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Scope and Submissions

This journal considers submission in all areas of pure and applied logic, including:

pure logical systems
proof theory
constructive logic
categorical logic
modal and temporal logic
model theory
recursion theory
type theory
nominal theory
nonclassical logics
nonmonotonic logic
numerical and uncertainty reasoning
logic and AI
foundations of logic programming
belief revision
systems of knowledge and belief
logics and semantics of programming
specification and verification
agent theory
databases

dynamic logic
quantum logic
algebraic logic
logic and cognition
probabilistic logic
logic and networks
neuro-logical systems
complexity
argumentation theory
logic and computation
logic and language
logic engineering
knowledge-based systems
automated reasoning
knowledge representation
logic in hardware and VLSI
natural language
concurrent computation
planning

This journal will also consider papers on the application of logic in other subject areas:
philosophy, cognitive science, physics etc. provided they have some formal content.

Submissions should be sent to Jane Spurr (jane.spurr@kcl.ac.uk) as a pdf file, preferably
compiled in LATEX using the IFCoLog class file.
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Hilbert’s epsilon and tau in Logic,
Informatics and Linguistics

Stergios Chatzikyriakidis, Fabio Pasquali and Christian Retoré

Foreword
This special issue of the Journal of Logics and their Applications follows a workshop
organized in Montpellier in June 12-15 2015.

Both the workshop as well as this issue aim at promoting work on Hilbert’s
Epsilon in a number of relevant fields: Mathematics, Logic, Philosophy, History
of Mathematics, Linguistics, Type Theory, Computer Science, Category Theory
among others. Even though the epsilon and tau operators were introduced almost
a century ago, many questions on the computational and the mathematical side, as
well as their application to philosophy of language and linguistic semantics, remain
open and relevant today,

The first two papers, ours and the one by Michele Abrusci, can be seen as com-
plementary introductions. Our paper attempts to show a continuity from Ancient
and Medieval philosophy, all the way to type theory and computational approaches
to natural language semantics. On the other hand, Abrusci’s paper is a historical
presentation of the emergence of epsilon and tau on the proof theoretic foundations
of mathematics in the works of Hilbert and his followers.

We would like to thank Aïda Diouf and Elisabeth Gréverie from the University
of Montpellier for their extremely valuable help with organisational issues. We are
grateful to our sponsors, University of Montpellier, the Kurt Gödel Society and its
president Matthias Baaz, the Hilbert-Bernays project and its coordinator Michael
Gabbay, the ANR project Polymnie and its coordinator Sylvain Pogodalla. Finally,
we thank Dov Gabbay, who accepted to publish this issue as a special issue of the
Journal of Logics and their Applications, and last but not least, Jane Spurr from
College Publications, for her invaluable help.
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We also thank the program committee, for reviewing the submissions to the
workshop and to this present issue:
Daisuke Bekki (Ochanomizu University)
Francis Corblin (University of Paris-Sorbonne & Institut Jean Nicod CNRS)
Michael Gabbay (University of Cambridge)
Makoto Kanazawa (National Institue of Informatics of Tokyo)
Ruth Kempson (King’s College, London)
Ulrich Kohlenbach (Darmstadt University of Technology)
Alda Mari (Institut Jean Nicod CNRS & ENS & EHESS)
Richard Moot (CNRS, LaBRI and Université de Bordeaux)
Georg Moser (University of Innsbruck)
Michel Parigot (University of Paris Diderot 7 & CNRS-PPS)
Mark Steedman (University of Edinburgh)
Bruno Woltzenlogel Paleo (Vienna University of Technology)
Richard Zach (University of Calgary)

The workshop and the resulting issue would not have been the same without
the good will of the participants who triggered many interesting discussions that
benefited the papers in this issue: Vito Michele Abrusci, Bhupinder Singh Anand,
Dharini Bhupinder Anand, Federico Aschieri, Stergios Chatzikyriakidis, Viviane
Durand-Guerrier, Alain Lecomte, Hans Leiß, Bruno Mery, Wilfried Meyer-Viol, Koji
Mineshima, Corey Mulvihill, Thi Minh Huyen Nguyen, Sumiyo Nishiguchi, Michel
Parigot, Fabio Pasquali, Namrata Patel, Thomas Powell, Jean-Philippe Prost, Lionel
Ramadier, Giselle Reis, Christian Retoré, Georg Schiemer, Hartley Slater, Sergei
Soloviev, Federico Ulliana, Shuai Wang, Claus-Peter Wirth, Manel Zarrouk.

While in the process of reviewing and revising the articles for the present volume,
a very unfortunate event has occurred: one of our workshop participants, and one
of the most prominent scholars on the epsilon calculus, Hartley Slater, passed away
(July 2016). A few months ago, he attended our workshop on epsilon and tau,
where he gave two talks and had many lively discussions with the participants. This
issue includes Hartley’s last article and an obituary written by Claus-Peter Wirth
in memory of this fine logician and philosopher.

Barry Hartley Slater (October 28th 1936, July 8th 2016)
Adieu, Hartley!

Stergios Chatzikyriakidis (University of Gothenburg)
Fabio Pasquali (University of Padua)
Christian Retoré (University of Montpellier & LIRMM-CNRS)

Received February 2017222



Barry Hartley Slater (1936–2016):
A Logical Obituary

Claus-Peter Wirth
Dept. of Math., ETH Zurich, Rämistr. 101, 8092 Zürich, Switzerland

wirth@logic.at

1 Obituaries and Curricula Vitae
Under the title “Vale Hartley Slater”, on July 14, 2016, admin posted on http:
//www.croquetwest.org.au/?p=4664:

“Hartley Slater passed away on Friday 8th July after a short illness,
he was 79. Hartley took up croquet in 1978 and was AC state coach
1994 to 1997. Hartley also won a number of major AC competitions.
He was the Croquet Archivist for a number of years and an A/Professor
of Philosophy at UWA. His ebullient character will be missed.”

This shows true devotion, although it is a bit cryptic. “AC” stands for Association
Croquet, a full international version of a very funny garden game, and “UWA” for
“The University of Western Australia” in Perth.

Here is another short obituary and curriculum vitae by Slater’s colleague Stewart
Candlish:

“Hartley Slater (B. H. Slater) died from cancer on July 8th 2016 at the age
of 79. He was born in Keighley, Yorkshire, England. He was educated
in England at the universities of Cambridge, Oxford, and Kent (Can-
terbury). His first academic job was at Kent. He joined the staff at
The University of Western Australia in 1976. He took up croquet in 1978
and became a skilled player and coach. He had a deep and informed
interest in the arts, especially music and painting. Though he did not
perform in public, he was an accomplished pianist. He published exten-
sively in aesthetics as well as logic.”

[24] is a long scientific curriculum vitae, probably written by Hartley Slater himself.

Vol. 4 No. 2 2017
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2 Hartley Slater’s Awards and Degrees

According to Anabelle Jones of the student registry of the University of Cambridge
(StudentRegistry@admin.cam.ac.uk), Barry (sic!) Slater attended the university
and was awarded the degrees of Bachelor of Arts (1958), Master of Arts (1965), and
Doctor of Philosophy by Special Regulations in Divinity (2008). According to [24],
Barry Hartley Slater was awarded another Master of Arts (1974) and a PhD (1976)
by the University of Kent at Canterbury.

3 Hartley Slater’s Academic History

According to [24], he studied at St John’s College Cambridge as a mathematics
scholar (1955–60) and at Balliol College Oxford as a postgraduate (1960–61), then
he taught mathematics in schools (1961–71) until he joined the University of Kent
at Canterbury as a postgraduate student (1971–75) and a lecturer in philosophy
(1974–76); finally, from 1976 until his death, he was at the Philosophy Dept. of
the Univ. of Western Australia as lecturer, senior lecturer, associated professor, and
honorary senior research fellow.

4 Meeting Hartley Slater

I met Hartley Slater during Epsilon 2015, a workshop on “Hilbert’s Epsilon and Tau
in Logic, Informatics and Linguistics”, June 10–12, 2015.

Being an hour early for the workshop on the first day, I was standing outside
a pretty remote, locked lecture hall at the Campus Triolet of the Université de
Montpellier. Nobody else was around. The weather was sunny and the air was very
clean after heavy rain of the days before. I had skimmed through some of Slater’s
publications (in particular [21]), which I found most puzzling and fascinating. I was
looking forward to meeting him, and Hartley was the second person who joined me
waiting for the door to open.

He was very open and communicative, warm and friendly, with an incredible
sharpness and presence of mind.

His critical and to-the-point questions were some of the crucial ingredients that
gave this workshop its precious and intensive atmosphere.

During the following months he was very helpful in answering questions and in
sending me out-of-print books and papers.
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5 Hartley Slater’s Mission in Logic
I was deeply impressed by Hartley’s talks and discussions at the workshop, and read
his publications afterwards with great care. On a deeper study, they turned out to be
very well written and systematic, almost flawless, and sometimes even entertaining.

Hartley wrote to me that he sees himself as an opposition against the main-
stream of modern logic. From his viewpoint on modern logic, most of its problems,
intricacies, and paradoxes1 result from a wrong modeling of the general human idea
of logic as found in the natural languages. For this wrong modeling he somehow
blamed mathematics (cf. e.g. the titles of [19; 23]). To solve the problems of modern
logic, he suggested to correct its wrong concept formations toward the logic found
in natural languages, and abhorred “mathematical” escapes such as intuitionist,
substructural, or paraconsistent logics.

For instance, in [18], he explains most carefully that the logic of natural language
does not entitle us to turn a reflexive relation into a predicate. So, in a different
formulation,

R′ := { (x, y)∈R | x= y }
is justified as a definition of a (binary) relation R′ from a relation R, and

p(x) := true if (x, x)∈R, p(x) := false otherwise
is justified as a definition of a characteristic function p, but

P := { x | (x, x)∈R }
is not justified as a definition of a singulary predicate P. This renders Russell’s
Paradox as an example of the general problem of consistency of predicate definition.2
Indeed, the problem is Russell’s

{ x | x 6∈x },
whereas Slater’s

{ (x, x) | x 6∈x }
does not produce a contradiction.

1Historically correct, Slater uses “antinomy” (Latin for “against the law”) as a perfect synonym
of his preferred “paradox” (Greek for “against the teachings”) (cf. e.g. [19, p. 125]), contrary to the
modern-logic tradition starting with Zermelo, where an antinomy is a disaster for a theory, whereas
a paradox is somewhat weaker and just a criterion for the quality of a theory, cf. e.g. [11, p. 104].

2For example, to guarantee object-level consistency of recursive specification with positive/ne-
gative-conditional equations [28], the inductive theorem prover QuodLibet [1] admits only the
definition of characteristic functions such as p, equality is the only (predefined) predicate, and the
inductive data type of Boolean values has to satisfy true 6= false, but not ∀x.(x= true ∨ x= false),
for a Boolean variable x.
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Following this observation, in [20] he discusses Frege’s Begriffsschrift as one of
the sources of modern logic3 and finally explains why Gödel’s fixed-point theorem,
which — though not in [7] — can be seen as a main ingredient of the proof of Gödel’s
first incompleteness theorem and of the main argument in [25], does not hold in the
logic of natural languages.

In the tradition of the 19th century, Hartley also used to advocate probability
theory as a criterion for logic. See, for instance, [22], where Hartley reveals a clearer
understanding of the Aristotelian square of oppositions than found elsewhere.

6 Hartley Slater’s Heritage in Logic
Most of Slater’s ideas deserve a broader audience and response than they have
gained, for instance in the practical application of logic in linguistics and informatics.
Especially his highly adequate modeling of intensional logic as found in natural
languages and his most skilled mastering of Hilbert’s ε ought to become part of the
general teaching of logic.

As Slater’s ideas are off the beaten track of the mainstream of modern logic,
in particular the learned reader will use any occasional ambiguity in Slater’s papers
to escape the message. Thus, one of the main reasons for a regard lower than
deserved is that Slater — to the best of our knowledge — never had a co-author
and never wrote a joint paper, “against the realisms of the age” (the title of the
book [15]). While there is no way to change this now, the actual problem may
still be cured: A freshmen logic textbook that removes the over-simplifications in
the abstraction of modern logic from the logic of natural language, by a synergetic
combination of Slater’s ideas with Frege and Peirce’s, would be a crucial step forward
in the teaching of logic today.4

3One is tempted to check whether the Frege quotation in [20] is as obviously inappropriate in
German as it is in the English translation in [4]. To find out that this is indeed so, see [3, p. 34f.].
The German “Daraus ist zu entnehmen, daß das Verhältniß des Gedankens zum Wahren doch mit
dem des Subjects zum Prädicate nicht verglichen werden darf.” is actually worse than the English
translation “It follows that the relation of the thought to the True may not be compared with that
of subject to predicate.” because the German is more a “must not” than a “may not” here.

4Of course, this textbook would have to leave Gödel’s first incompleteness theorem &c. and
the paradoxes to more advanced studies, but it would give a much more reasonable, practical, and
natural impression of logic to the students, with many further advantages. For instance, informatics
teachers would be happy to have a maximal set to construct co-inductive data types from, because
Slater’s restrictions on predicates discussed above can be seen as a weak version of those found in
Quine’s New Foundations or Mathematical Logic [12].
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If somebody wants to learn about the unique viewpoint of this outstanding sci-
entist, we recommend his short, but strong paper [20] discussed above as an appe-
tizer. A deeper study should start with [13], where his main ideas are fresh and
most easy to grasp and evaluate, and then follow his main logic books [14; 16; 19;
23].

7 Conclusion
No doubt, the croquet players truly miss him. I am not competent to judge on
his work in aesthetics, architecture, literature, etc., but we know that all logicians
miss this wonderful (though sometimes caustic) person, scrutinous scholar, ardent
discussion partner, and most creative scientist.

Acknowledgments
We would like to thank Sergei Soloviev and Marianne Wirth for discussions and
helpful suggestions.
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From logical and linguistic generics
to Hilbert’s tau and epsilon quantifiers
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Abstract

With our starting point being (universal) generics appearing in both nat-
ural language and mathematical proofs, and were further conceptualised in
philosophy of language, we introduce the tau subnector that maps a formula
F to an individual term τxF such that F (τxF ) whenever ∀xF . We then in-
troduce the dual subnector εxF which expresses the existential quantification
since F (εxF ) ≡ ∃xF , and describe its use for the semantics of indefinite and
definite noun phrases. Some logical and linguistic properties of this intriguing
way to express quantification are discussed — but the reader is referred to the
article by Abrusci in this volume for the impact of epsilon on Hilbert’s work
the logical foundations of mathematics.

Keywords: proof theory; quantifiers; generic objects; philosophy of language; formal
linguistics

∗The author gratefully acknowledges support from the Centre of Linguistic Theory and Studies
in Probability (CLASP) in Gothenburg as well as the ANR project Polymnie in France.
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1 Presentation
This introduction to the volume presents the epsilon and tau quantifiers that Hilbert
came up with in the beginning of the XXth century. [25] Although an introduction
to these issues exists on the web, e.g. [5, 46]1 we believe that the current introduc-
tion, presenting a slightly different viewpoint, might be of interest to a number of
researchers, especially because most of the literature on the topic is in German, in
particular voulme II of Grundalgen de Mathematik by Hilbert and Bernays [26]2 as
well as Ackermann’s seminal contribution [2]. We say that tau and epsilon are quan-
tifiers because one can express quantification with them, but given that epsilon and
tau map a formula to an individual term, they should rather be called subnectors ac-
cording to Curry’s terminology [11]. Given a formulae F , possibly with free variables
εxF and τxF are terms in which x is bound, and these terms respectively denote the
existential and the universal generic objects w.r.t. a formula F . Basically F (εxF )
means ∃x.F and F (τxF ) means ∀x.F . Since they belong to a classical, and not an
intuitionistic setting, one can be defined from the other: τxF = εx¬F . The addition
of epsilon and tau to the connectives may seem harmless, but it actually completely
changes the logic, i.e. formulae of the epsilon calculus have no counterpart in first
order or even higher order predicate calculus. In particular, because of over binding
(also known as in situ binding), these quantifiers are closer to the syntactic behavior
of quantifiers in natural language sentences. This is the reason why the epsilon sub-
nectors have been used in the philosophy of language and formal linguistics to model
quantifiers of natural language [17, 18, 50, 49, 48, 51, 52, 47, 44]. Symmetrically, the
subnector tau could have been used to model universal quantification but it rarely
was, exceptions being [41, 34]

2 From the Ancient and Medieval view of universal
quantification to tau

A long debated question in logic and metaphysics in the Ancient and the Medieval
world (starting with Plato, Aristotle and all the way to Porphyry and the scholastics)
is the relation between a universal or generic "dog" and the set of individuals "dogs".
This is known as the problem of universals.[33, 28, 3, 13]

What is a concept like “horse"?
1The second one was written by Hartley Slater, who authored an article of this volume. Hartley

Slater unfortunately passed away before this volume is out, and an obituary by Claus-Peter Wirth
is also included in this volume.

2There exist a Russian translation (1978), a French translation (2010), but still no English
translation.
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• a substance, that exists independently of the individuals falling under this
concept (realism)

• a name without reality, i.e. a word that stands for the class of all individuals
falling under the concept (nominalism)

• a concept, that is a mental construction having an empirical relation to the
set of individuals (conceptualism)

In order to illustrate the debate between Abélard and Roscelin (see e.g. [13])
regarding the relation between the concept and the entities that fall under this
concept, one could say: If an illness causes the extinction of all tall dogs, would
your concept of dog be altered? Some have even defended the extreme position that
each dog is as constitutive of the concept of dog as a wall or a roof is constitutive
of the concept of a house.

The relation between concept and universal quantification is that, in case the
generic object in a concept C enjoys the property P , so do all C. This is of course
also related to Aristotle’s proof rule of abstraction (alternatively called generali-
sation): if an integer without any specific property enjoys a property P , then all
integers enjoy P . Ancient and Medieval logic was not dealing with models. These
only appeared with Frege at the end of the XIXth century. Philosophers ranging
from Aristotle to scholastic logicians were mainly concerned with proofs and rules
[29]. Aristotle who was aiming at extracting the logical principles underlying math-
ematical reasoning, introduced the generalization rule for universal quantification
(that he called abstraction).

Using this rule, to establish F (x) for all elements x of a class C one proceeds as
follows:

Generalisation (a.k.a Abstraction) Let x be any element of C. A reasoning
shows that P (x) holds. The generalization rule asserts that the property holds
for any element in C — indeed x does not possess anything special apart from
being in C .

This is quite different from another technique used to establish F (x) for all
elements x of a known and finite class C. One shows that for each element xi in
the class C the property F (xi) does hold, and the conjunction rule shows that it
holds for all x ∈ C: this way to establish a universally quantified statement perfectly
matches universal quantification in a given model of first order logic.

Conjunction We can prove P (c1), then P (c2), P (c3), P (c4) and so on. Once
we do so for all elements in C, we can form a conjunction out of all these
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formulae. This latter proof of a universally quantified statement is in fact, in
modern terms, a reduction of universal quantification to conjunction: ∀x ∈
CF (x) ≡ &x∈CF (x) ≡ P (c1)&P (c2)&P (c3)&P (c4)& · · · Notice, however, that
an infinite formula is not a usual first order formula.

This dual nature of universal quantification can be observed in the various ver-
sions of universal quantification in natural language. For example, some words refer
to each individual in the collection (each), while some others to a (fictive) prototyp-
ical or average individual (any):

(1) a. Each dog has four legs.
b. All dogs have four legs.
c. Every has four legs.
d. A dog has four legs.
e. Any dog has four legs.
f. Dogs have four legs.

The distributive reading, which is obligatory when using each, has no exceptions,
may express a coincidence of properties that can be conjuncted, it is not required
that there is a reason (other than probability) to this coincidence and the domain
can be complicated. The only good way to refute such a statement is to provide
a counter example, i.e. an individual for which the property does not hold (one
component of the conjunction fails).

(2) a. Each bird with both black and white feathers flies.
b. Not this wound bird. (perfect)
c. Not autruches. (not a good refutation, since the relation between those

two sets is not obvious)

Generic entities rather correspond to ideal and prototypical entities whose prop-
erties are derived by reasoning. Compared to noun phrases introduced by each,
generic noun phrases may accept exceptions, and their domain cannot be compli-
cated. The refutation of a sentence involving a generic is usually performed by
another generic, or by a reasoning, i.e. one can go on at an abstract level.

(3) a. Birds fly.
b. Not this wound bird. (not a refutation, since generic readings admit

exceptions)
c. Not autruches. (perfect refutation)
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The usual rule called generalisation or abstraction, is abbreviated by ∀i i.e. ∀
introduction because it introduces the ∀ quantifier. This rule says that when a
property has been established for an x which does not enjoy any particular property
(i.e. is not free in any hypothesis), one can conclude that the property holds for all
individuals3

In this paper, we use sequents: H1, . . . ,Hn ` C simply means that under hy-
potheses H1, . . . ,Hn, conclusion C holds. The ∀i (or generalisation) rule below
simply means that from (1) P (x) holds under hypotheses H1, . . . ,Hn without any
free x in any of the Hi one may deduce that (2) ∀x. P (x) holds under the hypotheses
H1, . . . ,Hn.

H1, . . . ,Hn ` P (x)
∀i − when there is no free occurrence of x in any Hi

H1, . . . ,Hn ` ∀x. P (x)

The rule above can be formulated with a generic element, τxP (x), a virtual
element that has no specific relation to the property P . If you think of P as being
"to drink", τxdrink(x) is the most sober individual you can think about: τxdrink(x)
drinks if and only if everyone does:

P (τxP (x)) iff ∀x. P (x)

From this one easily defines the rules for quantification using the universal generic
element w.r.t. P written τxP (x)4, they simply are the standard rules of quantifica-
tion:

H1, . . . ,Hn ` P (x)
τi − when there is no free occurrence of x in any Hi

H1, . . . ,Hn ` P (τxP (x))

There is another rule for universal quantification called the specialisation or
instantiation rule, which is easier because it comes without any restriction, and
which says that of something holds for any x then it holds for any constant or
term.5

3As we shall discuss later on, such a rule is enough to derive that all A are B, from the fact
that B holds for an x satisfying A which has no specific property other than A.

4Here one sees that τ is a subnector according to Curry’s terminology i.e. an operator that
builds a term (of type individual) from a formula.

5This rule can derive its relativised version that says that if all A are B then any particular A
is B.
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H1, . . . ,Hn ` ∀x. P (x)
∀e

H1, . . . ,Hn ` P (a)
The above rule can also be formulated with the same universal generic element

w.r.t. P τxP (x):

H1, . . . ,Hn ` P (τxP (x))
τe

H1, . . . ,Hn ` P (a)
If τxP (x) enjoys the property P (_) then any individual does, and vice-versa. So

τxP (x) is an ideal entity which is absolutely independent from the property P (_).
This is the reason why when it enjoys P (_) everything does.

3 Existential generics: from Russell’s iota to Hilbert’s
epsilon

As opposed to generic τxP (x) that enjoys P if and only if every entity does, there is
also “this P", “the P", i.e. the unique individual satisfying P , if there is exactly one
such individual, denoted as ιxP (x). Russell used ι in [45] for definite descriptions
(definite noun phrases like the queen of England). Previously, Frege and Peano
already used such an operator, in different contexts, Frege with notation / and
Peano with notation ι, while Russell did not use any symbolic notation at all. It is
also, like τ , a subnector, given that it turns a formula into some individual term. It
is the ancestor of Hilbert’s ε.

However, as argued by von Heusinger, there is little difference between the logical
form of definite descriptions and indefinite noun phrases. This is because uniqueness
of the noun phrase with a definite article is not always observed:

(4) Recueilli très jeune par les moines de l’abbaye de Reichenau, sur l’île du
lac de Constance, en Allemagne, qui le prennent en charge totalement;
Hermann étudie et devient l’un des savants les plus érudits du XI-ème siècle.

(5) Taken in while very young by monks of the abbey of Reichenau on the island
of the Constance lake, that fully took care of him, Hermann studied and
became one of the most erudite monks of the XIth century.

This example comes from a site dealing with first names and is really a pleasant
coincidence:6 indeed in the original paper by Egli and von Heusinger (1995, hence

6(http://www.prenoms.com/prenom/signification-prenom-HERMANT.html.)
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before the example) the case of the islands of the Constance lake is taken as a fictive
example in order to exemplify that someone seeing just one of the three islands of
this lake could utter the island of the Constance lake while there are three of them.

Given that ι is not expected to have good logical properties — for instance its
negation is zero or more than two entities do not enjoy the property P (_) — Hilbert
introduced the existential ε subnector, building the existential generic εxF :

F (εxF ) ≡ ∃x. F
A term (of type individual) εxF associated with F , the existential generic element

w.r.t. F (which usually contains occurrences of x): as soon as an entity enjoys F
the term εxF enjoys F (_). The operator ε binds in εxF the free occurrences of x in
F .

The introduction rule is as one expects (a denotes any term):

H1, . . . ,Hn ` F (a)
εi

H1, . . . ,Hn ` P (εxF (x))
The elimination rule for existential quantification in natural deduction is not

given now, but rather in the next section that is more formal. For the moment, let
us just say that the rule for existential quantification using ε-terms simply mimics
the introduction and elimination rules for existential quantification.

If τxdrink(x) is the most sober individual, εxdrink(x) is a soak: he drinks if and
only if someone drinks.

4 Syntax of epsilon and tau first order calculus
Terms and formulae are defined by mutual recursion:

• Any constant in L is a term.

• Any variable in L is a term.

• f(t1, . . . , tp) is a term provided each ti is a term and f is a function symbol of
L of arity p

• εxA is a term if A is a formula and x a variable — any free occurrence of x in
A is bound by εx

• τxA is a term if A is a formula and x a variable — any free occurrence of x in
A is bound by τx
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• s = t is a formula whenever s and t are terms.

• R(t1, . . . , tn) is a formula provided each ti is a term and R is a relation symbol
of L of arity n

• A&B, A ∨B, A⇒ B, ¬A when A and B are formulae.

There is no objection to simultaneously use the usual quantifiers ∀ and ∃. This
superimposition is quite useful to have, since we can show that the epsilon/tau
calculus restricted to formulas that are equivalent to usual first order logic, is a
conservative extension of first order logic (first and second epsilon theorems, see e.g.
Abrusci’s paper in the same issue). This means that we can have quantified formulas
as well:

• ∃xA is a formula if A is a formula and x a variable — any free occurrence of
x in A is bound by ∃x

• ∀xA is a formula if A is a formula and x a variable — any free occurrence of
x in A is bound by ∀x

Quantification rules are the ones we already discussed above.

τ rules

introduction The introduction rule of the tau universal quantifier is Aristo-
tle’s rule of abstraction (also known as generalisation): from P (x) with
x generic (i.e. not present in any hypothesis) infer P (τx.P (x)).

H1, . . . ,Hn ` P (x)
τi

Condition:
no free occur-
rence of x in any
Hi

H1, . . . ,Hn ` P (τxP (x))

elimination The elimination rule of universal quantification (also known as
instantiation or specialisation) is as usual: from P (τx.P (x)) one may infer
P (t) for any t.

H1, . . . ,Hn ` P (τxP (x))
τe

H1, . . . ,Hn ` P (t)
ε rules

introduction The introduction rule of the epsilon existential quantifier is the
usual one: from P (t) where t is any term, infer P (εxP (x)) ≡ ∃x P (x).

H1, . . . ,Hn ` P (t)
εe

H1, . . . ,Hn ` P (εxP (x))

238



Hilbert’s epsilon and tau

elimination The elimination of the epsilon universal quantifier is trickier, as
it is in natural deduction for first order logic format: assume that from
P (x) and other hypotheses Γ not involving x a conclusion C without x is
derivable and that P (εxP (x)) holds: then C holds under hypotheses Γ.

K1, . . . ,Kp ` P (εxP (x)) H1, . . . ,Hn, P (x) ` C
εe

Condition:
no free occur-
rence of x in any
Hi nor in C

K1, . . . ,Kp, H1, . . . ,Hn ` C

the epsiilon/tau calculus is easier in a classical (as opposed to intuitionistic)
setting,7 and in a classical calculus the following are easily derived:

P (εxP (x))
ε︷︸︸︷≡ ∃xP (x)

classical︷︸︸︷≡ ¬∀x¬P
τ︷︸︸︷≡ ¬¬P (τx¬P (x))

classical︷︸︸︷≡ P (τx¬P (x))

P (τxP (x))
τ︷︸︸︷≡ ∀xP (x)

classical︷︸︸︷≡ ¬∃x¬P
ε︷︸︸︷≡ ¬¬P (εx¬P (x))

classical︷︸︸︷≡ P (εx¬P (x))

Hence:
τxP (x) = εx¬P (x) and εxP (x) = τx¬P (x)

Therefore one of the two subnectors/quantifiers ε and τ is enough and most
people have chosen ε, e.g. as in Bourbaki’s book on set theory.

The quantifier free epsilon calculus is a strict conservative extension of first order
logic.

• Strict: There are formulas that are not equivalent to any formula of first order
logic, e.g. P (εxQ(x)) with P,Q being distinct unary predicate symbols: if P
and Q are unrelated predicate letters, this bound formula has no equivalent in
first order logic.

• Conservative: With regards to first order formulas, the epsilon calculus derives
exactly the same formulas as first order classical logic, i.e. classical predicate
calculus.

As shown by Claus-Peter Wirth in this issue, any first order formula can be
turned into an equivalent epsilon formula. However, one should have in mind that

7Given that epsilon induces a weak form of the axiom of choice, it is quite difficult to even
define an intuitionistic epsilon calculus, see section 7.3.
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such a translation yields formulas that are rather complex and hard to parse. For in-
stance ∀x∃yP (x, y) can be written has: ∃yP (τxP (x, y), y) which itself can be written
as: P (τxP (x, εyP (τxP (x, y), y)), εyP (τxP (x, y), y))!

As discussed in Michele Abrusci’s article on epsilon and proof theory in this
issue, a major motivation of Hilbert’s work since [25], was to establish the logi-
cal consistency of arithmetic by elementary means, before Gödel’s incompleteness
theorem [23]. Following this objective that could not be met because of Gödel’s
incompleteness theorem, Hilbert proved an ε version of quantifier elimination (1st
& 2nd ε-theorems in [26]) and obtained as a corollary (still in [26]) the first correct
proof of Herbrand’s theorem (initially published in [24]) — indeed in 1963 Dreben
found mistakes in Hebrand’s proof [15] and corrected them in 1966 [16]. These issues
are more deeply addressed in Abrusci’s paper in this volume.

The reader must be aware that the epsilon calculus is very different from first
order logic. As already said, many formulas of the epsilon calculus are not equivalent
to first order formulas. A number of published results on the epsilon calculus are
known to be wrong, like cut-elimination and models among other things (see [4, 31]
as explained in [7, 36]).8 As regards the first point, the problem is to take into
account the complexity of the formulas inside epsilon terms and as regards the second
point, the problem is that if there exist sound and complete models for the whole
epsilon calculus, then they must substantially differ from usual models. However, all
proposals so far try to provide usual models for a very unusual calculus. Nevertheless,
intuitively, epsilon terms might be viewed as a kind of Henkin witnesses, or as choice
functions that act simultaneously on all formulas, without any obligation to extend
the first order language. Categorical models of typed epsilon calculus are slightly
easier to compute as discussed in section 7.3.

The relation between epsilon and choice functions introduced by Skolemisation
is complicated. Choice functions are usually introduced when one considers a single
formula (or a clause) in prenex form and introduces a function in the language,
whose arguments are the universal variables, for each of the existential quantifiers.
Epsilon introduces all choice functions at once but without reference to a particular
formula (except the one defining the epsilon term), nor to universal variables, and
the first order language (relations, functions) does not need to be extended. As
regards their syntax, there are no specific deduction rules for choice functions: the
existential quantifiers are taken into account when interpreting the function — on
the syntactic side they do not belong to first order logic.

8We would like to thank Michele Abrusci, Mathias Baaz and Ulrich Kohlenbach for pointing
out these problems to us.
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5 Epsilon (and tau) in linguistics
5.1 Some critics of the usual treatment of natural-language quan-

tification

Quantifiers, especially existential ones, are quite common in natural language. There
are two sorts of quantifiers w.r.t natural language syntax. The first sort only needs
the main predicate (something, someone, everyone, everything,...). The second sort
(a, some, every, all,...) first applies to a common noun (a predicate) and then to
the main predicate and all of its arguments but one — the verb plus its subject and
complement but one.

(6) Something happened to me yesterday.
(7) A man comes on to tell me how white my shirts can be.
(8) Some girls give me money.
(9) Keith played a Beatles song.

The standard treatment of quantifiers initiated by Montague [38] takes place
into the framework defined by Church [9] for writing first or higher order formulas
of predicate calculi in a way that follows Frege’s compositionality principle.

This treatment usually assumes a base type for propositions t (o in Church
writings) and another base type e (ι in Church writings) for entities, also known as
individuals. Usually, there is just one base type for all individuals, as recalled in
[39] the logic is single sorted as opposed to many sorted logic of, e.g. [30] used for
semantics in [43].

In order to express linguistic semantics one needs logical constants for connectives
and quantifiers:

• ∼ of type t→ t (negation)

• ⊃,&,+ of type t→ (t→ t)
(implication, conjunction, disjunction)

• two constants ∀ and ∃ of type (e→ t)→ t

Specific constants are needed to represent a first order language:

• R of type e→ (e→ (....→ e→ t)) (n-ary predicate — n times e)

• f of type e→ (e→ (....→ e→ e)) (n-ary function symbol — n times e)
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As already mentioned, ∀ and ∃ are constants of type (e→ t)→ t to quantifiers
that simply apply to the main predicate. This means that they can interpret natural
language quantifiers without a domain. This is the case with everything, something
but other natural language quantifiers that apply to two predicates like some, every
need more complex terms:9

• existential quantifier (some, a) :

λP e→tλQe→t(∃λxt.P (x)&Q(x)) : (e→ t)→ (e→ t)→ t

• universal quantifier (every, all) :

λP e→tλQe→t(∀λxt.(P x) ⊃ (Q x)) : (e→ t)→ (e→ t)→ t

This modelling suffers from some inadequacies mainly due to a difference in the
syntactic structure of the sentence and its logical form.

The standard analysis of the sentence 9 is:
(a (Beatles song))(λz.Keith played z)10

So:
(existential quantifier)︷ ︸︸ ︷

(λP e→tλQe→t(∃λxe.(P x)&(Q x)))

is applied to
(being a Beatles song)︷ ︸︸ ︷

(λue.wrote(Beatles, u)&song(u))

and to
(being played by Keith)︷ ︸︸ ︷

(λz.Keith played z)

As expected, these lambda terms reduce to

(∃λxe.wrote(Beatles, x)&song(x)&(Keith played x)))

i.e. to the expected meaning:

(∃x. wrote(Beatles, x)&song(x)&((Keith played) x)))

9We write P (x)&Q(x) instead of &(P x)(Q x) the pure lambda calculus prefixed notation that
is used [39].

10Here as well the standard notation of [39] would be λz. played(Keith, z).
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5.1.1 Difference between the syntactic and semantic structures

The classical treatment of natural language quantifiers infringes the correspondence
between syntax and semantics, i.e. the heart of compositionality. Indeed, observing
a sentence, its syntactic structure, and its semantic structure:

(10) a. Keith played a Beatles song.
b. syntax (Keith (played (a (Beatles song))))
c. semantics: (a (Beatles song)) (λx. Keith played x)

it is clear that the underlined predicate does not correspond to any proper phrase
(or subtree) of the sentence. A natural language quantifier is an in situ binder (as
e.g. wh-interrogatives in Chinese): a quantified noun phrase which is deeply nested
in the sentence parse tree, may apply to the whole parse tree.

5.1.2 Asymmetry between the domain of quantification and the main
predicate

It is easily observed in the following examples that, as opposed to the usual logical
formulas representing meaning, one cannot swap the two predicates, for instance in
Aristotle’s I sentences. However, even when these can be swapped, as it is the case
in the last example, the meaning is not the same, because the focus is different, and
depending on the context (in a university or in a company) only one of the two can
be said, the other one begin unnatural.

(11) a. Some politicians are crooks.
b. ?? Some crooks are politicians.

(12) a. Some students are employees.
b. Some employees are students.

5.1.3 Semantic nature of the quantified noun phrase

According to the usual treatment, a quantified noun phrase is a function that maps
a predicate to a proposition. However, intuitively, the type of a quantified noun
phrase, and especially the type of an existentially quantified noun phrase should
rather be an individual. This is confirmed by the cognitive process: when "an A" is
uttered, one actually imagines such an "A", so a quantified noun phrase may have
a reference as an individual before uttering the main predicate (if any), as observed
in the following nominal sentences:
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(13) Cars, cars, cars,... (Blog)
(14) What a thrill — My thumb instead of an onion. (S. Plath)

5.2 Using epsilon for indefinite noun phrases
Coming back to the linguistic motivation, some researchers have been modelling
existential quantification by means of epsilon (rather than universal quantification
by means of tau), since the pioneering work of von Heusinger and Egli [17, 18] that
has been further pursued in a number of papers [49, 50, 51, 52]. The leitmotiv
in these papers, is to model existentially quantified noun phrases like "an A is B"
(Aristotle’s I sentence) by B(εx. A(x)). Nothing in a formula like this says that
εx. A(x) has the property A, i.e. that there are some As. Thus, the presupposition
A(εx. A(x)) could (and should) be added.

Here we should make an important remark on these sentences In general, the
formula B(εx. A(x)) is not equivalent to any ordinary formula — unless there is a
relation between A and B, like B = A or B = ¬A. In particular it is not equivalent
to ∃x.(B(x)&A(x)), but the two formulas are related as follows:

In general B(εxA(x)) does not entail ∃x.(B(x)&A(x)) Indeed, it is possible
that ∃x.(B(x)&A(x)) is false while B(εxA(x)) is true. Indeed, let B(x) be (x =
x) and let A(x) be (x 6= x) i.e. ¬B(x). Then B(εxA(x)) ≡ B(εx¬B(x)) ≡
B(τx.B(x)) ≡ ∀x.B(x) ≡ ∀x.x = x which is clearly true. However,
∃x.(B(x)&A(x)) ≡ ∃x.(B(x)&¬B(x)) ≡ ∃x.(x = x & x 6= x) which is
clearly false. The argument works with any formula of one variable that is
universally true like B(x) ≡ (x = x).

B(εxA(x))&A(εxA(x)) entails ∃x. B&A(x) Indeed, B(εxA(x))&A(εxA(x))
entails B(εxB&A(x))&A(εxB&A(x)) that is B&A(εx(B&A(x)) which means
∃x. B&A(x).

∃x.A(x)&∀y(A(y)⇒ B(y)) entails B(εxA(x)) Indeed, ε-terms are usual terms, a
universal quantifier can be instantiated to an epsilon term.

Given the small difference between definite and indefinite descriptions,
von Heusinger proposes to model both “a” (introducing indefinite noun phrases)
and “the” (introducing definite description) by an epsilon term. The only thing that
differentiates them is interpretation: the “a” always refers to a new individual in
the class, while “the” refers to the most salient individual in the context. This
context dependent interpretation lead to the indexed epsilon calculus [37]. This is
further studied by Hans Leiß in this volume.
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(15) A student entered the lecture hall. He sat down. A student (another student)
left the lecture hall.

(16) A student arrived lately. The professor looked upset. The student (the same
student) left.

The epsilon modeling avoids all three aforementioned drawbacks of the standard
interpretation, 5.1.3, 5.1.1 and 5.1.2. Indeed, εxF (x) is an individual term (as natural
language quantifiers) which allows in situ binding (as natural language quantifiers):

5.1.3 A quantified noun phrase can be interpreted as an individual even in the
absence of the main predicate: indeed εxF (x) is an individual term.

5.1.1 The semantics P (εxF (x)) of an existential sentence of an I sentence like Some
F is P. follows the syntactic structure: εxF (x) is an individual term, which
is the standard semantics of a noun phrase, that is inserted into the main
predicate P to obtain the sentence semantics: P (εxF (x)). This is comparable
but not equivalent to: there exists some x satisfying F (x) such that P (x).

5.1.2 The asymmetry between subject and predicate is restored
P (εxQ(x)) 6≡ Q(εxP (x)).

The interpretation of noun phrases with ε also solves the so-called E-type pronoun
interpretation of Gareth Evans [19] where the semantics of the pronoun is the copy
of the semantics of its antecedent:

(17) A man came in. He sat down.
(18) [He] = [A man] = (εx Man(x)).

During the workshop, Slater pointed out that there is a possible problem with the
modelling of indefinite nouns phrases by epsilon terms that we just described. The
two sentences A man enters. A man left. are respectively modelled as
entered(εxman(x)) and left(εxman(x)) and if you consider them simultaneously, you
may infer that (entered & left)(εxman(x)). Consequently one has
(entered & left)(εx(entered & left)(x)) so ∃x. entered(x) & left(x)!

To avoid this problem, Slater proposes to interpret a man entered by entered
(εxman(x) & entered(x)) a man left by left(man(x) & left(x)). This avoids the un-
pleasant consequence above. But if you allow yourself to interpret the epsilon terms
that appear in different propositions in the same way, then using Slater’s approach
one ends up with another problem. Consider: The professor presented first order
logic. A student left. The professor introduced sequent calculus. A student left.
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Then, the second and fourth sentences yield exactly the same semantic representa-
tion, left(εxstudent(x) & left(x)), we have just at least one student that left, while
we should have at least two. Thus, one must be aware that computing the semantic
representation, a term or a formula, is just one step of the interpretation process, the
next step being the interpretation of the semantic representation, and one should
also be careful with the interpretation of the epsilon terms, that are not usual first
order terms.

The problem raised by Slater comes from the fact that nothing says that the
two propositions should be conjoined by a usual & and so nothing tells us that the
epsilon term that appears in both propositions should be interpreted in the same
way twice. This is the reason why Mints in [37] introduced and studied the indexed
epsilon calculus, where the interpretation is relative to a given context, and contexts
are indices for the calculus (see also the paper by Hans Leiß in this volume).

5.3 Tau and universally quantified noun phrases

Coming back to the subnector tau discussed at the beginning of the paper, it is
fairly natural and coherent with the treatment of existential quantification to model
universally quantified noun phrases introduced by "all", "every" and bare plurals by
tau terms, as follows:

(19) a. Every man is mortal.
b. mortal(τxman(x))

This proposal has been explored in [34]. It enables a distinction between chaque
(each) and tout (that does not really correspond to every) where the first one is
a conjunction &x∈DP (x) over a known domain D and the second one the usual
mathematical universal quantifier with the generic object formalised as τxM(x).
The analysis is a proof theoretical one, where statements are interpreted as the set
of their possible justifications as suggested in [1]

6 Aristotle square of opposition revisited with epsilon
and tau

With such an interpretation of quantified noun phrases, existential noun phrases
as epsilon terms and universals noun phrases as tau terms, one may reformulate
Aristotle’s I A E O sentences and revisit Aristotle’s square of opposition.
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A Every S is P P (τx.S(x)) Universal Affirmative
I Some S is P P (εxS(x)) Particular Affirmative
E No S is P ¬P (εxS(x)) ≡ ¬P (τx.¬S(x)) Universal Negative
O Some S are not P ¬P (τx.S(x)) ≡ ¬P (εx¬S(x)) Particular negative

Aristotle showed that those formulas define a square of opposition, i.e.: A ≡ ¬O,
E ≡ ¬I A and E are contradictory (they cannot both hold), I and O cannot both
fail and are thus subcontraries, A entails I, which is said to be a subaltern of A, and
E entails O which is said to be a subaltern of E.

Using standard diagrams, in Hilbert’s ε-calculus, at least one of the following
two squares is a square of opposition provided P is bivalent with respect to S this
condition being defined as P (εxS(x)) ` P (τxS(x)) or P (τxS(x)) ` P (εxS(x)) (see
[41] for more details).

P (τxS(x))
ee

%%

oo //

��

¬P (εxS(x))

��
P (εxS(x))

yy

99

oo // ¬P (τxS(x))

P (τx¬S(x))
ff

&&

oo //

��

¬P (εx¬S(x))

��
P (εx¬S(x))

xx

88

oo // ¬P (τx¬S(x))

7 Typed Hilbert operators
7.1 Some critics of the unique universe of Frege
As discussed in [34], there are two ways to describe universal quantification:

universal quantification as a conjunction over the domain (model theo-
retical view) &x∈DP (x) (Fench chaque English each)

universal quantification as a property of the generic member of its class
(proof theoretical view) ∀xP (x) or better P (τxP (x)) (Fench tout
without English equivalent, not really every)

In the model theoretic view, the domain of quantification is clear, but in the
proof theoretic view, the domain is not specified. This means that one cannot write
&x∈DP (x) and a fortiori cannot derive it. The completeness theorem for first order
logic [22] makes sure that both notions of quantification agree.

As argued by medieval philosophers, e.g. Abu’l-Barakāt al-Baghdād̄ı, a property
is always asserted from an entity, as being a member of some particular class and
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not as an entity of the class of all entities[12].11 For quantifying (universally or
existentially) a notion of class is needed as well: in standard proof theory (as opposed
to type theory) there are no classes, and in standard model theory, only the largest
class of all entities is known. Nevertheless quantifying over a class, a sort or a part
of the domain is quite common:

(20) All students passed.
(21) All students who passed logic passed algebra.
(22) Numbers ending in 3 have at least one multiple having all 1.
(23) Some student passed algebra.
(24) Some student who passed logic passed algebra.
(25) Some prime numbers are one less than a power of two.

In defining the predicate calculus, Frege [20, 21] used a “trick" to formalize
quantification on classes. For instance: Aristotle’s A and I sentences ∀x : S. P (x) or
∃x : S. P (x) 12 can be respectively written as ∀x. Ŝ(x)⇒ P (x) and ∃x. Ŝ(x)&P (x).
Given the classical symmetries &/∨,∀/∃, because of the classical definition of A⇒ B
as (¬A)∨B, one obtains that ¬(∀x : S. P (x)) is ∃x : S. ¬P (x) and ¬(∃x : S. P (x))
is ∀x : S. ¬P (x)

However it is clear that there is no similar trick for generalised quantifiers:

(26) a. for 1/3 of the x : S P (x) 6≡ for 1/3 of the x (S(x)⇒ P (x))
b. for few x ∈ S P (x) 6≡ for few x (S(x)&P (x))

In these cases, specific generics could be used also introduced by subnector. This
issue has recently started to get explored. [42]

7.2 Quantifiying over a sort and typed epsilon and tau
Sorts and classes with specific quantifiers may be a good direction. It should ob-
served that one can defined a many sorted variant of first order logic, where predi-
cates and functions use sorts fo objects that possibly follow a hierarchy (the power-
set of a sort can be a sort, etc.). Such a many sorted logic is precisely defined and
studied in, for instance, chapter 5 of [30].

11This avoids problems like my daughter being both tall (as a girl of her age) and not tall (as a
member of the family for taking a group picture). [10]

12x : A means that x is in the class A or x is of type A. We do not want to be very precise on
this, since we a priori have no type theory, no set theory.
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Within the usual Montagovian semantic analysis, the epsilon and tau operators
for first order individuals should be of type ε : (e→ t)→ e. If we have many sorts
or types, there are two possibilities: τ∗, ε∗ : Πα. α and τ, ε : Πα. (α → t) → α,
where Π is basically quantification over types. 13 The first one maps any type to an
element in the type (to be understood as the existential or universal generic element
in the type). The second one maps a predicate on α-object o and α-object.

The types for ε and τ yield more general subnectors than the ones of ε∗ and τ∗.
This is because types can be mirrored as predicates, but not the converse. It might
be useful to apply ε to a complicated predicate like scooter with two front wheels
for interpreting a sentence like a scooter with two front wheels just passed in the
street while it would be counterintuitive to consider scooter with two front wheels as
a type.14 When there is a type T one can introduce a constant T̂ of type e → t
where e is the largest type which includes any other type.

If the predicate S, to whom the subnector is applied, is of type U → t, then the
subnector yields an individual term of type U and nothing asserts that this term
enjoys the property P . As natural language quantifiers only appear in a proposition
which holds (at least locally), one has to add the presupposition S(εŜ), and in case
S is a type, this can be written as εŜ : S.

These questions, in particular w.r.t the semantics of determiners, are further
discussed in [44]

7.3 Categorical models of typed epsilon calculi
A mentioned above, there is no proper model, in the sense of model theory of epsilon
calculus. However, with typed epsilon operators there are categorial models, based
on toposes, categories that that generalise the category of sets. In this setting, one
can even define categorical models of intuitionistic epsilon calculus as [40] does.

The fact that the entire apparatus of logic can be recast in purely category-
theoretic terms is well known and goes back to the pioneering work of F. W. Lawvere.
A description of the history of category theory and of its branch known as categorical
logic goes well beyond the purposes of this brief section and we refer curious readers
to [35] and references therein.

One of the most relevant concepts in category theory is that of elementary topos.
The definition of elementary topos as a category with finite limits and power objects
was introduced by Lawvere and Tierney as a generalization of the previous notion of

13No problem of consistency arises with such constants whose type in unprovable (like fix point
operator Y ). Any of those type entails the other: ε∗ = ε{Λα.α}(λxΠα.α. x{t}) : Λα. α and
ε = ε∗{Πα. (α → t) → α}.

14However, take a look at [32, 8] for an alternative view.
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Grothendieck topos. It was immediately clear that the concept was of fundamental
importance and, since its introduction, applications of elementary toposes have been
proposed for an extremely large variety of fields [27]. Focusing on logic, we can
associate a calculus, often called internal language of a category, to every category
with finite limits, and therefore to every elementary topos.

The internal language of a category with finite limits is a multi-typed language.
By multi-typed language we mean a 5-tuple (T ,O,R, ω, ρ) where T ,O and R are
collections whose elements are called types, operation symbols and relation symbols
respectively, while ω and ρ are arity functions. More specifically ρ sends each element
of R to a finite, possibly empty, list of types A1, A2, ..., An and ω sends each element
of O to a non-empty finite list of types A1, A2, ..., An, An+1. A context Γ is a finite
list of typed variables, i.e. Γ is of the form x1 : A1, x2 : A2, ..., xn : An. Terms and
formulas are written in context and the expressions

Γ | t : B Γ | φ

are used to denote that t is a well formed term of type B in the context Γ and φ is
a well formed formula in the context Γ.

The definition of Hilbert’s epsilon calculus in the framework of multi-typed lan-
guages does not present many difficulties. What one wants is to require that for
every well formed formula Γ, x : A | φ there exists a term Γ | εAφ : A such that

Γ | H1, . . . ,Hn ` P (t)
εi

Γ | H1, . . . ,Hn ` P (εAP )

where t is a term of type A in the context Γ, i.e. Γ | t : A, and

Γ | K1, . . . ,Kp ` P (εAP ) Γ, x : A | H1, . . . ,Hn, P (x) ` C
εe

Γ, x : A | K1, . . . ,Kp, H1, . . . ,Hn ` C

If the underling collection of types T has some special types constructor, it might be
convenient, or even necessary, to restrict the existence of terms of the form Γ | εAφ : A
to those A’s that belong to a specific class of types. This caution becomes necessary
whenever T contains the zero type 0, which can be thought of as an abstract notion
of the empty set. In this case the existence of a term Γ | ε0φ : 0 makes the calculus
collapse to an inconsistent calculus. Hence, the typed version of Hilbert’s epsilon
calculus is a multy-typed calculus where for every well formed formula Γ, x : A | φ,
where A is not the zero type, there exists a term Γ | εAφ satisfying the rules εi and
εe defined above.
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The typed Hilbert’s tau calculus is defined analogously. In particular, the for-
mation rules of tau terms must obey the constraint that tau terms should not to
be of type 0. Of course, and within the typed epsilon calculus, the law of excluded
middle implies the existence of tau terms and vice versa.

The existence of a categorical model for the classical typed epsilon calculus is not
an issue. A standard set-based model, where a non-zero type A is interpreted as a
non-empty set JAK, works. In this model a context Γ is interpreted as the cartesian
product of the interpretations of the types in it, a term Γ | t : A as a function JtK :
JΓK→ JAK and a well formed formula in the context Γ as a subset of JΓK. Entailment
is inclusion of subsets. Now suppose that φ is a well formed formula in the context
Γ, x : A and suppose that JφK is its interpretation. For every g in JΓK let E(g) be
the set {a ∈ JAK | (g, a) ∈ JφK} and define a set G = {g ∈ JΓK | E(g) is not empty}.
By the axiom of choice there is a function which sends each g in G to an element
s(g) ∈ E(g). The interpretation of the function JεAφ :K : JΓK → JAK is given by the
following assignment

JεAφ :K(g) =
{
s(g) if g ∈ G
x if g 6∈ G

where x is any element of JAK, which certainly exists as JAK is not empty.
In the previous interpretation we made use of the axiom of choice as well as

the law of excluded middle and since toposes can be seen as universes of sets, it is
not surprising that, under some mild hypotheses, the interpretation above can be
rephrased in any elementary topos validating the axiom of choice and the law of
excluded middle. Note that in toposes, by Diaconescu’s argument [14], the axiom
of choice implies the excluded middle, so the the second requirement is redundant.

Thus, a more interesting problem is to find an interpretation of the intuitionist
typed epsilon calculus. The problem is even more interesting if one considers that
in the intuitionist epsilon calculus the axiom of choice is derivable. Therefore, any
category in which one can carry out the argument of Diaconescu does not provide
the desired interpretation.

To the best of our knowledge, the first study of the typed intuitionist epsilon
calculus in categories is due to J. L. Bell [6]. In his work Bell used a special class of
elementary toposes as a model of the calculus and he called such toposes Hilbertian.
To avoid the excluded middle from holding, Bell considers a calculus in which epsilon
terms exists only for those well formed formulas with at most one variable. This
is a fragment of the full intuitionist epsilon calculus in which the axiom of choice
is no longer derivable, therefore the argument of Diaconescu is no longer valid, and
Hilbertian toposes need not collapse to classical ones.
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An approach that is in some respects complementary to that of Bell’s, is to
consider categories which are weaker than toposes. In fact the full power of an
elementary topos is required to carry out Diaconescu’s argument. Therefore, if one
considers other weaker categories, such as Heyting categories, the validity of the
axiom of choice does not imply the validity of excluded middle. A study of those
categories that provides an interpretation of the intuitionistic epsilon calculus with
all epsilon terms can be found in [40].

8 Conclusion
This partial introduction describes quantification with epsilon and tau, in particular
existentials that are so commonly found in natural language. This treatment avoids
the drawbacks of the standard interpretation: epsilon terms follow the syntactic
structure, they refer to individuals and they further avoid the unpleasant symmetry
between common noun and verb phrase in existential statements like Aristotle’s I
sentences.

Epsilon and tau can be typed, thus offering a more refined system for interpreting
quantified statements, that can be integrated within syntactic and semantic parsers.
Typed epsilon calculi are quite interesting because they admit categorical semantics,
while untyped ones do not. As untyped epsilon calculi have no usual models, this is
an important property.

Epsilon calculi shed new light to generalised quantifiers: these could be defined
syntactically, using a generic as a Hilbert subnector tau and epsilon. Thus, there
already exist some first insights for “most" as a typed subnector.

Epsilon calculi suggest intriguing connections between types and properties, type
theory and first or higher order logic. Epsilon and tau, which lead to formulas
without any equivalent in usual logics, offer a natural treatment of underspecification
which should be further explored: which quantifier, existential or universal, comes
first in P (τx. A(x), εx. B(x))?

This issue addresses many facets of the epsilon calculi: history, mathematics
(syntax, proof theory, model theory), linguistics and philosophy. We hope the reader
will enjoy these articles as much as we enjoyed the meeting.
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Abstract

In section 1, some basic proof-theoretic features of the operators τ and ε are briefly
described. Section 2 deals with some additional axioms on these operators that are
important for the formalization of arithmetics and Mathematical Analysis. Section 3 is
a short introduction to Hilbert’s strategy of eliminating ideal elements (quantifiers and
the operators τ and ε) from the proof of finitary statements, and in particular from a
supposed proof of some contradiction (in order to prove the consistency of Arithmetics
and Mathematical Analysis). Section 4 is a short presentation of some important proof-
theoretical results on the operator ε.

1 Basic proof-theoretical features of the operators τ and ε

The τ operator has been introduced by Hilbert before the ε operator: τ is used by Hilbert in
[5] (a lecture given in 1922 and published in 1923), whereas ε is used by Hilbert in [6] (a
lecture given in 1925 and published in 1926) and in following papers. The ε operator is also
used in [7].

1.1 Syntactical features

Both operators, i.e. τ and ε, apply to a variable v of a given type (usually an individual
variable x, i.e. a variable for the elements of a set, or a function variable f , i.e. a variable
for the functions on a set) and a formula A, and produce a term of the same type of the
variable v, where all the occurrences of the term’s variable v inside the formula A are
bound.

