for xB0 has no access to y B0 in the raised form ∃xB1 . ∀y B0 . (xB1() = y B0 ) of (2).

For a more general example let G = { Ai,0 . . . Ai,ni−1 | i∈ I }, where, for i ∈ I and
j≺ni, the Ai,j are formulas with variables from v and atoms from a.
Then (∅, (∅,V×A))-validity of G means validity of ∃v. ∀a. ∀i∈ I. ∃j≺ni. Ai,j

whereas (∅, (∅, ∅))-validity of G means validity of ∀a. ∃v. ∀i∈ I. ∃j≺ni. Ai,j

Ignoring the question of γ-multiplicity, also any other sequence of universal and
existential quantifiers can be represented by a consistent positive/negative variable-con-
dition (P, N), simply by starting from the consistent positive/negative variable-condi-
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tion (∅, ∅) and applying the γ- and δ-rules from §§ 3.2, 3.3, and 3.4. A reverse translation
of a positive/negative variable-condition (P, N) into a sequence of quantifiers, however,
may require a strengthening of dependencies, in the sense that a subsequent backward
translation would result in a more restrictive consistent positive/negative variable-condi-
tion (P ′, N ′) with P ⊆ P ′ and N ⊆ N ′. This means that our framework can express
quantificational dependencies more fine-grained than standard quantifiers; cf. ExampleA.1.

For a further example on validity, see ExampleA.1, which treats Henkin quantification
and IF-logic quantifiers and which we have put into the appendix because of its length.

As already noted in § 4.12, the single-formula sequent QC(yV) of Definition 4.11 is a formu-
lation of axiom (ε0) of § 4.6 in our framework.

Lemma 5.19 ((C, (P, N))-Validity of QC(yV))
Let C be a (P, N)-choice-condition. Let yV ∈ dom(C). Let S be a Σ-structure.

1. QC(yV) is (π,S)-valid for every π that is S-compatible with (C, (P,N)).

2. QC(yV) is (C, (P, N))-valid in S; provided that for every return type α of C (cf. Defi-
nition 5.13), there is a generalized choice function on the power-set of S(∀)α.

5.12 Extended Extensions

Just like the positive/negative variable-condition (P, N), the (P,N)-choice-condition C
may be extended during proofs. This kind of extension together with a simple soundness
condition plays an important rôle in inference:

Definition 5.20 (Extended Extension)
(C ′, (P ′, N ′)) is an extended extension of (C, (P, N)) if

• C is a (P, N)-choice-condition (cf. Definition 5.13),

• C ′ is a (P ′, N ′)-choice-condition,

• (P ′, N ′) is an extension of (P,N) (cf. Definition 5.6), and

• C ⊆ C ′.

Lemma 5.21 (Extended Extension)
Let (C ′, (P ′, N ′)) be an extended extension of (C, (P,N)).
If π is S-compatible with (C ′, (P ′, N ′)), then π is S-compatible with (C, (P, N)) as well.
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5.13 Extended σ-Updates

After global application of a (P,N)-substitution σ, we now have to update both (P, N)
and C:

Definition 5.22 (Extended σ-Update)
Let C be a (P, N)-choice-condition and let σ be a substitution on V.
The extended σ-update (C ′, (P ′, N ′)) of (C, (P, N)) is given as follows:

C ′ := { (xV, Bσ) | (xV, B)∈C ∧ xV 6∈ dom(σ) },
(P ′, N ′) is the σ-update of (P,N) (cf. Definition 5.8).

Note that a σ-update (cf. Definition 5.8) is an extension (cf. Definition 5.6), whereas an
extended σ-update is not an extended extension in general, because entries of the choice-
condition may be modified or even deleted, such that we may have C * C ′. The remaining
properties of an extended extension, however, are satisfied:

Lemma 5.23 (Extended σ-Update) Let C be a (P, N)-choice-condition.
Let σ be a (P, N)-substitution. Let (C ′, (P ′, N ′)) be the extended σ-update of (C, (P, N)).
Then C ′ is a (P ′, N ′)-choice-condition.
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5.14 The Main Lemma

Lemma 5.24 ((P,N)-Substitutions and (C, (P, N))-Validity)
Let (P, N) be a positive/negative variable-condition.
Let C be a (P, N)-choice-condition. Let σ be a (P, N)-substitution.
Let (C ′, (P ′, N ′)) be the extended σ-update of (C, (P, N)). Let S be a Σ-structure.
Let π′ be an S-raising-valuation that is S-compatible with (C ′, (P ′, N ′)).
Let O and O′ be two disjoint sets with O ⊆ dom(σ) ∩ dom(C) and O′ ⊆ dom(C) \O.
Moreover, assume that σ respects C on O in the given semantic context in the sense that
(〈O〉QC)σ is (π′,S)-valid (cf. Definition 4.11 for QC).
Furthermore, regarding the set O′ (where σ may disrespect C), assume the following items
to hold:
• O′ covers the variables in dom(σ) ∩ dom(C) besides O in the sense of

dom(σ) ∩ dom(C) ⊆ O′ ]O.

←−−−−−−−−−−−−−−−−−−−−−−−V−−−−−−−−−−−−−−−−−−−−−−−→
←−−−−−−−−dom(C)−−−−−−−−→

←−−−−−−−−dom(σ)−−−−−−−−→
←−−−−O′−−−−→←−O−→

• O′ satisfies the closure condition 〈O′〉P + ∩ dom(C) ⊆ O′.

• For every yV ∈ O′, for α being the return type of C(yV) (cf. Definition 5.13),
there is a generalized choice function on the power-set of S(∀)α.

Then there is an S-raising-valuation π that is S-compatible with (C, (P,N)) and that
satisfies the following:

1. For every term or formula B with O′ ∩ V(B) = ∅ and possibly with some unbound
occurrences of bound atoms from a set W ⊆ B, and for every τ : A→ S and every
χ : W → S: eval(S ] e(π′)(τ) ] τ ] χ)(Bσ) = eval(S ] e(π)(τ) ] τ ] χ)(B).

2. For every set of sequents G with O′ ∩ V(G) = ∅ we have:

Gσ is (π′,S)-valid iff G is (π,S)-valid.

In Lemma5.24, we illustrate the subclass relation with a Lambert diagram [Lambert,
1764, Dianoiologie, §§ 173–194], similar to a Venn diagram. In general, a Lambert
diagram expresses nothing but the following: If — in vertical projection — each point of
the overlap of the lines for classes A1, . . . , Am is covered by a line of the classes B1, . . . , Bn

then A1 ∩ · · · ∩ Am ⊆ B1 ∪ · · · ∪Bn; moreover, the points not covered by a line for A are
considered to be covered by a line for the complement A .

Note that Lemma5.24 gets a lot simpler when we require the entire (P,N)-substitution σ
to respect the (P, N)-choice-condition C by setting O := dom(σ) ∩ dom(C) and O′ := ∅;
in particular all requirements on O′ are trivially satisfied then. Moreover, note that the
(still quite long) proof of Lemma5.24 is more than a factor of 2 shorter than the proof
of the analogous LemmaB.5 in [Wirth, 2004] (together with LemmaB.1, its additionally
required sub-lemma).
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5.15 Reduction

Reduction is the reverse of consequence. It is the backbone of logical reasoning, especially of
abduction and goal-directed deduction. In our case, a reduction step does not only reduce
a set of problems to another set of problems, but also guarantees that the solutions of the
latter also solve the former; here “solutions” means those S-raising-valuations of the (rigid)
(free) variables from V which are S-compatible with (C, (P,N)) for the positive/negative
variable-condition (P,N) and the (P, N)-choice-condition C given by the context of the
reduction step.

Definition 5.25 (Reduction)
Let (P, N) be a positive/negative variable-condition. Let C be a (P,N)-choice-condition.
Let G0 and G1 be sets of sequents. Let S be a Σ-structure.
G0 (C, (P, N))-reduces to G1 in S if for every π that is S-compatible with (C, (P, N)):

If G1 is (π,S)-valid, then G0 is (π,S)-valid as well.

Theorem 5.26 (Reduction)
Let (P,N) be a positive/negative variable-condition. Let C be a (P, N)-choice-condition.
Let G0, G1, G2, and G3 be sets of sequents. Let S be a Σ-structure.
1. (Validity) If G0 (C, (P, N))-reduces to G1 in S and G1 is (C, (P, N))-valid in S,

then G0 is (C, (P,N))-valid in S, too.
2. (Reflexivity) In case of G0⊆G1: G0 (C, (P, N))-reduces to G1 in S.
3. (Transitivity) If G0 (C, (P,N))-reduces to G1 in S

and G1 (C, (P,N))-reduces to G2 in S,
then G0 (C, (P,N))-reduces to G2 in S.

4. (Additivity) If G0 (C, (P,N))-reduces to G2 in S
and G1 (C, (P,N))-reduces to G3 in S,
then G0∪G1 (C, (P,N))-reduces to G2∪G3 in S.

5. (Monotonicity) For (C ′, (P ′, N ′)) being an extended extension of (C, (P,N)):

(a) If G0 is (C ′, (P ′, N ′))-valid in S, then G0 is also (C, (P,N))-valid in S.
(b) If G0 (C, (P, N))-reduces to G1 in S, then G0 also (C ′, (P ′, N ′))-reduces to G1 in S.

6. (Instantiation of Free Variables) Let σ be a (P,N)-substitution.
Let (C ′, (P ′, N ′)) be the extended σ-update of (C, (P,N)).
Set M := dom(σ) ∩ dom(C). Choose some V ⊆ V with V(G0, G1) ⊆ V .
Set O := M ∩ P ∗〈V 〉. Set O′ := dom(C) ∩ 〈M\O〉P ∗.
Assume that for every yV ∈ O′, for α being the return type of C(yV) (cf. Definition 5.13),
there is a generalized choice function on the power-set of S(∀)α.

(a) If G0σ ∪ (〈O〉QC)σ is (C ′, (P ′, N ′))-valid in S, then G0 is (C, (P,N))-valid in S.
(b) If G0 (C, (P, N))-reduces to G1 in S,

then G0σ (C ′, (P ′, N ′))-reduces to G1σ ∪ (〈O〉QC)σ in S.

7. (Instantiation of Free Atoms) Let ν be a substitution on A.
If V(G0)× dom(ν) ⊆ N , then G0ν (C, (P,N))-reduces to G0 in S.
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5.16 Soundness, Safeness, and Solution-Preservation

Soundness of inference rules has the global effect that if we reduce a set of sequents to an
empty set, then we know that the original set is valid. Soundness is an essential property
of inference rules.

Safeness of inference rules has the global effect that if we reduce a set of sequents to an
invalid set, then we know that already the original set was invalid. Safeness is helpful in
rejecting false assumptions and in patching failed proof attempts.

As explained before, for a reduction step in our framework, we are not contend with
soundness: We want solution-preservation in the sense that an S-raising-valuation π that
makes the set of sequents of the reduced proof state (π,S)-valid is guaranteed to do the
same for the original input proposition, provided that π is S-compatible with (C, (P,N))
for the positive/negative variable-condition (P, N) and the (P, N)-choice-condition C of the
reduced proof state.

All our inference rules of § 3 have all of these properties. This is obvious for the trivial
α- and β-rules. For the inference rules where this is not obvious, i.e. our γ- and δ−- and
δ+-rules of §§ 3.2, 3.3, and 3.4, we state these properties in the following theorem.

Theorem 5.27
Let (P, N) be a positive/negative variable-condition. Let C be a (P,N)-choice-condition.
Let us consider any of the γ-, δ−-, and δ+-rules of §§ 3.2, 3.3, and 3.4.
Let G0 and G1 be the sets of the sequent above and of the sequents below the bar of that
rule, respectively.
Let C ′′ be the set of the pair indicated to the upper right of the bar if there is any (which is
the case only for the δ+-rules) or the empty set otherwise.
Let V be the relation indicated to the lower right of the bar if there is any (which is the case
only for the δ−- and δ+-rules) or the empty set otherwise.
Let us weaken the informal requirement “Let xA be a fresh free atom” of the δ−-rules to its
technical essence “xA ∈ A \ (

dom(P ) ∪ A(Γ, A, Π)
)
”.

Let us weaken the informal statement “Let xV be a fresh free variable” of the δ+-rules to
its technical essence “xV ∈ V \ (

dom(C ∪ P ∪N) ∪ V(A)
)
”.

Let us set C ′ := C ∪ C ′′, P ′ := P ∪ V ¹V, N ′ := N ∪ V ¹A.
Then (C ′, (P ′, N ′)) is an extended extension of (C, (P, N)) (cf. Definition 5.20).

Moreover, the considered inference rule is sound, safe, and solution-preserving in the sense
that G0 and G1 mutually (C ′, (P ′, N ′))-reduce to each other in every Σ-structure S.
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6 Summary and Discussion

6.1 Positive/Negative Variable-Conditions

We take a sequent to be a list of formulas which denotes the disjunction of these formulas.
In addition to the standard frameworks of two-valued logics, our formulas may contain free
atoms and variables with a context-independent semantics: While we admit explicit quan-
tification to bind only bound atoms (written xB), our free atoms (written xA) are implicitly
universally quantified. Moreover, free variables (written xV) are implicitly existentially
quantified. The structure of this implicit form of quantification without quantifiers and
without binders is represented globally in a positive/negative variable-condition (P, N),
which can be seen as a directed graph on free atoms and variables whose edges are elements
of either P or N.

