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Abstract
Free variables occur in many di�erent calculi and reasoning contexts with ad hoc and
altering semantics. We present the most recent version of our free-variable frame-
work for two-valued logics with properly improved functionality, but only two kinds
of free variables left (instead of three): implicitly universally and implicitly existen-
tially quanti�ed ones, now simply called �free atoms� and �free variables�, respectively.
The quanti�cational expressibility and the problem-solving facilities of our framework
exceed standard �rst-order and even higher-order modal logics, and directly support
Fermat's descente in�nie. With the improved version of our framework, we can now
model Henkin quanti�cation as well. We propose a new semantics for Hilbert's ε
as a choice operator with the following features: We avoid overspeci�cation (such as
right-uniqueness), but admit inde�nite choice, committed choice, and classical logics.
Moreover, our semantics for the ε supports reductive proof search optimally and is
natural in the sense that it mirrors some cases of referential interpretation of inde�nite
articles in natural language.

Keywords: Logical Foundations; Theories of Truth and Validity; Formalized Mathe-
matics; Human-Oriented Interactive Theorem Proving; Automated Theorem Proving;
Hilbert's ε-Operator; Henkin Quanti�cation; Fermat's Descente In�nie
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1 Overview

1.1 What is new?
Driven by a weakness in representing Henkin quanti�cation (described in [Wirth, 2010,
� 6.4.1]) and inspired by nominal terms (cf. e.g. [Urban &al., 2004]), we have improved
our semantical free-variable framework for two-valued logics as presented in this paper
signi�cantly:

1. We have replaced the two-layered construction of free δ+-variables on top of free
γ-variables over free δ−-variables of [Wirth, 2004; 2008; 2010] with a one-layered
construction of free variables over free atoms : Free variables with empty choice-
condition now play the former rôle of the γ-variables. Free variables with non-empty
choice-condition now play the former rôle of the δ+-variables. Free atoms now play
the former rôle of the δ−-variables.

2. As a consequence the proofs of the lemmas and theorems have shortened by more
than a factor of 2. Therefore, we now present all the proofs in this paper and make
it self-contained in this aspect; whereas in [Wirth, 2008; 2010], we had to point to
[Wirth, 2004] for most of the proofs.

3. Compared to [Wirth, 2004], besides shortening the proofs, we have made the meta-
level presuppositions more explicit in this paper; cf. � 4.7.

4. The di�erence between free variables and atoms and their names are now more stan-
dard and more clear than those of the di�erent free variables before.

5. Last but not least, we can now treat Henkin quanti�cation in a direct way; cf. � 4.10.

Taking all these points together, the version of our free-variable framework presented in this
paper, is the version that we recommend for further reference, application, and development,
because it is much easier to handle than its predecessors. And so we found it appropriate,
to present the material from [Wirth, 2008; 2010] anew in this paper (omitting only the
discussions on the history of an extended semantics for Hilbert's ε, on Leisenring's
axiom (E2), on the tailoring of operators similar to our ε, and on the analysis of natural-
language semantics). The material on mathematical induction in the style of Fermat's
descente in�nie in our framework is to be reorganized accordingly in a later publication.

1.2 Organization
This paper is organized as follows: After introductions to our free variables and atoms and
their relation to reductive quanti�cational inference rules (� 2) and to Hilbert's ε (� 3),
we explain and formalize our novel approach to the semantics of our free variables and
atoms and the ε (� 4), and summarize and discuss it (� 5). We conclude in � 6.
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2 Introduction to Free Variables and Atoms

2.1 Introduction to Free Variables and Atoms
Free variables or free atoms frequently occur in mathematical practice. The logical function
of these free symbols varies locally; it is typically determined by the context and the
obviously intended semantics in an implicit way. In this paper, however, we will make
this function explicit by using disjoint sets of symbols for these di�erent logical functions,
namely V (the set of free variables), A (the set of free atoms), B (the set of bound1

atoms).
An atom typically stands for an arbitrary object in a proof attempt or in a discourse,

of which nothing is known and of which we will never want to know anything but whether
it is an atom, and, if yes, whether it is a free or a bound one and whether it is identical to
another atom or not. The name �atom� for such an object has a tradition in set theories
with atoms. (In German, beside �Atom�, also �Urelement�, but with a slightly stronger
semantical emphasis on origin of creation.)

A variable, however, in the sense as we will use the word in this paper, is a place-holder
in a proof attempt or in a discourse, which gathers and stores information and which
may be replaced with a de�nition or a description during the discourse or proof attempt.
The name �free variable� for such a place-holder has a tradition in free-variable semantic
tableaus; cf. [Fitting, 1996].

Both variables and atoms may be instantiated with terms. Only variables, however,
may refer to free variables or atoms, or may depend on them; and only variables su�er
from their instantiation in the following three aspects:

1. If a variable is instantiated, then this a�ects all of its occurrences in the whole state
of the proof attempt (i.e. it is rigid in the terminology of semantic tableaus). Thus,
if the instantiation is executed eagerly, the variable must be replaced globally in all
terms of the whole state of the proof attempt.

2. If a variable is instantiated, it can be eliminated completely from the current state of
the proof attempt without any e�ect on the chance to complete it into a successful
proof.

3. The instantiation may be relevant for the outcome of the successful proof because the
global replacement may a�ect the input proposition.

In contrast, atoms cannot refer to any other symbols, nor depend on them in any form.
Moreover, free atoms never su�er from their instantiation in any of these aspects: They
may be instantiated both locally and repeatedly in the application of lemmas or induction
hypotheses, provided that the instantiation is admissible. Although the instantiation of
atoms may be relevant for bookkeeping or for a replay mechanism, it can never in�uence
the outcome of a proof.
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2.2 Semantics of Free Variables and Atoms

The classi�cation as a free variable or a free or bound atom will be indicated by adjoining
a �V�, an �A�, or a �B�, as a label to the upper right of the meta-variable for the symbol,
respectively. If a meta-variable stands for a symbol of the union of some of these sets,
we will indicate this by listing all possible sets; e.g. �xVA � is a meta-variable for a symbol
that may be either a free variable or a free atom.

Meta-variables whose labels are disjoint will always denote di�erent symbols; e.g. �xV �
and �xA � will always denote di�erent symbols; whereas �xVA � may denote the same symbol
as �xA �. Moreover, in concrete examples, we will implicitly assume that di�erent meta-
variables denote di�erent symbols; whereas in formal discussions, �xA � and �yA � may denote
the same symbol.

As already noted in [Russell, 1919, p.155], free symbols of a (quasi-) formula often have
an obviously universal intention in mathematical practice, such as the free symbols mVA, pVA,
and qVA of the (quasi-) formula

(mVA)(pVA+qVA) = (mVA)(pVA) ∗ (mVA)(qVA).
Moreover, the (quasi-) formula itself is not meant to denote a propositional function, but
actually stands for the explicitly universally quanti�ed, closed formula

∀mB, pB, q B.
(

(mB)(pB+q B) = (mB)(pB) ∗ (mB)(q B)
)
.

In this paper, however, we indicate by
(mA)(pA+qA) = (mA)(pA) ∗ (mA)(qA),

a proper formula with free atoms, which � independently of its context � is logically equi-
valent to the explicitly universally quanti�ed formula, but which also admits the reference
to the free atoms, which is required for mathematical induction in the style of Fermat's
descente in�nie, and which may also be bene�cial for solving reference problems in the
analysis of natural language. So the third version of these formulas combines the practical
advantages of the �rst version with the semantical clarity of the second version.

Changing from universal to existential intention, it is somehow clear that the linear system
of the (quasi-) formula (

2 3
5 7

)(
xVA

yVA

)
=

(
11
13

)

asks us to �nd solutions for xVA and yVA. The mere existence of such solutions is expressed
by the explicitly existentially quanti�ed, closed formula

∃xB, y B.
( (

2 3
5 7

)(
xB

y B

)
=

(
11
13

) )
.

In this paper, however, we indicate by(
2 3
5 7

)(
xV

yV

)
=

(
11
13

)

a proper formula with free variables, which � independently of its context � is logically

7MRGI�XLMW�MW�MRJSVQEP��MX�WLSYPH�RSX�FI�XEKKIH�
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equivalent to the explicitly existentially quanti�ed formula, but which also admits the
reference to the free variables, which is required for retrieving solutions for xV and yV

as instantiations for xV and yV chosen in a formal proof. So the third version of these
formulas again combines the practical advantages of the �rst version with the semantical
clarity of the second version.

2.3 γ- and δ-Rules

Raymond M. Smullyan has classi�ed reductive inference rules into α-, β-, γ-, and δ-rules,
and invented a uniform notation for them; cf. [Smullyan, 1968].

Suppose we want to prove an existential proposition ∃y B. A. Then the γ-rules of old-
fashioned inference systems (such as [Gentzen, 1935] or [Smullyan, 1968]) require us to
choose a �xed witnessing term t as a substitute for the bound variable immediately when
eliminating the quanti�er.

Let A be a formula. We assume that all binders have minimal scope; e.g. ∀xB, y B. A ∧ B
reads (∀xB. ∀y B. A) ∧ B. Let Γ and Π be sequents , i.e. disjunctive lists of formulas.

γ-rules: Let t be any term:
Γ ∃y B. A Π

A{y B 7→t} Γ ∃y B. A Π

Γ ¬∀y B. A Π

¬A{y B 7→t} Γ ¬∀y B. A Π

Note that in the good old days when trees grew upwards, Gerhard Gentzen (1909�1945)
would have inverted the inference rules such that passing the line means consequence. In our
case, passing the line means reduction, and trees grow downwards.

More modern inference systems (such as the ones in [Fitting, 1996]), however, enable
us to delay the crucial choice of the term t until the state of the proof attempt may provide
more information to make a successful decision. This delay is achieved by introducing a
special kind of variable, called �dummy� in [Prawitz, 1960] and [Kanger, 1963], �free
variable� in [Fitting, 1996] and in Footnote 11 of [Prawitz, 1960], �meta variable� in the
�eld of planning and constraint solving, and �free γ-variable� in [Wirth, 2004; 2008; 2010].

In this paper, we call these variables simply �free variables� and write them like �yV �.
When these additional variables are available, we can reduce ∃y B. A �rst to A{y B 7→ yV}
and then sometime later in the proof we may globally replace yV with an appropriate term.

The addition of these free variables changes the notion of a term, but not the notation of
the γ-rules, whereas it becomes visible in the δ-rules. A δ-rule may introduce either a free
atom (δ−-rule) or an ε-constrained free variable (δ+-rule).

*SV[EVH�VIJ *SV[EVH�VIJ

JVII�&�ZEVMEFPIW#



7

δ−-rules: Let xA be a new free atom:

Γ ∀xB. A Π

A{xB 7→xA} Γ Π V(Γ ∀xB. A Π)× {xA}

Γ ¬∃xB. A Π

¬A{xB 7→xA} Γ Π V(Γ ¬∃xB. A Π)× {xA}

Note that V(Γ ∀xB. A Π) stands for the set of all symbols from V (in this case the free
variables) that occur in the sequent Γ ∀xB. A Π.

The free atom xA introduced by the δ−-rules is sometimes also called �parameter�, �eigen-
variable�, or �free δ-variable�, or even also �free variable� in Hilbert-calculi, cf. [Hilbert
& Bernays, 1968/70, Vol. I, p.102, Schema (α)]. A free atom typically stands for an
arbitrary object in a discourse of which nothing is known.

The occurrence of the free atom xA of the δ−-rules must be disallowed in the terms that
may replace those free variables which have already been in use when xA was introduced by
application of the δ−-rule, i.e. the free variables of the upper sequent to which the δ−-rule
was applied. The reason for this restriction of instantiation of free variables is that the
dependence (or scoping) of the quanti�ers must be somehow re�ected in a dependence of
the free variables and the free atoms. In our framework, this dependence is to be captured
in binary relations on the free variables and the free atoms, called variable-conditions.
Indeed, it is sometimes unsound to instantiate a free variable xV with a term containing a
free atom yA that was introduced later than xV:

Example 2.1 The formula ∃y B. ∀xB. (y B = xB)
is not generally valid. We can start a proof attempt as follows:

γ-step: ∀xB. (yV = xB), ∃y B. ∀xB. (y B = xB)
δ−-step: (yV = xA), ∃y B. ∀xB. (y B = xB)

Now, if the free variable yV could be replaced with the free atom xA, then we would get
the tautology (xA = xA), i.e. we would have proved an invalid formula. To prevent this,
the δ−-step has to record V(∀xB. (yV = xB), ∃y B. ∀xB. (y B = xB))×{xA} = {(yV, xA)} in
a variable-condition, where (yV, xA) means that yV is somehow �necessarily older� than xA,
so that we will never instantiate the free variable yV with a term containing the free atom xA.
Starting with empty variable-conditions, we extend the variable-conditions during proof
attempts by δ-steps and by global instantiations of free variables. Roughly speaking,
this kind of global instantiation of these rigid free variables is consistent if the resulting
variable-condition (seen as a directed graph) has no cycle after adding, for each free vari-
able yV instantiated with a term t and for each free variable or atom xVA occurring in t, the
pair (xVA, yV).

To make things more complicated, there are basically two di�erent versions of the δ-rules:
standard δ−-rules (also simply called �δ-rules�) and δ+-rules (also called � liberalized δ-rules�).
They di�er in the kind of symbol they introduce and � crucially � in the way they enlarge
the variable-condition, depicted to the lower right of the bar:

4IVQMWWMSRW
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δ+-rules: Let xV be a new free variable:

Γ ∀xB. A Π
(

xV, εxB. ¬A
)

A{xB 7→xV} Γ Π VA(∀xB. A)× {xV}

Γ ¬∃xB. A Π
(

xV, εxB. A
)

¬A{xB 7→xV} Γ Π VA(¬∃xB. A)× {xV}

Note that, in the �rst δ−-rule, V(Γ ∀xB. A Π) denotes the set of the free variables
occurring in the whole upper sequent, whereas in the �rst δ+-rule, VA(∀xB. A) denotes
the set of all free variables and all free atoms, but only the ones occurring in the principal2
formula ∀xB. A. The smaller variable-conditions generated by the δ+-rules mean more
proofs. Indeed, the δ+-rules enable additional proofs on the same level of γ-multiplicity
(i.e. the maximal number of repeated γ-steps applied to the identical principal formula);
cf. e.g. [Wirth, 2004, Example 2.8, p. 21]. For certain classes of theorems, some of these
proofs are exponentially and even non-elementarily shorter than the shortest proofs which
apply only δ−-rules; for a survey cf. [Wirth, 2004, � 2.1.5]. Moreover, the δ+-rules
provide additional proofs that are not only shorter but also more natural and easier to �nd,
both automatically and for human beings; see the discussion on design goals for inference
systems in [Wirth, 2004, � 1.2.1], and the proof of the limit theorem for + in [Wirth,
2006]. All in all, the name �liberalized� for the δ+-rules is indeed justi�ed: They provide
more freedom to the prover.3

Moreover, note that the pairs indicated to the upper right of the bar of the δ+-rules are
to augment another global binary relation beside the variable-condition, namely a function
called the choice-condition. This will be explained in � 3.8f.

There is a popular alternative to variable-conditions, namely Skolemization, where the
δ−- and δ+-rules introduce functions (i.e. the order of the replacements for the bound vari-
ables is incremented) which are given the free variables of V(Γ ∀xB. A Π) and V(∀xB. A)
as initial arguments, respectively. Then, the occur-check of uni�cation implements the re-
strictions on the instantiation of free variables. In some inference systems, however, Sko-
lemization is unsound (e.g. for higher-order systems such as the one in [Kohlhase, 1998]
or the system in [Wirth, 2004] for descente in�nie) or inappropriate (e.g. in the matrix
systems of [Wallen, 1990]). We prefer inference systems with variable-conditions as this is
a simpler, more general, and not less e�cient approach compared to Skolemizing inference
systems. Note that variable-conditions do not add unnecessary complexity here:

• We will need the variable-conditions anyway for our choice-conditions, which again
are needed to formalize our approach to Hilbert's ε-operator.
• If variable-conditions are super�uous, however, then we can work with empty vari-

able-conditions as if there would be no variable-conditions at all.

)Q��X]TS#
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3 Introduction to Hilbert's ε

3.1 Motivation, requirements speci�cation, and overview
Hilbert's ε-symbol is a binder that forms terms; just like Peano's ι-symbol, which is
sometimes written as ῑ or as an inverted ι. Roughly speaking, the term εxB. A, formed
from a bound variable xB and a formula A, denotes just some object that is chosen such
that � if possible � A holds for it (seen as a predicate on xB).

For Ackermann, Bernays, and Hilbert, the ε was an intermediate tool in proof
theory, to be eliminated in the end. Instead of giving a model-theoretic semantics for
the ε, they just speci�ed those axioms which were essential in their proof transformations.
These axioms did not provide a complete de�nition, but left the ε underspeci�ed.

Descriptive terms such as εxB. A and ιxB. A are of universal interest and applicability.
We suppose that our novel treatment will turn out to be useful in many areas where logic
is designed or applied as a tool for description and reasoning.

For the usefulness of such descriptive terms we consider the requirements listed below
to be the most important ones. Our new inde�nite ε-operator satis�es these requirements
and � as it is de�ned by novel semantical techniques � may serve as the paradigm for the
design of similar operators satisfying these requirements.

Requirement I (Syntax): The syntax must clearly express where exactly a commitment
to a choice of a special object is required, and where � to the contrary � di�erent
objects corresponding with the description may be chosen for di�erent occurrences of
the same descriptive term.

Requirement II (Reasoning): In a reductive proof step, it must be possible to replace
a descriptive term with a term that corresponds with its description. The soundness
of such a replacement must be expressible and should be veri�able in the original
calculus.

Requirement III (Semantics): The semantics should be simple, straightforward, natu-
ral, formal, and model-based. Overspeci�cation should be carefully avoided. Further-
more, the semantics should be modular and abstract in the sense that it adds the
operator to a variety of logics, independently of the details of a concrete logic.

In [Wirth, 2008], we have reviewed the literature on extended semantics given to Hil-
bert's ε-operator in the 2nd half of the 20th century. In this paper, we introduce to the ι
and the ε (� 3.2), to the ε's proof-theoretic origin (� 3.3), and to our contrasting semantical
objective (� 3.4) with its emphasis on inde�nite and committed choice (� 3.5).

3.2 From the ι to the ε

The �rst occurrence of a descriptive ι-operator seems to be in [Frege, 1893/1903, Vol. I],
where a boldface backslash is written instead of the ι. In [Peano, 1896f.], ` ῑ ' is written
instead of ` ι '. In [Peano, 1899b], we �nd an alternative notation besides ` ῑ ', namely
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a ι-symbol upside-down. Both notations were meant to denote the inverse of Peano's
ι-function, which constructs the singleton set of its argument. Today, we write `{y}' for
Peano's `ιy ', the upside-down ι is not easily available in typesetting, and we write a
simple non-inverted ι for the descriptive ι-operator.

All the slightly di�ering de�nitions of semantics for the ι-operator agree on the following:
If there is a unique x such that the formula A holds (seen as a predicate on xB), then the
ι-term ιxB. A denotes this unique object.