This is an invited paper.
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The terms produced by τ operator are called τ -terms, whereas the terms produced by
the ε operator are called ε-terms.

The τ -term produced by the τ operator applied to a variable v and a formula A is
denoted by τvA, whereas the ε-term produced by the ε operator applied to a variable v and
a formula A is denoted by εvA; so, in the terms τvA and εvA all the occurrences of the
variable v are bound.

1.2 Axioms

The implicit definition of the τ and ε operators is given by their axioms, i.e. by the τ -axiom
and ε-axiom.

The implicit definition of the τ operator is given by the τ -axiom, expressed by the
following formulations which are equivalent under the substitution rule (the rule allows the
replacement of free variables, and in particular the replacement of free predicate variables
by formulas):

A[τvA/v]→ A[t/v]

(where A is a formula, and t is a term of the same type of the variable v) or

P (τvP )→ P (v)

(where P is a predicate variable).
Analogously, the implicit definition of the operator ε is given by the ε-axiom, expressed

by the following formulations which are equivalent under the substitution rule:

A[t/v]→ A[εvA/v]

(where A is a formula, and t is a term of the same type of the variable v) or

P (v)→ P (εvP )

(where P is a predicate variable).

1.3 Meaning

The meaning (in Hilbert’s words, the content) of the τ and ε operators is given by the natural
reading of the τ -axiom and ε-axiom.

The natural reading of the τ -axiom is: when the object represented by the τ -term τvA
has the property expressed by the formula A[v], then this property holds for each object of
type v. So a proof of A[τvA/v] is like a proof of A[a/v] where a is considered a generic
object of type v : the proof of A[τvA/v] allows one to conclude that every object of type
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v has the property A, and the same conclusion is obtained from the proof of A[a/v] where
a is a generic object of type v. Therefore, τ -terms are like generic objects in the proofs of
universal statements.

The natural reading of the ε-axiom is the following: when an object of the type of the
variable v has the property expressed by the formula A[v], then this property holds for the
object represented by the ε-term εvA. So, a proof from the hypothesis A[εvA/v] is like as
a proof from the hypothesis A[a/v], where a is considered a generic object of type v: a
proof from the hypothesis A[εvA/v] gives a proof from the hypothesis that some object of
type v has the property A, and this proof is given also from a proof of A[a/v], where a is
considered as a generic object of type v. Therefore ε-terms are like generic objects in the
proofs from existential statements.

Moreover, when the property expressed by the formula A[v] is not empty (i.e. when
this property holds for some object of type v), the ε-term εvA may be considered as an
object selected from the class of all objects with the property expressed by A[v], i.e. as a
representative of this property. Therefore, the ε-axiom also includes a form of the choice
principle (cf. [2]).

Hilbert considered τ -terms and ε-terms as ideal objects, i.e. objects that are useful in
mathematics but need to receive a justification by means of finitary mathematics. Therefore,
the τ -axioms ε-axioms belong to the ideal so to say part of mathematics. The justification
of τ -axioms and ε-axioms by means of finitary mathematics, i.e. the finitary proof of the
consistency of these axioms, is the justification of the mathemetical existence of what is
expressed by the natural meaning of τ -terms and ε-terms.

1.4 Mutual definability

Hilbert very soon noticed that the τ and ε operators are mutually definable, i.e. one may
define the ε operator by means of the τ operator as follows:

εvA[v] = τv¬A[v]

and one may define the τ operator by means of the ε operator as follows:

τvA[v] = εv¬A[v]

The mutual definability of these operators is based on logical duality, and in particular
on the the identities C = ¬¬C and C → D = ¬D → ¬C. Indeed, each τ - axiom
¬A[τv¬A[v]/v]→ ¬A[t/v] by duality is the same as A[t/v]→ A[τv¬A[v]/v] that is a ε-
axiom by putting εvA[v] = τv¬A[v]; each ε-axiom ¬A[t/v]→ ¬A[εv¬A[v]/v] by duality
is the same as A[εv¬A[v]/v]→ ¬A[t/v] that is a τ -axiom by putting τvA[v] = εv¬A[v].

259



ABRUSCI

Therefore, we may restrict us to use the τ -operator only (and so we obtain ε-operator as
a defined one) as in the first Hilbert’s papers (e.g. [5]), or to use the ε-operator only (and so
we obtain τ -operator as a defined one) as in the other Hilbert’s papers (e.g. [6], [7]).

On the basis of these inter-definability, Hilbert decided to use only one of the two sym-
bols ( ε, τ ), and he preferred to use ε for reasons linked to his method of elimination of ideal
elements from a proof of a sentence without ideal elements.

Perhaps, Hilbert’s use of only one of the two symbols is not the optimal choice. Indeed,
the experience in proof-theory shows that - when we have two dual concepts - it is better to
use both: e.g. conjunction and disjunction, universal and existential quantifier. So, a better
formulation of the τ and ε operators would be in classical logic:

• simultaneously defining the class of formulas (with negation on atomic formulas, and
connectives ∧ and ∨) and the class of terms, by stating:

if A[v] is a formula, then εvA[v] and τvA[v] are terms of the type of v

• defining negation ¬A of each formula A in the metalanguage, and defining ¬A[v] for
each formula:

εv¬A[v] = τvA[v], τv¬A[v] = εvA[v]

• to use as logical axioms (each axion gives the other one):

¬A[τvA/v] ∨A[t/v] (τ -axiom) ¬A[t/v] ∨A[εvA/v] (ε-axiom).

where A is a formula, and t is a term of the same type of v.

1.5 Definability of usual quantifiers

Hilbert (with the help of Paul Bernays) very soon noticed the possibility of defining the
usual quantifiers - the universal quantifier ∀ and the existential quantifier ∃, on individual
variables (i.e. first-order quantifiers) and on function variables (i.e. second order quantifiers)
- by means of the τ and the ε operator:

• the universal quantifier ∀ may be defined by means of the τ -operator as follows

∀vA = A[τvA/v]

• the existential quantifier ∃ may be defined by means of the ε-operator as follows

∃vA = A[εvA/v]
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The definability of the usual quantifiers by means of the operators τ and ε is based on
the fact that:

• the usual axioms and rules for the universal quantifier ∀- when ∀vA is translated as
A[τvA/v] - become derivable from the τ -axiom,

• the usual axioms and rules for the existential quantifier ∃ - when ∃vA is translated by
A[εvA/v] - become derivable from the ε-axiom.

Since the τ and ε operators are mutually definable,

• in case the formulation with τ only is used, the usual quantifiers are defined as follows
by means of τ :

∀vA = A[τvA/v] ∃vA = A[τv¬A/v]

• in case the formulation with the ε operator only is used, the usual quantifiers are
defined as follows by means of ε:

∀vA = A[εv¬A/v] ∃vA = A[εvA/v]

Therefore, first-order as well as second-order predicate logic may be formulated stan-
dardly by means of the usual quantifiers, but also by means of the either the τ operator or
the ε operator: indeed, every formula of predicate logic based on usual quantifiers may be
translated into a formula of predicate logic based on the τ operator on the ε operator. Fur-
thermore, the translation of every theorem of predicate logic based on usual quantifiers is a
theorem of predicate logic based on the τ operator or the ε operator.

Note that these results - obtained at the first steps of proof-theory within the Hilbertian
tradition - have been the first results concerning the translations between formal languages
and formal theories: this kind of results is now very common in proof-theory.

Let us consider some examples of translation of formulas of usual predicate logic, as
well as the translation of Aristotle’s categorical propositions, into a formalism based on the
τ or ε operators (cf. [10]):

• the predicate logic representation of the categorical proposition "some Q is P "

∃x(Q(x) ∧ P (x))

is translated (by using the ε operator ) into the formula:

Q(s) ∧ P (s) with s = εx(Q(x) ∧ P (x))

261



ABRUSCI

• the predicate logic representation of the categorical proposition "every Q is P "

∀x(Q(x)→ P (x))

is translated (by using the τ operator) into the formula

Q(t)→ Q(t) with t = τx(Q(x)→ P (x))

Clearly, the τ and ε operators give a new representation of universal statements and ex-
istential statements, different from the old representation given in the ancient logic and from
the more usual one based on usual quantifiers introduced by Frege. The new representation
of universal statements and existential statements is based on the notion of generic object
and on the notion of representative of each property (even for empty properties) expressed
in the language.

But in predicate logic based on the operators τ or ε there are formulas that are not trans-
lations of formulas of predicate logic with usual quantifiers: e.g., the following formulas
where P and Q are unary predicate variables:

P (εxQ(x)) P (τxQ(x))

The natural reading of the first formula is: the predicate P holds of the representative of
the predicate Q i.e. another possible way to express the categorical proposition "some Q
is P ". The natural reading of the second formula is: the predicate P holds of the generic
object for the universal validity of the predicateQ i.e. another way to express the categorical
proposition "every Q is P ".

Remark that the ε-axiom and the τ -axiom may be applied also to function variables or
predicate variables, in a way analogous to a second-order quantification. An example of
τ -axiom applied to a function variable will be considered in 2.3.

2 Other axioms on the operators τ and ε

When other axioms are added on the τ and ε operators, the implicit definition of these oper-
ators changes. We shall list and comment some additional axioms on the τ and ε operators.

2.1 Extensionality axioms

The τ and ε operators produce a term for each formula A and each variable v. So, if A and
B are different formulas, the τ -term τvA is different from the τ -term τvB and the ε-term
εvA is different from the ε-term εvB; when A and B are different but equivalent formulas,

262



HILBERT’S τ AND ε IN PROOF THEORY

the proof of the equivalence between A and B does not give a proof of τvA = τvB and
εvA = εvB.

In some cases, it is really useful to require that the equivalence between two formulas
implies the identity between τ -terms and ε-terms associated to these formulas: when two
formulas are syntactically different but one has strong reasons to see that these formulas
must have the same content, i.e. when these formulas correspond to two different ways to
express the same content E.g., the formulas A ∧ (B ∧ C) and (A ∧ B) ∧ C (associative
law), the formulas A ∧ (B ∨ C) and (A ∧ B) ∨ (A ∧ C) (distributivity law), the formulas
∃x∃yA[x, y] and ∃y∃xA[x, y] (permutation of existential quantifiers), or ∀x∀yA[x, y] and
∀y∀xA[x, y] (permutation of universal quantifiers). In these cases, when A and B, it is
natural to think that the generic object τvA is equal to the generic object τvB and the
representative of the property expressed by A[v] i.e. εvA is equal to the representative of
the property expressed by B[v] i.e. εvB.

In other cases, when the equivalence between two formulas depends on specific axioms
of the theory (e.g. Peano’s Axioms), it is more delicate to require that this equivalence
implies the identity between τ -terms and ε-terms associated to these formulas.

The general extensionality axiom - which was never used by Hilbert and his school -
states that always, when the equivalence between these formula A and B holds, τvA must
be equal to τvB and εvA must be equal to εvB.

∀v(A[v]↔ B[v])→ τvA[v] = τvB[v] ∀v(A[v]↔ B[v])→ εvA[v] = εvB[v]

As you see, the formulation of the general extensionality axiom requires the use of usual
quantifiers, in order to express the equivalence between two formula. Of course, a general
extensionality axiom for ε implies general extensionality axiom for τ , and vice versa.

A more limited form of extensionality axiom is used by Hilbert and his school: the
limitation to the case when two formulas A[v, a] and A[v, b] differ for two terms a and b
which are syntactical different and the equivalence between these formulas is given by the
equality between the terms a and b:

a = b→ τvA[v, a] = τvA[v, b] a = b→ εvA[v, a] = εvA[v, b]

These axioms are called τ -identity or ε-identity (in German, ε-Gleicheit) axioms. We
can of course prove τ -identity from ε-identity and viceversa.

2.2 Arithmetical axioms

Hilbert - and its school - investigated this new way to axiomatize and formalize Number
Theory inside a logical formalism containing the operators τ or ε, and in particular inside a
logical formalism containing the ε operator only (without the usual quantifiers since these
are definibale by means of the ε operator).
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The methodological approach is to avoid the formal introduction of a specific way to
prove and use universal and existential statements on natural numbers, i.e. to avoid the
formal introduction of the induction rule or axiom, and to express the induction rule as well
as the induction axiom as a consequence of other arithmetical axioms together with some
specific axioms for ε-terms.

The result has been the discovery that - inside a formalism using ε and the ε-axiom - the
induction axiom and the induction rule may be replaced by very simple arithmetical axioms
(on the predecessor function and successor function) together with a new specific axiom on
ε-terms where the bound variable is an individual variable, i.e. by the following axiom:

A[a/x]→ εxA[x] 6= (a)′

where ()′ is the symbol fro the successor function.
This axiom is called the second ε-axiom, in German zweite ε-Formel; whereas the name

first ε-axiom is given to the ε-axiom

A[a/x]→ A[εxA[x]/x]

where x is an individual variable - i.e. a variable for natural numbers, and a is a term of the
same type of the variable x i.e. an arithmetical term.

Remark that:

• the second ε-axiom is not the translation of a formula belonging to the formalisms
with usual quantifiers,

• the second ε-axiom says that εxA[x], if there is a natural number with the property
expressed by A, this is the first natural number enjoying the property expressed by
A[x],

• it is possible to formulate a corresponding second τ -axiom simply by translating ε-
term εxA[x] by the corresponding τ -term τx¬A[x].

2.3 Axioms for Mathematical Analysis

It is well-known that Hilbert’s aim has been to give the foundations of Mathematical Analy-
sis (and as a consequence, or a preliminary step, the foundations of the arithmetics of natural
numbers), by stating the consistency of the axioms for Mathematical Analysis.

In supplement IV of [7], one finds the most precise formalization of Mathematical Anal-
ysis by means of the ε operator. In this formalization, the axioms are: the tautologies of
propositional logic, the axiom of equality, the following arithmetical axioms (where ()′ is
the symbol of successor function and δ() is the symbol for the predecessor function)
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a′ = b′ → a = b

a′ 6= 0

a 6= 0→ (δ(a))′ = a

and the following axioms on the ε operator where x is an individual variable (i.e. a vari-
able for natural numbers), f is a function variable (i.e. a variable for functions on natural
numbers), a is term of the type of x and φ is a term of the type of f :

A[a/x]→ A[εxA/x] (first ε-axiom)

A[a/x]→ εxA 6= (a)′ (second ε-axiom)

A[φ/f ]→ A[εfA/f ] (third ε-axiom)

So, the first ε-axiom is the ε-axiom for the individual variables, the third ε-axiom is the
ε-axiom for function variables, and the second ε-axiom is a limited form of an extensionality
axiom for the operator ε (cf 2.1.).

A formalization of Mathematical Analysis by means of the τ operator may be obtained
by replacing the ε-terms by the corresponding τ -terms and the ε-axioms by the correspond-
ing τ -axioms.

In [5] Hilbert gives a very nice example of a definition - by means of the τ -axiom - of
a very strong and useful function of functions, i.e. a kind of functions whose existence has
been criticized by Brouwer and Weyl.

Let us consider this very simple formula

f(x) = 0

were f is a function variable (a variable for functions on natural numbers) and x is an
individual variable (a variable for natural numbers). The τ -axiom for this formula is:

f(τx(f(x) = 0)) = 0→ f(x) = 0

Now, τx(f(x) = 0) denotes a functional Φ such that for every function φ from N to N
gives a result Φ(φ) = τx(φ(x) = 0), and

• Φ(φ) = 0, if for every n φ(n) = 0

• Φ(φ) 6= 0, if for some n φ(n) 6= 0.
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3 The use of the operator ε: Hilbert’s strategy for the elimina-
tion of ideal elements inside the proofs of finitary statements

Inside a proof, ideal elements - in Hilbert’s philosophical approach - are closed formulas
containing quantifiers or the τ and ε operators. Closed formulas not containing ideal ele-
ments are finitary statements. Among false finitary statements we find the closed formula
0 6= 0: a proof ending with 0 6= 0 is a proof of a contradiction.

Hilbert, in Die Grundlagen der Mathematik (1927, published in 1928), explained his
strategy of eliminating all ideal elements inside a proof of a finitary statement, (e.g. from a
"proof" of a contradiction). This strategy is at the core of research in Hilbert’s school. This
is well described in [7] (pp. 92-129) as well.

A more recent study of this strategy is contained in [8].

3.1 Preliminary steps

Preliminary steps of this strategy comprise very interesting procedures - at least historically
these are the first proof-theoretical procedures - that are now standard in proof-theory.

Some of these procedures are fully syntactical, whereas some others also refer to the
content of the formalism on the basis of the Hilbert philosophical approach: to use only
finitary contents, and in particular finitary arithmetics, as the framework where proof-theory
has to be developed and where one has to build the common foundations of logic and math-
ematics.

The preliminary steps are the following procedures designed to be applied to any given
proof of a finitary statement, in a suitable formal system:

1. represent the proof in a tree form;

2. remove quantifiers by using by using ε-terms and τ -terms,

3. remove free variables (this is possible since the conclusion of the proof is a closed
formula, and so does not contain free variables), by replacing each free variable by a
term belonging to finitary arithmetics;

4. interpret each formula not containing ε-terms as a finitary arithmetical proposition.

The first procedure is a very important one, since it introduces the representation of
proofs in a tree form in proof-theory, a representation that is now very familiar and has been
very useful for the development of proof-theory.

The second procedure is the replacement - proposed by Hilbert - of usual quantifiers ∀
and ∃ by means of the ε operator.
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The third step is another important proof-theoretical tool: in the formalisms containing
not the usual quantifiers but the τ or the ε operator, a proof of a closed formula (i.e. a
formula without free variables) may be transformed into a proof without free variables.

The last step is the finitary interpretation - as "true" or "false" - of each formula without
free variables and without ε-terms (or τ -terms).

3.2 Replacement of ε-terms

3.2.1 The general aim

After the preliminary steps, each proof of a finitary statement (and in particular, every proof
of a contradiction) is transformed into a proof that contains no free variable and may contain
two kinds of terms:

• finitary or real terms, i.e. closed terms not containing the operator ε (and not contain-
ing the τ operator);

• ideal terms, i.e. closed terms containing the ε operator.

The aim of the strategy proposed by Hilbert is to replace, in such a proof, each ε-term
by a finitary or real term (ε-terms of the form εxA are replaced by specific natural numbers,
whereas ε-terms of the form εfA by specific finitary functions on natural numbers), in such
a way that all formulas of the given proof become true statements of finitary arithmetics.

3.2.2 The first case

The first case considered by Hilbert in this strategy is the simplest one: in the given proof
there is only one ε-term (with one or more occurrences), this ε-term has the form εxA where
x is an individual variable, and there is only one occurrence of the first ε-axiom.

In this first case, let us suppose that the unique first ε-axiom occurring in the proof is

A[t/x]→ A[εxA/x]

The strategy for replacement of such a ε-term - in the first case - is the following one
(and perhaps this procedure is one of the motivations of the Hilbert’s preference for the ε
operator) :

• one begins by replacing all the occurrences of εxA inside the given proof by the term
0, and so the unique occurrence of the ε-axiom

A[t/x]→ A[εxA/x]

becomes the finitary closed formula
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A[t/x]→ A[0/x]

• if this formula is true, then we stop: every formula in the proof becomes a true finitary
formula;

• otherwise, A[t/x] is true and A[0/x] is false, so that we change the replacement as
follows: each occurrence of εxA is replaced by t, and so

A[t/x]→ A[εxA/x]

becomes

A[t/x]→ A[t/x]

that is a true finitary formula.

3.2.3 Second case

The second case, in the strategy for the elimination of ideal elements inside a proof of a
finitary statement, is a little more complicated in comparison with the first one: in the given
proof, there is only one ε-term (in a finite number of occurrences), this ε-term has the form
εxA where x is an individual variable, and there are in the proof the following occurrences
of ε-axioms

A[t1/x]→ A[εxA/x] , ..., A[tn/x]→ A[εxA/x]

In this case:

• one begins by replacing εxA by 0, and so each A[ti/x] → A[εxA/x] becomes
A[ti/x]→ A[0/x] which is a finitary formula;

• if all these formulas are true, then we stop: every formula in the given proof becomes
a true finitary formula;

• otherwise, there is j such that A[tj/x] is true and A[0/x] is false, so that we change
the replacement: εxA is replaced by the term tj , and so each A[ti/x] → A[εxA/x]
becomesA[ti/x]→ A[tj/x] i.e. a true finitary formula (since the consequent is true).
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3.2.4 A more general case

A more general case considered in the strategy for the elimination of the ideal elements
inside a proof of a finitary statement, is the following one: in the given proof, there are more
ε-terms and more ε-axioms, but all the ε-terms have the form εxA where x is a individual
variable and there is no third ε-axiom.

In this case, the idea is to start by replacing the simplest ε-terms as done in the previous
case, i.e. to define a strategy of elimination by induction on the complexity of ε-terms.
Remark that the strategy designed by Hilbert for ε elimination is the first case of a method
("by induction on the complexity of ...") that is now very usual in proof-theory.

Of course, the first task is to define the complexity of ε-terms.
It is evident that the complexity of ε-terms t is given by the number of the other ε-terms

occurring inside t, and that the simplest ε-terms are ε-terms where no other ε-term occurs.
But a ε-term may occur inside a ε-term in two very different ways:

1. as a term inserted (in German, eingelagert): the ε-term εyB is inserted inside the
ε-term

εxA[x, εyB]

when the variable x does not occur in B;

2. as a term subordinated (in German, untergeordnet): the ε-term εyB[x, y] containing
the variable x is subordinated inside the term

εxA[x, εyB[x, y]]

The number of the ε-terms inserted inside an ε-term t is the degree of t, and the number
of ε-terms subordinated inside a epsilon-term t is the rang of t. The procedure of the
elimination of ε-terms is given by induction on the complexity of the ε-terms, defined by
taking into account both the degree and the rank of the ε-terms.

Remark that the framework becomes extremely complicated, since the way ε-terms are
constructed, leads one to consider improper subordinated terms. For example:

• there is no valid ground to consider as a the order of the existential quantifiers in the
formula ∃x∃yP (x, y) as a relevant one. Thus, we must consider this formula as equal
to the formula ∃y∃xP (x, y)

• ∃x∃yP (x, y) becomes the formula with subordinated ε-terms where the dependency
does not mean anything:
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P (εxP (x, εzP (x, z)), εyP (εxP (x, εzP (x, z)), y))

• ∃y∃xP (x, y) becomes the formula with other subordinated ε-terms where the depen-
dency does not mean anything:

P (εxP (x, εyP (εzP (z, y), y)), εyP (εzP (z, y), y))

3.3 Replacement of ε-terms: concluding remarks

The development of Hilbert’s strategy for the elimination of ε-terms inside the proofs of
finitary statements has been the first topic of proof-theory and has been investigated by
excellent logicians (in particular by Ackermann (1924) and also by Bernays).

The aim of these researchers has been to get a finitary proof that, in the case of the formal
systems of Mathematical Analysis or in the case of the formal systems for Arithmetics, the
procedure of the elimination of ε-terms inside a proof of a finitary statement ends in a
finite number of steps. But, we know that this aim cannot be reached by second Gödel’s
Incompleteness Theorem, if finitary arithmetics is contained inside the formal system for
Arithmetics.

Some partial results obtained in a finitary way by using Hilbert’s strategy are considered
and discussed in the book Grundlagen der Mathematik, II.

Here I wish to point out the importance of Hilbert’s strategy for the development of
proof-theory.

Firstly, Hilbert’s strategy aims to find - inside a given proof - for each ε-term εvA[v] a
term ε-free t in order to replace inside the proof the occurrences of εvA[v] by occurrences
of the term t. We may consider this strategy as a strategy for the substitution of terms.

The Substitution method, introduced by Herbrand in his very important theorem, may
be considered as something linked to Hilbert’s strategy: indeed, Herbrand’s theorem states
that - given a proof of an existential theorem ∃xA - it is possible to find a finite num-
ber of terms t1, · · · , tn and to transform the proof of ∃xA into a proof of the disjunction
A[t1/x], · · · , A[tn/x]. On the relationships between Herbrand’s substitution method and ε
calculus, cf [9].

Secondly, Hilbert’s strategy is motivated by this methodological point of view: the quan-
tifiers (and the operators ε- and τ ) are what is problematic in logic and mathematics. Logic
and mathematics without quantifiers (and without the ε and τ operators) is not problematic,
so in order to justify logic and mathematics we have to prove that we can eliminate quan-
tifiers (and ε-terms and τ -terms) from the proofs of statements not containing quantifiers
(and ε-terms).

The development of proof theory (firstly, the important contributions of Gentzen on the
role of cut-rule, and more recently the investigations on the role of structural rules) has
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showed that this methodological point of view may be refined: also the use of the cut-rule
and structural rules in the proofs is very problematic, and in particular (at least for first-order
logic) the use of quantifiers is not problematic in cut-free proofs not containing structural
rules.

4 The operator ε: proof-theoretical theorems

Main theorems of proof-theory concerning the operator ε - in the framework of first-order
logic - are well exposed in the second volume of [7]: the first and the second ε-theorems,
and the extensions and applications of these theorems.

Of course, these theorems concern also the τ operator, by the fact that the ε and τ
operators are mutually definable.

4.1 First ε-theorem

The First ε-theorem is the theorem stating that Hilbert’s strategy of elimination of ideal
elements inside the proofs of finitary statements is successful when we restrict ourselves to
first-order logic and to proofs from finitary statements.

Finitary statements of first order logic are formulas without quantifiers and ε-terms, i.e.
formulas without bound variables.

More precisely, the first ε-theorem concerns

• every first-order formal system F ,

• its restriction F−, obtained from F by leaving out the quantifiers (so, the proofs in F−

are proofs without the use of the axioms and rules concerning first-order quantifiers),

• its extension Fε, obtained from F by adding the operator ε restricted to individual
variables, i.e. by adding :

– to the language, ε-terms of the form εxA where A is a formula;

– to the axioms, first ε-axiom

A[a/x]→ A[εxA/x]

where A is a formula, x is an individual variable and a is an individual term.

The first ε-theorem says that for any first-order formal system F : if A,A1, · · · , An are
formulas of F− (i.e. formulas without bound variables), and the formulaA is provable from
the formulas A1, · · · , An in the formal system Fε, then A is provable from A1, · · · , An in
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the formal system F− (i.e. without the use of bound variables and without the use of axioms
and rules on the operator ε and quantifiers ∀ and ∃).

The proof of the theorem is done using Hilbert’s strategy exposed in the previous sec-
tion, inside the finitary mathematics.

The second volume of [7] contains not only the proof of this theorem, but also the
proof of an extension of the first ε-theorem and the application of first ε- theorem to obtain
consistency proofs of first-order formal systems.

Of course, the first order formal system for Arithmetics does not satisfy the conditions
of the first ε-theorem, since first-order axioms of Arithmetics contain bound variables.

4.2 Second ε-theorem

Second ε-theorem is a theorem stating that first-order logic with the ε-operator is a con-
servative extension of first-order logic: this means that the formulas of standard first-order
logic that are provable by means of the ε operator may be proved also in the usual first-order
logic.

In order to appreciate the second ε-theorem, let us consider the fact that by using the
operator ε we may produce formulas that are not the translation of usual first-order logic:
the second ε theorem says that this great power of the operator ε does not produce the
provability of unprovable formulas of first-order logic.

More precisely, this theorem concerns every usual formal system F and its extension
Fε defined as above for the first ε theorem, and says that: if A,A1, · · · , An are formulas
of F and A is provable from A1, · · · , An in the formal system Fε, then A is provable from
A1, · · · , An in the formal system F (i.e. without the use of the operator ε).

The proof of the second ε-theorem is performed by means of finitary mathematics, and
is obtained by using the extension of the first ε-theorem.

The second volume of [7] contains not only the proof of this theorem but also the ex-
tension of the second ε-theorem to the predicate logic with identity: from this extension, a
proof of Herbrand’s theorem is obtained.

Conclusion

Hilbert’s operators, τ and ε, and Hilbert’s strategy for the elimination of these operators
inside proofs of formulas without τ and ε, have been the first investigations in proof theory.

The investigations contained in [8], in [9] and in [10] show that the interest in the proof-
theory using these operators is still present and active.

We hope that further developments on Hilbert’s operators τ and ε in a strong connection
with current proof-theoretical investigations will be made possible. These developments
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would be highly desirable given that these operators open an alternative approach to the
treatment and to the understanding of logical quantifiers.
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(∃y)(y = εxFx)

Hartley Slater

Abstract

Not many people realise just how different the epsilon calculus is from stan-
dard predicate logic, even while the one is a conservative extension of the other.
In terms of the main philosophical debate that has taken place in modern times
it moves thought away from Empiricism and towards Rationalism. I shall run
through a number of specific differences in this paper, although there are many
more. I shall be mentioning discourse referents, directly referential terms, fic-
tions, the a prioricity of logic, access to necessary beings, the debate between
D.K. Lewis and Haecceicists, the necessary existence of Timothy Williamson,
and Arthur Prior’s concerns with the temporal version of the Barcan Formula.

1 Discourse Referents
Prior does not seem to have known of epsilon terms as such, but he was well aware
of their linguistic correlates, which he called ‘Russellian names’. These are what we
would now call ‘directly referential terms’ or ‘definite descriptions used referringly’,
in the manner of Donnellan [12, 152]:

If we [are] using an expression as a Russellian name, we may find this
concept exemplified in unexpected ways. For example, it may be that
phrases of the form ‘The φ-er’ can be used as Russellian names as well
as having the quite different use that Russell assigns them. We may,
for example, so use the phrase ‘The man over there’, in a sentence like
‘The man over there is clever’, that its sole purpose is to identify the
individual of whom we wish to say that he is clever, and the sentence
may be being used simply to say that that particular individual is clever,
and not at all to say, for example, that the individual is a man, or that
he is ‘over there’. The sentence used would then be true if and only if
the individual meant was clever, and it would still be true if it turned

This is an invited paper.

Vol. 4 No. 2 2017
IFCoLog Journal of Logics and Their Applications



Slater

out that the individual was not a man but a woman or a Robot, or
that he had moved into quite a different position without our noticing
it.. . .Where the phrase is used as a Russellian description, the case of
course is different . . . And if phrases of the form ‘the φ-er’ can be used as
Russellian names, no doubt ordinary proper names can be so used also.
We might use ‘Johnny Jones’ in ‘Johnny Jones has measles’ simply to
identify a certain individual and say of him that he had measles, so that
this would be true if this individual had measles, even if for example, his
name were not really ‘Johnny Jones’.

Prior’s hesitancy about the confirmation of the existence of such names and descrip-
tive phrases was in tune with his time, indeed in tune with the whole of twentieth
century predicate logic. Russell himself had only made vague suggestions about his
logically proper names’, and no mainline textbook, or academic study, has subse-
quently taken the matter much further. In fact the proof that they exist rests on
a piece of predicative language which standard predicate logic cannot handle: dis-
course referents. The case is sufficiently illustrated when someone says ‘There is a
mouse in the room’, we may reply to this with ‘Where is it?’, and first of all use
an expression in language, namely the pronoun ‘it’, which standard predicate logic
cannot symbolise. One needs a referential term, derivable from the initial existential
remark, as a discourse referent, to keep track of the subject of discussion. In this
case ‘that mouse in the room’ is the descriptive replacement for the ‘it’, i.e. this
referential phrase is the discourse referent derivable from the introductory statement
‘There is a mouse in the room’ The phrase contains a demonstrative ‘that’, indicat-
ing the indefiniteness of its referent, but the most crucial point is that the reference
of the ‘it’ is obtained quite independently of whether the first speaker speaks truly or
falsely. The reference is to that mouse in the room, whether or not there is a mouse
in the room. In the first case the object under discussion is properly described by
the phrase. In the second case the referential phrase refers to a fiction, although it
still may be applied ironically to whatever might have occasioned the initial remark.
Maybe the so-called ‘mouse in the room’ was merely a shadow on the carpet, which
can be taken, formally, to be a counterpart in this world of the fiction involved. As
we shall see, it is quite clear that epsilon terms formalise such referential phrases
([2], [14]).

Hans Kamp, however, has tried to tackle the discourse referents problem in
another way; and there are other treatments of the problem in the literature, for
instance [4], [5]. The advantage of the epsilon calculus over these other approaches
lies simply in its capacity to explicitly formulate demonstrative referential phrases
like ‘that mouse in the room’ In Kamp’s ‘Discourse Representation Theory’, by
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contrast, (see [6]) the required demonstrative phrases cannot be formulated. For
instance, in the case

A farmer owns a donkey [(∃z)(∃t)(Fz.Dt.Ozt)],

Kamp’s ‘Discourse Representation Structure’ is

[x, y : farmer(x),donkey(y), owns(x, y)].

But that merely says that there are two discourse referents, x and y, with the sup-
posed properties, and does not formalize them explicitly. There is no representation
of the fact that x is that farmer who owns a donkey [x = εz(∃t)(Fz.Dt.Ozt)], and y
is that donkey that x owns [y = εt(Fx.Dt.Oxt)]. Moreover, it is quite possible that
¬Fx or ¬Dy or ¬Oxy, i.e. that the object lacks the stated properties, since there
is no guarantee that the initial statement is true.

The eternal objects referred to by such phrases are, as a result, not necessarily
empirical objects, but simply subjects of discourses whether those discourses are
factual or fictional. One of the theoretical misconceptions that has arisen through
the lack of familiarity with Hilbert’s Epsilon Calculus is that the individual terms
in predicate logic cannot refer to fictions (even though predicate logic clearly can
apply to fictional remarks, and many examples widely used to illustrate it are of
fictions). But, as the case of the mouse illustrates, a topic of discussion may well be
a fiction, because individual terms are features of discourses that may be factual or
fictional indifferently. The empirical world of science is certainly the only world we
move around in, but in so moving and operating we make assumptions that by their
nature may be wrong, on occasion. This engagement with fictions is in addition to
our engagement with those in Literature and other arts. So it is clearly an error to
believe that only in the arts and not in science do we have any connection with other-
worldly beings. Standard predicate logic, through limiting itself to the formalisation
of single sentences cannot enter into the central area that clarifies the matter — the
area of multiple sentence discourse where cross-referencing pronouns occur linking
single sentences together on a common topic. But the resultant possibility that
the discourse is fictional gives us a simple proof that any individual term within
it must be an epsilon term. For even if ‘that mouse in the room’ does refer to a
mouse, which mouse it refers to is still to be decided. And, in any case, this is all
a contingent matter, and in other circumstances it could have a different referent,
such as a shadow.

Hilbert’s Epsilon Calculus is a conservative extension of the predicate calcu-
lus, and contains individual terms of the form εxFx for every predicate ‘F ’ in the
language ([7], [10], [17]). The standard epsilon calculus is based on the axiom
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(∃x)Fx ⊃ FεxFx, from which one can naturally obtain the equivalence between
the two sides. That means that the epsilon term’s reference is not further defined,
and in just the right way to formalize the various types of discourse referent above.
For if (∃x)Fx, then εxFx is some individual amongst the F s, being the F , if there
is just one F , and that F if there is more than one F (so the epsilon term in the
latter case is a demonstrative referential phrase rather than a definite description).
But if ¬(∃x)Fx, then εxFx is a fiction, which means it is simply a pragmatically
chosen individual in the whole world at large. Naturally it cannot then satisfy the
description in the epsilon term, which is revealed to be all that its being a fiction
really involves. Here the epsilon term refers to some so-called ‘F ’, i.e. to something
merely said to be F . Thus, as before, if there is no mouse in the room then maybe
‘that mouse in the room’ refers to just a shadow on the carpet; and if there is no
man with martini in his glass then maybe ‘that man with martini in his glass’ refers
to a man with water in his glass. In the latter case, i.e., in Donnellan’s historic case
with the phrase ‘the man with martini in his glass’ used referringly, the speakers are
just selecting a referent for the epsilon expression εx(Mx.Gx) when ¬(∃x)(Mx.Gx),
in line with the general semantics for epsilon terms. So what epsilon terms formalise
more generally are demonstratives, i.e. terms with referents given not by description
but by context, or ‘acquaintance’ as Russell’s might put it.

One can deduce from this that logic is, after all, an a priori discipline. For
commonly this is doubted, since individual terms are normally illustrated by proper
names, but by just those proper names which have (or are supposed to have) a
single bearer in the physical world. But whether there is a unique someone named
‘Johnny Jones’ is an empirical matter, making logic wait upon the verification of
facts about the world. Certainly it is an empirical matter whether (∃y)(y = ιx(x is
called ‘Johnny Jones’), i.e. whether there is in fact a unique person called ‘Johnny
Jones’; but it is not an empirical matter whether (∃y)(y = εx(x is called ‘Johnny
Jones’). In line with the general semantics of epsilon terms above, if there are people
properly called ‘Johnny Jones’ then the epsilon term refers to a chosen one of them,
but if there are no people called ‘Johnny Jones’ then the epsilon term’s referent is
arbitrary, allowing the name to become a nickname for whatever one chooses. So
it invariably has a referent, and it is the element of mental intention, or choice, in
determining that referent that the mainline tradition overlooks. Indeed the opinion
has even been expressed that it is a blemish or worse in natural language that there
might be many people, or no-one at all with a given name, so that in a ‘perfect
language’, such as one that modern logic has aimed at producing, there should
be no such latitude. But everything is in order as it is, in natural language. An
individual subject is always an intended object either actually with the given name,
or merely supposedly with that name. Thus one can say

278



(∃y)(y = εxFx)

There was a man called ‘Johnny Jones’. He has measles, i.e.

(∃x)Jx.MεxJx,

and the εxJx then refers to that ‘Johnny Jones’ brought up into the discourse by the
introductory phrase, and, as before, does so whether or not the discourse is factual
or fictional. Given that εxJx could be anything in the latter case, it could be true
or false that MεxJx. But this arbitrariness is of no consequence, since it is false
that (∃x)Jx, so the conjunction as a whole has to be false. Russell’s logic, when
completed in this way with epsilon terms, is clearly a logic of intensional objects
(c.f. [17]).

2 Necessary Existence
The central point to make in correcting the mainline tradition on the above matters
is that while the individuals that ‘x’ ranges over have, as Russell knew, a necessary
existence (c.f. [12, 149]), they must be separated from any entities that merely have
‘existence’ in this world, or some other. For what, in connection with individuals,
has ‘existence’ just in this world, or just in some other (making them ‘physical
objects’, and ‘fictions’, respectively) are not the individuals themselves, but their
identifying properties. The difference between the two kinds of entity (one might
dub one ‘Platonic’ the other ‘Aristotelian’) is illustrated most clearly in the epsilon
calculus theorem (c.f. [17, 417-8]) that shows that ‘A sole king of France exists and
is bald’ i.e.

(∃x)(Kx.(y)(Ky ⊃ y = x).Bx),
is equivalent to

(∃x)(Kx.(y)(Ky ⊃ y = x)).Bεx(Kx.(y)(Ky ⊃ y = x)),

i.e. ‘A sole king of France exists. He [the king of France] is bald’ The first conjunct
in the second expression is then about certain identifying properties being instanti-
ated which we can call an ‘Aristotelian’ matter. That is what must hold for a sole
king of France to exist (contingently). The second conjunct in the second expres-
sion, however, is about a certain eternally existing individual, which is therefore a
‘Platonic’ object. And that object is a sole king of France, i.e. is the individual with
the identifying properties, if there is such a thing, i.e. if there is a thing with the sole
king of France character; but still exists as a fiction even if there is no such thing,
i.e. if there is no thing with this character. The individual is a noumenal ‘thing in
itself’, in Kant’s terms, and must be separated very distinctly from any phenomenal
appearance.
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The point is central in connection with the shift required for a proper understand-
ing of individuals. For the same point is involved in understanding how eternally
real objects are accessed, which has seemed a perennial difficulty with Platonic en-
tities. Paradigmatically the situation is represented again in the epsilon variant to
Russell’s analysis of ‘The king of France is bald’ For the first conjunct in the second
expression above, as before, is itself equivalent to a conjunction:

Kεx(Kx.(y)(Ky ⊃ y = x)).(y)(Ky ⊃ y = εx(Kx. (z) (Kz ⊃ z = x))).
So access to the individual εx(Kx.(z) (Kz ⊃ z = x)) , i.e. the king of France,
is provided entirely by means of the linguistic act of supposing there is a sole king
of France, and through its then being invariably possible to cross-refer to the same
individual from within further assertions. Eternal objects, as we saw, are simply
subjects of discourse.

The consequences for Prior’s own account of individuals we will see later. But it
is important to see that the same consequences arise for another well-known theory
of individuals: David Lewis’. Indeed, the point that has to be made against Prior is
thoroughgoing against many twentieth century stories about individuals: it is that
they confused Platonic and Aristotelian entities as above. For David Lewis’ theory
of world-bound individuals and their counterparts in other worlds (see, for instance,
[8], [9]) is opposed by Haecceicists who allow trans-world individuals with next to
no recognisable character. The above points provide a defence of the latter through
showing that the former involves a wrong view of identity.

The error can possibly be traced to a feature of Russell’s logic. For in Russell’s
logic iota terms are used rather than epsilon terms, and specifically (∃x)(x = ιyKy)
is equivalent to

(∃x)(Kx.(y)(Ky ⊃ y = x)).
So it looks like the identity of an individual is inseparable from the presence of
certain properties. In the absence of some of these properties it therefore becomes
plausible that a ‘counterpart’ might be recognisable if sufficient of the others are
present. Thus we seem to be able to accommodate ‘Quine might not have been a
logician’, ‘Quine might not have been such a traveller’, etc. But what about more
extreme thoughts like ‘Quine will become a centipede’ as might be found in Buddhist
accounts of re-incarnation? Indeed it is said there was a man who thought his wife
was a hat! There is nothing too ladylike about a hat, and nothing recognisably
Quine-like about a centipede. Indeed which one will he be, they all look much the
same!?

The point holds in reverse with respect to items that are fictional in our world.
Someone in the world of Myth might think ‘I wish Pegasus had been a zebra!’, or ‘Pe-
gasus would have had an extra pair of flippers, if he had been a seal’. These could be

280



(∃y)(y = εxFx)

handled through the presence of enough recognisable qualities in a counterpart. But
with stranger imaginings the possibility of something recognisable becomes weaker
and weaker. That is one reason why we have no reason to deny that Pegasus exists
in this world though not in his mythological form. For he need not have wings, or
be a horse, here. But the philosophical tradition in this area has been preoccupied
with a linguistic version of this issue. For one can hardly say ‘Pegasus does not
exist’, since ‘Pegasus’ is a referential term, and so its use presumes it has a referent.
Not so with ‘A winged horse does not exist’, of course, because ‘a winged horse’
is descriptive and not referential. The specific case of this matter that influenced
Russell was ‘The king of France does not exist’ which has ‘the king of France’ as
a referential phrase. Russell, to avoid the seeming contradiction, chose to replace
the whole with ‘A single king of France does not exist’ Here was the start of the
error that David Lewis made: the identification of an individual with a bundle of
properties. But as we have seen, there are ways of correcting this error, and getting
a formal account of the property-free ‘thisness’ much beloved by Haecceicists.

The point, of course, applies not just to trans-world individuals but also to indi-
viduals as they are extended in time, and the material transformations they undergo,
even with humans and their eventual dissolution back to their inorganic parts. And
these further considerations have a very direct, contemporary relevance. For Timo-
thy Williamson has recently been concerned with an argument that seemingly proves
that he exists. It goes as follows (see [19]): (1) Necessarily, if I do not exist then
the proposition that I do not exist is true. (2) Necessarily, if the proposition that I
do not exist is true then the proposition that I do not exist exists. (3) Necessarily,
if the proposition that I do not exist exists then I exist. (4) Necessarily, if I do not
exist then I exist. So (5) I necessarily exist. Williamson says, amongst other things,
that parallel arguments would have to be equally sound, such as those that replace
‘necessarily’ with ‘at all times’, and ‘I’ with ‘this body’.

But the further conclusions then obtained, namely that he exists at all times, and
that his body necessarily exists, he finds ‘counterintuitive’. So the matter has become
the subject of considerable debate. Clearly the above shows that the conclusion of
Williamson’s argument is undoubtedly true, and in a way that shows the further
conclusions that might be drawn in parallel arguments are also true. One does not
need to debate, like Williamson, the individual worth of his premises, since we have
arrived at his conclusion(s) another, more direct way. The central distinction that
needs to be made is between logical existence and other forms of ‘existence’, such
as ‘being alive’, ‘being present’, and ‘being actual’. But the required distinction is
not readily made using just the Predicate Calculus. Instead what is wanted, as we
have seen, is its conservative extension, Hilbert’s Epsilon Calculus.
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3 Presupposition Theories

As we saw at the start Prior knew of, or at least sensed, the account of individuals
that has been developed above. In fact he considered many views of individuals, but
he also formulated a specific temporal logicQ that was pre-suppositional with respect
to individuals, thinking that since these sometimes exist, and sometimes do not, a
statement about them when they did not exist was unavailable, i.e.. was ‘gappy’.
Considering two times as an illustration that gave him a six valued logic covering
possible combinations of ’true’, ‘false’, and ‘unstatable’ ([11, 14]). But what he was
thinking about were not individuals properly so called, but instead individuals in
a certain form, for instance a person when alive, as opposed to when dead. That
would be taking a collection of properties (such as heart beating, breathing, and
brain activity) to define an individual whereas the individual is instead the entity
which has these properties at a given time, and which persists even when they are
lacking. I have given some details of the tense logic that results from acknowledging
this fact in [15]. Its overall distinction is that it is not ‘gappy’ but is instead a
straightforward two-valued logic where an arbitrary assignment of ‘true’ or ‘false’
replaces Prior’s ‘unstatable’.

What happens to a person when they die? An Empiricist might prefer to refrain
from saying anything; but human history is full of unverifiable, though firmly be-
lieved stories on the matter, which differ widely from one culture to the next. The
crucial point is that such fictions can be as logical and illogical, as consistent and
inconsistent as factual writings.

Of course, Strawson, directly against Russell, had preceded Prior with a pre-
suppositional account again in the temporal area. In On Referring ([18]) Strawson
wanted ‘The king of France is bald’ to lack a truth-value when there was nothing
with the characteristics of a king of France. But the supposition that there is not
one and just one king of France merely liberates propositions about the individual
concerned from having a determinate truth-value. For, directly against Strawson,
we can still make the claim that the king of France is bald. If we suppose (contrary
to fact) that there is one and only one king of France then we can go on making up
a story about this character. The continuing sentences still may have a truth-value,
but one based entirely on choice — commonly on the choice of a literary author,
who makes up the story about the character. So the pre-suppositionists error here
is to forget fiction, and think that truth is not attributable to fictional statements,
when instead, what distinguishes ‘factual truth’ is merely that it is (in principle)
verifiable and so determinate.

In his formal work Frege was not a pre-suppositionist about individual terms,
constructing a way of handling ‘empty names’ with some resemblance to what we

282



(∃y)(y = εxFx)

have seen above. But in his philosophical essay ‘The Thought’ Frege agonised about
whether ‘this lime tree is just my idea’ might be true, not wanting to give any
statement about the lime tree a truth value if that tree was just an idea, i.e. was
fictional. Indeed he makes the point about fictions quite explicitly. He says ([3,
300]):

Is that lime tree my idea? By using ‘that lime tree’ in this question
I have really already anticipated the answer, for with this expression I
want to refer to what I see and to what other people can also look at and
touch. There are now two possibilities. If my intention is realised when I
refer to something with the expression ‘that lime tree’ then the thought
expressed in the sentence ‘that lime tree is my idea’ must obviously be
negated. But if my intention is not realised, if I only think I see without
really seeing, if on that account the designation ‘that lime tree’ is empty,
then I have gone astray into the sphere of fiction without knowing it or
wanting to. In that case neither the content of the sentence ‘that lime
tree is my idea’ nor the content of the sentence ‘that lime tree is not my
idea’ is true, for in both cases I have a statement which lacks an object.

But there is no difficulty talking about Frege’s lime tree, whether or not it is fictional.
Indeed we have just done it!! We can still ask for properties of it, even if it is a
fiction, indeed someone determined enough not to be thought to be in error about
his imaginings, when in fact mistaken, could construct an enormous story about his
dream object, to prop up his view that it is not a fictional object. But alas, despite
the confabulation, and no matter how persuasive the story, the story might still be
a fiction, like Prior’s story about his system Q.

Prior, of course, being the thorough scholar that he was, was aware that he was
treading on perilous ground. Indeed he knew in some detail what the contrary,
proper treatment might be. Talking about the associated Barcan formula ‘If it
will be the case that something (φ’s then there is something which will (φ he says
([11, 2930]) :

. . . if [this formula] is laid down as a logical law, i.e. as yielding with all
concrete substitutions for its variables a statement which is true when-
ever it is made, it can only be justified by the assumption that whatever
exists at any time exists at all times, i.e. the assumption that all real
individuals are sempiternal. . . . It may be that this assumption is capa-
ble of metaphysical justification. With regard to our counterexample —
that perhaps there will be someone flying to the moon although it will
not be anyone now existing — it may be argued that persons are not
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individuals in the sense in which the x’s and y’s of quantification theory
stand for names of individuals, and that all genuine individuals do exist
at all times. On this view, the point about the flight to the moon is
that although the collection of genuine individuals which will perform
the flight has not yet come to constitute a person, these genuine individ-
uals electrons or whatever they might be do exist now, and always have
done and always will. And this would save the Barcan formula, for the
difference appealed to now turns out to be one between forms more like
‘It will be the case that something is a person and flies’ and ‘Something
is a person of which it will be the case that he flies’.

He goes on ‘But I doubt whether this story about sempiternal electrons is good
physics, and am sure it is not good logic. That is to say, even if it be true that
whatever exists at any time exists at all times, there is surely no inconsistency in
denying it, and a logic of time distinctions ought to be able to proceed without
assuming it’ Nevertheless, almost immediately, he counters this, seeing that his
Barcan formula does not need any empirical backing. It could be supported with an
account of terms that refer to necessary existents. He says ([11, 30]):

It must be admitted, however, that when this assumption is driven out
the front door it is liable to return through the back. In discussing our
counterexample to the Barcan formula we might, for example, say that
the flight to the moon may be accomplished by ‘someone who does not
exist yet but will exist later on’ And this way of talking seems to imply
that there is an x such that x does not exist yet but will exist later
on. But what sort of x could this be? An object, apparently, which
does not yet exist but nevertheless can already be talked about, or at
all events can be the value for the variables bound by our quantifiers.
And if this object, although it does not yet exist, can already be talked
about, or can be a value for our bound variables, presumably it is in this
position at all times — it is at all times an object, even if it is not at all
times an existent object. And, of course, if the bound variables in the
Barcan formula are supposed to range over all objects in this wide sense
of ‘object’ — all the items in this supposed permanent pool of things
that are, have been, or will be — it can again be justified.

It is by getting a proper account of these eternal objects that Prior here had some
sense of that we have improved on, indeed corrected his presuppositional temporal
logic Q.
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Abstract

We discuss the philosophical implications of formal results showing the con-
sequences of adding the epsilon operator to intuitionistic predicate logic. These
results are related to Diaconescu’s theorem, a result originating in topos theory
that, translated to constructive set theory, says that the axiom of choice (an
“existence principle”) implies the law of excluded middle (which purports to be
a logical principle). As a logical choice principle, epsilon allows us to translate
that result to a logical setting, where one can get an analogue of Diaconescu’s
result, but also can disentangle the roles of certain other assumptions that are
hidden in mathematical presentations. It is our view that these results have not
received the attention they deserve: logicians are unlikely to read a discussion
because the results considered are “already well known,” while the results are
simultaneously unknown to philosophers who do not specialize in what most
philosophers will regard as esoteric logics. This is a problem, since these results
have important implications for and promise significant illumination of contem-
porary debates in metaphysics. The point of this paper is to make the nature
of the results clear in a way accessible to philosophers who do not specialize in
logic, and in a way that makes clear their implications for contemporary philo-
sophical discussions. To make the latter point, we will focus on Dummettian
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discussions of realism and anti-realism.

Keywords: epsilon, axiom of choice, metaphysics, intuitionistic logic, Dummett,
realism, antirealism

The goal of this paper is to argue for the philosophical, and in particular meta-
physical, importance of certain results involving Hilbert’s ε-operator. The results
involve the addition of ε to intuitionistic (rather than classical) logic. More pre-
cisely, we will suggest that these results offer illumination of debates about realism
and anti-realism, and so help us get a clearer picture of what it means to say that
an individual or property is real, or objective, or is in some related way attributed
a special status of this sort.

We suspect that the sort of discussion we will offer here tends to fall between
the stools in contemporary philosophy. The formal results are not new, and so
mathematicians and formal logicians might look past the philosophical discussion
surrounding the results and conclude that “all this is already known.” On the other
hand, the formal results in question are in an area that many contemporary philoso-
phers are likely to regard as the esoteric reaches of deviant logic, potentially inclining
them not to read the paper either. We will suggest that this is a case where the
interesting philosophy starts when the formal proof is completed—the philosophical
importance is not something that can be read straight off the proof, but takes some
showing. We hope that it repays the effort it might take to overcome whatever
impatience (with philosophical niceties or with technical details, depending on one’s
background) one might bring to the task. Since this is a presentation of a basic
idea that, if worthwhile at all, is worthy of a deeper study, we will attempt in the
present paper not to overly try the patience of either sort of reader, keeping both
philosophical and mathematical details to the minimum that will allow us to try to
make our point clear.

The formal results in question show that the addition of ε to intuitionistic predi-
cate logic is non-conservative.1 As is well known, intuitionistic logic is a sub-system
of classical logic in the sense that all validities of intuitionistic logic are also classi-
cally valid, but not conversely. As is also well known to people already familiar with
the ε-operator, its addition to classical logic is conservative—this is the upshot of the
so-called ε-theorems. To introduce some terminology that will facilitate discussion
later on, we will call principles that are classically but not intuitionistically valid
superintuitionistic.2 We call the system that results by adding the ε-operator to in-
tuitionistic predicate logic the intuitionistic ε-calculus. The basic form of the results

1The results we review below are from [1, 2, 3]; Bell’s work was motivated by [4] and [5].
2This is fairly standard terminology, though we note that we intend to focus on consistent

systems and to ignore consistent extensions of intuitionistic predicate logic that are not consistent
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of interest is that certain superintuitionistic principles are valid in the intuitionistic
ε-calculus, and that when we add in other, seemingly innocuous assumptions to that
calculus we increase the number of interesting superintuitionistic principles that are
valid, until we eventually make them all valid. That is, the addition of ε to intuition-
istic logic is always non-conservative, and with the addition of some modest-seeming
additional assumptions ε is sufficient to make over intuitionistic into classical logic.

The philosophical importance of these results is not, we submit, immediately
apparent. The most direct and digestible way to make them clear, we think, is
to consider the implications of the results for Michael Dummett’s highly influential
account of the relationship between realism and anti-realism. We will try to show
that they offer us a way to improve Dummett’s account, shoring up what might
be regarded as a “soft spot” in his story. But we hope (and will suggest) that the
lessons we draw are not entirely dependent on the details of Dummett’s program
for their interest, and that they offer more general lessons for how to think about
notions such as reality and objectivity.

So far, we’ve described the project at a pretty high level of abstraction. In slightly
more detail, we shall proceed as follows. First, we will present a sketch of Dummett’s
framework for understanding debates between realists and their opponents in differ-
ent areas of philosophical dispute—realists and nominalists about universals, realists
and behaviourists about mental states, realists and constructivists in mathematics,
and so on. In our selective sketch we will draw attention to some key features of
Dummett’s framework for our purposes. One is his suggestion that all these debates
are best re-cast as debates in philosophical logic, in the sense that the correctness
of the principle of bivalence, and so the law of excluded middle, and so of classical
logic, for a particular domain of discourse is a criterion for realism being correct for
that domain. Another is that intuitionistic logic has a special status—it is, in fact,
logic properly so-called, and so is metaphysically neutral. The classically but not
intuitionistically valid principles, i.e. the superintutionistic principles, have a status
akin to mathematical induction or laws of physics in that they can be employed
perfectly legitimately in certain domains, but not others.

Secondly, we shall argue that the case Dummett makes for the link between
realism and classical logic, while not unpersuasive, is a soft spot in his general
account because it relies on a metaphor to link the metaphysical notion of a mind-
independent reality to the acceptance of superintuitionistic principles. We will argue
that the technical results to which we want to draw attention help fill in the details

with classical logic. We find the terminology, for instance, in [6, p.103]: “Extensions [of intuitionistic
logic] are called superintuitionistic logics. Superintuitionistic logics which are contained in the
classical logic are said to be intermediate. An intermediate propositional logic is the same as a
consistent superintuitionistic logic; it is not true for predicate logics.”
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in Dummett’s argument by providing a more direct link between metaphysical as-
sumptions and the acceptance of superintuitionistic principles, including excluded
middle.