Without loss of generality in practice, let us assume that P is finite. Then, a posi-
tive/negative variable-condition (P,N) is consistent if each cycle of the directed graph has
more than one edge from N .

Roughly speaking, on the one hand, a free variable yV is put into the scope of another
free variable or atom xVA by an edge (xVA, yV) in P ; and, on the other hand, a free atom yA

is put into the scope of another free variable or atom xVA by an edge (xVA, yA) in N.

On the one hand, an edge (xVA, yV) must be put into P

• if yV is introduced in a δ+-step where xVA occurs in the principal2 formula, and also

• if yV is globally replaced with a term in which xVA occurs.

On the other hand, an edge (xVA, yA) must be put into N

• if xVA is actually a free variable, and yA is introduced in a δ−-step where xVA occurs in
the sequent (either in the principal formula or in the parametric formulas).2

Furthermore, such edges may always be added to the positive/negative variable-condition,
as long as it remains consistent. Such an unforced addition of edges might be appropriate
especially in the formulation of a new proposition:

• partly, because we may need this for modeling the intended semantics by representing
the intended quantificational structure for the free variables and atoms of the new
proposition;

• partly, because we may need this for enabling induction in the form of Fermat’s des-
cente infinie on the free atoms of the proposition; cf. [Wirth, 2004, §§ 2.5.2 and 3.3].
(This is closely related to the satisfaction of the condition on N in Theorem5.26(7).)

6.2 Semantics of Positive/Negative Variable-Conditions

The value assigned to a free variable yV by an S-raising-valuation π may depend on the
value assigned to an atom xA by an S-valuation. In that case, the semantic relation Sπ

contains an edge (xA, yV). Moreover, π is enforced to obey the quantificational structure
by the requirement that (P ∪ Sπ, N) must be consistent; cf. Definitions 5.10 and 5.15.
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6.3 Replacing ε-Terms with Free Variables

Suppose that an ε-term εz B. B has free occurrences of exactly the bound atoms v B0 , . . . , v Bl−1

which are not free atoms of our framework, but are actually bound in the syntactic context
in which this ε-term occurs. Then we can replace it in this context with the application
term zV(v B0 ) · · · (v Bl−1) for a fresh free variable zV and set the value of a global function C
(called the choice-condition) at zV according to

C(zV) := λv B0 . . . . λv Bl−1. εz B. B,

and augment P with an edge (yVA, zV) for each free variable or free atom yVA occurring in B.

6.4 Semantics of Choice-Conditions

A free variable zV in the domain of the global choice-condition C must take a value that
makes C(zV) true — if such a choice is possible. This can be formalized as follows.
Let “eval” be the standard evaluation function. Let S be any of the semantic structures
(or models) under consideration. Let δ be a valuation of the free variables and free atoms
(resulting from an S-raising-valuation of the variables and an S-valuation of the atoms).
Let χ be an arbitrary S-valuation of the bound atoms v B0 , . . . , v Bl−1, z

B. Then δ(zV) must
be a function that chooses a value that makes B true whenever possible, in the sense that
eval(S]δ]χ)(B) = TRUE implies eval(S]δ]χ)(Bµ) = TRUE for

µ := {z B 7→ zV(v B0 ) · · · (v Bl−1)}.

6.5 Substitution of Free Variables (“ε-Substitution”)

The kind of logical inference we essentially need is (problem-) reduction, the backbone of
abduction and goal-directed deduction; cf. § 5.15. In a tree of reduction steps our free
variables and free atoms show the following behavior with respect to their instantiation:

Atoms behave as constant parameters. A free variable yV, however, may be globally
instantiated with any term by application of a substitution σ; unless, of course, in case
yV is in the domain of the global choice-condition C, in which case σ must additionally
satisfy C(yV), in a sense to be explained below.

In addition, the applied substitution σ must always be an (P, N)-substitution. This
means that the current positive/negative variable-condition (P,N) remains consistent when
we extend it to its so-called σ-update, which augments P with the edges from the free
variables and free atoms in σ(zV) to zV, for each free variable zV in the domain dom(σ).

Moreover, the global choice-condition C must be updated by removing zV from its
domain dom(C) and by applying σ to the C-values of the free variables remaining in dom(C).

Now, in case of a free variable zV ∈ dom(σ) ∩ dom(C), σ satisfies the current choice-
condition C if (QC(zV))σ is valid in the context of the updated variable-condition and
choice-condition. Here, for a choice-condition C(zV) given as above, QC(zV) denotes the
formula ∀v B0 . . . . ∀v Bl−1.

( ∃z B. B ⇒ Bµ
)
,

which is nothing but our version of Hilbert’s axiom (ε0); cf. Definition 4.11. Under these
conditions, the invariance of reduction under substitution is stated in Theorem5.26(6b).

Finally, note that QC(zV) itself is always valid in our framework; cf. Lemma5.19.
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6.6 Where have all the ε-Terms gone?

After the replacement described in § 6.3 and, in more detail, in § 4.11, the ε-symbol occurs
neither in our terms, nor in our formulas, but only in the range of the current choice-
condition, where its occurrences are inessential, as explained at the end of § 4.11.

As a consequence of this removal, our formulas are much more readable than in the
standard approach of in-line presentation of ε-terms, which always was nothing but a theo-
retical presentation because in practical proofs the ε-terms would have grown so large that
the mere size of them made them inaccessible to human inspection. To see this, compare
our presentation in Example 4.10 to the one in Example 4.8, and note that the latter is
still hard to read although we have invested some efforts in finding a readable form of
presentation.

From a mathematical point of view, however, the original ε-terms are still present in
our approach; up to isomorphism and with the exception of some irrelevant term sharing.
To make these ε-terms explicit in a formula A for a given (P, N)-choice-condition C, we just
have to do the following:

Step 1: Let us consider the relation C not as a function, but as a ground term rewriting
system: This means that we read

(
zV, λv B0 . . . . λv Bl−1. εz B. B

) ∈ C as a rewrite rule
saying that we may replace the free variable zV (the left-hand side of the rule, which
is not a variable but a constant w.r.t. the rewriting system) with the right-hand side
λv B0 . . . . λv Bl−1. εz B. B in any given context as long as we want.

By Definition 5.13(3), we know that all variables in B are smaller than zV in P +. By the
consistency of our positive/negative variable-condition (P, N) (according to Definition 5.13),
we know that P + is a well-founded ordering. Thus its multi-set extension is a well-founded
ordering as well. Moreover, the multi-set of the free variable zV of the left-hand side
is bigger than the multi-set of the free-variable occurrences in the right-hand side in the
well-founded multi-set extension of P +. Thus, if we rewrite a formula, the multi-set of
the free-variable occurrences in the rewritten formula is smaller than the multi-set of the
free-variable occurrences in the original formula.

Therefore, normalization of any formula A with these rewrite rules terminates with a
formula A′.

Step 2: As typed λαβ-reduction is also terminating, we can apply it to remove the λ-terms
introduced to A′ by the rewriting of Step 1, resulting in a formula A′′.

Then — with the proper semantics for the ε-binder — the formulas A′ and A′′ are equivalent
to A, but do not contain any free variables that are in the domain of C. This means that
A′′ is equivalent to A, but does not contain ε-constrained free variables anymore.

Moreover, if the free variables in A resulted from the elimination of ε-terms as described
in §§ 4.11 and 6.3, then all λ-terms that were not already present in A are provided with
arguments and are removed by the rewriting of Step 2. Therefore, no λ-symbol occurs in
the formula A′′ if the formula A resulted from a first-order formula.

For example, if we normalize P(wV
a, x

V
b , y

V
d, z

V
h) with respect to the rewriting system

given by the (P, N)-choice-condition C of of Example 4.10, and then by λαβ-reduction,
we end up in a normal form which is the first-order formula (4.8.1) of Example 4.8, with
the exception of the renaming of some bound atoms that are bound by ε.
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If each element zV in the domain of C binds a unique bound atom z B by the ε in the
higher-order ε-term C(zV), then the normal form A′′ can even preserve our information on
committed choice when we consider any ε-term binding an occurrence of a bound atom of
the same name to be committed to the same choice. In this sense, the representation given
by the normal form is equivalent to our original one given by P(wV

a, x
V
b , y

V
d, z

V
h) and C.

6.7 Are we breaking with the Traditional Treatment of Hilbert’s ε?

Our new semantic free-variable framework was actually developed to meet the requirements
analysis for the combination of mathematical induction in the liberal style of Fermat’s
descente infinie with state-of-the-art logical deduction. The framework provides a formal
system in which a working mathematician can straightforwardly develop his proofs sup-
ported by powerful automation; cf. [Wirth, 2004].

If traditionalism meant restriction to the expressional means of the past — say the first
half of the 20th century with its foundational crisis and special emphasis on constructivism,
intuitionism, and finitism — then our approach would not classify as traditional. Although
we offer the extras of non-committed choice and a model-theoretic notion of validity,
we nevertheless see our framework based on QC as a form of (ε0) (cf. § 4.12) as an upward-
compatible extension ofHilbert–Bernays’ original framework with (ε0) as the only axiom
for the ε. And with its equivalents for the traditional ε-terms (cf. § 6.6) and with its sup-
port for the global proof transformation given by the ε-substitution methods (cf. §§ 4.12,
5.15, and 6.5), our framework is indeed deeply rooted in the Hilbert–Bernays tradition.

Note that the fear of inconsistency should have been soothed anyway in the meantime
by Wittgenstein, cf. e.g. [Diamond, 1976]. The main disadvantage of an exclusively
axiomatic framework as compared to one that also offers a model-theoretic semantics is the
following: Constructive proofs of practically relevant theorems easily become too huge and
too tedious, whereas semantic proofs are of a better manageable size. More important is
the possibility to invent new and more suitable logics for new applications with semantic
means, whereas proof transformations can refer only to already existing logics (cf. § 4.7).

We intend to pass the heritage of Hilbert’s ε on to new generations interested in
computational linguistics, automated theorem proving, and mathematics assistance sys-
tems; fields in which — with very few exceptions — the overall common opinion still is
(the wrong one) that the ε hardly can be of any practical benefit.

The differences, however, between our free-variable framework for the ε and Hilbert’s
original underspecified ε-operator, in the order of increasing importance, are the following:

1. The term-sharing of ε-terms with the help of free variables improves the readability
of our formulas considerably.

2. We do not have the requirement of globally committed choice for any ε-term:
Different free variables with the same choice-condition may take different values.
Nevertheless, ε-substitution works at least as well as in the original framework.

3. Opposed to all other classical validities for the ε (including the semantics of [Asser,
1957], [Hermes, 1965], and [Leisenring, 1969]), the implicit quantification over the
choice of our free variables is existential instead of universal. This change simplifies
formal reasoning in all relevant contexts, because we have to consider only an arbitrary
single solution (or choice, substitution) instead of checking all of them.
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7 Conclusion

Our more flexible semantics for Hilbert’s ε and our novel free-variable framework pre-
sented in this paper were developed to solve the difficult soundness problems arising in the
combination of mathematical induction in the liberal style of Fermat’s descente infinie
with state-of-the-art deduction.7 Thereby, they had passed an evaluation of their usefulness
even before they were recognized as a candidate for the semantics that Hilbert’s school
in logic may have had in mind for their ε. While this is a speculation, it is definite that the
semantic framework for Hilbert’s ε proposed in this paper has the following advantages:

Indication of Commitment: The requirement of a commitment to a choice is expressed
syntactically and most clearly by the sharing of a free variable; cf. § 4.11.

Semantics: The semantics of the ε is simple and straightforward in the sense that the
ε-operator becomes similar to the referential use of indefinite articles and determiners
in natural languages, cf. [Wirth, 2012c].

Our semantics for the ε is based on an abstract formal approach that extends a seman-
tics for closed formulas (satisfying only very weak requirements, cf. § 5.8) to a seman-
tics with existentially quantified “free variables” and universally quantified “free atoms”,
replacing the three kinds of free variables of [Wirth, 2004; 2006; 2008; 2012b; 2012c],
i.e. existential (free γ-variables), universal (free δ−-variables), and ε-constrained (free
δ+-variables). The simplification achieved by the reduction from three to two kinds
of free variables results in a remarkable reduction of the complexity of our framework
and will make its adaptation to applications much easier.

In spite of this simplification, we have enhanced the expressiveness of our framework
by replacing the variable-conditions of [Wirth, 2002; 2004; 2006; 2008; 2012b; 2012c]
with our positive/negative variable-conditions here, such that our framework now
admits us to represent Henkin quantification directly; cf. ExampleA.1. From a
philosophical point of view, this clearer differentiation also provides a deep insight
into the true nature and the relation of the δ−- and the δ+-rules.