Example 3.1 (ι-binder) For an informal introduction to the ι-binder, consider Father
to be a predicate for which Father(Heinrich III, Heinrich IV) holds, i.e. �Heinrich III is father of
Heinrich IV�. Now, �the father of Heinrich IV� can be denoted by ιxB. Father(xB, Heinrich IV),
and because this is nobody but Heinrich III, i.e. Heinrich III = ιxB. Father(xB, Heinrich IV),
we know that Father(ιxB. Father(xB, Heinrich IV), Heinrich IV). Similarly,

Father(ιxB. Father(xB, Adam), Adam), (3.1.1)
and thus ∃y B. Father(y B, Adam), but, oops! Adam and Eve do not have any fathers.
If you do not agree, you would probably appreciate the following problem that occurs when
somebody has God as an additional father.

Father(Holy Ghost, Jesus) ∧ Father(Joseph, Jesus). (3.1.2)
Then the Holy Ghost is the father of Jesus and Joseph is the father of Jesus:

Holy Ghost = ιxB. Father(xB, Jesus) ∧ Joseph = ιxB. Father(xB, Jesus) (3.1.3)
This implies something the Pope may not accept, namely Holy Ghost = Joseph,
and he anathematized Heinrich IV in the year 1076:

Anathematized(ιxB. Pope(xB), Heinrich IV, 1076). (3.1.4)

From Frege [1893/1903] to Quine [1981], we �nd a multitude of ι-operators that are
arbitrarily overspeci�ed for the sake of completeness and syntactic eliminability. There are
basically three ways of giving a semantics to the ι-terms without overspeci�cation:

Russell's ι-operator: In [Whitehead & Russell, 1910�1913], the ι-terms do not
refer to an object but make sense only in the context of a sentence. This was nicely
described already in [Russell, 1905], without using any symbol for the ι, however.

Hilbert's ι-operator: To overcome the complex di�culties of that non-referential de�-
nition, in [Hilbert & Bernays, 1968/70, Vol. I, p. 392�.], a completed proof of
∃!xB. A was required to precede each formation of the term ιxB. A, which otherwise
could not be considered a well-formed term at all.

Peano's ι-operator: Since the in�exible treatment of Hilbert's ι-operator makes the ι
quite impractical and the formal syntax of logic undecidable in general, in Vol. II of
the same book, the ε, however, is already given a more �exible treatment. There,
the simple idea is to leave the ε-terms uninterpreted, as will be described below.
In this paper, we present this more �exible view also for the ι. Moreover, this view
is already Peano's original one, cf. [Peano, 1896f.].

At least in non-modal classical logics, it is a well justi�ed standard that each term denotes.
More precisely � in each model or structure S under consideration � each occurrence of
a proper term must denote an object in the universe of S. Following that standard, to be
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able to write down ιxB. A without further consideration, we have to treat ιxB. A as an
uninterpreted term about which we only know

∃!xB. A ⇒ A{xB 7→ ιxB. A} (ι0)
or in di�erent notation

(∃!xB. (A(xB))) ⇒ A(ιxB. (A(xB))),
where, for some new y B, we can de�ne ∃!xB. A := ∃y B. ∀xB. (xB=y B ⇔ A).

With (ι0) as the only axiom for the ι, the term ιxB. A has to satisfy A (seen as a
predicate on xB) only if there exists a unique object such that A holds for it. Moreover,
the problems presented in Example 3.1 do not appear because (3.1.1) and (3.1.3) are not
valid. Indeed, the description of (3.1.1) lacks existence and the descriptions of (3.1.3) and
(3.1.4) lack uniqueness. The price we have to pay here is that � roughly speaking � the
term ιxB. A is of no use unless the unique existence ∃!xB. A can be derived.

3.3 On the ε's proof-theoretic origin

Compared to ι, the ε is more useful because � instead of (ι0) � it comes with the stronger
axiom ∃xB. A ⇒ A{xB 7→ εxB. A} (ε0)
More precisely, as the formula ∃xB. A (which has to be true to guarantee a meaningful in-
terpretation of the ε-term εxB. A ) is weaker than the corresponding formula ∃!xB. A
(for the resp. ι-term), the area of useful application is wider for the ε- than for the
ι-operator. Moreover, in case of ∃!xB. A, the ε-operator picks the same element as
the ι-operator, i.e. ∃!xB. A ⇒ (

εxB. A = ιxB. A
)
.

As the basic methodology of Hilbert's programme is to treat all symbols as meaning-
less, he does not give us any semantics but only the axiom (ε0). Although no meaning is
required, it furthers the understanding. And therefore, in [Hilbert & Bernays, 1968/70],
the fundamental work which summarizes the foundational contributions of David Hilbert
and his group, Paul Bernays writes:

εxB. A . . . �ist ein Ding des Individuenbereichs, und zwar ist dieses Ding
gemäÿ der inhaltlichen Übersetzung der Formel (ε0) ein solches, auf das
jenes Prädikat A zutri�t, vorausgesetzt, dass es überhaupt auf ein Ding des
Individuenbereichs zutri�t.�

[Hilbert & Bernays, 1968/70, Vol. II, p.12, modernized orthography]

εxB. A . . . �is a thing of the domain of individuals for which � according to
the contentual translation of the formula (ε0) � the predicate A holds, provided
that A holds for any thing of the domain of individuals at all.�

Example 3.2 (ε instead of ι, part I) (continuing Example 3.1)
Just as for the ι, for the ε we have Heinrich III = εxB. Father(xB, Heinrich IV) and

Father(εxB. Father(xB, Heinrich IV), Heinrich IV).
But, from the contrapositive of (ε0) and ¬Father(εxB. Father(xB, Adam), Adam), we now
conclude that ¬∃y B. Father(y B, Adam).
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Hilbert did not need any semantics or precise intention for the ε-symbol because it was
introduced merely as a formal syntactical device to facilitate proof-theoretic investigations,
motivated by the possibility to get rid of the existential and universal quanti�ers via

∃xB. A ⇔ A{xB 7→ εxB. A} (ε1)
∀xB. A ⇔ A{xB 7→ εxB. ¬A} (ε2)

When we remove all quanti�ers in a derivation of the (Hilbert-style) predicate calculus of
[Hilbert & Bernays, 1968/70] along (ε1) and (ε2), the following transformations occur:
Tautologies are turned into tautologies. The axioms

A{xB 7→t} ⇒ ∃xB. A and ∀xB. A ⇒ A{xB 7→t}
are turned into

A{xB 7→t} ⇒ A{xB 7→ εxB. A} (ε-formula)
and � roughly speaking w.r.t. two-valued logics � its contrapositive, respectively. The
inference steps are turned into inference steps: modus ponens into modus ponens; instanti-
ation of free variables as well as quanti�er introduction into instantiation including ε-terms.
Finally, the ε-formula is taken as a new axiom scheme instead of (ε0) because it has the
advantage of being free of quanti�ers.

This argumentation is actually the start of the proof transformation which constructively
proves the �rst of Bernays' two theorems on ε-elimination in �rst-order logic, the so-called
1st ε-theorem. In its extended form, this theorem may be stated as follows:

Theorem 3.3 (Extd. 1st ε-Thm., [Hilbert & Bernays, 1968/70, Vol. II, p.79f.])
From a derivation of ∃xB1 . . . . ∃xBr . A (containing no bound variables besides the ones
bound by the pre�x ∃xB1 . . . . ∃xBr .) from the formulas P1, . . . , Pk (containing no bound vari-
ables) in the predicate calculus (incl., as axiom schemes, ε-formula and (to specify equal-
ity) re�exivity and substitutability), we can construct a (�nite) disjunction of the form∨s

i=0 A{xB1 , . . . , xBr 7→ ti,1, . . . , ti,r} and a derivation of it, in which bound variables do not
occur at all, from P1, . . . , Pk in the elementary calculus (i.e. tautologies plus the inference
schema (of modus ponens) and substitution of free variables).

Note that r, s range over natural numbers including 0, and that A, ti,j, and Pi are ε-free
because otherwise they would have to include (additional) bound variables.

Moreover, the 2nd ε-Theorem in [Hilbert & Bernays, 1968/70, Vol. II], states that
the ε (just as the ι, cf. [Hilbert & Bernays, 1968/70, Vol. I]) is a conservative extension
of the predicate calculus in the sense that each formal proof of an ε-free formula can be
transformed into a formal proof that does not use the ε at all. Generally, however, it is
not a conservative extension when we add the ε either with (ε0), with (ε1), or with the
ε-formula to other �rst-order logics � may they be weaker such as intuitionistic logic, or
stronger such as set theories with axiom schemes over arbitrary terms including the ε ;
cf. [Wirth, 2008, � 3.1.3]. Moreover, even in standard �rst-order logic there is no transla-
tion from the formulas containing the ε to formulas not containing it.

;LEX�MW�XLI�QSVI�KIRIVEP�GEWI#
%\MSQW#
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3.4 Our objective

While the historiographical and technical research on the ε-theorems is still going on and
the methods of ε-elimination and ε-substitution did not die with Hilbert's Programme,
this is not our subject here. We are less interested in Hilbert's formal programme and the
consistency of mathematics than in the powerful use of logic in creative processes. And,
instead of the tedious syntactical proof transformations, which easily lose their usefulness
and elegance within their technical complexity and which � more importantly � can only
refer to an already existing logic, we look for semantical means for �nding new logics and
new applications. And the question that still has to be answered in this �eld is: What
would be a proper semantics for Hilbert's ε?

3.5 Inde�nite and committed choice

Just as the ι-symbol is usually taken to be the referential interpretation of the de�nite
articles in natural languages, it is our opinion that the ε-symbol should be that of the
inde�nite determiners (articles and pronouns) such as �a(n)� or �some�.

Example 3.4 (ε instead of ι, part II) (continuing Example 3.1)
It may well be the case that

Holy Ghost = εxB. Father(xB, Jesus) ∧ Joseph = εxB. Father(xB, Jesus)
i.e. that �The Holy Ghost is a father of Jesus and Joseph is a father of Jesus.� But this
does not bring us into trouble with the Pope because we do not know whether all fathers
of Jesus are equal. This will become clearer when we reconsider this in Example 3.12.

Closely connected to inde�nite choice (also called �indeterminism� or �don't care nondeter-
minism�) is the notion of committed choice. For example, when we have a new telephone,
we typically don't care which number we get, but once a number has been chosen for our
telephone, we will insist on a commitment to this choice, so that our phone number is not
changed between two incoming calls.

Example 3.5 (Committed choice)
Suppose we want to prove ∃xB. (xB 6= xB)
According to (ε1) from � 3.3 this reduces to εxB. (xB 6= xB) 6= εxB. (xB 6= xB)
Since there is no solution to xB 6= xB we can replace
εxB. (xB 6= xB) with anything. Thus, the above reduces to 0 6= εxB. (xB 6= xB)
and then, by exactly the same argumentation, to 0 6= 1
which is true in the natural numbers.
Thus, we have proved our original formula ∃xB. (xB 6= xB), which, however, is false.
What went wrong? Of course, we have to commit to our choice for all occurrences of
the ε-term introduced when eliminating the existential quanti�er: If we choose 0 on the
left-hand side, we have to commit to the choice of 0 on the right-hand side as well.
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3.6 Quanti�er Elimination and Subordinate ε-terms

Before we can introduce to our treatment of the ε, we also have to get more acquainted
with the ε in general.

The elimination of ∀- and ∃-quanti�ers with the help of ε-terms (cf. � 3.3) may be more
di�cult than expected when some ε-terms become �subordinate� to others.

De�nition 3.6 (Subordinate) An ε-term εv B. B (or, more generally, a binder on v B

together with its scope B) is superordinate to an (occurrence of an) ε-term εxB. A if
1. εxB. A is a subterm of B and
2. an occurrence of the variable v B in εxB. A is free in B

(i.e. the binder on v B binds an occurrence of v B in εxB. A ).
An (occurrence of an) ε-term εxB. A is subordinate to an ε-term εv B. B (or, more gen-
erally, to a binder on v B together with its scope B) if εv B. B is superordinate to εxB. A.

In [Hilbert & Bernays, 1968/70, Vol. II, p. 24], these subordinate ε-terms, which are
responsible for the di�culty to prove the ε-theorems constructively, are called �unterge-
ordnete ε-Ausdrücke�. Note that we will not use a special name for ε-terms with free
occurrences of variables or atoms here � such as �ε-Ausdrücke� (�quasi ε-terms�) instead
of �ε-Terme� (�ε-terms�) � but simply call them �ε-terms�, too.

Example 3.7 (Quanti�er Elimination and Subordinate ε-Terms)
Let us repeat the formulas (ε1) and (ε2) from � 3.3 here:

∃xB. A ⇔ A{xB 7→ εxB. A} (ε1)

∀xB. A ⇔ A{xB 7→ εxB. ¬A} (ε2)
Let us consider the formula

∃w B. ∀xB. ∃y B. ∀z B. P(w B, xB, y B, z B)

and apply (ε1) and (ε2) to remove the three quanti�ers completely.
We introduce the following abbreviations:
za(w

B)(xB)(y B) = εz Ba . ¬P(w B, xB, y B, z Ba )
ya(w

B)(xB) = εy Ba . P(w B, xB, y Ba , za(w
B)(xB)(y Ba))

xa(w
B) = εxBa. ¬P(w B, xBa, ya(w

B)(xBa), za(w
B)(xBa)(ya(w

B)(xBa))),
wa = εw B

a . P(w B
a , xa(w

B
a), ya(w

B
a)(xa(w

B
a)), za(w

B
a)(xa(w

B
a))(ya(w

B
a)(xa(w

B
a)))),

In [Wirth, 2008; 2010], we have shown that the outside-in elimination leads to the same
result as the inside-out elimination, but is not linear in the number of steps. Thus,
we eliminate inside-out, i.e. we start with the elimination of ∀z B. The transformation is:
∃w B. ∀xB. ∃y B. ∀z B. P(w B, xB, y B, z B),
∃w B. ∀xB. ∃y B. P(w B, xB, y B, za(w

B)(xB)(y B)),
∃w B. ∀xB. P(w B, xB, ya(w

B)(xB), za(w
B)(xB)(ya(w

B)(xB))),
∃w B. P(w B, xa(w

B), ya(w
B)(xa(w

B)), za(w
B)(xa(w

B))(ya(w
B)(xa(w

B)))),
P(wa, xa(wa), ya(wa)(xa(wa)), za(wa)(xa(wa))(ya(wa)(xa(wa)))).

,QQ��JSVKSX�[LEX�&�MW�
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Note that the resulting formula is quite deep and has more than one thousand occurrences
of the ε-binder. Indeed, in general n nested quanti�ers result in an ε-nesting depth of 2n−1.

To understand this a bit, let us have a closer look a the resulting formula. Let us write it
as

P(wa, xb, yd, zh) (3.7.1)
then (after renaming some bound atoms) we have

zh = εz Bh . ¬P(wa, xb, yd, z
B
h), (3.7.2)

yd = εy Bd . P(wa, xb, y
B
d , zg(y

B
d )) (3.7.3)

with zg(y
B
d ) = εz Bg . ¬P(wa, xb, y

B
d , z Bg ), (3.7.4)

xb = εxBb . ¬P(wa, x
B
b , yc(x

B
b ), zf (x

B
b )) (3.7.5)

with zf (x
B
b ) = εz Bf . ¬P(wa, x

B
b , yc(x

B
b ), z

B
f )

and yc(x
B
b ) = εy Bc . P(wa, x

B
b , y

B
c , ze(x

B
b )(y

B
c ))

with ze(x
B
b )(y

B
c ) = εz Be . ¬P(wa, x

B
b , y

B
c , z Be ),

(3.7.6)
(3.7.7)
(3.7.8)

wa = εw B
a . P(w B

a , xa(w
B
a), yb(w

B
a), zd(w

B
a)) (3.7.9)

with zd(w
B
a) = εz Bd . ¬P(w B

a , xa(w
B
a), yb(w

B
a), z Bd )

and yb(w
B
a) = εy Bb . P(w B

a , xa(w
B
a), y Bb , zc(w

B
a)(y Bb ))

with zc(w
B
a)(y Bb ) = εz Bc . ¬P(w B

a , xa(w
B
a), y Bb , z Bc ),

xa(w
B
a) = εxBa. ¬P(w B

a , xBa, ya(w
B
a)(xBa), zb(w

B
a)(xBa))

with zb(w
B
a)(xBa) = εz Bb . ¬P(w B

a , xBa, ya(w
B
a)(xBa), z

B
b )

and ya(w
B
a)(xBa) = εy Ba . P(w B

a , xBa, y
B
a , za(w

B
a)(xBa)(y

B
a))

with za(w
B
a)(xBa)(y

B
a) =

εz Ba . ¬P(w B
a , xBa, y

B
a , z Ba ).

(3.7.10)
(3.7.11)
(3.7.12)
(3.7.13)
(3.7.14)
(3.7.15)
(3.7.16)

Firstly, note that the free-occurring bound atoms
z Ba , y Ba , z Bb , xBa,
z Bc , y Bb , z Bd , w B

a ,
z Be , y Bc , z Bf , xBb ,
z Bg , y Bd , z Bh ,

in the indented ε-terms are actually bound by the next ε to the left, to which the respective
ε-terms thus become subordinate. For example, the ε-term zg(y

B
d ) is subordinate to the

ε-term yd. Secondly, the ε-terms of these equations are exactly those that require a
commitment to their choice. This means that each of za, zb, zc, zd ze, zf , zg, zh, each of
ya, yb, yc, yd, and each of xa, xb may be chosen di�erently without a�ecting soundness of
the equivalence transformation. Note that the variables are strictly nested into each other;
so we must choose in the order of za, ya, zb, xa, zc, yb, zd, wa, ze, yc, zf , xb, zg, yd, zh.
Moreover, in case of all ε-terms except wa, xb, yd, zh, we actually have to choose a function
instead of a simple object. In Hilbert's view, however, there are neither functions nor
objects at all, but only terms (and quasi-terms (i.e. with free occurrences of bound atoms)),
where xa(w

B
a) reads

εxBa. ¬P




w B
a ,

xBa,
εy Ba . P

(
w B

a , xBa, y Ba , εz Ba . ¬P(w B
a , xBa, y

B
a , z Ba )

)
,

εz Bb . ¬P
(

w B
a , xBa, εy Ba . P

(
w B

a , xBa, y Ba , εz Ba . ¬P(w B
a , xBa, y

B
a , z Ba )

)
, z Bb

)


,

yb(w
B
a) reads

0S[IVGEWI#
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εyBb . ¬P

0
BBBBBBBBBBBBBBBBBBBBBBB@

wBa,

εxBa. ¬P

0
BBB@

wBa,

xBa,
εyBa . P

`
wBa, xBa, yBa , εz Ba . ¬P(wBa, xBa, yBa , z Ba)

´
,

εz Bb . ¬P
“

wBa, xBa, εyBa . P
`

wBa, xBa, yBa , εz Ba . ¬P(wBa, xBa, yBa , z Ba)
´
, z Bb

”

1
CCCA,

yBb ,

εz Bc . ¬P

0
BBBBBBBBBB@

wBa,

εxBa. ¬P

0
BBB@

wBa,

xBa,
εyBa . P

`
wBa, xBa, yBa , εz Ba . ¬P(wBa, xBa, yBa , z Ba)

´
,

εz Bb . ¬P
“

wBa, xBa, εyBa . P
`

wBa, xBa, yBa , εz Ba . ¬P(wBa, xBa, yBa , z Ba)
´
, z Bb

”

1
CCCA,

yBb ,

z Bc

1
CCCCCCCCCCA

1
CCCCCCCCCCCCCCCCCCCCCCCA

.