The case in the second part has a few sub-parts. First, we note that the ε-
operator, being a sort of choice principle, involves an “existence assumption.” Choice
principles and other metaphysically loaded principles, such as axioms of infinity, are
commonly (if not universally) taken to be, for this very reason, non-logical. Next,
we present a sketch of how the addition of these non-logical principles to intuition-
istic logic make various superintuitionistic principles provable. Finally, we turn to
the job of drawing philosophical lessons. We will contend that the results establish
a clearer connection between metaphysical assumptions and the superintuitionistic
principles than do vague suggestions about reality “fixing the truth values” of well-
formed claims. We also argue that there is philosophical mileage in the fact that the
superintuitionistic principles don’t necessarily come as a package deal. As we shall
see, adding ε together with different choices of additional assumptions yields dif-
ferent intermediate logics between the metaphysically neutral basis of intuitionistic
logic and the classical logic that, according to Dummett, corresponds to full-blown
realism. We will argue that these way-stations between the intuitionistic basis that
antirealists should have no complaint about and full classical logic, and the assump-
tions that suffice to reach these different stations, link up in interesting ways to our
intuitions surrounding notions like objectivity and reality. It is this final point, we
think, that makes these results of interest whether or not one approves of the details
of Dummett’s story, since it offers the prospect of a more fine-grained categorization
of metaphysical options than is available if one supposes that realism is an all or
nothing matter, and it offers a way to discuss the question of reality and unreality,
at least sometimes, at the level of individual, fairly homey, properties, rather than
in terms of nebulous notions such as “discourses.”

1 Realism and Its Opponents
Michael Dummett was one of the most influential philosophers of the second half of
the 20th Century, so many philosophers are likely to have at least a vague idea of
his views. As well-known as any of these would be his commitment to the idea that
the acceptance of the principle of bivalence, and so of the law of excluded middle,
and therefore of classical logic, was a “criterion of realism.”3 Given what we said
in the introduction, it will not surprise anyone that this is an important part of

3While commentators on Dummett perhaps used the phrase “criterion of realism” more often
than Dummett did himself, he does use it occasionally, for instance in [7, p.379,467].
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Dummett’s view for our purposes. We will provide only a quick sketch—we hope
not a caricature—of the case Dummett makes for this view, highlighting strands that
will be of use in the ensuing discussion. The argument was presented many times
with differences of emphasis and detail throughout Dummett’s long career, and the
full-dress presentation involves discussion of theories of meaning, the learnability of
language, and more, that are fascinating, much disputed, and far too intricate for
what we are hoping to do in this paper. We ask forgiveness from Dummett scholars
who regard our simplified presentation as too simple. We rely largely on Dummett’s
own restrospective descriptions of what was central to his account of realism and
antirealism from late in his career, especially his inaugural address upon taking up
the Wykeham Chair at Oxford, [8].

Realism has two parts:

• First, the idea that the things we say in a particular area of discussion, a
discourse, are properly regarded realistically involves a commitment to the
idea that we are making claims about a reality that is in an important way
“independent of us,” and in particular is independent of our ability to know
about it. Of course, few would deny that in some sense reality is independent
of us. What is distinctive about realism is the suggestion that if realism is
correct for a discourse, in spite of this independence our language somehow
links up with the reality in a special way: the truth values of our statements
in the discourse are fixed by that reality, independently of whether we can
come to know those truth values. Indeed, in discourses about which realism
is correct, the prospect that there are claims whose truth values we cannot
come to know, even in principle, cannot be ruled out. While there is some
fussing to be done about difficult details (for instance, what to say about
vague statements that don’t appear to be either definitely true or definitely
false), the presence of a mind- and language-independent reality to fix the
truth values of our statements is the link between metaphysics and bivalence.

• Secondly, some of our claims are true.4 We may regard the language we use to
discuss unicorns as purporting to refer to a mind- and language-independent
reality, but think that there are no unicorns. Presumably that should suffice
for us to count as anti-realists about unicorns.

Since realism, according to this story, has a two part definition, speaking at a
very general level there are two ways of rejecting realism. As the example of unicorns

4More precisely, this should be formulated as the requirement that some of the atomic claims
we make in the discourse in question must be true, since we don’t want the condition to be met
simply because of vacuous quantificational claims or negative claims turning out true.
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suggests, if none of the (atomic) statements of a domain are true, then realism is
not true for that domain. But there are, of course, more interesting versions of this
sort of antirealism, such as the various “error theories” in ethics (most famously
[9]) or mathematics (e.g., Field’s account of arithmetic in [10]). Various versions
of fictionalism in these domains (starting with Mackie’s and Field’s own positive
accounts) are plausibly viewed as antirealist for similar reasons—the claims in the
domain are not literally true (or true when taken at face value), but there is some
other story about what makes the claims involved seem so important to us in spite
of their (literal) falsity. We set aside the question of whether a proper formulation
of realism requires that we find a way to unpack the work that literalness (or some
similar notion) plays in explaining why fictionalism is not a sort of realism.

Anti-realisms of another sort for some reason reject the other component of the
definition of realism. Emotivists in ethics say that our statements are not in the
business of saying true and false things at all, and kindred expressivist accounts in
various areas of philosophy (about conditionals, laws of nature, etc.) similarly deny
that the apparent statements of some domain are properly regarded as statements
(if by statement we mean a claim that could be either true or false) at all. Others,
though, do not want to go so far as saying that the apparent statements of a domain
are not actually in the true/false game, but deny in some way that their truth values
are suitably “independent” of us. Such, for instance, are the views of constructivists
in mathematics who hold that a mathematical statement is true precisely if it is
provable, and false if it is refutable. Such a view certainly fails to make the truth
values of statements in this domain independent of our ability to know them (pre-
suming that by “provable” we have in mind, somehow, provability by agents like us
and not, for instance, mathematicians with infinite capacities of some sort), but it
allows that the statements in this domain are in the game of making true or false
claims.

Finally, many antirealist views have traditionally taken on the guise of reduction
ism—for instance, the phenomenalist claim that claims about the physical world
were somehow indirect ways of talking about perceptions, or logical behaviourist
claims that talk of mental states were really indirect descriptions of behaviour.

2 The status of superintutionistic principles

We are now in a position to see Dummett’s reasons for emphasizing the role of
superintuitionistic principles in debates between realists and antirealists. If, as has
been suggested, realism involves a commitment to bivalence, then it is (barring
some esoteric further maneuvering) a short step to the acceptance of classical logic,
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since bivalence more-or-less implies classical logic. (See [11] for some of the nuances
ignored in this statement.)

From the other direction, Dummett has little good to say about expressivist
or reductionist versions of antirealism. Indeed, he sometimes suggests that, due
to the prevalence of such versions of antirealism in the history of philosophy, his
review of historical debates between realists and antirealists might have seemed to
not even be worth pursuing, for the merits of the respective views “threatened that
all the contests would end in victory for the realist before the comparative study
began” [7, p.470]. Constructivist antirealism about mathematics, he judged, was
the only antirealism not to fall prey to arguments likely to be fatal to expressivist
and reductionist views. Presuming that there were substantial philosophical insights
behind traditional antirealist positions in other realms to which their expressivist or
reductionisist presentations failed to do justice, Dummett suggested that the best
road forward was to recast the antirealist views in all the traditional disputes along
the lines suggested by constructivism in mathematics. That is, they should take as
their starting point the idea that the truth of a claim in the disputed domain consists
in whatever counts as conclusively establishing that claim, just as constructivism
takes truth to be provability, while falsity amounts to the possibility of conclusively
ruling the claim out. Dummett’s suggestion is that evidentially constrained notions
of truth of this sort will share the same basic logic as one finds in the mathematical
antirealism that serves as its model—namely, intuitionistic logic.

It is important to recognize that on this account the question of realism and
antirealism is one that varies by domain, or at least could do so. It is an open pos-
sibility that one ought to be a realist about tables and chairs but not about mental
states, for instance. Since intuitionistic logic is a subsystem of classical logic, we
can say that the intuitionistically valid logical principles are metaphysically neutral
in the sense that they are not in dispute between the participants in any of the
realism/antirealism debates, once those debates are recast according to Dummett’s
recommendations. The superintuitionistic principles, on the other hand, arguably
do not deserve the label “logic” at all, on this account. The case for saying so turns
one of the grounds Frege used to defend the claim that the truths of arithmetic are
logical to the opposite purpose. Frege’s case appeals to the idea that properly logical
inferences are the ones that apply in every realm of human thought, something he
claimed was true of arithmetic priniciples. If Dummett is right, superintuitionistic
principles are correct in domains where realism is the correct view, but not in gen-
eral. Nowadays we take the same criterion to show that, for instance, mathematical
induction is not a principle of logic because it holds when talking about countable,
discrete objects but not when talking about real numbers. Similar reasoning seems
to show that superintuitionistic principles should be regarded as non-logical, and,
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as we have noted above, can be seen as similar to mathematical induction, or the
laws of physics which apply to inferences about physical objects but not in every
domain.

There is another line of argument to be found in Dummett’s writings for the
claim that logic, properly so called, is intuitionistic logic. Probably the most explicit
discussion of this matter occurs in The Logical Basis of Metaphysics [12]. The
discussion there considers candidates for the status of “logical operator” in natural
deduction terms, taking the meaning of any proposed operator to be specified in
terms of its introduction and elimination rules.5 Building from the intuititive idea
that a properly valid deductive inference must not allow us to infer in a conclusion
anything that was not already “contained in the premises,” Dummett argues that it is
a necessary condition of being a properly logical operator that there be “harmony”
between the introduction and elimination rules for the operator. That is, if P is
a sentence with a particular operator as its main logical operator, all and only
the things required to make an inference of P using the introduction rule(s) are
things we can extract from P using the elimination rule(s).6 In Logical Basis we
get Dummett’s most explicit argument that the problem with some of the classical
logical operators is a lack of harmony: that is, the introduction and elimination rules
for, for instance, classical negation are not in harmony (and so are not properly
logical). The principles of intuitionistic logic are by contrast, he suggests after
considerable discussion, in harmony.

To summarize: we find in Dummett two different lines of argument for the view
that, in spite of what we teach students in their first formal logic courses, such
classically valid principles as ∀x(Px ∨ ¬Px), P ∨ ¬P , (P → Q) ∨ (Q → P ), and
¬(P ∧ Q) → (¬P ∨ ¬Q) are not really logical principles at all. Instead, Dummett
argues, the principles of intuitionistic logic are logic, properly so-called.

It follows that in circumstances in which the superintuitionistic principles are
correct, their correctness must have some further basis besides logical correctness,
for they are not logically correct. As we have seen, Dummett’s suggestion is that
what justifies them, when they are justified, is the existence of a suitably mind-
independent realm to which the statements of the discourse in question hook on in
the right way so that the principle of bivalence is true for that domain. Given their
dependence on a metaphysical truth, it is perhaps not too much of a stretch to call
them “metaphysical laws.”

But perhaps this is too hasty. One might buy the suggestion that intuition-
5The reasons for this approach have primarily to do with a particular sort of theory of meaning

that Dummett also argues for in the book. We think it is harmless to leave those details aside.
6We set aside interesting details again here: for instance, whether an introduction/elimination

pair is in harmony depends on what logical operators are presumed to be in place already.
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istic logic is logic properly so-called without accepting the suggestion that extra
metaphysical commitment warrants additional principles of reasoning. Dummett
suggests that the presence of a “mind-independent reality,” onto which our language
hooks appropriately, suffices to establish the correctness of the superintuitionisic
principles—because in those circumstances reality is supposed to determine one of
two truth values for each well-formulated statement, and bivalence implies classical
logic. This picture has not universally been found to be compelling. For instance,
one might well be puzzled, on roughly Dummettian grounds, by how we could come
legitimately to think that we’ve successfully latched onto reality in this way. Oc-
casionally, commentators on Dummett’s work raise this concern in the form of a
question: how, if the standard antirealist arguments he canvasses ever work, can
they fail to always work—can Dummett be arguing for anything but global antire-
alism? [13] We next will suggest alternative grounds that help bolster Dummett’s
suggestion that metaphysical, and so non-logical, commitments can ground the ac-
ceptance of these metaphysical laws.

3 Existence and Logic
The basic structure of the help we propose to offer Dummett is this: certain formal
results make clear that adding in clearly non-logical, plausibly metaphysical (because
ontological) principles to “logic properly-so-called” make various superintuitionistic
principles correct. We therefore have a more direct, rigorous link between meta-
physical assumptions and the superintuitionistic principles than is provided by a
suggestive detour through talk of mind-independent realities. As a next step, we
consider the question of whether we’re right to say that the principles being added
are metaphysical and non-logical.

We begin by noting that the principles in question all assert the existence of
something, and it is quite a prevalent view that existence claims are ipso facto
not logical. As long ago as his 1919 Introduction to Mathematical Philosophy [14],
Russell complained about the “impurity” of sentences like ∃x.x = x, which are valid
in usual formulations of predicate logic but which, he complains, are true only if at
least one object exists (and so are not truly logical). Carnap, in The Logical Syntax
of Language [15, §38a], sketches a method for constructing a logical system which,
he says, does not make such assumptions. We find here early steps towards the
development of what became known as free logic.7

7Neither Russell nor Carnap made provision for names (properly so-called) which do not refer
to existent objects, preferring to explain away “Pegasus” and “The King of France” as not genuine
names. It wasn’t until the 1950s and 1960s that a sustained effort was made to provide suitable

295



DeVidi and Mulvihill

Now let us consider what we take to be the standard attitude towards free logics.
While some of the advocates of free logic were quite militant about the lessons
to be drawn from their work—and correspondingly militant in their opposition to
continued use of the usual classical predicate calculus—few logicians work in free
logic nowadays except in special cases where the role of the existence assumptions
involved in standard predicate logic are especially salient (e.g., type theories in which
some types might be empty, or in some quantified modal logics). It is easy enough
to keep in mind that the validity of ∃.x = x in standard predicate logic is merely
an artifact of a simplifying assumption. We work in a system that considers only
models with non-empty domains in order to simplify our system of rules; nobody
is thereby tempted to such reasoning as “aha, something necessarily exists, so let’s
call it ‘God’ . . . ” so the simplification is harmless. We are all clear that not every
validity in the first order predicate calculus as usually presented is really a logical
truth.

Consider next a perhaps more familiar example, a potted version of the standard
story of the demise of logicism in the philosophy of mathematics.8 The story comes
in two parts. First, Frege’s logicism. It had the considerable virtue of deriving
the existence of the natural numbers from self-evident principles. Alas, it also had
the even more considerable demerit of being inconsistent, and thus serves as an
early pothole in the rough ride the 20th Century provided for the notion of self-
evidence. The second chapter is Russell and Whitehead’s logicism, where they make
a valiant attempt to formulate all of mathematics within a type-theoretic logic in
Principia Mathematica. But their formidable technical achievement does not count
as a vindication of logicism because along the way they must appeal to certain
axioms which are manifestly non-logical—the usual culprits pointed to being the
axioms of infinity, of reducibility, and of choice. And the reason these principles
(especially the first and third) are regarded as manifestly non-logical is that they
imply the existence of particular entities.

It is worth pointing out that it is not the unanimous opinion in the history
of logic and philosophy that having existential implications is enough to rule a
principle out as a principle of logic. Indeed, any vindication of logicism as it seems
to have been conceived in the late 19th and early 20th Centuries seems to have

formulations of classical predicate logic innocent of existential assumptions and which allowed for
singular terms which do not refer to existing objects, and nowadays “free logic” usually refers to
systems meeting both those conditions. An impressive cast of logicians contributed to the effort to
develop free logics, including Henry Leonard, Hugues Leblanc, Theodore Halperin, Jaako Hintikka,
Dana Scott, Bas van Fraassen, Robert Meyer, Karel Lambert and many others.

8We are well aware that the actual history of logicism is longer, more complicated, and more
interesting than it would be useful to detail here.
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presupposed that we would be able to prove the existence of infinitely many objects
(e.g., the natural numbers) on purely logical grounds, and Frege famously argued
for the existence of these “logical objects.” Frege has at least two distinguishable
methods for getting to this claim. First, he derives the axioms of arithmetic from
“self-evident” principles. Alas, among these was the notorious Basic Law V, which
rendered his system inconsistent. On the other hand, he argues that the truths
of arithmetic are logical because they are among the principles that “extend to
everything that is thinkable; and a proposition that exhibits this kind of generality is
justifiably assigned to logic” (Frege, “On Formal Theories of Arithmetic,” as quoted
in [16, p.44]). The first path clearly does not have many advocates today. Nor,
though, does the latter: as discussed above, at least some of the basic principles of
arithmetic, including mathematical induction, are standardly viewed as applying in
some domains and not others, and so these principles are categorized as non-logical
by appeal to essentially the same criterion Frege uses to classify them as part of
logic. So while there may be grounds for believing in “logical objects,” not many
today are likely to think they find those grounds in Frege—and we know of no other
compelling alternative arguments.

It’s tempting to state the lesson as follows: there had to be something wrong with
Frege’s account, since it extracted such rich ontological information from putatively
logical principles; and we ought not to be surprised that to get mathematics out of
logic Russell would have had to smuggle the non-logical existence assumptions in
somewhere.

As a final remark for this section, we note that the results we will consider begin
with principles that are all versions of (or relatives of) the axiom of choice. The axiom
of choice, of course, has its own long and contentious history in the philosophy of
mathematics. Its legitimacy has at times been hotly disputed, usually because of
its awkward or implausible consequences—for instance, it’s classical equivalence to
the well-ordering principle implies that there is a well-ordering of the real numbers,
whose well-ordering is somewhat difficult to imagine, and it is the key to proving the
theorems that lie behind things with names like “The Banach-Tarski Paradox” and
“Skolem’s Paradox.”9 What matters for us, though, is that the Axiom of Choice

9In standard form, AC is the claim that for any family of non-empty, disjoint sets there is
a function that chooses an element from each. Most famously, this turns out to be classically
equivalent to the well-ordering theorem (the claim that every set can be well ordered), and Zorn’s
Lemma. But it is also equivalent to the upward and downward Löwenhiem-Skolem Theorem, and
to the claim that every onto function has a “section” (i.e., “epis split”): that is, if h : A→ B is an
onto function, there is a function s : B → A such that h ◦ s is the identity function on B. There are
weaker choice principles that are also much studied, and which also come in classically equivalent
families: König’s Lemma is equivalent to the completeness of first order logic, which is equivalent
to the Prime Ideal Theorem, etc. Many of the principles which are equivalent in classical set theory
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is an existence principle; depending on formulation, it might assert the existence
of functions or of sets (e.g. a set that includes a single member from each of a
family of sets). But it is an “existence principle” in the sense of asserting that for
each of one sort of thing that exists, there is a thing of another sort that exists,
too. At the risk of too much repetition, it was precisely this existential import that
marked the version of Russell’s axiom of choice off as properly mathematical, and
so not logical, when people point to the need to invoke it as a sign of the failure of
Principia Mathematica to achieve its logicist goals.10

4 Choice Principles and Classical Logic
We turn, at last, to the technical results. The results in question are all relatives
of a result that has been known for a while: that in intuitionistic set theory and
related mathematical systems, the axiom of choice implies the law of excluded middle
(and hence all of classical logic).11 That the axiom of choice in a constructive
setting implies the law of excluded middle, and so all of classical logic, is often
called Diaconescu’s Theorem. Diaconescu’s original proof was in the context of
Topos Theory, and so required somewhat formidable mathematical machinery to
formulate and explain. It has since become clear that the heavy machinery is not
necessary to get this result. Starting in the mid-1990s with the work of John Bell
[1, 2], more illuminating versions of and variations on this result began to appear in
the philosophical literature.

Let’s look first at the “stripped down” version of the proof of Diaconescu’s The-

are not equivalent in intuitionistic systems.
10It is not uncommon to hear it claimed that the Axiom of Choice is, in fact, a principle of

constructive logic, since its truth follows from the meaning of the constructive existential quantifier.
(“A choice is implied in the very meaning of existence,” as Bishop and Bridges say in Constructive
Analysis.) Indeed, in the early 1990s there were two very different research programs travelling
under the name “intuitionistic type theory,” in one of which the axiom of choice implied classical
logic while in the other the axiom of choice was said to be a principle of constructive logic. It would
take us too far afield to review this fascinating history here. See [17, 18] for discussion. While we
would contend that the principle that goes by the name AC in the constructive systems where it
is said to be logically valid doesn’t really deserve the name, the key point for the present is that
the case made for calling that principle logical involves showing that it does not have existential
import in the relevant sense (i.e., the claim is that the existence of the choice function is implied by
the truth of the existential claim in the antecedent because the existential quantifier requires the
existence of a “witness” for its truth).

11While true, this claim hides some hedging in the “related systems” clause. As noted in an
earlier footnote, some systems of constructive mathematics can’t be counted as related systems
since in them a version of AC is valid—unless, of course, one argues instead that the valid principle
itself isn’t really the Axiom of Choice. We steer clear of this debate for present purposes.
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orem presented in [1]. One virtue of this version of the theorem for present purposes
is that it removes complications about the specific version of intuitionistic set theory
or the axiom of choice in question—those versions where something called “choice”
holds in an intuitionstic set theory without implying excluded middle somehow do
not satisfy the assumptions of the theorem. A second virtue it will ease our transition
from the set theoretic to the logical context.

Theorem 4.1 (Diaconescu’s Theorem). The core of the argument

Proof. Assume the following:

(1) There are two terms c and d such that ` c 6= d

(2) For any A, we can find an s and t, such that:

(a) ` A→ s = t

(b) ` (s = c ∨A) ∧ (t = d ∨A)

We can then reason as follows:

` (s = c ∧ t = d) ∨A (distributivity)
` (s 6= t) ∨A (from 1)
` (s 6= t)→ ¬A (2 (a), contraposition)
` A ∨ ¬A

Since the validity of excluded middle is enough to make all of classical logic valid,
this proof provides us with an easy way to show that a particular intuitionistic theory
is powerful enough to prove all the principles of classical logic—we need only show
that it allows us to prove conditions (1) and (2) from theorem 4.1.

Consider, for instance, why this should be expected to hold in an intuitionistic
set theory.12 If we assume that we have the Axiom of Choice, and assume that sets
and functions behave in what will strike classical mathematicians as a natural way,
then we have LEM.

Theorem 4.2 (“Intuitionisitic set theory” plus (ε) implies LEM).

12We do not present this discussion in terms of any particular intuitionistic set theory, instead
simply flagging important assumptions that should be familiar to anyone with a passing acquain-
tance with classical set theory. Once again, we justify this approach as a way to avoid getting
bogged down in details that do not advance the narrative.
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Proof. Clearly, in any reasonable set theory we’ll have ` 0 6= 1, so c 6= d is very easy.
To get (2), we choose a y not free in A and define B(y) to be A ∨ y = 0 and C(y)
to be A ∨ y = 1. This defines two non-empty subsets of {0, 1}, namely

z = {y ∈ {0, 1}|B(y)}

and
w = {y ∈ {0, 1}|C(y)}.

Since we assume the axiom of choice, let f be a choice function on the power set of
{0, 1}. Then f(z) and f(w) will serve as the terms s and t in (2). For if A is true
then by extensionality z = w, and so since f is a function we have A→ f(z) = f(w).
Moreover, since ` f(z) = 0 ∨ f(z) = 1 and f(z) = 1→ A, we have ` f(z) = 0 ∨ A,
and similarly ` f(w) = 1 ∨A, so we have (b) as well.

Note that we didn’t require the full power of the Axiom of Choice to get s and
t, only a choice function on P({0, 1}). There are two obvious lessons in this fact.
First, we might expect other principles weaker than the Axiom of Choice to give us
the required terms. Secondly, the existence of a choice function on the power set of
a two-element set cannot be the same triviality in intuitionistic set theory that it is
in classical set theory—where the only non-empty subsets are {0}, {1} and {0, 1}
after all—since there are perfectly good intuitionistic set theories in which the law
of excluded middle does not hold, even though all the other elements of the proof
just sketched are in place.

For the purposes of drawing metaphysical lessons, though, it will be helpful to
move from the mathematical to a more straightforwardly logical setting. The tool
that will allow us to do is is Hilbert’s ε-operator. Loosely speaking, the ε–operator
adds, for each predicate Φ of a language, a new term εxΦ to the language, one
in which x does not occur free.13 This makes ε a (variable-binding) term-forming
operator of a familiar sort, similar to a definite description operator, for instance.
What distinguishes one such operator from another are the logical rules governing
them. The logical rules for ε are give by the epsilon axiom, which is the following
scheme:

∃xΦ(x)→ Φ(εxΦ(x)), for all Φ(x). (ε)

A moment’s reflection will make clear why ε is sometimes called a “logical choice
function,” and so one might expect that it would be a useful tool for translating

13More precisely, a clause to this effect needs to be added to the recursive definition of the well-
formed expressions of the language, because we want to allow for the presence of ε–terms in the
formulas from which new such terms are formed.
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facts about the axiom of choice from a mathematical to a logical setting. As we
shall see, it allows us to do more than that.

It will be useful for what follows if we specify (and in some cases re-introduce)
some terminology. We will use “IPC” to refer to the intuitionistic predicate calculus
(with identity), and will often refer to the addition of the epsilon axiom to a the-
ory using locutions such as “with (ε)” or “+ (ε).” The logical theory that results
from adding (ε) to IPC we call the intuitionistic epsilon calculus, and we some-
times designate it as “IPC(ε).” We will often have occasion to refer to Ackermann’s
extensionality principle as “(Ack).”

∀x(Φ(x)↔ Ψ(x))→ εxΦ = εxΨ, (Ack)

IPC(ε) + (Ack) we will refer to as the extensional intuitionistic epsilon calculus.

Theorem 4.3 (The extensional intuitionistic epsilon calculus + the existence of
two provably distinct individuals implies LEM). Let T be a theory in the extensional
intuitionistic epsilon calculus in which we can prove c 6= d. Then T ` LEM .

Proof. For the present, we write ` for T `. Recall that, according to theorem 4.1,
to prove LEM it suffices that the following hold:

(1) ` c 6= d

(2) For any A, we can find an s and t, such that:

(a) ` A→ s = t

(b) ` (s = c ∨A) ∧ (t = d ∨A)

We have assumed that (1) holds.
To establish that we also have (2), first, for any A, choose a variable y not free in A
and define:

B(y) ≡ (A ∨ (y = c)) and C(y) ≡ (A ∨ (y = d))

Let εyB(y) = s and εyC(y) = t. Since obviously ` ∃xB(x) and ` ∃xC(x), using the
epsilon axiom we readily derive:

` (s = c ∨A) ∧ (t = d ∨A),

that is we get (2b).
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To see that we also have (2a), note that ` A → ∀y(B(y) ↔ C(y)), so by (Ack)
we have that ` A→ s = t.
The result follows by theorem 4.1.

The parallel between this proof and the proof of the preceding proof that the
axiom of choice implies excluded middle in intuitionistic set theory is obvious. There
are virtues, though, in the present proof. It makes clear, for instance, the role that
the assumption of extensionality plays in the proof of excluded middle. In a set
theoretic context, especially if one’s familiarity with set theory is based on the
classical versions, appeals to extensionality hardly need to be noticed. We shall
return to this point in our philosophical discussion below.14

Thus the addition of (Ack) and (ε) to first-order intuitionistic logic is non-
conservative in a most striking way (in any situation in which there are provably dis-
tinct objects). However, even the addition of (ε) without (Ack) is non-conservative
in the sense that in intuitionistic logic with (ε) we can prove ε–free formulas we
cannot prove in ε–free intuitionistic logic. For instance, it is easy to see that the (ε)
principle implies the validity of the scheme

∃x(∃yΦ(y)→ Φ(x)), (†)

which is not provable in the usual formulations of intuitionistic logic. This is a strik-
ing contrast to the classical case, where Hilbert’s ‘Second ε–Theorem’ tells us that
adding (ε) to classical first-order logic is a conservative extension. So, summarizing
roughly, ε and extensionality is dramatically non-conservative, but ε alone is (less
dramatically) non-conservative.

Of course, one striking difference is that in the presence of (Ack) and the modest
assumption that two provably distinct entities exist we make valid both additional
quantifier laws and additional propositional principles, while our only example of an
additional principle made valid by epsilon alone is a quantificational law. For the
philosophical discussion to follow it is interesting that ε without extensionality also
implies new propositional laws. To get the result we again need some assumptions.
We continue to assume the existence of two provably distinct objects, and while we
no longer assume (Ack) we replace it with the assumption that one of the terms is
“decidable,” i.e. that ∀y(y = c ∨ y 6= c). With these assumptions we can no longer
prove excluded middle, but we can prove important superintuitionistic principles,
including the intuitionistically invalid De Morgan’s law, ¬(A ∧ B) → (¬A ∨ ¬B).

14But it is perhaps worth noting immediately that in constructive mathematical settings in which
something called “Choice” is provable, its failure to imply excluded middle can often be traced to
some failure of extensionality. See, for instance, [19, 20].

302



Indeed, we can prove the stronger principle sometimes called “Linearity” or “Dum-
mett’s scheme,”

(P → Q) ∨ (Q→ P ), (LIN)

from which DeMorgan’s law follows.

Theorem 4.4. IPC(ε) plus two provably distinct objects, one decidable, implies
LIN.

Proof. Assume:

(1) ` c 6= d
(2) ` (∀x)(x = c ∨ x 6= c)

Now, chooosing an x free in neither P nor Q, we define:

A(x) ≡ (P ∧ x = c) ∨ (Q ∧ x 6= c) (*)

We have:

A(c)↔ P , and x 6= c ` A(x)→ Q

Since: (∃x)A(x)↔ P ∨Q, we have:

P ∨Q↔ A(εxA(x))

and by (2) we have:

[(P ∨Q)→ (A(εxA(x)) ∧ εxA(x) = c)] ∨ [(P ∨Q)→ (A(εxA(x)) ∧ εxA(x) 6= c)]

by the definition of A(x) and (∗) we have:

((P ∨Q)→ P ) ∨ ((P ∨Q)→ Q)

and so:
((P → P ) ∧ (Q→ P )) ∨ ((Q→ Q) ∧ (P → Q))

Simplifying we have:

(Q→ P ) ∨ (P → Q)
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Of course, as it stands these proofs only show that epsilon plus these other
conditions are sufficient to get these results, not that they are necessary. To show
necessity, we want a semantics for intuitionistic epsilon calculus. Unfortunately,
this can be a tricky business. We will therefore satisfy ourselves with a few simple
remarks, and point readers to, for instance, [3] for details.

In, for instance, [21], a very simple form of semantics is employed for the clas-
sical ε-calculus. We add a choice function f to each interpretation, and εxA(x)
is interpreted by whatever f chooses from the “truth set” for A(x), i.e. the set
of elements of the domain that make A(x) true when x is assigned to them under
the interpretation in question; if the truth set is empty, then the epsilon term gets
assigned to an arbitrary but fixed element of the domain. This is problematic in the
intuitionistic case for several reasons.

First, it is not hard to see that such an approach will make (Ack) come out valid.
In the classical case this arguably doesn’t matter very much, since ε, with or without
(Ack), is conservative over classical logic. We have seen, though, that ε + (Ack) is
as far from conservative over intuitionistic logic as anybody is going to want to go.

A second problem is that intuitionistic logic cannot have a bivalent semantics.
Whatever semantics we use for intuitionistic logic, one way or another we are going
to have to confront the prospect that many formulas (for a given interpretation) are
not “completely true” nor are they “completely false.” Since all such formulas will
have the same “truth set” as, for instance, P (x) ∧ ¬P (x), namely ∅, they will all
have the same object as the referent of their ε term.

Relatedly, to get the ε principle to come out valid, we need to ensure that for
each ϕ, the truth value of ϕ(εx.ϕ) is always equal to the truth value of ∃xϕ. It is
easy to see how the Leisenring semantics can ensure this in the classical case, since
there is a sufficient supply of saturated models in classical predicate logic. We can
therefore restrict attention to interpretations under which if ∃xϕ is true, then there
is some element of the domain d that makes ϕ(x) true when x is interpreted as d,
i.e., by restricting attention to interpretations where ϕ’s truth set is non-empty. In
the intuitionistic case we obviously can’t restrict attention to truth sets, given what
was said in the preceding paragraph, but we do need to ensure that some element d
gives ϕ(x) the same truth value as ∃xϕ, i.e., we need to ensure that the “as true as
possible” set is non-empty.

Solving these problems in detail is messy. The approaches we will focus on are
built on a standard algebraic semantics for intuitionistic logic. The basic idea is
this: interpretations of predicates in classical logic take them to be “propositional
functions” in the sense of taking tuples of members of the domain of interpretation
into the set {0, 1}. But the standard truth tables for the classical ∧, ∨ and ¬ opera-
tions correspond exactly to the algebraic operations of meet, join and complement if
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we set 0 < 1 and consider this a two element Boolean algebra. Algebraic semantics,
generally speaking, starts with the question “what’s special about the two element
Boolean algebra?” If we allow our interpretations to be other Boolean algebras,
we get Boolean valued semantics, but this turns out not to change which principles
count as valid. But if we allow other types of algebras besides Boolean ones, we get
more interesting, non-classical logics. In particular, if we allow the algebra of truth
values to be Hetying algebras (of which Boolean algebras are a special case), we have
a semantics for intuitionistic logic.15

Bell solves the third problem by restricting attention to interpretations under
which the algebra of truth values is an inversely well-ordered set—that is, every
subset of the set of truth values has a maximal element. The result is a sound but
not complete semantics for intuitionistic ε calculus. It allows him to prove several
interesting independence results, including that while ε + (Ack) implies the law
of excluded middle, ε alone does not. His relatively simple semantics also makes
(Ack) turn out valid. To get a non-extensional semantics, [3] makes the value of
εxϕ depend not only on the truth values ϕ takes when the various members of the
domain are used to interpret x, but also on the syntax of ϕ.

We do not need to pursue the details here. For our purposes it is enough to
note that this sort of semantics allow us to demonstrate independence results that
establish that the proofs above don’t just give us sufficient conditions for, e.g.,
deriving excluded middle, but that the various suppositions in the proofs each play
an essential role (e.g. Theorem 4.3 doesn’t go through without (Ack)). Thus, the
algebra of truth values for ε + (Ack) + two-provably-distinct-objects must be a
Boolean algebra, while ε plus two provably distinct objects and one decidable object
assures that the truth values form and L-algebra, i.e., a Heyting algebra in which
(a→ b) ∨ (b→ a) = 1 for all a, b.

The most obvious examples of non-Boolean L-algebras are chains; if a chain has
more than two members, it is Heyting but not Boolean. However there are other
more interesting examples, Horn, for example, constructs an L-algebra that is neither
Boolean nor a simple linear ordering by considering a lattice composed of a selection
of infinitely long sequences of 0s, 1

2s and 1s compared component-wise [24, p.404].
We can construct a much simpler lattice of ordered pairs to illustrate the basic idea

15A Heyting algebra is sometimes defined as a Brouwerian Lattice with a bottom element. A
Brouwerian Lattice, or implicative lattice, is a lattice with relative pseudo-complementation. How-
ever the terminology is not uniform, in some of the literature a Brouwerian Algebra is taken to
mean the same thing as a Co-Heyting Algebra, the dual of Heyting Algebra. Heyting Algebras, Co-
Heyting Algebras, and Brouwerian Algebras are all also referred to collectively as Pseudo-Boolean
Algebras. For a comprehensive explication of Heyting algebras see [22, pp.58ff.] or [23, pp.33ff.
and pp.128ff.]
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Horn expands on. Consider a algebra of ordered pairs compared component wise
(i.e., 〈a, b〉 ≤ 〈c, d〉 iff a ≤ c and b ≤ d). The pairs in question include all elements
of ({1, 2, 3} × {1, 2, 3}) ∪ {〈0, 0〉}. Clearly, the bottom element ⊥ = 〈0, 0〉, while the
top > = 〈3, 3〉.

〈3, 3〉
zz �� $$

〈2, 3〉
�� $$

〈3, 2〉
��

// 〈3, 1〉
��

〈1, 3〉
$$

〈2, 2〉
��

// 〈2, 1〉
��

〈1, 2〉 // 〈1, 1〉
��

〈0, 0〉

For every pair x 6= ⊥, ¬x is ⊥ (while ¬⊥ = >), and yet x ∨ ¬x = x (e.g. 〈2, 3〉 ∨
¬〈2, 3〉 = 〈2, 3〉) and for any two pairs x, and y we get (x → y) ∨ (y → x) = >.16

We shall discuss such L-algebras and their philosophical interest briefly below.

5 More philosophy
We return now to a more explicitly philosophical discussion, trying (briefly) to make
good our suggestion that there are metaphysical lessons in these formal results—
both lessons for how to fill in some gaps in Dummett’s story linking metaphysics to
logical principles and more general lessons for those not persuaded of the details of
Dummett’s account.

Let us draw together some strands of the discussion. First, we will recall some
key features of (our potted version of) Dummett’s account. Intuitionistic logic is
logic properly-so-called, and so is metaphysically neutral in the sense that everyone
should accept it, regardless of their metaphysical commitments. Superintuitionistic
principles, if justified, must be justified on extra-logical grounds. Dummett suggests

16For example consider two non-comparable elements 〈2, 3〉 and 〈3, 2〉 of the algebra presented
above:

(〈2, 3〉 → 〈3, 2〉) ∨ (〈3, 2〉 → 〈2, 3〉) =
∨
{x|x ∧ 〈2, 3〉 ≤ 〈3, 2〉} ∨

∨
{y|y ∧ 〈3, 2〉 ≤ 〈2, 3〉}

= 〈3, 2〉 ∨ 〈2, 3〉
= 〈3, 3〉
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that these grounds, if they ever are available, will be metaphysical ones, i.e. reason
for believing that the truth-values of the statements in some domain are fixed by
reality in some way that is suitably “independent of us.” In such cases, the mind-
and language-independent reality will justify a commitment to bivalence, and so to
classical logic.

What the formal results above show is that there are ways to make the connec-
tion between metaphysical commitment and logical principles less nebulous. Choice
principles, and in particular the epsilon principle, are metaphysical assumptions,
because they encode claims about conditions under which we can assert the exis-
tence of “objects” of some sort, and we can see from the results that these lead
fairly directly to the validity of superintuitionistic principles. This strikes us as
less metaphorical than the detour through “mind-independent reality fixing truth
values,” and so already as more philosophically illuminating. But the proofs that
show the role of an extensionality assumption in getting all of classical logic, while
weaker assumptions lead us to superintuitionistic but non-classical systems, allow us
to make connections between metaphysical assumptions and logical principles that
give interesting ways of seeing that the question of realism is not an all-or-nothing
thing.

As a preliminary step, consider what the ε axiom says. Recall that when teaching
classical logic, it’s not uncommon to have to try to explain what ∃x(∃yA(y)→ A(x))
is saying, by way of trying to convince students that it’s not crazy that it’s valid.
A common way to do so is to use examples like “suppose A(x) means ‘x will pass
the test’; then the formula is saying that there is someone who will pass the test
if anyone does.” And, indeed, this is what the ε-axiom says: that for any property
there is an object which is the likeliest thing to have the property, or perhaps the
εxA(x) is the paradigm example of the As. As noted, this is already a constructively
invalid principle, for interesting reasons that we cannot pursue here. (See [18] for
discussion.) For the present, it is more important to ask: do our intuitions about
when we find it reasonable to think that there is always a likeliest and when we don’t
track our thoughts about the reality or objectivity of the subject under discussion?
We think it does. We will not argue for the claim, but only offer what we hope
are some suggestive comments. It is no accident that we use an example like “will
pass the test if anyone does” because in most classes there is a student or a small
group of students who are more diligent in preparing for tests, and diligence is a
good predictor of success on tests. On the other hand, there are reasons we don’t
instead use examples like “suppose A(x) means ‘x will win the lottery,’ ” as there
is no reason to think in advance of the draw that there is (already) someone who
is will win if anyone does, for if we think the lottery is fair we don’t think there
is any fact grounding such a claim. We think similar intuitions can be generated
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for other standard examples where antirealist intuitions are reputed to be especially
common—is there really a “likeliest to be funny” joke?

What, then, do we make of theorem 4.3? It shows that in domains where we
not only assume that every property is such that some object is likeliest to have
it, but that that “likeliest to have” is determined extensionally (and there are at
least two provably distinct objects), then we have classical logic. For instance, if the
students who pass are precisely the students who study, then the likeliest-to-pass and
the likeliest-to-study will be the same student. If Dummett is right about the link
between realism and classical logic, this result shows us that discourses in which we
have grounds to believe that all the properties come with extensionally-determined
“likeliest” objects are ones about which we have reason to accept realism. In this
connection, it is worth noting that it is actually not news to think that there is a link
between extensionality and objectivity, a notion clearly important to our thinking
about realism. Famously, in the middle of the past century the need for the grammar
of our attributions of intentional states to be non-extensional was regarded by some
as reason to question the appropriateness of intentional states for inclusion among
the features of the world apt for scientific description. But there are examples that
are both homier and more current. When teaching decision theory, it is important
to draw students’ attention to reasons for doubting whether “preference functions”
are tracking something real. Would you prefer chocolate or broccoli? Would you
prefer something that will give you a heart attack or broccoli? Since the answers to
such questions depend on the description and not just what is described, we have
reason for scepticism about whether the answers about what someone prefers are
“objective” or not.

What do we get if we (continue to assume that there are two distinct objects
and) remove extensionality while assuming that one of the objects is “decidable”?
We no longer have classical logic, and so according to the Dummettian account we
must accept some sort of antirealism for the domain in question. But we think this
intermediate way-station is one which gives us grounds for saying “well, maybe not
realism, but not really antirealism either.”

Consider the models as described in the previous chapter, for the “shape” of the
“algebras of truth-values” can provide us with some idea how the properties in a
domain must behave. As noted, the obvious L-algebras are linear. While the two-
valued L-algebra case is precisely the one Dummett pointed to as encoding realist
assumptions, there is some reason to regard any situation in which the truth-values
of claims are arranged linearly as one where something “objective” is in question. For
it is natural in such cases to think in terms of “degrees of truth,”17 so for instance

17Though one needs to be cautious not to transfer over ideas from other discussions where that
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for any pair of objects there will be a fact of the matter about which of them
has any property P to the greater extent. But more complex L-algebras suggest
other interesting possibilities to do with “multi-dimensional” properties, where each
dimension is “objective,” but taken together they generate a property with an in-
between status, as reflected in our example of a non-linear L-algebra.

Intelligence, for instance, might be this sort of thing. While not uncontroversial,
it is common to hear people speak of intelligence as having various dimensions.18

Maybe both culinary smarts and strategic ability are real things, and each is part of
what we mean by “intelligence.” And perhaps Yotam Ottolenghi has more culinary
smarts, but less strategic ability, than Magnus Carlsen. In that case, perhaps there is
just no answer to the question of which of the two is smarter—to be smarter means
being at least as smart on every dimension and smarter on some. Both, though,
might be smarter than the present authors, having both more strategic sense and
more culinary ability than we do. (Of course, there might be other dimensions that
are part of intelligence on which we can pin our hopes for blunting this judgment: we
couldn’t be more intelligent than those two, but were we to rank ahead on another
dimension we could at least be judged non-comparable with them with respect to
intelligence, rather than less intelligent.)

If we accept that domains in which superintuitionistic principles are valid are
ones in which some, so-to-speak, realistically-inclined metaphysical presuppositions
are legitimate, and if the discussion above shows that discussions of intelligence
are such a domain, we should regard intelligence in ways different from how we
judge discourses where realism is truly implausible—for instance, perhaps, humour
or beauty. And yet we should not regard it in the same way in which we regard
domains about which we are fully realists, either. This strikes us as very much
how intelligence is regarded by those who defend multi-dimensional views. Critics
of the view, on the other hand, often argue that there is a single factor (“general
intelligence”) that underlies strong performance in any dimension, and so that the
apparent multi-dimensionality is an illusion—in effect, arguing that reducing it to a
single dimension is to show that intelligence is a “real thing.”19

We think this discussion does a few useful things for discussions of realism and
antirealism in the Dummettian tradition. First, as noted, it puts some additional
phrase is used; for instance, for all formulas P with a non-⊥ truth value in a linear L-algebra, the
truth value of ¬P is ⊥, rather than 1 minus the truth-value of P , as in probability semantics, for
instance.

18We diliberately choose somewhat flippant “dimensions” rather than opting for some seriously
offered, for instance, by advocates of Multiple Intelligence theories. We do not intend to be wading
into this debate, merely using obvious aspects of what is presumably a familiar example to most
readers.

19There is more to be said here. [25] contains a fuller discussion.
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flesh on the bones of Dummett’s suggestion that metaphysical commitments can
give rise to commitment to logical principles. It also gives us good reason to say
that the question of realism is not an all-or-nothing thing—intelligence may not
be as objective as mass, but it’s not as ephemeral as humour, either, even if the
Multiple Intelligence folks are right. Finally, this sort of discussion can help bring
the discussion of realism and antirealism down a couple of levels of abstraction.
Rather than discussing things like what logic applies to a “domain of discourse”
(whatever that is), this approach offers a way to discuss relatively familiar concepts
and to see what is at issue in ways that reflect debates as we actually see them
occurring between theorists we can actually see debating the status of those familiar
concepts.

6 Conclusion
Of course, there are other ways we can get from intuitionistic to classical logic than
via choice principles, or indeed to get part way from one to the other. Indeed, there
are other ways to make the transition using variants on ε (such as the one encoding
“dependent choice” included in [2]), or using different term-forming operators. What
such formal results offer, we think, is a variety of pathways for investigating relation-
ships between metaphysical commitments and principles of reasoning. By focusing
on just a few such results we’ve tried to sketch one way one might try to spell out
a strategy for showing how realist commitments imply logical principles, but it is
just one among many. One thing that we hope attention to such matters would do
is put some flesh on the bones of the Dummettian suggestion that realists about a
particular domain must commit themselves to at least one of these pathways.
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Abstract
The paper presents a proof-theory (in the form of a natural-deduction (ND)

proof-system) for definiteness, expressed as the ι-subnector, extending 1-st or-
der logic. The ND-system is proposed as meaning conferring and is shown to
qualify as such by being harmonious and stable. Some relationship of this proof-
theory with the presupposition of definiteness is pointed out.

Keywords: Definiteness, iota operator, proof-theoretic semantics, harmony

1 Introduction
The purpose of this paper is to provide a proof-theory (in the form of a natural-
deduction (ND) proof-system) for definiteness, expressed as the ι-subnector1 extend-
ing 1-st order logic (FOL). This ND-system is shown to have certain advantages over
previous such systems in the literature. In Section 4 we compare our proposed ND-
system for definiteness with some other proposals of such ND-systems.

We first explain the definiteness problem itself. We chose the interpretation of
definiteness following Russell’s contextual definition. We assume the usual object
language for FOL with identity and individual constants (but without function
symbols), with the usual definition of free/bound variables. Some of the material in
this paper was presented in [2].
We thank Steven Kuhn for a discussion of nested definiteness, and Koji Mineshima for discussing
presupposition in proof-theory. The second author gratefully acknowledges support by DFG-grant
WI 3456/2-1.

1A subnector is an operator that turns an open formula to a variable binding term.
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2 Definiteness
We start from Russell’s contextual definition of definiteness in [9] (in his famous
example2 (2.1))

The (current) king of France is bald (2.1)

consisting of three components:

1. existence: in the example, there is at least one (current) king of France.

2. uniqueness: in the example, there is at most one (current) king of France.

3. predication: in the example, the only (current) king of France is bald.

This naturally generalizes to a general statement about the only ϕ being ψ, usually
expressed as

∃x(ϕ(x)∧∀y(ϕ(y)→y = x)∧ψ(x)) (2.2)

For later use, we find it useful to consider instead the following equivalent formula-
tion.

∃x.ϕ(x)∧∀u.∀v.ϕ(u)∧ϕ(v)→u = v∧∀w.ϕ(w)→ψ(w) (2.3)

(avoiding a quantifier scoping over the conjunction). The actual formulation which
we use is yet another equivalent formulation, as follows.

∃x.ϕ(x)∧ψ(x)∧∀u.∀v.ϕ(u)∧ϕ(v)→u = v (2.4)

Here the existential quantifier can be presented as a binary, restricted quantifier. So,
we extend FOL by means a term-forming operator (subnector) ιx.ϕ(x), where each
of (2.2), (2.3) and (2.4) is expressed as the formula

ψ(ιx.ϕ(x)) (2.5)

where, at a first stage, ψ is assumed to be a unary atomic3 predicate, and ϕ is
assumed to have exactly one free variable4, say x, and all free occurrences of x in
ϕ are bound by ιx. As usual, bound variables can be renamed, and ιx.ϕ(x) is the
same as ιy.ϕ(y).

2All natural language examples are displayed in san-serif font and are always mentioned, not
used.

3In principle, one may have ψ as any unary predicate, not necessarily atomic. The atomicity
assumption does make the presentation technically simpler.

4One can extend the theory also to ϕ containing no free occurrences of x, like vacuous quantifi-
cation in FOL; we shall not bother doing so here.
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Thus, the regimentation of (2.1) in this extended language is expressed as

B(ιx.K(x)) (2.6)

with the obvious interpretation of the predicate symbols used. Denote this extension
of FOL by FOLι.

Under the model-theoretic interpretation of this subnector, when (2.3) holds,
such a subnector term is proper, a referring expression (denoting an element in the
domain of the model). However, there is a problem when such a term is improper,
i.e., when (2.3) does not hold, in which case the term cannot refer without some
further stipulations. As we shall see below, under our proof-theoretic meaning def-
inition, the issue of being improper never arises. Whenever ψ(ιx.ϕ(x)) is asserted,
its introduction rule (I-rule) guarantees that (2.3), being the premises of this I-rule,
holds. The semantic focus shifts from referentiality to grounds for assertion. We
consider this shift as a most important message of our presentation. This shift is
elaborated upon further in Section 3.1, when relating it to presupposition.

Before presenting the proof-system, we first extend, in stages, the generality of
the basic formulation in (2.5).

2.1 Parameterized Definiteness
The first relaxation of the above assumptions about the expression of definiteness
arises from a need to regiment examples like the following.

The king of France is bald and the king of Spain is bald (2.7)

For that purpose, it is clear that king cannot be considered a unary predicate symbol,
but a binary one, known as a relational noun, expressing a relation between, in this
case, a person and a country. This would render the regimentation of (2.1) as

B(ιx.K(x, France)) (2.8)

where France is an individual constant standing for France. Thus, (2.7) is expressed
as

B(ιx.K(x, France))∧B(ιx.K(x, Spain)) (2.9)
Now, suppose that a situation of a plague of “royal baldness” occurs, where one
needs to express the fact that every country is such that its king is bald. For that,
the second argument of K needs to be a variable, quantifiable from outside the ι-
boundary. So, we relax the assumption that ϕ is unary, and extend the language to
contain parameterized ι-terms such as

ιx.ϕ(x, a) (2.10)
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where a, the parameters, is a list of free variables in ϕ, not bound by ιx, or constants.
The analogue of the Russellian contextual definition of ι-terms becomes

∃x.ϕ(x, a)∧∀u.∀v.ϕ(u, a)∧ϕ(v, a)→u = v∧∀w.ϕ(w.a)→ψ(w) (2.11)

We thus can express the royal baldness situation by

∀y.B(ιx.K(x, y)) (2.12)

2.2 Parallel Definiteness
Next, we transcend Russell’s original definition of definiteness with what we call
parallel definiteness. Consider the sentence

The king of France loves Marie (2.13)

L(ιx.K(x, France),Marie) (2.14)

where the context is a binary relation love. This means we have to relax the as-
sumption that ψ is unary, and let it be n-ary (for an arbitrary n, where n = m+ 1
and m ≥ 0). Thus, the general form of a formula with a ι-term becomes

ψ(ιx.ϕ(x, a), b) (2.15)

where b is a list of m additional parameters. Its Russellian contextual definition now
becomes

∃x.ϕ(x, a)∧∀u.∀v.ϕ(u, a)∧ϕ(v, a)→u = v∧∀w.ϕ(w, a)→ψ(w, b) (2.16)

However, the story does not end here. Consider the sentence

The king of France loves the queen of Spain (2.17)

The regimentation of (2.17) should look like

L(ιx.K(x, France), ιy.Q(y, Spain)) (2.18)

In this case, one of the parameters is itself a ι-term, also requiring the imposition
of existence and uniqueness, w.r.t. the same predication ψ (L in the example).
This calls for the following modification of the contextual definiteness for parallel
definiteness, expressed for brevity for a binary parallelism.
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The contextual definition of

ψ(ιx1.ϕ1(x1, a1), ιx2.ϕ2(x2, a2), b) (2.19)

is

∃x1.ϕ1(x1, a1)∧∃x2.ϕ2(x2, a2)
∧∀u1.∀v1.ϕ1(u1, a1)∧ϕ1(v1, a1)→u1 = v1∧∀u2.∀v2.ϕ2(u2, a2)∧ϕ2(v2, a2)→u2 = v2

∧∀w1.ϕ1(w1, a1)∧∀w2.ϕ2(w2, a2)→ψ(w1, w2, b)
(2.20)

The extension to more than two paralel ι-terms is obvious and left to the reader.

2.3 Nested Definiteness
The ι-operator can be nested (embedded within another ι-term). This innocently
looking construct raises several problems. A thorough study of nested definiteness
can be found in [5]. For example, a regimentation of

The girl that the boy loves smiles (2.21)

would be
S(ιx.(G(x)∧L(ιy.B(y), x))) (2.22)

with the obvious interpretation of the predicate symbols used. By the Russellian
analysis, (2.22) can be interpreted as the proposition that there exists exactly one
girl that is loved by exactly one boy, and that girl smiles. Note that (2.22) does not
preclude there being other girls (loved by no boy or loved by more than one boy).
The general form of nested definiteness is

ψ(ιx.χ(ιy.ϕ(y, a), x), b) (2.23)

See [5] for a criticism of the Russellian reading of (2.23) (and (2.21)) and a proposal
of an alternative reading, claimed to be more plausible. Note that [5] does not
consider n-ary ψs.

2.4 Definiteness and Scope
As Russell was aware, there is a scopal problem regarding the ι-terms. Consider the
special case of

¬ψ(ιx.ϕ(x)) (2.24)

given by
¬B(ιx.K(x)) (2.25)
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There is a scopal ambiguity in (2.25): it can be read as a regimentation of each of
the following two sentences.

The (current) king of France is not bald (2.26)

It is not the case that the (current) king of France is bald (2.27)

Clearly, (2.26) and (2.27) are not equivalent. For example, (2.27) is true (by its
Russellian reading) if there is no king of France, while (2.26) is not. To amend the
situation, Whitehead and Russell (in [16]) introduced explicit scoping of the ι-term,
using the following form.

[ιx.ϕ(x)]ψ(ιx.ϕ(x)) (2.28)

This allows for (2.26) to be regimented as

[ιx.K(x)]¬B(ιx.K(x)) (2.29)

while (2.27) is regimented as

¬[ιx.K(x)]B(ιx.K(x)) (2.30)

However, this amended notation precludes the representation of nested definiteness.
See [5] for a criticism of the amended notation. We will adhere here to the original
notation, reading it as expressing narrow scope of negation.

As for the relative scope of ι-terms w.r.t. other quantifiers, the issue does arise.
Here ι-terms behave like quantifiers regarding scope. The general form of which
(2.12) is an instance is

∀y.ψ(ιx.ϕ(x, y)) (2.31)

by which the universal quantifier on y has a higher scope than the definiteness
binding x. Thus, the uniqueness of x is given per y. Hence, (2.31) differs in meaning
from its “cousin”

ψ(ιx.∀y.ϕ(x, y)) (2.32)

in which the scope of the definiteness binding on x is higher than the universal
quantification on y. The instance B(ιx.∀y.K(x, y)) would mean that there is a
unique person that is the king of every country, and that person is bald.
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Γ`∃x.ϕ(x, a) Γ`∀u.∀v.ϕ(u, a)∧ϕ(v, a)→u = v Γ`∀w.ϕ(w, a)→ψ(w, b)
Γ`ψ(ιx.ϕ(x, a), b)

(ιI)

Γ`ψ(ιx.ϕ(x, a), b)
Γ`∃x.ϕ(x, a) (ιE1)

Γ`ψ(ιx.ϕ(x, a), b) Γ`ϕ(u, a) Γ`ϕ(v, a)
Γ`u = v

(ιE2)
, u, v fresh for Γ

Γ`ψ(ιx.ϕ(x, a), b)
Γ`∀z.ϕ(z, a)→ψ(z, b)

(ιE3)

Figure 1: I/E-Rules for single definiteness

3 An ND-System for Definiteness With ι-Terms

The standard ND-system for FOL is modified in two ways:

• It is extended with I/E-rules for ι-terms, using Gentzen’s ‘logistic’ nota-
tion with sequents, as presented in Figure 1 for single definiteness. Refer
by pr1, pr2 to the first two premises of the (ιI)-rule, expressing existence
and uniqueness. The second premise occurs also in the I-rule suggested by
Hilbert and Bernays [3], discussed below, but without explicit parameteriza-
tions. Whenever not needed, parameterization will be omitted.