Reasoning: Our representation of an ε-term εxB. A can be replaced with any term t
that satisfies the formula ∃xB. A ⇒ A{xB 7→t}, cf. § 4.12. Thus, the correctness of
such a replacement is likely to be expressible and verifiable in the original calculus.
Our free-variable framework for the ε is especially convenient for developing proofs
in the style of a working mathematician, cf. [Wirth, 2004; 2006; 2012b]. Indeed,
our approach makes proof work most simple because we do not have to consider all
proper choices t for x (as in all other model-theoretic approaches) but only a single
arbitrary one, which is fixed in a global proof transformation step.

Finally, we hope that our new semantic framework will help to solve further practical and
theoretical problems with the ε and improve the applicability of the ε as a logic tool for
description and reasoning. And already without the ε (i.e. for the case that the choice-
condition is empty, cf. e.g. [Wirth, 2012a; 2014]), our free-variable framework should find
a multitude of applications in all areas of computer-supported reasoning.
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A Henkin Quantification and IF Logic

In [Wirth, 2012c, § 6.4.1], we showed that Henkin quantification was problematic for the
variable-conditions of that paper, which had only one component, namely the positive one
of our positive/negative variable-conditions here: Indeed, there the only way to model an
example of a Henkin quantification precisely was to increase the order of some variables
by raising. Let us consider the same example here again and show that now we can model
its Henkin quantification directly with a consistent positive/negative variable-condition,
but without raising.

Example A.1 (Henkin Quantification)

In [Hintikka, 1974], quantifiers in first-order logic were found insufficient to give the pre-
cise semantics of some English sentences. In [Hintikka, 1996], IF logic, i.e. Independence-
Friendly logic — a first-order logic with more flexible quantifiers — was presented to over-
come this weakness. In [Hintikka, 1974], we find the following sentence:

Some relative of each villager and
some relative of each townsman hate each other. (H0)

Let us first change to a lovelier subject:

Some loved one of each woman and
some loved one of each man love each other. (H1)

For our purposes here, we consider (H1) to be equivalent to the following sentence, which
may be more meaningful and easier to understand:

We can fix a loved one for each woman and a loved one for each man, such that
for every pair of woman and man, these loved ones could love each other.

(H1) can be represented by the following Henkin-quantified IF-logic formula:

∀xB0 . ∀y B0 .




(
Female(xB0)

∧ Male(y B0 )

)
⇒ ∃y B1/y B0 . ∃xB1/xB0 .




Loves(xB0 , y
B
1 )

∧ Loves(y B0 , xB1)
∧ Loves(y B1 , xB1)
∧ Loves(xB1 , y

B
1 )





 (H2)

Let us refer to the standard game-theoretic semantics for quantifiers (cf. e.g. [Hintikka,
1996]), which is defined as follows: Witnesses have to be picked for the quantified variables
outside-in. We have to pick the witnesses for the γ-quantifiers (i.e., in (H2), for the existen-
tial quantifiers), and our opponent in the game picks the witnesses for the δ-quantifiers
(i.e. for the universal quantifiers in (H2)). We win if the resulting quantifier-free formula
evaluates to true. A formula is true if we have a winning strategy.

Then an IF-logic quantifier such as “∃y B1/y B0 .” in (H2) is a special quantifier, which is
a bit different from “∃y B1 .”. Game-theoretically, it has the following semantics: It asks us
to pick the loved one y B1 independently from the choice of the man y B0 (by our opponent in
the game), although the IF-logic quantifier occurs in the scope of the quantifier “∀y B0 .”.



60

Note that Formula (H2) is already close to anti-prenex form. In fact, if we move its
quantifiers closer toward the leaves of the formula tree, this does not admit us to reduce
their dependencies. It is more interesting, however, to move the quantifiers of (H2) out
— to obtain prenex form — and then to simplify the prenex by using the equivalence of
“∀y B0 . ∃y B1/y B0 .” and “∃y B1 . ∀y B0 .”, resulting in:

∀xB0 . ∃y B1 . ∀y B0 . ∃xB1/xB0 .




(
Female(xB0)

∧ Male(y B0 )

)
⇒




Loves(xB0 , y
B
1 )

∧ Loves(y B0 , xB1)
∧ Loves(y B1 , xB1)
∧ Loves(xB1 , y

B
1 )





 (H2′)

Note that this formula is stronger than the following formula with standard quantifiers:

∀xB0 . ∃y B1 . ∀y B0 . ∃xB1 .




(
Female(xB0)

∧ Male(y B0 )

)
⇒




Loves(xB0 , y
B
1 )

∧ Loves(y B0 , xB1)
∧ Loves(y B1 , xB1)
∧ Loves(xB1 , y

B
1 )





 (S2′)

An alternative way to define the semantics of IF-logic quantifiers is by describing their effect
on the equivalent raised forms of the formulas in which they occur. Raising is a dual of
Skolemization, cf. [Miller, 1992]. The raised form of (S2′) is the following:

∃y B1 . ∃xB1 . ∀xB0 . ∀y B0 .




(
Female(xB0)

∧ Male(y B0 )

)
⇒




Loves(xB0 , y
B
1 (xB0))

∧ Loves(y B0 , xB1(y
B
0 , xB0))

∧ Loves(y B1 (xB0), x
B
1(y

B
0 , xB0))

∧ Loves(xB1(y
B
0 , xB0), y

B
1 (xB0))





 (S3)

For Henkin-quantified IF-logic formulas, the raised form is defined as usual, besides that
a γ-quantifier, say “∃xB1 .”, followed by a slash as in “∃xB1/xB0 .”, is raised such that xB0 does
not appear as an argument to the raising function for xB1 . Accordingly, mutatis mutandis,
(H2) as well as (H2′) are equivalent to their common raised form (H3) below, where xB0
does not occur as an argument to the raising function xB1 — contrary to (S3), which is
strictly implied by (H3) because we can choose the loved one of the woman differently for
different men.

∃y B1 . ∃xB1 . ∀xB0 . ∀y B0 .




(
Female(xB0)

∧ Male(y B0 )

)
⇒




Loves(xB0 , y
B
1 (xB0))

∧ Loves(y B0 , xB1(y
B
0 ))

∧ Loves(y B1 (xB0), x
B
1(y

B
0 ))

∧ Loves(xB1(y
B
0 ), y B1 (xB0))





 (H3)

Now, (H3) looks already very much like the following tentative representation of (H1) in
our framework of free atoms and variables:

(
Female(xA0)

∧ Male(yA0 )

)
⇒




Loves(xA0 , y
V
1)

∧ Loves(yA0 , xV1)
∧ Loves(yV1 , x

V
1)

∧ Loves(xV1, y
V
1)


 (H1′)

with choice-condition C given by

C(yV1) := εy B1 . (Female(xA0) ⇒ Loves(xA0 , y
B
1 ))

C(xV1) := εxB1 . (Male(yA0 ) ⇒ Loves(yA0 , xB1))

which requires our positive/negative variable-condition (P, N) to contain (xA0 , y
V
1) and (yA0 , xV1)

in the positive relation P (by item3 of Definition 5.13).
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The concrete form of this choice-condition C was chosen to mirror the structure of
the natural-language sentence (H1) as close as possible. Actually, however, we do not
need exactly this choice-condition here. Indeed, to find a representation in our framework,
we could also work with an empty choice-condition. Crucial for our discussion, however,
is that we can have (xA0 , y

V
1), (y

A
0 , xV1)∈P ;

otherwise the choice of the loved ones could not depend on their lovers.

In any case, we can add (yV1 , y
A
0 ) to the negative relation N here, namely to express

that yV1 must not read yA0 . Then we obtain:

yV1
N

((

xA0
Poo

xV1 yA0
Poo

The same variable-condition is also obtained if we start with the empty variable-condition
(P, N) := (∅, ∅), remove all quantifiers from (S2′) with our γ- and δ−-rules, and then add
{(xA0 , yV1), (yA0 , xV1)} to P. The corresponding procedure for (H2′), however, has to add also
(xV1, x

A
0) to N as part of the last γ-step that removes the IF-logic quantifier “∃xB1/xA0 .” and

replaces xB1 with xV1. After this procedure, our current positive/negative variable-condition
is now given as (P, N) with P = {(xA0 , yV1), (yA0 , xV1)} and N = {(yV1 , yA0 ), (xV1, x

A
0)}. Thus,

we have a single cycle in the graph, namely the following one:

yV1
N

((

xA0
Poo

xV1

N

66

yA0
Poo

But this cycle necessarily has two edges from the negative relation N . Thus, in spite of
this cycle, our positive/negative variable-condition (P, N) is consistent by Corollary 5.5.

With the variable-conditions of [Wirth, 2002; 2004; 2006; 2008; 2012b; 2012c], however,
this cycle necessarily destroys the consistency, because they have no distinction between
the edges of N and P .

Therefore — if the discussion in [Wirth, 2012c, § 6.4.1] is sound — our new framework
of this paper with positive/negative variable-conditions is the only one among all approaches
suitable for describing the semantics of noun phrases in natural languages that admits us
to model IF-logic and Henkin quantifiers without raising.
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While the rules for δ-quantifiers of IF logic work just like our normal δ-rules (indeed,
the law of the excluded middle fails to hold in IF logic in general), we can now formalize
the inference rule for the γ-quantifiers of IF logic as follows:

Let xVA be a free variable or a free atom.
Let t be any term not containing xVA (i.e. xVA 6∈VA(t)):

Γ ∃y B/xVA. A Π

A{y B 7→t} Γ ∃y B/xVA. A Π V(t)× {xVA}

Γ ¬∀y B/xVA. A Π

¬A{y B 7→t} Γ ¬∀y B/xVA. A Π V(t)× {xVA}

Here, V(t)×{xVA} should be added to N, the negative part of the current positive/negative
variable-condition (P, N) — no matter whether we have the case xVA ∈V or actually xVA ∈A.
Note that the first of these two cases may violate our range restriction for the negative part
given in Definition 5.3, but we already remarked in § 5.6 that this range restriction was
only to simplify matters in this paper.

Moreover, note that, because xVA is not fresh but was typically introduced by a previous
application of a δ−- or δ+-rule, the application of a γ-rule for IF-logic quantifiers could
result in an inconsistent positive/negative variable-condition. Thus, we have to add the
requirement for the consistency of the resulting variable-condition as a precondition for the
application of these new inference rules.

With these γ-rules for IF-logic quantifiers, we can obtain the cyclic graph above from
(H2) or (H2′) just as we obtained the non-cyclic graph above from (S2′). If we replace
the two applications of δ−-rules here with two applications of δ+-rules and start from (H2),
then the resulting graph becomes

yV1
N

((

xV0
Poo

P
²²

xV1

N

66

yV0
Poo

If we start from (H2′), we obtain
yV1

P

((RRRRRRRRRRRRRRRRRRR xV0
Poo

P
²²

xV1

N

66

yV0
Poo

Each of these graphs has the same cycle with only one edge from the negative part N,
which means that each of the variable-conditions is inconsistent. Thus, it seems that the
application of δ+-rules to δ-quantifiers with IF-logic γ-quantifiers in their scope is not to be
recommended and the δ−-rules should be used instead, just as for outer δ-quantifiers over
which we want to do mathematical induction in the style of descente infinie. If we always
do so, free variables will hardly occur in the second component of IF-logic quantifiers, and
then we can get along with the case of xVA ∈A in the above new γ-rules and do not have
to modify our range restriction on the negative part of our positive/negative variable-con-
ditions.
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B Semantics for Hilbert’s ε in the Literature

Here in §B of the appendix, we will review the literature on the ε’s semantics with an
emphasis on practical adequacy and the intentions of the Hilbert school in logic.

B.1 Right-Unique Semantics

In contrast to the indefiniteness we suggested in § 4.8, nearly all semantics for Hilbert’s ε
found elsewhere in the literature are functional, i.e. [right-] unique; cf. e.g. [Leisenring,
1969] and the references there.

B.1.1 Extensionality:
Ackermann’s (II,4) = Bourbaki’s (S7) = Leisenring’s (E2)

In [Ackermann, 1938] under the label (II,4), in [Bourbaki, 1939ff.] under the label (S7)
(where a τ is written for the ε, which must not be confused with Hilbert’s τ -operator8),
and in [Leisenring, 1969] under the label (E2), we find the following axiom scheme, which
we presented already in § 4.10:

∀xB. (A0 ⇔ A1) ⇒ εxB. A0 = εxB. A1 (E2)

This axiom (E2) must not be confused with the similar formula (E2′) from [Wirth, 2008,
Lemma31, § 5.6] and [Wirth, 2012c, Lemma5.18, § 5.6], which reads in our new framework
here as follows: ∀xB. (A0 ⇔ A1) ⇒ xV0 = xV1 (E2′)

for two different xV0, x
V
1 ∈ V\V(A1, A2, dom(P∪N)) and for a (P, N)-choice-condition C

with C(xVi ) = εxB. Ai for i ∈ {0, 1}. Our (E2′) can be shown to be (C, (P,N))-valid by
applying Theorem5.26(1,5a,6a): Indeed, we can apply the substitution {xV1 7→yV} after an
extended extension (C ′, (P ′, N)) for a fresh variable yV ∈ V \ V(A1, A2, x

V
0, x

V
1, dom(P∪N))

with C ′(yV) = εy B.