ε-nesting depth number of ε-binders Ackermann rank Ackermann degree
za(wBa)(xBa)(yBa) 1 1 1 unde�ned
ya(wBa)(xBa) 2 2 2 unde�ned
zb(w

B
a)(xBa) 3 3 1 unde�ned

xa(wBa) 4 6 3 unde�ned
zc(wBa)(yBb ) 5 7 1 unde�ned
yb(w

B
a) 6 14 2 unde�ned

zd(wBa) 7 21 1 unde�ned
wa 8 42 4 1
ze(yBc )(wBa) 9 43 1 unde�ned
yc(xBb ) 10 86 2 unde�ned
zf (xBb ) 11 129 1 unde�ned
xb 12 258 3 2
zg(yBd) 13 301 1 unde�ned
yd 14 602 2 3
zh 15 903 1 4
P(wa, xb, yd, zh) 15 1805 unde�ned unde�ned

For ∀w B. ∀xB. ∀y B. ∀z B. P(w B, xB, y B, z B) instead of ∃w B. ∀xB. ∃y B. ∀z B. P(w B, xB, y B, z B),
we get the same exponential growth of nesting depth as in Example 3.7 above, when we
completely eliminate the quanti�ers using (ε2). The only di�erence is that we get additional
occurrences of `¬'. But when we have quanti�ers of the same kind like `∃' or `∀', we had
better choose them in parallel; e.g., for ∀w B. ∀xB. ∀y B. ∀z B. P(w B, xB, y B, z B), we choose

va := εv B. ¬P(1st(v B), 2nd(v B), 3rd(v B), 4th(v B)),
and then take P(1st(va), 2nd(va), 3rd(va), 4th(va)) as result of the elimination.

Roughly speaking, in today's theorem proving, cf. e.g. [Fitting, 1996], [Wirth, 2004],
the exponential explosion of term depth of Example 3.7 is avoided by an outside-in removal
of δ-quanti�ers without removing the quanti�ers below ε-binders and by a replacement of
γ-quanti�ed variables with free variables without choice-conditions. For the formula of
Example 3.7, this yields P(wV, xe, y

V, ze) with xe = εxBe . ¬∃y B. ∀z B. P(wV, xBe , y
B, z B) and

ze = εz Be . ¬P(wV, xe, y
V, z Be ). Thus, in general, the nesting of binders for the complete

elimination of a prenex of n quanti�ers does not become deeper than 1
4
(n+1)2.

Moreover, if we are only interested in reduction and not in equivalence transformation
of a formula, we can abstract Skolem terms from the ε-terms and just reduce to the formula
P(wV, xA(wV), yV, zA(wV)(yV)). In non-Skolemizing inference systems with variable-condi-
tions we get P(wV, xA, yV, zA) instead, with {(wV, xA), (wV, zA), (yV, zA)} as an extension
to the variable-condition. Note that with Skolemization or variable-conditions we have no
growth of nesting depth at all, and the same will be the case for our approach to ε-terms.
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3.7 Do not be afraid of Inde�niteness!

From the discussion in � 3.5, one could get the impression that an inde�nite logical treatment
of the ε is not easy to �nd. Indeed, on the �rst sight, there is the problem that some standard
axiom schemes cannot be taken for granted, such as substitutability

s = t ⇒ f(s) = f(t)
and re�exivity

t = t

Note that substitutability is similar to Albert C. Leisenring's

∀xB. (A0 ⇔ A1) ⇒ εxB. A0 = εxB. A1 (E2)

(cf. [Leisenring, 1969]) when we take logical equivalence as equality. Moreover, note
that

εxB. true = εxB. true (Reflex)
is an instance of re�exivity.

This means that it is not de�nitely okay to replace a subterm with an equal term and
that even syntactically equal terms may not be de�nitely equal.

It may be interesting to see that � in computer programs � we are quite used to
committed choice and to an inde�nite behavior of choosing, and that the violation of sub-
stitutability and even re�exivity is no problem there:

Example 3.8 (Violation of Substitutability and Re�exivity in Programs)
In the implementation of the speci�cation of the web-based hypertext system of [Mattick
& Wirth, 1999], we needed a function that chooses an element from a set implemented
as a list. Its ml code is:
fun choose s = case s of Set (i :: _) => i | _ => raise Empty;
And, of course, it simply returns the �rst element of the list. For another set that is equal
� but where the list may have another order � the result may be di�erent. Thus, the
behavior of the function choose is inde�nite for a given set, but any time it is called for
an implemented set, it chooses a special element and commits to this choice, i.e.: when
called again, it returns the same value. In this case we have choose s = choose s,
but s = t does not imply choose s = choose t. In an implementation where some
parallel reordering of lists may take place, even choose s = choose s may be wrong.

From this example we may learn that the question of choose s = choose s may be
inde�nite until the choice steps have actually been performed. This is exactly how we will
treat our ε. The steps that are performed in logic are related to proving: Reductive infer-
ence steps that make proof trees grow toward the leaves, and choice steps that instantiate
variables and atoms for various purposes.

Thus, on the one hand, when we want to prove
εxB. true = εxB. true

we can choose 0 for both occurrences of εxB. true, get 0 = 0, and the proof is successful.



18

On the other hand, when we want to prove
εxB. true 6= εxB. true

we can choose 0 for one occurrence and 1 for the other, get 0 6= 1, and the proof is successful
again. This procedure may seem wondrous again, but is very similar to something quite
common with free variables with empty choice-conditions (cf. � 2.1):
On the one hand, when we want to prove

xV = yV

we can choose 0 to replace both xV and yV, get 0 = 0, and the proof is successful.
On the other hand, when we want to prove

xV 6= yV

we can choose 0 to replace xV and 1 to replace yV, get 0 6= 1, and the proof is successful
again.

3.8 Replacing ε-terms with Free Variables

There is an important di�erence between the inequations εxB. true 6= εxB. true and
xV 6= yV at the end of the previous � 3.7: The latter does not violate the re�exivity axiom!
And we are going to cure the violation of the former immediately with the help of our free
variables, but now with non-empty choice-conditions. Instead of εxB. true 6= εxB. true
we write xV 6= yV and remember what these free variables stand for by storing this into a
function C, called a choice-condition:

C(xV) := εxB. true,
C(yV) := εxB. true.

For a �rst step, suppose that our ε-terms are not subordinate to any outside binder,
cf. De�nition 3.6. Then, we can replace an ε-term εz B. A with a new free variable zV and
extend the partial function C by

C(zV) := εz B. A.

By this procedure we can eliminate all ε-terms without loosing any syntactical information.
As a �rst consequence of this elimination, the substitutability and re�exivity axioms are

immediately regained, and the problems discussed in � 3.7 disappear.
A second reason for replacing the ε-terms with free variables is that the latter can solve

the question whether a committed choice is required: We can express (on the one hand)
a committed choice by using the same free variable and (on the other hand) a choice without
commitment by using a fresh variable with the same choice-condition.

Indeed, this also solves our problems with committed choice of Example 3.5 of � 3.5:
Now, again using (ε1), ∃xB. (xB 6= xB) reduces to xV 6= xV with

C(xV) := εxB. (xB 6= xB)

and the proof attempt immediately fails because of the now regained re�exivity axiom.
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As the second step, we still have to explain what to do with subordinate ε-terms. If the
ε-term εv Bl . A contains free occurrences of exactly the distinct bound atoms v B0 , . . . , v Bl−1,
then we have to replace this ε-term with the application term zV(v B0 ) · · · (v Bl−1) of the same
type as v Bl (for a new free variable zV) and to extend the choice-condition C by

C(zV) := λv B0 . . . . λv Bl−1. εv Bl . A.

Example 3.9 (Higher-Order Choice-Condition) (continuing Example 3.7 of � 3.6)
In our framework, the complete elimination of ε-terms in (3.7.1) of Example 3.7 results in

P(wV
a, x

V
b , y

V
d, z

V
h) (cf. (3.7.1)!)

with the following higher-order choice-condition:

C(zVh) := εz Bh . ¬P(wV
a, x

V
b , y

V
d, z

B
h) (cf. (3.7.2)!)

C(yVd) := εy Bd . P(wV
a, x

V
b , y

B
d , zVc (y

B
d )) (cf. (3.7.3)!)

C(zVg) := λy Bd . εz Bg . ¬P(wV
a, x

V
b , y

B
d , z Bg ) (cf. (3.7.4)!)

C(xVb) := εxBb . ¬P(wV
a, x

B
b , y

V
c (x

B
b ), z

V
f (x

B
b )) (cf. (3.7.5)!)

C(zVf ) := λxBb . εz Bf . ¬P(wV
a, x

B
b , y

V
c (x

B
b ), z

B
f ) (cf. (3.7.6)!)

C(yVc ) := λxBb . εy Bc . P(wV
a, x

B
b , y

B
c , zVe (x

B
b )(y

B
c )) (cf. (3.7.7)!)

C(zVe ) := λxBb . λy Bc . εz Be . ¬P(wV
a, x

B
b , y

B
c , z Be ) (cf. (3.7.8)!)

C(wV
a) := εw B

a . P(w B
a , xVa(w

B
a), yVb (w

B
a), zVd(w

B
a)) (cf. (3.7.9)!)

C(zVd) := λw B
a . εz Bd . ¬P(w B

a , xVa(w
B
a), yVb (w

B
a), z Bd ) (cf. (3.7.10)!)

C(yVb ) := λw B
a . εy Bb . P(w B

a , xVa(w
B
a), y Bb , zVc (w

B
a)(y Bb )) (cf. (3.7.11)!)

C(zVc ) := λw B
a . λy Bb . εz Bc . ¬P(w B

a , xVa(w
B
a), y Bb , z Bc ) (cf. (3.7.12)!)

C(xVa) := λw B
a . εxBa. ¬P(w B

a , xBa, y
V
a(w

B
a)(xBa), z

V
b (w

B
a)(xBa)) (cf. (3.7.13)!)

C(zVb ) := λw B
a . λxBa. εz Bb . ¬P(w B

a , xBa, y
V
a(w

B
a)(xBa), z

B
b ) (cf. (3.7.14)!)

C(yVa) := λw B
a . λxBa. εy Ba . P(w B

a , xBa, y
B
a , zVa(w

B
a)(xBa)(y

B
a)) (cf. (3.7.15)!)

C(zVa) := λw B
a . λxBa. λy Ba . εz Ba . ¬P(w B

a , xBa, y
B
a , z Ba ) (cf. (3.7.16)!)

Note that this representation of (3.7.1) is smaller and easier to understand than all previous
ones. Indeed, by combination of λ-abstraction and term sharing via free variables, in our
framework the ε becomes practically feasible.



20

3.9 Instantiating Free Variables (�ε-Substitution�)

Having realized Requirement I (Syntax) of � 3.1 in the previous � 3.8, in this � 3.9 we are
now going to explain how to satisfy Requirement II (Reasoning). To this end, we have to
explain how to replace free variables with terms that satisfy their choice-conditions.

The �rst thing to know about free variables with choice-conditions is: Just like the the
free variables without choice-conditions (introduced by γ-rules e.g.) and contrary to free
atoms, the free variables with choice-conditions (introduced by δ+-rules e.g.) are rigid in
the sense that the only way to replace a free variable is to do it globally, i.e. in all formulas
and all choice-conditions in an atomic transaction.

In reductive theorem proving such as in sequent, tableau, or matrix calculi we are in
the following situation: While a free variable without choice-condition can be replaced with
nearly everything, the replacement of a free variable with a choice-condition requires some
proof work, and a free atom cannot be instantiated at all.

Contrariwise, when formulas are used as tools instead of tasks, free atoms can indeed
be replaced � and this even locally (i.e. non-rigidly). This is the case not only for purely
generative calculi, (such as resolution and paramodulation calculi) and Hilbert-style cal-
culi (such as the predicate calculus of [Hilbert & Bernays, 1968/70]), but also for the
lemma and induction hypothesis application in the otherwise reductive calculi of [Wirth,
2004], cf. [Wirth, 2004, � 2.5.2].

More precisely � again considering reductive theorem proving, where formulas are proof
tasks � a free variable without choice-condition may be instantiated with any term (of ap-
propriate type) that does not violate the current variable-condition, cf. � 4.6 for details.
The instantiation of a free variable with choice-condition additionally requires some proof
work depending on the current choice-condition, cf. De�nition 4.13 for the formal details.
In general, if a substitution σ replaces � possibly among other free variables � the free
variable yV in the domain of the choice-condition C, then � to know that the global in-
stantiation of the whole proof forest with σ is consistent � we have to prove (QC(yV))σ,
where QC is given as follows:

De�nition 3.10 (QC)
QC is the function that maps every yV ∈ dom(C) with

C(yV) = λv B0 . . . . λv Bl−1. εv Bl . B

(for some bound atoms v B0 , . . . , v Bl and some formula B) to the single-formula sequent
∀v B0 . . . . ∀v Bl−1.

( ∃v Bl . B ⇒ B{v Bl 7→ yV(v B0 ) · · · (v Bl−1)}
)
,

and is otherwise unde�ned.

Note that QC(yV) is nothing but a formulation of axiom (ε0) from � 3.3 in our framework,
and Lemma4.19 states its validity.
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Example 3.11 (Predecessor Function)
Suppose that our domain is natural numbers and that yV has the choice-condition

C(yV) = λv B0 . εv B1 .
(

v B0 = v B1 + 1
)
.

Then, before we may instantiate yV with the symbol p for the predecessor function speci-
�ed by

∀xB. (
p(xB+1) = xB

)
,

we have to prove the single-formula sequent (Q(yV)){yV 7→ p}, which reads

∀v B0 .
(
∃v B1 .

(
v B0 = v B1 + 1

) ⇒ (
v B0 = p(v B0 ) + 1

) )
,

Moreover, the single formula of this sequent immediately follows from the speci�cation of p.

Example 3.12 (Canossa 1077) (continuing Example 3.4)
The situation of Example 3.4 now reads

Holy Ghost = zV0 ∧ Joseph = zV1 (3.12.1)

with C(zV0) = εz B0 . Father(z B0 , Jesus),
and C(zV1) = εz B1 . Father(z B1 , Jesus).

This does not bring us into the old trouble with the Pope because nobody knows whether
zV0 = zV1 holds or not.

On the one hand, knowing (3.1.2) from Example 3.1 of � 3.2, we can prove (3.12.1) as
follows: Let us replace zV0 with Holy Ghost because, for σ0 := {zV0 7→ Holy Ghost}, from
Father(Holy Ghost, Jesus) we obtain

∃z B0 . Father(z B0 , Jesus) ⇒ Father(Holy Ghost, Jesus),
which is nothing but the required (QC(zV0))σ0.
Analogously, we replace zV1 with Joseph because, for σ1 := {zV1 7→ Joseph}, from (3.1.2)
we also obtain the required (QC(zV1))σ1. After these replacements, (3.12.1) becomes the
tautology

Holy Ghost = Holy Ghost ∧ Joseph = Joseph

On the other hand, if we want to have trouble, we can apply the substitution
σ′ = {zV0 7→ Joseph, zV1 7→ Joseph}

to (3.12.1) because of (QC(zV0))σ
′ = (QC(zV1))σ1 = (QC(zV1))σ

′.
Then our task is to show

Holy Ghost = Joseph ∧ Joseph = Joseph

Note that this course of action is stupid already under the aspect of theorem proving alone.
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4 Formal Presentation of Our Inde�nite Semantics

To satisfy Requirement III (Semantics) of � 3.1, in this � 4 we present our novel semantics
for Hilbert's ε formally. This is required for precision and consistency. As consistency of
our new semantics is not trivial at all, technical rigor cannot be avoided. From �� 2 and 3,
the reader should have a good intuition of our intended representation and semantics of
Hilbert's ε, free variables, atoms, and choice-conditions in our framework.

4.1 Organization of � 4

After some preliminary subsections (�� 4.1�4.3), we formalize variable-conditions and their
consistency (� 4.4). The following discussion of alternatives to the design decisions in the
formalization of variable-conditions may be skipped (� 4.5).

Moreover, we explain how to deal with free variables syntactically (� 4.6) and semanti-
cally (�� 4.7 and 4.8).

Furthermore, after formalizing choice-conditions and their compatibility (� 4.9), we
de�ne our notion of (C, (R, N))-validity and discuss some examples (� 4.10). One of
these examples is especially interesting because we show that � with our new more careful
treatment of negative information in our positive/negative variable-conditions � we now
can model Henkin quanti�cation directly.

Our interest goes beyond soundness in that we want �preservation of solutions�. By this
we mean the following: All closing substitutions for the free variables � i.e. all solutions
that transform a proof attempt (to which a proposition has been reduced) into a closed
proof � are also solutions of the original proposition. This is similar to a proof in Prolog,
computing answers to a query proposition that contains free variables. Therefore, we
discuss this solution-preserving notion of reduction (� 4.13), especially under the aspects of
extensions of variable-conditions and choice-conditions (� 4.11) and of global instantiation
of free variables with choice-conditions (�ε-substitution�) (� 4.12).

Finally, in � 4.14, we show soundness, safeness, and solution-preservation for our γ-, δ−,
and δ+-rules of � 2.3.

All in all, in this � 4, we extend and simplify the presentation of [Wirth, 2008], which is
extended with additional linguistic applications in [Wirth, 2010] and which again simpli�es
and extends the presentation of [Wirth, 2004], which, however, additionally contains some
comparative discussions and compatible extensions for descente in�nie.
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4.2 Basic Notions and Notation

`N' denotes the set of natural numbers and `≺' the ordering on N. Let N+ := { n∈N |
0 6= n }. We use `]' for the union of disjoint classes and `id' for the identity function. For
classes R, A, and B we de�ne:

dom(R) := { a | ∃b. (a, b)∈R } domain
A»R := { (a, b)∈R | a∈A } restriction to A
〈A〉R := { b | ∃a∈A. (a, b)∈R } image of A, i.e. 〈A〉R = ran(A»R)

And the dual ones:
ran(R) := { b | ∃a. (a, b)∈R } range
R¹B := { (a, b)∈R | b∈B } range-restriction to B
R〈B〉 := { a | ∃b∈B. (a, b)∈R } reverse-image of B, i.e. R〈B〉 = dom(R¹B)

Furthermore, we use `∅' to denote the empty set as well as the empty function. Functions
are (right-) unique relations and the meaning of `f◦g' is extensionally given by (f◦g)(x) =
g(f(x)). The class of total functions from A to B is denoted as A → B. The class of
(possibly) partial functions from A to B is denoted as A ; B. Both → and ; associate
to the right, i.e. A ; B → C reads A ; (B → C).