• The rules allowing non-introduced uses of a ι-formula (as assumptions, or
premises of an E-rule), are modified so as to enforce such an introduction.
This is elaborated in Section 3.1.

Note that the premises of (ιI) enforce that whenever ιx.ϕ(x) can be introduced,
existence and uniqueness obtain. This way, the need to appeal to a free logic (see
Section 4.3 below) is avoided.

For example, ψ(ιx.ϕ(x)∧¬ϕ(x)) cannot be introduced, since it would need as
premise ∃x.ϕ(x)∧¬ϕ(x), not derivable in FOL from a consistent Γ. The I/E-rules
for parameterized definiteness are obtained from those in Figure 1 by adding the z
parametrization to every occurrence of ϕ in the rules.

A general elimination rule GEι (with parameters omitted) is presented in (3.33).
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Γ`ψ(ιx.ϕ(x)) Γ,∃x.ϕ(x), ∀u.∀v.ϕ(u)∧ϕ(v)→u = v,∀w.ϕ(w)→ψ(w) ` ξ
Γ`ξ (ιGE)

(3.33)
The three regular (ιE)-rules are easily derivable from (ιGE) (assuming the struc-
tural rule of weakening is present). GE-rules emerged independently for allowing
a better correspondence between normal ND-derivations and CUT -free derivations
in sequent-calculi (see, for example, [14, 15]).

As an instance of a derivation involving the ι-rules, consider the following exam-
ple.

Example 3.1. We show ψ(ιx.ϕ(x)),∀x.ψ(x)→χ(x) ` χ(ιx.ϕ(x)). To fit the page,
the derivation is displayed in pieces. Let D2 be the following sub-derivation.

ψ(ιx.ϕ(x))
[ϕ(u)∧ϕ(v)]2

ϕ(u) (∧E1)
[ϕ(u)∧ϕ(v)]2

ϕ(v) (∧E2)
u = v (ιE2)

ϕ(u)∧ϕ(v)→u = v
(→I2)

∀u∀v.ϕ(u)∧ϕ(v)→u = v
(∀I × 2)

Also, let D3 be the following sub-derivation.

[ϕ(w)]1

ψ(ιx.ϕ(x))
∀x.ϕ(x)→ψ(x) (ιE3)

ϕ(w)→ψ(w) (∀E)

ψ(w) (→E)
∀x.ψ(x)→χ(x)
ψ(w)→χ(w) (∀E)

χ(w) (→E)

ϕ(w)→χ(w) (→I1)

∀w.ϕ(w)→χ(w) (∀I)

Then, the main derivation is the following.

ψ(ιx.ϕ(x))
∃x.ϕ(x) (ιE1) D2

∀u∀v.ϕ(u)∧ϕ(v)→u = v
D3

∀w.ϕ(w)→χ(w)
χ(ιx.ϕ(x)) (ιI) (3.34)

To analyze the proof-theoretic meaning of nested definiteness, consider the fol-
lowing generic skeleton of a derivation of ψ(ιx.χ(ιy.ϕ(y), x)) (with contexts omitted).
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To fit the page, the derivation is displayed in several parts. For readability, some
renaming of bound variables took place.

D1 :

∃y.ϕ(y) ∀u1.∀v1.ϕ(u1)∧ϕ(v1)→u1 = v1 ∀w1.ϕ(w1)→χ(w1, x)
χ(ιy.ϕ(y), x) (ιI)

∃x.χ(ιy.ϕ(y), x) (∃I) (3.35)

To fit the page, we use the following abbreviations.
Γ1 =df. ∃y.ϕ(y),∀u2.∀v2.ϕ(u2)∧ϕ(v2)→u2 = v2, ∀w2.ϕ(w2)→χ(w2, x)
Γ2 =df. ∃y.ϕ(y), ∀u3.∀v3.ϕ(u3)∧ϕ(v3)→u3 = v3, ∀w3.ϕ(w3)→χ(w3, x)

D2 :

Γ1
χ(ιy.ϕ(y), u2) (ιI) Γ2

χ(ιy.ϕ(y), v2) (ιI)

χ(ιy.ϕ(y), u2))∧χ(ιy.ϕ(y), v2))
...

u2 = v2

(∧I)

χ(ιy.ϕ(y), u2)∧χ(ιy.ϕ(y), v2)→u2 = v2
(→I)

∀u2∀v2.χ(ιy.ϕ(y), u2)∧χ(ιy.ϕ(y), v2)→u2 = v2
(∀I)× 2 (3.36)

D3 :

∃y.ϕ(y) ∀u4.∀v4.ϕ(u4)∧ϕ(v4)→u4 = v4 ∀w4.ϕ(w4)→χ(w4, x)
χ(ιy.ϕ(y), u4) (ιI)

...
ψ(u4)

χ(ιy.ϕ(y), u4)→ψ(u4) (→I)

∀u4.χ(ιy.ϕ(y), u4)→ψ(u4) (∀I) (3.37)

D1
∃x.χ(ιy.ϕ(y), x)

D2
∀u2∀v2.χ(ιy.ϕ(y), u2)∧χ(ιy.ϕ(y), v2)→u2 = v2

D3
∀u.χ(ιy.ϕ(y), u4)→ψ(u4))

ψ(ιx.χ(ιy.ϕ(y), x)) (ιI)

(3.38)
By inspecting the derivation of such a nested definiteness, we see that existence
and uniqueness need to hold both for ϕ(y) and for ιx.χ(ιy.ϕ(y), x), where the latter
requires a unique x w.r.t. the unique y of the former. For (2.21), the rules require
a unique boy, and a unique girl loved by that boy.

The proof-system for binary parallel definiteness is presented in Figure 2. The
extension to n-ary parallelism should be obvious.
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Γ`∃x1.ϕ1(x1, a1),
Γ`∃x2.ϕ2(x2, a2)

Γ`∀u1.∀v1.ϕ1(u1, a1)∧ϕ1(v1, a1)→u1 = v1,
Γ`∀u2.∀v2.ϕ2(u2, a2)∧ϕ2(v2, a2)→u2 = v2

Γ`∀w1.ϕ1(w1, a1)∧∀w2.ϕ2(w2, a2)→ψ(w1, w2, b)
Γ`ψ(ιx1.ϕ1(x1, a1), ιx2.ϕ2(x2, a2), b))

(ιI)

Γ`ψ(ιx1.ϕ1(x1, a1), ιx2.ϕ2(x2, a2), b)
Γ`∃x1.ϕ1(x1, a1) (ιE1,1)

Γ`ψ(ιx1.ϕ1(x1, a1), ιx2.ϕ2(x2, a2), b)
Γ`∃x2.ϕ2(x2, a2) (ιE1,2)

Γ`ψ(ιx1.ϕ1(x1, a1), ιx2.ϕ2(x2, a2), b)
Γ`ϕ1(u1, a1)
Γ`ϕ2(u2, a2)
Γ`ϕ1(v1, a1)
Γ`ϕ2(v2, a2)

Γ`ui = vi
(ιE2)

, ui, vi fresh for Γ

Γ`ψ(ιx1.ϕ1(x1, a1), ιx2.ϕ2(x2, a2), b)
Γ`∀z1.ϕ1(z1, a1)∧∀z2.ϕ2(z2, a2)→ψ(z1, z2, b)

(ιE3)

Figure 2: I/E-Rules for (binary) parallel definiteness

3.1 Imposing Presupposition
This section presents some ideas relating definiteness to presupposition in a proof-
theoretic manner. A fuller proof-theoretic discussion, relating to a wider scope of
phenomena related to presupposition, such as projection, incorporation and more,
not just in case of definiteness, is deferred to a separate paper.

As a motivating example, consider the following. Suppose we want to prove (in
our system) that

Everyone bald owns no comb (3.39)

entails
If the king of France is bald then he owns no comb (3.40)
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This can be regimented as

∀x.B(x)→C(x) ` B(ιx.K(x))→C(ιx.K(x)) (3.41)

where C(x) can be read as is comb-less (abbreviating has no comb).
Presumably, the proof, using the standard I/E-rules for FOL, is as follows:

∀x.B(x)→C(x)
B(ιx.K(x))→C(ιx.K(x)) (∀E) [B(ιx.K(x))]1

C(ιx.K(x)) (→E)

B(ιx.K(x))→C(ιx.K(x)) (→I1) (3.42)

As one can see, we nowhere introduce B(ιx.K(x)) with a ιI-rule when:

• assuming B(ιx.K(x)) and later discharging it, or

• deducing B(ιx.K(x)) via (∀E)!

Hence, existence and uniqueness were not assured in this derivation.
We modify the standard I/E-rules for FOL as follows5.

Assumption: The standard assumption rule is

Γ, ϕ`ϕ (ass) (3.43)

We modify it by enforcing the appropriate instances of pr1, pr2 (existence
and uniqueness) to be added to the context, considered as presuppositions,
whenever ϕ has a ι-term as an argument. This can be conceived as a side-
condition on the standard assumption rule.

Γ,pr1,pr2, ϕ`ϕ
(ass) (3.44)

This modification affects both (→I) and (∨E), that introduce assumptions
and discharge them. Thus, the regimentation of (3.40) now becomes

∀x.B(x)→C(x),pr1,pr2,` B(ιx.K(x))→C(ιx.K(x)) (3.45)

5This modification is inspired by the ideas in [6]. However, we do not have in FOL judgements
of the form ϕ : Prop that can serve as “handles” for imposing pr1, pr2 as presuppositions as done
there, and we implement the same idea differently.
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Elimination: When a ι-formula is a conclusion of a standard FOL elimination
rule, is also no subject to the existence and uniqueness conditions. These have
to be imposed by side-conditions. The standard (∀E)-rule is

Γ`∀x.ϕ(x)
Γ`ϕ(t) (∀E) (3.46)

We modify the rule to

Γ`∀x.ϕ(x)
Γ,pr1,pr2`ϕ(t) (∀E) (3.47)

whenever t is a ι-term.

The other E-rules are modified in a similar way and we omit the details.

3.2 Reductions and Expansion

Recall that a maximal formula in a derivation is a formula serving both as a con-
clusion of an application of an I-rule as well as a major premise of an application of
an E-rule. The presence of a maximal formula is considered a detour in the deriva-
tion. A reduction of a derivation with a maximal formula produces an equivalent
derivation (with the same conclusion and the same (or less) assumptions). Such re-
ductions are central to the property of harmony in proof-theoretic semantics [10, 1]
and normalization [8].

Below are the three reductions for the singular ι-rules (contexts and parameters
omitted). The notation for the parallel case is cluttered and omitted.

D1
∃x.ϕ(x)

D2
∀u.∀v.ϕ(u)∧ϕ(v)→u = v

D3
∀w.ϕ(w)→ψ(w)

ψ(ιx.ϕ(x)) (ιI)

∃x.ϕ(x) (ιE1)
;r

D1
∃x.ϕ(x)

(3.48)
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D1
∃x.ϕ(x)

D2
∀u.∀v.ϕ(u)∧ϕ(v)→u = v

D3
∀w.ϕ(w)→ψ(w)

ψ(ιx.ϕ(x)) (ιI) D4
ϕ(u)

D5
ϕ(v)

u = v (ιE2)
;r

D4
ϕ(u)

D5
ϕ(v)

ϕ(u)∧ϕ(v) (∧I)

D2
∀u.∀v.ϕ(u)∧ϕ(v)→u = v

ϕ(u)∧ϕ(v)→u = v
(∀E)× 2

u = v (→E)
(3.49)

D1
∃x.ϕ(x)

D2
∀u.∀v.ϕ(u)∧ϕ(v)→u = v

D3
∀w.ϕ(w)→ψ(w)

ψ(ιx.ϕ(x)) (ιI)

∀w.ϕ(w)→ψ(w) (ιE3)

;r
D3

∀w.ϕ(w)→ψ(w)

(3.50)

An expansion of a derivation for some Γ`ϕ transforms it into an equivalent derivation
in which ϕ is decomposed by applying E-rules and recomposed by applying I-rules.
Expansions are central for the proof-theoretic semantics property of stability [10].

Below is the expansion establishing local completeness of the ι-rules.
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4 Comparison With Other ND-Rules for Definiteness
We now compare the proposed I/E rules for definiteness to some other proposals
found in the literature.

4.1 Hilbert and Bernays
Hilbert and Bernays [3] also suggest a contextual definition of ‘ι’, using the following
I-rule (in our notation).

Γ`∃x.ϕ(x) Γ`∀u.∀v.ϕ(u)∧ϕ(v)→u = v

Γ`ϕ(ιx.ϕ(x)) (ιIHB) (4.52)

The premises of the rule are the same as the respective two first premises of our rule
(ιI), but the conclusion is weaker. It only allows a contextual inference where the
main predicate (ψ in our rule) coincides with the predicate on which existence and
uniqueness are imposed. It allows regimenting identity-expressing trivial sentences
like

The king of France is a king of France (4.53)
Hilbert and Bernays have no E-rule for ι. They do prove that the I-rule above is a
conservative extension of the system without it.

We note that [3] (e.g., p. 391 of the 1st edition) does use more complicated
expressions, involving nesting, such as:

ιx.A(x, ιy.B(y, ιz.C(y, z))) (4.54)

and
ιx.∃yA(ιz.B(x, y, z)) (4.55)

4.2 Kalish and Montague
In [4], Kalish and Montague more or less adopt the rule (ιHB), but add another
rule. The need of the other rule is due to the fact that they interpret ιx.ϕ(x) as a
fixed element, the number zero, if existence and uniqueness do not obtain (improper
description). The second rule, (ιKMI) ensures, that all improper descriptions are
equivalent.

¬(∃y∀x.ϕ(x)↔ x = y)
ιx.ϕ(x) = ιy.¬y = y

(ιKMI) (4.56)
In addition to inheriting the limitation of (ιHB), the approach of Kalish and Mon-
tague may lead to undesired results. For example, one can derive (the regimentation
of): The natural number between 1 and 2 is 0.
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4.3 Tennant

Tennant, in [12] (elaborating on [11]), proposes I/E-rules for a contextual proof-
theoretic definition of ι. He does this within a uniform proof-theoretic definition of
a class of subnectors he calls abstraction operators. He certainly shares our view
of PTS as a meaning theory. However, the contexts he allows are only identity
statements of the form t = ιx.ϕ(x) (where t is any term in the underlying object
language). His rules are formulated in a free logic framework, where existential
commitments are made explicit. He uses ∃!t, defined by ∃!t =df. ∃x.x = t. The rules
are presented below, in our notation.

[ϕ(a)]i, [∃!a]i
...

a = t ∃!t

[a = t]j
...

ϕ(a)
t = ιx.ϕ(x) (ιT )Ii,j (4.57)

The E-rules derive each of the premises of (ιT I) from the major premise t = ιx.ϕ(x).
This I-rule does not allow to infer directly a predication of the form ψ(ιx.ϕ(x)).

Instead, one has to infer ψ(ιx.ϕ(x))∧ψ(t); for example,

Louis is the (current) king of France and he is bald (4.58)

Representing nested definiteness is even more cumbersome.

4.4 Identity in the Matrix of ι-Terms

Identity can have two roles here:

1. In the premises of the (ιI)-rule.

2. As an instance of ϕ and especially of ψ.

We augment NDι with standard I/E-rules for identity (for example, [13]).

(= I)
t = t

t = s ϕ[x/t]
(= E)

ϕ[x/s]
(4.59)

(= I) and (= E) are also known as Reflexivity and Replacement. Transitivity of =
is expressed as a special case of (= E):

t = s t = r (= E)s = r
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Nota bene, (= I) and (= E) are not in harmony. Consider the following two
formulas, exemplifying the interplay between constants and ι-terms.

S(ιx.x = d) (4.60)

d = ιx(x = d) (4.61)

(Formulas of this form play a prominent role in the philosophical discussion of so-
called “slingshot” arguments; see, e.g., [7].) The Russellian contextual analogues for
(4.60) and (4.61) are (4.62) and (4.63), respectively.

∃x.x = d ∧ ∀u∀v.u = d ∧ v = d→ u = v ∧ ∀w.w = d→ S(w) (4.62)

∃x.x = b ∧ ∀u∀v.u = b ∧ v = b→ u = v ∧ ∀w.w = b→ w = b (4.63)

For purposes of illustration, consider

S(d) (4.64)

(4.60) and (4.64) can be shown to be equivalent as follows:

(= I)
d = d

[S(ιx.x = d)]1 (ιE3)∀z.z = d→ Sz (∀E)
d = d→ Sd (→ E)

Sd (→ I1)
S(ιx.x = d)→ Sd

(4.65)

and

(= I)
d = d (∃I)∃x.x = d

[u = d ∧ v = d]1 (∧E1)u = d

[u = d ∧ v = d]1 (∧E2)v = d (= E)u = v (→ I1)
u = d ∧ v = d→ u = v (∀I × 2)∀u.∀v.u = d ∧ v = d→ u = v

[Sd]2 (→ I)
d = d→ Sd (∀I)∀w.w = d→ Sw (ιI)

S(ιx.x = d)
(→ I2)

Sd→ S(ιx.x = d)
(4.66)

(4.61) and d = d can be shown to be equivalent in a similar way.

(= I)
d = d

[d = ιx.x = d]1 (ιE3)∀z.z = d→ d = z (∀E)
d = d→ d = d (→ E)

d = d (→ I1)
d = ιx.x = d→ d = d

(4.67)
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(= I)
d = d (∃I)∃x.x = d

[u = d ∧ v = d]1 (∧E1)u = d

[u = d ∧ v = d]1 (∧E2)v = d (= E)u = v (→ I1)
u = d ∧ v = d→ u = v (∀I × 2)∀u∀v.u = d ∧ v = d→ u = v

[d = d]2 (→ I)
d = d→ d = d (∀I)∀w.w = d→ d = w (ιI)

d = ιx.x = d (→ I2)
d = d→ d = ιx(x = d)

(4.68)
As these examples suggest, equivalence does not guarantee sameness of proof-

theoretic meaning. Moreover, identity claims like (4.61) do not guarantee proof-
theoretic synonymy of d and ιx.x = d.

Also,
d = r and ιx(x = d) = ιx(x = r) (4.69)

are equivalent:
d = r d = ιx(x = d) (= E)

r = ιx(x = d) r = ιx(x = r) (= E)
ιx(x = d) = ιx(x = r)

(4.70)

ιx(x = d) = ιx(x = r) ιx(x = d) = d (= E)
ιx(x = r) = d ιx(x = r) = r (= E)

d = r

(4.71)

We may combine ι-terms with identities in the matrix with parallel, nested, and
parameterized definiteness. We illustrate this by means of (4.72). Natural language
counterparts are cumbersome and evaded.

Q(ιx.x = d, ιx.x = r)
S(ιx(x = d) ∧Q(ιy(y = r, x)))

∃y.S(ιx.x = y)
(4.72)

5 Conclusions
In this paper we have presented an extension of first-order logic with the subnector
term ‘ι’ (Russell) expressing definiteness in the form of existence and uniqueness.
The extension is formulated in terms of a natural-deduction proof-system. By means
of this proof-theoretic treatment of definiteness, there is a shift of focus from im-
proper, non-referring ι-terms, to the grounds of assertion of sentences with ι-terms,
including a treatment of presupposition. The ι-rules were shown to be harmonious,
thereby qualifying as meaning-conferring.

This extension can save a basis for a more general study of PTS for subnectors
in general, in contrast to the current focus of PTS (in logic) on sentential operators.
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This paper compares Hilbert’s ε-terms and Russell’s approach to indefinite de-
scriptions, Russell’s indefinites for short. Despite the fact that both accounts are
usually taken to express indefinite descriptions, there is a number of dissimilar-
ities. Specifically, it can be shown that Russell indefinites—expressed in terms
of a logical ρ-operator—are not directly representable in terms of their corre-
sponding ε-terms. Nevertheless, there are two possible translations of Russell
indefinites into epsilon logic. The first one is given in a language with classical
ε-terms. The second translation is based on a refined account of epsilon terms,
namely indexed ε-terms. In what follows we briefly outline these approaches
both syntactically and semantically and discuss their respective connections; in
particular, we establish two equivalence results between the (indexed) epsilon
calculus and the proposed ρ-term approach to Russell’s indefinites.
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1 Introduction
In linguistics and philosophy of language, one generally distinguishes between two
ways to logically represent indefinite descriptions of the form

An A is a B.

The first approach goes back to Russell and views the expression “an A” as non-
referential. Indefinites of this form are taken to function semantically like existential
quantifiers (or variables bound by an existential quantifier). According to this quan-
tificational account, the logical form of the above sentence is best captured by the
following existentially quantified statement:

∃x(A(x) ∧B(x))

The second approach has roots in work by Hilbert and has recently been further
developed by von Heusinger and Egli.1 This is to view the expression “an A” as a
constant term that denotes a particular object. Specifically, an indefinite phrase so
understood can be presented logically by an epsilon term εxA(x). Informally speak-
ing, this term picks out an arbitrary object that satisfies formula A if such an object
exists. Accordingly, the indefinite description stated above is presented logically not
in terms of a quantified statement, but in terms of the following statement:2

B(εxA(x))

These two logical reconstructions of indefinite descriptions seem to be based on
two different ways to understand indefinites. Let us dub them Russell and Hilbert
indefinites. The central conceptual difference between them is usually taken to
be the fact that unlike Hilbert’s indefinites, Russell indefinites are not referring
expressions or terms with a fixed reference. Nevertheless, as we want to show in this
paper, there exists a natural way to represent Russell’s ambiguous descriptions in
terms of a logical language with a term-forming operator. Thus, in analogy to the
representation of free choice indefinites in an epsilon-term logic, we will outline here
a operator-based logic for the expression of Russel indefinites.

The central aim in this paper is to compare the representation of indefinites
in term of epsilon logic with a Russellian approach to indefinite descriptions in
terms of a logic based on a ρ-operator. As we will show, there is a number of dis-
similarities between the two accounts. Specifically, it can be shown that Russell’s
ambiguous descriptions—expressed in terms of a logical ρ-operator—are not directly

1See, in particular, [16] and [15]
2See [16] for a detailed discussion of both approaches and for further references.
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representable in terms of their corresponding ε-terms. Nevertheless, there are two
possible translations of Russell indefinites into epsilon logic. The first one is based
on an embedding of a language with ρ-terms into a classical language with ε-terms.
The second translation is based on a refined account of epsilon terms, namely in-
dexed ε-terms first introduced by von Heusinger.3 In what follows we briefly outline
these approaches to represent indefinites both syntactically and semantically and
discuss their respective connections; in particular, we establish two equivalence re-
sults between the classical and indexed epsilon calculus on the one hand and the
ρ-term approach to Russell’s account of indefinite descriptions on the other hand.

The paper is organized as follows: Section 2 will introduce the extensional epsilon
calculus EC as well as a suitable choice semantics for (closed) epsilon terms. Section
3 will then present a logic for ρ-terms based on Russell’s remarks on indefinite
descriptions. Section 4 will then give a closer comparison between the two logical
representations of ambiguous descriptions. Specifically, we present a translation of
the ρ-term presentation of “An A is a B” in classical epsilon logic (4.1) as well as
in a language of indexed epsilon terms (4.2). Finally, section 5 will contain some
concluding remarks and suggestions for future research.

2 Hilbert’s ε-terms
A natural logical representation of indefinites (or indefinite descriptions) can be
given in terms of epsilon terms, that is, terms formed with the help of an epsilon
operator.4 As understood by Hilbert, the ε-operator functions as a logical term-
forming operator: given a first-order formula A(x) with variable x occurring free
in it, εxA(x) is a closed term in which all occurrences of x are bound. Informally
speaking, this term refers to an arbitrary object satisfying the formula A if there
exists such an object.5

Different epsilon calculi have been proposed in the literature since Hilbert to
describe the logical behaviour of such terms. The extensional EC usually consists
of two axiom schemes (in addition to the standard axioms and deduction rules of

3See, in particular, [16] and [9].
4Epsilon terms were originally introduced in Hilbert’s proof-theoretic work on the foundations

of mathematics in the 1920s. See, in particular, [14] and [17] for detailed historical discussions of
the development of the epsilon calculus as well as of Hilbert’s epsilon substitution method in his
syntactic consistency proofs. Compare also [1] for a first systematic study of the epsilon calculus.

5The following discussion of epsilon logic follows closely the presentation given in [18]. See also
[13] for a similar discussion of epsilon terms and their choice semantics.
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first-order logic), namely

A(t)→ A(εxA(x)) (Critical formulas)
∀x(A(x)↔ B(x))→ εxA(x) = εxB(x) (Extensionality)

The second axiom expresses an extensionality principle for epsilon logic: if two
formulas are equivalent, then their respective ε-representatives are identical.6

Hilbert’s original motivation for the introduction of a calculus for epsilon terms
was to show that one can explicitly define the first-order quantifiers in terms of
epsilon terms in the following way:

∃xA(x) :↔ A(εxA(x)) (Def∃)
∀xA(x) :↔ A(εx¬A(x)) (Def∀)

It is a well known fact that first-order predicate logic is embeddable in EC. This
is based on a translation function (.)ε that maps expressions of the a first-order
language L to expressions of the language with epsilon-terms Lε (see [10]):

1. eε = e, for e a variable or constant symbol

2. P (t1, . . . , tn)ε = P (tε1, . . . , tεn)

3. f(t1, . . . , tn)ε = f(tε1, . . . , tεn)

4. (¬A)ε = ¬Aε

5. (A ∧B)ε = Aε ∧Bε

6. (A ∨B)ε = Aε ∨Bε

7. (∃x(A(x)))ε = Aε(εxA(x)ε)

8. (∀x(A(x)))ε = Aε(εx¬A(x)ε)

As a consequence of this, any first-order formula can be represented as a quantifier-
free formula in Lε, a result which was of central importance in Hilbert’s proof theo-
retic work, in particular, in his two ε-theorems.7

6It should be noted here that the extensionality axiom was already mentioned in Hilbert’s work,
but not used in the proofs of his famous epsilon theorems. The axiom is discussed again in Asser’s
study of the epsilon calculus [2] as well as in [6]. See [18] and [8] for modern presentations of
intensional and extensional epsilon calculi.

7Compare again [17] and [10] for further details.
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Turning to the semantic interpretation of (extensional) EC, we saw that epsilon
terms of the form εxA(x) were understood by Hilbert and subsequent logicians to
function as referring indefinite expressions, i.e. as terms that pick out any object
which satisfies the formula A(x) under the condition that there are such objects.
Compare, for instance, Hilbert & Bernays’ informal description of the semantic
interpretation of such terms in the second volume of Grundlagen der Mathematik
(1939):

Syntactically, [the ε-symbol] provides a function of a variable predicate,
which–besides the argument to which the variable bound by the ε-symbol
refers–may contain free variables as arguments (“parameters”). The
value of this function for a given predicate A (for fixed values of the
parameters) is an object of the universe for which–according to the se-
mantical translation of the formula (ε0)–the predicate A holds, provided
that A holds for any object of the universe at all. [5, p.12]

A natural model-theoretic formalization of this understanding of epsilon terms
is given today in terms of a choice-functional semantics. A choice semantics for
the extensional EC can be characterized as follows:8 an interpretation M of the
language Lε has the form 〈D, I〉 with D a domain and I an interpretation function
for the signature of Lε. We further hold that s : V ar → D is an assignment function
on M. The ε-operator is interpreted by an extensional choice function of the form
δ : ℘(D)→ D such that, for any X ⊆ D:

δ(X) =
{
x ∈ X, if X 6= ∅;
x ∈ D otherwise.

Such a choice function assigns a “representative” object to any non-empty subset of
D. It gives an arbitrary object from domain D in case the set X is empty.

Based on this notion of extensional choice functions, one can give a choice-
functional semantics for EC. Valuation rules for terms of Lε not containing epsilon
terms are specified as for standard first-order logic. In addition, the semantic eval-
uation of ε-terms is specified relative to a structure M, assignment function s, and
a choice function δ on M based on the following valuation rule:9

valM,δ,s(εxA(x)) = δ({d ∈ D |M, s[x/d] |= A(x)}).
8Early formulations of a choice-functional semantics for the epsilon calculus were given in [2]

and in [6]. See also [8] and [18] for modern presentations of a choice semantics for extensional EC.
Both [6] and [18] contain a proof of the completeness of EC with respect to this semantics.

9The following rule applies only to closed epsilon terms. For a more comprehensive discussion
of the semantics of extensional and intensional epsilon logics, including valuation rules for open
epsilon terms see [8].
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The semantic value of a given term εxA(x) is thus the object that the choice function
δ picks out from the truth-set of formula A. If the set defined by A is empty, then
δ picks out any object in D otherwise. Based on this, the semantic notions of
satisfaction of formulas of Lε can then be specified in the usual way and in direct
analogy with first-order logic.

This choice-functional semantics for EC can be seen as a way to make precise
the particular indefinite character of epsilon terms. As is argued in [13], the reason
to view such terms as indefinites lies precisely in their semantic character, more
specifically, in the kind of “arbitrary reference” usually associated with such terms.
This mode of reference (typical also for instantial terms in logic and mathematical
reasoning) has recently been described by Magidor and Breckenridge in the following
way:

Arbitrary Reference (AR): It is possible to fix the reference of an ex-
pression arbitrarily. When we do so, the expression receives its ordinary
kind of semantic-value, though we do not and cannot know which value
in particular it receives. [3, p.378]

This kind of undetermined reference is also characterstic for Hilbert’s understanding
of epsilon terms as indefinite expressions. Thus, in Hilbert’s account of indefinite
phrases, indefiniteness is explained best in the sense that such phrases refer arbi-
trarily to objects. Moreover, one can view the valuation rule for ε-terms stated
above as a way to make precise this very notion of arbitrary reference. We can thus
paraphrase the epsilon-term representation B(εx(A(x)) of the indefinite description
stated in the introduction as “An arbitrary A is a B.” With this in mind, let us now
turn to Russell’s account of indefinite descriptions.

3 Russell ρ-terms

We want to motivate our presentation of Russell’s account of indefinite descriptions
with the following quote:

The definition is as follows: The statement that an object having the
property φ has the property ψ means: The joint assertion of φx and ψx
is not always false. So far as logic goes, this is the same proposition
as might be expressed by some φ′s are ψ′s; but rhetorically there is a
difference, because in the one case there is a suggestion of singularity,
and in the other case of plurality. [12, p.171]

338



Two Types of Indefinites

Given this quote, an ambiguous description in this sense is the occurrence of an
indefinite phrase “an A” in a context B, viz. “an A is a B”.10 As we saw in the
Introduction, the standard formalization of this in first-order logic is:

∃x(A(x) ∧B(x))

where both A and B are unary predicates or formulas.11 Russell’s indefinites can
alternatively be expressed in terms of a term-forming operator that is in several
ways similar to Hilbert’s ε-operator. For a given formula A with x occurring free in
it, let ρxA(x) be a term standing for “an x, such that x has A”. This ρ-operator can
then be defined in the following way (relative to some context):12

B(ρxA(x)) :↔ ∃x(A(x) ∧B(x)) (Def ρ)

In this paper, we assume that for Russell indefinite descriptions can function (at
least on the surface) as singular terms – as the following quote shows:

The identity in ‘Socrates is a man’ is identity between an object named
(accepting ‘Socrates’ as a name, subject to qualifications explained later)
and an object ambiguously described. [12, p.172]

Again, nowadays we are more inclined to view a sentence as ‘Socrates is a man’
as an atomic sentence in which ‘is a man’ is predicated from (a singular term)
‘Socrates’.

With respect to (Def ρ) Russell’s famous theory of definite description can be
seen as an extension of his account of indefinite descriptions by adding a unique-
ness condition to the existential condition already present in (Def ρ). A contextual
definition of an indefinite description can also be constructed from the definite de-
scription “the A is a B”, expressed by ∃x(A(x)∧∀y(A(y)→ x = y)∧B(x)), simply
by dropping the uniqueness clause.13

For reasons belonging to Russell’s particular approach to proper names, neither
definite nor indefinite descriptions belong to the class of proper singular terms.

10For a closer discussion of the relation between ambiguous and definite descriptions, see also
Russell’s classical paper [12].

11A problem with this existential reading of indefinite descriptions in the formalization of natural
language discourse is that A(x) and B(x) are treated symmetrically in ∃x(A(x) ∧ B(x)). In the
natural language sentence above, this is not necessarily the case. We would like to thank one of the
reviewers for bringing this point to our attention.

12It should noted here that this operator-based interpretation of indefinite descriptions was not
given by Russel himself, but has been developed by the second author of the present article.

13Compare Russell’s own presentation of his theory of descriptions in [11].
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Instead, his stance on both types of descriptions is that they are incomplete symbols,
i.e. that the meaning of the (in)definite description is constituted by some context.

In analogy to Russell’s considerations for definite descriptions ρ-terms are not
given a direct interpretation; rather these terms are interpreted in a contextual
way, or are defined contextually. If we follow Russell in his understanding of both
definite and indefinite descriptions, then there is no need of extending the semantical
framework of first order predicate logic since the semantical conditions for formulas
containing a ρ-term (or a definite description) can be directly read off the righthand
side of (Def ρ).

However, if we wish to to give ρ-terms special semantical considerations, we
outline an approach for doing so. This approach is presented rather informally here:
given a modelM, let A ⊆ dom(M) be the set of objects defined by formula A, and let
B ⊆ dom(M) be the set defined by formula B. Intuitively speaking, the operator ρ
picks out one element in A that is also in B (assuming that their intersection is non-
empty). The central conceptual idea underlying this Russellian account of indefinites
is a kind of semantic context dependency, that is the fact that the specification of
an A-representative picked out by the operator depends on the particular sentential
context in which formula A occurs. In terms of the informal semantics underlying
the ρ-operator, this point is given by the constraint that the selection of a particular
ρ-representative of set A is specified only relative to a given ‘context’ set B in which
the ρ-representative also occurs. Thus, in a slogan, one can say that the reference
of a given term is a function of its particular sentential context. Clearly, this only
works if neither A nor B is empty. In the case that A is empty, one could think of a
solution familiar from the treatment of definite descriptions as done by Carnap. In
this case we would require a chosen object which is by fiat in the extension of every
predicate.

4 Russell and Hilbert indefinites
The relationship between Hilbert’s and Russell’s accounts of indefinite descriptions
can be studied in a precise way by comparing the two underlying logics and their
respective term-forming operators. In particular, it can be shown that the two logical
representations of “An A is a B” in terms of an epsilon and a rho operator do not
coincide.14 Thus, given two first-order formulas A,B, we can show that:

B(εxA(x)) = B(ρxA(x))
Proof sketch: To see that the left-to-right implication does not hold, consider a
model M where A = ∅ as well as a choice-function δ interpreting the ε-operator

14The following discussion follows closely the presentation of this result in [13].
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such that δ(A) ∈ B. Relative to M and δ, the antecedent will turn out true.
However, the consequent will be false given that A ∩ B = ∅. It follows from this
that ∃x(A(x) ∧ B(x)) is false and therefore also the right-hand side of the above
equivalence. In order to show the right-to-left direction to be non-valid, consider a
model where A ∩ B 6= ∅ and A 6⊆ B. Consider a choice function interpreting the
ε-operator such that δ(A) = x /∈ B. The right hand side formula will clearly be true
in this model. Nevertheless, the epsilon formula on the left-hand side will be false
relative to the particular choice function δ.15

This shows that Hilbert and Russell indefinites are not identical. The main
conceptual reason for this fact lies in their different semantic nature. As we saw,
Hilbert indefinites are characterized by a specific mode of reference, that is, by the
fact that the terms representing such indefinites refer arbitrarily to objects in the
domain. The indefinite nature of such terms is thus best explained in terms of their
arbitrary reference. By contrast, indefiniteness in Russell’s sense primarily means
non-uniqueness of reference (in opposition to his account of definite descriptions).
Moreover, another central semantic feature of ρ-terms is, as we saw, the fact that
their reference is not specified in isolation, but contextually, that is, relative to a
given sentential context. This semantic context dependency is clearly missing in the
choice semantic treatment of the extensional ε-logic presented in Section 2. As we
saw above, the semantic value of an epsilon term is specified in a model relative to a
specific choice function. Given such a choice-functional interpretation, the semantic
value of εxA(x) remains stable under changes of sentential contexts in which the
term might occur.

The question remains whether Russell’s and Hilbert’s accounts of indefinite de-
scriptions, if expressed by means of rho-terms and epsilon-terms respectively, are
inter-translatable. The answer to this is positive. In fact, we will present two differ-
ent ways in which Russell’s account of indefinite descriptions can be expressed in a
language containing an epsilon operator.

4.1 Russell indefinites in EC
The first way to translate the Russellian account of definition descriptions into ep-
silon logic is based on the classical language of epsilon terms outlined in section 2.
Recall that first-order predicate logic can be embedded into EC based on a trans-
lation function specified above. Given that RC is embeddable in predicate logic, it
follows that RC must also be interpretable in (classical) EC. In particular, we can
translate the ρ-term representation of the indefinite description “An A is a B” into

15Compare, again, [13] for a discussion of this result.
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a quantifier-free statement of Lε of the following from:

B(ρxA(x))↔ (∃x(A(x) ∧B(x)))ε

↔ A(εx(A(x) ∧B(x))︸ ︷︷ ︸
e1

) ∧B(εx(A(x) ∧B(x))︸ ︷︷ ︸
e1

)

Intuitively speaking, the context dependency of the Russell indefinite is reflected
here on the right-hand side by the epsilon term built from the conjunction of for-
mulas A(x) and B(x). One could say that context dependency of the semantic
interpretation of the ρ-term in the sentential context B(ρxA(x)) is internalized here
in a more complex ε-term. Notice, moreover, the defining formula on the right-hand
side contains two identical epsilon terms εx(A(x)∧ (B(x)).16 The fact that the term
occurs in both conjuncts on the right-hand side is central for the translation of Rus-
sell indefinite descriptions into EC. Put differently, it can easily be shown that the
weaker equivalence statement

B(ρxA(x))↔ B(εx(A(x) ∧B(x)))

is not generally true. To see this, consider a model in which A∩B = ∅ and a choice
function δ interpreting the ε-operator such that δ(A∩B) ∈ B. (The choice function
picks out an arbitrary member of the model domain here that happens to be in B.).
The right-hand side of the formula would then be true, but the left-hand side would
clearly be false (by definition of the ρ-operator). Counterexamples of this form are
explicitly ruled out in the above stronger equivalence statement by the fact that any
possible semantic value of the term εx(A(x)∧B(x)) is forced to be a member of both
A and B if the right-hand side of formula is to be true.

4.2 Russell indefinites in indexed EC
While the translation of Russell’s indefinite descriptions in the classical language of
extensional EC is somewhat cumbersome, it turns out that they can be formulated
in a natural extension of it, namely in a language of indexed epsilon terms. Indexed
epsilon terms have been subject to recent investigation, both in the logical and
semantic literature.17

Roughly, the language Lεi of an indexed epsilon-calculus (IEC) contains ε-
operators εix indexed by context variables i, j, . . . or context constants c, c′, . . . .

16Thus, for this simple example of indefinite descriptions we do not have to concern us here with
nested epsilon terms and the rank and degree of epsilon terms. See [10] for further details on this
topic.

17Such ε-terms were first discussed in work by Egli and von Heusinger (e.g. [4], [16]) and
subsequently (more systematically) by Mints & Sarenac in [9].

342



Two Types of Indefinites

If A(x) is a formula with a free variable x, and i a context variable, then εixA(x) is
a term of the language. The context variables occurring in such a term can also be
bound by existential and universal quantifiers and allow the formulation of sentences
such as ∃i∃jB(εixA(x), εjxA(x)).18 Intuitively speaking, the context-indices of an
epsilon-symbol represent different contexts (or situations) in which the ε-term may
occur. The epsilon operator thus picks out one particular A-representative relative
to a particular context i, and possibly a different object relative to another context
j. This context variability can be expressed semantically in terms of indexed choice
functions that are intended to represent such contexts.

The semantic interpretation of Lεi differs from that of Lε only in one point.19

In the case of classical epsilon terms, choice functions interpreting the ε-operator
are considered as external to a model. In the case of indexed epsilon terms, a
family of possible choice functions is incorporated in the model. A choice structure
interpreting Lεi is thus a triple M = 〈D, I,F〉 where D and I are interpreted as
before and F is a non-empty set of choice functions. As pointed out in [9], one can
understand the context variables of an ε-operator as ranging over this collection of
choice functions. An assignment function s on M then maps individual variables to
elements in the domain D and context variables to elements in F. A valuation rule
for indexed ε-terms can then be specified analogously to the above case:20

valM,s(εixA(x)) = s(i)({d ∈ D |M, s[x/d] |= A(x)}),

where s(i) ∈ F.
A number of axioms have been introduced in [9] to describe the logical behaviour

of indexed epsilon terms. These contain, in particular, the following variants of the
axioms of classical EC:

A(t)→ A(εaxA(x)), with a a context term. (Critical formulas)
∀x(A(x)↔ B(x))→ ∀i(εixA(x) = εixB(x)) (Extensionality)
ϕ[i/a]→ ∃iϕ, with a and i context terms. (EI for context variables)

The second axiom of extensionality states that equivalent formulas have the same
ε-representative in all possible contexts. The third axiom states that if a formula
contains an epsilon term with a context constant a, then a can be substituted by an

18Quantifiers can be defined in the language of indexed epsilon terms in a number of equivalent
ways. For instance, the existential quantifier can be specified by ∃xA(x) :↔ ∃iA(εixA(x)) or by
∃xA(x) :↔ ∀iA(εixA(x)). See [9, p.619].

19The following discussion is based on the presentation given in [9].
20See again [9] for a more detailed presentation.
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existentially bound context variable i.21

Russell’s indefinite descriptions turn out to be embeddable in the language of
IEC. In particular, it can be shown that the following equivalence holds:22

B(ρxA(x))↔ ∃x(A(x)) ∧ ∃iB(εixA(x))

The right hand side of the formula states that (i) set A is nonempty and (ii) there
exists at least one context in which the element picked out from A by the corre-
sponding choice function also lives in set B. This is precisely the claim also expressed
on the left hand side of the formula. Thus, both sides are true if and only if there
exists an element in the intersection of A and B. A proof of this theorem can be
given in a combined indexed epsilon and rho-calculus:

Proof sketch: Consider first the left-to-right direction: assume B(ρxA(x)). Then,
by definition (Def ρ), it follows that ∃x(A(x) ∧B(x)) and therefore also ∃xA(x). A
theorem in IEC is ∃x(A(x)∧B(x))→ ∃iB(εixA(x)) (see [9, p.622]) Together, these
results give us B(ρxA(x))→ ∃x(A(x)) ∧ ∃iB(εixA(x)).
The other direction follows directly from another theorem in IEC, namely ∃x(A(x))∧
∃iB(εix(A(x)))→ ∃x(A(x) ∧B(x)) and (Def ρ) (see again [9, p.622]).

This result shows that Russell’s account of indefinite descriptions (and the con-
textual principle of indefinites implicit in it) can also be represented in terms of
Hilbert’s epsilon terms if one allows the generalization of the language of EC to
include context indices. The main reason for this is that the extended language of
IEC allows one to capture also syntactically (that is, by means of context variables
and context quantifiers) the kind of semantic context sensitivity that is already ex-
pressible metatheoretically for standard EC in terms of the quantification over choice
functions.23

5 Conclusion
What did we achieve in this paper? We presented two accounts of indefinite descrip-
tions. The first one was based on Hilbert’s ε-terms, the second one was Russell’s

21Given this choice semantics, Mints & Sarenac also present a Henkin-style proof of the com-
pleteness of IEC. It should be noted here that Hans Leiß (LMU Munich) has recently argued in his
talk at EPSILON2015 in Montpellier that the completeness proof in [9] may contain a gap. He has
also suggested that a completeness theorem can be proven if context equality in IEC is dropped.
See [7] for further details.

22The stronger and, arguably, more intuitive equivalence B(ρxA(x)) ↔ ∃iB(εixA(x)) does not
hold. One can think of a model with A = ∅ and an assignment of choice function δ to variable i
such that δ(A) ∈ B. It follows that ∃iB(εixA(x)) is true and B(ρxA(x)) is false.

23This point has first been stressed by von Heusinger with respect to indefinite noun phrases. As
he puts it, IEC allows a “a uniform representation of indefinite [noun phrases] by means of indexed
epsilon terms” [16, 261].
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account of indefinite descriptions formulated here in terms of what we coined ρ-
terms. Both accounts can be seen as formal investigations of indefinites. There
are, however, significant differences between them. In the case of Hilbert’s epsilon
terms, the indeterminacy comes from the inherent understanding of ε-terms them-
selves; a fact that relates directly to the semantic conditions outlined in section 2.
In the semantic framework that we have outlined here (i.e. a semantics based on
choice functions), the reference of an ε-term is always ensured even if the predicate
on which the ε-term depends on is empty. We then related this choice-functional
treatment of epsilon logic to a notion from the philosophy of language, namely arib-
trary reference; we claimed that this type of undetermined reference to objects is
characteristic for Hilbert’s understanding of ε-terms as indefinite expressions.

The second approach described in the paper was in the spirit of Russell’s con-
ception of indefinite descriptions. The semantic indeterminacy of Russell indefinites
can be qualified in two ways: (a) as we have said in section 3, Russell’s account of
ambiguous descriptions can be seen as a restriction of his view of definite descrip-
tions (simply be dropping the uniqueness condition). Interesting here is the fact that
indeterminacy enters by its formal interpretation of formulas containing ρ-terms as
existentially quantified sentences. However, there is more, i.e. (b) there is also a
context dependency which is expressed by the fact that indefinite descriptions have
to occur in a certain context, otherwise they would be meaningless – we are follow-
ing here Russell’s doctrine of incomplete symbols. Semantically speaking, there is no
real need to extend the usual framework of first order predicate logic. Nonetheless,
we have discussed a possibly promising alternative semantical route briefly. A more
considerate model-theoretic study of ρ-terms will be subject to future research.

We have then addressed the question concerning interrelations between the two
approaches. As was pointed out, there is no direct connection between these two
calculi. If we, however, employ the (.)ε-translation (outlined in section 2) to the
righthand side of (Def. ρ) we have found that there is a connection of two formal
approaches after all. Another interconnection between Hilbert and Russell indef-
inites has been established by exploiting the fact that Russell’s indefinites always
rely on some (sentential) context. This was the main thought behind why we have
chosen to turn to an indexed ε-calculus for the representation of Russell’s ambiguous
descriptions. The indexed ε-calculus has the syntactical means to express both the
context dependency of Russell’s indefinites (by hand of an index) and furthermore
allows us to quantify over indices which is possible in Hilbert’s ε-calculus only on
the semantic side.

The present paper contains a philosophical outline of a rather formal investiga-
tion of Russell and Hilbert indefinites. A more rigorous presentation of the material
covered here will have to be given in a future paper.
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Abstract
G.E. Mints and D. Sarenac [1] (2003) provided a completeness theorem

for the “indexed” ε-calculus with respect to the class of “choice”-structures.
These are generalized second-order structures with a non-empty set of choice
functions. The language Lεi extends the first-order language L by quantification
over choice functions, an equality predicate =̇ for choice functions, and “indexed
ε”-terms εixα interpreted as the object chosen by choice function i from the set
of objects x satisfying α.

We point out a gap in the completeness proof of [1] that cannot be fixed:
with an equality predicate between choice functions, it is impossible to extend
every consistent set of formulas to a maximal consistent one. In particular,
the theory saying that a and b are different choice functions, but choose the
same object for each definable set, is consistent, but has no model of the kind
constructed in the completeness proof of Mints and Sarenac.

When the equality between choice functions is removed, a modification of
Mints/Sarenac’s construction indeed provides a model for each consistent set of
sentences. This works even if ε-terms εiα for contexts are admitted, provided
one adds weak extensionality axioms for this choice function ε for contexts.

However, the modified system seems less adequate for the applications to
the semantics of natural language, which gave rise to the introduction of the
indexed ε-calculus.

Keywords: Indexed epsilon calculus, completeness theorem, context equality

1 Introduction
U. Egli and K. von Heusinger [4, 3, 2] have introduced indexed ε-terms to inter-
pret definite and indefinite descriptions using choice-functions depending on a given
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context: the term εixα denotes the object satisfying α which is the most salient
(prominent) such with respect to context i. To model the dynamics of discourse,
they assume a salience hierarchy among discourse entities and express changes of
this hierarchy through updates of context-dependent choice functions. A choice
function is here the abstraction of a “context”; it orders each set N of objects and
thereby interprets noun phrases like “an N”, “another N”, “the third N” etc. in
a context-dependent way. The evaluation of an indefinite noun phrase “an N” in
context i leads to an updated context j that differs from i only in the ordering it
gives to N : the element chosen by i is now, in j, the first, most salient one of N .

G. Mints and D. Sarenac [1] propose a language Lε and a calculus Sεi, the
“indexed ε-calculus”, with context quantifiers ∃i,∀i ranging over a set of choice
functions for the universe. They give a completeness proof in Henkin-style with
respect to weak (functional) second-order structures.

We draw attention to the fact that in [1], on the one hand, contexts are con-
sidered to be indices of choice functions, but on the other hand, context terms are
interpreted as choice functions, not as indices of such, and the language Lε has an
equality predicate for context terms. A choice function for a set A of objects is a
function f : P(A)→ A that assigns an element f(X) ∈ X to each non-empty X ⊆ A
in its domain. The completeness proof of Mints and Sarenac extends a consistent
set Γ of Lε-sentences to a maximal consistent set ∆ in Lε+, the extension of Lε by
infinitely many Henkin-constants, and then builds a term model A from equivalence
classes of closed terms of Lε+. The set A of individuals of A consists of the equiv-
alence classes [t] := { s | t =̇ s ∈ ∆ } of object terms t, while its set F of functions
is a set of choice functions Φ[a] : P(A)→ A for A indexed by ∆-equivalence classes
[a] = { b | a =̇ b ∈ ∆ } of context terms a. By construction, two elements of F
are equal if and only if they assign the same elements to the same definable sets of
individuals.

Thus, according to the term model construction, not only does any consistent
set of Lε-sentences have a model, but it also has a model where different choice
functions differ on some definable set. But this cannot be true. Consider the set

Γ := {a 6=̇ b} ∪ { ∀~i∀~y(εaxα =̇ εbxα) | α(x, ~y,~i) an Lε-formula }.

Suppose Γ is consistent. Then the term model construction provides a model A
where the choice functions assigned to a and b are equal, since they agree on the
definable subsets; on the other hand, they must be different, since a 6=̇ b ∈ Γ. So Γ
must be inconsistent. Then there are finitely many formulas αk such that

`
∧

k

∀~y∀~i(εaxαk =̇ εbxαk)→ a =̇ b.
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By the equational axioms and proof rules of the calculus Sεi, this improves to an
equivalence. Hence, the equality of choice functions is definable, which is also un-
plausible. This raises some doubts on the completeness proof. Our goal is to clarify
the situation.

Omitting the motivating background of applications in linguistics, we present
syntax, semantics and proof system of the indexed ε-calculus in section 2 and sketch
the Mints/Sarenac completeness proof in section 3. We then explain in section 4
where their proof has a gap and provide a counterexample. Section 5 shows that,
with suitable modification, the completeness proof works if the equality between
context terms is dropped from the language. In the concluding section 6 we indicate
why the equality of context terms would, however, be essential for giving a first-order
version of the higher-order linguistic theories of dynamic interpretation of discourse
that motivated the introduction of the indexed ε-calculus.

2 The indexed ε-calculus
We present the indexed ε-calculus in a notation close to that of Mints/Sarenac [1].

2.1 Syntax and semantics of Lε
The language Lε has context terms a, object terms t, and formulas α as defined by
the grammar

a := i | c
t := x | d | f(t1, . . . , tn) | εaxα
α := ⊥ | t1 =̇ t2 | a1 =̇ a2 | P (t1, . . . , tn) | ¬α | (α1 → α2) | ∃iα

where x ranges over countably many object variables, i over countably many context
variables; c stands for context constants, d for object constants, f for functions
and P for predicates on objects. Object quantifiers are given as abbreviations:
∃xα := ∃iα[x/εixα] with fresh i. We omit the standard definitions of free variables
and substitutions [x/t] and [i/a] of free variables by terms; let it suffice to mention
that εixα binds x, but not i.

A choice function for a set A is a function f : P(A)→ A such that f(S) ∈ S for
every non-empty set S ⊆ A. By L we mean the sublanguage of Lε without context
terms (and hence without object terms of the form εaxα). A choice structure for Lε
is a two-sorted structure

A = (A,PA, . . . , fA, . . . , dA, . . . ;F, cA, . . .)
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where (A,PA, . . . , fA, . . . , dA, . . .) is an ordinary first-order structure for L and F is
a non-empty set of choice functions for A, with cA ∈ F for every context constant c.
Notice that A is a weak functional second order structure: F ⊆ P(A)→ A need not
be the full set of all choice functions for A, let alone all functions from P(A) to A.

An assignment s over A, s : Var → A, assigns to each object variable x an
element s(x) ∈ A and to every context variable i a choice function s(i) ∈ F. The
update of s at x by b ∈ A is written as s(x|b), similarly s(i|f) for f ∈ F. The value
s(a) ∈ F, s(t) ∈ A and s(α) ∈ {0, 1} of a context term a, an object term t and a
formula α is defined via

s(c) := cA,

s(d) := dA,

s(f(t1, . . . , tn)) := fA(s(t1), . . . , s(tn)),
s(εaxα) := s(a)({b ∈ A | s(x|b)(α) = 1}),

s(P (t1, . . . , tn)) :=
{

1, if (s(t1), . . . , s(tn)) ∈ PA,

0, else,
s(∃iα) := max{ s(i|f)(α) | f ∈ F },

etc. for the remaining clauses.
By simultaneous induction on the structure of contexts, terms and formulas, one

can show that the values do not depend on the assignment at variables which are
not free in the argument term or formula:

Lemma 2.1 (Coincidence). Let s1, s2 be assignments over A.

1. If s1 =free(a) s2, then s1(a) = s2(a).

2. If s1 =free(t) s2, then s(t1) = s2(t).

3. If s1 =free(α) s2, then s1(α) = s2(α).

From this, a further induction on the structure of terms and formulas provides the
substitution property, relating syntactic substitution with updates of the assignment:

Lemma 2.2 (Substitution). For object terms t, u, context terms a, b, formulas α,
and assignments s : Var→ A,

s(a[i/b]) = s(i|s(b))(a)
s(t[x/u]) = s(x|s(u))(t) s(t[i/b]) = s(i|s(b))(t)
s(α[x/u]) = s(x|s(u))(α) s(α[i/b]) = s(i|s(b))(α).
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2.2 Deductive system Sεi

We restrict ourselves to the simpler system Sεi of [1] and ignore the extension Sεfini
with axioms asserting the existence of choice functions with defined values on finitely
many definable sets.

Axioms: 1. All substitution instances of propositional tautologies.
2. Equality axioms:

for object terms t, s, context terms a, b and atomic formulas α,

t =̇ t a =̇ a

t =̇ s→ (α[x/t]↔ α[x/s]) a =̇ b→ (α[i/a]↔ α[i/b])

3. Critical formulas: α[x/t]→ α[x/εaxα], if t is substitutable for x in α.
4. Extensionality axioms for choice functions:

∀x(α↔ β)→ ∀i(εixα =̇ εixβ).

5. Quantifier axioms for choice functions:

α[i/a]→ ∃iα

Rules:
α, (α→ β)

β
,

α[i/j]→ β

∃iα→ β
, j /∈ free(∃iα→ β).

In the extensionality axioms, it is tacitly assumed that i /∈ free(α↔ β), as otherwise
the axiom would amount to

∃i∀x(α↔ β)→ ∀i(εixα =̇ εixβ),

which is certainly too strong.
Mints and Sarenac claim the following soundness and completeness theorems:

Theorem 2.1 ([1], 5.1, 5.2). Sεi is sound: if ` α, then |= α. Sεi is complete: if
|= α, then ` α.

The proof given in [1] treats the more general case of T ` α and T |= α for
arbitrary sets T of formulas, showing that a consistent set Γ (= T ∪ {¬α}) of
formulas has a model A. In the following section, we sketch the completeness proof
and then point out where it has a gap.
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3 Sketch of the completeness proof for Sεi
The proof of theorem 2.1 in [1] is a modification of Henkin’s completeness proof for
first-order predicate logic as presented in [5]. It consist of an informal first step,
which extends a consistent set Γ of sentences to a maximal consistent set ∆ ⊇ Γ of
sentences with additional constants, and a more explict second step, which defines
a term model of ∆. The informal first step can be summarized as:

Lemma 3.1 (?). Every consistent set Γ of Lε-sentences can be extended to a maxi-
mal consistent set ∆ of Lε+-sentences, where Lε+ is the extension of Lε by infinitely
many new context constants.