( ( ∀xB. (A0 ⇔ A1) ⇒ y B = xV0
)

∧ ( ¬∀xB. (A0 ⇔ A1) ⇒ A1{xB 7→y B} )
)

.9

Contrary to the valid proposition (E2′), however, (E2) is an axiom that imposes a
right-unique behavior for the ε (in the standard framework), depending on the extension
of the formula forming the scope of an ε-binder on xB, seen as a predicate on xB. Indeed
— from a semantic point of view — the value of εxB. A in each Σ-structure S is function-
ally dependent on the extension of the formula A, i.e. on { o | eval(S ] {xB 7→o})(A) }.

Therefore, axiomatizations that have (E2) as an axiom or as a consequence of other
axioms are called extensional.

Note that (E2) has a disastrous effect in intuitionistic logic: The contrapositive of (E2)
— together with (ε0) and say “0 6= 1” — turns every classical validity into an intuitionistic
one.10 For the strong consequences of the ε-formula in intuitionistic logic, see also Note 8.
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B.1.2 Weaker than (E2), but still Right-Unique

To overcome this disastrous effect and to get more options for the definition of a semantics
of the ε in general, in [Asser, 1957], [Meyer-Viol, 1995], and [Giese & Ahrendt,
1999] the value of εxB. A may additionally depend on the syntax besides the semantics
of the formula in the scope of the ε. The semantics of the ε is then given as a function
depending on a Σ-structure and on the syntactic details of the term εxB. A. In [Giese
& Ahrendt, 1999, p.177] we read: “This definition contains no restriction whatsoever on
the valuation of ε-terms.” This claim, however, is not justified in its universality, because
all considered options do still impose the restriction of a right-unique behavior; thereby
the claim denies the possibility of an indefinite behavior as given in §§ 4.10 and 4.11. See
also §B.2 for an alternative realization of an indefinite semantics.

B.1.3 Overspecification even beyond (E2)

In [Hermes, 1965, p.18], the ε suffers further overspecification in addition to (E2):

εx. false = εx. true (ε5)
Roughly speaking, this axiom sets the value of a generalized choice function on the empty
set to its value on the whole universe. For classical logic, we can combine (E2) and (ε5)
into the following axiom of [DeVidi, 1995] for “very extensional” semantics:

∀x.

(
(∃y. A0{x 7→y} ⇒ A0)

⇔ (∃y. A1{x 7→y} ⇒ A1)

)
⇒ εx.A0 = εx.A1 (vext)

Indeed, (vext) implies (E2) and (ε5). The other direction, however, does not hold for
intuitionistic logic, where, roughly speaking, (vext) additionally implies that if the same
elements make A0 and A1 as true as possible, then the ε-operator picks the same element of
this set, even if the suprema ∃y.A0{x 7→y} and ∃y. A1{x 7→y} (in the complete Heyting
algebra) are not equally true.

B.1.4 Strengthening Semantics to Turn Axiomatizations Complete

Although we have been concerned with soundness and safeness of our inference systems,
we always accepted their incompleteness as the natural companion of semantics that are
sufficiently weak to be useful in practice. Of course, completeness is the theoreticians’
favorite puzzle because — as a global property of inference systems — it may be hard
to prove, even for inconsistent systems. The objective of completeness gets particularly
detached from practical usefulness, if a useful semantics is strengthened to obtain the
completeness of a given inference system. Let us look at two examples for this procedure,
resulting in practically useless semantics for the ε.

Different possible choices for the value of the generalized choice function on the empty
set are discussed in [Leisenring, 1969]. As the consequences of any special choice are
quite queer, the only solution that is found to be sufficiently adequate in [Leisenring,
1969] is validity in all models given by all generalized choice functions on the power-set of
the universe. Note, however, that even in this case, in each model, the value of εx. A is
functionally dependent on the extension of A.
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Roughly speaking, in the textbook [Leisenring, 1969], the axioms (ε1) and (ε2) from
§ 4.6 and (E2) from § 4.10 are shown to be complete w.r.t. this semantics of the ε in first-
order logic.

This completeness makes it unlikely that extensional semantics matches the intentions of
Hilbert’s school in logic. Indeed, if their intended semantics for the ε could be completely
captured by adding the single and straightforward axiom (E2), this axiom would not have
been omitted in [Hilbert & Bernays, 1939]; it would at least be possible to derive (E2)
from some axiomatization in [Hilbert & Bernays, 1939].

What makes Leisenring’s notion of validity problematic for theorem proving is that a
proof has to consider all appropriate choice functions and cannot just pick an advantageous
single one of them. More specifically, when Leisenring does the step from satisfiability
to validity he does the double duality switch from existence of a model and the existence
of a choice function to all models and to all choice functions. Our notion of validity in
Definition 5.17 does not switch the second duality, but stays with the existence of a choice
function. Considering the influence that [Leisenring, 1969] still has today, our avoidance
of the universality requirement for choice functions in the definition of validity may be
considered our practically most important conceptual contribution to the ε’s semantics.
If we stuck to Leisenring’s definition of validity, then we would either have to give up the
hope of finding proofs in practice, or have to avoid considering validity (beyond truth) in
connection with Hilbert’s ε, which is Hartley Slater’ solution, carefully observed in
[Slater, 1994; 2002; 2007b; 2009; 2011].

This whole misleading procedure of strengthening semantics to obtain completeness
for axiomatizations of the ε actually originates in [Asser, 1957]. The main objective of
[Asser, 1957], however, is to find a semantics such that the basic ε-calculus of [Hilbert
& Bernays, 1939] — not containing (E2) — is sound and complete for it. This semantics,
however, has to depend on the details of the syntactic form of the ε-terms and, moreover,
turns out to be necessarily so artificial that Asser [1957] does not recommend it himself
and admits that he thinks that it could not have been intended in [Hilbert & Bernays,
1939].

“Allerdings ist dieser Begriff von Auswahlfunktion so kompliziert, daß sich seine
Verwendung in der inhaltlichen Mathematik kaum empfiehlt.”

[Asser, 1957, p. 59]

“This notion of a choice function, however,” (i.e. the type-3 choice function,
providing a semantics for the ε-operator) “is so intricate that its application in
contentual mathematics is hardly to be recommended.”

“Angesichts der Kompliziertheit des Begriffs der Auswahlfunktion dritter Art
ergibt sich die Frage, ob bei Hilbert–Bernays (” . . . “) wirklich beabsichtigt
war, diesen Begriff von Auswahlfunktion axiomatisch zu beschreiben. Aus der
Darstellung bei Hilbert–Bernays glaube ich entnehmen zu können, daß das
nicht der Fall ist,” [Asser, 1957, p. 65]

“The intricacy of the notion of the type-3 choice function puts up the question
whether the intention in [Hilbert & Bernays, 1939] (” . . . “) really was to
describe this notion of choice function axiomatically. I believe I can draw from
the presentation in [Hilbert & Bernays, 1939] that that is not the case,”
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B.1.5 Roots of the Misunderstanding of a Right-Uniqueness Requirement

The described prevalence of the right-uniqueness requirement may have its historical justifi-
cation in the fact that, if we expand the dots “. . . ” in the quotation preceding Example 4.2
in § 4.6, the full quotation on p.12 of [Hilbert & Bernays, 1939; 1970] reads:

“Das ε-Symbol bildet somit eine Art der Verallgemeinerung des µ-Symbols für
einen beliebigen Individuenbereich. Der Form nach stellt es eine Funktion eines
variablen Prädikates dar, welches außer demjenigen Argument, auf welches sich
die zu dem ε-Symbol gehörige gebundene Variable bezieht, noch freie Variable
als Argumente (“Parameter”) enthalten kann. Der Wert dieser Funktion für ein
bestimmtes Prädikat A (bei Festlegung der Parameter) ist ein Ding des Indivi-
duenbereichs, und zwar ist dieses Ding gemäß der inhaltlichen Übersetzung der
Formel (ε0) ein solches, auf das jenes Prädikat A zutrifft, vorausgesetzt, daß es
überhaupt auf ein Ding des Individuenbereichs zutrifft.”

“Thus, the ε-symbol forms a kind of generalization of the µ-symbol for an arbi-
trary domain of individuals. According to its form, it constitues a function
of a variable predicate, which may contain free variables as arguments (“para-
meters”) in addition to the argument to which the bound variable of the ε-symbol
refers. The value of this function for a given predicate A (for fixed parameters)
is a thing of the domain of individuals for which — according to the contentual
translation of the formula (ε0) — the predicate A holds, provided that A holds
for any thing of the domain of individuals at all.”

Here the word “function” could be misunderstood in its narrower mathematical sense,
namely to denote a (right-) unique relation. It is stated to be a function, however, only
“according to its form”, which — in the vernacular that becomes obvious from reading
[Hilbert & Bernays, 2017b] — means nothing but “with respect to the process of the
formation of formulas”. Thus, Hilbert–Bernays’ notation of the ε takes the syntactic
form of a function. This syntactic weakness was not bothering the work of the Hilbert
school in the field of proof theory. With our more practical intentions, the ε’s form of a func-
tion turns out as a problem even regarding syntax alone, cf. §§ 4.10 and 4.11. And we are
not the only ones who have seen this applicational problem: For instance, in [Heusinger,
1997], an index was introduced to the ε to overcome right-uniqueness.

If we nevertheless read “function” as a right-unique relation in the above quotation, what
kind of function could be meant but a choice function, choosing an element from the set of
objects that satisfy A, i.e. from its extension { o | eval(S ] {xB 7→o})(A) }. Accordingly,
in the earlier publication [Hilbert, 1928], we read (p. 68):

“Darüber hinaus hat das ε die Rolle der Auswahlfunktion, d. h. im Falle, wo
Aa auf mehrere Dinge zutreffen kann, ist εA irgendeines von den Dingen a,
auf welche Aa zutrifft.”

“Beyond that, the ε has the rôle of the choice function, i.e., if Aa may hold for
several objects, εA is an arbitrary one of the things a for which Aa holds.”
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Regarding the notation in this quotation, the syntax of the ε is not that of a binder here,
but a functional ε : (i→ o)→ i, applied to A : i→ o.

The meaning of having “the rôle of the choice function” is defined by the text that
follows in the quotation. Thus, it is obvious that Hilbert wants to state the arbitrariness
of choice as given by an arbitrary choice function, and that the word “function” does not
refer to a requirement of right-uniqueness here.

Moreover, note that the definite article in “the choice function” (instead of the indefinite
one) is in conflict with an interpretation as a mathematical function in the narrower sense
as well.

Furthermore, David Hilbert was sometimes pretty sloppy with the usage of choice
functions in general: For instance, he may well have misinterpreted the consequences of
the ε on the Axiom of Choice (cf. [Rubin & Rubin, 1985], [Howard & Rubin, 1998]) in
the one but last paragraph of [Hilbert, 1923a]. Let us therefore point out the following:
Although the ε supplies us with a syntactic means for expressing an indefinite univer-
sal (generalized) choice function (cf. § 5.2), the axioms (E2), (ε0), (ε1), and (ε2) do not
imply the Axiom of Choice in set theories, unless the axiom schemes of Replacement (Col-
lection) and Comprehension (Separation, Subset) also range over expressions containing
the ε; cf. [Leisenring, 1969, § IV 4.4].

Hilbert’s school in logic may well have wanted to express what we call “committed
choice” today, but they simply used the word “function” for the following three reasons:

1. They were not too much interested in semantics anyway.

2. The technical term “committed choice” did not exist at their time.

3. Last but not least, right-uniqueness conveniently serves as a global commitment to
any choice and thereby avoids the problem illustrated in Example 4.6 of § 4.8.

B.2 Indefinite Semantics in the Literature

The only occurrence of an indefinite semantics for Hilbert’s ε in the literature seems to be
[Blass & Gurevich, 2000] (and the references there), unless we count the indexed ε of
[Heusinger, 1997] for indefinite indices as such a semantics as well. The right-uniqueness
is actually so prevalent in the literature that a “δ ” is written instead of an “ε” in [Blass
& Gurevich, 2000], because there the right-unique behavior is considered to be essential
for the ε.

Consider the formula εx. (x = x) = εx. (x = x) from [Blass & Gurevich, 2000]
or the even simpler εx. true = εx. true (discussed already in § 4.10), which may be valid
or not, depending on the question whether the same object is taken on both sides of the
equation or not. In natural language this like “Something is equal to something.”, whose
truth is indefinite. If you do not think so, consider εx. true 6= εx. true in addition,
i.e. “Something is unequal to something.”, and notice that the two sentences seem to be
contradictory.
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In [Blass & Gurevich, 2000], Kleene’s strong three-valued logic is taken as a
mathematically elegant means to solve the problems with indefiniteness. In spite of the the-
oretical significance of this solution, however, Kleene’s strong three-valued logic severely
restricts its applicability from a practical point of view: In applications, a logic is not
an object of investigation but a meta-logical tool, and logical arguments are never made
explicit because the presence of logic is either not realized at all or taken to be trivial, even
by academics (unless they are formalists); see, for instance, [Pinkal &al., 2001, p.14f.]
for Wizard of Oz studies with young students.