Let R be a binary relation. R is said to be a relation on A if dom(R) ∪ ran(R) ⊆ A.
R is irre�exive if id∩R = ∅. It is A-re�exive if A»id ⊆ R. Speaking of a re�exive relation
we refer to the largest A that is appropriate in the local context, and referring to this A
we write R0 to ambiguously denote A»id. With R1 := R, and Rn+1 := Rn◦R for n ∈ N+,
Rm denotes the m-step relation for R. The transitive closure of R is R+ :=

⋃
n∈N+

Rn. The
re�exive & transitive closure of R is R∗ :=

⋃
n∈N Rn. A relation R (on A) is well-founded

if any non-empty class B (⊆A) has an R-minimal element, i.e. ∃a∈B. ¬∃a′ ∈B. a′R a.

To be useful in context with Hilbert's ε, the notion of a �choice function� must be gen-
eralized here: We need a total function on the power set of any universe. Thus, a value
must be supplied even at the empty set:

De�nition 4.1 (Generalized Choice Function)
f is a generalized choice function if f is function with
f : dom(f)→ ⋃

(dom(f)) and ∀x∈ dom(f). (x = ∅ ∨ f(x)∈x).

Corollary 4.2
The empty function ∅ is both a choice function and a generalized choice function.
If dom(f) = {∅}, then f is neither a choice function nor a generalized choice function.
If ∅ /∈ dom(f), then f is a generalized choice function i� f is a choice function.
If ∅ ∈ dom(f), then f is a generalized choice function i� there is a choice function f ′

and an x ∈ ⋃
(dom(f ′)) such that f = f ′ ∪ {(∅, x)}.

.YWX�[VMXI��MQEKIC6�%
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4.3 Variables, Atoms, Constants, and Substitutions

We assume the following sets of symbols to be disjoint:

V (free) (rigid) variables, serving as unknowns or
the free variables of [Fitting, 1996]

A (free) atoms, which serve as parameters and must not be bound
B bound atoms, which may be bound
Σ constants, i.e. the function and predicate symbols from the signature

We de�ne:

VA := V ] A
VAB := V ] A ] B

By slight abuse of notation, for S ∈ {V,A,VA,VAB}, we write �S(Γ )� to denote the set of
symbols from S that have free occurrences in Γ .

Let σ be a substitution.

σ is a substitution on V if dom(σ) ⊆ V.

The following indented statement (as simple as it is) will require some discussion.

We denote with �Γσ � the result of replacing each (free) occurrence of a sym-
bol x ∈ dom(σ) in Γ with σ(x); possibly after renaming in Γ some symbols that
are bound in Γ, especially because a capture of their free occurrences in σ(x)
must be avoided.

Note that such a renaming will hardly be required for the following reason: We will bind
only symbols from the set B of bound atoms. And � unless explicitly stated otherwise �
we tacitly assume that all occurrences of bound atoms from B in a term or formula or in
the range of a substitution are bound occurrences (i.e. that a bound atom xB ∈ B occurs
only in the scope of a binder on xB). Thus, in standard situations, even without renaming,
no additional occurrences can become bound (i.e. captured) when applying a substitution.

Actually, however, we may still have to rename some of the bound atoms in Γ when we
want to exclude the binding of a bound atom within the scope of another binding of the
same bound atom. For example, for Γ being the formula ∀xB. (xB = yV) and σ being the
substitution {yV 7→ εxB. (xB = xB)}, we may want the result of Γσ to be something like
∀z B. (z B = εxB. (xB = xB)) instead of ∀xB. (xB = εxB. (xB = xB)).

Moreover � unless explicitly stated otherwise � in this paper we will use only sub-
stitutions on V. Thus, also the occurrence of �(free)� in the statement indented above is
hardly of any relevance here, because we never bind elements of V anyway.

1E]�SV�QYWX# ;L]�HS�[I�RIIH�XLMW#
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4.4 Consistent Positive/Negative Variable-Conditions

Variable-conditions are binary relations on free variables and free atoms. They put con-
ditions on the possible instantiation of free variables, and on the dependence of their val-
uations. In this paper, for clarity of presentation, a variable-condition is formalized as a
pair (R,N) of binary relations, which we will call �positive/negative variable-conditions�:

• The �rst component (R) of such a pair is a binary relation that is meant to express
a positive dependence. It comes with the intention of transitivity, although it will
typically not be closed up to transitivity for reasons of presentation and e�ciency.
The overall idea is that the occurrence of a pair (xVA, yV) in this positive relation means
something like

� the value of yV may well depend on xVA �
or

� the value of yV is described in terms of xVA �.
A relation exactly like this positive relation (R) was the only component of a vari-
able-condition as de�ned and used identically throughout [Wirth, 2002; 2004; 2008;
2010]. Note, however, that, in these publications, we had to admit this single positive
relation to be a subset of VA×VA (instead of the restriction to VA×V of De�nition 4.3
in this paper), because it had to simulate the negative relation (N) in addition;
thereby losing some expressive power as compared to our positive/negative variable-
conditions here (cf. Example 4.20).

• The second component (N), however, is meant to capture a negative dependence.
The overall idea is that the occurrence of a pair (xV, yA) in this negative relation means
something like

� the value of xV is necessarily older than yA �
or

� the value of xV must not depend on yA �
or

�yA is fresh for xV �.
Relations similar to this negative relation (N) occurred as the only component of a
variable-condition already in [Wirth, 1998], and later � with a completely di�erent
motivation � also as �freshness conditions� in [Gabbay & Pitts, 2002].

De�nition 4.3 (Positive/Negative Variable-Condition)
A positive/negative variable-condition is a pair (R, N) with

and
R ⊆ VA × V
N ⊆ V × A .

Note that, in a positive/negative variable-condition (R, N), the relations R and N are
always disjoint because their ranges are always subsets of the disjoint sets V and A,
respectively.

&I�I\TPMGMX�;LEX�EVI�6�ERH�2�VERKMRK�SZIV#
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In the following de�nition, the well-foundedness guarantees that all dependences can be
traced back to independent symbols and that no variable may transitively depend on itself,
whereas the irre�exivity makes sure that no contradictious dependences can occur.

De�nition 4.4 (Consistency)
A pair (R,N) is consistent if

and
R is well-founded

R+ ◦N is irre�exive.

Let (R,N) be positive/negative variable-condition. Let us think of our (binary) relations R
and N as edges of a directed graph whose vertices are the (atom and variable) symbols
currently in use. Then, R+◦N is irre�exive i� there is no cycle in R ∪N that contains
exactly one edge from N . Moreover, in practice, a positive/negative variable-condi-
tion (R,N) can always be chosen to be �nite in both components. In this case, R is
well-founded i� R is acyclic. Thus we get:

Corollary 4.5 If (R, N) is a positive/negative variable-condition with |R| , |N | ∈ N,
then (R,N) is consistent i� each cycle in the directed graph of R]N contains more than
one edge from N. The latter can be e�ectively tested with time complexity of |R| + |N | .

Note that, in the �nite case, the test of Corollary 4.5 seems to be both the most e�cient and
the most human-oriented way to represent the question of consistency of positive/negative
variable-conditions.
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4.5 Further Discussion of our Formalization of Variable-Conditions

Let us recall that the two relations R and N of a positive/negative variable-condition (R, N)
are always disjoint because their ranges must be disjoint according to De�nition 4.3. Thus,
from a technical point of view, we could merge R and N into a single relation, but we
prefer to have two relations for the two di�erent functions (positive and negative) of the
variable-conditions in this paper, instead of the one relation for one function of [Wirth,
2002; 2004; 2008; 2010], which realized the negative function only with a signi�cant loss of
relevant information.

Moreover, in De�nition 4.3, we have excluded the possibility that two atoms aA, bA ∈ A
may be related to each other in any of the components of a positive/negative variable-con-
dition (R, N):

• yVA R aA is indeed excluded for intentional reasons: An atom aA cannot depend on
any other symbol yVA. In this sense an atom is indeed atomic and can be seen as a
black box.

• bA N aA, however, is excluded for technical reasons only.
Two atoms aA, bA in nominal terms [Urban &al., 2004] are indeed always fresh for
each other: aA # bA. In our free-variable framework, this would read: bA N aA.
The reason why we did not include A×A into the negative component N is simply
that we want to be close to the data structures of a both e�cient and human-oriented
graph implementation.
Furthermore, consistency of a positive/negative variable-condition (R, N) is equi-
valent to consistency of

(
R, N ] (A×A)

)
.

Indeed, if we added A×A to N, the result of the acyclicity test of Corollary 4.5
would not be changed: If there were a cycle with a single edge from A×A , then its
previous edge would have to be one of the original edges of N, and so this cycle would
have more than one edge from N and thus would not count as a counterexample to
consistency.

Moreover, we could remove the set B of bound atoms from our sets of symbols and consider
its elements to be elements of the set A of (free) atoms. Beside some additional care on free
occurrences of atoms in � 4.3, an additional price we would have to pay for this removal
is that we would have to take V×B to be a part of the second component (N) of all our
positive/negative variable-conditions (R, N). The reason for this is that we must guarantee
that a bound atom bB cannot be read by any variable xV, especially not after an elimination
of binders; indeed, in case of bB R+ xV, we would then get a cycle bB R+ xV N bB with only
one edge from N . Although, in practical contexts, we can always get along with a �nite
subset of V×B, the essential pairs of this subset will still be quite many and most confusing.
For instance, already for the higher-order choice-condition of Example 3.9, three and a half
dozens of pairs from V×B are essential, compared to 14 pairs of useful information in R
(cf. Example 4.14(a)).
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4.6 Extensions, σ-Updates, and (R, N)-Substitutions
Within a reasoning process, positive/negative variable-conditions may be subject to only
one kind of transformation, which we will simply call �extension�.

De�nition 4.6 ([Weak] Extension)
(R′, N ′) is an [weak ] extension of (R,N) if
(R′, N ′) is a positive/negative variable-condition, R ⊆ R′ [or at least R ⊆ (R′)+], and
N ⊆ N ′.

As an immediate corollary of De�nitions 4.6 and 4.4 we get:

Corollary 4.7
If (R′, N ′) is a consistent positive/negative variable-condition and a [weak ] extension
of (R,N), then (R, N) is a consistent positive/negative variable-condition as well.

A σ-update is a special form of an extension:

De�nition 4.8 (σ-Update, Dependence)
Let (R,N) be a positive/negative variable-condition and σ be a substitution on V.

The dependence of σ is
D := { (zVA, xV) | xV ∈ dom(σ) ∧ zVA ∈VA(σ(xV)) }.

The σ-update of (R, N) is (R ∪D, N).

De�nition 4.9 ((R,N)-Substitution)
Let (R,N) be a positive/negative variable-condition.
σ is an (R, N)-substitution if
σ is a substitution on V and the σ-update of (R,N) is consistent.

Syntactically, (xV, aA)∈N is to express that an (R,N)-substitution σ must not replace xV

with a term in which aA could ever occur; i.e. that aA is fresh for xV: aA # xV. This
is indeed guaranteed if any σ-update (R′, N ′) of (R, N) is again required to be consistent,
and so on. We can see this as follows: For zV ∈ V(σ(xV)), we get

zV R′ xV N ′ aA.
If we now try to apply a second substitution σ′ with aA ∈ A(σ′(zV)) (so that aA occurs
in (xVσ)σ′, contrary to what we initially expressed as our freshness intention), then σ′ is
not an (R′, N ′)-substitution because, for the σ′-update (R′′, N ′′) of (R′, N ′), we have

aA R′′ zV R′′ xV N ′′ aA.
so (R′′)+ ◦N ′′ is not irre�exive. All in all, the positive/negative variable-condition

• (R′, N ′) blocks any instantiation of (xVσ) resulting in a term containing aA, just as

• (R, N) blocked xV before the application of σ.

1SXMZEXI�XLMW�
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4.7 Semantical Presuppositions

Instead of de�ning truth from scratch, we require some abstract properties typically holding
in two-valued model semantics.

Truth is given relative to some Σ-structure S, assigning a non-empty universe (or �car-
rier�) to each type. More precisely, we assume that, for every type v, every Σ-structure S
maps �∀v� (i.e. the string consisting of the symbol �∀� and the sort v) to a set S(∀v) with

S(εv) ∈ S(∀v),
i.e. (S(εv))v serves as a choice function for the family of universes (S(∀v))v.

For X ⊆ VAB, we denote the set of total S-valuations of X (i.e. functions mapping
atoms and variables to objects of the universe of S (respecting types)) with

X→ S
and the set of (possibly) partial S-valuations of X with

X ; S
For δ : X→ S, we denote with � S]δ � the extension of S to X. More precisely, we assume
some evaluation function �eval� such that eval(S]δ) maps every term whose free-occurring
symbols are from Σ]X into the universe of S (respecting types). Moreover, eval(S]δ) maps
every formula B whose free-occurring symbols are from Σ]X to TRUE or FALSE, such that:

B is true in S]δ i� eval(S]δ)(B) = TRUE.
We leave open what our formulas and what our Σ-structures exactly are. The latter can
range from �rst-order Σ-structures to higher-order modal Σ-models; provided that the
following three properties � which (explicitly or implicitly) belong to the standard of
most logic textbooks � hold for every term or formula B, every Σ-structure S, and every
S-valuation δ : VAB ; S .
Explicitness Lemma
The value of the evaluation of B depends only on the valuation of those variables and atoms
that actually have free occurrences in B; i.e., for X := VAB(B), if X ⊆ dom(δ), then:

eval(S ] δ)(B) = eval(S ] X»δ)(B).

Substitution [Value] Lemma
Let σ be a substitution on VAB. If VAB(Bσ) ⊆ dom(δ), then:

eval(S ] δ)(Bσ) = eval
(
S ] (

( σ ] VAB\dom(σ)»id ) ◦ eval(S ] δ)
) )(

B
)
.

Valuation Lemma
The evaluation function treats application terms from VAB straightforwardly in the sense
that for every vVAB0 , . . . , vVABl−1, y

VAB ∈ dom(δ) with vVAB0 : α0, . . . , vVABl−1 : αl−1,
yVAB : α0 → · · · → αl−1 → αl for some types α0, . . . , αl−1, αl, we have:

eval(S ] δ)(yVAB(vVAB0 ) · · · (vVABl−1)) = δ(yVAB)(δ(vVAB0 )) · · · (δ(vVABl−1)).
Note that we need the case where yVAB is a higher-order symbol (i.e. the case of lÂ 0) only
in the rare case that higher-order choice-conditions are required. Beside this, the basic
language of the general reasoning framework, however, may well be �rst-order and does not
have to include function application.
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Moreover, for the few cases where we refer to quanti�ers and implication, such as
rules of � 2.3 or our version QC of the axiom (ε0) (cf. De�nition 3.10), and the lemmas
and theorems that refer to these (namely Lemmas 4.19 and 4.25, Theorem4.27(6), and
Theorem4.28),4 we have to know that the quanti�ers and the implication show the stan-
dard semantical behavior of classical logic:

∀-Lemma
Assume VAB(∀xB. A) ⊆ dom(δ). The following two are logically equivalent:
• eval(S ] δ)(∀xB. A) = TRUE

• eval(S ] VAB\{xB}»δ ] χ)(A) = TRUE for every χ : {xB} → S

∃-Lemma
Assume VAB(∃xB. A) ⊆ dom(δ). The following two are logically equivalent:
• eval(S ] δ)(∃xB. A) = TRUE,
• eval(S ] VAB\{xB}»δ ] χ)(A) = TRUE for some χ : {xB} → S

⇒-Lemma
Assume VAB(A⇒B) ⊆ dom(δ). The following two are logically equivalent:
• eval(S ] δ)(A⇒B) = TRUE

• eval(S ] δ)(A) = FALSE or eval(S ] δ)(B) = TRUE
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4.8 Semantical Relations and S-Semantical Valuations
We now come to some technical de�nitions required for our (model-) semantical counter-
parts of our syntactical (R,N)-substitutions.

Let S be a Σ-structure. An �S-semantical valuation� π plays the rôle of a raising
function (a dual of a Skolem function as de�ned in [Miller, 1992]). This means that
π does not simply map each variable directly to an object of S (of the same type), but
may additionally read the values of some atoms under an S-valuation τ : A→ S. More
precisely, we assume that π takes some restriction of τ as a second argument, say τ ′ : A ; S
with τ ′ ⊆ τ . In short:

π : V→ (A ; S) ; S.
Moreover, for each variable xV, we require that the set dom(τ ′) of atoms read by π(xV) is
identical for all τ . This identical set will be denoted with Sπ〈{xV}〉 below. Technically,
we require that there is some �semantical relation� Sπ ⊆ A×V such that for all xV ∈ V:

π(xV) : (Sπ〈{xV}〉 → S)→ S.

This means that π(xV) can read the τ -value of yA if and only if (yA, xV)∈Sπ. Note that,
for each π : V→ (A ; S) ; S, at most one such semantical relation exists, namely the
one of the following de�nition.

De�nition 4.10 (Semantical Relation (Sπ))
The semantical relation for π is

Sπ := { (yA, xV) | xV ∈V ∧ yA ∈ dom(
⋃

(dom(π(xV)))) }.

De�nition 4.11 (S-Semantical Valuation)
Let S be a Σ-structure.
π is an S-semantical valuation if

π : V→ (A ; S) ; S
and, for all xV ∈ dom(π):

π(xV) : (Sπ〈{xV}〉 → S)→ S.

Finally, we need the technical means to turn an S-semantical valuation π together with an
S-valuation τ of the atoms into an S-valuation ε(π)(τ) of the variables:

De�nition 4.12 (ε)
We de�ne the function ε : (V→ (A ; S) ; S) → (A→ S) → V ; S
for π : V→ (A ; S) ; S, τ : A→ S, xV ∈ V
by ε(π)(τ)(xV) := π(xV)(Sπ〈{xV}〉»τ).

7S�XLMW�ITWMPSR�MWR�X�LMPFIVX�W�ITWMPSR#
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4.9 Choice-Conditions and Compatibility
Choice-conditions are completely syntactical objects according to the following De�ni-
tion 4.13; how they in�uence our semantics will be described in De�nition 4.15.

De�nition 4.13 (Choice-Condition, Return Type)
C is an (R, N)-choice-condition if
• (R,N) is a consistent positive/negative variable-condition and
• C is a partial function from V into the set of higher-order ε-terms

such that, for every yV ∈ dom(C), the following items hold for some types α0, . . . , αl:
1. The value C(yV) is of the form

λv B0 . . . . λv Bl−1. εv Bl . B

for some formula B and for some mutually distinct bound atoms v B0 , . . . , v Bl ∈ B
with v B0 : α0, . . . , v Bl : αl, and with B(B) ⊆ {v B0 , . . . , v Bl }.

2. yV : α0 → · · · → αl−1 → αl.

3. zVA R+ yV for all zVA ∈ VA(C(yV)).

In the situation described, αl is the return type of C(yV).
β is a return type of C if there is a zV ∈ dom(C) such that β is the return type of C(zV).

Example 4.14 (Choice-Condition) (continuing Example 3.9)
(a) If (R,N) is a consistent positive/negative variable-condition that satis�es

zVa R yVa R zVb R xVa R zVc R yVb R zVd R wV
a R zVe R yVc R zVf R xVb R zVg R yVd R zVh,

then the C of Example 3.9 is an (R,N)-choice-condition, indeed.