The authors of [1] just say: “We extend Γ to a maximal consistent set ∆ con-
taining witnesses from a set C of new constants: for any context variable i, and any
formula α, there is a constant c ∈ C such that

(∃iα→ α[i/c]) ∈ ∆.”

Henkin constants for objects are not needed, as terms εcxα can be used instead.

Lemma 3.2 ([1], 5.1). ∆ is deductively closed, i.e. if ∆ ` α, then α ∈ ∆.

Then define the term model A for ∆ as follows: Let A and I be the set of
equivalence classes

[t] := {s | t =̇ s ∈ ∆} respectively [a] := {b | a =̇ b ∈ ∆}

of closed object resp. context terms of Lε+. Define an L-structure

(A,PA, . . . , fA, . . . , dA, . . .)

from ∆ as usual. Then fix a choice function f for A, define

Φ[a](S) :=
{

[εaxα], if S = {[t] | α[x/t] ∈ ∆} for some formula α(x),
f(S), otherwise,

and put A = (A,PA, . . . , fA, . . . , dA, . . . ;F, cA, . . .) using F := {Φ[a] | [a] ∈ I} and
cA := Φ[c].

The maximality of ∆ and the axioms on equality, extensionality and critical
formulas imply that A is well-defined and a choice structure for Lε. (Details are
given in the proof of the corresponding lemma 5.4 in section 5 below.)

The final step in the proof then is that by simultaneous induction on terms and
formulas (again, details are as for the corresponding lemma 5.5 below) one gets:
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Lemma 3.3. (cf.[1], 5.8) Let s be a variable assignment for A, such that s(xj) = [tj ]
and s(ik) = Φ[ak]. Then

1. s(b) = Φ[b[~i/~a]], for each context term b(~i).

2. s(u) = [u[~x/~t,~i/~a]], for each object term u(~x,~i).

3. s(α) = 1 if and only if α[~x/~t,~i/~a] ∈ ∆, for each formula α(~x,~i).

By the last clause, it follows that A is a model of ∆, hence of Γ.

4 Incompleteness of Sεi
Although the calculus Sεi is called the indexed ε-calculus, the choice structures A
do not come with a space I of indices as names of choice functions; rather, the
indices or context terms a are interpreted directly as choice functions for A. In the
constructed term model A, different indices [a] 6= [b] correspond to different choice
functions, because if [a] 6= [b], then a =̇ b /∈ ∆, hence a 6=̇ b ∈ ∆ since ∆ is maximal,
hence s(i 6=̇ j) = 1 for assignments s with s(i) = Φ[a], s(j) = Φ[b] by Lemma 3.3, 3.,
hence Φ[a] 6= Φ[b] (a case skipped over in [1]). It follows that

a =̇ b ∈ ∆ ⇐⇒ Φ[a] = Φ[b]. (1)

Moreover, two choice functions of F are equal if they agree on the definable subsets
of A, because on undefinable subsets they agree with the fixed choice function f .
Let DefA be the set of all object sets

{ d ∈ A | s(x|d)(α) = 1 }

which are definable by Lε-formulas α(x, ~y,~i), using parameters from A and F via
assignments s. By Lemma 3.3, 3. these are the sets

S = { [t] | α[x/t] ∈ ∆ } (2)

for Lε+-formulas α(x). Two functions Φ[a],Φ[b] agree on (2) iff εaxα =̇ εbxα ∈ ∆, so
that by (1),

a =̇ b ∈ ∆ ⇐⇒ { εaxα =̇ εbxα | α(x) an Lε+-formula } ⊆ ∆. (3)

The problem now is:

Problem 4.1. How is (3) achieved in the construction of ∆ from an initial consis-
tent set Γ? Is there really a proof of Lemma 3.1?
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The familiar construction for first-order logic builds an increasing chain Γ =:
∆0 ⊆ ∆1 ⊆ . . . of consistent sets ∆n ⊆ ∆n+1 whose union ∆ is maximal consistent.
Using an enumeration {ϕn | n ∈ N } of all formulas, with suitable repetitions, ∆n+1
is ∆n ∪ {ϕn} or ∆n ∪ {¬ϕn}, depending on whether the first is consistent or not.
But in the case of Lε+, this apparently does not work. Suppose ϕn is a =̇ b, and
∆n ∪ {a =̇ b} is inconsistent. Then ∆n ` a 6=̇ b. Therefore, ∆ ⊇ ∆n must contain
some formula εaxα 6=̇ εbxα. So why is there some formula α(x) ∈ Lε+ such that
∆n+1 := ∆n ∪ {εaxα 6=̇ εbxα} is consistent? ∆n need not already contain such an
inequation between ε-terms, as it might just contain the inequation a 6=̇ b.

Notice that in Sεi, equality for objects and equality for contexts have the same
properties, except for the additional extensionality axioms for choice functions. But
clearly, equality of choice functions f, g : P(A)→ A is a second-order notion:

f = g ⇐⇒ ∀B ∈ P(A)(f(A) = g(A)).

This makes it unplausible that Sεi can be complete, if =̇ is meant to be identity
of choice functions. Below we construct a counterexample against the completeness
part of theorem 2.1.

In section 5 we will check that a completeness theorem holds for an indexed
ε-calculus without =̇ for context terms. It seems plausible that one can have a
completeness result for an indexed ε-calculus with respect to generalized three-sorted
choice structures (A,D,F, . . .) where D ⊆ P(A), F ⊆ P(A) → A is a set of choice
functions for A, and equalitity =̇ on F is axiomatized by

i =̇ j ↔ ∀P (εixP (x) =̇ εjxP (x))

with set quantifiers ranging over D, comprehension axioms and ∃/∀-rules for set
quantifiers. In the term model construction, to satisfy a 6=̇b one would add a new set
constant D and force a and b to disagree on D, where D would turn out not to be a
definable set of objects of the term model. However, we havn’t checked the details.

4.1 Counterexample against the completeness of Sεi
As sketched in the introduction, the completeness theorem for Sεi is intuitively
challenged by the theory claiming the existence of two different choice functions
that yet agree on all definable sets. So, let

Γ(a, b) := {a 6=̇ b} ∪ { ∀~y∀~i(εaxα=̇εbxα) | α(x, ~y,~i) an Lε-formula },

where a and b are two context variables1 that are not used as bound variables below.
1We do not consider a, b new constants in order not to change L and the notion of Lε-definability.
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First note that the consistency of Γ(a, b) contradicts the model construction of
Mints/Sarenac. If Γ(a, b) is consistent, (by lemma 3.1) there is a maximal consistent
extension ∆ ⊇ Γ(a, b). In the completion process, universal quantifiers in Γ(a, b) are
instantiated by all possible parameters, so that

{ εaxα =̇ εbxα | α(x) an Lε+-formula } ⊆ ∆.

Hence, by (3), a =̇ b ∈ ∆, and by the term model construction, a and b get the same
interpretation, Φ[a] = Φ[b]. But then the term model satisfies a =̇ b, while a 6=̇ b ∈ ∆.

Lemma 4.1. Γ(a, b) is consistent.

Proof. Let A be a choice structure for Lε with a countably infinite set A of objects
and a countable set F of choice functions for A. Pick some f ∈ F and use it to
interpret a. If there is g ∈ F such that (A, f, g) is a model of Γ(a, b), we are done.

Otherwise, since DefA is countable, there is some set B ⊆ A such that B /∈ DefA.
Let g be a choice function for A that differs from f just on the set B. Let A′ be the
choice structure A with function space F′ := F ∪ {g} instead of F. If B /∈ DefA′ , we
can interpret b by g and have a model (A′, f, g) of Γ(a, b), since f(S) = g(S) for all
subsets of A except B, in particular, for all Lε-definable object sets S.2

To show B /∈ DefA′ , we now show DefA′ ⊆ DefA. In particular, B is not Lε-
definable with f and g as parameters. (The reverse inclusion DefA ⊆ DefA′ is clear:
in A′, the parameter g can be used to restrict quantification over F′ to quantification
over F.)

Claim: For any assignment s′ over A′ that maps a, b to f, g there is a translation
·s′ of Lε-terms and -formulas such that for all object terms t and formulas α:

s′(t) = s(ts
′
) and s′(α) = s(αs′), (4)

where s is the assignment over A such that

s(x) := s′(x) and s(j) :=
{
f, if s′(j) = g

s′(j) else

for object variables x and context variables j.
The translation ·s′ depends on s′ (but not on what s′ does on object variables),

since context variables mapped to g by s′ need a special treatment. The idea is
to replace equations between context terms involving value g to atomic formulas >

2But notice that since formulas may contain quantifiers ranging over F, the meaning of a defining
formula changes when F is extended. Likewise, A and A′ may not satisfy the same Lε-sentences.
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or ⊥, replace quantification over F′ to quantification over F and a special case for
witness g, and replace a choice with g from a definable set in A′ by a choice with f
from the set equivalently defined without referring to g.

For object terms t, the translation ts
′
is given by the clauses

• xs′ = x,

• ds
′

= d,

• h(t1, . . . , tn)s
′

= h(t1s
′
, . . . , tn

s′
),

• εixαs′ = εixα
s′ for context variables i,

• εcxαs′ = εcxα
s′ for context constants c.

For formulas α, the translation αs′ is given by the clauses

• t1=̇t2s
′

= t1
s′
=̇ t2

s′
,

• a1=̇a2
s′

=





a1=̇a2, if none of a1, a2 is a variable mapped to g by s′,

⊥, if exactly one of a1, a2 is a variable mapped to g by s′,

>, else.

• P (t1, . . . , tn)s
′

= P (t1s
′
, . . . , tn

s′
),

• (α1 ∨ α2)s
′

= (α1s
′ ∨ α2s

′),

• ¬αs′ = ¬αs′ ,

• ∃jαs
′

= (αs′(j|g)[j/a] ∨ ∃jαs′),

using the connective ∨ rather than → to make the result more readable.
It is routine to prove (4) by induction on the nesting depth of ε-operators in

terms and formulas. We only show the slightly subtle cases:

1. If t is εjxα and the claim is true for α and s′(x|d), then

s′(εjxα) = s′(j)({ d | s′(x|d)(α) = 1 })
= s′(j)({ d | s(x|d)(αs′(x|d)) = 1 })
= s′(j)({ d | s(x|d)(αs′) = 1 })
= s(j)({ d | s(x|d)(αs′) = 1 })
= s(εjxαs

′)
= s(εjxαs

′).
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For the middle step, notice that if s′(j) = g, then s(j) = f chooses the same
element from the set { d | s(x|d)(αs′) = 1 } ∈ DefA.

2. If α is a1=̇a2 and these are context variables with s′(a1) = g 6= s′(a2), then

s′(a1=̇a2) = 0 = s(⊥) = s(a1=̇a2
s′

),

and likewise in the other cases of context equations.

3. If α is ∃jβ and the claim is true for β and s′(j|g) resp. s′(j|h), then

s′(∃jβ) = 1 ⇐⇒ for some h ∈ F′ s′(j|h)(β) = 1
⇐⇒ s′(j|g)(β) = 1 or for some h ∈ F s′(j|h)(β) = 1
⇐⇒ s(j|f)(βs

′(j|g)) = 1 or for some h ∈ F s(j|h)(βs
′(j|h)) = 1

⇐⇒ s(j|f)(βs
′(j|g)) = 1 or for some h ∈ F s(j|h)(βs

′
) = 1

⇐⇒ s(j|f)(βs
′(j|g)) = 1 or s(∃jβs

′
) = 1

⇐⇒ s(βs
′(j|g)[j/a]) = 1 or s(∃jβs

′
) = 1

⇐⇒ s(βs
′(j|g)[j/a] ∨ ∃jβs

′
) = 1

⇐⇒ s(∃jβs
′
) = 1.

Notice that we may assume s′(j) ∈ F and hence βs
′(j|h) = β

s′
. Moreover,

β
s′(j|g) may have free occurrences of j as ε-index, but since s′(a) = f = s(a),

we have s(j|f)(βs
′(j|g)) = s(βs

′(j|g)[j/a]) by the substitution lemma 2.2.
It follows from (4) that if an object set is defined in A′ as B′ = { d | s′(x|d)(α) = 1 },
then it is defined in A as B′ = { d | s(x|d)(αs′) = 1 }. Hence, from B /∈ DefA we get
B /∈ DefA′ .

As remarked above, lemma 4.1 refutes the claim of Mints and Sarenac that every
consistent set of Lε-sentences could be extended to a maximal consistent set of Lε+-
sentences (lemma 3.1). Since Γ(a, b) is infinite, it does not immediatly refute the
completeness claim for single sentences, theorem 2.1.

5 Completeness of the indexed ε-calculus without equal-
ity for contexts

We now show that for a consistent set of sentences that don’t use the =̇-predicate
for context terms, a modification of the construction by Mints and Sarenac indeed
provides a term model.
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5.1 Syntax and semantics of L′
εi

The language L′
εi we use in the following differs from Mints/Sarenac’s language Lε in

that it doesn’t have equations a1 =̇ a2 between context terms among the formulas.
We define context terms a, object terms t, and formulas α by the grammar

a := i | c
t := x | d | h(t1, . . . , tn) | εixα
α := ⊥ | t1 =̇ t2 | P (t1, . . . , tn) | ¬α | (α1 → α2) | ∃iα,

where i ranges over an infinite set of context variables, x over an infinite set of object
variables. Abbreviation: ∃xα := α[x/εcxα] for some fixed context constant c.

The semantics for L′
εi is the same as for Lε, i.e. an L′

ε-structure

(A,PA, . . . , hA, . . . , dA, . . . ;F, cA, . . .)

is a first-order structure (A,PA, . . . , hA, . . . , dA, . . .) for L, extended by a nonempty
set F ⊆ P(A) → A of choice-functions for A and an interpretation of context con-
stants c by choice-functions cA ∈ F.

The coincidence and substitution lemmas hold as for Lε.

5.2 The indexed ε-calculus S ′
εi

without context equality
We use the same axioms and rules as Mints/Seranac, except that (a) equational
axioms and rules for equality between context terms are omitted and (b) the exten-
sionality axioms for choice functions are strengthened.

Axioms: 1. All substitution instances into propositional tautologies.
2. Equality axioms for object terms:

t =̇ t, t =̇ s→ (α[x/t]↔ α[x/s])

3. Critical formulas: α[x/t]→ α[x/εaxα]
4. Extensionality axioms for choice functions:

∀x(α↔ β)→ εaxα =̇ εaxβ

5. Quantifier axioms: α[i/a]→ ∃iα

Rules:
α, (α→ β)

β
,

α[i/j]→ β

∃iα→ β
, j /∈ free(∃iα→ β).
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In the above extensionality axioms, the context term a may occur in (α↔ β). These
axioms could equivalently be stated as

∀i(∀x(α↔ β)→ εixα =̇ εixβ)

where i may be free in α, β. They imply the extensionality axiom of Mints/Sarenac,

∀x(α↔ β)→ ∀i(εixα =̇ εixβ),

in which i /∈ free(α, β). In von Heusinger’s use of indexed ε-terms to interpret
definite noun phrases, the N in context i is expressed as εixN(x), while the other N
or the second N in context i is expressed by εiy(N(y)∧ y 6=̇ εixN(x)). Hence, as the
second N and the first N should be treated similarly, the extensionality of a choice
function must not be restricted to properties independent of the choice function.

5.3 Completeness theorem for S ′
εi

Without =̇ for context terms in the language, the analog of lemma 3.1 holds. Let C
be an infinite set of new context constants and L′

εi(C) the extension of L′
εi by C.

Lemma 5.1. Every consistent set Γ of L′
εi-sentences has a maximal consistent ex-

tension ∆ ⊇ Γ in the language L′
εi(C).

Proof. Since the problematic case where Γ contains an inequation between context
terms no longer occurs, the proof familiar from the standard case of L-sentences
works. Let {ϕn | n ∈ N } be an enumeration of all L′

εi(C)-sentences, repeating every
sentence infinitely often. Put ∆0 := Γ, ∆n+1 as follows, depending on ϕn:

• ϕn is of the form ⊥, t1 =̇ t2, P (t1, . . . , tk), ¬α or (α1 → α2):

∆n+1 :=
{

∆n ∪ {ϕn}, if this is consistent,
∆n ∪ {¬ϕn}, else.

• ϕn is ∃iα: choose c ∈ C not occurring in formulas of ∆′
n := ∆n ∪ {ϕn}; put

∆n+1 :=





∆n, if ∆′
n is inconsistent,

∆′
n, else, if α[i/a] ∈ ∆n for some closed term a,

∆′
n ∪ {α[i/c]}, else.

By induction, each ∆n and hence ∆ := ⋃{∆n | n ∈ N } is consistent. Since each
L′
εi(C)-sentence is considered infinitely often, ∆ is maximal consistent.
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Lemma 5.2. Every maximal consistent set ∆ of L′
εi(C)-sentences has a model A.

We first define A and show that it is a choice structure for ∆ in the subsequent
lemmas.

Define the relations s =∆ t between closed object terms s, t and a ≈∆ b between
closed context terms a, b of L′

εi(C) by

s =∆ t :⇐⇒ s =̇ t ∈ ∆,
a ≈∆ b :⇐⇒ { εaxβ =̇ εbxβ | β(x) an L′

εi(C)-formula } ⊆ ∆.

By the equational axioms and the fact that ∆ is deductively closed, =∆ is a congru-
ence relation on the closed object terms, and ≈∆ is an equivalence relation on the
closed context terms.

Lemma 5.3. If a ≈∆ b, then

1. t[i/a] =̇ t[i/b] ∈ ∆, for each object term t(i), and

2. α[i/a] ∈ ∆ iff α[i/b] ∈ ∆, for each formula α(i) of L′
εi(C).

Proof. By simultaneous induction over terms and formulas. Consider 1. for the term
εixβ. We have ∀x(β[i/a]↔ β[i/b]) ∈ ∆, for otherwise, since ∆ is maximal consistent,
∃x¬(β[i/a]↔ β[i/b]) ∈ ∆, and then there is a closed term t such that β[i/a][x/t] ∈ ∆
iff β[i/b][x/t] /∈ ∆, contradicting the induction hypothesis for the formula β[x/t].
Since ∆ is closed under the extensionality axioms, εaxβ[i/a] =̇ εaxβ[i/b] ∈ ∆, and
because a ≈∆ b, we have εaxβ[i/b] =̇ εbxβ[i/b] ∈ ∆. Since ∆ is closed under the
equality axioms, it follows that (εixβ)[i/a] =̇ (εixβ)[i/b] ∈ ∆.

To show 2. for atomic formulas, use 1. and the equality axioms.

Let [t] be the =∆-congruence class of t and [a] be the ≈∆-equivalence class of a.
Define a model A for ∆ as follows. The universe A of objects of A is

A := { [t] | t a closed object term }.

The object constants d, function symbols h and relation symbols P of L are inter-
preted, as usual, by

dA := [d],
hA([t1], . . . , [tn]) := [h(t1, . . . , tn)],

PA([t1], . . . , [tn]) :=
{

1, if P (t1, . . . , tn) ∈ ∆,
0, else.
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Since ∆ is maximal consistent and deductively closed, (A,PA, . . . , hA, . . . , dA, . . .)
is a well-defined first-order structure for L.

To add a universe F of choice functions for A, let

I := { [a] | a a closed context term }

be the set of ≈∆-equivalence classes of closed context terms and f : P(A)→ A be a
fixed choice function for A. For [a] ∈ I, put

Φ[a](S) :=
{

[εaxα], if S = {[t] | α[x/t] ∈ ∆} for some formula α(x),
f(S), otherwise.

Then take
F := {Φ[a] | [a] ∈ I }, cA := Φ[c],

and put
A := (A,PA, . . . , hA, . . . , dA, . . . ;F, cA, . . .).

Lemma 5.4. A is a well-defined L′
εi-structure. In particular,

1. Φ[a](S) does not dependent on the representative of [a] or the defining formula
of S,

2. Φ[a] is a choice function for A.

Proof. 1. Suppose a ≈∆ b, and Sα = Sβ for Sα := { [t] | α[x/t] ∈ ∆ }, Sβ := { [t] |
β[x/t] ∈ ∆ }. Then ∀x(α ↔ β) ∈ ∆, because otherwise, since ∆ is maximal
consistent, ¬∀x(α ↔ β) ∈ ∆, hence ∃x¬(α ↔ β) ∈ ∆, hence for some t,
{¬α[x/t], β[x/t]} ⊆ ∆ or {α[x/t],¬β[x/t]} ⊆ ∆, which contradicts Sα = Sβ.
By the extensionality axiom (in its strong form above), it follows that

{εaxα =̇ εaxβ, εbxα =̇ εbxβ} ⊆ ∆.

From a ≈∆ b, we know εaxβ =̇ εbxβ ∈ ∆. With the equality axioms for ob-
ject terms and as ∆ is deductively closed, we get εaxα =̇ εbxβ ∈ ∆, hence
Φ[a](Sα) = [εaxα] = [εbxβ] = Φ[b](Sβ). If S ⊆ A is not definable, then
Φ[a](S) = f(S) = Φ[b](S). So Φ[a] = Φ[b] is a well-defined function on P(A).

2. If ∅ 6= S is undefinable, then Φ[a](S) = f(S) ∈ S. If ∅ 6= S = { [t] | α[x/t] ∈
∆ }, there is a term t with α[x/t] ∈ ∆. By the axiom of critical formulas,
α[x/εaxα] ∈ ∆, hence Φ[a](S) = [εaxα] ∈ S. So Φ[a] is a choice function for A.

Hence, the term model A of ∆ is a well-defined choice structure.
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It remains to be seen that A is a model of ∆, hence of Γ.

Lemma 5.5. Let s be an assignment over A such that s(xj) = [tj ] for j < |~x| and
s(ik) = Φ[ak] for k < |~i|. Then

1. s(b) = Φ[b[~i/~a]] for each context term b(~i).

2. s(u) = [u[~x/~t,~i/~a]], for each object term u(~x,~i),

3. s(α) = 1 if and only if α[~x/~t,~i/~a] ∈ ∆, for each formula α(~x,~i).

Proof. By induction on the complexity of terms and formulas, 1.-3. are shown
simultaneously, for all assignments over A.

1. s(ik) = Φ[ak] = Φ[ik[~i/~a]], and s(c) = cA = Φ[c] = Φ[c[~i/~a]].

2. We only consider the most interesting case:

s(εaxα) = s(a)({ [t] | s(x|[t])(α) = 1 })
= Φ[a[~i/~a]]({ [t] | α[~x/~t,~i/~a, x/t] ∈ ∆ }) (1. for s, 3. for s(x|[t]))
= Φ[a[~i/~a]]({ [t] | α[~x/~t,~i/~a][x/t] ∈ ∆ }) (since ~t,~a are closed)
= [εa[~i/~a]xα[~x/~t,~i/~a]]
= [(εaxα)[~x/~t,~i/~a]].

3. If α is an equation t=̇u, then

s(t=̇u) = 1 ⇐⇒ s(t) = s(u)
⇐⇒ [t[~x/~t,~i/~a]] = [u[~x/~t,~i/~a]] (by 2. for t, u and s)
⇐⇒ t[~x/~t,~i/~a]=̇u[~x/~t,~i/~a] ∈ ∆
⇐⇒ (t=̇u)[~x/~t,~i/~a] ∈ ∆.

Similarly, if α is an atomic formula P (u1, . . . , un). By induction, the claim
holds for the negation and implication of formulas. Finally, if α is an existential
formula, ∃iβ, we have

s(∃iβ) = 1 ⇐⇒ for some f ∈ F, s(i|f)(β) = 1
⇐⇒ for some [a] ∈ I, s(i|Φ[a])(β) = 1
⇐⇒ for some [a] ∈ I, β[~x/~t,~i/~a, i/a] ∈ ∆ (3. for β, s(i|Φ[a]))
⇐⇒ for some [a] ∈ I, β[~x/~t,~i/~a][i/a] ∈ ∆
⇐⇒ (∃i.β[~x/~t,~i/~a]) ∈ ∆ (by quantifier and Henkin axioms)
⇐⇒ (∃iβ)[~x/~t,~i/~a] ∈ ∆.
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It follows that A is a model of ∆.

5.4 Adding a choice function ε for contexts
While definite and indefinite noun phrases are represented in predicate logic using
quantifiers over individuals, their representation by indexed ε-terms uses quantifiers
over contexts resp. choice functions. But Hilbert originally introduced ε-terms in
order to replace quantifiers altogether. Applying this to quantifiers over choice
functions, as discussed by von Heusinger [3], section 3.7, one is lead to ε-terms εiα
to choose a context i such that α. The introduction of Mints/Sarenac [1] suggests
the investigation of this extension.

We now sketch how to adapt the completeness theorem for L′
εi to obtain a com-

pleteness theorem for L′
εi + εi, the extension of L′

εi by ε-terms for contexts.
In syntax, we change the grammar for context terms to

a := i | c | εiα.

For the semantics, we use structures (A,PA, . . . ;F, cA, . . . ; εA) where (A,PA, . . .) is
a first-order L-structure, F ⊆ P(A)→ A a set of choice functions for A with cA ∈ F,
and εA : P(F)→ F a fixed choice function for F.

We add axioms for a weak form of extensionality for the context choice ε:

∀i(α↔ β)→ εεiαxϕ =̇ εεiβxϕ, if x /∈ free(α↔ β), i /∈ free(ϕ) (5)

Notice that these do not use a =̇-predicate for contexts.
Since there are no new formulas, the extension of a consistent set Γ of sentences

to a maximal consistent set ∆ does not need to be changed. In the term model
construction for ∆, we define a choice function Φε : P(F)→ F for F by

Φε(S) :=
{

Φ[εiα], if S = {Φ[a] | α[i/a] ∈ ∆, [a] ∈ I } for some formula α(i),
G(S), else.

This is well-defined, i.e. independent of the defining formula for S: if

Sα := {Φ[a] | α[i/a] ∈ ∆, [a] ∈ I } = {Φ[a] | β[i/a] ∈ ∆, [a] ∈ I } =: Sβ,

then ∀i(α↔ β) ∈ ∆: otherwise, ∃i¬(α↔ β) ∈ ∆, hence we have ¬(α↔ β)[i/a] ∈ ∆
for some context constant a, hence α[i/a] 6∈ ∆ iff β[i/a] ∈ ∆, which contradicts
Sα = Sβ. From ∀i(α↔ β) ∈ ∆ and weak extensionality (5) for ε, we get

{ εεiαxϕ =̇ εεiβxϕ | ϕ(x) an L′
εi(C)-formula } ⊆ ∆,
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i.e. εiα ≈∆ εiβ resp. [εiα] = [εiβ], hence Φ[εiα] = Φ[εiβ]. Therefore, Φε(S) = Φ[εiα] is
independent of the choice of the defining formula α(i) for S.

It follows that 1. of lemma 5.5 extends to such choice context-terms:

s(εiα) := Φε({ f | s(i|f)(α) = 1 })
= Φε({Φ[a] | [a] ∈ I, s(i|Φ[a])(α) = 1 })
= Φε({Φ[a] | [a] ∈ I, α[~x/~t,~i/~a, i/a] ∈ ∆ })
= Φε({Φ[a] | [a] ∈ I, α[~x/~t,~i/~a][i/a] ∈ ∆ })
= Φ[εiα[~x/~t,~i/~a]]
= Φ[(εiα)[~x/~t,~i/~a]].

We here need a somewhat stronger induction hypothesis than in the lemma, since
the context terms εiα may have free individual variables.

6 Conclusion
The intention of Mints and Sarenac was to provide “a managable version” of U. Egli’s
and K. von Heusinger’s higher-order theories of context change in dynamic interpre-
tation of texts. It seems that the gap in their completeness proof for Sεi is due to a
mere oversight, since true equality for choice functions is a second-order notion.

To model the dynamics of discourse, von Heusinger uses a second-order “salience
update operation ρ” where the choice function ρ(Φ, S) agrees with the choice function
Φ except on the set S. Thus, it seems useful to extend Lε by the restriction of (a
relational version of) ρ to definable sets, the update relation

i ≈x,α j :⇐⇒
∧

β

(¬∀x(α↔ β)→ εixβ =̇ εjxβ),

which says that i and j agree on all definable sets except {x | α }. But even the
simpler relation i ≈ j of equality of choice-functions on all definable sets appears
to go beyond first-order, and must not be mixed with true equality =̇ of functions,
as the calculus Sεi would have it. Though the completeness theorem works if =̇
for contexts is dropped from the language, as shown for S′

εi , it seems unplausible
that such a system really gives a basis for a “managable version” of von Heusinger’s
theory of dynamic interpretation of discourse, where ≈x,α resp. ≈ are essential.
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Abstract

The existence of determiners in Japanese, a language that does not possess explicit
determiners, has so far been argued mainly from a syntactic perspective. This study
presents a semantic account of the existence of determiners in Japanese. I propose that
Japanese NPs are the properties of type <e,t> in general, and that the null determiners
that correspond to epsilon, iota and tau operators accompany bare NPs and contribute
to indefiniteness, definiteness, and genericity, respectively.

Keywords: null, determiner, (in)definite, generic

1 Determiners in Japanese?

Unlike in Indo-European languages, explicit determiners, like a, an, the, and some in En-
glish do not exist in Japanese. Furthermore, neither plurality nor definiteness is marked
morphologically. Consider the example in (1).

(1) Otoko-no hito-ga haitte-ki-ta.
male-POSS person-NOM enter-come-PAST

“A man came in."

In order to emphasize singularity, a numeral hitori “1-person" should be added to the
noun otoko “man," as in (2).

(2) 1-ri-no otoko-no hito-ga haitte-ki-ta.
1-CL-POSS male-POSS person-NOM enter-come-PAST

“One man entered."

I would like to thank the reviewers and the audience at Epsilon 2015 for useful suggestions.

Vol. 4 No. 2 2017
IFCoLog Journal of Logics and Their Applications



NISHIGUCHI

Although not equivalent to the, as a means to express definiteness, pronominal modifiers or
demonstratives, expressed by the so-series in Japanese, are added to serve deictic purposes,
as in (3).

A reminder on Japanese demonstratives

Demonstratives can be bound pronouns of focused noun phrases, such as only/also/even NP
as shown by the Weak Crossover Effect of focus particles [14] as in (3) and (4).

(3) So-ko-no jugyoin-ga supa-o uttae-ta.
that-place-POSS employee-NOM supermarket-ACC sue-PAST

“Their employee sued the supermarket."

(4) *So-ko-no
that-place-POSS

jugyoin-ga
employee-NOM

supa-{nomi/mo/sae}-o
supermarket-{only/also/even}-ACC

uttae-ta.
sue-PAST

“Their employee sued the supermarket."

Demonstratives can form donkey anaphora as in (5) whereas bare NPs do not, as in (6).

(5) a. Inui-o kat-teiru hito-wa soi-itsu-o nader-u.
dog-ACC keep-PROG person-TOP that-one-ACC pet-PRES

“Everyone who keeps a dog pets it."

b. Baiorini-o mot-teiru hito-wa soi-re-o migak-u.
violin-ACC keep-PROG person-TOP it-thing-ACC polish-PRES

“Everyone who has a violin polishes it."

(6) a. Inui-o kat-teiru hito-wa inu?i/j-o nader-u.
dog-ACC keep-PROG person-TOP do-ACC pet-PRES

“Everyone who keeps a dog pets it."

b. Baiorini-o mot-teiru hito-wa baiorin?i/j-o migak-u.
violin-ACC keep-PROG person-TOP violin-ACC polish-PRES

“Everyone who has a violin polishes it."

(7) So-no otoko-no hito-ga haitte-ki-ta.
that-POSS male-POSS person-NOM enter-come-PAST

“That/the man entered."
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The absence of explicit determiners has raised both syntactic and semantic questions.
In terms of syntactic theory, the DP (determiner phrase) Hypothesis has been advocated in
the works of [29] and [10], according to which every language has some or other form of D
[10], without exception. The DP Hypothesis [1] suggests that determiners are the head of
the DP, rather than of the noun phrase (NP).

(8)

DP

John’s D’

D

every

NP

N’

N

book

(9)

DP

D’

D

the

NP

N’

N

man
[10] assumes that D should play a role in Logical Form (LF), even though it is not pro-
nounced in languages without overt determiners.

On the other hand, from the semantic point of view, the application of Generalized
Quantifier theory [2] to a determiner-free language like Japanese has become an issue [31,

369



NISHIGUCHI

26]. In English, a determiner like a combines with the set expression man in (10) and
produces the quantifier a man.

(10) a. [[a man]] = λP.man’ ∩ P ̸= ∅

b. [[a]] = λP.λQ.P ∩ Q ̸= ∅

[15] pointed out that the GQ theory does not straightforwardly apply to
Japanese because Japanese NPs do not always correspond to quantifiers. Rather, predicates
such as adjectives constitute quantifiers in Japanese, as in (11).

(11) Tokyo-wa gakusei-ga oi
Tokyo-NOM student-NOM many
“There are many students in Tokyo."

[26] further argues that predicative adjectives are quantifiers in Japanese, and that the
generalized quantifier theory applies to Japanese language. According to his analysis, D(E),
oi “many" is a determiner in L(GQ)-language as in (12).

(12) (Tokyo-wa)(gakusei-ga)oi(E)

As the number of arguments of an adjectival quantifier is not limited to two, [24] pro-
posed polymorphic predicative quantifiers as in (13).

(13) [[many]]<etn,t> = λP1,P2, P3,...,Pn.|P1 ∩ P2 ∩ ,...,∩Pn| ≥ |Pn · c|

In section 2, I will consider bare NPs without determiners, and show that Japanese NPs
are inherently of the predicate type, in which a determiner type null operator is attached
to bare NPs. Section 3 will explain that the null determiners represent (in)definiteness or
genericity, and iota, epsilon, and tau operators correspond to these determiners.

2 Bare NPs with Null Operators

In this section, I consider the semantic types of bare nouns in Japanese. I suggest the
existence of null operators in determiner position that take bare NPs as arguments [22].
Common nouns in English can be viewed as a set of individuals whose semantic values
may be functions from individuals to truth-values, cf. [11]. [27] assigns bare plural NPs in
predicate positions type <e,t>.

(14) [[dog]] = λ x ∈ De.dog’(x)
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However, [6] assumes the Nominal Mapping Parameter across languages and claims
that bare/common nouns in Chinese-type languages without plural marking, are mass/kind-
denoting individuals of type<e>. [18] further points out that common nouns with the [+hu-
man] feature can be followed by a plural marker, e.g., gakusei-tachi “student-pl," therefore,
they can be interpreted as countable common nouns whose extensions are sets of atoms.
Without plural markers, they stay kind or mass of type <e>.

(15) a. [[hon“book”]] = x ∈ De: x ⊑ book’

(“α ⊑ β" means that α is a component or a member of β, and book’ is the plural
kind that comprises all of the atomic members of the book kind)

b. [[gakusei“student”]] = λx.student’(x)

Nevertheless, the plural marker tachi “PL" is attached not only to human denoting nouns
in Japanese. According to a corpus search1, animals such as raion “lion," pengin “penguin,"
neko “cat," inu “dog," uma “horse," dobutsu “animal," and kemono “beast" as well as kani
“crab," kin “germ," kusa “grass," and sakura “cherry blossom" can also take a plural marker.
Therefore, the [+human] feature is not sufficient to distinguish common nouns which can
be mapped to <e,t> type by means of the plural marker.

Hence, I rather interpret nouns in Japanese to be consistently either the set of individuals
or the function from an entity to truth-values. The lexical entry for the NP inu “dog" in
sentence (16) is given in (17a).

The example in (16) is one with the stage-level predicate oyogu ‘swim’:

(16) Inu-ga oyogu.
dog(s)-NOM swim
“A dog swims / Dogs swim."

(17) a. [[inu“dog”]]= λx ∈ De.dog’(x)

b. [[oyogu“swim”]] = λx.swim’(x)

In order to avoid type-mismatch between the subject DP inu “dog" and the predicate
oyogu “swim," the DP should be either <e> or <et,t>, as the predicate oyogu “swim" is
a one-place holder or a property of type <e,t>, as in (17). Ascribing the noun inu as type
<e,t> then necessitates the phonetically empty (/ϵ/) D of type <et,e> or <et,<et,t>>
given in (18), which combines with the NP and returns the individual or the set of properties.

1Chunagon, BCCWJ-NT, search result of “common noun + tachi"

371



NISHIGUCHI

(18) a. [[D/ϵ/]] = λf ∈D<e,t>. [λg ∈D<e,t>. there is some x ∈De such that f(x)= g(x)=1]

b. [[D/ϵ/_inu“dog”]] = [λg ∈ D<e,t> . there is some x ∈De such that f(x)=
dog’(x)=1]

It is comparable with the analysis of bare singular nouns in Brazilian Portuguese in
[30]. Even though Brazilian Portuguese allows overt determiners, bare singulars appear
in argument positions. Therefore, bare singular nouns are claimed to be DPs with empty
determiners and no number.2

3 Epsilon, Iota, and Tau Operators

3.1 (In)definiteness and Genericity

With regard to the compositional calculation of meaning, I assume that the ϵ (epsilon), ι
(iota), and τ (tau) operators lower the types of common nouns into type <e>. The use of
the ϵ operator follows its use for Japanese nouns in [4, 23, 25].

Even without the overt determiner, bare NPs in Japanese show indefiniteness, definite-
ness, or genericity. Inu “dog" in (19a) signifies a specific and familiar dog to discourse
participants, so that the definiteness can be translated using the iota operator [28]. In con-
trast, the dog in (19b) is indefinite, unspecific and discourse new. (19c) is a statement about
dogs as a kind or species in general. Generic statements are only expressed by the sentences
with the topic marker -wa [19]. In view of the genericity, we will use the τ operator that
corresponds to D. (19d) is another generic statement about department stores as a kind.

(19) a. Inu-ga pakutto ho-ni kamitsui-ta.
dog-NOM ONOMATOPEA cheek-GOAL bite-PAST

“The dog bit the cheek."

ιx.dog(x) ∧ bite(s)(x)
Attributed to C.W.Nicole, C.W.Nicole-no Kuromihe Nikki, Translated by Kazuyo
Takeuchi, Kodansha, Tokyo

b. Toku-de inu-ga hoe-ta.
far-LOC dog-NOM bark-PAST

“A dog barked afar."
ϵx.dog(x) ∧ bark-afar(x)
Attributed to Hiromi Kawakami, Kamisama, Chuokoronshinsha, Tokyo

2I thank an anonymous reviewer for drawing my attention to bare singulars in Brazilian Portuguese.
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c. Inu-wa hito-ni tsuki, neko-wa ie-ni tsuku.
dog-TOP people-DAT attach cat-TOP house-DAT attach
“Dogs are attached to people and cats to their house."

τx,y.dog(x) ∧ human(y) → attached-to(y)(x)

d. Depaato-wa saizu-ga hofu-desu.
department.store-TOP size-NOM rich-HON

“Department stores have wide range of (clothing) sizes."

τx.department.store(x) → have-various-sizes(x)

The ϵ and τ calculi were used in [12, 13]. The ϵ operator is the dual of the τ operator,
even though it has been noted that [3]’s τ in fact corresponds to ϵ.

As shown by [8], τ terms have universal force despite returning individuals of type
<e>. Both τ and ϵ terms substitute for the argument x of type <e>, as shown in (20).

(20) Characteristic axioms for ϵ and τ . Let ϕ ∈ Wff:

(ϵ) ∃x.ϕ⇒ ϕ [x/ϵx.ϕ]

(τ ) ϕ[x/τx.ϕ] ⇒ ∀x.ϕ

From a linguistic point of view, lowering the type of quantifying NPs to individuals of
type <e> by means of ι, ϵ, and τ calculi eases semantic calculation. The individuals of
type <e> also adequately represents kind-denoting bare NPs without determiners.

3.2 Possessive DPs with Multiple Operators and Existential Presupposition

Let us consider the representation of more complex DPs with another DP embedded. Multi-
ple Ds are present in a single possessive or genitive DP. For example, in boshi-no fujin “the
lady with a hat", there is no overt determiner that modifies either boshi “hat" or fujin “lady."
However, the context specifies that the lady with a hat is a definite description whereas hat
is indefinite. The use of the epsilon and iota operators in the places of the null determiners
eases calculation of the entire DP.

(21) a. boshi “hat": ϵx.hat’(x): some x satisfying hat’(x), if there is one

b. fujin “lady": ιy[lady’(y)]: the unique x satisfying lady’(x), if there is such a thing

c. no “POSS" : λX λY ιy[Y(y) ∧ R(ϵx.X)(y)]

d. boshi-no fujin “the lady with a hat": ιy[lady’(y) ∧ λe[manner(e) =
with’(ϵx.hat’)(y)]
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The use of the epsilon operator is plausible in (21) because boshi “hat" is not a definite
description—the existence of boshi “hat" is not presupposed. The existence of the hat is
canceled by the negation in (22), even though negation is known to be a presupposition hole
[16]. Therefore, there is no existential presupposition of the existence of the hat, and the
use of the epsilon operator is appropriate.

(22) a. Kono-heya-ni-wa boshi-no hito-wa i-nai.
this-room-LOC-TOP hat-POSS person-TOP exist-NEG

“There is no one with a hat in this room."

b. ¬∃x,y.person(x)∧R(x,y)∧hat(y)∧here(x)

The indefinite DP hon “book" is embedded under the question in (23a), and the reply in
(23b) suggests that the existence of the book is denied.

(23) a. Hon-o yomi-mashi-ta-ka?
book-ACC read-HON-Q

“Did you read a book?

b. Zenzen.
at all
“Not at all."

(24) provides the Combinatory Categorial Grammar notation for (23a) (Steedman
2000). The inference rule “Lex" derives lexical entries for each phrase. Hon “book" is
a NP whose semantic entry is the epsilon term. Hon-o “book-ACC" combines with the pred-
icate yomimashita “read" and then with the null subject, which is the hearer. The sentence
now combines with the question marker and receives the interrogative interpretation.
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Paying attention to the internal structure of the DP, the ι and ϵ operators reside in D and
provide definiteness for the DP hito “person" in (26) and indefiniteness for boshi “hat" in
(27). The entire DP is a definite description whose head noun is hito “person," as shown in
(28).

(25) boshi-no hito
hat-POSS person
“the hat person"

(26)

DP

D’

D

ι

NP

N’

N

hito “person"

(27)

DP

D’

D

ϵ

NP

N’

N

boshi “hat"
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(28)
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3.3 Tau-Operator for Genericity

As discussed in section 3.1, a generic statement is expressed without any determiner in
Japanese. The bare NP has a generic reading in (29), by which inu “dog" can refer to dogs
in general as a kind, and walking is the habitual property that predicates dog species. The
bare NP inu “dog" can also be a specific definite dog, which has the habit of walking [19].

(29) Inu-wa aruku.
dog-TOP walk
“Dogs (as a kind) walk (as a habit)/ The (specific) dog walks (as a habit)."

As used by [17, 21] and others, the generic operator Gen has been widely used in the lin-
guistics literature. Gen is a generic quantifier that unselectively quantifies over individuals
and events [9]. With the generic subject reading of (29), given in (30a), in general, if you
are a dog, you walk, or participate in the event of walking. Gen quantifies over individuals
and also events. In contrast, when the bare NP is definite, the specific dog has the generic
property of events of walking as in (30b). Generic operator over events is no different from
the adverb of quantification such as often, cf. [20].
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(30) a. Gen x,e[dog(x) & agent(e) = x → walk(e)]

b. Gen e[agent(e) = ιx.dog(x) → walk(e)]

In (30a), dogs are usually the agents of the habitual event of walking. This generic quan-
tifier is different from a universal quantifier in that exceptions are allowed: some dogs who
have had traffic accidents may not be able to walk, but this does not falsify the generic state-
ment [5]. Therefore, generic quantification does not correspond to universal quantification
in (33a) but to quantification by most as in (33b).

(31) #Ashi-o kossetsushita-inu-wa aruku.
leg-ACC break-dog-TOP walk
“Dogs with broken legs walk (in general)"

(32) All dogs bark and a dog wearing a muzzle is a dog. ⇒A dog wearing a muzzle barks.

(33) a. ∀x[dog’(x) → walk’(x)]

b. ∀x[x∈dog’∧ |x| ≥ 1/2|dog’| → bark’(x)]

In French, generic DPs may contain a definite or indefinite determiner.3 Similar to
generic statements in English and Japanese, the existence of exceptional non-studious stu-
dents does not falsify the sentence in (34). If the generic statement corresponds to the
universal quantifier, the statement should be truth-conditionally false.

(34) a. Les étudiants étudient.
the students study
“The students study."

b. L’étudient étudie.
the student study
“The student study."

c. Un étudiant étudie.
a student study
“A student studies."

d. Des étudiants étudient.
some students study
“Students study."

3I thank Christian Retore for drawing my attention to French generic NPs.
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Therefore, the exact representation of a generic statement should be that in (35) in line
with [7].

(35) ∀x.P(x) ∧ R(x) → Q(x)

There is a contextually supplied R that selects only the relevant majority of the set member
of P. Thus, exceptional members of P which are not Q do not falsify the statement.

Thus, my use of the tau operator in this paper corresponds to (35) in the exact sense.

4 Conclusion

A language without determiners express (in)definiteness and genericity with a null deter-
miner that corresponds to iota, epsilon, and tau operators. Even without overt determiners,
indefinite description is identified with the absence of existential presupposition. Noun
phrases in Japanese are uniformly regarded as the properties of type <e,t>.
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Abstract
We study doctrines with Hilbert’s ε-operator and their applications to two

examples of interest, with a particular focus on the one based on naive set the-
ory.

Keywords: Categorical logic, doctrines.

1 Introduction
In this paper we introduce the notion of doctrine with Hilbert’s ε-operator and we
study some properties of this class of doctrines, especially in connection with naive
set theory. Our aim is to give an introductory account to the theory of doctrines
with the ε-operator and at the same time to present some new results.

Section 2 is a brief introduction to the basic facts of the theory of doctrine, that does
not require any background in category theory. We discuss two archetypal exam-
ples: the first is the doctrine that arises from the contravariant powerset functor, the
other is the doctrine that arises from the Lindenbaum-Tarski algebra of any given
first order language. The material collected in section 2 is well known and expert
readers may skip directly to section 3.

Section 3 contains the definition of doctrine with the ε-operator, which is taken
from [3]. We show that the Lindenbaum-Tarski algebra of a first order language L
gives rise to a doctrine which has the ε-operator if and only if L is Hilbert’s epsilon
calculus. We show also that the contravariant powerset functor on the category of
sets is a doctrine which has the ε-operator, provided that we use the axiom of choice
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and the excluded middle at the meta-level.

It was Lawvere who first recognized that quantifiers are adjoints [2]. More specifi-
cally the existential quantifiers behave like left adjoints and the universal quantifiers
behave like right adjoints (to certain substitution functors whose description is left
implicit in this introduction). As in this paper we focus on Hilbert’s ε-operator
in the intuitionistic framework, we are particularly interested in existential quanti-
fiers. The notion of left adjoint alone is not enough to completely encompass the
notion of quantification. This can be resumed by the motto: quantifiers are ad-
joints, but adjoints are not quantifiers. In fact, in the general case, left adjoints, as
opposed to existential quantifiers, fail in validating two fundamental properties that
are known as the Beck-Chevalley condition and Frobenius reciprocity which are cru-
cial in describing the interplay between existential quantification and substitution
(the former) and between existential quantification and binary conjunctions (the lat-
ter). Left adjoints that validate both the Beck-Chevalley condition and Frobenius
reciprocity are the appropriate categorical tool to express the existential quantifica-
tion and in section 4 we prove that both the conditions are derivable in the presence
of the ε-operator.

In section 5 we present an application of the theory of doctrines with the ε-operator
to naive intuitionistic set theory. As the ε-operator is connected to the axiom of
choice, in view of the known result of Diaconescu [1], a care is required in order to
allow this form choice to hold without being classic. We achieve this by dropping the
powerset axiom. Under this restriction we show that the category of sets gives rise
to a doctrine with the ε-operator if and only if every function defined on a subset,
i.e. a function f :A −→ B, where A ⊆ X (for some set X), can be extended to a
function defined on the whole set, i.e. there is f :X −→ B which agrees with f on
A, i.e. the restriction of f to A is f .

2 Preliminaries

In this section we introduce the notion of doctrine. These are the main mathemat-
ical tool with which we will be concerned in this article. Before giving the formal
definition of doctrine, we look at to relevant and known situations and we will con-
tinuously refer at these throughout the whole paper. The first deals with sets in the
naive sense, while the second deals with first order languages.
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2.1 Powersets
Suppose A and B are sets. We use the standard notation

f :A −→ B

to denote that f is a function with domain A and codomain B. If there is a function
g:B −→ C then there is a third function from A to C, i.e. the composition of f and
g, that we denote by

gf :A −→ C

The composition is associative: (fg)k = f(gk). And identity arrows are neutral el-
ements: idBf = f and fidA = f . In other words, sets and functions form a category.

For every pair of sets A and B we denote by A × B their cartesian product and
by πA and πB the projections from A × B to each of the factors. In other words,
sets and functions form a category with binary products.

As usual we say that X is a subset of B if for every x ∈ X it is that x ∈ B
and we denote this by

X ↪→ B or equivalently X ⊆ B

Both arrows are called inclusion. Thus a subset is the domain of an inclusion. For
every set A we have an assignment

A 7→ P(A)

where we denote by P(A) the totality of inclusions with codomain A or, equivalently,
the totality of subsets of A. We are tempted to say that P(A) is the set of subsets
of A. For the moment, the fact that P(A) is a set or not is irrelevant and we will
freely call such a collection set. But a careful distinction will play a crucial role in
the last section.

For every function f :X −→ Y we have an assignment

f 7→ f−1:P(Y ) −→ P(X)

where for a subset U of Y it is

f−1(U) = {x ∈ X | f(x) ∈ U}
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The assignment f−1 is monotone, i.e. if U ⊆ V , then f−1(U) ⊆ f−1(V ).

For every projection, say πA:A × B −→ A (actually for every function, but this
generality is not required in this example), we have an assignment

ImπA :P(A×B) −→ P(A)

where for R ⊆ A×B it is

ImπA(R) = {a ∈ A | ∃b ∈ B (a, b) ∈ R}

The assignment ImπA is monotone, i.e. if R ⊆ S, then ImπA(R) ⊆ ImπA(S).

The functions π−1
A and ImπA , the so-called inverse image function and direct image

function, have the following property: for every S ∈ P(A) and every R ∈ P(A× B)
it holds

ImπA(R) ⊆ S if and only if R ⊆ π−1
A (S)

Using a more categorical language, we say that ImπA is left adjoint to π−1
A .

2.2 First order languages
We shall refer at doctrines with the ε-operator as epsilon doctrines or, more concisely,
ε-doctrines.

Suppose L is a first order language. Suppose also that V is a countable infinite
set of variables. We write ~x to abbreviate a finite list of distinct variables, i.e.

~x = (x1, x2, ..., xn)

We shall call ~x context. Suppose that for another context ~y = (y1, y2, ..., yk) there
are k terms

t1(~x)

t2(~x)
...

tk(~x)

we shall denote simultaneous substitution with an arrow

[~t/~y]: ~x −→ ~y
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If there is a second arrow [~q/~z]: ~y −→ ~z, where ~z = (z1, z2, ..., zh), then there is a
third arrow

~x
[q1[~t/~y]/z1,...,qh[~t/~y]/zh] // ~z

to which we refer as composition of substitutions. Composition is associative and
the identical substitution, i.e. the substitution of the form [~x/~x] is a neutral element.

It is worth to note that, according with our definitions and notation, an arrow
f : ~x −→ ~y exists if and only if there are k terms in the free variables ~x.

What we proved so far is that contexts are the objects of a category whose ar-
rows are given by terms substitutions.

For every pair of contexts ~x and ~y we write

~x× ~y

to denote a chosen list ~w of as many distinct variables as the sum of the number of
variables in ~x and of that in ~y, such as

(w1, w2, ..., wn, wn+1, ..., wn+k)

We denote by π~x: ~x× ~y −→ ~x the substitution of the variables in ~x with the first n
in ~w and and by π~y: ~x× ~y −→ ~y the substitution of the variables in ~y with the last
k variables in ~w, i.e.

πX = [w1/x1, w2/x2, ..., wn/xn]

πY = [wn+1/y1, wn+2/y2, ..., wn+k/yk]

We shall call these arrows projections. For every context ~z = (z1, z2, ..., zj), and
every pair of arrows [~t/~x]:~z −→ ~x and [~t′/~y]:~z −→ ~y, the arrow 〈[~t/~x], [~t′/~y]〉:~z −→ ~w
defined by the following simultaneous substitutions

[t1/w1, t2/w2, ..., tn/wn, t
′
1/wn+1, t

′
2/wn+2, ..., t

′
k/wn+k]

is the unique arrow such that

πX ◦ 〈[~t/~x], [~t′/~y]〉 = [~t/~x]

πY ◦ 〈[~t/~x], [~t′/~y]〉 = [~t′/~y]

In other words, the category of contexts and terms has binary products.
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The easiest case happens when variables in ~x and variables in ~y are distinct, then
we can put

~x× ~y = (x1, x2, ..., xn, y1, y2, ..., yk)

For every context ~x we have an assignment

~x 7→ LT (~x)

where LT (~x) is the Lindenbaum-Tarski order of well-formed formulas of L. I.e. an
element φ of LT (~x) is a well-formed formula of L with free variables in ~x and the
order is given by implication: φ is less than or equal to ψ if and only if φ ⇒ ψ is
derivable.

For every arrow [~t/~y]: ~x −→ ~y we have an assignment

(−)[~t/~y]:LT (~y) −→ LT (~x)

which maps a formula φ with free variables ~y into the formula φ[~t/~y] whose free
variables are in ~x. The assignment is monotone, i.e. for φ, ψ in LT (~x) if φ ⇒ ψ is
derivable, then φ[~t/~y]⇒ ψ[~t/~y] is derivable.

For every projection π~x: ~x× ~y −→ ~x we have an assignment

∃~y(−):LT (~x× ~y) −→ LT (~x)

which maps a formula φ with free variables in ~x×~y into the formula ∃y1,y2,..,ykφ with
free variables in ~x.

For every ρ in LT (~x× ~y) and every σ in LT (~x) it holds that

∃~yρ⇒ σ if and only if ρ⇒ σ[π~x]

Using a categorical language we can say that the existential quantification is left
adjoint to substitution along projections of contexts.

In any first order language the two following rules

ρ⇒ σ[π~x] ∃Lin∃~yρ⇒ σ

∃~yρ⇒ σ ∃Loutρ⇒ σ[π~x]

with the obvious constraint on free variables, are derivable. We can actually do one
step further.
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Proposition 2.1. (Lawvere) The rules ∃Lin and ∃Lout are derivable if and only if the
rules ∃I and ∃E are derivable.

Proof. This is in [2] and [4].

For uniformity sake, it will be convenient to deal with collections LT (~x) which
are posets rather then preorders. So we shall consider the poset reflection of the
preorders above. I.e. an element of LT (~x) is an equivalence class [φ] of well formed
formulas of L with no more free variables than those in ~x, where φ is equivalent to
ψ if and only if φ⇔ ψ is derivable.

The situations described in 2.1 and in 2.2 share many common features. They
both present a category and two assignments, one maps each object of the category
to a partially ordered set and the other maps (contravarianly) each arrow of the
category to a monotone function between partially ordered sets and this monotone
function has a left adjoint.

2.3 Doctrines

The similarities outlined at the end of the previous subsection suggest that both the
situations in 2.1 and in 2.2 should be special cases of a single abstract structure.
This is provided by the notion of doctrine.

Recall that a category C is a collection of objects and a collection of arrows between
objects, such that arrows compose associatively and for every object A there is an
arrow idA:A −→ A which is the neutral element of the composition.

For categories C and E a functor F : C −→ E is an assignment which maps ob-
jects and arrows of C into objects and arrows of E in such a way that composition
and identities are preserved, i.e. F (idA) = idF (A) and F (fg) = F (f)F (g).

We write G: Cop −→ E to denote an assignment which maps objects and arrows
of C into objects and arrows of E in such a way that identities are preserved and if
f :A −→ B in C then G(f):G(B) −→ G(A) in E and G(fg) = G(g)G(f). G is said
contravariant functor from C to E .

A category C has binary products if for every pair of objects A and B in C
there is a diagram

A A×BπAoo πB // B
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where πA and πB are called projections and such that for every object Z and every
pair of arrows f :Z −→ A and g:Z −→ B there is a unique function 〈f, g〉:Z −→
A×B with

πA〈f, g〉 = f

πB〈f, g〉 = g

If there are two arrows t:A −→ X and k:B −→ Y , we denote by t× k the induced
arrow

〈tπA, kπB〉 = t× k:A×B −→ X × Y
The category Sets whose objects are sets and whose arrows are functions is a cate-
gory with binary products. Where the product of the sets A and B is their cartesian
product.