Therefore, regarding applications, we had better stick to our common meta-logic, which
in the western world is a subset of (modal) classical logic: A western court may accept that
Lee Harvey Oswald killed John F. Kennedy as well as that he did not — but cannot
accept a third possibility, a tertium, as required for Kleene’s strong three-valued logic,
and especially not the interpretation given in [Blass & Gurevich, 2000], namely that
he both did and did not kill him, which contradicts any common sense.



69

C The Proofs

Proof of Lemma5.16

Under the given assumptions, set ¢ := P + and Sπ := A»¢.

ClaimA: ¢ = P + = (P ∪ Sπ)+ is a well-founded ordering.

ClaimB: (P ∪ Sπ, N) is a consistent positive/negative variable-condition.

ClaimC: Sρ ⊆ A»¢ = Sπ ⊆ ¢.

ClaimD: Sπ ◦¢ ⊆ Sπ.

Proof of Claims A, B, C, and D: (P, N) is consistent because C is a (P,N)-choice-
condition. Thus, P is well-founded and ¢ = P + = (P ∪ Sπ)+ is a well-founded ordering.
Moreover, we have Sρ, Sπ, P ⊆ ¢. Thus, (P,N) is a weak extension of (P ∪ Sπ, N). Thus,
by Corollary 5.7, (P ∪ Sπ, N) is a consistent positive/negative variable-condition. Finally,
Sπ ◦¢ = A»¢ ◦¢ ⊆ A»¢ = Sπ. Q.e.d. (Claims A, B, C, and D)

By recursion on yV ∈ V in ¢, we can define π(yV) : (Sπ〈{yV}〉 → S)→ S as follows.

Let τ ′ : Sπ〈{yV}〉 → S be arbitrary.

yV ∈ V\dom(C): If an S-raising-valuation ρ is given, then we set
π(yV)(τ ′) := ρ(yV)(Sρ〈{yV}〉»τ ′);

which is well-defined according to ClaimC. Otherwise, we choose an arbitrary value for
π(yV)(τ ′) from the universe of S (of the appropriate type). Note that S is assumed to
provide some choice function S(∃) for the universe function S(∀) according to § 5.8.

yV ∈ dom(C): In this case, we have the following situation: C(yV) = λv B0 . . . . λv Bl−1. εv Bl . B
for some formula B and some v B0 , . . . , v Bl ∈ B with v B0 : α0, . . . , v Bl : αl,

yV : α0 → . . .→ αl−1 → αl, and zVA ¢ yV for all zVA ∈ VA(B), because C is a (P, N)-
choice-condition. In particular, by ClaimA, yV /∈ V(B).

In this case, with the help of the assumed generalized choice function on the power-
set of the universe of S of the sort αl, we let π(yV)(τ ′) be the function f that
for χ : {v B0 , . . . , v Bl−1} → S chooses a value from the universe of S of type αl for
f(χ(v B0 )) · · · (χ(v Bl−1)), such that,

if possible, B is true in S ] δ′ ] χ′,

for δ′ := e(π)(τ ′ ] τ ′′) ] τ ′ ] τ ′′ ] χ for an arbitrary τ ′′ : (A\dom(τ ′))→ S, and
for χ′ := {v Bl 7→ f(χ(v B0 )) · · · (χ(v Bl−1))}.
Note that the point-wise definition of f is correct: by the Explicitness Lemma and
because of yV /∈ V(B), the definition of the value of f(χ(v B0 )) · · · (χ(v Bl−1)) does not depend
on the values of f(χ′′(v B0 )) · · · (χ′′(v Bl−1)) for a different χ′′ : {v B0 , . . . , v Bl−1} → S. Therefore,
the function f is well-defined, because it also does not depend on τ ′′ according to the
Explicitness Lemma and Claim 1 below. Finally, π is well-defined by induction on ¢

according to Claim 2 below.

Claim 1: For zVA ¢ yV, the application term (δ′ ] χ′)(zVA) has the the value τ ′(zVA) in case
of zVA ∈ A, and the value π(zVA)(Sπ〈{zVA}〉»τ ′) in case of zVA ∈ V.

Claim2: The definition of π(yV)(τ ′) depends only on such values of π(vV) with vV ¢ yV,
and does not depend on τ ′′ at all.
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Proof of Claim 1: For zVA ∈ A the application term has the value τ ′(zVA) because of
zVA ∈Sπ〈{yV}〉. Moreover, for zVA ∈ V, we have Sπ〈{zVA}〉 ⊆ Sπ〈{yV}〉 by ClaimD,
and therefore the applicative term has the value π(zVA)(Sπ〈{zVA}〉»(τ ′ ] τ ′′)) =π(zVA)(Sπ〈{zVA}〉»τ ′).

Q.e.d. (Claim 1)

Proof of Claim 2: In case of yV 6∈ dom(C), the definition of π(yV)(τ ′) is immediate and
independent. Otherwise, we have zVA ¢ yV for all zVA ∈ VA(C(yV)). Thus, Claim 2 follows
from the Explicitness Lemma and Claim 1. Q.e.d. (Claim 2)

Moreover, π : V→ (A ; S) ; S is obviously an S-raising-valuation. Thus, item1 of
Definition 5.15 is satisfied for π by ClaimB.

To show that also item2 of Definition 5.15 is satisfied, let us assume yV ∈ dom(C) and
τ : A→ S to be arbitrary with C(yV) = λv B0 . . . . λv Bl−1. εv Bl . B, and let us then assume to
the contrary of item2 that, for some χ : {v B0 , . . . , v Bl } → S and for δ := e(π)(τ) ] τ ]χ and
σ := {v Bl 7→ yV(v B0 ) · · · (v Bl−1)}, we have eval(S ] δ)(B) = TRUE and eval(S ] δ)(Bσ) =
FALSE.

Set τ ′ := Sπ〈{yV}〉»τ and τ ′′ := A\dom(τ ′)»τ .
Set δ′ := VAB\{v Bl }»δ and f := π(yV)(τ ′).

Set χ′ := {v Bl 7→ f(χ(v B0 )) · · · (χ(v Bl−1))} .
Then δ′ = e(π)(τ ′ ] τ ′′) ] τ ′ ] τ ′′ ] {v0,...,vl−1}»χ. Moreover, by the Explicitness
Lemma, we have δ′ = VAB\{v Bl }»id ◦ eval(S ] δ).

By the Valuation Lemma we have
eval(S ] δ)(yV(v B0 ) · · · (v Bl−1))

= δ(yV)(δ(v B0 )) · · · (δ(v Bl−1))
= e(π)(τ)(yV)(χ(v B0 )) · · · (χ(v Bl−1))
= π(yV)(τ ′)(χ(v B0 )) · · · (χ(v Bl−1))
= f(χ(v B0 )) · · · (χ(v Bl−1)).

Thus, χ′ = σ ◦ eval(S ] δ).

Thus, δ′ ] χ′ = (VAB\{v Bl }»id ] σ) ◦ eval(S ] δ).

Thus, we have, on the one hand,
eval(S ] δ′ ] χ′)(B)

= eval(S ] ((VAB\{v Bl }»id ] σ) ◦ eval(S ] δ)))(B)

= eval(S ] δ)(Bσ)
= FALSE,

where the second equation holds by the Substitution [Value] Lemma.

Moreover, on the other hand, we have
eval(S ] δ′ ] {v Bl }»χ)(B)

= eval(S ] δ)(B)
= TRUE.

This means that a value (such as χ(v Bl )) could have been chosen for f(χ(v B0 )) · · · (χ(v Bl−1))
to make B true in S ] δ′ ] χ′, but it was not. This contradicts the definition of f.

Q.e.d. (Lemma5.16)
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Proof of Lemma5.19
Let C(yV) = λv B0 . . . . λv Bl−1. εv Bl . B for a formula B. Set σ := {v Bl 7→ yV(v B0 ) · · · (v Bl−1)}.
Then we have QC(yV) = ∀v B0 . . . . ∀v Bl−1.

( ∃v Bl . B ⇒ Bσ
)
. Let π be S-compatible

with (C, (P,N)); namely, in the case of item1, the π mentioned in the lemma, or, in the
case of item2, the π that exists according to Lemma5.16. Let τ : A→ S be arbitrary.
It now suffices to show eval(S ] e(π)(τ) ] τ)(QC(yV)) = TRUE. By the backward direc-
tion of the ∀-Lemma, it suffices to show eval(S ] δ)(∃v Bl . B ⇒ Bσ) = TRUE for an
arbitrary χ : {v B0 , . . . , v Bl−1} → S, setting δ := e(π)(τ) ] τ ] χ. By the backward direction
of the ⇒-Lemma, it suffices to show eval(S ] δ)(Bσ) = TRUE under the assumption of
eval(S ] δ)(∃v Bl . B) = TRUE. From the latter, by the forward direction of the ∃-Lemma,
there is a χ′ : {v Bl } → S such that eval(S ] δ ] χ′)(B) = TRUE. By item2 of Defini-
tion 5.15, we get eval(S ] δ ] χ′)(Bσ) = TRUE. By the Explicitness Lemma, we get
eval(S ] δ)(Bσ) = TRUE. Q.e.d. (Lemma5.19)

Proof of Lemma5.21
Let us assume that π is S-compatible with (C ′, (P ′, N ′)). Then, by item1 of Defini-
tion 5.15, π : V→ (A ; S) ; S is an S-raising-valuation and (P ′ ∪Sπ, N ′) is consistent.
As (P ′, N ′) is an extension of (P, N), we have P⊆P ′ and N⊆N ′. Thus, (P ′ ∪Sπ, N ′) is
an extension of (P ∪Sπ, N). Thus, (P ∪Sπ, N) is consistent by Corollary 5.7. For π to be
S-compatible with (C, (P,N)), it now suffices to show item2 of Definition 5.15. As this
property does not depend on the positive/negative variable-conditions anymore, it suffices
to note that it actually holds because it holds for C ′ by assumption and we also have C⊆C ′

by assumption. Q.e.d. (Lemma5.21)

Proof of Lemma5.23

By assumption, (C ′, (P ′, N ′)) is the extended σ-update of (C, (P, N)). Thus, (P ′, N ′) is
the σ-update of (P,N). Thus, because σ is a (P, N)-substitution, (P ′, N ′) is a consistent
positive/negative variable-condition by Definition 5.9. Moreover, C is a (P,N)-choice-
condition. Thus, C is a partial function from V into the set of higher-order ε-terms, such
that Items 1, 2, and 3 of Definition 5.13 hold. Thus, C ′ is a partial function from V into
the set of higher-order ε-terms satisfying items 1 and 2 of Definition 5.13 as well. For C ′

to satisfy also item3 of Definition 5.13, it now suffices to show the following Claim 1.

Claim 1: Let yV ∈ dom(C ′) and zVA ∈ VA(C ′(yV)). Then we have zVA (P ′)+ yV.

Proof of Claim 1: By the definition of C ′, we have zVA ∈VA(C(yV)) or else there is some
xV ∈ dom(σ) ∩ V(C(yV)) with zVA ∈VA(σ(xV)). Thus, as C is a (P,N)-choice-condition,
we have either zVA P + yV or else xV P + yV and zVA ∈VA(σ(xV)). Then, as (P ′, N ′) is the
σ-update of (P, N), by Definition 5.8, we have either zVA (P ′)+ yV or else xV (P ′)+ yV and
zVA P ′ xV. Thus, in any case, zVA (P ′)+ yV. Q.e.d. (Claim 1)

Q.e.d. (Lemma5.23)
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Proof of Lemma5.24

Let us assume the situation described in the lemma.

We set A := dom(σ)\(O′]O). As σ is a substitution on V, we have dom(σ) ⊆ O′]O]A ⊆ V.
←−−−−−−−−−−−−−−−−−−−−−−−V−−−−−−−−−−−−−−−−−−−−−−−→

←−−−−−−−−dom(C)−−−−−−−−→
←−−−−−−−−dom(σ)−−−−−−−−→

←−−−−O′−−−−→←−O−→←−−−−A−−−−→

Note that C ′ is a (P ′, N ′)-choice-condition by Lemma5.23.

As π′ is S-compatible with (C ′, (P ′, N ′)), we know that (P ′ ∪ Sπ′ , N
′) s a consistent posi-

tive/negative variable-condition. Thus, ¢ := (P ′ ∪ Sπ′)
+ is a well-founded ordering.

Let D be the dependence relation of σ. Set Sπ := A»¢.

Claim 1: We have P ′, Sπ′ , P,D, Sπ ⊆ ¢ and
(P ′∪Sπ′ , N

′) is a weak extension of (P ∪ Sπ, N) and of (¢, N) (cf. Definition 5.6).

Proof of Claim 1: As (P ′, N ′) is the σ-update of (P, N), we have P ′ = P ∪D and N ′ = N .
Thus, P ′, Sπ′ , P,D, Sπ ⊆ (P ′ ∪ Sπ′)

+ = ¢. Q.e.d. (Claim 1)

Claim 2: (P ∪ Sπ, N) and (¢, N) are consistent positive/negative variable-conditions.

Proof of Claim 2: This follows from Claim 1 by Corollary 5.7. Q.e.d. (Claim 2)

Claim 3: O′»C is an (¢, N)-choice-condition.