(b) If some clever person tried to do the whole quanti�er elimination of Example 3.9 by
C ′(zVh) := εz Bh . ¬P(wV

a, x
V
b , y

V
d, z

B
h)

C ′(yVd) := εy Bd . P(wV
a, x

V
b , y

B
d , zVh)

C ′(xVb) := εxBb . ¬P(wV
a, x

B
b , y

V
d, z

V
h)

C ′(wV
a) := εw B

a . P(w B
a , xVb , y

V
d, z

V
h)

then he would � among other constraints � have to satisfy zVh R+ yVd R+ zVh, because
of Item3 of De�nition 4.13 and the values of C ′ at yVd and zVh. This would make R non-
well-founded. Thus, this C ′ cannot be an (R, N)-choice-condition for any (R, N),
because the consistency of (R,N) is required in De�nition 4.13. Note that the choices
required by C ′ for yVd and zVh are in an unsolvable con�ict, indeed.

(c) For a more elementary example, take
C ′′(xV) := εxB. (xB = yV) C ′′(yV) := εy B. (xV 6= y B)

Then xV and yV form a vicious circle of con�icting choices for which no valuation can
be found that is compatible with C ′′. But C ′′ is no choice-condition at all because
there is no (consistent(!)) positive/negative variable-condition (R, N) such that C ′′ is
an (R, N)-choice-condition.

RSXEXMSR�FIJSVI
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De�nition 4.15 (Compatibility)
Let C be an (R,N)-choice-condition. Let S be a Σ-structure.
π is S-compatible with (C, (R, N)) if the following items hold:

1. π is an S-semantical valuation (cf. De�nition 4.11) and
(R ∪ Sπ, N) is consistent (cf. De�nitions 4.4 and 4.10).

2. For every yV ∈ dom(C) with C(yV) = λv B0 . . . . λv Bl−1. εv Bl . B for some formula B,
and for every τ : A→ S, and for every χ : {v B0 , . . . , v Bl } → S:

If B is true in S ] ε(π)(τ) ] τ ] χ,
then B{v Bl 7→ yV(v B0 ) · · · (v Bl−1)} is true in S ] ε(π)(τ) ] τ ] χ as well.

(For ε, cf. De�nition 4.12.)

To understand Item2 of De�nition 4.15, consider an (R,N)-choice-condition
C := {(yV, λv B0 . . . . λv Bl−1. εv Bl . B)},

which restricts the value of yV with the higher-order ε-term λv B0 . . . . λv Bl−1. εv Bl . B. Then,
roughly speaking, this choice-condition C requires that whenever there is a χ-value of v Bl
such that B is true in S ] ε(π)(τ) ] τ ] χ, the π-value of yV is chosen such that
B{v Bl 7→ yV(v B0 ) · · · (v Bl−1)} becomes true in S ] ε(π)(τ) ] τ ] χ as well. Note that,
because free variables can never read any bound atoms, the free variables of the latter term
cannot read the χ-value of any of the bound atoms v B0 , . . . , v Bl .

Moreover, Item2 of De�nition 4.15 is closely related to Hilbert's ε-operator in the
sense that � roughly speaking � yV must be given one of the values admissible for

λv B0 . . . . λv Bl−1. εv Bl . B.
As the choice for yV depends on the symbols that have a free occurrence in that higher-
order ε-term, we included this dependence into the positive relation R of the consistent
positive/negative variable-condition (R,N) in Item3 of De�nition 4.13. This inclusion
excludes con�icts as in Example 4.14(c).

Let (R, N) be a consistent positive/negative variable-condition. Then the empty func-
tion ∅ is an (R, N)-choice-condition. Moreover, each π : V→ {∅} → S is S-compatible
with (∅, (R, N)) because of Sπ = ∅. In fact, as shown by the following Lemma4.16, as-
suming an adequate principle of choice on the meta level, a compatible π always exists
according to the following Lemma4.16. This existence relies on Item3 of De�nition 4.13
and on the well-foundedness of R.

Lemma 4.16
Let S be a Σ-structure. Let C be an (R, N)-choice-condition.
Assume that for every return type α of C (cf. De�nition 4.13),
there is a generalized choice function on the power-set of the universe of S for the type α.
[Let ρ be an S-semantical valuation with Sρ ⊆ R+.]
Then there is an S-semantical valuation π

• that is S-compatible with (C, (R,N)), and
• that satis�es Sπ = A»(R+) [and V\dom(C)»π = V\dom(C)»ρ ].
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Proof of Lemma4.16

Under the given assumptions, set ¢ := R+ and Sπ := A»¢.

ClaimA: ¢ = R+ = (R ∪ Sπ)+ is a well-founded ordering.
ClaimB: (R ∪ Sπ, N) is a consistent positive/negative variable-condition.
ClaimC: Sρ ⊆ A»¢ = Sπ ⊆ ¢.
ClaimD: Sπ ◦¢ ⊆ Sπ.
Proof of Claims A, B, C, and D: (R, N) is consistent because C is an (R,N)-choice-
condition. Thus, R is well-founded and ¢ = R+ = (R ∪ Sπ)+ is a well-founded ordering.
Moreover, we have Sρ, Sπ, R ⊆ ¢. Thus, (R, N) is a weak extension of (R ∪ Sπ, N). Thus,
by Corollary 4.7, (R ∪ Sπ, N) is a consistent positive/negative variable-condition. Finally,
Sπ ◦¢ = A»¢ ◦¢ ⊆ A»¢ = Sπ. Q.e.d. (Claims A, B, C, and D)

By recursion on yV ∈ V in ¢ we can de�ne π(yV) : (Sπ〈{yV}〉 → S)→ S as follows.
Let τ ′ : Sπ〈{yV}〉 → S be arbitrary.
yV ∈ V\dom(C): If an S-semantical valuation ρ is given, then we set

π(yV)(τ ′) := ρ(yV)(Sρ〈{yV}〉»τ ′);
which is well-de�ned according to ClaimC. Otherwise, we choose an arbitrary value for
π(yV)(τ ′) from the universe of S (of the appropriate type). Note that universes S(∀v) of S
are assumed to be non-empty and S is assumed to provide some choice function S(εv),
cf. � 4.7.
yV ∈ dom(C): In this case, we have the following situation: C(yV) = λv B0 . . . . λv Bl−1. εv Bl . B

for some formula B and some v B0 , . . . , v Bl ∈ B with v B0 : α0, . . . , v Bl : αl,
yV : α0 → . . .→ αl−1 → αl, and zVA ¢ yV for all zVA ∈ VA(B), because C is an (R, N)-
choice-condition. In particular, by ClaimA, yV /∈ V(B).
In this case, with the help of the assumed generalized choice function on the power-set of the
universe of S of the sort αl, we let π(yV)(τ ′) be the function f that for χ : {v B0 , . . . , v Bl−1} → S
chooses a value from the universe of S of type αl for f(χ(v B0 )) · · · (χ(v Bl−1)), such that,

if possible, B is true in S ] δ′ ] χ′,

for δ′ := ε(π)(τ ′ ] τ ′′) ] τ ′ ] τ ′′ ] χ for an arbitrary τ ′′ : (A\dom(τ ′))→ S, and
for χ′ := {v Bl 7→ f(χ(v B0 )) · · · (χ(v Bl−1))}.
Note that the point-wise de�nition of f is correct: by the Explicitness Lemma and
because of yV /∈ V(B), the de�nition of the value of f(χ(v B0 )) · · · (χ(v Bl−1)) does not depend
on the values of f(χ′′(v B0 )) · · · (χ′′(v Bl−1)) for a di�erent χ′′ : {v B0 , . . . , v Bl−1} → S. Therefore,
the function f is well-de�ned, because it also does not depend on τ ′′ according to the
Explicitness Lemma and Claim 1 below. Finally, π is well-de�ned by induction on ¢

according to Claim 2 below.
Claim 1: For zVA ¢ yV, the application term (δ′ ] χ′)(zVA) has the the value τ ′(zVA) in case

of zVA ∈ A, and the value π(zVA)(Sπ〈{zVA}〉»τ ′) in case of zVA ∈ V.

Claim2: The de�nition of π(yV)(τ ′) depends only on such values of π(vV) with vV ¢ yV,
and does not depend on τ ′′ at all.
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Proof of Claim 1: For zVA ∈ A the application term has the value τ ′(zVA) because of
zVA ∈Sπ〈{yV}〉. Moreover, for zVA ∈ V, we have Sπ〈{zVA}〉 ⊆ Sπ〈{yV}〉 by ClaimD, and
therefore the applicative term has the value π(zVA)(Sπ〈{zVA}〉»(τ ′ ] τ ′′)) =π(zVA)(Sπ〈{zVA}〉»τ ′).

Q.e.d. (Claim 1)
Proof of Claim 2: In case of yV 6∈ dom(C), the de�nition of π(yV)(τ ′) is immediate and
independent. Otherwise, we have zVA ¢ yV for all zVA ∈ VA(C(yV)). Thus, Claim 2 follows
from the Explicitness Lemma and Claim 1. Q.e.d. (Claim 2)

Moreover, π : V→ (A ; S) ; S is obviously an S-semantical valuation. Thus, Item1 of
De�nition 4.15 is satis�ed for π by ClaimB.

To show that also Item2 of De�nition 4.15 is satis�ed, let us assume yV ∈ dom(C) and
τ : A→ S to be arbitrary with C(yV) = λv B0 . . . . λv Bl−1. εv Bl . B, and let us then assume to
the contrary of Item2 that, for some χ : {v B0 , . . . , v Bl } → S and for δ := ε(π)(τ) ] τ ]χ and
σ := {v Bl 7→ yV(v B0 ) · · · (v Bl−1)}, we have eval(S ] δ)(B) = TRUE and eval(S ] δ)(Bσ) =
FALSE.
Set τ ′ := Sπ〈{yV}〉»τ and τ ′′ := A\dom(τ ′)»τ .
Set δ′ := VAB\{v Bl }»δ and f := π(yV)(τ ′).
Set χ′ := {v Bl 7→ f(χ(v B0 )) · · · (χ(v Bl−1))} .
Then δ′ = ε(π)(τ ′ ] τ ′′) ] τ ′ ] τ ′′ ] χ. Moreover, by the Explicitness Lemma, we have
δ′ = VAB\{v Bl }»id ◦ eval(S ] δ).
By the Valuation Lemma we have

eval(S ] δ)(yV(v B0 ) · · · (v Bl−1))
= δ(yV)(δ(v B0 )) · · · (δ(v Bl−1))
= ε(π)(τ)(yV)(χ(v B0 )) · · · (χ(v Bl−1))
= π(yV)(τ ′)(χ(v B0 )) · · · (χ(v Bl−1))
= f(χ(v B0 )) · · · (χ(v Bl−1)).

Thus, χ′ = σ ◦ eval(S ] δ).
Thus, δ′ ] χ′ = (VAB\{v Bl }»id ] σ) ◦ eval(S ] δ).
Thus, we have, on the one hand,

eval(S ] δ′ ] χ′)(B)
= eval(S ] ((VAB\{v Bl }»id ] σ) ◦ eval(S ] δ)))(B)

= eval(S ] δ)(Bσ)
= FALSE,

where the second equation holds by the Substitution [Value] Lemma.
Moreover, on the other hand, we have

eval(S ] δ′ ] {v Bl }»χ)(B)

= eval(S ] δ)(B)
= TRUE.

This means that a value (such as χ(v Bl )) could have been chosen for f(χ(v B0 )) · · · (χ(v Bl−1))
to make B true in S ] δ′ ] χ′, but it was not. This contradicts the de�nition of f.

Q.e.d. (Lemma4.16)
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4.10 (C, (R,N))-Validity

De�nition 4.17 ((C, (R, N))-Validity, K)
Let C be an (R, N)-choice-condition. Let G be a set of sequents.
Let S be a Σ-structure. Let δ : VA; S be an S-valuation.
G is (C, (R,N))-valid in S if

G is (π,S)-valid for some π that is S-compatible with (C, (R, N)).
G is (π,S)-valid if G is true in S ] ε(π)(τ) ] τ for every τ : A→ S.
G is true in S]δ if Γ is true in S]δ for all Γ ∈ G.
A sequent Γ is true in S]δ if there is some formula listed in Γ that is true in S]δ.
Validity in a class of Σ-structures is understood as validity in each of the Σ-structures of
that class. If we omit the reference to a special Σ-structure we mean validity in some �xed
class K of Σ-structures, such as the class of all Σ-structures or the class of Herbrand
Σ-structures.

Example 4.18 ((∅, (R, N))-Validity)
For xV ∈ V, yA ∈ A, the single-formula sequent xV = yA is (∅, (∅, ∅))-valid in any S because
we can choose Sπ := A×V and π(xV)(τ) := τ(yA) for τ : A→ S, resulting in

ε(π)(τ)(xV) = π(xV)(Sπ〈{xV}〉»τ) = π(xV)(A»τ) = π(xV)(τ) = τ(yA).
This means that (∅, (∅, ∅))-validity of xV = yA is the same as validity of

∀y B0 . ∃xB0 . (xB0 = y B0 ).
Moreover, note that ε(π)(τ) has access to the τ -value of yA0 just as a raising func-
tion xB1 for xB0 in the raised (i.e. dually Skolemized) version ∃xB1 . ∀y B0 . (xB1(y

B
0 ) = y B0 ) of

∀y B0 . ∃xB0 . (xB0 = y B0 ).
Contrary to this, for R := ∅ and N := V×A, the same single-formula sequent xV = yA

is not (∅, (R,N))-valid in general, because then the required consistency of (R ∪ Sπ, N)
implies Sπ = ∅; otherwise R∪Sπ∪N has a cycle of length 2 with exactly one edge
from N . Thus, the value of xV cannot depend on τ(yA) anymore:

π(xV)(Sπ〈{xV}〉»τ) = π(xV)(∅»τ) = π(xV)(∅).
This means that (∅, (∅,V×A))-validity of xV = yA is the same as validity of

∃xB0 . ∀y B0 . (xB0 = y B0 ).
Moreover, note that ε(π)(τ) has no access to the τ -value of y B0 just as a raising function xB1
for xB0 in the raised version ∃xB1 . ∀y B0 . (xB1() = y B0 ) of ∃xB0 . ∀y B0 . (xB0 = y B0 ).

For a more general example let G = { Ai,0 . . . Ai,ni−1 | i∈ I }, where, for i ∈ I and
j≺ni, the Ai,j are formulas with variables from v and atoms from a.
Then (∅, (∅,V×A))-validity of G means validity of ∃v. ∀a. ∀i∈ I. ∃j≺ni. Ai,j

whereas (∅, (∅, ∅))-validity of G means validity of ∀a. ∃v. ∀i∈ I. ∃j≺ni. Ai,j

Ignoring the question of γ-multiplicity, also any other sequence of universal and
existential quanti�ers can be represented by a consistent positive/negative variable-con-
dition (R,N), simply by starting from the consistent positive/negative variable-condi-
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tion (∅, ∅) and applying the γ- and δ-rules from � 2.3. A reverse translation of a consistent
positive/negative variable-condition (R, N) into a sequence of quanti�ers, however, may
require a strengthening of dependences, in the sense that a subsequent backward transla-
tion would result in a consistent positive/negative variable-condition (R′, N ′) with R ( R′

and N ( N ′. This means that our framework can express logical dependences more
�ne-grained than standard quanti�ers; cf. Example 4.20.

As already noted in � 3.9, the single-formula sequent QC(yV) of De�nition 3.10 is a formu-
lation of axiom (ε0) of � 3.3 in our framework.

Lemma 4.19 ((C, (R, N))-Validity of QC(yV))
Let C be an (R,N)-choice-condition. Let yV ∈ dom(C). Let S be a Σ-structure.

1. QC(yV) is (π,S)-valid for every π that is S-compatible with (C, (R,N)).

2. QC(yV) is (C, (R, N))-valid in S; provided that for every return type α of C (cf. De�-
nition 4.13), there is a generalized choice function on the power-set of the universe
of S for the type α.

Proof of Lemma4.19
Let C(yV) = λv B0 . . . . λv Bl−1. εv Bl . B for a formula B. Set σ := {v Bl 7→ yV(v B0 ) · · · (v Bl−1)}.
Then we have QC(yV) = ∀v B0 . . . . ∀v Bl−1.

( ∃v Bl . B ⇒ Bσ
)
. Let π be S-compatible

with (C, (R,N)); namely, in the case of Item1, the π mentioned in the lemma, or, in the
case of Item2, the π that exists according to Lemma4.16. Let τ : A→ S be arbitrary.
It now su�ces to show eval(S ] ε(π)(τ) ] τ)(QC(yV)) = TRUE. By the backward direc-
tion of the ∀-Lemma, it su�ces to show eval(S ] δ)(∃v Bl . B ⇒ Bσ) = TRUE for an
arbitrary χ : {v B0 , . . . , v Bl−1} → S, setting δ := ε(π)(τ) ] τ ] χ. By the backward direction
of the ⇒-Lemma, it su�ces to show eval(S ] δ)(Bσ) = TRUE under the assumption of
eval(S ] δ)(∃v Bl . B) = TRUE. From the latter, by the forward direction of the ∃-Lemma,
there is a χ′ : {v Bl } → S such that eval(S ] δ ] χ′)(B) = TRUE. By Item2 of De�ni-
tion 4.15, we get eval(S ] δ ] χ′)(Bσ) = TRUE. By the Explicitness Lemma, we get
eval(S ] δ)(Bσ) = TRUE. Q.e.d. (Lemma4.19)

In [Wirth, 2010, � 6.4.1], we showed that Henkin quanti�cation was problematic for the
variable-conditions of that paper, which had only one component, namely the positive one
of our positive/negative variable-conditions here: Indeed, the only way we found to model
an example of a Henkin quanti�cation in that paper precisely, was to increase the order
of some variables by raising. Let us consider the same example here again and show that
now we can model its Henkin quanti�cation directly with a consistent positive/negative
variable-condition, but without raising.
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Example 4.20 (Henkin Quanti�cation)
In [Hintikka, 1974], quanti�ers in �rst-order logic were found insu�cient to give the pre-
cise semantics of some English sentences. In [Hintikka, 1996], IF logic, i.e. Independence-
Friendly logic � a �rst-order logic with more �exible quanti�ers � was presented to over-
come this weakness. In [Hintikka, 1974], we �nd the following sentence:

Some relative of each villager and
some relative of each townsman hate each other. (H0)

Let us �rst change to a lovelier subject:

Some loved one of each woman and
some loved one of each man love each other. (H1)

For our purposes here, we consider (H1) to be equivalent to the following sentence, which
may be more meaningful and easier to understand:

Every woman could love someone and
every man could love someone, such that these loved ones could love each other.

(H1) can be represented by the following Henkin-quanti�ed IF-logic formula:

∀xB0 .




Female(xB0)

⇒ ∃y B1 .




Loves(xB0 , y
B
1 )

∧ ∀y B0 .




Male(y B0 )

⇒ ∃xB1/xB0 .



Loves(y B0 , xB1)
∧ Loves(y B1 , xB1)
∧ Loves(xB1 , y

B
1 )













(H2)

Note that Formula (H2) is already in anti-prenex form; so we cannot reduce the depen-
dences of its quanti�ers by moving them closer toward the leaves of the formula tree.