If L is a first order language and V is an infinite countable set of variables, the
category CL whose objects are contexts and arrows are terms (as we have described
in 2.2) is a category with binary products.

We denote by Pos the category whose objects are partially ordered sets and ar-
rows are monotone functions.

Definition 2.2. A doctrine is a pair (C, P ) where C is a category with binary
products and P is a contravariant functor

P : Cop −→ Pos

such that for every projection πA:A×B −→ A in C the monotone function

P (f):P (A) −→ P (A×B)

has a left adjoint, i.e. a monotone function

ΣπA :P (A×B) −→ P (A)

such that for every s ∈ P (A) and every r ∈ P (A×B) it holds that

ΣπA(r) ≤ s if and only if r ≤ P (πA)(s)

Example 2.3. The situation described in subsection 2.1 gives rise to a doctrine
(Sets,P). For a set A the poset P(A) is the collection of subsets of A ordered by
inclusion. For a function f and and for a projection πA:A×B −→ A it is

P(f) = f−1 and ΣπA = ImπA
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Example 2.4. Suppose L is a first order language. Suppose that V is an infinite
countable set of variables. The situation described in subsection 2.2 gives rise to a
doctrine (CL, LTL). For an arrow [~t/~y] it is

LT ([~t/~y])(−) = (−)[~t/~y]

and for a projection π~x: ~x× ~y −→ ~x it is

Σπ~x = ∃~y (−)

In many applications of interest it is necessary to work with doctrines with a
richer structure with respect to the one introduced in definition 2.2. In this paper
we will mainly consider the following simple one.

Definition 2.5. A doctrine (C, P ) is said primary if for every A in C the poset
P (A) has a binary meet operation ∧ and for every arrow f :X −→ A and every α, β
in P (A) it is

P (f)(α ∧ β) = P (f)(α) ∧ P (f)(β)

In other words posets of the form P (A) are meet-semilattices and functions of the
form P (f) are homomorphisms of meet-semilattices.

Example 2.6. The doctrine (Sets,P) introduced in example 2.3 is clearly primary.
For every set A the intersection is a meet operation on the collection of its subsets
and intersection commutes with inverse images.

Example 2.7. The doctrine (CL, LTL) introduced in example 2.4 is primary as con-
junctions are known to be meets with respect to the order given by the implication.
Thus for two wellformed formulas φ and ψ with free variables in ~x define

[φ] ∧ [ψ] = [φ & ψ]

Conjunctions commute with substitution: (φ & ψ)[~t/~x]↔ (φ[~t/~x]) & (ψ[~t/~x])

From the example above we can draft the following correspondence: in a doctrine
(C, P ) we can think of

- objects of C as contexts

- arrows of C as terms

- elements in P (A) as formulas with free variables in the context A

- functions P (f) as substitutions of terms in formulas
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- left adjoints along projections as the existential quantifiers.

After proposition 2.1 it might appear obvious that left adjoints are all what we
need to express existential quantification in the framework of doctrines. This is not
completely true, for at least two reasons. These are the so called Beck-Chevalley
condition and Frobenius reciprocity.

The Beck-Chevalley condition
Consider the following fact. Suppose R(x, y) is a well formed formula and t a term
such that y is not among the free variables of t then the two assignments

R(x, y) 7→ R(x, y)[t/x] = R(t, y) 7→ ∃y R(t, y)

R(x, y) 7→ ∃y R(x, y) 7→ ∃y R(x, y)[t/x] = ∃y R(t, y)
end up to the same (and therefore equivalent) formulas.

In this respect, doctrines have the feature that for a commutative square of the
form

A× Y πA //

t×idY
��

A

t
��

X × Y πY
// X

the condition of left adjoint naturally brings to the standard inequality

P (t)ΣπA ≤ ΣπAP (idX × t)

which is not necessarily an equality. When in a doctrine the inequality above is an
equality, we say that left adjoints satisfy the Beck-Chevalley condition.

Frobenius Reciprocity
Consider the following fact. Suppose R(x, y) is a well formed formula in free variables
x and y. Suppose P (x) is a well formed formula in the free variable x. The following
is derivable

∃y (R(x, y) ∧ P (x))↔ ∃y (R(x, y)) ∧ P (x)
In this respect, doctrines have the feature that for every pair of objects X and Y of
C, for every r ∈ P (X × Y ) and every p ∈ P (X) the condition of left adjoint brings
to the following standard inequality

ΣπX (r ∧ P (πX)(p)) ≤ ΣπX (r) ∧ p
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which is not necessarily an equality.

When the inequality above is an equality we say that left adjoints satisfy the Frobe-
nius Reciprocity.

The validity of the Back-Chevalley condition and the validity of Frobenius reci-
procity are so important to motivate the following.

Definition 2.8. A primary doctrine where left adjoints of the form Σπ satisfy the
Beck-Chevalley condition and Frobenius reciprocity is said existential.

Example 2.9. It is clear from what we said above that the doctrine (CL, LTL) of
example 2.4 is existential.

Example 2.10. Is is an easy exercise to show that for every binary relation R ⊆
X × Y and for every subset P ⊆ X it is

ImπX (R ∩ π−1
X (P )) = ImπX (R) ∩ P

In other words the doctrine (Sets,P) is existential, as the Beck-Chevalley condition
trivially holds in this doctrine.

3 The Epsilon operator in doctrines
In this section we introduce doctrines with the ε-operator and we relate our def-
inition with doctrines in examples 2.3 and 2.4. In particular we show that for a
first order language L the doctrine (CL, LTL) has the ε-operator if and only if L
is Hilbert’s ε-calculus. Moreover we show that, using the axiom of choice and the
excluded middle, also the doctrine (Sets,P) has the ε-operator.

Following the correspondence that we traced in the previous section, i.e. if (C, P )
is a doctrine, we look at arrows of C as terms and at elements in the image of P as
formulas, then we expect that (C, P ) has the ε-operator if it has an operator that
associates to any formulas φ an arrow εφ of C, satisfying certain properties. In order
to have the doctrine described in 2.3 among our examples we need to avoid the
codomain of εφ to empty (unless also the domain is empty). Thus we want a notion
of emptyness for objects of categories. We adopt the following.

Empty object: an object 0 of a category C is said to be empty if and only if
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every arrow to 0 is an isomorphism. I.e. 0 in C is empty if and only if for every
arrow f :A −→ 0 there is an arrow g: 0 −→ A such that

fg = id0 and gf = idA

We have now all the ingredients to introduce the ε-operator in doctrines.

Definition 3.1. A doctrine (C, P ) has the ε-operator if for every pair of objects X
and Y of C and for every φ in P (X × Y ) if Y is not empty then there is an arrow
εφ:X −→ Y such that

ΣπX (φ) = P (〈idX , εφ〉)(φ)

We want now to comment on this definition of doctrine with ε-operator in relation
to the two examples introduced in the previous section.

First order languages
Suppose L is a first order language and V a countable set of variables. Consider
the doctrine (CL, LTL) introduced in example 2.4. First note that the category of
contexts CL has no empty objects, so the constraint on Y in definition 3.1 is vacuous
in this example.

We have that (CL, LTL) is an epsilon doctrine if and only if L is Hilbert’s epsilon
calculus. In fact suppose L is Hilbert’s ε-calculus and suppose that φ is in LT (~x×~y),
i.e. φ is a well-formed formula with free variables in ~x×~y = ~x× (y1, y2, ..., yk). Then
we have epsilon terms such that

φ1 ↔ ∃ykφ↔ φ[εyk,φ/yk]

φ2 ↔ ∃yk−1φ1 ↔ φ1[εyk−1,φ1/yk−1]
...

φk ↔ ∃y1φk−1 ↔ φk−1[εy1,φk−1/y1]

Therefore there is an arrow of CL

[εy1,φk−1/y1, εy2,φk−2/y2, ..., εyk,φ/y1]: ~x −→ ~y

which is the desired one.

Conversely if (CL, LTL) is a doctrine with the ε-operator and φ is a formula with
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free variables x1, ..., xn and y, then φ is a formula in LT ((x1, ..., xn)×(y)). Therefore
we have an arrow

εφ: (x1, ..., xn) −→ (y)

such that

∃y φ = Σπ(y)(φ)↔ LT (〈id~x, εφ〉)(φ) = φ[x1/x1, x2/x2, ..., εφ(x1, ..., xn)/y]

From which the claim.

Powersets
We now turn on our second example. The doctrine (Sets,P) introduced in example
2.3 is an ε-doctrine. Suppose φ ⊆ X×Y where Y is not empty. Let a be an element
of Y . Consider the function εφ:X −→ Y defined by the following assignment

εφ(x) =





y if {y ∈ Y | (x, y) ∈ φ} 6= ∅ and y is any of its elements

a otherwise
.

Then it is

〈idX , εφ〉−1φ = {x ∈ X | (x, εφ(x)) ∈ φ}
= {x ∈ X | ∃y ∈ Y (x, y) ∈ φ}
= ImπXφ

from which the claim.

Note that in building the function εφ we allow ourself to pick an element from each
set of a family of non-empty sets, namely those sets of the form {y ∈ Y | (x, y) ∈ φ}.
We also allow ourself to define functions by cases. In other words we used both the
axiom of choice and the law of excluded middle. We shall return on this point in
the last section.

4 Existential doctrines and the ε-operator
In section 2 we pointed out that the the condition of being left adjoints is not
enough to prove the validity of both the Beck-Chevalley condition and the Frobenius
reciprocity. In this section we show both this conditions become provable in doctrines
with the ε-operator.
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Lemma 4.1. Suppose (C, P ) is a doctrine with the ε-operator. For every projection
πX :X × Y −→ Y where Y is not an empty object, for every ψ ∈ P (X × Y ) and
every h:X −→ Y , it is

P (〈idX , h〉)(ψ) ≤ P (〈idX , εψ〉)(ψ)

Proof. Since ΣπX is left adjoint to P (πX) it is

ψ ≤ P (πX)ΣπX (ψ) = P (πX)P (〈idX , εψ〉)(ψ)

Apply P (〈idX , h〉) to both sides of the inequality to have

P (〈idX , h〉)(ψ) ≤ P (〈idX , h〉)P (πX)P (〈idX , εψ〉)(ψ)

In the right hand side we have P (〈idX , h〉)P (πX) = P (πX〈idX , h〉) = P (idX) from
which the claim.

For the rest of the section, unless specified otherwise, we shall consider only
doctrines (C, P ) in which the category C does not have an empty object. We will
turn on this latter case later.

Proposition 4.2. Every doctrine with the ε-operator validates the Beck-Chevalley
condition.

Proof. We need to prove that for every projection πX :X ×Y −→ X the left adjoint
ΣπX satisfying the Beck-Chevalley condition.

For every ψ in P (X × Y ) the ε-operator generates an arrow εψ:X −→ Y with

ΣπX (ψ) = P (〈idX , εψ〉)(ψ)

Consider an arrow t:A −→ X and the composition εψt:A −→ Y . By 4.1 it is

P (〈idA, εψt〉)P ((t× idY ))(ψ) ≤ P (〈idA, εP (t×idY )(ψ)〉)P (t× idY )(ψ)

since the following diagram

A
t //

〈t,εψt〉 ((
〈idA,εψt〉

��

X

〈idX ,εψ〉
��

A× Y
t×idY

// X × Y
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commutes, i.e. (t× idY )〈idA, εψt〉 = 〈t, εψt〉 = 〈idX , εψ〉t, the previous inequality can
be rewritten as

P (t)P (〈idX , εψ〉)(ψ) ≤ P (〈idA, εP (t×idY )(ψ)〉)P (t× idY )(ψ)

and therefore
P (t)ΣπX (ψ) ≤ ΣπAP (t× idY )(ψ)

which proves the claim, as the other inequality is standard.

Lemmas 4.1 and 4.2 have the following corollary, which is the main theorem of
the section.

Proposition 4.3. Every primary doctrine with the ε-operator is existential.

Proof. Suppose (C, P ) is such a doctrine. After 4.2 it remains to prove that (C, P )
satisfy Frobenius Reciprocity.

Consider a projection πX :X × Y −→ X. For φ in P (X × Y ) and β in P (X)
abbreviate by ξ the formula φ ∧ P (πX)(β). We have

ΣπX (φ ∧ P (πX)(β)) = P (〈idX , εξ〉)(φ ∧ P (πX)(β))

Moreover, recalling that P (〈idX , εφ〉)P (πX) = P (idX)

P (〈idX , εφ〉)(φ) ∧ β = P (〈idX , εφ〉)(φ) ∧ P (idX)(β)
= P (〈idX , εφ〉)(φ) ∧ P (〈idX , εφ〉)P (πX)(β)
= P (〈idX , εφ〉)(φ ∧ P (πX)(β))

Apply lemma 4.1 to get

P (〈idX , εφ〉)(φ) ∧ β ≤ P (〈idX , εξ〉)(φ ∧ P (πX)(β))

Hence
ΣπXφ ∧ β ≤ ΣπX (φ ∧ P (πX)(β))

from which the claim follows, as the other inequality is standard.

The previous theorem is general enough to cover the class of all doctrines (C, P )
without an empty object in C. We have already seen that the doctrine (CL, LTL),
built from a first order language L, is such. What happen if the doctrine (C, P ) is
such that C has an empty object? We may aspect that the previous theorem holds
provided that the empty object of C well interacts with the structure P . But which
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structure? To our knowledge, the structure of primary doctrine is not sufficient to
prove that all primary doctrines with the ε-operator are existential. To reach this
general theorem we work with a class of doctrines which has one more property.

We say that a doctrine (C, P ) has the false predicate if for every A in C the
poset P (A) has a bottom element ⊥A and for every f :X −→ A in C it is

P (f)(⊥A) = ⊥X

Example 4.4. The doctrine (Sets,P) introduced in example 2.3 has the false pred-
icate, since for every set A we have

⊥A = ∅ ⊆ A

and for every function f :X −→ A it is f−1(∅) = ∅.

Example 4.5. The doctrine (CL, LTL) introduced in example 2.4 has the false
predicate which is exactly the false predicate ⊥, which is preserved by substitution.

Suppose (C, P ) is a primary doctrine with the false predicate. An empty object
0 of C is said proper (with respect to P ) if

P (0) = {⊥0}

Example 4.6. The doctrine (Sets,P) has a proper empty object which is ∅. In fact
the unique subset of the empty set is the empty set itself, i,e,

P(∅) = {∅} = {⊥∅}

Example 4.7. The doctrine (CL, LTL) does not have a proper empty object as the
category CL does not have an empty object.

For every object X of C we have a projection π0:X × 0 −→ 0. Since 0 is an
empty object X × 0 is isomorphic to 0. We denote by !X the arrow

!X : 0 ' X × 0 −→ X

which is still a projection.

Suppose (C, P ) is a doctrine with a proper empty object 0. Since P (0) is a sin-
gleton, the assignment ⊥0 7→ ⊥X provides a left adjoint to P (!X).
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To prove the Beck-Chevalley condition, consider an arrow t:A −→ X and the fol-
lowing square

0
id0
��

!A // A

t
��

0
!X
// X

Hence
P (t)Σ!X (⊥0) = P (t)(⊥X) = ⊥A = Σ!A(⊥0) = P (id0)Σ!X (⊥0)

To prove Frobenius reciprocity consider φ in P (X)

Σ!X (⊥0 ∧ P (!X)(φ)) = Σ!X (⊥0) = ⊥X = ⊥X ∧ φ = Σ!X (⊥0) ∧ φ

We have proved the following.

Proposition 4.8. A primary doctrine (C, P ) with the false predicate, the ε-operator
and a proper empty object in C is existential.

5 Intuitionistic set theories (naively)
As an application of the theory that we have developed so far, we look at intuition-
istic theories of sets with choice. This sentence might appear an oxymoron after the
known result of Diaconescu [1], therefore we have to be very careful in formulating
the framework into which we aim to work. So far we have written Sets to denote
the category of sets for an unspecified underlying theory of sets. We want to remain
at this naive level and at the same time we want to avoid the Diaconescu’s argument
to be carried out. So let Sets(T ) be the category of sets with respect to the theory
T , where T has at least the following set of axioms which we formulate naively

(T1) two sets are equal whenever they have the same elements

(T2) the cartesian product of two sets is a set

(T3) for every set A and every first order property P the collection B = {a ∈ A | P}
is a set and x ∈ B if and only if P (x) holds

(T4) every surjection has a section.

We first note that we do not have a powerset axiom. In other words if A is a object
of Sets(T ), i.e. a set for the theory T , the collection of all the inclusions with
codomain A, i.e. P(A), is not a set for the theory T and therefore is not an object
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of Sets(T ). Note that Sets(T ) might be empty.

Of course we can still collect together all the subsets of a given set A. And we
can still denote this collection by P(A). But we can not say that P(A) is in Sets(T ),
it lives somewhere else. As we can still order P(A) by inclusion, we are allow to say
that P(A) still lives in Pos. Thus it is immediate to verify that the pair (Sets(T ),P)
is still a doctrine, simply following the arguments in example 2.3.

The theory T has all the properties that we are going to use in this section along
with the advantage that the theorem of Diaconescu is not provable.

Is (Sets(T ),P) a doctrine with the ε-operator? To answer to this question we need
to introduce the following fifth axiom.

(T5) for every set A, every subset X of A and every function f :X −→ B where B is
not empty, there is a function k:A −→ B which makes the following commute

X �
� //

f   

A

k
��
B

Note that using the law of excluded middle, T5 is derivable and therefore is valid in
Sets, since we can take as k the following function

k(a) =





f(a) if a ∈ X

b if a 6∈ X
.

where b is any element of B.

Proposition 5.1. The doctrine (Sets(T ),P) has the ε-operator if and only if T5
belongs to T .

Suppose that the doctrine (Sets(T ),P) has the ε-operator. Suppose we have
X ⊆ A and f :A −→ B where B is not empty. Consider the subset of A×B

γ = {(a, b) ∈ A×B | f(a) = b and a ∈ X } ⊆ A×B

Since γ ∈ P(A×B), the ε-operator generates a function

εγ :A −→ B
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such that
ImπAγ = 〈idA, εγ〉−1γ

whence
{a ∈ A | ∃b ∈ B (a, b) ∈ γ } = {a ∈ A | (a, εγ(a)) ∈ γ }

It is easy to verify that X is included into the set on the left hand side. Then for
every x ∈ X, the pair (x, εγ(x)) ∈ γ, from which f(x) = εγ(x).

The converse. Every non empty subset φ ⊆ A × B generates an obvious surjec-
tion

e:φ −→ ImπAφ = {a ∈ A | ∃b ∈ B (a, b) ∈ φ }
which is the function that maps every pair (a, b) in φ to the first component a. By
the axiom of choice the surjection e has a section

s: ImπAφ −→ φ

i.e. a function such that e(s(x)) = x. This produces the diagram below

ImπAφ
� � //

s
##

A

φ

By T5 we can commutatively close the diagram, i.e. there is a function

k:A −→ φ

such that for every a ∈ ImπAφ it is s(a) = k(a). Since φ ⊆ A×B the section s may
be seen as a function with codomain A×B. Define εφ as the composition

εφ = πBk:A −→ φ ⊆ A×B −→ B

We want to show that εφ is an ε-term. We trivially have that 〈idA, εφ〉−1φ ⊆ ImπAφ,
so it remains to prove the other inclusion. For a ∈ ImπAφ it is k(a) ∈ φ, thus if we
prove that k(a) = (a, εφ(a)) we are done.

Since k(a) ∈ φ ⊆ A×B, k(a) is of the form k(a) = (πA(k(a)), πB(k(a))), then

k(a) = (πA(k(a)), εφ(a))

By extensionability s(a) = k(a), hence

a = es(a) = ek(a) = e(πA(k(a)), πB(k(a))) = πA(k(a))

A substitution yields k(a) = (a, εφ(a)) from which the claim.
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Abstract

Skolemization is unsound in intuitionistic logic in the sense that a Skolemiza-
tion sk(F ) of a formula F may be derivable in the intuitionistic sequent calculus
LJ while F itself is not. This paper defines a transformation Tε that differs from
Skolemization only by its use of ε-terms instead of Skolem terms; and shows
that, for a simple locally restricted sequent calculus LJ?, this transformation is
sound: if Tε(F ) is derivable in LJ?, then so is F .

1 Introduction
It is well-known that there are formulas whose Skolemizations are derivable in the
intuitionistic sequent calculus LJ while the formulas themselves are not. Conse-
quently, there exists no immediate method of de-Skolemization, i.e. a method to
eliminate Skolem terms from intuitionistic proofs by introducing quantifiers without
obtaining just classical proofs. The usual reaction to this fact is to conclude that
Skolemization is intrinsically unsound in intuitionistic logic and, consequently, must
be either avoided or modified in sophisticated ways [4, 9]. These approaches assume
(quite naturally) that provability in LJ correctly captures validity in intuitionistic
logic even in the presence of Skolem terms.

This paper explores a different approach that regards LJ as an unsound calcu-
lus for reasoning about formulas containing Skolem terms. From this perspective,
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the reason why underivable formulas become derivable in LJ after they have been
Skolemized is due to LJ’s inference rules being too permissive: they fail to recognize
the special status of Skolem terms and allow them to be used in ways that should be
forbidden. Therefore, the interesting question is not how to modify Skolemization in
order to obtain an intuitionistically sound Skolemization-like transformation w.r.t.
to LJ, but how to modify and restrict LJ so that Skolemization is sound w.r.t. the
restricted calculus.

The main contribution of this paper is the design of a restricted sequent calculus
LJ? for which epsilonization is sound: if Tε(S) (the epsilonization of the sequent
S) is derivable in LJ?, then so is S. In particular, we define a method of de-
epsilonization of intuitionistic proofs transforming intuitionistic proofs with ε-terms
into ordinary intuitionistic proofs. The transformation Tε differs from Skolemization
mainly in its use of Hilbert’s ε-terms instead of Skolem terms. But in contrast to
Hilbert’s traditional ε-calculus, where all quantifiers are eliminated, Tε eliminates
only strong quantifiers. Skolem terms can be regarded as abbreviations of Hilbert’s
ε-terms [1]; conversely, ε-terms can be regarded as more informative Skolem terms.
LJ? restricts the use of ε-terms in the instantiations performed by weak quantifier
rules. The restrictions are local and purely syntactic; they use the extra information
available in ε-terms but not in Skolem terms.

2 LJ and Epsilonization

We assume the reader is familiarized with the language of first-order logic. The rules
of LJ are depicted in Figures 1 and 2. ∀l and ∃r are called weak quantifier rules,
while ∀r and ∃l are called strong quantifier rules. ∀-quantifiers of positive polarity
and ∃-quantifiers of negative polarity are called strong quantifiers.

Γ1, A ` F Γ2, B ` F
Γ1,Γ2, A ∨B ` F

∨l
Γ ` A

Γ ` A ∨B ∨
1
r

Γ ` B
Γ ` A ∨B ∨

2
r

Γ ` A
Γ,¬A ` ¬l

Γ, A `
Γ ` ¬A ¬r

Γ, A,B ` F
Γ, A ∧B ` F ∧l

Γ1 ` A Γ2 ` B
Γ1,Γ2 ` A ∧B

∧r
Γ1 ` A Γ2, B ` F
Γ1,Γ2, A→ B ` F

→l
Γ, A ` B

Γ ` A→ B
→r

A ` A a (A is atomic) Γ ` F
Γ, A ` F wl

Γ `
Γ ` A wr

Γ, A,A ` F
Γ, A ` F cl

Γ1 ` A Γ2, A ` F
Γ1,Γ2 ` F cut

Figure 1: Propositional and Structural Rules for LJ

402



Epsilon Terms in Intuitionistic Sequent Calculus

Γ, A[t] ` F
Γ,∀x.A[x] ` F ∀l

Γ ` A[α]
Γ ` ∀x.A[x] ∀r

Γ, A[α] ` F
Γ,∃x.A[x] ` F ∃l

Γ ` A[t]
Γ ` ∃x.A[x] ∃r

where:

• α must satisfy the eigenvariable condition.

Figure 2: Quantifier Rules for LJ

Skolemization is a transformation that removes all strong quantifiers from first-
order formulas and replaces the variables they quantify by Skolem terms. There
are various Skolemization methods, which may differ in the proof complexity of the
transformed formula [5]. To see that Skolemization does not preserve derivability in
the sequent calculus LJ, consider the formula ¬∀x.P (x)→ ∃y.¬P (y), in which the ∀
quantifier is strong (note that it would be introduced by a ∀r inference in a sequent
calculus proof). While it is clear that 0LJ ¬∀x.P (x) → ∃y.¬P (y), the proof below
shows that its Skolemization ¬P (s) → ∃y.¬P (y) (where s is a skolem constant) is
derivable:

Ps ` Ps
Ps,¬Ps ` ¬l

¬Ps ` ¬Ps ¬r

¬Ps ` ∃y.¬Py ∃r

` ¬Ps→ ∃y.¬Py
→r

In this example, the use of s on the weak quantifier rule could be avoided if
we had more information about it. In order to obtain more informative terms, we
choose to use ε-terms instead of Skolem terms for replacing the strongly quantified
variables of a formula.

ε-terms1 are formed with two binders: ε and τ . The intended meaning of ε-terms
is delimited by the following epsilon axioms:

∃x.A[x]→ A[εxA[x]] and A[τxA[x]]→ ∀x.A[x]

In classical logic, the following equivalences hold, and hence τ is definable using ε:

A[τxA[x]]↔ ∀x.A[x]↔ ¬∃x.¬A[x]↔ ¬¬A[εx¬A[x]]↔ A[εx¬A[x]]
1We assume that the usual inductively defined terms of first-order logic are extended to include

ε-terms. Hence, in general, a term may or may not contain ε-binders. ε-terms, on the other hand,
are assumed to have ε or τ binders as their outermost symbols. Therefore, every ε-term is a term,
but not every term is an ε-term.
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In intuitionistic logic, however, the equivalences above do not hold. Therefore, both
binders are needed. Epsilonization is analogous to Skolemization, but it uses ε-terms
instead of Skolem terms.

Definition 1 (Epsilonization). An epsilonization Tε(F ) of a formula F is defined
inductively on the structure of F using two functions T+

ε and T−ε . On the definitions
below, p ∈ {+,−} and p̄ is + if p = − and − if p = +.

Tε(F ) = T+
ε (F )

T p
ε (A) = A if A is atomic.

T p
ε (¬A) = ¬T p̄

ε (A)
T p

ε (A ∧B) = T p
ε (A) ∧ T p

ε (B)
T p

ε (A ∨B) = T p
ε (A) ∨ T p

ε (B)
T p

ε (A→ B) = T p̄
ε (A)→ T p

ε (B)
T+

ε (∃x.A) = ∃x.T+
ε (A)

T+
ε (∀x.A) = A′{x 7→ τxA

′} for A′ = T+
ε (A)

T−ε (∀x.A) = ∀x.T−ε (A)
T−ε (∃x.A) = A′{x 7→ εxA

′} for A′ = T−ε (A)

Definition 2 (Epsilonization of sequents). The epsilonization Tε(S) of a sequent S
of the form A1, . . . , An ` B1, . . . , Bm is a sequent of the form T−ε (A1), . . . , T−ε (An) `
T+
ε (B1), . . . , T+

ε (Bm).

In Skolemization one needs to explicitly keep track of weakly quantified variables
in order to add them as arguments of the Skolem function. In epsilonization such
book-keeping is not needed. Since the whole formula will be a sub-expression of
the ε-term, the weakly quantified variables will occur naturally in the term. In
contrast to what is done in Hilbert’s ε-calculus [1], the epsilonization procedure
defined here does not eliminate the weak quantifiers; therefore ε-terms may contain
quantified formulas. Like in the standard ε-calculus, innermost strong quantifiers
are removed first. Using this strategy, strong quantifiers will never occur inside an
ε-term. Instead, it will contain nested ε-terms corresponding to the variables that
were bound by those strong quantifiers. An ε-term that is not nested inside another
ε-term is a top-level ε-term.

Example 1. Consider the formula ∀x.∃y.∃z.P (x, y, z). In a negative context, its
epsilonization would be:

∀x.P (x, εyP (x, y, εzP (x, y, z)), εzP (x, εyP (x, y, εzP (x, y, z)), z))
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As desired, the weakly quantified variable x naturally occurs inside the ε-terms
for y and z. The weak quantifier ∀x remained. The innermost strong quantifier
∃z within the scope of the strong quantifier ∃y resulted in an ε-term for y (i.e.
εyP (x, y, εzP (x, y, z))) containing a nested ε-term for z (i.e. εzP (x, y, z)) as a sub-
term. The ε-terms εyP (x, y, εzP (x, y, z)) and εzP (x, εyP (x, y, εzP (x, y, z)), z) are
top-level ε-terms in the formula above. Comparing the epsilonization with a Skolem-
ization of the same formula, such as ∀x.P (x, sky(x), skz(x)), the Skolem terms sky(x)
and skz(x) can be seen as abbreviations for the two top-level ε-terms.

The treatment of strong quantifiers from inside out is compatible to our principal
aim: the epsilonization of proofs. Since this procedure (presented in Definition 5)
traverses the proof from the axioms to the end-sequent, innermost quantifiers are
treated first. The motivation for removing strong quantifier inferences from proofs is
due to the CERES method for intuitionistic logic [6, 10], a cut-elimination procedure
based on the resolution calculus. To apply this method, the proof must not contain
strong quantifier inferences on end-sequent ancestors. This is easily accomplished for
classical logic via Skolemization (as we can eventually de-Skolemize the constructed
cut-free proof), but it is not straightforward for intuitionistic proofs.

3 LJ?: a restricted LJ
We now define LJ?, a version of LJ with restricted weak quantifier rules, which uses
information available in the ε-terms to decide if they can be used on the instantiation
of weak quantifiers. In what follows we will use ν to denote any of the ε-binders ε
or τ , and ; as a rewriting relation.

Definition 3. A term t is accessible in a formula F iff:

• for any top-level ε-term νxG in t it is the case that F [νxG; x] is a sub-formula
of G; or

• t contains a nested ε-term νyH such that νyH is accessible in F and t[νyH ; y]
is accessible in F [νyH ; y].

The recursion in Definition 3 is necessary for coping with arbitrarily nested ε-terms.

Example 2. Consider the formula F below:

P (w, εyP (w, y, εzP (w, y, z)), εzP (w, εyP (w, y, εzP (w, y, z)), z))

Let t1 be the term εyP (w, y, εzP (w, y, z)). The term t1 is accessible in F , because
F [t1 ; y] (which is equal to P (w, y, εzP (w, y, z))) is a sub-formula of G1 (where
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G1 is, in accordance with Definition 3, P (w, y, εzP (w, y, z))). Let t2 be the term
εzP (w, εyP (w, y, εzP (w, y, z)), z). The term t2 is accessible in F , because t1 is ac-
cessible in F and t2[t1 ; y] (which is εzP (w, y, z)) is accessible in F [t1 ; y] (which
is P (w, y, εzP (w, y, z))), since F [t1 ; y][t2[t1 ; y] ; z] (which is P (w, y, z)) is
a sub-formula of G2 (where G2 is the formula under the scope of the ε-binder in
t2[t1 ; y]: P (w, y, z)).

Definition 4. A term t is accessible in a sequent S iff all top-level ε-terms in t are
accessible in some formula occurring in S.

When thinking about bottom-up proof search, a term is accessible only after the
strong quantifier inference introducing its corresponding eigenvariable in a regular
LJ proof is applied. This means that, at this point, the term (or the eigenvariable) is
already available for use in a weak quantifier inference. Take our previous unprovable
sequent: ` ¬∀x.Px → ∃x.¬Px. As shown before, its Skolemization is provable in
LJ because the skolem term used for ∀x.Px is available to be used in ∃x.¬Px. The
epsilonization of this sequent is: ` ¬P (τxPx) → ∃x.¬Px. The fact that Px is a
sub-formula of ¬Px informs us that the strong quantifier was within the scope of
the negation, and therefore a negation inference would have to be applied in order
to make the ε-term accessible before it could be used in a weak quantifier inference.
Therefore, as desired, the epsilonized sequent is not provable in LJ?.

Additionally, the ε-terms used in this calculus will contain labels. The purpose
of these labels is two-fold.

Firstly, they will restrict the shape of the proofs in LJ? in order to make de-
epsilonization possible. Without the restriction, the removal of ε-terms and re-
introduction of strong quantifiers could generate incorrect LJ proofs that violate the
eigenvariable condition. Take, for example, the following proof of the epsilonization
of ¬∀x.¬Px,∀z.∀y.¬(Pz ∧ Py) `:

P (τx¬Px) ` P (τx¬Px) P (τx¬Px) ` P (τx¬Px)
P (τx¬Px), P (τx¬Px) ` P (τx¬Px) ∧ P (τx¬Px)

∧r

P (τx¬Px), P (τx¬Px),¬(P (τx¬Px) ∧ P (τx¬Px)) `
¬l

P (τx¬Px),¬(P (τx¬Px) ∧ P (τx¬Px)) ` ¬P (τx¬Px)
¬r

P (τx¬Px),¬¬P (τx¬Px),¬(P (τx¬Px) ∧ P (τx¬Px)) `
¬l

P (τx¬Px),¬¬P (τx¬Px),∀y.¬(P (τx¬Px) ∧ Py) ` ∀l

P (τx¬Px),¬¬P (τx¬Px),∀z.∀y.¬(Pz ∧ Py) ` ∀l

¬¬P (τx¬Px),∀z.∀y.¬(Pz ∧ Py) ` ¬P (τx¬Px)
¬r

¬¬P (τx¬Px),¬¬P (τx¬Px),∀z.∀y.¬(Pz ∧ Py) `
¬l

¬¬P (τx¬Px),∀z.∀y.¬(Pz ∧ Py) `
cl
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When de-epsilonizing, two strong quantifiers need to be introduced in this proof;
both of them between ¬l and ¬r inferences: one in the second/third level and the
other in the sixth/seventh, bottom-up. The proof with the strong quantifiers is:

P (α) ` P (α) P (β) ` P (β)
P (α), P (β) ` P (α) ∧ P (β)

∧r

P (α), P (β),¬(P (α) ∧ P (β)) `
¬l

P (α),¬(P (α) ∧ P (β)) ` ¬P (β)
¬r

P (α),¬(P (α) ∧ P (β)) ` ∀x.¬P (x) ∀r∗

P (α),¬∀x.¬P (x),¬(P (α) ∧ P (β)) `
¬l

P (α),¬∀x.¬P (x),∀y.¬(P (α) ∧ Py) ` ∀l

P (α),¬∀x.¬P (x),∀z.∀y.¬(Pz ∧ Py) ` ∀l

¬∀x.¬P (x),∀z.∀y.¬(Pz ∧ Py) ` ¬P (α)
¬r

¬∀x.¬P (x),∀z.∀y.¬(Pz ∧ Py) ` ∀x.¬P (x) ∀r

¬∀x.¬P (x),¬∀x.¬P (x),∀z.∀y.¬(Pz ∧ Py) `
¬l

¬∀x.¬P (x),∀z.∀y.¬(Pz ∧ Py) `
cl

Note that the top-most ∀r∗ inference violates the eigenvariable condition. In fact,
as this rule is applied after (above) both weak quantifiers, a violation is unavoidable.
The only way of de-epsilonizing the proof into a valid LJ proof would be to perform
more complex operations, such as re-ordering of inferences. Instead of pursuing a
more complicated de-epsilonization procedure, we restrict proof search in LJ? by
using labels and avoiding the construction of such proofs in the first place. The
restriction still preserves completeness.

Secondly, the labels will make epsilonization of LJ proofs an injective function.
If labels were not used, the two following derivations would map to the same one:

Pα, Pβ `
Pα,∃x.Px ` ∃l

∃x.Px,∃x.Px ` ∃l

∃x.Px ` cl

Pα, Pα `
Pα ` cl

∃x.Px ` ∃l

.
P (εxPx), P (εxPx) `

P (εxPx) `
cl

Figure 3 shows the inferences of LJ? that are different than those of LJ, all
others remain the same. The labels in ε-terms can be variables or constants. When
epsilonizing a formula according to Definition 1, each ε-term receives a different
label variable. When using LJ? for proof search, the following conditions must be
enforced:
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• On the initial rule, the corresponding ε-terms in the antecedent and consequent
must have the same labels, and these must be constants.

• On the weak quantifier rules, the term t used for the substitution must be ac-
cessible and, additionally, its ε-subterms must have constants as labels. If this
is not the case, the label variables of the ε-terms in t that occur in accessible
positions in the conclusion sequent are substituted by a new (fresh) constant.

• Upon contracting a formula with ε-terms that have a variable label, there are
two cases:

– For accessible ε-terms, the same variable is used in the contracted occur-
rences in the premise.

– For inaccessible ε-terms, new variable labels are created to be used in the
contracted occurrences in the premise2.

If the label is a constant, then it was already used by a weak quantifier infer-
ence below contraction, which means the term is accessible. In this case, the
constant label is simply copied to the contracted occurrences in the premise.

Γ, A[t] ` F
Γ,∀x.A[x] ` F ∀

′
l

Γ ` A[t]
Γ ` ∃x.A[x] ∃

′
r A[νl

x F ] ` A[νl
x F ]

a

where:

• the term tmust be accessible in the conclusion sequent (accessibility condition).

• accessible occurrences of t or any of its ε-subterms in Γ and F must have a
constant as a label (label condition).

• l is a constant in a (initial condition).

Figure 3: Rules for LJ?

One might wonder about the (im)possibility to devise a simpler treatment of
labels or stronger restrictions on contracted formulas in order to avoid the problems
shown before. An immediate thought would be to use always constant labels and
force contraction to create two different labels on the premises. But this restriction is
too strong and would render the calculus incomplete, if it were adopted. The sequent

2This means that proofs in LJ? might contract formulas with different labels in its ε-terms.
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∃x.Px ` ∃x.(Px∧Px) is an example. Its epsilonization is P (εxPx) ` ∃x.(Px∧Px)
and a proof in LJ? is shown below:

P (εxPx) ` P (εxPx) P (εxPx) ` P (εxPx)
P (εxPx), P (εxPx) ` P (εxPx) ∧ P (εxPx)

∧r

P (εxPx), P (εxPx) ` ∃x.(Px ∧ Px) ∃r

P (εxPx) ` ∃x.(Px ∧ Px)
cl

If different labels were used when contracting, the sequent would not be provable.
Another simpler potential solution would be to restrict contraction to formu-

las that only have accessible ε-terms. Unfortunately, this does not work in the
general case. Consider the sequent ¬(∀x.Px ∨ ¬∀x.Px) `, whose epsilonization is
¬(P (τxPx)∨¬∀x.Px) `. The term τxPx is obviously not accessible, thus should con-
traction on this formula not be allowed, the sequent would not be provable (whereas
the original sequent is intuitionistically valid).

Theorem 1 (Soundness). For an ε-free formula F , if `LJ? F then `LJ F .

Proof. Let ψ′ be an LJ?-proof of F . Then an LJ-proof ψ of F can be constructed
simply by replacing ∀′l and ∃′r inferences by, respectively, ∀l and ∃r inferences. Since
F is ε-free, the rules a and cl are the same as those in LJ.

LJ? is also sound relative to LJ for formulas with ε-terms (i.e., if `LJ? Tε(F )
then `LJ Tε(F )). We simply need to ignore the labels when transforming the proof.

Theorem 2 (Completeness). For an ε-free formula F , if `LJ F then `LJ? F .

Proof. Since F is ε-free and `LJ F , there is an ε-free LJ-proof ψ of F . An LJ?-
proof ψ′ of F can be constructed simply by replacing all ∀l and ∃r inferences by,
respectively, ∀′l and ∃′r inferences. No accessibility or label violation occurs, because
no term in ψ′ contains ε-terms. Also, the conditions for the inferences a and cl are
not violated, for the same reason.

The epsilonization of a proof removes the strong quantifier inferences that operate
on ancestors of formulas occurring in the end-sequent and replaces the corresponding
eigenvariables by ε-terms.

Definition 5 (Epsilonization of proofs). Let ψ be an LJ? proof of an ε-free sequent
S. We define Tε(ψ), an LJ? proof of Tε(S), inductively on the inference rules.
Base case: ψ consists of only one axiom. Then Tε(ψ) = ψ.
Step case: ψ ends with an inference ρ, as in the following cases.
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• ρ is ∀r or ∃l applied to an end-sequent ancestor.
Let (Qx)F be the main formula, ψ′ be the proof of ρ’s premise and α the
eigenvariable used to instantiate the strongly quantified variable x. By induc-
tion hypothesis, Tε(ψ′) is well defined. Then Tε(ψ) is Tε(ψ′){α 7→ νlx F},
where ν is ε if Q is ∃ and τ if Q is ∀, and l is a fresh constant label.
Note that strong quantifiers that go to cut-formulas are not replaced.

• ρ is ∀l or ∃r applied to an end-sequent ancestor.
Let (Qx)Fx be the main formula, Ft the auxiliary formula and ψ′ the proof
of ρ’s premise. By induction hypothesis, Tε(ψ′) is well defined. Then Tε(ψ)
is Tε(ψ′) plus the inference ∀l or ∃r (depending whether Q is ∀ or ∃) which
introduces the quantifier and replaces t by x in F , including the occurrences
of t inside copies of F occurring in ε-terms. The variable x used may not be
bound.

• ρ is cl applied to an end-sequent ancestor, and the formulas contracted contain
ε-terms with labels.
Let ψ′ be the proof of ρ’s premise. By induction hypothesis, Tε(ψ′) is well
defined. Then Tε(ψ) is Tε(ψ′) plus the contraction, where its main formula
will have new variables as labels.

• ρ is another inference. Then Tε(ψ) = ψ.

Observe that, apart from possibly different labels, contraction will always operate
on equal terms, since weak quantifiers also operate on formulas inside ε-terms:

ψ
P (a, α), P (b, β) `

∃y.P (a, y),∃y.P (b, y) ` ∃l × 2

∀x.∃y.P (x, y),∀x.∃y.P (x, y) ` ∀l × 2

∀x.∃y.P (x, y) `
cl  

Tε(ψ)
P (a, εl1

y .P (a, y)), P (b, εl2
y .P (b, y)) `

∀x.P (x, εl1
y .P (x, y)),∀x.P (x, εl2

y .P (x, y)) `
∀l × 2

∀x.P (x, εl
y.P (x, y)) `

cl

Lemma 1. If an LJ?-proof ψ has end-sequent S, then Tε(ψ) has end-sequent Tε(S)
(modulo renaming of labels).

Proof. By induction on the structure of ψ and by Definition 5.

Lemma 2. If ψ is an LJ?-proof of S, then no weak quantifier inference in Tε(ψ)
violates the accessibility condition.
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Proof. First of all, note that the order in which the inferences are applied in Tε(ψ)
is the same as in ψ, with the only difference being that strong quantifier inferences
were removed.

Let Qx.F be a strong quantified formula in S, α the eigenvariable used for this
strong quantifier in ψ and Q′x.G a weak quantifier in S which is instantiated in ψ
with a term containing α. Since ψ is a correct proof, the weak quantifier inference
ρw on Q′x.G occurs after (above) the strong quantifier inference ρs on Qx.F .

Now consider the proof Tε(ψ). Given Definition 5, at the point where ρs was
applied, the formula Qx.F will have the shape F ′[νlx F ′], where F ′ is possibly F
without strong quantifiers. Since F ′ is a sub-formula of F ′, the ε-term is already
accessible. All inferences above this point will either decompose (the outer-most)
F ′ into more sub-formulas or keep it unchanged. In this way, the ε-term νlx F

′

will remain accessible. As ρw is applied after (above) the considered point, the
accessibility relation will not be violated.

Lemma 3. If ψ is an LJ?-proof of S, then no weak quantifier inference in Tε(ψ)
violates the label condition.

Proof. By Definition 5, the eigenvariables in a proof are always replaced by ε-terms
with constant labels. Since a weak quantifier that uses an eigenvariable α occurs
above the strong quantifier that introduced such variable, the label condition will
hold in the epsilonized proof.

Lemma 4. If ψ is an LJ?-proof of S, then no axiom inference in Tε(ψ) violates the
initial condition.

Proof. Trivial by Definition 5 and by the fact that there are no inferences operating
above axioms.

Theorem 3. If `LJ? S, then `LJ? Tε(S).

Proof. Let ψ be an LJ?-proof of S. Then, by Lemmas 1, 2, 3 and 4 Tε(ψ) is a
correct LJ?-proof of Tε(S).

De-epsilonization of proofs, denoted by T−1
ε , replaces ε-terms by eigenvariables and

introduces strong quantifier inferences in appropriate places. To detect the appro-
priate places, the following definition is helpful.

Intuitively, the de-epsilonization procedure will traverse a proof ψ in a top-down
manner, re-applying the inference rules from ψ. As this is done, the sequents will
contain formulas of the form A[νxB[x]] where νxB[x] is a top-level ε-term, for in-
creasingly more complex A. Thus, νxB[x] is initially accessible in the formula and in
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the sequent, while A is a subformula of B. Replacing the ε-term by an eigen-variable
and introducing a strong quantifier inference for this eigen-variable becomes possible
when A becomes exactly equal to B, in which case the ε-term is said to be ready.
However, to avoid violations of the eigen-variable condition, it is still necessary to
postpone the introduction of strong quantifier inferences as much as possible. That is
why the de-epsilonization procedure seeks to introduce them just before they become
inaccessible. However, introducing them earlier may be necessary if a contraction
operates on occurrences of νxB[x] with different labels.

Definition 6 (De-epsilonization of proofs). Let F be an ε-free formula and ψ an
LJ? proof of Tε(F ). The de-epsilonization T−1

ε (ψ) is constructed inductively on the
inference rules.
Base case: ψ consists of only one axiom. Then T−1

ε (ψ) = ψ.
Step case: ψ ends with an inference ρ. By the induction hypothesis, the de-
epsilonization of ρ’s premises: T−1

ε (ψ1) and (for the case of binary inferences)
T−1
ε (ψ2) are well-defined. Then T−1

ε (ψ) is defined according to the possible cases
for ρ:

• ρ is a weakening.
Then T−1

ε (ψ) is simply T−1
ε (ψ1) followed by the same weakening.

• ρ is a cut.
Then T−1

ε (ψ) is the proof obtained by applying the same cut on T−1
ε (ψ1) and

T−1
ε (ψ2).

• ρ is a contraction on a formula F .
If F contains no ε-terms, then T−1

ε (ψ) is defined as T−1
ε (ψ1) followed by the

contraction. Otherwise, if the contracted formulas contain ε-terms νl1x G and
νl2x G, then T−1

ε (ψ) depends on the following cases for l1 and l2:

– The labels l1 and l2 are equal, regardless whether they are variables or
constants. In this case, T−1

ε (ψ) is defined as T−1
ε (ψ′) followed by the

same contraction.
– The labels l1 and l2 are two different constants3. In this case, F and G are

the same, then T−1
ε (ψ) is defined as T−1

ε (ψ1){νl1x Fx 7→ α}{νl2x Fx 7→ β}
followed by two strong quantifier inferences (∀r if ν is τ and ∃l if ν is ε)
and a contraction on the quantified formulas.

3This case occurs for epsilonized proofs, but not in proofs obtained by proof search in LJ?.
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The case where l1 and l2 are two different variables does not occur for one of
two reasons: (1) if ψ was obtained via proof search in LJ?, then contraction of
formulas with accessible ε-terms copies the variables to the premise, and thus
they will be instantiated with the same constant at a later step; or (2) if ψ was
obtained via epsilonization of a LJ proof, the labels will be constants.

• ρ is a logical inference.

If ρ operates on ε-free formulas or all top-level ε-terms in ρ’s auxiliary formulas
are still accessible in the conclusion, then T−1

ε (ψ) is defined as ρ applied to the
de-epsilonization of its premise(s).

Otherwise, while there exists a top-level ε-term νlx F that would no longer be
accessible in ρ’s conclusion, we add the appropriate strong quantifier and apply
the replacement {νlxF 7→ α} to the proof with a fresh variable α as well as the
replacements {νlx F ′ 7→ α} (with the same variable α) for any F ′ that differs
from F only in the presence of nested ε-terms. Finally, when there are no
more ε-terms that would become inaccessible, T−1

ε (ψ) becomes ρ applied to the
proof resulting from this iterative quantifier reintroduction procedure.

If after this process the end-sequent still contains ε-terms, then additional strong
quantifier inferences are added accordingly.

An example illustrating the need for replacing nested terms and for the while loop
in the last case of Definition 6 is available in Section 4.3.

We can now prove soundness of the epsilonization method.

Lemma 5. If ψ is an LJ?-proof of an end-sequent Tε(S), then the end-sequent of
T−1
ε (ψ) is S.

Proof. In Definition 6, all ε-terms from ψ are replaced by eigenvariables and strong
quantifier rules are applied, so that eventually formulas of the form A[εxA[x]] (or
A[τxA[x]]) in Tε(S) are replaced by ∃x.A[x] (or, respectively, ∀x.A[x]), innermost
subformulas first. Notice that, at the time of the introduction of the strong quanti-
fier, the outer formulas and those bound by the ε-term are indeed the same, since
possibly nested ε-terms correspond to innermost quantifiers which will have been
already introduced above in the proof.

Lemma 6. If ψ is an LJ?-proof of an end-sequent Tε(S), then there is an LJ?-proof
ψ′ of S obtainable from T−1

ε (ψ) by reductive cut-elimination.
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Proof. The key point is to show that any violation of the eigenvariable condition
in T−1

ε (ψ) can be removed by reductive cut-elimination. Assume that there is a
strong quantifier inference ρ in T−1

ε (ψ) that violates the eigenvariable condition.
This means that T−1

ε (ψ) has one of the following forms near ρ:

...
Γ, A[α] ` B[α]

ρ : ∃lΓ,∃x.A[x] ` B[α]
...

...
Γ, B[α], A[α] ` C

ρ : ∃lΓ, B[α],∃x.A[x] ` C
...

...
Γ, B[α] ` A[α]

ρ : ∀rΓ, B[α] ` ∀x.A[x]
...

For each of the cases above, there are four potential subcases. We show below
that three of them cannot occur, because they would lead to contradictions, whereas
the fourth can be fixed by reductive cut-elimination:

• B[α] propagates down to the end-sequent: α would then occur in the end-
sequent of T−1

ε (ψ), but this would contradict Lemma 5.

• B[α] propagates down to a strong quantifier inference ρ′ which has eigen-
variable α: this case cannot occur, because ψ would then violate the label
condition, thus contradicting the assumption that ψ is a correct LJ?-proof.

• B[α] propagates down to a weak quantifier inference ρ′ with an auxiliary for-
mula D[t[α]]: then ρ′ would have auxiliary formula D[t[εxB′[x]]] in ψ. If B
were a proper super-formula of B′, the term t[εxB′[x]] would not be accessible
and ρ′ would be violating the accessibility condition. If B were equal to B′,
then ρ′ would be occurring below ρ, which contradicts the fact that, in Defini-
tion 6, strong quantifier inferences such as ρ are introduced as low as possible.
Indeed, notice that as the weak quantifier inference occurs in the proof with
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ep-terms, it will be applied during de-epsilonization in the same place, while
the strong quantifier is only added when absolutely necessary (i.e., the term is
no longer accessible or at the end-sequent).

• B[α] propagates down to a cut: in this case, the eigenvariable violation can be
removed by shifting the cut upward, using Gentzen’s reductive cut-elimination
method.

Theorem 4 (Soundness of Epsilonization). If `LJ? Tε(S), then `LJ S.

Proof. Let ψ be an LJ?-proof of Tε(S). Then, by Lemmas 5 and 6, T−1
ε (ψ) is a

correct LJ?-proof of S. By Theorem 1, `LJ S.

4 Examples

This section presents a set of examples that help understand the epsilonization and
de-epsilonization of proofs. Each example demonstrates the need for some aspect of
the definitions.

4.1 Labels, Contractions and Inaccessible ε-terms

This section illustrates the need for different labels when contracting formulas with
inaccessible ε-terms. We start with an end-sequent already considered before:

¬∀x.¬Px,∀z.∀y.¬(Pz ∧ Py) `

whose epsilonization is

¬¬P (τx¬Px), ∀z.∀y.¬(Pz ∧ Py) `

We have seen that, had labels not been used, the later sequent would admit a proof
whose de-epsilonization would generate a proof with eigenvariable violations. Taking
the labels into account, the proof found by proof search in LJ? is the following:
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P (τ l1
x .¬Px) ` P (τ l1

x .¬Px) P (τ l2
x .¬Px) ` P (τ l2

x .¬Px)
P (τ l2

x .¬Px), P (τ l1
x .¬Px) ` P (τ l1

x .¬Px) ∧ P (τ l2
x .¬Px)

∧r

P (τ l2
x .¬Px), P (τ l1

x .¬Px),¬(P (τ l1
x .¬Px) ∧ P (τ l2

x .¬Px)) `
¬l

P (τ l2
x .¬Px), P (τ l1

x .¬Px),∀y.¬(P (τ l1
x .¬Px) ∧ Py) `

∀′l

P (τ l1
x .¬Px),∀y.¬(P (τ l1

x .¬Px) ∧ Py) ` ¬P (τ l2
x .¬Px)

¬r

P (τ l1
x .¬Px),¬¬P (τ l2

x .¬Px),∀y.¬(P (τ l1
x .¬Px) ∧ Py) `

¬l

P (τ l1
x .¬Px),¬¬P (τ l2

x .¬Px),∀z.∀y.¬(Pz ∧ Py) `
∀′l

¬¬P (τ l2
x .¬Px),∀z.∀y.¬(Pz ∧ Py) ` ¬P (τ l1

x .¬Px)
¬r

¬¬P (τ l1
x .¬Px),¬¬P (τ l2

x .¬Px),∀z.∀y.¬(Pz ∧ Py) `
¬l

¬¬P (τ l
x.¬Px),∀z.∀y.¬(Pz ∧ Py) `

cl

Note how the ε-term labelled with l2 is not available for the weak quantifier ∀y.
Observe also how the two labels of the contracted formulas need to be different. Had
they been the same, we would be able to obtain the same proof as before, which
de-epsilonizes to an incorrect proof.

The de-epsilonization procedure constructs, in a top-down manner, the same
proof up to this point:

P (τ l1
x .¬Px) ` P (τ l1

x .¬Px) P (τ l2
x .¬Px) ` P (τ l2

x .¬Px)
P (τ l2

x .¬Px), P (τ l1
x .¬Px) ` P (τ l1

x .¬Px) ∧ P (τ l2
x .¬Px)

∧r

P (τ l2
x .¬Px), P (τ l1

x .¬Px),¬(P (τ l1
x .¬Px) ∧ P (τ l2

x .¬Px)) `
¬l

P (τ l2
x .¬Px), P (τ l1

x .¬Px),∀y.¬(P (τ l1
x .¬Px) ∧ Py) `

∀′l

P (τ l1
x .¬Px),∀y.¬(P (τ l1

x .¬Px) ∧ Py) ` ¬P (τ l2
x .¬Px)

¬r

If the next inference, ¬l, were applied, the ε-term τ l2x .¬Px would no longer be
accessible. Therefore, it is time to introduce a strong quantifier. Since the ε-term is
bound by τ , the de-epsilonization procedure introduces a ∀r inference and replaces
τ l2x .¬Px by a new fresh variable α.