Proof of Claim 3: By Claims 1 and 2 and the assumption that C is a (P, N)-choice-
condition. Q.e.d. (Claim 3)

The plan for defining the S-raising-valuation π (which we have to find) is to give
π(yV)(Sπ〈{yV}〉»τ) a value as follows:

(α) For yV ∈V\(O′]O]A), we take this value to be
π′(yV)(Sπ′ 〈{yV}〉»τ).

This is indeed possible because of Sπ′ ⊆ A»¢ = Sπ, so Sπ′ 〈{yV}〉»τ ⊆ Sπ〈{yV}〉»τ .
(β) For yV ∈O]A, we take this value to be

eval(S ] e(π′)(τ) ] τ)(σ(yV)).
Note that, in case of yV ∈O, we know that (QC(yV))σ is (π′,S)-valid by assumption of
the lemma. Moreover, the case of yV ∈A is unproblematic because of yV 6∈ dom(C).
Again, π is well-defined in this case because the only part of τ that is accessed by
the given value is Sπ〈{yV}〉»τ . Indeed, this can be seen as follows: By Claim 1 and the
transitivity of ¢, we have: A»D ∪ Sπ′◦D ⊆ A»¢ = Sπ.

(γ) For yV ∈O′, however, we have to take care of S-compatibility with (C, (P,N))
explicitly in an ¢-recursive definition on the basis a function ρ implementing (α)
and (β). This disturbance does not interfere with the semantic invariance stated
in the lemma because occurrences of variables from O′ are explicitly excluded in the
relevant terms and formulas and, according to the statement of lemma, O′ satisfies
the appropriate closure condition.
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Set Sρ := Sπ. Let ρ be defined by (yV ∈V, τ : A→ S)

ρ(yV)(Sπ〈{yV}〉»τ) :=

{
π′(yV)(Sπ′ 〈{yV}〉»τ) if yV ∈ V\(O]A)
eval(S ] e(π′)(τ) ] τ)(σ(yV)) if yV ∈O]A

Let π be the S-raising-valuation that exists according to Lemma5.16 for the S-raising-valu-
ation ρ and the (¢, N)-choice-condition O′»C (cf. Claim 3). Note that the assumptions of
Lemma5.16 are indeed satisfied here and that the resulting semantic relation Sπ of Lem-
ma 5.16 is indeed identical to our pre-defined relation of the same name, thereby justifying
our abuse of notation: Indeed, by assumption of Lemma5.24, for every return type α
of O′»C, there is a generalized choice function on the power-set of the universe of S for the
type α; and we have

Sρ = Sπ = A»¢ = A»(¢+).

Because of dom(O′»C) = O′, according to Lemma5.16, we then have

V\O′»π = V\O′»ρ
and π is S-compatible with (O′»C, (¢, N)).

Claim 4: For all yV ∈ O]A and τ : A→ S, when we set δ′ := e(π′)(τ) ] τ :
e(π)(τ)(yV) = eval(S ] δ′)(σ(yV)).

Proof of Claim 4: We have O]A ⊆ V\O′. Thus, Claim 4 follows immediately from the
definition of ρ. Q.e.d. (Claim 4)

Claim5: For all yV ∈ V\(O′]O]A) and τ : A→ S: e(π)(τ)(yV) = e(π′)(τ)(yV).

Proof of Claim 5: For yV ∈ V\(O′]O]A), we have yV ∈ V\O′ and yV ∈ V\(O]A).
Thus, e(π)(τ)(yV) = π(yV)(Sπ〈{yV}〉»τ) = ρ(yV)(Sπ〈{yV}〉»τ) = π′(yV)(Sπ′ 〈{yV}〉»τ) = e(π′)(τ)(yV).

Q.e.d. (Claim 5)

Claim6: For any term or formula B (possibly with some unbound occurrences of bound
atoms from the set W ⊆ B) with O′ ∩V(B) = ∅, and for every τ : A→ S and

every χ : W → S, when we set δ := e(π)(τ) ] τ and δ′ := e(π′)(τ) ] τ , we have

eval(S ] δ′ ] χ)(Bσ) = eval(S ] δ ] χ)(B).

Proof of Claim 6: eval(S ] δ′ ] χ)(Bσ) = (by the Substitution [Value] Lemma)
eval(S ] (σ ] VAB\dom(σ)»id) ◦ eval(S ] δ′ ] χ))(B) =

(by the Explicitness Lemma and the Valuation Lemma (for the case of l = 0))
eval(S ] (σ ◦ eval(S ] δ′)) ] VA\dom(σ)»δ′ ] χ)(B) =

(by O]A ⊆ dom(σ) ⊆ O′]O]A, O′∩V(B) = ∅, and the Explicitness Lemma)
eval(S ] O]A»σ ◦ eval(S ] δ′) ] VA\(O′]O]A)»δ′ ] χ)(B) = (by Claim 4 and Claim 5)
eval(S ] O]A»δ ] VA\(O′]O]A)»δ ] χ)(B) =

(by O′∩V(B) = ∅ and the Explicitness Lemma)
eval(S ] δ ] χ)(B). Q.e.d. (Claim 6)

Claim7: For every set of sequents G′ (possibly with some unbound occurrences of bound
atoms from the set W ⊆ B) with O′ ∩ V(G′) = ∅, and for every τ : A→ S and

for every χ : W → S: Truth of G′ in S ] e(π)(τ) ] τ ] χ is equivalent to
truth of G′σ in S ] e(π′)(τ) ] τ ] χ.
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Proof of Claim 7: This is a trivial consequence of Claim 6. Q.e.d. (Claim 7)

Claim 8: For yV ∈ dom(C) \O′, we have O′ ∩ V(C(yV)) = ∅.
Proof of Claim 8: Otherwise there is some yV ∈ dom(C) \O′ and some zV ∈ O′ ∩V(C(yV)).
Then zVP +yV because C is a (P,N)-choice-condition, and then, as 〈O′〉P + ∩ dom(C) ⊆ O′

by assumption of the lemma, we have the contradicting yV ∈O′. Q.e.d. (Claim 8)

Claim 9: Let yV ∈ dom(C) and C(yV) = λv B0 . . . . λv Bl−1. εv Bl . B. Let τ : A→ S and
χ : {v B0 , . . . , v Bl } → S. Set δ := e(π)(τ)]τ]χ. Set µ := {v Bl 7→ yV(v B0 ) · · · (v Bl−1)}.

If B is true in S]δ, then Bµ is true in S]δ as well.

Proof of Claim 9: Set δ′ := e(π′)(τ) ] τ ] χ.

yV 6∈O′]O: In this case, because of dom(σ) ∩ dom(C) ⊆ O′]O, we have yV 6∈ dom(σ).
Thus, as (C ′, (P ′, N ′)) is the extended σ-update of (C, (P,N)), we have

C ′(yV) = (C(yV))σ. By Claim 8, we have O′ ∩ V(B) = ∅.
And then, by our case assumption, also O′ ∩ V(Bµ) = ∅.
By assumption of Claim 9, B is true in S]δ. Thus, by Claim 7, Bσ is true in S]δ′. Thus,
as π′ is S-compatible with (C ′, (P ′, N ′)), we know that (Bσ)µ is true in S]δ′. Because
of yV 6∈ dom(σ), this means that (Bµ)σ is true in S]δ′. Thus, by Claim 7, Bµ is true
in S]δ.

yV ∈O: By Claim 8, we have O′ ∩ V(B) = ∅.
And then, by our case assumption, also O′ ∩ V(Bµ) = ∅.

Moreover, (QC(yV))σ is equal to ∀v B0 . . . . ∀v Bl−1.
( ∃v Bl . B ⇒ Bµ

)
σ and (π′,S)-valid

by assumption of the lemma. Thus, by the forward direction of the ∀-Lemma,( ∃v Bl . B ⇒ Bµ
)
σ is true in S]δ′. Thus, by Claim 7, ∃v Bl . B ⇒ Bµ is true in S]δ.

As, by assumption of Claim 9, B is true in S]δ, by the backward direction of the ∃-Lemma,
∃v Bl . B is true in S]δ as well. Thus, by the forward direction of the ⇒-Lemma, Bµ is
true in S]δ as well.

yV ∈O′: π is S-compatible with (O′»C, (¢, N)) by definition, as explicitly stated before
Claim 4. Q.e.d. (Claim 9)

By Claims 2 and 9, π is S-compatible with (C, (P, N)). And then items 1 and 2 of the
lemma are trivial consequences of Claims 6 and 7, respectively.

Q.e.d. (Lemma5.24)
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Proof of Theorem5.26

The first four items are trivial (Validity, Reflexivity, Transitivity, Additivity).

(5a): If G0 is (C ′, (P ′, N ′))-valid in S, then there is some π that is S-compatible with
(C ′, (P ′, N ′)) such that G0 is (π,S)-valid. By Lemma5.21, π is also S-compatible

with (C, (P,N)). Thus, G0 is (C, (P, N))-valid, in S.

(5b): Suppose that π is S-compatible with (C ′, (P ′, N ′)), and that G1 is (π,S)-valid. By
Lemma5.21, π is also S-compatible with (C, (P,N)). Thus, since G0 (C, (P, N))-

reduces to G1, also G0 is (π,S)-valid as was to be shown.

(6): Assume the situation described in the lemma.

Claim 1: O′ ⊆ dom(C) \O.

Proof of Claim 1: By definition, O′ ⊆ dom(C). It remains to show O′ ∩O = ∅. To the
contrary, suppose that there is some yV ∈ O′ ∩ O. Then, by the definition of O′, there
is some zV ∈ M\O with zV P ∗ yV. By definition of O, however, we have yV ∈ P ∗〈V 〉.
Thus, zV ∈ P ∗〈V 〉. Thus, zV ∈O, a contradiction. Q.e.d. (Claim 1)

Claim2: 〈O′〉P + ∩ dom(C) ⊆ O′.

Proof of Claim 2: Assume yV ∈ O′ and zV ∈ dom(C) with yV P + zV. It now suffices to
show zV ∈O′. Because of yV ∈ O′, there is some xV ∈ M\O with xV P ∗ yV. Thus,
xV P ∗ zV. Thus, zV ∈O′. Q.e.d. (Claim 2)

Claim3: dom(σ) ∩ dom(C) ⊆ O′ ∪O.

Proof of Claim 3: dom(σ) ∩ dom(C) = dom(C) ∩ M ⊆ O ∪ (dom(C) ∩ (M\O)) ⊆
O ∪ (dom(C) ∩ 〈M\O〉P ∗) = O ∪O′. Q.e.d. (Claim 3)

Claim4: O′ ∩ V(G0, G1) = O′ ∩ V = ∅.
Proof of Claim 4: Because of V(G0, G1) ⊆ V, it suffices to show the second equality.
To the contrary of the second equality, suppose that there is some yV ∈ O′ ∩ V . Then,
by the definition of O′, there is some zV ∈ M\O with zV P ∗ yV. By definition of O,
however, we have zV ∈O, a contradiction. Q.e.d. (Claim 4)

(6a): In case that G0σ ∪ (〈O〉QC)σ is (C ′, (P ′, N ′))-valid in S, there is some π′ that is
S-compatible with (C ′, (P ′, N ′)) such that G0σ ∪ (〈O〉QC)σ is (π′,S)-valid. Then

both G0σ and (〈O〉QC)σ are (π′,S)-valid. By Claims 1, 2, 3, and 4, let π be given as in
Lemma5.24. Then G0 is (π,S)-valid. Moreover, as π is S-compatible with (C, (P, N)),
G0 is (C, (P,N))-valid in S.
(6b): Let π′ be S-compatible with (C ′, (P ′, N ′)), and suppose that G1σ ∪ (〈O〉QC)σ is

(π′,S)-valid. Then both G1σ and (〈O〉QC)σ are (π′,S)-valid. By Claims 1, 2, 3,
and 4, let π be given as in Lemma5.24. Then π is S-compatible with (C, (P,N)), and
G1 is (π,S)-valid. By assumption, G0 (C, (P, N))-reduces to G1. Thus, G0 is (π,S)-valid,
too. Thus, by Lemma5.24, G0σ is (π′,S)-valid as was to be shown.
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(7): Let π be S-compatible with (C, (P, N)), and suppose that G0 is (π,S)-valid. Let
τ : A→ S be an arbitrary S-valuation. Set δ := e(π)(τ) ] τ . It suffices to show

eval(S ] δ)(G0ν) = TRUE.

Define τ ′ : A→ S via τ ′(yA) :=

{
τ(yA) for yA ∈ A\dom(ν)
eval(S ] δ)(ν(yA)) for yA ∈ dom(ν)

}
.