Let us refer to the standard game-theoretic semantics for quanti�ers (cf. e.g. [Hintikka,
1996]), which is de�ned as follows: Witnesses have to be picked for the quanti�ed variables
outside-in. We have to pick the witnesses for the γ-quanti�ers (i.e., in (H2), for the existen-
tial quanti�ers), and our opponent in the game picks the witnesses for the δ-quanti�ers
(i.e. for the universal quanti�ers in (H2)). We win i� the resulting quanti�er-free formula
evaluates to true. A formula is true i� we have a winning strategy.

Then the Henkin quanti�er �∃xB1/xB0 .� in (H2) is a special quanti�er, which is a bit
di�erent from �∃xB1 .�. Game-theoretically, it has the following semantics: It asks us to
pick the loved one xB1 independently from the choice of the woman xB0 (by our opponent in
the game), although the Henkin quanti�er occurs in the scope of the quanti�er �∀xB0 .�.

An alternative way to de�ne the semantics of Henkin quanti�ers is by describing their
e�ect on the logically equivalent raised forms of the formulas in which they occur. Raising
is a dual of Skolemization, cf. [Miller, 1992]. The raised version is de�ned as usual,
beside that a γ-quanti�er, say �∃xB1 .�, followed by a slash as in �∃xB1/xB0 .�, are raised in
such a form that xB0 does not appear as an argument to the raising function for xB1 .
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According to this, (H2) is logically equivalent to its following raised form (H3), where
xB0 does not occur as an argument to the raising function xB1(y

B
0 ), which, however, would

be the case if we had a usual γ-quanti�er �∃xB1 .� instead of �∃xB1/xB0 .� in (H2).

∃xB1 , y B1 . ∀xB0 , y B0 .




Female(xB0)

⇒




Loves(xB0 , y
B
1 (xB0))

∧




Male(y B0 )

⇒



Loves(y B0 , xB1(y
B
0 ))

∧ Loves(y B1 (xB0), x
B
1(y

B
0 ))

∧ Loves(xB1(y
B
0 ), y B1 (xB0))













(H3)

Beside moving-out the γ-quanti�ers from (H2) to (H3), we can also move-out the range
restriction Male(y B0 ) of y B0 , yielding the following, again logically equivalent formula, which
nicely re�ects the symmetry of (H1):

∃xB1 , y B1 . ∀xB0 , y B0 .




(
Female(xB0)

∧ Male(y B0 )

)
⇒




Loves(xB0 , y
B
1 (xB0))

∧ Loves(y B0 , xB1(y
B
0 ))

∧ Loves(y B1 (xB0), x
B
1(y

B
0 ))

∧ Loves(xB1(y
B
0 ), y B1 (xB0))





 (H4)

Before we continue, let us compare Formula (H4) to the following one, which would be
the result of the same raising transformation, but starting from a formula with a standard
γ-quanti�cation �∃xB1 .� instead of the Henkin quanti�cation �∃xB1/xB0 .�.

∃xB1 , y B1 . ∀xB0 , y B0 .




(
Female(xB0)

∧ Male(y B0 )

)
⇒




Loves(xB0 , y
B
1 (xB0))

∧ Loves(y B0 , xB1(x
B
0 , y

B
0 ))

∧ Loves(y B1 (xB0), x
B
1(x

B
0 , y

B
0 ))

∧ Loves(xB1(x
B
0 , y

B
0 ), y B1 (xB0))





 (S)

Now, (H4) looks already very much like the following tentative representation of (H1) in
our framework of free atoms and variables:

(
Female(xA0)

∧ Male(yA0 )

)
⇒




Loves(xA0 , y
V
1)

∧ Loves(yA0 , xV1)
∧ Loves(yV1 , x

V
1)

∧ Loves(xV1, y
V
1)


 (H1′)

with choice-condition C given by
C(yV1) := εy B1 . (Female(xA0) ⇒ Loves(xA0 , y

B
1 ))

C(xV1) := εxB1 . (Male(yA0 ) ⇒ Loves(yA0 , xB1))

which requires our positive/negative variable-condition (R, N) to contain (xA0 , y
V
1) and

(yA0 , xV1) in the positive relation R, by Item3 of De�nition 4.13.
Here the form of our choice-condition C was chosen to reduce the di�culty of computing

the semantics of Sentence (H2). Actually, however, we do not need this choice-condition
here: Indeed, to �nd an equivalent representation in our framework, we could also work
with an empty choice-condition. Crucial for our discussion, however, is that we can have
(xA0 , y

V
1), (y

A
0 , xV1)∈R; otherwise the loved ones could not depend on their lovers.

In any case, we can add (yV1 , y
A
0 ) to the negative relation N here, namely to express

that yV1 must not read yA0 . This results in a logical equivalence to Formula (S).
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Now we can indeed model the Henkin quanti�er by adding (xV1, x
A
0) to N in addi-

tion to (yV1 , y
A
0 ). If we have started with the consistent positive/negative variable-condi-

tion (∅, ∅), our current positive/negative variable-condition now is given as (R,N) with
R = {(xA0 , yV1), (yA0 , xV1)} and N = {(yV1 , yA0 ), (xV1, x

A
0)}. Thus, we have a single cycle in

the graph, namely the following one:
yV1

N

((

xA0
Roo

xV1

N

66

yA0
Roo

But this cycle necessarily has two edges from the negative relation N . Thus, in spite of
this cycle, our positive/negative variable-condition (R, N) is consistent by Corollary 4.5.

This was not possible with the variable-conditions of [Wirth, 2002; 2004; 2008; 2010],
because there was no distinction of the edges of N from the edges of R.

Thus, according to the discussion in [Wirth, 2010, � 6.4.1], our new framework of
this paper with positive/negative variable-conditions is the only one among all approaches
suitable for describing the semantics of noun phrases in natural languages that admits us
to model Henkin quanti�ers without raising.



42

4.11 Extended Extensions

Just like the positive/negative variable-condition (R, N), the (R, N)-choice-condition C
may be extended during proofs. This kind of extension together with a simple soundness
condition plays an important rôle in inference:

De�nition 4.21 (Extended Extension)
(C ′, (R′, N ′)) is an extended extension of (C, (R,N)) if
• C is an (R, N)-choice-condition (cf. De�nition 4.13),
• C ′ is an (R′, N ′)-choice-condition,
• C ⊆ C ′, and
• (R′, N ′) is an extension of (R,N) (cf. De�nition 4.6).

Lemma 4.22 (Extended Extension)
Let (C ′, (R′, N ′)) be an extended extension of (C, (R,N)).
If π is S-compatible with (C ′, (R′, N ′)), then π is S-compatible with (C, (R,N)) as well.

Proof of Lemma4.22
Let us assume that π is S-compatible with (C ′, (R′, N ′)). Then, by Item1 of De�nition 4.15,
π : V→ (A ; S) ; S is an S-semantical valuation and (R′ ∪ Sπ, N ′) is consistent. As
(R′, N ′) is an extension of (R,N), we have R⊆R′ and N⊆N ′. Thus, (R′ ∪Sπ, N ′) is an
extension of (R ∪ Sπ, N). Thus, (R ∪ Sπ, N) is consistent by Corollary 4.7. For π to be
S-compatible with (C, (R,N)), it now su�ces to show Item2 of De�nition 4.15. As this
property does not depend on the positive/negative variable-conditions anymore, it su�ces
to note that it actually holds because it holds for C ′ by assumption and we also have C⊆C ′

by assumption. Q.e.d. (Lemma4.22)
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4.12 Extended σ-Updates of Choice-Conditions

After global application of an (R,N)-substitution σ, we now have to update both (R, N)
and C:

De�nition 4.23 (Extended σ-Update)
Let C be an (R, N)-choice-condition and let σ be a substitution on V.

The extended σ-update (C ′, (R′, N ′)) of (C, (R, N)) is given as follows:
C ′ := { (xV, Bσ) | (xV, B)∈C ∧ xV 6∈ dom(σ) },

(R′, N ′) is the σ-update of (R,N) (cf. De�nition 4.8).

Note that a σ-update (cf. De�nition 4.8) is an extension (cf. De�nition 4.6), whereas an
extended σ-update is not an extended extension in general, because entries of the choice-
condition may be modi�ed or deleted. The remaining properties of an extended extension,
however, are all satis�ed:

Lemma 4.24 (Extended σ-Update)
Let C be an (R,N)-choice-condition. Let σ be an (R, N)-substitution.
Let (C ′, (R′, N ′)) be the extended σ-update of (C, (R, N)).
Then C ′ is an (R′, N ′)-choice-condition.

Proof of Lemma4.24
By assumption, (C ′, (R′, N ′)) is the extended σ-update of (C, (R, N)). Thus, (R′, N ′) is
the σ-update of (R,N). Thus, because σ is an (R, N)-substitution, (R′, N ′) is a consistent
positive/negative variable-condition by De�nition 4.9. Moreover, C is an (R,N)-choice-
condition. Thus, C is a partial function from V into the set of higher-order ε-terms, such
that Items 1, 2, and 3 of De�nition 4.13 hold. Thus, C ′ is a partial function from V into
the set of higher-order ε-terms satisfying Items 1 and 2 of De�nition 4.13 as well. For C ′

to satisfy also Item3 of De�nition 4.13, it now su�ces to show the following Claim 1.
Claim 1: Let yV ∈ dom(C ′) and zVA ∈ VA(C ′(yV)). Then we have zVA (R′)+ yV.
Proof of Claim 1: By the de�nition of C ′, we have zVA ∈VA(C(yV)) or else there is some
xV ∈ dom(σ) ∩ V(C(yV)) with zVA ∈VA(σ(xV)). Thus, as C is an (R,N)-choice-condition,
we have either zVA R+ yV or else xV R+ yV and zVA ∈VA(σ(xV)). Then, as (R′, N ′) is the
σ-update of (R, N), by De�nition 4.8, we have either zVA (R′)+ yV or else xV (R′)+ yV and
zVA R′ xV. Thus, in any case, zVA (R′)+ yV. Q.e.d. (Claim 1)

Q.e.d. (Lemma4.24)
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Note that the following Lemma4.25 gets a lot simpler when require the whole (R, N)-
substitution σ to respect the (R,N)-choice-condition C by setting O := dom(σ) ∩ dom(C)
and O′ := ∅; especially all requirements on O′ are trivially satis�ed then. Moreover,
note that its (still quite long) proof is more than a factor of 2 shorter than the proof of
the analogous LemmaB.5 in [Wirth, 2004] (together with LemmaB.1, its additionally
required sublemma).

Lemma 4.25 ((R,N)-Substitutions and (C, (R, N))-Validity)
Let (R,N) be a positive/negative variable-condition.
Let C be an (R,N)-choice-condition.
Let σ be an (R,N)-substitution.
Let (C ′, (R′, N ′)) be the extended σ-update of (C, (R, N)).
Let S be a Σ-structure.
Let π′ be an S-semantical valuation that is S-compatible with (C ′, (R′, N ′)).

Let O and O′ be two disjoint sets with O ⊆ dom(σ) ∩ dom(C) and O′ ⊆ dom(C) \O.
Moreover, assume that σ respects C on O in the given semantic context in the following
sense (cf. De�nition 3.10 for QC):

(〈O〉QC)σ is (π′,S)-valid.
Furthermore, regarding the set O′ (where σ may disrespect C), assume the following items
to hold:
• O′ covers the rest of the critical variables in dom(σ) ∩ dom(C) in the sense of

dom(σ) ∩ dom(C) ⊆ O′ ]O.
←−−−−−−−−−−−−−−−−−−−−−−−V−−−−−−−−−−−−−−−−−−−−−−−→

←−−−−−−−−dom(C)−−−−−−−−→
←−−−−−−−−dom(σ)−−−−−−−−→

←−−−−O′−−−−→←−O−→
• O′ satis�es the closure condition 〈O′〉R+ ∩ dom(C) ⊆ O′.
• For every yV ∈ O′ and for every return type α of C(yV) (cf. De�nition 4.13), there
is a generalized choice function on the power-set of the universe of S for the type α.

Then there is an S-semantical valuation π that is S-compatible with (C, (R, N)) and that
satis�es the following:

1. For every term or formula B with O′ ∩ V(B) = ∅ (and possibly with some un-
bound occurrences of bound atoms from a set W ⊆ B), and for every τ : A→ S and
χ : W → S:

eval(S ] ε(π′)(τ) ] τ ] χ)(Bσ) = eval(S ] ε(π)(τ) ] τ ] χ)(B).

2. For any set of sequents G with O′ ∩ V(G) = ∅ we have:
Gσ is (π′,S)-valid i� G is (π,S)-valid.
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Proof of Lemma4.25
Let us assume the situation described in the lemma.
We set A := dom(σ)\(O′]O). As σ is a substitution on V, we have dom(σ) ⊆ O′]O]A ⊆ V.

←−−−−−−−−−−−−−−−−−−−−−−−V−−−−−−−−−−−−−−−−−−−−−−−→
←−−−−−−−−dom(C)−−−−−−−−→

←−−−−−−−−dom(σ)−−−−−−−−→
←−−−−O′−−−−→←−O−→←−−−−A−−−−→

Note that C ′ is an (R′, N ′)-choice-condition because of Lemma4.24.
As π′ is S-compatible with (C ′, (R′, N ′)), we know that (R′ ∪ Sπ′ , N

′) is a consistent
positive/negative choice-condition. Thus, ¢ := (R′ ∪ Sπ′)

+ is a well-founded ordering.
Let D be the dependence of σ. Set Sπ := A»¢.

Claim 1: We have R′, Sπ′ , R, D, Sπ ⊆ ¢ and
(R′∪Sπ′ , N

′) is a weak extension of (R ∪ Sπ, N) and of (¢, N) (cf. De�nition 4.6).
Proof of Claim 1: As (R′, N ′) is the σ-update of (R, N), we have R′ = R∪D and N ′ = N .
Thus, R′, Sπ′ , R, D, Sπ ⊆ ¢ = (R′ ∪ Sπ′)

+. Q.e.d. (Claim 1)

Claim 2: (R ∪ Sπ, N) and (¢, N) are consistent positive/negative variable-conditions.
Proof of Claim 2: This follows from Claim 1 by Corollary 4.7. Q.e.d. (Claim 2)

Claim 3: O′»C is an (¢, N)-choice-condition.
Proof of Claim 3: By Claims 1 and 2 and the assumption that C is a (R,N)-choice-
condition. Q.e.d. (Claim 3)

The plan for de�ning the S-semantical valuation π (which we have to �nd) is to give
π(yV)(Sπ〈{yV}〉»τ) a value as follows:

• For yV ∈V\(O′]O]A), we take this value to be
π′(yV)(Sπ′ 〈{yV}〉»τ).

This is indeed possible because of Sπ′ ⊆ A»¢ = Sπ, so Sπ′ 〈{yV}〉»τ ⊆ Sπ〈{yV}〉»τ .

• For yV ∈O]A, we take this value to be
eval(S ] ε(π′)(τ) ] τ)(σ(yV)).

Note that, in case of yV ∈O, we know that (QC(yV))σ is (π′,S)-valid by assumption of
the lemma. Moreover, the case of yV ∈A is unproblematic because of yV 6∈ dom(C).
Again, π is well-de�ned in this case because the only part of τ that is accessed by
the given value is Sπ〈{yV}〉»τ . Indeed, this can be seen as follows: By Claim 1 and the
transitivity of ¢, we have: A»D ∪ Sπ′◦D ⊆ A»¢ = Sπ.

• For yV ∈O′, however, we have to take care of S-compatibility with (C, (R, N))
explicitly in an ¢-recursive de�nition. This disturbance does not interfere with the
semantic invariance stated in the lemma because occurrences of variables from O′

in the relevant terms and formulas are explicitly excluded and, according to the
statement of lemma, O′ satis�es the appropriate closure condition.
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Set Sρ := Sπ. Let ρ be de�ned by (yV ∈V, τ : A→ S)

ρ(yV)(Sπ〈{yV}〉»τ) :=

{
π′(yV)(Sπ′ 〈{yV}〉»τ) if yV ∈ V\(O]A)
eval(S ] ε(π′)(τ) ] τ)(σ(yV)) if yV ∈O]A

Let π be the S-semantical valuation that exists according to Lemma4.16 for the
S-semantical valuation ρ and the (¢, N)-choice-condition O′»C (cf. Claim 3). Note that
the assumptions of Lemma4.16 are indeed satis�ed here and that the resulting semantical
relation Sπ of Lemma4.16 is indeed identical to our pre-de�ned relation of the same name,
thereby justifying our abuse of notation: Indeed; by assumption of Lemma4.25, for every
return type α of O»C, there is a generalized choice function on the power-set of the universe
of S for the type α; and we have

Sρ = Sπ = A»¢ = A»(¢+).
Because of dom(O′»C) = O′, according to Lemma4.16, we then have

V\O′»π = V\O′»ρ
and π is S-compatible with (O′»C, (¢, N)).

Claim 4: For all yV ∈ O]A and τ : A→ S, when we set δ′ := ε(π′)(τ) ] τ :
ε(π)(τ)(yV) = eval(S ] δ′)(σ(yV)).

Proof of Claim 4: We have O]A ⊆ V\O′. Thus, Claim 4 follows immediately from the
de�nition of ρ. Q.e.d. (Claim 4)

Claim 5: For all yV ∈ V\(O′]O]A) and τ : A→ S: ε(π)(τ)(yV) = ε(π′)(τ)(yV).
Proof of Claim 5: For yV ∈ V\(O′]O]A), we have yV ∈ V\O′ and yV ∈ V\(O]A).
Thus, ε(π)(τ)(yV) = π(yV)(Sπ〈{yV}〉»τ) = ρ(yV)(Sπ〈{yV}〉»τ) = π′(yV)(Sπ′ 〈{yV}〉»τ) = ε(π′)(τ)(yV).

Q.e.d. (Claim 5)

Claim 6: For any term or formula B (possibly with some unbound occurrences of bound
atoms from the set W ⊆ B) with O′ ∩V(B) = ∅, and for every τ : A→ S and

every χ : W → S, when we set δ := ε(π)(τ) ] τ and δ′ := ε(π′)(τ) ] τ , we have
eval(S ] δ′ ] χ)(Bσ) = eval(S ] δ ] χ)(B).