P (τ l1
x .¬Px) ` P (τ l1

x .¬Px) Pα ` Pα
Pα, P (τ l1

x .¬Px) ` P (τ l1
x .¬Px) ∧ Pα

∧r

Pα, P (τ l1
x .¬Px),¬(P (τ l1

x .¬Px) ∧ Pα) `
¬l

Pα, P (τ l1
x .¬Px),∀y.¬(P (τ l1

x .¬Px) ∧ Py) `
∀′l

P (τ l1
x .¬Px),∀y.¬(P (τ l1

x .¬Px) ∧ Py) ` ¬Pα
¬r

P (τ l1
x .¬Px),∀y.¬(P (τ l1

x .¬Px) ∧ Py) ` ∀x.¬Px
∀r
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The re-construction of the proof is continued until the next point where a strong
quantifier is needed, for the same reason as before. The same procedure is followed,
now replacing τ l1x .¬Px by a new variable β. The final result is the following valid
LJ? (and also LJ) proof:

Pβ ` Pβ Pα ` Pα
Pα, Pβ ` Pβ ∧ Pα ∧r

Pα, Pβ,¬(Pβ ∧ Pα) `
¬l

Pα, Pβ,∀y.¬(Pβ ∧ Py) ` ∀
′
l

Pβ,∀y.¬(Pβ ∧ Py) ` ¬Pα
¬r

Pβ,∀y.¬(Pβ ∧ Py) ` ∀x.¬Px ∀r

Pβ,¬∀x.¬Px,∀y.¬(Pβ ∧ Py) `
¬l

Pβ,¬∀x.¬Px,∀z.∀y.¬(Pz ∧ Py) ` ∀
′
l

¬∀x.¬Px,∀z.∀y.¬(Pz ∧ Py) ` ¬Pβ
¬r

¬∀x.¬Px,∀z.∀y.¬(Pz ∧ Py) ` ∀x.¬Px ∀r

¬∀x.¬Px,¬∀x.¬Px,∀z.∀y.¬(Pz ∧ Py) `
¬l

¬∀x.¬Px,∀z.∀y.¬(Pz ∧ Py) `
cl

4.2 Contraction with Distinct Labels

The example in this section illustrates the need for allowing contraction on formulas
with different constant labels. Consider the following LJ? proof of an ε-free end-
sequent:

Pα ` Pα
Pα ` ∃x.Px ∃r

Pβ ` Pβ
Pβ ` ∃x.Px ∃r

Pα, Pβ ` ∃x.Px ∧ ∃x.Px ∧r

Pα,∃x.Px ` ∃x.Px ∧ ∃x.Px ∃l

∃x.Px,∃x.Px ` ∃x.Px ∧ ∃x.Px ∃l

∃x.Px ` ∃x.Px ∧ ∃x.Px cl

Following the epsilonization procedure, the proof obtained is:
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P (εa
x.Px) ` P (εa

x.Px)
P (εa

x.Px) ` ∃x.Px ∃r

P (εb
x.Px) ` P (εb

x.Px)
P (εb

x.Px) ` ∃x.Px
∃r

P (εa
x.Px), P (εb

x.Px) ` ∃x.Px ∧ ∃x.Px
∧r

P (εl
x.Px) ` ∃x.Px ∧ ∃x.Px

cl

Note how contraction must allow the two ε-terms to have different constant
labels. The label in the conclusion can be arbitrary. Such flexibility makes it possible
to map the epsilonized proof to the exact intention of the original proof, which was to
use two different eigenvariables for the strong quantifier. Interestingly, this situation
only occurs if a proof is epsilonized. Had we searched for a proof of the same end-
sequent in LJ?, only one “eigenvariable” would have been used.

4.3 Nested ε-terms
When sequents contain blocks of strong quantifiers or strong quantifiers inside the
scope of other strong quantifiers, epsilonization results in sequents with nested ε-
terms. In this section, we look at an example of this kind.

Let F be ∀x.(∃y.∃z.P (x, y, z)→ ∃w.∃v.∃q.P (q, v, w)). Then Tε(F ) is:

P (tx, ty, tz)→ ∃w.∃v.∃q.P (q, v, w)
where:
• tz = δz(δx, δy(δx))
• ty = δy(δx)
• tx = δx

• δx = γx[δy(x), δz(x, δy(x))]
• δy(x) = γy[δz(x, y)](x)
• δz(x, y) = γz(x, y) = εzP (x, y, z)
• γy[t](x) = εyP (x, y, t)
• γx[t1, t2] = τx(P (x, t1, t2)→ ∃w.∃v.∃q.P (q, v, w))

Let ψ be the following LJ?-proof of Tε(F ):

P (tx, ty, tz) ` P (tx, ty, tz)
P (tx, ty, tz) ` ∃q.P (q, ty, tz) ∃r

P (tx, ty, tz) ` ∃v.∃q.P (q, v, tz) ∃r

P (tx, ty, tz) ` ∃w.∃v.∃q.P (q, v, w) ∃r

` P (tx, ty, tz)→ ∃w.∃v.∃q.P (q, v, w)
→r
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During the top-down construction of T−1
ε (ψ), initially the three ∃r inferences are

simply reapplied:

P (tx, ty, tz) ` P (tx, ty, tz)
P (tx, ty, tz) ` ∃q.P (q, ty, tz) ∃r

P (tx, ty, tz) ` ∃v.∃q.P (q, v, tz) ∃r

P (tx, ty, tz) ` ∃w.∃v.∃q.P (q, v, w) ∃r

At this point, tz is ready, but applying →R would make it inaccessible. Therefore,
it is time to introduce the strong quantifier for z:

P (t′x[αz], t′y[αz], αz) ` P (t′x[αz], t′y[αz], αz)
P (t′x[αz], t′y[αz], αz) ` ∃q.P (q, t′y[αz], αz) ∃r

P (t′x[αz], t′y[αz], αz) ` ∃v.∃q.P (q, v, αz) ∃r

P (t′x[αz], t′y[αz], αz) ` ∃w.∃v.∃q.P (q, v, w) ∃r

∃z.P (t′x[z], t′y[z], z) ` ∃w.∃v.∃q.P (q, v, w) ∃l

where t′y[z] = ty{δz(., .) 7→ z} and t′x[z] = tx{δz(., .) 7→ z}. Note that the replacement
of terms of the general form δz(., .) by z de-epsilonizes occurrences of εzP (., ., z)
nested inside tx and ty. This illustrates the need for substituting not only top-level
ε-terms, but also nested ε-terms in the last case of Definition 6.
Now t′y[z] becomes ready and it would not be accessible anymore after application
of →R. Therefore, it is time to introduce the strong quantifier inference for y:

P (t′′x[αy], αy, αz) ` P (t′′x[αy], αy, αz)
P (t′′x[αy], αy, αz) ` ∃q.P (q, αy, αz) ∃r

P (t′′x[αy], αy, αz) ` ∃v.∃q.P (q, v, αz) ∃r

P (t′′x[αy], αy, αz) ` ∃w.∃v.∃q.P (q, v, w) ∃r

∃z.P (t′′x[αy], αy, z) ` ∃w.∃v.∃q.P (q, v, w) ∃l

∃y.∃z.P (t′′x[y], y, z) ` ∃w.∃v.∃q.P (q, v, w) ∃l

t′′x[y] is not ready yet, and the →r inference rule can be applied:
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P (t′′x[αy], αy, αz) ` P (t′′x[αy], αy, αz)
P (t′′x[αy], αy, αz) ` ∃q.P (q, αy, αz) ∃r

P (t′′x[αy], αy, αz) ` ∃v.∃q.P (q, v, αz) ∃r

P (t′′x[αy], αy, αz) ` ∃w.∃v.∃q.P (q, v, w) ∃r

∃z.P (t′′x[αy], αy, z) ` ∃w.∃v.∃q.P (q, v, w) ∃l

∃y.∃z.P (t′′x[y], y, z) ` ∃w.∃v.∃q.P (q, v, w) ∃l

` ∃y.∃z.P (t′′x[y], y, z)→ ∃w.∃v.∃q.P (q, v, w)
→r

The fact that we had to introduce two strong quantifier inferences, de-epsilonizing
two different ε-terms, before being able to reapply a logical inference rule illustrates
the need for a while loop in the last case of Definition 6.

Finally, a ∀r inference rule has to be applied, because tx is now ready in the end
sequent and there are no further inferences from ψ to be reapplied:

P (αx, αy, αz) ` P (αx, αy, αz)
P (αx, αy, αz) ` ∃q.P (q, αy, αz) ∃r

P (αx, αy, αz) ` ∃v.∃q.P (q, v, αz) ∃r

P (αx, αy, αz) ` ∃w.∃v.∃q.P (q, v, w) ∃r

∃z.P (αx, αy, z) ` ∃w.∃v.∃q.P (q, v, w) ∃l

∃y.∃z.P (αx, y, z) ` ∃w.∃v.∃q.P (q, v, w) ∃l

` ∃y.∃z.P (αx, y, z)→ ∃w.∃v.∃q.P (q, v, w)
→r

` ∀x.(∃y.∃z.P (x, y, z)→ ∃w.∃v.∃q.P (q, v, w)) ∀r

5 Related Work
Other methods for a Skolemization-like procedure for intuitionistic logic have been
investigated. This has been the topic of a series of papers by Baaz and Iemhoff that
study the use of an existence predicate, introduced by Scott [11], for Skolemization.
They start by defining eSkolemization [2], a process for removing strong existential
quantifiers in intuitionistic logic. In the same paper there is a semantical proof of
completeness of eSkolemization and later on they provide a proof-theoretical proof
[4]. In [3] the authors extend the method for strong universal quantifiers, but the
solution is more ad-hoc, as it requires the addition of a pre-order to the logic and
introduces weak quantifiers. Roughly, the eSkolemization method replaces strong
occurrences of ∀x̄.Ax̄ by E(f(x̄)) → A(f(x̄)) and strong occurrences of ∃x̄.Ax̄ by
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E(f(x̄)) ∧A(f(x̄)), where f is a new function symbol. In contrast to our approach,
which only adds to the language the ε and τ operators, eSkolemization requires ex-
tending the language with infinitely many symbols, including a predicate. Moreover,
the treatment of existential and universal quantifiers is not uniform whereas in our
method those treatments are naturally dual. The calculus LJE, presented in [4],
contains different rules for the quantifiers which add the existence predicate to the
premises. Therefore, it does not have the sub-formula property. Also, the rules for
∀l and ∃r are binary, adding yet another complexity for proof search. It is worth
noting that LJ? presents none of these issues.

The approach that comes closer to what is presented here is that of Mints [7, 8].
Although the precise relation is not easy to pinpoint and describe, it is straightfor-
ward to note important differences. Firstly, whereas Mints is concerned with the
extension of LJ by an epsilonization rule in the calculus (which acts only at whole
formulas), we consider epsilonization as a pre-processing step, acting deeply on all
strongly quantified subformulas in the end-sequent. In Mints’ calculus, the epsilo-
nization rule is essentially a strong quantifier rule that instantiates the variable by
an ε-term instead of an eigen-variable. In contrast, LJ?-proofs of epsilonized end-
sequents contain no inferences that act as strong quantifier inferences in disguise. It
was a significant challenge, and one of the main distinguishing contributions of this
paper, to discover that ε-terms are informative enough to tell where strong quantifier
inferences need to be introduced when de-epsilonizing. Mints also describes a con-
dition for the correctness of proofs, requiring that all sequents are intelligent4. The
definition of intelligence is related to the definition of accessibility presented here.
However, the definition of intelligence is not local: to decide whether a sequent S is
intelligent in a proof ψ, it may be necessary to look at every sequent S′ occurring
below S in ψ. This is undesirable in the context of bottom-up proof search, because
the whole derivation may have to be traversed and checked in order to decide if an
inference is allowed. The definition of accessibility, on the other hand, is local: to
decide if a weak quantifier inference is allowed, only its conclusion sequent needs to
be checked. Furthermore, while Mints [7, 8] restricts all inference rules (by requiring
that all sequents be intelligent), in the LJ? calculus presented here, only the weak
quantifier rules need to be restricted. Therefore, the restrictions described here are
weaker. Another difference is that Mints [7, 8] considers only the ε binder, whereas
here τ is also taken into account.

Decades later, Mints [9] proposed a new calculus where he dropped the global
intelligibility condition and adopted binary weak quantifier rules (thus following

4Mints used the adjective осмысленный in the Russian original [7]. This was translated as
intelligent in [8]. In [12], Soloviev uses the better translation meaningful.
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the trend of [4]) whose left premises require proving that the instantiating term
is defined. While the notion of defined is arguably more local than the notion
of intelligent, it requires proof search and is semantically inspired. Moreover, the
definition of defined is incomplete because it is defined only for top-level ε-terms. It
is not clear what should be done, for example, when the instantiating term is not a
top-level ε-term but contains an ε-term as a sub-term. Furthermore, in Mints’ new
calculus, epsilonization is still treated as an inference rule, not as a pre-processing
step.

6 Conclusion
We have shown that, whereas Skolemization is unsound for LJ (as is well-known),
the new epsilonization transformation defined here is sound for the restricted cal-
culus LJ? proposed. Although the definitions and proofs are technically complex,
the underlying idea is conceptually very simple. The unsoundness of Skolemization
for LJ is essentially due to violations of the eigenvariable condition, which happen
implicitly and unnoticed, because Skolemization replaces eigenvariables by Skolem
terms. In the case of epsilonization, on the other hand, ε-terms are informative
enough to allow us to know where strong quantifier inferences introducing their
corresponding eigenvariables would be located if the sequent had not been epsilo-
nized. This information allows us to restrict the weak quantifier rules in LJ? that
use ε-terms, so that they only occur above those implicit strong quantifier infer-
ences’ locations. Consequently, as desired, de-epsilonizing LJ? proofs never results
in violations of the eigenvariable condition.

The approach presented here distinguishes itself from related work primarily by
being the only purely syntactic, deterministic (not requiring additional proof search)
and local restriction of the intuitionistic sequent calculus where a Skolemization-like
pre-processing transformation is sound.
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Abstract
The aim of this paper is to give a short survey of the studies that concern

the notion of Hilbert’s ε-operator and its applications by the researchers in the
USSR and continuation of their works abroad in post-soviet time.
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The aim of this paper is to give a short survey of the studies that concern the
notion of Hilbert’s ε-operator and its applications by the researchers in the USSR.
These works mostly belong to the domain of mathematical logics, but interactions
with philosophical logics and mathematical linguistics cannot be ignored, all three
domains being quite active.

The paper is based on a systematic historical investigation and my personal
recollections, that helped to organize the search for information. I knew personally
Grigori Mints, Albert Dragalin and Vladimir Smirnov mentioned below. Mints
was the adviser of my graduate work, and I met Dragalin and Smirnov at various
conferences. It is possible that my investigation is not completely exhaustive, but
I recall whose names were mentioned then in connection with the ε-operator, and
this knowledge was confirmed when I did look for references. I am reasonably sure
that there were no other authors who did significant study of the ε-operator in the
USSR.

My personal recollections were used also to reconstruct to some extent the at-
mosphere of Soviet times, at least as far as the relationship with the international
science is concerned.

Three main aspects will be addressed.
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• How the interest for ε-operator had arisen, in particular, the external sources
of logical research in the USSR.

• Principal works by soviet researchers who studied ε-operator and continuation
of their works in post-soviet time. There are three main names: A. G. Dragalin
(1941-1998), G. E. Mints (1939-2014) and V. A. Smirnov (1931-1996).

• Influence of these works on the research worldwide in their own time, and how
they influence contemporary research.

Two volumes of German edition of “Grundlagen der Mathematik” by Hilbert
and Bernays [5] were known to leading researchers in the USSR. Russian translation
was done in 1968/70 and published in 1979/82 by “Nauka” (transl. from German
by N. M. Nagorny). The full English translation still does not exist.

In general, the translation of scientific literature into Russian at this period was
extremely active, and this fact mostly answers the question about sources. One
may mention the publication of Kleene’s “Introduction to Metamathematics” in
1957 (translated by Essenin-Volpin), the translation of A. Robinson’s “Introduction
to Model Theory and to the Metamathematics of Algebra” (1967), the translation
of selected foundational papers in proof theory published as “Mathematical theory
of logical deduction” (edited by A. V. Idelson and G.E. Mints) in 1967. In 1973
Kleene’s “Mathematical Logic” (translated by Yu. Gastev and edited by G. Mints)
was published. In 1981 G. Kreisel’s selected papers in proof theory translated by
Gastev and Mints [15] were published. For scientific literature at this time the
interval between publication of an original and its Russian translation was often
5-7 years. The number of copies was usually at least several thousands, e.g., 7800
for [15]. Partly (but only partly) this may be explained by the fact that the USSR
did not sign most of the international copyright agreements 1.

What else was accessible? Just as an illustration, one may mention that the
library of Steklov Mathematical Institute included almost all “Mathematische An-
nalen” until June 1941 (with Gentzen’s foundational paper of 1936, and Ackermann’s
paper of 1940), and again since 1949. It got also “Dissertationes Mathematicae”
(published by Polish Academy), all issues 1953 - 1989 (including such papers as [13]
by Kreisel and Takeuti)...

Personal contacts also should not be underestimated. For example, many promi-
nent logicians attended the International Congress of Mathematicians in Moscow
(1966), among them Tarski, Church, Kleene, Curry, Schütte, Feferman, Cohen.

1A curious fact, mentioned in [8], is that some Finnish universities, for example, the University of
Turku, purchased in 1960s and 1970s Russian translations of American or West-European research
due to financial reasons, since they were much cheaper than the original editions.
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An one-hour talk was given by Schütte, 30 minutes talks by Cohen, Ershov (from
Novosibirsk), joint talk by Shanin (the head of the logic group at Leningrad Branch
of Steklov Mathematical Institute), Tseitin, and Zaslavski. Junior logicians from
Leningrad (Maslov, Matiyasevich, Mints, Orevkov, Slissenko) participated in ICM
with 15 minutes talks and had many opportunities to discuss logical problems
with western colleagues. Tarski mentions [4] his dinner at “Praha” restaurant with
Mal’cev (Maltsev), Markov, Shanin, Ershov, Kleene, Curry, Chang, Feferman. After
the ICM Tarski visited Leningrad and gave a talk. Earlier, in 1965, both Moscow and
Leningrad were visited by John McCarthy. G. Mints, whose works on the ε-symbol
we shall consider below, was greatly influenced by G. Kreisel. Mints considered
Kreisel (who did several important works concerning the ε-symbol himself) as one
of his teachers. Kreisel visited the USSR in 1976, but actively communicated with
Mints before (cf. [14]).

I cannot go too much into detail in this short paper, but would like to recommend
the book [19] for a more general picture of the East-West scientific and cultural
exchanges during Cold War times.

Another illustration of active interaction of soviet researchers with worldwide
research community is a series of biannual Finnish-Soviet Logic Conferences that
started in 1976. “Somewhere around 1975 J. Hintikka and V.A. Smirnov have agreed
to hold Finnish-Soviet Conference on logic” [9] 2.

The proceedings of the first Soviet-Finnish Logic Conference included 6 papers
by soviet participants. Among other contributions let us mention the papers by
S. Feferman, J. Hintikka, J. Ketonen, G. Kreisel, D. Prawitz, R. Statman, D. Van
Dalen. As Karpenko writes [9], the second Finnish-Soviet Logic Conference was
held in Moscow, at the Institute of Philosophy, in 1979. The first Finnish-Soviet-
Polish Logic Conference at Polanica-Zdrój was held in 1981. The series of Finnish-
Soviet Logic Conferences continued (Helsinki, 1983; Telavi, Georgia, 1985; Helsinki,
1987; Moscow, 1989). It continued even after the fall of the USSR (until 1997, and
restarted in 2012)3.

Among early works on the ε-operator one may cite V. A. Smirnov [38] (from Insti-
tute of Philosophy), and G. E. Mints [20] (from Leningrad Branch of Mathematical
Institute). In Smirnov’s paper [38] (published in French) Hilbert, Bernays, Quine,

2Finland played a special role in this interaction. It was a liberal democracy, but it was not
a NATO member and had a special relationship with the USSR because of the conditions of the
Agreement of Friendship, Cooperation, and Mutual Assistance (1948). In times of the Cold War
it was considered as a kind of “neutral ground". For example, in 1975 it was the venue of the
Conference on Security and Co-operation in Europe.

3I guess that the interruption was connected with the changes in the finance of scientific research.
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Russell, Sloupiétzski4 were mentioned, but there is no bibliography. Mints [20] cited
several publications, in particular [3], [16], [17], [18], [36]. From this brief outline it
is clear that a large variety of sources was accessible, at least to researchers working
in academic institutions. It is interesting to notice the role of Japanese and Polish
sources, in addition to German, English and American.

We may agree that the most important contributions of the USSR researchers
concerning the ε-symbol belong to mathematical logics. This is true also for con-
tinuation of this line of research after the fall of the USSR. As B. H. Slater writes:
“A good deal of technical work has been done, as a result of such proofs, to create
epsilon extensions of Intuitionistic Logic which are conservative.” [37] It is more dif-
ficult to agree with Slater that this work is now mostly of academic interest. The
research on ε in the post-soviet time included the studies of ε-substitutions for anal-
ysis [25] and other theories [1], [29] (see the discussion in Stanford Encyclopedia of
Philosophy [2]).

As said above, the first paper on the ε-operator by a soviet researcher was the
paper [38] published in “Revue Internationale de Philosophie” in 1971. In 1974 two
more mathematical papers were published: the paper [3] by Albert Dragalin and [20]
by Grigori Mints.

Here is a brief outline of the main points of Mints’ paper (which takes into
account the two others):

• It is known, that adding the ε-axiom A[t] → A[εxA] to Heyting’s (intuition-
istic) predicate calculus HA gives a non-conservative extension - for example,
the formula ∃x(¬Px→ ¬Pb ∧ ¬Pa) becomes derivable5.

• We know (says Mints) two conservative ε-extensions of HA. In one of them,
due to V. A. Smirnov, a rather limiting constraint is imposed on the notion
of proof. We shall use another formulation, due to A. G. Dragalin; in this
formulation functions defined by ε-expressions, are seen as partially defined.

• A. G. Dragalin...uses model-theoretical methods; we shall use proof-theoretical
methods, that may be extended to stronger systems, and obtain a supplemen-
tary theorem about cut-elimination for proofs of arbitrary formulas, not only
ε-free.

• These results admit natural extension to Intuitionistic Predicate Calculus with
decidable equality (i.e., with supplementary axiom ∀x∀y(x = y ∨¬x = y) and

4In fact it has to be Jerzy Słupecki, who published a book with Ludwik Borkowski on logic and
set theory; its russian edition appeared in 1965.

5Here HA may be a misprint, since below Mints speaks about Heyting’s arithmetic, and calls
Heyting’s predicate calculus HP C.
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to Heyting’s arithmetic with free functional variables and a choice principle in
the form

Γ→ ∀x∃yA ∀xAy[f(x)],Γ→ C

Γ→ C

where f does not occur in Γ, C,A. An extension to Heyting’s arithmetic with
bound variables of higher types and with a respective choice principle requires
new ideas.

• The system studied in the paper is denotedHPCε. It is obtained from Heyting
Predicate Calculus HPC with two sorts of variables (free and bound), with
functional symbols but without equality by addition of the following term
formation rule: for a formula A, a free and x bound variable εxAa[x] is a
term. The system HPCε has the same postulates as Hentzen’s LJ (except
modified ∃ →), but the definition of proof is different.

• An occurrence V of some sequent in a tree-form figure (of deduction) is called
meaningful6 if for every quasiterm εxA in V , there is in the antecedent of V
or in some sequent lying below V a member

(1) ∀α1...∀αn∃xA
where α1, ..., αn is the full list of free variables of quasiformula ∃xA. The (1)
is denoted !εxA.

• The figure (of deduction) that is built from axioms A → A using deduction
rules is called meaningful if all sequents in it are meaningful.

• There are three theorems: the cut elimination theorem for HPCε, the conser-
vativity theorem for HPCε w.r.t. HPC and the theorem that the following
rule

∀xAy[f(x)],Γ→ C

∀x∃yA,Γ→ C

is admissible in HPCε and HPC for function symbols f that do not occur in
A,Γ, C.

This work by Mints keeps its relevance for modern research. A surprising fact is
that later he might underestimate its relevance himself. Bruno Woltzenlogel Paleo
met Mints in 2012 and discussed his current work about epsilonization (in collabo-
raion with Giselle Reis). As he wrote to the author, concerning [20]: “the work you
pointed to us is much more relevant than the work Grigori Mints recommended. He
must have forgotten.”7 Mints recommended [34].

6“Osmyslennyi” in Russian.
7E-mail to the author, 6 Oct. 2015.
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Next paper by V. A. Smirnov [39], presented initially as a talk at the First Soviet-
Finnish Conference, was published in 1979. In this paper Smirnov recalls the history
of his intuitionistic system of natural deduction with the ε-symbol (a conservative
extension of the system without ε). Dragalin’s technique is used to obtain a similar
result for the system of natural deduction with identity. At the same conference
was presented also the talk by Yu. Gladkich “Singular Terms, Existence and Truth:
Some Remarks on a First Order Logic of Existence” published later in the same
proceedings as [39].

In 1982 and 1989 Mints published two papers [21], [22].

• Zbl 0523.03043 [21]: The paper contains a simplified proof of Ackermann’s
theorem about the consistency of Peano Arithmetic. The proof is based on
Hilbert’s idea to apply so called ε-substitutions to systems of arithmetical
formulas (...). A careful analysis of the behaviour of the above substitutions
and (...) give a proof of the convergence of a suitable system of ε-substitutions.
Hence Ackermann’s theorem follows. (E. Adamowicz)

• Zbl 0677.03040 [22]: The Hilbert epsilon-substitution method is extended
to some formalizations of the theory of hereditarily finite sets. Applying the
methodology developed in an earlier paper (...) the convergence (...) for the
theory of hereditarily finite sets is established which generalizes the Ackermann
theorem of the convergence of the epsilon-substitution method for first-order
arithmetic. (B.R. Boricić)

After the end of the USSR, G. Mints (with some co-authors of the next gener-
ation) was, no doubt the most active (among the researchers formed in the USSR)
to pursue the studies of ε. V. A. Smirnov also continued to work in this direc-
tion [40], [41], [42]8.

The papers of this period are easily accessible, so there is less need for a detailed
presentation.

G. Mints did work on versions of ε-substitution method in various systems, prob-
lems of completeness, termination and cut elimination [24], [25], [26], [27], [28],
[29], [30], [31], [32], [33], [34], [35]. Among his collaborators were W. Buchholz, D.
Sarenac, S. Tupailo.

Some of these papers concerned other aspects of ε-methods, such as their rela-
tionship to Kripke semantics. Here is the abstract of [34]:

8It must be noticed that in the USSR and post-soviet Russia mathematical logic interacted
very little with philosophical logic and philosophy of language. The V. A. Smirnov’s works had
considerable influence on philosophical community.
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• A natural deduction system for intuitionistic predicate logic with the existen-
tial instantiation rule presented here uses Hilbert’s ε-symbol. It is conservative
over intuitionistic predicate logic. We provide a completeness proof for a suit-
able Kripke semantics, sketch an approach to a normalization proof, survey
related work and state some open problems. Our system extends intuitionistic
systems with the ε-symbol due to A. Dragalin and Sh. Maehara.

In the paper with Sarenac [31] Mints studied context-dependent descriptions and
so called “salience hierarchy”. Here is the abstract:

• Epsilon terms indexed by contexts were used by K. von Heusinger9 to represent
definite and indefinite noun phrases as well as some other constructs of natural
language. We provide a language and a complete first order system allowing
to formalize basic aspects of this representation. The main axiom says that for
any finite collection S1, ..., Sk of distinct definable sets and elements a1, ..., ak

of these sets there exists a choice function assigning ai to Si for all i ≤ k. We
prove soundness and completeness theorems for this system Sεi .

The method of the proof proposed in [31] is based on a modification of the
completeness proof for first-order predicate calculus given by Henkin [7]. Recently
a critical analysis of [31] was presented in a talk by Hans Leiss10. His criticism
concerns two important points: one technical (there is a gap in the proof), and one
conceptual (whether the first-order theory proposed by Mints and Sarenac is an
adequate representation of the second-order theory of von Heusinger).

It is clear, however, that independently of the results of this controversy [31]
turns out to be a very stimulating work.

In his talk at Montpellier conference mentioned above Hans Leiss proposed what
he himself described as a non-conclusive counterexample, and tried to “fill the gap”
in the Mints-Sarenac proof (to modify the construction of term model).

An attempt to reflect a second-order theory in a first-order system also looks
promising even if the details need to be fixed. One may hope that this theme will
see new interesting developments.

It reminds the story of another proof proposed by G. Mints that was included
in [43]. One may read there (p. 281): “Our treatment follows Mints [1992d], with
a correction in proposition 8.4.12. (The correction was formulated after exchanges
between Mints, Solovjov and the authors.)” It is meant here a “short proof” of so

9in his paper [6]
10At the same conference where the initial version of this work was presented, Epsilon 2015.

Hilbert’s epsilon and tau in logic, informatics and linguistics, Montpellier, LIRMM, 10-12 June
2015.
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called Coherence Theorem for Cartesian Closed Categories. First proof that was
considerably longer was published by the author of this article and A. Babaev in
1979. G. Mints suggested a much shorter proof in 1992.

Conclusion. If I wanted to make a “lesson” from the history of studies of
the ε-symbol outlined above, I would stress the role of continuity and interaction.
Indeed, the papers by Smirnov, Mints and Dragalin could hardly appear in 1970s
without continuity of the development of logic inside and outside the USSR, and
strong collaboration between researchers on an international level.

The role of these factors remains vital even after the end of the USSR, as it is
clearly seen from the examples above.
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Abstract
Free variables occur frequently in mathematics and computer science with ad
hoc and altering semantics. We present here the most recent version of our free-
variable framework for two-valued logics with properly improved functionality,
but only two kinds of free variables left (instead of three): implicitly universally
and implicitly existentially quantified ones, now simply called “free atoms”
and “free variables”, respectively. The quantificational expressiveness and the
problem-solving facilities of our framework exceed standard first-order logic
and even higher-order modal logics, and directly support Fermat’s descente
infinie. With the improved version of our framework, we can now model
also Henkin quantification, neither using any binders (such as quantifiers or
epsilons) nor raising (Skolemization). Based only on the traditional ε-formula
of Hilbert–Bernays, we present our flexible and elegant semantics for Hilbert’s ε
as a choice operator with the following features: We avoid overspecification
(such as right-uniqueness), but admit indefinite choice, committed choice, and
classical logics. Moreover, our semantics for the ε supports reductive proof
search optimally.

Keywords: Logical Foundations, Theories of Truth and Validity, Formalized
Mathematics, Human-Oriented Interactive Theorem Proving, Automated Theorem
Proving, Choice, Hilbert’s epsilon-Operator, Henkin Quantification, Fermat’s
Descente Infinie.

1 Overview
Driven by a weakness in representing Henkin quantification (cf. [111, § 6.4.1]) and
inspired by nominal terms (cf. e.g. [101]), in this paper we significantly improve our
semantic free-variable framework for two-valued logics:
This is an invited paper.
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1. We have replaced the two-layered construction of free δ+-variables on top of
free γ-variables over free δ−-variables of [106; 108; 111] with a one-layered
construction of free variables over free atoms:

• Free variables without choice-condition now play the former rôle of the
γ-variables.

• Free variables with choice-condition play the former rôle of the
δ+-variables.

• Free atoms now play the former rôle of the δ−-variables.

2. As a consequence, the proofs of the lemmas and theorems have shortened by
more than a factor of 2. Therefore, we now can present all the proofs in this
paper and make it self-contained in this aspect; whereas in [108; 111], we had
to point to [106] for most of the proofs.

3. The difference between free variables and atoms and their names are now
more standard and more clear than those of the different free variables before;
cf. § 2.1.

4. Compared to [106], besides shortening the proofs, we have made the meta-
level presuppositions more explicit in this paper; cf. § 5.8.

5. Last but not least, we can now treat Henkin quantification in a direct way;
cf. § 5.11.

Taking all these points together, the version of our free-variable framework presented
in this paper is the version we recommend for further reference, development, and
application: it is indeed much easier to handle than its predecessors.

And so we found it appropriate to present most of the material from [108;
111] in this paper in the improved form; we have omitted only the discussions on
the tailoring of operators similar to our ε, and on the analysis of natural-language
semantics. The material on mathematical induction in the style of Fermat’s des-
cente infinie in our framework of [106] is to be reorganized accordingly in a later
publication.

This paper is organized as follows. There are three introductory sections: to our
free variables and atoms (§ 2), to their relation to our reductive inference rules (§ 3),
and to Hilbert’s ε (§ 4). Afterward we explain and formalize our novel approach
to the semantics of our free variables and atoms and the ε (§ 5), and summarize
and discuss it (§ 6). We conclude in § 7. In an appendix, the reader can find a
discussion of the literature on extended semantics given to Hilbert’s ε-operator in
the 2nd half of the 20th century, and on Leisenring’s axiom (E2) (§ A). The proofs
of all lemmas and theorems can be found in § B.
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2 Introduction to Free Variables and Atoms
2.1 Outline
Free variables or free atoms occur frequently in practice of mathematics and com-
puter science. The logical function of these free symbols varies locally; it is typically
determined ad hoc by the context. And the intended semantics is given only implic-
itly and varies from context to context. In this paper, however, we will make the
semantics of our free variables and atoms explicit by using disjoint sets of symbols
for different semantic functions; namely we will use the following sets of symbols:

V (the set of free variables),
A (the set of free atoms),
B (the set of bound1atoms).

An atom typically stands for an arbitrary object in a proof attempt or in a discourse.
Nothing else is known on any atom. Atoms are invariant under renaming. And
we will never want to know anything about a possible atom but whether it is an
atom, and, if yes, whether it is identical to another atom or not. In our context
here, for reasons of efficiency, we would also like to know whether an atom is a free
or a bound one. The name “atom” for such an object has a tradition in set theories
with atoms. (In German, besides “Atom”, an atom is also called an “Urelement”,
but that alternative name puts some emphasis on the origin of creation, in which
we are not interested here.)

A variable, however, in the sense we will use the word in this paper, is a place-
holder in a proof attempt or in a discourse, which gathers and stores information
and which may be replaced with a definition or a description during the discourse
or proof attempt. The name “free variable” for such a place-holder has a tradition
in free-variable semantic tableaus; cf. [20; 21].

Both variables and atoms may be instantiated with terms. Only variables, how-
ever, may refer to other free variables and atoms, or may depend on them; and only
variables have the following properties w.r.t. instantiation:

1. If a variable is instantiated, then this affects all of its occurrences in the
entire state of the proof attempt (i.e. it is rigid in the terminology of semantic
tableaus). Thus, if the instantiation is executed eagerly, the variable must be
replaced globally in all terms of the entire state of the proof attempt with the
same term; afterwards the variable can be eliminated from the resulting proof

1“Bound” atoms (or variables) should actually be called “bindable” instead of “bound”, because
we will always have to treat some unbound occurrences of “bound” atoms. When the name of the
notion of bound variables was coined, however, neither “bindable” nor the German “bindbar” were
considered to be proper words of their respective languages, cf. [62, § 4].
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forest completely — without any further effect on the chance to complete it
into a successful proof.

2. The instantiation may be relevant for the consequences of a proof because the
global replacement may strengthen the input proposition (or query) by pro-
viding a witnessing term for an existential property stated in the proposition
(or by providing an answer to the query).

By contrast to these properties of variables, atoms cannot refer to any other symbols,
nor depend on them in any form. Moreover, free atoms have the following properties
w.r.t. instantiation:

1. A free atom may be
• globally renamed, or else
• locally and possibly repeatedly instantiated with arbitrary different terms

in the application of lemmas or induction hypotheses (provided that the
instantiation is admissible in the sense of Theorem 5.27(7)).

We cannot eliminate a free atom safely, however. Indeed, neither global re-
naming nor local instantiation can achieve that completely.

2. The question with which terms an atom was actually instantiated can never
influence the consequences of a proof (whereas it may be relevant for book-
keeping or for a replay mechanism).

2.2 Notation
The classification as a (free) variable, (free) atom, or bound atom will be indicated
by adjoining a “V”, an “A”, or a “B”, respectively, as a label to the upper right of
the meta-variable for the symbol. If a meta-variable stands for a symbol of the union
of some of these sets, we will indicate this by listing all possible sets; e.g. “xVA ” is
a meta-variable for a symbol that may be either a free variable or a free atom.

Meta-variables with disjoint labels always denote different symbols; e.g.
“xV ” and “xA ” will always denote different symbols, whereas “xVA ” may denote
the same symbol as “xA ”. In formal discussions, also “xA ” and “yA ” may denote
the same symbol. In concrete examples, however, we will implicitly assume that
different meta-variables denote different symbols.

2.3 Semantics of Free Variables and Atoms
2.3.1 Semantics of Free Atoms

As already noted by Russell in 1919 [89, p.155], free symbols of a formula often have
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an obviously universal intention in mathematical practice, such as the free symbols
m, p, and q in the formula

(m)(p+q) = (m)(p) ∗ (m)(q).
Moreover, the formula itself is not meant to denote a propositional function, but
actually stands for the explicitly universally quantified, closed formula

∀mB, pB, q B.
(

(mB)(p
B+qB) = (mB)(p

B) ∗ (mB)(q
B)
)

.

In this paper, however, we indicate by

(mA)(p
A+qA) = (mA)(p

A) ∗ (mA)(q
A),

a proper formula with free atoms, which — independent of its context — is equivalent
to the explicitly universally quantified formula, but which also admits the reference
to the free atoms, which is required for mathematical induction in the style of
Fermat’s descente infinie, and which may also be beneficial for solving reference
problems in the analysis of natural language. So the third version combines the
practical advantages of the first version with the semantic clarity of the second
version.

2.3.2 Semantics of Free Variables

Changing from universal to existential intention, it is somehow clear that the linear
system of the formula (

2 3
5 7

)(
x
y

)
=

(
11
13

)

asks us to find the set of solutions for x and y, say (x, y) ∈ {(−38, 29)}. The mere
existence of such solutions is expressed by the explicitly existentially quantified,
closed formula

∃xB, y B.

( (
2 3
5 7

)(
xB

y B

)
=

(
11
13

) )
.

In this paper, however, we indicate by
(
2 3
5 7

)(
xV

yV

)
=

(
11
13

)

a proper formula with free variables, which — independent of its context — is
equivalent to the explicitly existentially quantified formula, but which admits also
the reference to the free variables, which is required for retrieving solutions for
xV and yV as instantiations for xV and yV chosen in a formal proof. So the third
version again combines the practical advantages of the first with the semantic clarity
of the second.
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3 Reductive Inference Rules

We will now present the essential reductive inference rules for our free-variable frame-
work. Regarding form and notation, please note the following:

We choose a sequent-calculus representation to enhance the readability of the
rules and the explicitness of eliminability of formulas. As we restrict ourselves to
two-valued logics, we just take the right-hand side of standard sequents. This means
that our sequents are just disjunctive lists of formulas.

We assume that all binders have minimal scope; e.g.
∀xB, y B. A ∧ B

reads
(∀xB. ∀y B. A) ∧ B.

Our reductive inference rules will be written “reductively” in the sense that
passing the line means reduction. Note that in the good old days when trees grew
upward, Gerhard Gentzen (1909–1945) would have inverted the inference rules such
that passing the line means consequence. In our case, passing the line means
reduction, and trees grow downward.

Raymond M. Smullyan (1919–2017) has classified reductive inference rules into
α-, β-, γ-, and δ-rules, and invented a uniform notation for them [98].

In the following rules, let A always be a formula and Γ and Π be sequents.

3.1 α- and β-Rules

α-rules are the non-branching propositional rules, such as
Γ ¬¬A Π

Γ A Π

Γ A ⇒ B Π

Γ ¬A B Π

β-rules are the branching propositional rules, which reduce a sequent to several
sequents, such as

Γ ¬(A ⇒ B) Π
Γ A Π
Γ ¬B Π

3.2 γ-Rules

Suppose we want to prove an existential proposition ∃y B. A. Here “y B” is a bound
variable according to standard terminology, but as it is an atom according to our
classification of § 2.1, we will speak of a “bound atom” instead. Then the γ-rules of
old-fashioned inference systems (such as Gentzen’s [30] or Smullyan’s [98]) enforce
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the choice of a witnessing term t as a substitution for the bound atom immediately
when eliminating the quantifier.

γ-rules: Let t be any term:
Γ ∃y B. A Π

A{y B 7→t} Γ ∃y B. A Π

Γ ¬∀y B. A Π

¬A{y B 7→t} Γ ¬∀y B. A Π

More modern inference systems (such as the ones in Fitting’s [21]) enable us to delay
the crucial choice of the term t until the state of the proof attempt may provide more
information to make a successful decision. This delay is achieved by introducing a
special kind of variable.

This special kind of variable is called “dummy” in Prawitz’ [84] and Kanger’s
[66], “free variable” in Fitting’s [20; 21] and in Footnote 11 of Prawitz’ [84], “meta
variable” in the field of planning and constraint solving, and “free γ-variable” in
Wirth’s [106; 107; 108; 109; 111; 112] and Wirth &al.’s [114; 115].

In this paper, we call these variables simply “free variables” and write them like
“yV ”. When these additional variables are available, we can reduce ∃y B. A first
to A{y B 7→ yV} and then sometime later in the proof we may globally replace yV

with an appropriate term.
The addition of these free variables changes the notion of a term, but not the

notation of the γ-rules, whereas it will become visible in the δ-rules.

3.3 δ−-Rules

A δ-rule may introduce either a free atom (δ−-rule) or an ε-constrained free variable
(δ+-rule, cf. § 3.4).

δ−-rules: Let xA be a fresh free atom:

Γ ∀xB. A Π

A{xB 7→xA} Γ Π V(Γ ∀xB. A Π)× {xA}

Γ ¬∃xB. A Π

¬A{xB 7→xA} Γ Π V(Γ ¬∃xB. A Π)× {xA}

Note that V(Γ ∀xB. A Π) stands for the set of all symbols from V (in this case:
the free variables) that occur in the sequent Γ ∀xB. A Π.
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Let us recall that a free atom typically stands for an arbitrary object in a dis-
course of which nothing else is known. The free atom xA introduced by the δ−-rules is
sometimes also called “parameter”, “eigenvariable”, or “free δ-variable”. In Hilbert-
calculi, however, this free atom is called a “free variable”, because the non-reductive
(i.e. generative) deduction in Hilbert-calculi admits its unrestricted instantiation by
the substitution rule, cf. p. 63 of Hilbert–Bernays’ [57] or p. 62 of Hilbert–Bernays’
[59; 62]. The equivalents of the δ−-rules in Hilbert–Bernays’ predicate calculus are
Schemata (α) and (β) on p. 103f. of [57] or on p. 102f. of [59; 62].

The occurrence of the free atom xA of the δ−-rules must be disallowed in the
terms that may be used to replace those free variables which have already been in use
when xA was introduced by application of the δ−-rule, i.e. the free variables of the
upper sequent to which the δ−-rule was applied. The reason for this restriction of
instantiation of free variables is that the dependencies (or scoping) of the quantifiers
must be somehow reflected in the dependencies of the free variables on the free
atoms. In our framework, these dependencies are to be captured in binary relations
on the free variables and the free atoms, called variable-conditions.

Indeed, it is sometimes unsound to instantiate a free variable xV with a term
containing a free atom yA that was introduced later than xV:

Example 3.1 (Soundness of δ−-rule)
The formula ∃y B. ∀xB. (y B =xB)
is not universally valid. We can start a reductive proof attempt as follows:

γ-step: ∀xB. (yV =xB), ∃y B. ∀xB. (y B =xB)
δ−-step: (yV =xA), ∃y B. ∀xB. (y B =xB)

Now, if the free variable yV could be replaced with the free atom xA, then we would
get the tautology (xA =xA), i.e. we would have proved an invalid formula. To pre-
vent this, as indicated to the lower right of the bar of the first of the δ−-rules, the
δ−-step has to record

V(∀xB. (yV =xB), ∃y B. ∀xB. (y B =xB))× {xA} = {(yV, xA)}
in a variable-condition, where (yV, xA) means that yV is somehow “necessarily older”
than xA, so that we may never instantiate the free variable yV with a term containing
the free atom xA.
Starting with an empty variable-condition, we extend the variable-condition during
proof attempts by δ-steps and by global instantiations of free variables. Roughly
speaking, this kind of global instantiation of these rigid free variables is consistent if
the resulting variable-condition (seen as a directed graph) has no cycle after adding,
for each free variable yV instantiated with a term t and for each free variable or
atom xVA occurring in t, the pair (xVA, yV). This consistency, however, would be
violated by the cycle between yV and xA if we instantiated yV with xA.
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3.4 δ+-Rules
There are basically two different versions of the δ-rules: standard δ−-rules (also sim-
ply called “δ-rules”) and δ+-rules (also called “liberalized δ-rules”). They differ in
the kind of symbol they introduce and — crucially — in the way they enlarge the
variable-condition, depicted to the lower right of the bar:

δ+-rules: Let xV be a fresh free variable:
Γ ∀xB. A Π

(
xV, εxB. ¬A

)

A{xB 7→xV} Γ Π VA(∀xB. A)× {xV}
Γ ¬∃xB. A Π

(
xV, εxB. A

)

¬A{xB 7→xV} Γ Π VA(¬∃xB. A)× {xV}

While in the (first) δ−-rule, V(Γ ∀xB. A Π) denotes the set of the free variables
occurring in the entire upper sequent, in the (first) δ+-rule, VA(∀xB. A) denotes the
set of all free variables and all free atoms, but only the ones occurring in particular
in the principal 2 formula ∀xB. A.

Therefore, the variable-conditions generated by the δ+-rules are typically smaller
than the ones generated by the δ−-rules. Smaller variable-conditions permit addi-
tional proofs. Indeed, the δ+-rules enable additional proofs on the same level of
γ-multiplicity (i.e. the maximal number of repeated γ-steps applied to the identical
principal formula); cf. e.g. [106, Example 2.8, p. 21]. For certain classes of theorems,
these proofs are exponentially and even non-elementarily shorter than the shortest
proofs which apply only δ−-rules; for a short survey cf. [106, § 2.1.5]. Moreover, the
δ+-rules provide additional proofs that are not only shorter but also more natural
and easier to find, both automatically and for human beings; see the discussion on
design goals for inference systems in [106, § 1.2.1], and the formal proof of the limit
theorem for + in [107; 110]. All in all, the name “liberalized” for the δ+-rules is
indeed justified: They provide more freedom to the prover.3

Moreover, note that the pairs indicated to the upper right of the bar of the
δ+-rules are to augment another global binary relation besides the variable-condi-

2The notions of a principal formula (in German: Hauptformel) and a side formula (Seitenformel)
were introduced in [30] and refined in [90]. Very roughly speaking, the principal formula of an
inference rule is the formula that is reduced by that rule, and the side formulas are the resulting
pieces replacing the the principle formula. In our reductive inference rules here, the principal
formulas are the formulas above the lines except the ones in Γ , Π (which are called parametric
formulas, in German: Nebenformeln), and the side formulas are the formulas below the lines
except the ones in Γ , Π.

3Cf. § C.1.
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tion, namely a function called the choice-condition.
Roughly speaking, the addition of an element (xV, εxB. ¬A) to the current

choice-condition — as required by the first of the δ+-rules — is to be interpreted
as the addition of the equational constraint xV = εxB. ¬A. To preserve the
soundness of the δ+-step under subsequent global instantiation of the free variable xV,
this constraint must be observed in such instantiations. What this actually means
will be explained in § 4.12.

All of the three following systems are sound and complete for first-order logic:
The one that has (besides the straightforward propositional rules (α-, β-rules) and
the γ-rules) only the δ−-rules, the one that has only the δ+-rules, and the one that
has both the δ−- and δ+-rules.

For a replay of Example 3.1 using the δ+-rule instead of the δ−-rule, see Exam-
ple 4.12 in § 4.12.

3.5 Skolemization

Note that there is a popular alternative to variable-conditions, namely Skolem-
ization, where the δ−- and δ+-rules introduce functions (i.e. the logical order of the
replacements for the bound atoms is incremented) which are given the free variables
of V(Γ ∀xB. A Π) and V(∀xB. A) as initial arguments, respectively. Then, the
occur-check of unification implements the restrictions on the instantiation of free
variables, which are required for soundness. In some inference systems, however,
Skolemization is unsound (e.g. for higher-order systems such as the one in [68] or
the system in [106] for descente infinie) or inappropriate (e.g. in the matrix systems
of [102]).

We prefer inference systems that include variable-conditions to inference systems
that offer only Skolemization. Indeed, this inclusion provides a more general and
often simpler approach, which never results in a necessary reduction in efficiency.
Moreover, note that variable-conditions cannot add unnecessary complications here:

• If, in some application, variable-conditions are superfluous, then we can work
with empty variable-conditions as if there would be no variable-conditions
at all.

• We will need the variable-conditions anyway for our choice-conditions, which
again are needed to formalize our approach to Hilbert’s ε-operator.
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4 Introduction to Hilbert’s ε

4.1 Motivation
Hilbert’s ε-symbol is an operator or binder that forms terms, just like Peano’s ι-
symbol. Roughly speaking, the term εxB. A, formed from a bound atom (or
“bound variable”) xB and a formula A, denotes just some object that is chosen
such that — if possible — A (seen as a predicate on xB) holds for this object.

For Ackermann, Bernays, and Hilbert, the ε was an intermediate tool in proof
theory, to be eliminated in the end. Instead of giving a model-theoretic seman-
tics for the ε, they just specified those axioms which were essential in their proof
transformations. These axioms did not provide a complete definition, but left the ε
underspecified.

Descriptive terms such as εxB. A and ιxB. A are of universal interest and
applicability. Our more elegant and flexible treatment turns out to be useful in many
areas where logic is designed or applied as a tool for description and reasoning.

4.2 Requirements Specification
For the usefulness of such descriptive terms we consider the following requirements
to be the most important ones.
Requirement I (Indication of Commitment):

The syntax must clearly express where exactly a commitment to a choice of
a particular object is required, and where, to the contrary, different objects
corresponding with the description may be chosen for different occurrences of
the same descriptive term.

Requirement II (Reasoning):
It must be possible to replace a descriptive term with a term that corresponds
with its description. The correctness of such a replacement must be expressible
and should be verifiable in the original calculus.

Requirement III (Semantics):
The semantics should be simple, straightforward, natural, formal, and model-
based. Overspecification should be carefully avoided. Furthermore, the
semantics should be modular and abstract in the sense that it adds the oper-
ator to a variety of logics, independent of the details of a concrete logic.

Our more elegant and flexible, indefinite treatment of the ε-operator is compat-
ible with Hilbert’s original one and satisfies these requirements. As it involves
novel semantic techniques, it may also serve as the paradigm for the design
of similar operators.
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4.3 Overview

In § A of the appendix, the reader can find an update of our review form [108;
111] of the literature on extended semantics given to Hilbert’s ε-operator in the 2nd

half of the 20th century. In the current § 4, we will now introduce to the ι and
the ε (§§ 4.4 and 4.5), to the ε’s proof-theoretic origin (§ 4.6), and to our more
general semantic objective (§ 4.7) with its emphasis on indefinite and committed
choice (§ 4.8).

4.4 From the ι to the ε

As the ε-operator was developed as an improvement over the still very popular
ι-operator, a careful discussion of the ι in this section is required for a deeper un-
derstanding of the ε.

4.4.1 The Symbols for the ι-Operator

The probably first descriptive ι-operator occurs in Frege’s [23, Vol. I], written as a
boldface backslash. As a boldface version of the backslash is not easily available in
standard typesetting, we will use a simple backslash (\) in § 4.4.4.

A slightly different ι-operator occurs in Peano’s [79], written as “ῑ ”, i.e. as an
overlined ι. In its German translation [81], we also find an alternative symbol with
the same denotation, namely an upside-down ι-symbol. Both symbols are meant
to indicate the inverse of Peano’s ι-function, which constructs the set of its single
argument.

Nowadays, however, “{y}” is written for Peano’s “ιy”, and thus — as a sim-
plifying convention to avoid problems in typesetting and automatic indexing —
a simple ι should be used to designate the descriptive ι-operator, without overlining
or inversion.

4.4.2 The Essential Idea of the ι-Operator

Let us define the quantifier of unique existence by
∃!xB. A := ∃y B. ∀xB. ((y B=xB) ⇔ A),

for some fresh y B. All the slightly differing specifications of the ι-operator agree
in the following point: If there is a unique xB such that the formula A (seen as a
predicate on xB) holds, then the ι-term ιxB. A denotes this unique object:

∃!xB. A ⇒ A{xB 7→ ιxB. A} (ι0)
or in different notation (∃!xB. (A(xB))) ⇒ A(ιxB. (A(xB))).
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Example 4.1 (ι-operator)
For an informal introduction to the ι-operator, consider Father to be a predicate for
which Father(Heinrich III,Heinrich IV) holds, i.e. “Heinrich III is father of Heinrich IV”.
Now, “the father of Heinrich IV” is designated by ιxB. Father(xB,Heinrich IV), and
because this is nobody but Heinrich III, i.e. Heinrich III = ιxB. Father(xB,Heinrich IV),
we know that Father(ιxB. Father(xB,Heinrich IV),Heinrich IV). Similarly,

Father(ιxB. Father(xB,Adam),Adam), (4.1.1)
and thus ∃y B. Father(y B,Adam), but, oops! Adam and Eve do not have any fathers.
If you do not agree, you probably appreciate the following problem that occurs when
somebody has God as an additional father.

Father(Holy Ghost, Jesus) ∧ Father(Joseph, Jesus). (4.1.2)
Then the Holy Ghost is the father of Jesus and Joseph is the father of Jesus:

Holy Ghost = ιxB. Father(xB, Jesus) ∧ Joseph = ιxB. Father(xB, Jesus) (4.1.3)
This implies something the Pope may not accept, namely Holy Ghost = Joseph,
and he anathematized Heinrich IV in the year 1076:

Anathematized(ιxB. Pope(xB),Heinrich IV, 1076). (4.1.4)

4.4.3 Elementary Semantics Without Straightforward Overspecification

Semantics without a straightforward form of overspecification can be given to the
ι-terms in the following three elementary ways:

Russell’s non-referring ι-operator of 1905 in [88]:
In Principia Mathematica [103] by Bertrand Russell (1872–1970) and Alfred
North Whitehead (1861–1947), an ι-term is given a meaning only in form of
quantifications over contexts C[· · · ] of the occurrences of the ι-term: C[ιxB. A]
is defined as a short form for

∃y B.
(
∀xB.

(
(y B=xB) ⇔ A

)
∧ C[y B]

)
.

This definition is peculiar because the definiens is not of the expected form C[t]
(for some term t), and because an ι-term on its own — i.e. without a
context C[· · · ] — cannot directly refer to an object that it may be intended
to denote.

This was first presented in 1905 as a linguistic theory of descriptions in Rus-
sell’s [88] — but without using any symbol for the ι.

Russell’s On Denoting [88] became so popular that the term “non-referring”
had to be introduced to make aware of the fact that Russell’s ι-terms
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are not denoting (in spite of the title), and that Russell’s theory of de-
scriptions ignores the fundamental reference aspect of descriptive terms,
cf. Strawson’s On Referring [100].

Hilbert–Bernays’ presuppositional ι-operator of 1934 in [57]:
To overcome the complex difficulties of Russell’s non-referring semantics, in § 8
of the first volume of the two-volume monograph Foundations of Mathematics
(Grundlagen der Mathematik, 1st edn. 1934 [57], 2nd edn. 1968 [59]) by David
Hilbert (1862–1943) and Paul Bernays (1888–1977), a completed proof of
∃!xB. A is required to precede each formation of a term ιxB. A, which other-
wise is not considered a well-formed term at all.
This way of defining the ι is nowadays called “presuppositional”. This word
occurs in relation to Hilbert–Bernays’ ι in [94] of 2007 and in [96, §§ 1, 6,
and 8f.] of 2009, but it does not occur in Russell’s [100], and we do not know
where it occurs first with this meaning.

Peano’s partially specified ι-operator of 1896 in [79]:
Since Hilbert–Bernays’ presuppositional treatment makes the ι quite imprac-
tical and the formal syntax of logic undecidable in general, in § 1 of the
second volume of Hilbert–Bernays’ Foundations of Mathematics (1st edn. 1939
[58], 2nd edn. 1970 [60]), Hilbert’s ε, however, is already given a more flexible
treatment: The simple idea is to leave the ε-terms uninterpreted. This will be
described below. In this paper, we will present this more flexible treatment
also for the ι.
After all, this treatment is the original one of Peano’s ι, found already in 1896
in the article Studii di Logica Matematica [79].4

4 In [79] of 1896f., Guiseppe Peano (1858–1932) wrote ῑ instead of the ι of Example 4.1, and
ῑ{ x | A } instead of ιx.A. (Note that we have changed the class notation to modern standard
here. Peano actually wrote x∈A instead of { x | A } in [79].)
The bar above the ι (just as the alternative inversion the symbol) were to indicated that ῑ was
implicitly defined as the inverse operator of the operator ι defined by ιy := {y}, which occurred
already occurs in Peano’s [78] of 1890 and still in Quine’s [85] of 1981.
The definition of ῑ reads literally [79, Definition 22]:

a∈K . ∃a : x, y ∈ a . ⊃x,y . x= y : ⊃ : x = ῑa . = . a= ιx
This straightforwardly translates into more modern notation as follows:

For any class a: a 6= ∅ ∧ ∀x, y. (x, y ∈ a ⇒ x= y) ⇒ ∀x. (x = ῑa ⇔ a= ιx)
Giving up the flavor of an explicit definition of “x = ῑa ”, this can be simplified to the following
equivalent form: For any class a: ∃!x. x∈ a ⇒ ῑa∈ a (ῑ0)
Besides notational difference, this is (ι0) of our § 4.4.2.
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It cannot surprise that it was Peano — interested in written languages for speci-
fication and communication, but hardly in calculi — who came up with the only
practical specification of ι-terms (unlike Russell and Hilbert–Bernays).

Moreover, by the partiality of his specification, Peano avoided also the other
pitfall, namely overspecification, and all its unintended consequences (unlike Frege
and Quine, cf. § 4.4.4). As the symbol “ι” was invented by Peano as well (cf. § 4.4.1),
we have good reason to speak of “Peano’s ι ”, at least as much as we have reason
to speak of “Hilbert’s ε ”.