Claim 5: For vV ∈ V(G0) we have e(π)(τ)(vV) = e(π)(τ ′)(vV).
Proof of Claim 5: Otherwise there must be some yA ∈ dom(ν) with yA Sπ vV. Because of
vV ∈V(G0) and V(G0) × dom(ν) ⊆ N , we have vV N yA. But then (P ∪ Sπ, N) is not
consistent, which contradicts π being S-compatible with (C, (P, N)). Q.e.d. (Claim 5)

Then we get by the Substitution [Value] Lemma (1st equation), theValuation Lemma
(for the case of l = 0) (2nd equation), by definition of τ ′ and δ (3rd equation), by the Explic-
itness Lemma and Claim 5 (4th equation), and by the (π,S)-validity of G0 (5th equation):

eval(S ] δ)(G0ν) = eval
(
S ] (

( ν ] VA\dom(ν)»id ) ◦ eval(S ] δ)
) )(

G0

)

= eval
(
S ] (

ν ◦ eval(S ] δ)
) ] VA\dom(ν)»δ

)(
G0

)

= eval
(
S ] τ ′ ] e(π)(τ)

)(
G0

)

= eval
(
S ] τ ′ ] e(π)(τ ′)

)(
G0

)

= TRUE

Q.e.d. (Theorem5.26)

Proof of Theorem5.27

To illustrate our techniques, we only treat the first rule of each kind; the other rules can
be treated most similarly. In the situation described in the theorem, it suffices to show that
C ′ is a (P ′, N ′)-choice-condition (because the other properties of an extended extension are
trivial), and that, for every S-raising-valuation π that is S-compatible with (C ′, (P ′, N ′)),
the sets G0 and G1 of the upper and lower sequents of the inference rule are equivalent
w.r.t. their (π,S)-validity.

γ-rule: In this case we have (C ′, (P ′, N ′)) = (C, (P, N)). Thus, C ′ is a (P ′, N ′)-
choice-condition by assumption of the theorem. Moreover, for every S-valuation

τ : A→ S, and for δ := e(π)(τ) ] τ , the truths of
{Γ ∃y B. A Π} and {A{y B 7→t} Γ ∃y B. A Π}

in S]δ are indeed equivalent. The implication from left to right is trivial because the
former sequent is a sub-sequent of the latter.

For the other direction, assume that A{y B 7→t} is true in S]δ. Thus, by the Substitution
[Value] Lemma (second equation) and the Valuation Lemma for l = 0 (third equation):

TRUE = eval(S ] δ)(A{y B 7→t})
= eval(S ] (({y B 7→t} ] VAB\{y B}»id) ◦ eval(S]δ)))(A)
= eval(S ] {y B 7→eval(S]δ)(t)} ] δ)(A)

Thus, by the backward direction of the ∃-Lemma, ∃y B. A is true in S]δ. Thus, the
upper sequent is true S]δ.
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δ−-rule: In this case, we have xA ∈ A \ (dom(P ) ∪ A(Γ, A,Π)), C ′′ = ∅, and
V = V(Γ ∀xB. A Π)× {xA}. Thus, C ′ = C, P ′ = P , and N ′ = N ∪ V .

Claim 1: C ′ is a (P ′, N ′)-choice-condition.
Proof of Claim 1: By assumption of the theorem, C is a (P, N)-choice-condition. Thus,
(P, N) is a consistent positive/negative variable-condition. By Definition 5.4, P is well-
founded and P +◦N is irreflexive. Since xA /∈ dom(P ), we have xA /∈ dom(P +). Thus,
because of ran(V ) = {xA}, also P +◦N ′ is irreflexive. Thus, (P ′, N ′) is a consistent posi-
tive/negative variable-condition, and C ′ is a (P ′, N ′)-choice-condition. Q.e.d. (Claim 1)

Now, for the soundness direction, it suffices to show the contrapositive, namely to as-
sume that there is an S-valuation τ : A→ S such that {Γ ∀xB. A Π} is false
in S]e(π)(τ) ] τ , and to show that there is an S-valuation τ ′ : A→ S such that
{A{xB 7→xA} Γ Π} is false in S]e(π)(τ ′)]τ ′. Under this assumption, the sequent ΓΠ
is false in S ] e(π)(τ)]τ .

Claim 2: ΓΠ is false in S]e(π)(τ ′)]τ ′ for all τ ′ : A→ S with A\{xA}»τ ′ = A\{xA}»τ .
Proof of Claim 2: Because of xA /∈ A(ΓΠ), by the Explicitness Lemma, if Claim 2
did not hold, there would have to be some uV ∈ V(ΓΠ) with xA Sπ uV. Then we have
uV N ′ xA. Thus, we know that (P ′ ∪ Sπ)+ ◦N ′ is not irreflexive, which contradicts π being
S-compatible with (C ′, (P ′, N ′)). Q.e.d. (Claim 2)

Moreover, under the above assumption, also ∀xB. A is false in S]e(π)(τ)]τ . By the
backward direction of the ∀-Lemma, this means that there is some object o such that A is
false in S]{xB 7→o}]e(π)(τ)]τ . Set τ ′ := A\{xA}»τ ] {xA 7→o}. Then, by the Substitu-
tion [Value] Lemma (1st equation), by the Valuation Lemma (for l = 0) (2nd equation),
and by the Explicitness Lemma and xA /∈ A(A) (3rd equation), we have:

eval(S ] e(π)(τ) ] τ ′)(A{xB 7→xA}) =
eval(S ] (({xB 7→xA} ] VAB\{xB}»id) ◦ eval(S ] e(π)(τ) ] τ ′)))(A) =

eval(S ] {xB 7→o} ] e(π)(τ) ] τ ′)(A) =
eval(S ] {xB 7→o} ] e(π)(τ) ] τ)(A) = FALSE.

Claim4: A{xB 7→xA} is false in S]e(π)(τ ′)]τ ′.
Proof of Claim 4: Otherwise, there must be some uV ∈ V(A{xB 7→xA}) with xA Sπ uV.
Then we have uV N ′ xA. Thus, we know that (P ′ ∪ Sπ)+ ◦ N ′ is not irreflexive, which
contradicts π being S-compatible with (C ′, (P ′, N ′)). Q.e.d. (Claim 4)

By the Claims 4 and 2, {A{xB 7→xA} Γ Π} is false in S ] e(π)(τ ′) ] τ ′, as was to be
show for the soundness direction of the proof.

Finally, for the safeness direction, assume that the sequent Γ ∀xB. A Π is (π,S)-valid.
For arbitrary τ : A→ S, we have to show that the lower sequent A{xB 7→xA} Γ Π is
true in S]δ for δ := e(π)(τ) ] τ . If some formula in ΓΠ is true in S]δ, then the lower
sequent is true in S]δ as well. Otherwise, ∀xB. A is true in S]δ. Then, by the
forward direction of the ∀-Lemma, this means that A is true in S]χ]δ for all S-valuations
χ : {xB} → S. Then, by the Substitution [Value] Lemma (1st equation), and by the
Valuation Lemma (for l = 0) (2nd equation), we have:

eval(S ] δ)(A{xB 7→xA}) =
eval(S ] (({xB 7→xA} ] VAB\{xB}»id) ◦ eval(S ] δ)))(A) =

eval(S ] {xB 7→δ(xA)} ] δ)(A) = TRUE.
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δ+-rule: In this case, we have xV ∈ V \ (dom(C ∪ P ∪N) ∪ V(A)),
C ′′ = {(xV, εxB. ¬A)}, and V = VA(∀xB. A)× {xV} = VA(A)× {xV}.

Thus, C ′ = C ∪ {(xV, εxB. ¬A)}, P ′ = P ∪ V , and N ′ = N .
By assumption of the theorem, C is a (P, N)-choice-condition. Thus, (P,N) is a consistent
positive/negative variable-condition. Thus, by Definition 5.4, P is well-founded and P +◦N
is irreflexive.

Claim 5: P ′ is well-founded.
Proof of Claim 5: Let B be a non-empty class. We have to show that there is a P ′-minimal
element in B. Because P is well-founded, there is some P -minimal element in B. If this
element is V -minimal in B, then it is a P ′-minimal element in B. Otherwise, this element
must be xV and there is an element nVA ∈ B ∩ VA(A). Set B′ := { bVA ∈B | bVA P ∗ nVA }.
Because of nVA ∈B′, we know that B′ is a non-empty subset of B. Because P is well-
founded, there is some P -minimal element mVA in B′. Then mVA is also a P -minimal element
in B. Because of xV /∈ VA(A)∪ dom(P ), we know that xV /∈ B′. Thus, mVA 6= xV. Thus,
mVA is also a V -minimal element of B. Thus, mVA is also a P ′-minimal element of B.

Q.e.d. (Claim 5)
Claim 6: (P ′)+ ◦N ′ is irreflexive.
Proof of Claim 6: Suppose the contrary. Because P +◦N is irreflexive, P ∗◦(V ◦ P ∗)+◦N
must be reflexive. Because of ran(V ) = {xV} and {xV} ∩ dom(P ∪N) = ∅, we have
V ◦P = ∅ and V ◦N = ∅. Thus, P ∗ ◦ (V ◦ P ∗)+ ◦N = P ∗ ◦V + ◦N = ∅. Q.e.d. (Claim 6)

Claim 7: C ′ is a (P ′, N ′)-choice-condition.
Proof of Claim 7: By Claims 5 and 6, (P ′, N ′) is a consistent positive/negative variable-
condition. As xV ∈ V\dom(C), we know that C ′ is a partial function on V just as C.
Moreover, for yV ∈ dom(C ′), we either have yV ∈ dom(C) and then
VA(C ′(yV))× {yV} = VA(C(yV))× {yV} ⊆ P + ⊆ (P ′)+, or yV = xV and then
VA(C ′(yV))× {yV} = VA(εxB. ¬A)× {xV} = V ⊆ P ′ ⊆ (P ′)+. Q.e.d. (Claim 7)

Now it suffices to show that, for each τ : A→ S, and for δ := e(π)(τ) ] τ , the truth of
{Γ ∀xB. A Π} in S ] δ is equivalent that of {A{xB 7→xV} Γ Π}.
For the soundness direction, it suffices to show that the former sequent is true in S]δ under
the assumption that the latter is. If some formula in ΓΠ is true in S]δ, then the former
sequent is true in S]δ as well. Otherwise, this means that A{xB 7→xV} is true in S]δ.
Then, by the forward direction of the ¬-Lemma, ¬A{xB 7→xV} is false in S]δ. By the
Explicitness Lemma, ¬A{xB 7→xV} is false in S]δ]χ for all χ : {xB} → S. Because
π is S-compatible with (C ′, (P ′, N ′)) and because of C ′(xV) = εxB. ¬A, by Item2 of
Definition 5.15, ¬A is false in S]δ]χ for all χ : {xB} → S. Then, by the backward
direction of the ¬-Lemma, A is true in S]δ]χ for all χ : {xB} → S. Then, by the
backward direction of the ∀-Lemma, ∀xB. A is true in S]δ.

The safeness direction is perfectly analogous to the case of the δ−-rule.

Q.e.d. (Theorem5.27)
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Notes

Note 1 (Bound vs. Bindable)
“Bound” atoms (or variables) should actually be called “bindable” instead of “bound”, because we will
always have to treat some unbound occurrences of “bound” atoms. When the name of the notion of bound
variables was coined, however, neither “bindable” nor the German “bindbar” were considered to be proper
words of their respective languages, cf. [Hilbert & Bernays, 2017b, § 4].

Note 2 (Principal Formulas, Side Formulas, and Parametric Formulas)
The notions of a principal formula (in German: Hauptformel) and a side formula (Seitenformel) were
introduced in [Gentzen, 1935] and refined in [Schmidt-Samoa, 2006]. Very roughly speaking, the
principal formula of an inference rule is the formula that is reduced by that rule, and the side formulas are
the resulting pieces replacing the the principle formula. In our reductive inference rules here, the principal
formulas are the formulas above the lines except the ones in Γ , Π (which are called parametric formulas,
in German: Nebenformeln), and the side formulas are the formulas below the lines except the ones in Γ , Π.