Proof of Claim 6: eval(S ] δ′ ] χ)(Bσ) = (by the Substitution [Value] Lemma)
eval(S ] (σ ] VAB\dom(σ)»id) ◦ eval(S ] δ′ ] χ))(B) =

(by the Explicitness Lemma and the Valuation Lemma (for the case of l = 0))
eval(S ] (σ ◦ eval(S ] δ′)) ] VA\dom(σ)»δ′ ] χ)(B) =

(by O]A ⊆ dom(σ) ⊆ O′]O]A, O′∩V(B) = ∅, and the Explicitness Lemma)
eval(S ] O]A»σ ◦ eval(S ] δ′) ] VA\(O′]O]A)»δ′ ] χ)(B) = (by Claim 4 and Claim 5)
eval(S ] O]A»δ ] VA\(O′]O]A)»δ ] χ)(B) =

(by O′∩V(B) = ∅ and the Explicitness Lemma)
eval(S ] δ ] χ)(B). Q.e.d. (Claim 6)

Claim 7: For every set of sequents G′ (possibly with some unbound occurrences of bound
atoms from the set W ⊆ B) with O′ ∩ V(G′) = ∅, and for every τ : A→ S and

for every χ : W → S: Truth of G′ in S ] ε(π)(τ) ] τ ] χ is logically equivalent to
truth of G′σ in S ] ε(π′)(τ) ] τ ] χ.
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Proof of Claim 7: This is a trivial consequence of Claim 6. Q.e.d. (Claim 7)

Claim 8: For yV ∈ dom(C) \O′, we have O′ ∩ V(C(yV)) = ∅.
Proof of Claim 8: Otherwise there is some yV ∈ dom(C) \O′ and some zV ∈ O′ ∩V(C(yV)).
Then zVR+yV because C is an (R, N)-choice-condition, and then, as 〈O′〉R+∩dom(C) ⊆ O′

by assumption of the lemma, we have the contradicting yV ∈O′. Q.e.d. (Claim 8)

Claim 9: Let yV ∈ dom(C) and C(yV) = λv B0 . . . . λv Bl−1. εv Bl . B. Let τ : A→ S and
χ : {v B0 , . . . , v Bl } → S. Set δ := ε(π)(τ)]τ]χ. Set µ := {v Bl 7→ yV(v B0 ) · · · (v Bl−1)}.

If B is true in S]δ, then Bµ is true in S]δ as well.

Proof of Claim 9: Set δ′ := ε(π′)(τ) ] τ ] χ.
yV 6∈O′]O: In this case, because of dom(σ) ∩ dom(C) ⊆ O′]O, we have yV 6∈ dom(σ).

Thus, as (C ′, (R′, N ′)) is the extended σ-update of (C, (R, N)), we have
C ′(yV) = (C(yV))σ. By Claim 8, we have O′ ∩ V(B) = ∅.
And then, by our case assumption, also O′ ∩ V(Bµ) = ∅.
By assumption of Claim 9, B is true in S]δ. Thus, by Claim 7, Bσ is true in S]δ′. Thus,
as π′ is S-compatible with (C ′, (R′, N ′)), we know that (Bσ)µ is true in S]δ′. Because
of yV 6∈ dom(σ), this means that (Bµ)σ is true in S]δ′. Thus, by Claim 7, Bµ is true
in S]δ.
yV ∈O: By Claim 8, we have O′ ∩ V(B) = ∅.

And then, by our case assumption, also O′ ∩ V(Bµ) = ∅.
Moreover, (QC(yV))σ is equal to ∀v B0 . . . . ∀v Bl−1.

( ∃v Bl . B ⇒ Bµ
)
σ and (π′,S)-valid

by assumption of the lemma. Thus, by the forward direction of the ∀-Lemma,( ∃v Bl . B ⇒ Bµ
)
σ is true in S]δ′. Thus, by Claim 7, ∃v Bl . B ⇒ Bµ is true in S]δ.

As, by assumption of Claim 9, B is true in S]δ, by the backward direction of the ∃-Lemma,
∃v Bl . B is true in S]δ as well. Thus, by the forward direction of the ⇒-Lemma, Bµ is
true in S]δ as well.
yV ∈O′: π is S-compatible with (O′»C, (¢, N)) by de�nition, as explicitly stated before

Claim 4. Q.e.d. (Claim 9)

By Claims 2 and 9, π is S-compatible with (C, (R, N)). And then Items 1 and 2 of the
lemma are trivial consequences of Claims 6 and 7, respectively.

Q.e.d. (Lemma4.25)
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4.13 Reduction
Reduction is the reverse of consequence. It is the backbone of logical reasoning, especially
of abduction and goal-directed deduction. Our version of reduction does not only reduce
a set of problems to another set of problems, but also guarantees that the solutions of
the latter also solve the former; here �solutions� means the S-semantical valuations of the
(rigid) (free) variables from V.

De�nition 4.26 (Reduction)
Let C be an (R,N)-choice-condition. Let G0 and G1 be sets of sequents.
Let S be a Σ-structure.
G0 (C, (R, N))-reduces to G1 in S if for every π that is S-compatible with (C, (R,N)):

If G1 is (π,S)-valid, then G0 is (π,S)-valid as well.

Theorem 4.27 (Reduction)
Let C be an (R, N)-choice-condition. Let G0, G1, G2, and G3 be sets of sequents.
Let S be a Σ-structure.

1. (Validity) If G0 (C, (R, N))-reduces to G1 in S and G1 is (C, (R, N))-valid in S,
then G0 is (C, (R, N))-valid in S, too.

2. (Re�exivity) In case of G0⊆G1: G0 (C, (R,N))-reduces to G1 in S.
3. (Transitivity) If G0 (C, (R, N))-reduces to G1 in S

and G1 (C, (R, N))-reduces to G2 in S,
then G0 (C, (R, N))-reduces to G2 in S.

4. (Additivity) If G0 (C, (R, N))-reduces to G2 in S
and G1 (C, (R, N))-reduces to G3 in S,
then G0∪G1 (C, (R, N))-reduces to G2∪G3 in S.

5. (Monotonicity) For (C ′, (R′, N ′)) being an extended extension of (C, (R, N)):
(a) If G0 is (C ′, (R′, N ′))-valid in S, then G0 is also (C, (R, N))-valid in S.
(b) If G0 (C, (R, N))-reduces to G1 in S, then G0 also (C ′, (R′, N ′))-reduces to G1 in S.

6. (Instantiation) Let σ be an (R, N)-substitution.
Let (C ′, (R′, N ′)) be the extended σ-update of (C, (R,N)).
Set M := dom(σ) ∩ dom(C).
Set O := M ∩R∗〈V(G0, G1)〉.
Set O′ := dom(C) ∩ 〈M\O〉R∗.
Assume that for every yV ∈ O′ and for every return type α of C(yV),
there is a generalized choice function
on the power-set of the universe of S for the type α.

(a) If G0σ ∪ (〈O〉QC)σ is (C ′, (R′, N ′))-valid in S, then G0 is (C, (R, N))-valid in S.
(b) If G0 (C, (R,N))-reduces to G1 in S,

then G0σ (C ′, (R′, N ′))-reduces to G1σ ∪ (〈O〉QC)σ in S.
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Proof of Theorem4.27

The �rst four items are trivial (Validity, Re�exivity, Transitivity, Additivity).

(5a): If G0 is (C ′, (R′, N ′))-valid in S, then there is some π that is S-compatible with
(C ′, (R′, N ′)) such that G0 is (π,S)-valid. By Lemma4.22, π is also S-compatible

with (C, (R, N)). Thus, G0 is (C, (R, N))-valid, in S.

(5b): Suppose that π is S-compatible with (C ′, (R′, N ′)), and that G1 is (π,S)-valid. By
Lemma4.22, π is also S-compatible with (C, (R, N)). Thus, since G0 (C, (R, N))-

reduces to G1, also G0 is (π,S)-valid as was to be shown.

(6): Assume the situation described in the lemma.

Claim 1: O′ ⊆ dom(C) \O.
Proof of Claim 1: By de�nition, O′ ⊆ dom(C). It remains to show O′ ∩O = ∅. To the
contrary, suppose that there is some yV ∈ O′ ∩O. Then, by the de�nition of O′, there is
some zV ∈M\O with zV R∗ yV. By de�nition of O, however, we have yV ∈ R∗〈V(G0, G1)〉.
Thus, zV ∈ R∗〈V(G0, G1)〉. Thus, zV ∈O, a contradiction. Q.e.d. (Claim 1)
Claim 2: 〈O′〉R+ ∩ dom(C) ⊆ O′.
Proof of Claim 2: Assume yV ∈ O′ and zV ∈ dom(C) with yV R+ zV. It now su�ces to
show zV ∈O′. Because of yV ∈ O′, there is some xV ∈ M\O with xV R∗ yV. Thus,
xV R∗ zV. Thus, zV ∈O′. Q.e.d. (Claim 2)

Claim 3: dom(σ) ∩ dom(C) ⊆ O′ ∪O.
Proof of Claim 3: dom(σ) ∩ dom(C) = dom(C) ∩ M ⊆ O ∪ (dom(C) ∩ (M\O)) ⊆
O ∪ (dom(C) ∩ 〈M\O〉R∗) = O ∪O′. Q.e.d. (Claim 3)

Claim 4: O′ ∩ V(G0, G1) = ∅.
Proof of Claim 4: To the contrary, suppose that there is some yV ∈ O′ ∩V(G0, G1). Then,
by the de�nition of O′, there is some zV ∈M\O with zV R∗ yV. By de�nition of O, however,
we have zV ∈O, a contradiction. Q.e.d. (Claim 4)

(6a): In case that G0σ ∪ (〈O〉QC)σ is (C ′, (R′, N ′))-valid in S, there is some π′ that is
S-compatible with (C ′, (R′, N ′)) such that G0σ ∪ (〈O〉QC)σ is (π′,S)-valid. Then

both G0σ and (〈O〉QC)σ are (π′,S)-valid. By Claims 1, 2, 3, and 4, let π be given as in
Lemma4.25. Then G0 is (π,S)-valid. Moreover, as π is S-compatible with (C, (R, N)),
G0 is (C, (R,N))-valid in S.
(6b): Let π′ be S-compatible with (C ′, (R′, N ′)), and suppose that G1σ ∪ (〈O〉QC)σ is

(π′,S)-valid. Then both G1σ and (〈O〉QC)σ are (π′,S)-valid. By Claims 1, 2, 3,
and 4, let π be given as in Lemma4.25. Then π is S-compatible with (C, (R,N)), and
G1 is (π,S)-valid. By assumption, G0 (C, (R, N))-reduces to G1. Thus, G0 is (π,S)-valid,
too. Thus, by Lemma4.25, G0σ is (π′,S)-valid as was to be shown.

Q.e.d. (Theorem4.27)
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4.14 Soundness, Safeness, and Solution-Preservation
Soundness of inference rules has the global e�ect that if we reduce a set of sequents to
an empty set, then we know that the original set is valid. Safeness of inference rules has
the global e�ect that if we reduce a set of sequents to an invalid set, then we know that
already the original set was invalid. Soundness is an essential property of inference rules.
Safeness is helpful in rejecting false assumptions and in patching failed proof attempts.
As explained before, soundness is not su�cient for us in our framework, because we want
solution-preservation in the sense that our S-semantical valuations π that turn the current
proof state (π,S)-valid is guaranteed do the same for the original input proposition.

All our inference rules of � 2.3 have all of these properties. For the inference rules that
are critical in the sense that this is not obvious, we state these properties in the following
theorem.

Theorem 4.28
Let (R,N) be a positive/negative variable-condition. Let C be an (R, N)-choice-condition.
Let S be a Σ-structure.
Let us consider any of the γ-, δ−-, and δ+-rules of � 2.3.
Let G0 and G1 be the sets of the sequent above and of the sequents below the bar of that
rule, respectively.
Let C ′′ be the set of the pair indicated to the upper right of the bar if there is any (applies
only to the δ+-rules) or the empty set otherwise.
Let V be the relation indicated to the lower right of the bar if there is any (applies only to
the δ−- and δ+-rules) or the empty set otherwise.
Let us weaken the informal requirement �Let xA be a new free atom� of the δ−-rules to its
technical essence �xA ∈ A \ (

dom(R) ∪ A(Γ ∀xB. A Π)
)
�.

Let us weaken the informal statement �Let xV be a new free variable� of the δ+-rules to its
technical essence �xV ∈ V \ (

dom(C ∪R ∪N) ∪ V(∀xB. A)
)
�.

Let us set C ′ := C ∪ C ′′, R′ := R ∪ V ¹V, N ′ := N ∪ V ¹A.
Then (C ′, (R′, N ′)) is an extended extension of (C, (R, N)) (cf. De�nition 4.21);
moreover, the considered inference rule is sound and safe in the sense that G0 and G1

mutually (C ′, (R′, N ′))-reduce to each other in S.

Proof of Theorem4.28
To illustrate our techniques, we only treat the �rst rule of each kind; the other rules can be
treated most similar. In the situation described in the theorem, it su�ces to show that C ′ is
an (R′, N ′)-choice-condition (because the other properties of an extended extension are triv-
ial), and that, for every S-semantical valuation π that is S-compatible with (C ′, (R′, N ′)),
the sets G0 and G1 of the upper and lower sequents of the inference rule are equivalent
w.r.t. their (π,S)-validity.
γ-rule: In this case we have (C ′, (R′, N ′)) = (C, (R, N)). Thus, C ′ is an (R′, N ′)-

choice-condition by assumption of the theorem. Moreover, for every S-valuation
τ : A→ S, and for δ := ε(π)(τ) ] τ , the truths of

{Γ ∃y B. A Π} and {A{y B 7→t} Γ ∃y B. A Π}
in S]δ are indeed equivalent. The implication from left to right is trivial because the for-
mer sequent is a sub-sequent of the latter. For the other direction, assume that A{y B 7→t}
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is true in S]δ. Thus, by the Substitution [Value] Lemma (second equation) and the
Valuation Lemma for l = 0 (third equation):

TRUE = eval(S ] δ)(A{y B 7→t})
= eval(S ] (({y B 7→t} ] VAB\{y B}»id) ◦ eval(S]δ)))(A)
= eval(S ] {y B 7→eval(S]δ)(t)} ] δ)(A)

Thus, by the backward direction of the ∃-Lemma, ∃y B. A is true in S]δ. Thus, the
upper sequent is true S]δ.

δ−-rule: In this case, we have xA ∈ A \ (dom(R) ∪ A(Γ ∀xB. A Π)), C ′′ = ∅, and
V = V(Γ ∀xB. A Π)× {xA}. Thus, C ′ = C, R′ = R, and N ′ = N ∪ V .

Claim 1: C ′ is an (R′, N ′)-choice-condition.
Proof of Claim 1: By assumption of the theorem, C is an (R, N)-choice-condition. Thus,
(R, N) is a consistent positive/negative variable-condition. By De�nition 4.4, R is well-
founded and R+◦N is irre�exive. Since xA /∈ dom(R), we have xA /∈ dom(R+). Thus,
because of ran(V ) = {xA}, also R+◦N ′ is irre�exive. Thus, (R′, N ′) is a consistent posi-
tive/negative variable-condition, and C ′ is a (R′, N ′)-choice-condition. Q.e.d. (Claim 1)
Now, for the soundness direction, it su�ces to show the contrapositive, namely to as-
sume that there is an S-valuation τ : A→ S such that {Γ ∀xB. A Π} is false
in S]ε(π)(τ) ] τ , and to show that there is an S-valuation τ ′ : A→ S such that
{A{xB 7→xA} Γ Π} is false in S ] ε(π)(τ ′) ] τ ′. Under this assumption, ΓΠ is
false in S ] ε(π)(τ)]τ .
Claim 2: ΓΠ is false in S]ε(π)(τ ′)]τ ′ for all τ ′ : A→ S with A\{xA}»τ ′ = A\{xA}»τ .
Proof of Claim 2: Because of xA /∈ A(ΓΠ), by the Explicitness Lemma, if Claim 2
did not hold, there would have to be some uV ∈ V(ΓΠ) with xA Sπ uV. Then we have
uV N ′ xA. Thus, we know that (R′ ∪ Sπ)+ ◦N ′ is not irre�exive, which contradicts π being
S-compatible with (C ′, (R′, N ′)). Q.e.d. (Claim 2)
Moreover, under the above assumption, also ∀xB. A is false in S]ε(π)(τ)]τ . By the
backwards direction of the ∀-Lemma, this means that there is some object o such that
A is false in S]{xB 7→o}]ε(π)(τ)]τ . Set τ ′ := A\{xA}»τ ] {xA 7→o}. Then, by the
Substitution [Value] Lemma (�rst equation), by the Valuation Lemma for l = 0
(second equation), and by the Explicitness Lemma and xA /∈ A(A) (third equation),
we have: eval(S ] ε(π)(τ) ] τ ′)(A{xB 7→xA}) =

eval(S ] (({xB 7→xA} ] VAB\{xB}»id) ◦ eval(S ] ε(π)(τ) ] τ ′)))(A) =
eval(S ] {xB 7→o} ] ε(π)(τ) ] τ ′)(A) =
eval(S ] {xB 7→o} ] ε(π)(τ) ] τ)(A) = FALSE.

Claim4: A{xB 7→xA} is false in S]ε(π)(τ ′)]τ ′.
Proof of Claim 4: Otherwise, there must be some uV ∈ V(A{xB 7→xA}) with xA Sπ uV.
Then we have uV N ′ xA. Thus, we know that (R′ ∪ Sπ)+ ◦ N ′ is not irre�exive, which
contradicts π being S-compatible with (C ′, (R′, N ′)). Q.e.d. (Claim 4)
By the Claims 4 and 2, {A{xB 7→xA} Γ Π} is false in S ] ε(π)(τ ′) ] τ ′, as was to be
show for the soundness direction of the proof.
Finally, for the safeness direction of the proof, assume that the upper sequent
Γ ∀xB. A Π is (π,S)-valid. For arbitrary τ : A→ S, we have to show that the lower
sequent A{xB 7→xA} Γ Π is true in S]δ for δ := ε(π)(τ)]τ . If some formula in ΓΠ is true
in S]δ, then the lower sequent is true in S]δ as well. Otherwise, ∀xB. A is true in S]δ.
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Then, by the forward direction of the ∀-Lemma, this means that A is true in S]χ]δ for
all S-valuations χ : {xB} → S. Then, by the Substitution [Value] Lemma (�rst equa-
tion), and by the Valuation Lemma for l = 0 (second equation), we have:

eval(S ] δ)(A{xB 7→xA}) =
eval(S ] (({xB 7→xA} ] VAB\{xB}»id) ◦ eval(S ] δ)))(A) =

eval(S ] {xB 7→δ(xA)} ] δ)(A) = TRUE.

δ+-rule: In this case, we have xV ∈ V \ (dom(C ∪R ∪N) ∪ V(∀xB. A)),
C ′′ = {(xV, εxB. ¬A)}, and V = VA(∀xB. A)× {xV}.

Thus, C ′ = C ∪ {(xV, εxB. ¬A)}, R′ = R ∪ V , and N ′ = N .
By assumption of the theorem, C is an (R, N)-choice-condition. Thus, (R,N) is a consis-
tent positive/negative variable-condition. Thus, by De�nition 4.4, R is well-founded and
R+◦N is irre�exive.
Claim 5: R′ is well-founded.
Proof of Claim 5: Let B be a non-empty class. We have to show that there is an R′-minimal
element in B. Because R is well-founded, there is some R-minimal element in B. If this
element is V -minimal in B, then it is an R′-minimal element in B. Otherwise, this element
is xV and there is an element nVA ∈ B ∩ VA(∀xB. A). Set B′ := { bVA ∈B | bVA R∗ nVA }.
Because of nVA ∈B′, we know that B′ is a non-empty subset of B. Because R is well-
founded, there is some R-minimal element mVA in B′. Then mVA is also an R-minimal element
of B. Because of xV /∈ VA(∀xB. A) ∪ dom(R), we know that xV /∈ B′. Thus, mVA 6= xV.
Thus, mVA is also a V -minimal element of B. Thus, mVA is also an R′-minimal element of B.

Q.e.d. (Claim 5)
Claim 6: (R′)+ ◦N ′ is irre�exive.
Proof of Claim 6: Suppose the contrary. Because R+◦N is irre�exive, R∗◦(V ◦R∗)+◦N
must be re�exive. Because of ran(V ) = {xV} and {xV} ∩ dom(R ∪N) = ∅, we have
V ◦R = ∅ and V ◦N = ∅. Thus, R∗ ◦ (V ◦R∗)+ ◦N = R∗ ◦ V + ◦N = ∅. Q.e.d. (Claim 6)
Claim 7: C ′ is a (R′, N ′)-choice-condition.
Proof of Claim 7: By Claims 5 and 6, (R′, N ′) is a consistent positive/negative variable-
condition. As xV ∈ V\dom(C), we know that C ′ is a partial function on V just as C.
Moreover, for yV ∈ dom(C ′), we either have yV ∈ dom(C) and then
VA(C ′(yV))× {yV} = VA(C(yV))× {yV} ⊆ R+ ⊆ (R′)+, or yV = xV and then
VA(C ′(yV))× {yV} = VA(εxB. ¬A)× {xV} = V ⊆ R′ ⊆ (R′)+. Q.e.d. (Claim 7)
Now it su�ces to show that, for each τ : A→ S, and for δ := ε(π)(τ) ] τ , the truth of
{Γ ∀xB. A Π} in S ] δ is logically equivalent that of {A{xB 7→xV} Γ Π}.
Then, for the soundness direction, it su�ces to show that the former sequent is true in S]δ
under the assumption that the latter is. If some formula in ΓΠ is true in S]δ, then
the former sequent is true in S]δ as well. Otherwise, this means that A{xB 7→xV} is true
in S]δ. Then ¬A{xB 7→xV} is false in S]δ. By the Explicitness Lemma, ¬A{xB 7→xV}
is false in S]δ]χ for all χ : {xB} → S. Because π is S-compatible with (C ′, (R′, N ′)) and
because of C ′(xV) = εxB. ¬A, by Item2 of De�nition 4.15, ¬A is false in S]δ]χ for all
χ : {xB} → S. Then A is true in S]δ]χ for all χ : {xB} → S. Then, by the backwards
direction of the ∀-Lemma, ∀xB. A is true in S]δ.
The safeness direction is perfectly analogous to the case of the δ−-rule.

Q.e.d. (Theorem4.28)
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5 Summary and Discussion of our Free-Variable Frame-
work

5.1 Positive/Negative Variable-Conditions
We take a sequent to be a list of formulas which denotes the disjunction of these formulas.
In addition to the standard frameworks of two-valued logics, our formulas may contain
free atoms and variables with a context-independent semantics: Although we admit ex-
plicit quanti�cation to bind only bound atoms, our free atoms (written xA) are implicitly
universally quanti�ed. Moreover, free variables (written xV) are implicitly existentially
quanti�ed. The structure of this implicit form of quanti�cation without quanti�ers is
represented globally in a positive/negative variable-condition (R, N), which is a directed
graph on free atoms and variables whose edges are either elements of R or of N. Roughly
speaking, on the one hand, a free variable yV is put into the scope of another free variable
or atom xVA by an edge (xVA, yV) in R; and, on the other hand, a free atom yA is put into
the scope of another free variable or atom xVA by an edge (xVA, yA) in N. More precisely,
on the one hand, an edge (xVA, yV) must be put into R

• if yV is introduced in a δ+-step where xVA occurs in the principal2 formula, and also
• if yV is globally replaced with a term in which xVA occurs;

and, on the other hand, an edge (xVA, yA) must be put into N

• if xVA is actually a free variable, and yV is introduced in a δ−-step where xVA occurs
anywhere in the sequent.

Such edges may always be added to the positive/negative variable-condition. This might
be appropriate especially in the formulation of a new proposition: partly, because we may
need this for modeling the intended semantics by representing the intended quanti�cational
structure for the free variables and atoms of the new proposition; partly, because we may
need this for enabling induction in the form of Fermat's descente in�nie on the free atoms
of the proposition; cf. [Wirth, 2004, �� 2.5.2 and 3.3].

A positive/negative variable-condition (R,N) is consistent if each cycle in of the directed
graph has more than one edge from N .

5.2 Semantics of Positive/Negative Variable-Conditions
The value assigned to a free variable yV by an S-semantical valuation π may depend on the
value assigned to an atom xA by an S-valuation of the atoms. In that case, the semantical
relation Sπ, contains an edge (xA, yV). Moreover, π is enforced to obey the quanti�cational
structure by the requirement that (R ∪ Sπ, N) must be consistent; cf. De�nitions 4.10
and 4.15.

5.3 Replacing ε-terms with free variables
Suppose that an ε-term εz B. B has free occurrences of exactly the bound atoms v B0 , . . . , v Bl−1

which are not free atoms of our framework, but are actually bound in the syntactic con-

;LIVI�MW�XLI�W]RXE\�SJ�JSVQYPEW�HIJMRIH#
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text in which this ε-term occurs. Then we replace it in its context with the application
term zV(v B0 ) · · · (v Bl−1) for a fresh free variable zV and set the value of a global function C
(called the choice-condition) at zV according to

C(zV) := λv B0 . . . . λv Bl−1. εz B. B,
and augment R with an edge (yVA, zV) for each free variable or atom yVA occurring in B.

5.4 Semantics of Choice-Conditions

A free variable zV in the domain of the global choice-condition C must take a value that
makes C(zV) true � if such a choice is possible. This can be formalized as follows.

Let �eval� be the standard evaluation function. Let S be any of the semantical structures
(or models) under consideration. Let δ be a valuation of the free variables and atoms
(resulting from an S-semantical valuation of the variables and an S-valuation of the atoms).
Let χ be an arbitrary S-valuation of the bound atoms v B0 , . . . , v Bl−1, z

B. Then δ(zV) must be
a function which chooses a value that makes B true whenever possible, in the sense that
eval(S]δ]χ)(B) = TRUE implies eval(S]δ]χ)(Bµ) = TRUE for

µ := {z B 7→ zV(v B0 ) · · · (v Bl−1)}.

5.5 Substitution of Free Variables (�ε-Substitution�)

The kind of logical inference we essentially need is (problem-) reduction, the backbone of
abduction and goal-directed deduction; cf. � 4.13. In reduction steps our free atoms and
variables show the following behavior with respect to their instantiation:

Atoms behave as constant parameters. A free variable yV, however, may be globally
instantiated with any term by application of a substitution σ; unless, of course, in case
it is in the domain of the global choice-condition C, in which case σ must additionally
satisfy C(yV), in a sense to be explained below.

In addition, the applied substitution σ must always be an (R, N)-substitution. This
means that the current positive/negative variable-condition (R,N) remains consistent when
we extend it to its so-called σ-update, which augments R with the edges from the free
variables and atoms in σ(zV) to zV, for each free variable zV in the domain dom(σ).

Moreover, the global choice-condition C must be updated by removing zV from its do-
main dom(C) and by applying σ to the C-values of the free variables remaining in dom(C).

Now, in case of a free variable zV ∈ dom(σ) ∩ dom(C), σ satis�es the current choice-
condition C if (QC(zV))σ is valid in the context of the updated variable-condition and
choice-condition. Here, for a choice-condition C(zV) given as above, QC(zV) denotes the
formula

∀v B0 . . . . ∀v Bl−1.
( ∃z B. B ⇒ Bµ

)
,

which is nothing but our version of Hilbert's axiom (ε0); cf. De�nition 3.10. Under these
conditions, the invariance of reduction under substitution is stated in Theorem4.27(6b).

Finally, note that QC(zV) itself is always valid in our framework; cf. Lemma4.19.

4VIGMWI�VIJ�
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5.6 Where have all the ε-terms gone?
The ε-symbol does not occur anymore in our terms, and our formulas are much more
readable than in the standard approach of in-line presentation of ε-terms, which was always
just a theoretical presentation because in practical proofs the ε-terms would have grown
so large that the mere size of them made them inaccessible to human inspection. To see
this, compare our presentation in Example 3.9 to the one in Example 3.7, which is still hard
to read although we have invested some e�orts in �nding a readable form of presentation.
From a mathematical point of view, however, the original ε-terms are still present in our
approach; up to isomorphism and with the exception of some irrelevant term sharing.
To make these ε-terms explicit in a formula A for a given (R,N)-choice-condition C, we
just have to do the following:

1. Let us consider the relation C not as a function, but as a ground term rewriting
system: This means that we read (zV, λv B0 . . . . v Bl−1. εz B. B) ∈ C as a rewrite rule say-
ing that we may replace the free variable zV (the left-hand side of the rule, which is
not a variable but a constant w.r.t. the rewriting system) with the right-hand side
λv B0 . . . . v Bl−1. εz B. B in any given context as long as we want. By De�nition 4.13(3),
we know that all variables in B are smaller than zV in R+. By the consistency of our
positive/negative variable-condition R (according to De�nition 4.13), we know that
R+ is well-founded, and so is its multi-set extension. Thus, the multiset of the free
variable of the left-hand side is bigger than the multi-set of the free-variable occur-
rences in the right-hand side in the well-founded multiset extension of R+. Thus, if
we rewrite a formula, the multi-set of the free-variable occurrences in the rewritten
formula is smaller than the multi-set of the free-variable occurrences in the origi-
nal formula. Therefore, normalization of any formula A with these rewrite rules
terminates with a formula A′.

2. As typed λαβ-reduction is also terminating, we can apply it to remove the λ-terms
introduced to A′ by the rewriting of Step 1. This results in a formula A′′ without
free variables in the domain of C. Moreover, if the free variables in A resulted from
the elimination of ε-terms as described in �� 3.8 and 5.3, then all λ-terms that were
not already present in A are provided with arguments and can be removed by this
rewriting.

For example, if we normalize P(wV
a, x

V
b , y

V
d, z

V
h) with respect to the rewriting system given

by the (R, N)-choice-condition C of of Example 3.9, and then by λαβ-reduction, we end
up in a normal form which is the �rst-order ε-formula (3.7.1) of Example 3.7, with the
exception of the renaming of some bound atoms bound by ε. Note that the normal form
even preserves our information on committed choice when we consider any ε-term binding
an occurrence of a bound atom of the same name to be committed to the same choice.
In this sense, the representation given by the normal form is isomorphic to our original one
given by P(wV

a, x
V
b , y

V
d, z

V
h) and C.
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5.7 Are we breaking with the traditional treatment of Hilbert's ε?
Our new semantical free-variable framework was actually developed to meet the require-
ments analysis for the combination of mathematical induction in the liberal style of
Fermat's descente in�nie with state-of-the-art logical deduction. The framework pro-
vides a formal system in which a working mathematician can straightforwardly develop his
proofs supported by powerful automation; cf. [Wirth, 2004].

If traditionality meant restriction to the expressional means of the �rst half of the
20th century � with its foundational crisis and special emphasis on constructivism, in-
tuitionism, and proof transformation � then our approach would not classify as tradi-
tional. (In the meanwhile the fear of inconsistency should have been cured by [Wittgen-
stein, 1939].) But with its equivalents for the traditional ε-terms (cf. � 5.6) and for
the ε-substitution methods (cf. �� 3.9 and 4.13), our framework is deeply rooted in this
tradition.

The main disadvantage of a constructive syntactical framework for the ε as compared
to a semantical one is the following: Constructive proofs of practically relevant theorems
become too huge and too tedious, whereas semantical proofs are of a better manageable size.
More important is the possibility to invent new and more suitable logics for new applications
with semantical means, whereas proof transformations can only refer to already existing
logics, cf. � 3.4.

We intend to pass the heritage of Hilbert's ε on to new generations interested in
computational linguistics, automated theorem proving, and mathematics assistance sys-
tems; �elds in which � with very few exceptions � the overall common opinion still is
(the wrong one) that the ε hardly can be of any practical bene�t.

5.8 Comparison to the original ε

The di�erences between our free-variable framework for the ε and Hilbert's original un-
derspeci�ed ε-operator, in the order of increasing importance, are the following:

1. The term-sharing of ε-terms with the help of free variables improves the readability
of our formulas considerably.

2. We do not have the requirement of globally committed choice for any ε-term:
Di�erent free variables with the same choice-condition may take di�erent values.
Nevertheless, ε-substitution works at least as well as in the original framework of
Ackermann, Bernays, and Hilbert.

3. Opposed to all other classical semantics for the ε (including the ones of [Asser, 1957],
[Hermes, 1965], and [Leisenring, 1969]), the implicit quanti�cation of our free
variables is existential instead of universal. This change simpli�es formal reasoning
in all relevant contexts; namely because we have to consider only an arbitrary single
solution (or substitution) instead of checking all of them.
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6 Conclusion
Our novel inde�nite semantics for Hilbert's ε and our novel free-variable framework pre-
sented in this paper were developed to solve the di�cult soundness problems arising during
the combination of mathematical induction in the liberal style of Fermat's descente in�nie
with state-of-the-art deduction.5 Thereby, they had passed an evaluation of their usefulness
even before they were recognized as a candidate for the semantics that David Hilbert
probably had in mind for his ε. While the speculation on this question will go on, the
semantical framework for Hilbert's ε proposed in this paper de�nitely has the following
advantages:

Syntax: The requirement of a commitment to a choice is expressed syntactically and
most clearly by the sharing of a free variable; cf. � 3.8.

Semantics: The semantics of the ε is simple and straightforward in the sense that the
ε-operator becomes similar to the referential use of the inde�nite article in some
natural languages.
Our semantics for the ε is based on an abstract formal approach that extends a
semantics for closed formulas (satisfying only very weak requirements, cf. � 4.7) to
a semantics with existentially quanti�ed �free variables� and universally quanti�ed
�free atoms�, replacing the three kinds of free variables of [Wirth, 2004; 2008; 2010]
(existential (free γ-variables), universal (free δ−-variables), and ε-constrained (free
δ+-variables)). This simpli�cation reduces the complexity of our framework consid-
erably and will make its adaptation to applications much easier.
In spite of this simpli�cation, we have enhanced the expressiveness of our frame-
work by replacing the variable-conditions of [Wirth, 2004; 2008; 2010] with our
positive/negative variable-conditions here, such that our framework now admits us to
represent Henkin quanti�cation directly; cf. Example 4.20. From a philosophical
point of view, this clearer di�erentiation also provides a deep insight into the true
nature and the relation of the δ−- and the δ+-rules.

Reasoning: In a reductive proof step, our representation of an ε-term εxB. A can be
replaced with any term t that satis�es the formula ∃xB. A ⇒ A{xB 7→t}, cf. � 3.9.
Thus, the soundness of such a replacement is likely to be expressible and veri�able in
the original calculus. Our free-variable framework for the ε is especially convenient
for developing proofs in the style of a working mathematician, cf. [Wirth, 2004;
2006]. Indeed, our approach makes proof work most simple because we do not have
to consider all proper choices t for x (as in all other semantical approaches) but only
a single arbitrary one, which is �xed in a proof step, just as choices are settled in
program steps, cf. � 3.7.

Finally, we hope that new semantical framework will help to solve further practical and
theoretical problems with the ε and improve the applicability of the ε as a logical tool for
description and reasoning. And already without the ε (i.e. for the case that the choice-
condition is empty), our free-variable framework should �nd a multitude of applications in
all areas of computer-supported reasoning.
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Notes

Note 1 �Bound� atoms (or variables) should actually be called �bindable� instead of
�bound�, because we will always have to have unbound occurrences of bound variables.
When the name of the notion was coined, however, neither �bindable� nor the German
�bindbar� were considered proper words of their languages.

Note 2 The notions of a principal formula and a side formula were introduced in
[Gentzen, 1935] and re�ned in [Schmidt-Samoa, 2006]. Very roughly speaking, the
principal formula of a reductive inference rule is the formula that is taken to pieces by
that rule, and the side formulas are the resulting pieces. In our inference rules here, the
principal formulas are the formulas above the lines except the ones in Γ , Π, and the side
formulas are the formulas below the lines except the ones in Γ , Π.

Note 3 Regarding the classi�cation of one of the δ-rules as �liberalized�, we could try to
object with the following two points:

• VA(∀xB. A) is not necessarily a subset of V(Γ ∀xB. A Π), because it may include
some additional atoms.
First note that δ−-rules and their free atoms do not occur in inference systems with
δ+-rules before [Wirth, 2004], so that in the earlier systems VA(∀xB. A) is indeed
a subset of V(Γ ∀xB. A Π).
Moreover, the additional atoms blocked by the δ+-rules (as compared to the δ−-rules)
do not block proofs in practice. This has following reason: With a reasonably mini-
mal positive/negative variable-condition (R,N), the only additional cycles that could
occur as a consequence of these additional atoms are of the form yV N zA R xV R+ yV

with zA ∈ A(∀xB. A) and yV ∈ V(Γ ∀xB. A Π); unless we globally replace xV

during the proof attempt by an (R, N)-substitution (which, however, would not be
possible for an atom xA introduced by a δ−-rule anyway). And, in this case, the
corresponding δ−-rule would result in the cycle yV N xA R+ yV anyway.

• The δ+-rule may contribute an R-edge to a cycle with exactly one edge from N ,
whereas the analogous δ−-rule would contribute an N -edge instead, so the analo-
gous cycle would then not count as counterexample to the consistency of the posi-
tive/negative variable-condition because it has two edges from N .
Also in this case we conjecture that δ−-rules do not admit any successful proofs that
are not possible with the analogous δ+-rules. A proof of this conjecture, however,
is not easy: First, it is a global property which requires us to consider the whole
inference system. Second, δ−-rules indeed admit some extra (R,N)-substitutions:
If we want to prove ∀y B. Q(aV, y B) ∧ ∀xB. Q(xB, bV), which is true for a re�exive
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ordering Q with a minimal and a maximal element, β- and δ−-rules reduce this to the
two goals Q(aV, yA) and Q(xA, bV) with positive/negative variable-condition (R, N)
with R = ∅ and N = {(aV, yA), (bV, xA)}. Then σA := {aV 7→xA, bV 7→yA} is
an (R,N)-substitution. The analogous δ+-rules would have resulted in the posi-
tive/negative variable-condition (R′, N ′) with R′ = {(aV, yV), (bV, xV)} and N ′ = ∅.
But σV := {aV 7→xV, bV 7→yV} is not an (R′, N ′)-substitution!

Note 4 More precisely: Lemma4.19 depends on the backward directions of the ∀-Lemma
and the ⇒-Lemma, and on the forward direction of the ∃-Lemma. Lemma4.25 and
Theorem4.27(6) depend on the forward directions of the ∀-Lemma and the ⇒-Lemma,
and on the backward direction of the ∃-Lemma. Theorem4.28 depends on the backward
direction of the ∃-Lemma and on both directions of the ∀-Lemma.

Note 5 The well-foundedness required for the soundness of descente in�nie gave rise
to a notion of reduction which preserves solutions, cf. De�nition 4.26. The liberalized
δ-rules as found in [Fitting, 1996] do not satisfy this notion. The addition of our choice-
conditions �nally turned out to be the only way to repair this defect of the liberalized
δ-rules. Cf. [Wirth, 2004] for more details.
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