Note 3 (Are Liberalized δ-Rules Really More Liberal?)
We could object with the following two points to the classification of the δ+-rules as being more “liberal”
than the δ−-rules:

• VA(∀xB. A) is not necessarily a subset of V(Γ ∀xB. A Π), because VA(∀xB. A) may include some
additional free atoms.
First note that δ−-rules and the free atoms did not occur in inference systems with δ+-rules before
the publication of [Wirth, 2004]; so in the earlier systems with free δ+-rules only, VA(∀xB. A) was
indeed a subset of V(Γ ∀xB. A Π).
Moreover, the additional atoms blocked by the δ+-rules (as compared to the δ−-rules) can hardly
block any reductive proofs of formulas without free atoms and variables. This has following reason.
If a proof uses only δ+-reductions, then there will be no (free) atoms around and the critical subset
relation holds anyway. So a critical variable-condition can only arise if a δ+-step follows a δ−-step
on the same branch. With a reasonably minimal positive/negative variable-condition (P, N), the
only additional cycles that could occur by the δ+-rule as compared to the alternative application of
a δ−-rules are of the form

yV N zA P xV P ∗ wV P yV,
resulting from the following scenario: yV N zA results from a δ−-step, zA P xV results from a
subsequent δ+-step on the same branch, xV P ∗ wV results from possible further δ+-steps (δ−-steps
cannot produce a relevant cycle!) and instantiations of free variables, and wV P yV finally results
from an instantiation of yV.
Let us now see what happens if we replace the δ+-step with a δ−-step with xA replacing xV, ceteris
paribus. Note that this is only possible if xV was never instantiated, which again explains why there
must be at least one step of P between xV and yV. If the free variable yV occurs in the upper sequent
of this changed step, then new proof immediately fails due to the new cycle

yV N xA P ∗ wV P yV.
Otherwise, yV was lost on this branch; but then we must ask ourselves why we instantiated it with a
term containing wV. If wV is essentially shared with another branch, on which yV has survived, then
it must occur in the sequent before the original δ+-step, and so we get the cycle

wV N xA P ∗ wV.
Otherwise, if wV is not shared with another branch, we do not see any reason to instantiate yV with
a term containing wV. Indeed, if wV is only this branch, then there is no reason; if wV occurs only
on another branch, then a good reason for xV P ∗ wV can be rejected just as for yV before.
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• The δ+-rule may contribute an P -edge to a cycle with exactly one edge from N , whereas the anal-
ogous δ−-rule would contribute an N -edge instead, so the analogous cycle would then not count
as counterexample to the consistency of the positive/negative variable-condition because it has two
edges from N .
Also in this case we conjecture that δ−-rules do not admit any successful proofs that are not pos-
sible with the analogous δ+-rules. A proof of this conjecture, however, is not easy: First, it
is a global property which requires us to consider the entire inference system. Second, δ−-rules
indeed admit some extra (P, N)-substitutions, which have to be shown not to generate essentially
additional proofs. E.g., if we want to prove ∀y B. Q(aV, y B) ∧ ∀xB. Q(xB, bV), which is true for a
reflexive ordering Q with a minimal and a maximal element, β- and δ−-rules reduce this to the two
goals Q(aV, yA) and Q(xA, bV) with positive/negative variable-condition (P, N) given by P = ∅
and N = {(aV, yA), (bV, xA)}. Then σA := {aV 7→xA, bV 7→yA} is a (P,N)-substitution. The anal-
ogous δ+-rules would have resulted in the positive/negative variable-condition (P ′, N ′) given by
P ′ = {(aV, yV), (bV, xV)} and N ′ = ∅. But σV := {aV 7→xV, bV 7→yV} is not a (P ′, N ′)-substitution!

Note 4 (History of Peano and his ι)
In [Peano, 1896f.], Guiseppe Peano (1858–1932) wrote ῑ instead of the ι of Example 4.1, and ῑ{ x | A }
instead of ιx. A. (Note that we have changed the class notation to modern standard here. Peano actually
wrote x∈A instead of { x | A } in [Peano, 1896f.].)
The bar above the ι (just as the alternative inversion the symbol) were to indicated that ῑ was implicitly
defined as the inverse operator of the operator ι defined by ιy := {y}, which occurred already in [Peano,
1890] and still in [Quine, 1981].
The definition of ῑ reads literally [Peano, 1896f., Definition 22]:

a∈K . ∃a : x, y ∈ a . ⊃x,y . x = y : ⊃ : x = ῑa . = . a = ιx
This straightforwardly translates into more modern notation as follows:

For any class a: a 6= ∅ ∧ ∀x, y. (x, y ∈ a ⇒ x= y) ⇒ ∀x. (x = ῑa ⇔ a= ιx)
Giving up the flavor of an explicit definition of “x = ῑa ”, this can be simplified to the following equivalent
form: For any class a: ∃!x. x∈ a ⇒ ῑa∈ a (ῑ0)
Besides notational difference, this is (ι0) of our § 4.4.2.

Note 5 (σ-Updates Admitting Variable-Reuse and -Permutation)
For a version of σ-updates that admits variable-reuse and -permutation as explained in Note 10 of [Wirth,
2004] and executed in Notes 26–30 of [Wirth, 2004], the σ-update has to forget about the old meaning
of the variables in dom(σ). To this end — instead of the simpler (P ∪ D, N) — we have to chose a
σ-update admitting variable-reuse and -permutation to be( (

VA\dom(σ)»P ∪ P ′ ◦ P
)
¹V\dom(σ), V\dom(σ)»N ∪ V»P ′ ◦N

)

for P ′ := D ∪ VA\dom(σ)»(P ¹dom(σ))
+.

Note that P ′ can be simplified to D here by taking as the σ-update admitting Vγ-reuse and -permutation:( (
A∪Vδ+∪(Vγ\dom(σ))»P ∪ D ◦ P ∪ D¹Vδ+

)
, Vδ+∪(Vγ\dom(σ))»N ∪ V»D¹Vγ∩dom(σ) ◦N

)
,

provided that we partition V into two sets Vδ+ ] Vγ , use Vδ+ as the possible domain of the choice-
conditions, and admit variable-reuse and -permutation only on Vγ , similar to what we already did in
Note 10 of [Wirth, 2004]. (The crucial restriction becomes here the following: For a (positive/negative)
σ-update (P ′′, N ′′) admitting Vγ-reuse and -permutation we have P ′′ ⊆ VA×Vδ+ and N ′′ ⊆ V× A ).
Note, however, that it is actually better to work with the more complicated P ′, simply because it is more
general and because the transitive closure will not be computed in practice, but a graph will be updated
just as exemplified in Note 10 of [Wirth, 2004].

Note 6 (Which directions of the equivalences of the ∀-, ∃-, ⇒-, and ¬-Lemma are needed
where precisely?)
Lemma5.19 depends on the backward directions of the ∀-Lemma and the ⇒-Lemma, and on the forward
direction of the ∃-Lemma. Lemma5.24 and Theorem5.26(6) depend on the forward directions of the
∀-Lemma and the ⇒-Lemma, and on the backward direction of the ∃-Lemma. Theorem5.27 depends on
both directions of the ∀-Lemma, of the ∃-Lemma, and of the ¬-Lemma.
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Note 7 (Why does Fermat’s Descente Infinie require Choice-Conditions?)
The well-foundedness required for the soundness of descente infinie gave rise to a notion of reduction which
preserves solutions, cf. Definition 5.25. The liberalized δ-rules as found in [Fitting, 1996] do not satisfy
this notion. The addition of our choice-conditions finally turned out to be the only way to repair this
defect of the liberalized δ-rules. See [Wirth, 2004] for more details.

Note 8 (Consequences of the ε-Formula in Intuitionistic Logic)
Adding the ε either with (ε0), with (ε1), or with the ε-formula (cf. § 4.6) to intuitionistic first-order logic is
equivalent on the ε-free fragment to adding Plato’s Principle, i.e. ∃y B. (∃xB. A ⇒ A{xB 7→y B}) with
y B not occurring in A, cf. [Meyer-Viol, 1995, § 3.3].
Moreover, the non-trivial direction of (ε2) is ∀xB. A ⇐ A{xB 7→ εxB. ¬A}.
Even intuitionistically, this entails its contrapositive ¬∀xB. A ⇒ ¬A{xB 7→ εxB. ¬A},
and then, e.g. by the trivial direction of (ε1) (when A is replaced with ¬A)

¬∀xB. A ⇒ ∃xB. ¬A (Q2)

which is not valid in intuitionistic logic in general. Thus, in intuitionistic logic, the universal quantifier
becomes strictly weaker by the inclusion of (ε2) or anything similar for the universal quantifier, such as
Hilbert’s τ -operator (cf. [Hilbert, 1923a]). More specifically, adding

∀xB. A ⇐ A{xB 7→ τxB. A} (τ0)

is equivalent on the τ -free theory to adding ∃y B. (∀xB. A ⇐ A{xB 7→y B}) with y B not occurring in A,
which again implies (Q2), cf. [Meyer-Viol, 1995, § 3.4.2].
From a semantic point of view (cf. [Gabbay, 1981]), the intuitionistic ∀ may be eliminated, however, by
first applying theGödel translation into the modal logic S4 with classical ∀ and ¬, cf. e.g. [Fitting, 1999],
and then adding the ε conservatively, e.g. by avoiding substitutions via λ-abstraction as in [Fitting, 1975].

Note 9 (Proof of (C, (P, N))-validity of (E2′) using Theorem5.26(1,5a,6a))
Let us give a formal proof of (E2′) in our framework on an abstract level by applying Theorem5.26. We will
reduce the set containing the single-formula sequent of the formula (E2′) to a valid set. Be aware of the
requirements on occurrence of the variables as described in §B.1.1. We start with an extended extension
(C ′, (P ′, N)) of the current (C, (P,N)) for a fresh variable yV with C ′(yV) as given §B.1.1. Of course, to
satisfy Definition 5.13(3), here we set

P ′ := P ∪ VA(A0, A1, x
V
0)× {yV}.

Set σ := {xV1 7→ yV}. Let (C ′′, (P ′′, N)) be the extended σ-update of (C ′, (P ′, N)); then
{yV,xV0 ,xV1}»C

′′ = {yV,xV0}»C
′ and P ′′ = P ′ ∪ {(yV, xV1)}.

Note that (P ′′, N) is consistent because every cycle not possible with (P, N) would have to run through
the set {yV, xV1}, which, however, is disjoint from dom(N), closed under P ′′, and cycle-free.
Now we apply Theorem5.26(6a). According to settings for the meta-variables given there, we have O =
M = dom(C ′)∩dom(σ) = {xV1} and O′ = ∅. Consider the set with the two single-formula sequents (E2)′σ
and (QC′(xV1))σ. The former sequent reads ∀xB. (A0⇔A1) ⇒ xV0 = yV. According to Definition 4.11, the
latter sequent reads (∃xB. A1 ⇒ A1{xB 7→ xV1})σ, i.e. ∃xB. A1 ⇒ A1{xB 7→ yV}. Now a simple case
analysis on ∀xB. (A0⇔A1) shows that this two-element set (C ′′, (P ′′, N))-reduces to



∃xB. A0 ⇒ A0{xB 7→ xV0};




∃y B.
(

(∀xB. (A0⇔A1) ⇒ y B= xV0)
∧ (¬∀xB. (A0⇔A1) ⇒ A1{xB 7→ y B})

)

⇒
(

(∀xB. (A0⇔A1) ⇒ yV=xV0)
∧ (¬∀xB. (A0⇔A1) ⇒ A1{xB 7→ yV})

)







,

i.e. to {QC′′(xV0); QC′′(yV)}, which is (C ′′, (P ′′, N))-valid by Lemma5.19. Thus, (E2′)σ is (C ′, (P ′′, N))-
valid. By (6a) this means that (E2′) is (C ′, (P ′, N))-valid, and by (5a) also (C, (P, N))-valid, as was to be
shown.
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Note 10 ( 0 6=1, εxB. A0 6= εxB. A1 ⇒ ¬(∀xB. A0 ∧ ∀xB. A1) ` B ∨ ¬B in Intuitionistic Logic)
For the proof of the slightly weaker result 0 6= 1, (E2) ` B ∨ ¬B for any formula B, cf. [Bell &al.,
2001, Proof of Theorem6.4], which already occurs in more detail in [Bell, 1993a, § 3], and sketched in
[Bell, 1993b, § 7].
Note that, for any implication A ⇒ B, its contrapositive ¬B ⇒ ¬A is a consequence of it, and
— in intuitionistic logic — a proper consequence in general.
Let B be an arbitrary formula. By renaming we may w.l.o.g. assume that the free atom xA of the ε-formula
does not occur in B. We are going to show that ` B ∨ ¬B holds in intuitionistic logic under the assump-
tions of reflexivity, symmetry, and transitivity of “=”, the ε-formula (or (ε0)), and of the formulas 0 6= 1
and εxB. A0 6= εxB. A1 ⇒ ¬(∀xB. A0 ∧ ∀xB. A1).
Let xB be a bound atom not occurring in B. Set Ai := (B ∨ xB= i) for i ∈ {0, 1}.
Now all that we have to show is a trivial consequence of the following Claims 1 and 2,

εxB. A0 6= εxB. A1 ⇒ ¬(∀xB. A0 ∧ ∀xB. A1), and Claim 3.
Claim 1: 0= 0, 1 =1, (ε-formula){A7→A0}{xA 7→0}, (ε-formula){A7→A1}{xA 7→1}

` B ∨ (εxB. A0 = 0 ∧ εxB. A1 = 1).
Claim2: εxB. A0 = 0 ∧ εxB. A1 = 1, 0 6=1, ∀xB, y B, z B. (y B=xB ∧ y B= z B ⇒ xB= z B)

` εxB. A0 6= εxB. A1.
Claim3: ¬(∀xB. A0 ∧ ∀xB. A1) ` ¬B.
Proof of Claim 1: Because neither xA nor xB occur in B, and because xA does not occur in Ai, the instances
of the ε-formulas read (B ∨ i = i) ⇒ (B ∨ εxB. Ai = i). Thus, from i = i , we get B ∨ εxB. Ai = i.
Thus, we get (B ∨ εxB. A0 = 0) ∧ (B ∨ εxB. A1 = 1), thus B ∨ (εxB. A0 = 0 ∧ εxB. A1 = 1)
by distributivity. Q.e.d. (Claim 1)
Proof of Claim 2: Trivial. Q.e.d. (Claim 2)
Proof of Claim 3: As xB does not occur in B, we get B ` ∀xB. Ai. The rest is trivial. Q.e.d. (Claim 3)
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