It must not be overlooked that Peano’s ι — in spite of its partiality — always
denotes: It is not a partial operator, it is just partially specified.

At least in non-modal classical logics, it is a well justified standard that each term
denotes. More precisely — in each model or structure S under consideration — each
occurrence of a proper term must denote an object in the universe of S. Following
that standard, to be able to write down ιxB. A without further consideration,
we have to treat ιxB. A as an uninterpreted term about which we only know
axiom (ι0) from § 4.4.2.

With (ι0) as the only axiom for the ι, the term ιxB. A has to satisfy A (seen
as a predicate on xB) only if there exists a unique object such that A holds for it.
The price, however, we have to pay for the avoidance of non-referringness, presup-
positionality, and overspecification is that — roughly speaking — the term ιxB. A
is of no use unless the unique existence ∃!xB. A can be derived.

Finally, let us come back to Example 4.1 of § 4.4.2. The problems presented
there do not actually appear if (ι0) is the only axiom for the ι, because (4.1.1)
and (4.1.3) are not valid. Indeed, the description of (4.1.1) lacks existence and the
descriptions of (4.1.3) and (4.1.4) lack uniqueness.

4.4.4 Overspecified ι-Operators

From Frege to Quine, we find a multitude of ι-operators with definitions that over-
specify the ι in different ways for the sake of complete definedness and syntactic
eliminability. As we already stated in Requirement III (Semantics) of § 4.2, over-
specification should be carefully avoided. Indeed, any overspecification leads to
puzzling, arbitrary consequences, which may cause harm to the successful applica-
tion of descriptive operators in practice.

Frege’s arbitrarily overspecified ι-operator of 1893 in [23]:
The first occurrence of a descriptive ι-operator in the literature seems to
be in 1893, namely in § 11 of the first volume of the two-volume monograph
Grundgesetze der Arithmetik — Begriffsschriftlich abgeleitet [23] by Gottlob
Frege (1848–1925):

449



Wirth

For A seen as a function from objects to truth values, \A (in our notation
ιA or ιxB. A) is defined to be the object ∆ if A is extensionally equal to the
function that checks for equality to ∆, i.e. if A = λxB. (∆ = xB).
In the case that there is no such ∆, Frege overspecified his ι-operator pretty
arbitrarily by defining \A to be A, which is not even an object, but a function.
(Note that Frege actually wrote an ε (having nothing to do with the ε-operator)
instead of our xB, and a spiritus lenis over it instead of a modern λ-operator
before and a dot after it. Moreover, he wrote a ξ for the A.)

Set theory’s overspecified ι-operator:
In set theories without urelements of 1981, such as in Quine’s [85] of 1981, the
ι-operator can be defined by something like

ιxB. A :=
{

z B ∃y B.
(
∀xB. ((y B=xB) ⇔ A) ∧ z B ∈ y B

) }
,

for fresh y B and z B.

This is again an overspecification resulting in ιxB. A = ∅ if there is no
such y B (which otherwise is always unique).

4.4.5 A Completely Defined, but Not Overspecified ι-Operator

The complete definitions of the ι in § 4.4.4 take place in possibly inconsistent logical
frameworks, namely Frege’s Begriffsschrift and Quine’s set theory.

That neither overspecification nor possible inconsistency are necessary for com-
plete definitions of the ι is witnessed by the following complete, but non-elementary
definition of the ι, which is also referring and non-presuppositional.

The ε-calculus’ ι-operator:
In the ε-calculus, which is a conservative extension of first-order predicate
calculus, first elaborated in 1939 in the second volume of Hilbert–Bernays’
Foundations of Mathematics [58], we can define the ι simply by

ιxB. A := εy B. ∀xB. ((y B =xB) ⇔ A)

(for a fresh y B), i.e. as the unique xB such that A holds (provided there is
such an xB).
This definition is non-elementary, however, because it introduces ε-terms,
which cannot be eliminated in first-order logic in general.
Note that this definition is — to the best of our knowledge — the most use-
ful and elegant way to introduce the ι, although it is somehow ex eventu,
because the development of the ε was started two dozen years after the first
publications on Frege’s and Peano’s ι-operators.
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4.5 The ε as an Improvement over the ι

Compared to the ι, the ε is more useful because — instead of (ι0) — it comes with
the stronger axiom ∃xB. A ⇒ A{xB 7→ εxB. A} (ε0)

More specifically, as the formula ∃xB. A (which has to be true to guarantee an
interpretation of the ε-term εxB. A that is meaningful in the sense that it satisfies
its formula A) is weaker than the corresponding formula ∃!xB. A (for the respective
ι-term), the area of useful application is wider for the ε- than for the ι-operator.
Indeed, we have already seen in § 4.4.5 that the ι can be defined in terms of the ε,
but not vice versa.

Moreover, in case of ∃!xB. A, the ε-operator picks the same element as the
ι-operator: ∃!xB. A ⇒

(
εxB. A = ιxB. A

)
.

Thus, unless eliminability is relevant, we should replace all useful occurrences
of the ι with the ε : As a consequence, among other advantages, the arising proof
obligations become weaker and both human and automated generation and gener-
alization of proofs become more efficient.

4.6 On the ε’s Proof-Theoretic Origin

4.6.1 The ε-Formula and the Historical Sources of the ε

The main historical source on the ε is the second volume of the Foundations of
Mathematics [57; 58; 59; 60], the fundamental work which summarizes the founda-
tional and proof-theoretic contributions of David Hilbert and his mathematical-logic
group.

The preferred specification for Hilbert’s ε in proof-theoretic investigations is not
the axiom (ε0), but actually the following formula:

A{xB 7→xA} ⇒ A{xB 7→ εxB. A} (ε-formula)

The ε-formula is equivalent to (ε0), but it gets along without any quantifier.
The name “ε-formula” originates in [58, p. 13], where the ε-operator is simply

called “Hilbert’s ε-symbol”.
For historical correctness, note that the notation in the original is closer to

A(xA) ⇒ A(εxB. A(xB)),
where the A is a concrete singulary predicate atom (called “formula variable” in the
original) and comes with several extra rules for its instantiation, cf. [58, p. 13f.].
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The exact notation actually is
A(a) ⇒ A(εxA(x)),

and the deductive equivalence is straightforward to the exact notation of (ε0), i.e. to
(Ex)A(x) ⇒ A(εxA(x)),

cf. [58, pp. 13–15].
In our notation, however, (ε0) and the ε-formula are axiom schemata where

the A is a meta-variable for a formula (which, contrary to the predicate atom, may
contain occurrences of xA). Nevertheless, their deductive equivalence is given for
versions of (ε0) and the ε-formula where the A is replaced with A{xA 7→yA} for some
fresh (free) atom yA, from which both (ε0) and the ε-formula can be obtained by
instantiation.

The ε-formula already occurs, however under different names, in the pioneering
papers on the ε, i.e. in Ackermann’s [1] of 1925 as “transfinite axiom 1”, in Hilbert’s
[47] of 1926 as “axiom of choice” (in the operator form A(a) ⇒ A(εA), where the
ε is called “transfinite logical choice function”), and in Hilbert’s [48] of 1928 as
“logical ε-axiom” (again in operator form, where the ε is called “logical ε-function”).

4.6.2 The Original Explanation of the ε

As the basic methodology of Hilbert’s program is to treat all symbols as meaningless,
no semantics is required besides the one given by the single axiom (ε0). To further
the understanding, however, we read on p.12 of [58; 60]:

εxB. A . . . “ist ein Ding des Individuenbereichs, und zwar ist dieses Ding
gemäß der inhaltlichen Übersetzung der Formel (ε0) ein solches, auf das
jenes Prädikat A zutrifft, vorausgesetzt, daß es überhaupt auf ein Ding
des Individuenbereichs zutrifft.”

εxB. A . . . “is a thing of the domain of individuals for which — according
to the contentual translation of the formula (ε0) — the predicate A holds,
provided that A holds for any thing of the domain of individuals at all.”

Example 4.2 (ε instead of ι) (continuing Example 4.1 of § 4.4.2)
Just as for the ι, for the ε we have Heinrich III = εxB. Father(xB,Heinrich IV) and

Father(εxB. Father(xB,Heinrich IV),Heinrich IV).
But, from the contrapositive of (ε0) and ¬Father(εxB. Father(xB,Adam),Adam),
we now conclude that ¬∃y B. Father(y B,Adam).
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4.6.3 Defining the Quantifiers via the ε

Hilbert and Bernays did not need any semantics or precise intention for the ε-symbol
because it was introduced merely as a formal syntactic device to facilitate proof-
theoretic investigations, motivated by the possibility to get rid of the existential and
universal quantifiers via two direct consequences of axiom (ε0):

∃xB. A ⇔ A{xB 7→ εxB. A} (ε1)

∀xB. A ⇔ A{xB 7→ εxB. ¬A} (ε2)

These equivalences can be seen as definitions of the quantifiers because innermost
rewriting with (ε1), (ε2) yields a normal form after as many steps as there are
quantifiers in the input formula. Moreover, also arbitrary rewriting is confluent and
terminating, cf. [113].

It should be noted, however, that rewriting with (ε1), (ε2) must not be taken for
granted under modal operators, at least not under the assumption that ε-terms are
to remain rigid, i.e. independent in their interpretation from their modal contexts.
For this assumption there are very good reasons, nicely explained e.g. in [94; 96].

Example 4.3 Consider the first-order modal logic formula
�∃xB. A.

Moreover, to simplify matters, let us assume that we have constant domains, i.e.
that all modal contexts have the same domain of individuals.

Under this condition and for a formula of this structure, it is suggested in [94,
p.153] to apply (ε1) to the considered formula, resulting in

�A{xB 7→ εxB. A},
from which we can doubtlessly conclude

∃xB. �A,
e.g. by Formula (a) in § 4.6.4.

Let us interpret the � as “believes” and A as “xB is the number of rice corns
in my car”, and let our constant domain be the one of the standard model of the
natural numbers. Note that I do not believe of any concrete and definite number
that it numbers the rice corns in my car just because I believe that their number is
finite.

This interpretation shows that our rewriting with (ε1) under the operator �
is incorrect for modal logic in general, at least for rigid ε-terms.

On the other hand, rewriting with (ε1), (ε2) above modal operators is uncritical:
∃xB. �A is indeed equivalent to �A{xB 7→ εxB. �A}.
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4.6.4 The ε-Theorems

When we remove all quantifiers in a derivation of the Hilbert-style predicate calculus
of the Foundations of Mathematics along (ε1) and (ε2), the following transforma-
tions occur:

• Tautologies are turned into tautologies.

• The axioms

A{xB 7→xA} ⇒ ∃xB. A (Formula (a))
and

∀xB. A ⇒ A{xB 7→xA} (Formula (b))

(cf. p. 100f. of [57] or p. 99f. of [59; 62]), are turned into the ε-formula
(cf. § 4.6.1) and, roughly speaking, its contrapositive, respectively.

Indeed, for the case of Formula (b), we can replace first all A with ¬A, and
after applying (ε2), replace ¬¬A with A, and thus obtain the contrapositive
of the ε-formula.

• The inference steps are turned into inference steps: the inference schema
[of modus ponens] into the inference schema; the substitution rule for free
atoms as well as quantifier introduction (Schemata (α) and (β) on p. 103f. of
[57] or on p. 102f. of [59; 62]) into the substitution rule including ε-terms.

• Finally, the ε-formula is taken as a new axiom scheme instead of (ε0) because
it has the advantage of being free of quantifiers.

The argumentation of the previous paragraphs is actually part of the proof trans-
formation that constructively proves the first of Hilbert–Bernays’ two theorems on
ε-elimination in first-order logic, the so-called 1st ε-Theorem. In its sharpened form,
this theorem can be stated as follows. Note that the original speaks of “bound vari-
ables” instead of “bound atoms” and of “formula variables” instead of “predicate
atoms”, because what we call (free) “variables” is not part of the formula languages
of Hilbert–Bernays.
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Theorem 4.4 (Sharpened 1st ε-Theorem, [58, p.79f.])
From a derivation of ∃xB

1 . . . .∃xB
r . A (containing no bound atoms besides the ones

bound by the prefix ∃xB
1 . . . .∃xB

r . ) from the formulas P1, . . . , Pk (containing neither
predicate atoms nor bound atoms) in the predicate calculus (incl. the ε-formula and
=-substitutability as axiom schemes, plus =-reflexivity), we can construct a (finite)
disjunction of the form

∨s
i=0 A{xB

1 , . . . , x
B
r 7→ ti,1, . . . , ti,r} and a derivation of it

• in which bound atoms do not occur at all
• from P1, . . . , Pk and =-axioms (containing neither predicate atoms nor bound

atoms)
• in the quantifier-free predicate calculus (i.e. tautologies plus the inference

schema [of modus ponens] and the substitution rule).
Note that r, s range over natural numbers including 0, and that A, ti,j, and Pi are
ε-free because otherwise they would have to include (additional) bound atoms.

Moreover, the 2nd ε-Theorem (in [58; 60]) states that the ε (just as the ι, cf. [57;
59]) is a conservative extension of the predicate calculus in the sense that each
formal proof of an ε-free formula can be transformed into a formal proof that does
not use the ε at all.

For logics different from classical axiomatic first-order predicate logic, however,
it is not a conservative extension when we add the ε either with (ε0), with (ε1),
or with the ε-formula to other first-order logics — may they be weaker such as
intuitionist first-order logic, or stronger such as first-order set theories with axiom
schemes over arbitrary terms including the ε ; cf. [108, § 3.1.3]. Moreover, even in
classical first-order logic there is no translation from the formulas containing the ε
to formulas not containing it.

4.7 Our Objective
While the historiographical and technical research on the ε-theorems is still going
on and the methods of ε-elimination and ε-substitution did not die with Hilbert’s
program, this is not our subject here. We are less interested in Hilbert’s formal
program and the consistency of mathematics than in the powerful use of logic in
creative processes. And, instead of the tedious syntactic proof transformations,
which easily lose their usefulness and elegance within their technical complexity and
which — more importantly — can only refer to an already existing logic, we look
for model-theoretic means for finding new logics and new applications. And the
question that still has to be answered in this field is:

What would be a proper semantics for Hilbert’s ε?
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4.8 Indefinite and Committed Choice

Just as the ι-symbol is usually taken to be the referential interpretation of the definite
articles in natural languages, it is our opinion that the ε-symbol should be that of
the indefinite determiners (articles and pronouns) such as “a(n)” or “some”.

Example 4.5 (ε instead of ι again) (continuing Example 4.1)
It may well be the case that

Holy Ghost = εxB. Father(xB, Jesus) ∧ Joseph = εxB. Father(xB, Jesus)
i.e. that “The Holy Ghost is a father of Jesus and Joseph is a father of Jesus.”
But this does not bring us into trouble with the Pope because we do not know
whether all fathers of Jesus are equal. This will become clearer when we reconsider
this in Example 4.14.

Closely connected to indefinite choice (also called “indeterminism” or “don’t care
nondeterminism”) is the notion of committed choice. For example, when we have
a new telephone, we typically don’t care which number we get, but once a number
has been chosen for our telephone, we will insist on a commitment to this choice, so
that our phone number is not changed between two incoming calls.

Example 4.6 (Committed choice)
Suppose we want to prove ∃xB. (xB 6= xB)
According to (ε1) from § 4.6 this reduces to εxB. (xB 6=xB) 6= εxB. (xB 6=xB)
Since there is no solution to xB 6=xB we can replace
εxB. (xB 6=xB) with anything. Thus, the above reduces to 0 6= εxB. (xB 6=xB)
and then, by exactly the same argumentation, to 0 6= 1
which is true in the natural numbers.
Thus, we have proved our original formula ∃xB. (xB 6= xB), which, however, is false.
What went wrong? Of course, we have to commit to our choice for all occurrences
of the ε-term introduced when eliminating the existential quantifier: If we choose 0
on the left-hand side, we have to commit to the choice of 0 on the right-hand side
as well.

4.9 Quantifier Elimination and Subordinate ε-terms

Before we can introduce to our treatment of the ε, we also have to get more ac-
quainted with the ε in general.

The elimination of ∀- and ∃-quantifiers with the help of ε-terms (cf. § 4.6) may
be more difficult than expected when some ε-terms become “subordinate” to others.
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Definition 4.7 (Subordinate) An ε-term εv B. B (or, more generally, a binder
on v B together with its scope B) is superordinate to an (occurrence of an)
ε-term εxB. A if

1. εxB. A is a subterm of B and
2. an occurrence of the bound atom v B in εxB. A is free in B

(i.e. the binder on v B binds an occurrence of v B in εxB. A ).
An (occurrence of an) ε-term εxB. A is subordinate to an ε-term εv B. B (or,
more generally, to a binder on v B together with its scope B) if εv B. B is
superordinate to εxB. A.

On p. 24 of [58; 60], these subordinate ε-terms, which are responsible for the dif-
ficulty to prove the ε-theorems constructively, are called “untergeordnete ε-Aus-
drücke”. Note that — contrary to Hilbert–Bernays — we do not use a special name
for ε-terms with free occurrences of bound atoms here — such as “ε-Ausdrücke”
(“ε-expressions” or “quasi ε-terms”) instead of “ε-Terme” (“ε-terms”) — but sim-
ply call them “ε-terms” as well.

Example 4.8 (Quantifier Elimination and Subordinate ε-Terms)
Let us repeat the formulas (ε1) and (ε2) from § 4.6 here:

∃xB. A ⇔ A{xB 7→ εxB. A} (ε1)
∀xB. A ⇔ A{xB 7→ εxB. ¬A} (ε2)

Let us consider the formula
∃wB. ∀xB. ∃y B. ∀z B. P(wB, xB, y B, z B)

and apply (ε1) and (ε2) to remove the four quantifiers completely.
We introduce the following abbreviations, where wB, xB, y B, wB

a , xB
a, y B

a , z B
a are

bound atoms and wa, xa, ya, za are meta-level symbols for functions from terms to
terms:
za(w

B)(xB)(y B) = εz B
a. ¬P(w B, xB, y B, z B

a)
ya(w

B)(xB) = εy B
a. P(w

B, xB, y B
a, za(w

B)(xB)(y B
a))

xa(w
B) = εxB

a. ¬P(w B, xB
a, ya(w

B)(xB
a), za(w

B)(xB
a)(ya(w

B)(xB
a)))

wa = εw B
a. P(w

B
a, xa(w

B
a), ya(w

B
a)(xa(w

B
a)), za(w

B
a)(xa(w

B
a))(ya(w

B
a)(xa(w

B
a))))

Innermost rewriting with (ε1) and (ε2) results in a unique normal form after at most
as many steps as there are quantifiers. Thus, we eliminate inside-out, i.e. we start
with the elimination of ∀z B. The transformation is:
∃w B. ∀xB. ∃y B. ∀z B. P(w B, xB, y B, z B),
∃w B. ∀xB. ∃y B. P(w B, xB, y B, za(w

B)(xB)(y B)),
∃w B. ∀xB. P(w B, xB, ya(w

B)(xB), za(w
B)(xB)(ya(w

B)(xB))),
∃w B. P(w B, xa(w

B), ya(w
B)(xa(w

B)), za(w
B)(xa(w

B))(ya(w
B)(xa(w

B)))),
P(wa, xa(wa), ya(wa)(xa(wa)), za(wa)(xa(wa))(ya(wa)(xa(wa)))).
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Note that the resulting formula is quite deep and has more than one thousand
occurrences of the ε-binder. Indeed, in general, n nested quantifiers result in an
ε-nesting depth of 2n−1.

To understand this, let us have a closer look a the resulting formula. Let us write it
as

P(wa, xb, yd, zh) (4.8.1)
then (after renaming some bound atoms) we have

zh = εz B
h. ¬P(wa, xb, yd, z

B
h), (4.8.2)

yd = εy B
d. P(wa, xb, y

B
d, zg(y

B
d)) (4.8.3)

with zg(y
B
d) = εz B

g . ¬P(wa, xb, y
B
d, z

B
g ), (4.8.4)

xb = εxB
b . ¬P(wa, x

B
b , yc(x

B
b), zf (x

B
b)) (4.8.5)

with zf (x
B
b) = εz B

f . ¬P(wa, x
B
b , yc(x

B
b), z

B
f )

and yc(x
B
b) = εy B

c . P(wa, x
B
b , y

B
c , ze(x

B
b)(y

B
c ))

with ze(x
B
b)(y

B
c ) = εz B

e . ¬P(wa, x
B
b , y

B
c , z

B
e ),

(4.8.6)
(4.8.7)
(4.8.8)

wa = εw B
a. P(w

B
a, xa(w

B
a), yb(w

B
a), zd(w

B
a)) (4.8.9)

with zd(w
B
a) = εz B

d . ¬P(w B
a, xa(w

B
a), yb(w

B
a), z

B
d)

and yb(w
B
a) = εy B

b . P(w
B
a, xa(w

B
a), y

B
b , zc(w

B
a)(y

B
b ))

with zc(w
B
a)(y

B
b ) = εz B

c . ¬P(w B
a, xa(w

B
a), y

B
b , z

B
c ),

xa(w
B
a) = εxB

a. ¬P(w B
a, x

B
a, ya(w

B
a)(x

B
a), zb(w

B
a)(x

B
a))

with zb(w
B
a)(x

B
a) = εz B

b . ¬P(w B
a, x

B
a, ya(w

B
a)(x

B
a), z

B
b )

and ya(w
B
a)(x

B
a) = εy B

a. P(w
B
a, x

B
a, y

B
a, za(w

B
a)(x

B
a)(y

B
a))

with za(w
B
a)(x

B
a)(y

B
a) =

εz B
a. ¬P(w B

a, x
B
a, y

B
a, z

B
a).

(4.8.10)
(4.8.11)
(4.8.12)
(4.8.13)
(4.8.14)
(4.8.15)
(4.8.16)

First of all, note that the bound atoms with free occurrences in the indented ε-terms
(i.e., in the order of their appearance, the bound atoms y B

d , xB
b , y B

c , wB
a , y B

b , xB
a, y B

a)
are actually bound by the next ε to the left, to which the respective ε-terms thus
become subordinate. For example, the ε-term zg(y

B
d ) is subordinate to the ε-term yd

binding y B
d .

Moreover, the ε-terms defined by the above equations are exactly those that
require a commitment to their choice. This means that each of za, zb, zc, zd, ze, zf ,
zg, zh, each of ya, yb, yc, yd, and each of xa, xb may be chosen differently without
affecting soundness of the equivalence transformation. Note that the variables are
strictly nested into each other; so we must choose in the order of

za, ya, zb, xa, zc, yb, zd, wa, ze, yc, zf , xb, zg, yd, zh.
Furthermore, in case of all ε-terms except wa, xb, yd, zh, we actually have to

choose a function instead of a simple object.
In Hilbert–Bernays’ view, however, there are neither functions nor objects at

all, but only terms (and expressions with free occurrences of bound atoms):
In the standard notation the term xa(w

B
a) reads
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εxB
a. ¬P




w B
a,

xB
a,

εy B
a. P

(
w B

a, xB
a, y B

a, εz B
a. ¬P(w B

a, x
B
a, y

B
a, z

B
a)
)
,

εz B
b . ¬P

(
w B

a, xB
a, εy B

a. P
(
w B

a, xB
a, y B

a, εz B
a. ¬P(w B

a, x
B
a, y

B
a, z

B
a)
)
, z B

b

)


.

Moreover, yb(wB
a) reads

εyB
b . ¬P

0BBBBBBBBBBBBBBBBBBBBBBBBBBB@

wB
a ,

εxB
a. ¬P

0BBBBB@
wB

a ,

xB
a,

εyB
a . P

“
wB

a , xB
a, yB

a , εzB
a . ¬P(wB

a , xB
a, yB

a , zB
a)

”
,

εzB
b . ¬P

“
wB

a , xB
a, εyB

a . P
“

wB
a , xB

a, yB
a , εzB

a . ¬P(wB
a , xB

a, yB
a , zB

a)
”
, zB

b

”

1CCCCCA,

yB
b ,

εzB
c . ¬P

0BBBBBBBBBBB@

wB
a ,

εxB
a. ¬P

0BBBBB@
wB

a ,

xB
a,

εyB
a . P

“
wB

a , xB
a, yB

a , εzB
a . ¬P(wB

a , xB
a, yB

a , zB
a)

”
,

εzB
b . ¬P

“
wB

a , xB
a, εyB

a . P
“

wB
a , xB

a, yB
a , εzB

a . ¬P(wB
a , xB

a, yB
a , zB

a)
”
, zB

b

”

1CCCCCA,

yB
b ,

zB
c

1CCCCCCCCCCCA

1CCCCCCCCCCCCCCCCCCCCCCCCCCCA

.

Condensed data on the above terms read as follows:
ε-nesting depth number of ε-binders Ackermann rank Ackermann degree

za(wB
a)(x

B
a)(y

B
a) 1 1 1 undefined

ya(wB
a)(x

B
a) 2 2 2 undefined

zb(w
B
a)(x

B
a) 3 3 1 undefined

xa(wB
a) 4 6 3 undefined

zc(wB
a)(y

B
b ) 5 7 1 undefined

yb(w
B
a) 6 14 2 undefined

zd(w
B
a) 7 21 1 undefined

wa 8 42 4 1
ze(yB

c )(w
B
a) 9 43 1 undefined

yc(xB
b ) 10 86 2 undefined

zf (x
B
b ) 11 129 1 undefined

xb 12 258 3 2
zg(yB

d) 13 301 1 undefined
yd 14 602 2 3
zh 15 903 1 4
P(wa, xb, yd, zh) 15 1805 undefined undefined

For
∀wB. ∀xB. ∀y B. ∀z B. P(wB, xB, y B, z B)

instead of ∃wB. ∀xB. ∃y B. ∀z B. P(wB, xB, y B, z B), we get the same exponential
growth of nesting depth as in the example above, when we completely eliminate
the quantifiers using (ε2). The only difference is that we get additional occurrences
of ‘¬’. If we have quantifiers of the same kind, however, we had better choose them
in parallel; e.g., for ∀wB. ∀xB. ∀y B. ∀z B. P(wB, xB, y B, z B), we choose

va := εv B. ¬P(1st(v B), 2nd(v B), 3rd(v B), 4th(v B)),
and then take P(1st(va), 2nd(va), 3rd(va), 4th(va)) as result of the elimination.
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Roughly speaking, in today’s automated theorem proving, cf. e.g. [21], the ex-
ponential explosion of term depth of the example above is avoided by an outside-in
removal of δ-quantifiers without removing the quantifiers below ε-binders and by a
replacement of γ-quantified variables with free variables without choice-conditions.
For the formula of Example 4.8, this yields P(wV, xe, y

V, ze) with xe = εxB
e . ¬∃y B.

∀z B. P(wV, xB
e , y

B, z B) and ze = εz B
e . ¬P(wV, xe, y

V, z B
e ). Thus, in general, the

nesting of binders for the complete elimination of a prenex of n quantifiers does not
become deeper than 1

4(n+1)2.
Moreover, if we are only interested in reduction and not in equivalence trans-

formation of a formula, we can abstract Skolem terms from the ε-terms and
just reduce to the formula P(wV, xA(wV), yV, zA(wV)(yV)). In non-Skolemizing
inference systems with variable-conditions we get P(wV, xA, yV, zA) instead, with
{(wV, xA), (wV, zA), (yV, zA)} as an extension to the variable-condition. Note that
with Skolemization or variable-conditions we have no growth of nesting depth at all,
and the same will be the case for our approach to ε-terms.

4.10 Do not be afraid of Indefiniteness!

From the discussion in § 4.8, one could get the impression that an indefinite logi-
cal treatment of the ε is not easy to find. Indeed, on the first sight, there is the
problem that some standard axiom schemes cannot be taken for granted, such as
substitutability

s= t ⇒ f(s)= f(t)

and reflexivity
t= t

Note that substitutability is similar to the extensionality axiom

∀xB. (A0 ⇔ A1) ⇒ εxB. A0 = εxB. A1 (E2)

(cf. § A.1.1) when we take logical equivalence as equality. Moreover, note that

εxB. true = εxB. true (Reflex)

is an instance of reflexivity.
Thus, it seems that — in case of an indefinite ε — the replacement of a subterm

with an equal term is problematic, and so is the equality of syntactically equal terms.
It may be interesting to see that — in computer programs — we are quite used

to committed choice and to an indefinite behavior of choosing, and that the violation
of substitutability and even reflexivity is no problem there:
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Example 4.9 (Violation of Substitutability and Reflexivity in Programs)
In the implementation of the specification of the web-based hypertext system of [73],
we needed a function that chooses an element from a set implemented as a list. Its
ml code is:
fun choose s = case s of Set (i :: _) => i | _ => raise Empty;
And, of course, it simply returns the first element of the list. For another set that
is equal — but where the list may have another order — the result may be different.
Thus, the behavior of the function choose is indefinite for a given set, but any time
it is called for an implemented set, it chooses a particular element and commits to
this choice, i.e.: when called again, it returns the same value. In this case we have
choose s = choose s, but s = t does not imply choose s = choose t.
In an implementation where some parallel reordering of lists may take place, even
choose s = choose s may be wrong.

From this example we may learn that the question of choose s = choose s may
be indefinite until the choice steps have actually been performed. This is exactly
how we will treat our ε. The steps that are performed in logic are related to proving:
Reductive inference steps that make proof trees grow toward the leaves, and choice
steps that instantiate variables and atoms for various purposes.

Thus, on the one hand, when we want to prove
εxB. true = εxB. true

we can choose 0 for both occurrences of εxB. true, get 0= 0, and the proof is
successful.

On the other hand, when we want to prove
εxB. true 6= εxB. true

we can choose 0 for one occurrence and 1 for the other, get 0 6= 1, and the proof is
successful again.

This procedure may seem wondrous again, but is very similar to something quite
common for free variables with empty choice-conditions:

On the one hand, when we want to prove
xV = yV

we can choose 0 to replace both xV and yV, get 0= 0, and the proof is successful.
On the other hand, when we want to prove

xV 6= yV

we can choose 0 to replace xV and 1 to replace yV, get 0 6= 1, and the proof is
successful again.
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4.11 Replacing ε-terms with Free Variables
There is an important difference between the inequations εxB. true 6= εxB. true
and xV 6= yV at the end of § 4.10: The latter does not violate the reflexivity
axiom! And we are going to cure the violation of the former immediately with the
help of our free variables, but now with non-empty choice-conditions. Instead of
εxB. true 6= εxB. true we write xV 6= yV and remember what these free variables
stand for by storing this into a function C, called a choice-condition:

C(xV) := εxB. true,

C(yV) := εxB. true.

For a first step, suppose that our ε-terms are not subordinate to any outside binder
(cf. Definition 4.7). Then, we can replace an ε-term εz B. A with a fresh free
variable zV and extend the partial function C by

C(zV) := εz B. A.

By this procedure we can eliminate all ε-terms without loosing any syntactic infor-
mation.

As a first consequence of this elimination, the substitutability and reflexivity
axioms are immediately regained, and the problems discussed in § 4.10 disappear.

A second reason for replacing the ε-terms with free variables is that the latter
can solve the question whether a committed choice is required: We can express
committed choice by repeatedly using the same free variable, and
choice without commitment by using several variables with the same choice-

condition.
Indeed, this also solves our problems with committed choice of Example 4.6 of § 4.8:
Now, again using (ε1), ∃xB. (xB 6= xB) reduces to xV 6= xV with

C(xV) := εxB. (xB 6= xB)

and the proof attempt immediately fails because of the now regained reflexivity
axiom.

As the second step, we still have to explain what to do with subordinate ε-
terms. If the ε-term εv B

l . A contains free occurrences of exactly the distinct
bound atoms v B

0 , . . . , v B
l−1, then we have to replace this ε-term with the application

term zV(v B
0 ) · · · (v B

l−1) of the same type as v B
l (for a fresh free variable zV) and to

extend the choice-condition C by
C(zV) := λv B

0 . . . . λv B
l−1. εv

B
l . A.
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Example 4.10 (Higher-Order Choice-Condition)
(continuing Example 4.8 of § 4.9)

In our framework, the complete elimination of ε-terms in (4.8.1) of Example 4.8
results in

P(wV
a, x

V
b , y

V
d, z

V
h) (cf. (4.8.1)!)

with the following higher-order choice-condition:
C(zV

h) := εz B
h . ¬P(wV

a, x
V
b , y

V
d, z

B
h) (cf. (4.8.2)!)

C(yV
d) := εy B

d . P(wV
a, x

V
b , y

B
d , z

V
c (y

B
d )) (cf. (4.8.3)!)

C(zV
g) := λy B

d . εz
B
g . ¬P(wV

a, x
V
b , y

B
d , z

B
g ) (cf. (4.8.4)!)

C(xV
b) := εxB

b . ¬P(wV
a, x

B
b , y

V
c (x

B
b ), z

V
f (x

B
b )) (cf. (4.8.5)!)

C(zV
f ) := λxB

b . εz
B
f . ¬P(wV

a, x
B
b , y

V
c (x

B
b ), z

B
f ) (cf. (4.8.6)!)

C(yV
c ) := λxB

b . εy
B
c . P(wV

a, x
B
b , y

B
c , z

V
e (x

B
b )(y

B
c )) (cf. (4.8.7)!)

C(zV
e ) := λxB

b . λy
B
c . εz

B
e . ¬P(wV

a, x
B
b , y

B
c , z

B
e ) (cf. (4.8.8)!)

C(wV
a) := εwB

a . P(wB
a , x

V
a(w

B
a), y

V
b (w

B
a), z

V
d(w

B
a)) (cf. (4.8.9)!)

C(zV
d) := λwB

a . εz
B
d . ¬P(wB

a , x
V
a(w

B
a), y

V
b (w

B
a), z

B
d ) (cf. (4.8.10)!)

C(yV
b ) := λwB

a . εy
B
b . P(wB

a , x
V
a(w

B
a), y

B
b , z

V
c (w

B
a)(y

B
b )) (cf. (4.8.11)!)

C(zV
c ) := λwB

a . λy
B
b . εz

B
c . ¬P(wB

a , x
V
a(w

B
a), y

B
b , z

B
c ) (cf. (4.8.12)!)

C(xV
a) := λwB

a . εx
B
a. ¬P(wB

a , x
B
a, y

V
a(w

B
a)(x

B
a), z

V
b (w

B
a)(x

B
a)) (cf. (4.8.13)!)

C(zV
b ) := λwB

a . λx
B
a. εz

B
b . ¬P(wB

a , x
B
a, y

V
a(w

B
a)(x

B
a), z

B
b ) (cf. (4.8.14)!)

C(yV
a) := λwB

a . λx
B
a. εy

B
a . P(wB

a , x
B
a, y

B
a , z

V
a(w

B
a)(x

B
a)(y

B
a)) (cf. (4.8.15)!)

C(zV
a) := λwB

a . λx
B
a. λy

B
a . εz

B
a . ¬P(wB

a , x
B
a, y

B
a , z

B
a ) (cf. (4.8.16)!)

Note that this representation of (4.8.1) is smaller and easier to understand than all
previous ones. Indeed, by combination of λ-abstraction and term sharing via free
variables, in our framework the ε becomes practically feasible.

All in all, by this procedure we can replace all ε-terms in all formulas and sequents.
The only place where the ε still occurs is the range of the choice-condition C; and
also there it is not essential because, instead of

C(zV) = λv B
0 . . . . λv B

l−1. εv
B
l . A,

we could write
C(zV) = λv B

0 . . . . λv B
l−1. A{v B

l 7→ zV(v B
0 ) · · · (v B

l−1)}
as we have actually done in [106; 107; 108; 110; 111].
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4.12 Instantiating Free Variables (“ε-Substitution”)

Having already realized Requirement I (Indication of Commitment) of § 4.2 in § 4.11,
we are now going to explain how to satisfy Requirement II (Reasoning). To this
end, we have to explain how to replace free variables with terms that satisfy their
choice-conditions.

The first thing to know about free variables with choice-conditions is: Just
like the free variables without choice-conditions (introduced by γ-rules e.g.) and
contrary to free atoms, the free variables with choice-conditions (introduced by δ+-
rules e.g.) are rigid in the sense that the only way to replace a free variable is to
do it globally, i.e. in all formulas and all choice-conditions with the same term in an
atomic transaction.

In reductive theorem proving, such as in sequent, tableau, matrix, or indexed-
formula-tree calculi, we are in the following situation: While a free variable without
choice-condition can be replaced with nearly everything, the replacement of a free
variable with a choice-condition requires some proof work, and a free atom cannot
be instantiated at all.

Contrariwise, when formulas are used as tools instead of tasks, free atoms can
indeed be replaced — and this even locally (i.e. non-rigidly) and repeatedly. This is
the case not only for purely generative calculi (such as resolution and paramodulation
calculi) and Hilbert-style calculi (such as the predicate calculus of Hilbert–Bernays
[57; 58; 59; 60]), but also for the lemma and induction hypothesis application in the
otherwise reductive calculi of [106], cf. [106, § 2.5.2].

More precisely — again considering reductive theorem proving, where formulas
are proof tasks — a free variable without choice-condition may be instantiated with
any term (of appropriate type) that does not violate the current variable-condi-
tion, cf. § 5.7 for details. The instantiation of a free variable with choice-condition
additionally requires some proof work depending on the current choice-condition,
cf. Definition 5.13 for the formal details. In general, if a substitution σ replaces the
free variable yV in the domain of the choice-condition C, then — to know that the
global instantiation of the entire proof forest with σ is correct — we have to prove
(QC(y

V))σ, where QC is given as follows:

Definition 4.11 (QC)
QC is the function that maps every zV ∈ dom(C) with

C(zV) = λv B
0 . . . . λv B

l−1. εv
B
l . B

(for some bound atoms v B
0 , . . . , v

B
l and some formula B) to the single-formula sequent

∀v B
0 . . . .∀v B

l−1.
(
∃v B

l . B ⇒ B{v B
l 7→ zV(v B

0 ) · · · (v B
l−1)}

)
,

and is otherwise undefined.
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Note that QC(y
V) is nothing but a formulation of Hilbert–Bernays’ axiom (ε0) in our

framework. (See our § 4.5 for (ε0)).
Moreover, Lemma 5.19 will state the validity of QC(y

V). Therefore, the com-
mitment to a choice comes only with the substitution σ. Indeed, regarding the
σ-instance of QC(y

V) whose provability is required, it is only the arbitrariness of
the substitution σ that realizes the indefiniteness of the choice for the ε.

Now, as an example for QC , we can replay Example 3.1 and use it for a discussion
of the δ+-rule instead of the δ−-rule:

Example 4.12 (Soundness of δ+-rule)
The formula ∃y B. ∀xB. (y B =xB)

is not universally valid. We can start a reductive proof attempt as follows:
γ-step: ∀xB. (yV =xB), ∃y B. ∀xB. (y B =xB)

δ+-step: (yV =xV), ∃y B. ∀xB. (y B =xB)

Now, if the free variable yV could be replaced with the free variable xV, then we
would get the tautology (xV =xV), i.e. we would have proved an invalid formula.
To prevent this, as indicated to the lower right of the bar of the first of the δ+-rules
in § 3.4 on Page 9, the δ+-step has to record VA(∀xB. (yV =xB))×{xV} = {(yV, xV)}
in a positive variable-condition, where (yV, xV) means that “xV positively depends
on yV ” (or that “yV is a subterm of the description of xV ”), so that we may never
instantiate the free variable yV with a term containing the free variable xV, because
this instantiation would result in cyclic dependencies (or in a cyclic term).

Contrary to Example 3.1, we have a further opportunity here to complete this
proof attempt into a successful proof: If the the substitution σ := {xV 7→yV} could
be applied, then we would get the tautology (yV = yV), i.e. we would have proved
an invalid formula. To prevent this — as indicated to the upper right of the bar of
the first of the δ+-rules in § 3.4 on Page 9 — the δ+-step has to record(

xV, εxB. ¬(yV =xB)
)

in the choice-condition C. If we take this pair as an equation, then the intuition
behind the above statement that yV is somehow a subterm of the description of xV

becomes immediately clear. If we take it as element of the graph of the function C,
however, then we can compute (QC(x

V))σ and try to prove it. QC(x
V) is

∃xB. ¬(yV =xB) ⇒ ¬(yV =xV); so (QC(x
V))σ is

∃xB. ¬(yV =xB) ⇒ ¬(yV = yV). In classical logic with equality this is
equivalent to ∀xB. (yV =xB). If we were able to show the truth of this formula,
then it would be sound to apply the substitution σ to prove the above sequent
resulting from the γ-step. That sequent, however, already includes this formula as
an element of its disjunction. Thus, no progress is possible by means of the δ+-rules
here; and so this example is not a counterexample to the soundness of the δ+-rules.
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Example 4.13 (Predecessor Function)
Suppose that our domain is natural numbers and that yV has the choice-condition

C(yV) = λv B
0 . εv

B
1 .
(
v B
0 = v B

1 + 1
)
.

Then, before we may instantiate yV with the symbol p for the predecessor function
specified by ∀xB.

(
p(xB+1)=xB

)
,

we have to prove the single-formula sequent (Q(yV)){yV 7→ p}, which reads
∀v B

0 .
(
∃v B

1 .
(
v B
0 = v B

1 + 1
)
⇒
(
v B
0 = p(v B

0 )+ 1
) )

.
In fact, the single formula of this sequent immediately follows from the specification
of p. Note that the fact that p(0) is not specified here is no problem in this ε-
substitution because εv B

1 . (0 = v B
1 + 1) is not specified by (ε0) either.

Example 4.14 (Canossa 1077) (continuing Example 4.5)
(See [26] if you want to look behind the omnipresent legend and find out what really
seems to have happened at Canossa in January 1077.)
The situation of Example 4.5 now reads

Holy Ghost = zV
0 ∧ Joseph = zV

1 (4.14.1)
with C(zV

0) = εz B
0 . Father(z

B
0 , Jesus),

and C(zV
1) = εz B

1 . Father(z
B
1 , Jesus).

This does not bring us into the old trouble with the Pope because nobody knows
whether zV

0 = zV
1 holds or not.

On the one hand, knowing (4.1.2) from Example 4.1 of § 4.4, we can prove (4.14.1)
as follows: Let us replace zV

0 with Holy Ghost because, for σ0 := {zV
0 7→ Holy Ghost},

from Father(Holy Ghost, Jesus) we conclude
∃z B

0 . Father(z
B
0 , Jesus) ⇒ Father(Holy Ghost, Jesus),

which is nothing but the required (QC(z
V
0))σ0.

Analogously, we replace zV
1 with Joseph because, for σ1 := {zV

1 7→ Joseph}, from
(4.1.2) we conclude the required (QC(z

V
1))σ1. After these replacements, (4.14.1)

becomes the tautology
Holy Ghost = Holy Ghost ∧ Joseph = Joseph

On the other hand, if we want to have trouble, we can apply the substitution
σ′ = {zV

0 7→ Joseph, zV
1 7→ Joseph}

to (4.14.1) because both (QC(z
V
0))σ

′ and (QC(z
V
1))σ

′ are equal to (QC(z
V
1))σ1 up to

renaming of bound atoms. Then our task is to show
Holy Ghost = Joseph ∧ Joseph = Joseph.

Note that this course of action is stupid, even under the aspect of theorem proving
alone.
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5 Formal Presentation of Our Semantics

To satisfy Requirement III (Semantics) of § 4.2, we will now present our novel seman-
tics for Hilbert’s ε formally. This is required for precision and consistency. As con-
sistency of our new semantics is not trivial at all, technical rigor cannot be avoided.
From §§ 2 and 4, the reader should have a good intuition of our intended represen-
tation and semantics of Hilbert’s ε, free variables, atoms, and choice-conditions in
our framework.

5.1 Organization

After some preliminary subsections, we formalize variable-conditions and their con-
sistency (§ 5.5) and discuss alternatives to the design decisions in the formalization
of variable-conditions (§ 5.6).

Moreover, we explain how to deal with free variables syntactically (§ 5.7) and
semantically (§§ 5.8 and 5.9).

After formalizing choice-conditions and their compatibility (§ 5.10), we define
our notion of validity and discuss some examples (§ 5.11). One of these examples is
especially interesting because we show that — with our new more careful treatment
of negative information in our positive/negative variable-conditions — we can now
model Henkin quantification directly.

Our interest goes beyond soundness in that we want to have “preservation of
solutions”. By this we mean the following: All closing substitutions for the free
variables — i.e. all solutions that transform a proof attempt (to which a proposition
has been reduced) into a closed proof — are also solutions of the original proposi-
tion. This is similar to a proof in Prolog (cf. [69], [13]), computing answers to a
query proposition that contains free variables. Therefore, we discuss this solution-
preserving notion of reduction (§ 5.15), especially under the aspects of extensions
of variable-conditions and choice-conditions (§ 5.12), and of global instantiation of
free variables with choice-conditions (“ε-substitution”) (§ 5.13).

Finally, in § 5.16, we show soundness, safeness, and solution-preservation for
our γ-, δ−, and δ+-rules of §§ 3.2, 3.3, and 3.4.

All in all, we extend and simplify the presentation of [108], which already sim-
plifies and extends the presentation of [106] and which is extended with additional
linguistic applications in [111]. Note, however, that [106] additionally contains some
comparative discussions and compatible extensions for descente infinie, which also
apply to our new version here.

467



Wirth

5.2 Basic Notions and Notation
‘N’ denotes the set of natural numbers and ‘≺’ the ordering on N. Let N+ :=
{ n∈N | 0 6=n }. We use ‘]’ for the union of disjoint classes and ‘id’ for the identity
function. For classes R, A, and B we define:
dom(R) := { a | ∃b. (a, b)∈R } domain
A�R := { (a, b)∈R | a∈A } (domain-) restriction to A
〈A〉R := { b | ∃a∈A. (a, b)∈R } image of A, i.e. 〈A〉R = ran(A�R)

And the dual ones:
ran(R) := { b | ∃a. (a, b)∈R } range
R�B := { (a, b)∈R | b∈B } range-restriction to B
R〈B〉 := { a | ∃b∈B. (a, b)∈R } reverse-image of B, i.e. R〈B〉 = dom(R�B)

We use ‘∅’ to denote the empty set as well as the empty function. Functions are
(right-) unique relations, and so the meaning of “f◦g ” is extensionally given by
(f◦g)(x) = g(f(x)). The class of total functions from A to B is denoted as A→ B.
The class of (possibly) partial functions from A to B is denoted as A ; B. Both
→ and ; associate to the right, i.e. A ; B → C reads A ; (B → C).

Let R be a binary relation. R is said to be a relation on A if dom(R) ∪ ran(R)
⊆ A. R is irreflexive if id∩R = ∅. It is A-reflexive if A�id ⊆ R. Speaking of a
reflexive relation we refer to the largest A that is appropriate in the local context,
and referring to this A we write R0 to ambiguously denote A�id. With R1 := R,
and Rn+1 := Rn◦R for n ∈ N+, Rm denotes the m-step relation for R. The
transitive closure of R is R+ :=

⋃
n∈N+

Rn. The reflexive transitive closure of R
is R∗ :=

⋃
n∈NRn. A relation R (on A) is well-founded if any non-empty class B

(⊆A) has an R-minimal element, i.e. ∃a∈B. ¬∃a′ ∈B. a′Ra.

5.3 Choice Functions
To be useful in context with Hilbert’s ε, the notion of a “choice function” must be
generalized: We need a total function on the power-set of any universe. Thus,
a value must be supplied even for the empty set:

Definition 5.1 ([Generalized] [Function-] Choice Function)
f is a choice function [on A] if f is a function with [A ⊆ dom(f) and]

f : dom(f)→ ⋃
(dom(f)) and ∀Y ∈dom(f).

(
f(Y ) ∈ Y

)
.

f is a generalized choice function [on A] if f is a function with [A ⊆ dom(f) and]
f : dom(f)→ ⋃

(dom(f)) and ∀Y ∈dom(f).
(
f(Y ) ∈ Y ∨ Y = ∅

)
.

f is a function-choice function for a function F if
f is a function with dom(F ) ⊆ dom(f) and ∀x∈dom(F ).

(
f(x) ∈ F (x)

)
.
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Corollary 5.2
The empty function ∅ is both a choice function and a generalized choice function.
If dom(f) = {∅},

then f is neither a choice function nor a generalized choice function.
If ∅ /∈ dom(f), then f is a generalized choice function if and only if

f is a choice function.
If ∅ ∈ dom(f), then f is a generalized choice function if and only if

there is a choice function f ′ and an x ∈ ⋃ (dom(f ′)) such that f = f ′ ] {(∅, x)}.

5.4 Variables, Atoms, Constants, and Substitutions
We assume the following sets of symbols to be disjoint:

V (free) (rigid) variables, which serve as unknowns or
the free variables of Fitting’s [20; 21]

A (free) atoms, which serve as parameters and must not be bound
B bound atoms, which may be bound
Σ constants, i.e. the function and predicate symbols from the signature

We define:
VA := V ] A

VAB := V ] A ] B
By slight abuse of notation, for S ∈ {V,A,B,VA,VAB}, we write “S(Γ )” to denote
the set of symbols from S that have free occurrences in Γ .

Let σ be a substitution. σ is a substitution on V if dom(σ) ⊆ V.

The following indented statement (as simple as it is) will require some discussion.

We denote with “Γσ ” the result of replacing each (free) occurrence
of a symbol x ∈ dom(σ) in Γ with σ(x); possibly after renaming in Γ
some symbols that are bound in Γ, in particular because a capture of
their free occurrences in σ(x) must be avoided.

Note that such a renaming of symbols that are bound in Γ will hardly be required
for the following reason: We will bind only symbols from the set B of bound atoms.
And — unless explicitly stated otherwise — we tacitly assume that all occurrences
of bound atoms from B in a term or formula or in the range of a substitution are
bound occurrences (i.e. that a bound atom xB ∈ B occurs only in the scope of a
binder on xB). Thus, in standard situations, even without renaming, no additional
occurrences can become bound (i.e. captured) when applying a substitution.
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Only if we want to exclude the binding of a bound atom within the scope of
another binding of the same bound atom (e.g. for the sake of readability and in the
tradition of Hilbert–Bernays), then we may still have to rename some of the bound
atoms in Γ. For example, for Γ being the formula ∀xB. (xB = yV) and σ being the
substitution {yV 7→ εxB. (xB =xB)}, we may want the result of Γσ to be something
like ∀z B. (z B = εxB. (xB =xB)) instead of ∀xB. (xB = εxB. (xB =xB)).

Unless explicitly stated otherwise, in this paper we will use only substitutions
on subsets of V. Thus, also the occurrence of “(free)” in the statement indented
above is hardly of any relevance here, because we will never bind elements of V.

5.5 Consistent Positive/Negative Variable-Conditions

Variable-conditions are binary relations on free variables and free atoms. They put
conditions on the possible instantiation of free variables, and on the dependencies
of their valuations. In this paper, for clarity of presentation, a variable-condition
is formalized as a pair (P,N) of binary relations, which we will call a “positive/ne-
gative variable-condition”:

• The first component (P ) of such a pair is a binary relation that is meant
to express positive dependencies. It comes with the intention of transitiv-
ity, although it will typically not be closed up to transitivity for reasons of
presentation and efficiency.
The overall idea is that the occurrence of a pair (xVA, yV) in this positive relation
means something like

“the value of yV may well depend on xVA ”
or

“the value of yV is described in terms of xVA ”.

• The second component (N), however, is meant to capture negative depen-
dencies.
The overall idea is that the occurrence of a pair (xV, yA) in this negative relation
means something like

“the value of xV has to be fixed before the value of yA can be determined”
or

“the value of xV must not depend on yA ”
or

“yA is fresh for xV ”.
Relations similar to this negative relation (N) already occurred as the only
component of a variable-condition in [104], and later — with a completely
different motivation — as “freshness conditions” also in [29].
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Definition 5.3 (Positive/Negative Variable-Condition)
A positive/negative variable-condition is a pair (P,N) with

and
P ⊆ VA × V
N ⊆ V × A .

Note that, in a positive/negative variable-condition (P,N), the relations P and N
are always disjoint because their ranges are subsets of the disjoint sets V and A,
respectively.

A relation exactly like this positive relation (P ) was the only component of a
variable-condition as defined and used identically throughout [105; 106; 107; 108;
110; 111]. Note, however, that, in these publications, we had to admit this single
positive relation to be a subset of VA×VA (instead of the restriction to VA×V of
Definition 5.3 in this paper), because it had to simulate the negative relation (N)
in addition; thereby losing some expressive power as compared to our positive/ne-
gative variable-conditions here (cf. Example 5.20).

In the following definition, the well-foundedness guarantees that all dependencies
can be traced back to independent symbols and that no variable may transitively
depend on itself, whereas the irreflexivity makes sure that no contradictious depen-
dencies can occur.

Definition 5.4 (Consistency)
A pair (P,N) is consistent if

and
P is well-founded

P+ ◦N is irreflexive.

Let (P,N) be a positive/negative variable-condition. Let us think of our (binary)
relations P and N as edges of a directed graph whose vertices are the symbols for
atoms and variables currently in use. Then, P+ ◦ N is irreflexive if and only if
there is no cycle in P ∪N that contains exactly one edge from N . Moreover, in
practice, a positive/negative variable-condition (P,N) can always be chosen to be
finite in both its components. In the case that P is finite, P is well-founded if and
only if P is acyclic. Thus we get:

Corollary 5.5
Let (P,N) be a positive/negative variable-condition with |P | ∈ N.
(P,N) is consistent if and only if

each cycle in the directed graph of P ]N contains more than one edge from N.
In case of |N | ∈ N, the right-hand side of this equivalence can be effectively tested
with an asymptotic time complexity of |P | + |N | .
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Note that, in the finite case, the test of Corollary 5.5 seems to be both the most
efficient and the most human-oriented way to represent the question of consistency
of positive/negative variable-conditions.

5.6 Further Discussion of our Formalization of Variable-Conditions

Let us recall that the two relations P and N of a positive/negative variable-condi-
tion (P,N) are always disjoint because their ranges must be disjoint according to
Definition 5.3. Thus, from a technical point of view, we could merge P and N into
a single relation, but we prefer to have two relations for the two different functions
(the positive and the negative one) of the variable-conditions in this paper, instead
of the one relation for one function of [105; 106; 107; 108; 110; 111], which realized
the negative function only with a significant loss of relevant information.

Moreover, in Definition 5.3, we have excluded the possibility that two atoms
aA, bA ∈ A may be related to each other in any of the two components of a posi-
tive/negative variable-condition (P,N):
• yVA P aA is excluded for intentional reasons: An atom aA cannot depend on

any other symbol yVA. In this sense an atom is indeed atomic and can be seen
as a black box.

• bA N aA, however, is excluded for technical reasons only.
Two distinct atoms aA, bA in nominal terms [101] are indeed always fresh for
each other: aA # bA. In our notation, this would read: bA N aA.
The reason why we did not include (A×A)\A�id into the negative component N
is simply that we want to be close to the data structures of a both efficient
and human-oriented graph implementation.
Furthermore, consistency of a positive/negative variable-condition (P,N) is
equivalent to consistency of

(
P, N ] ((A×A) \ A�id)

)
.

Indeed, if we added (A×A) \ A�id to N, the result of the acyclicity test of
Corollary 5.5 would not be changed: If there were a cycle with a single edge
from (A×A)\A�id, then its previous edge would have to be one of the original
edges of N ; and so this cycle would have more than one edge from N ]
((A×A) \ A�id), and thus would not count as a counterexample to consistency.

Furthermore, we could remove the set B of bound atoms from our sets of symbols
and consider its elements to be elements of the set A of (free) atoms. Besides some
additional care on free occurrences of atoms in § 5.4, an additional price we would
have to pay for this removal is that we would have to include V×B as a subset into
the second component (N) of all our positive/negative variable-conditions (P,N).
The reason for this is that we must guarantee that a bound atom bB cannot be
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read by any variable xV, especially not after an elimination of binders; then, by
this inclusion, in case of bB P+ xV, we would get a cycle bB P+ xV N bB with
only one edge from N. Although, in practical contexts, we can always get along
with a finite subset of V×B, the essential pairs of this subset would still be quite
many and would be most confusing already in small examples. For instance, for the
higher-order choice-condition of Example 4.10, almost four dozen pairs from V×B
are technically required, compared to only a good dozen pairs that are actually
relevant to the problem (cf. Example 5.14(a)).

5.7 Extensions, σ-Updates, and (P,N)-Substitutions
Within a progressing reasoning process, positive/negative variable-conditions may
be subject to only one kind of transformation, which we simply call an “extension”.

Definition 5.6 ([Weak] Extension)
(P ′, N ′) is an [weak ] extension of (P,N) if
(P ′, N ′) is a positive/negative variable-condition, P ⊆ P ′ [or at least P ⊆ (P ′)+],
and N ⊆ N ′.

As an immediate corollary of Definitions 5.6 and 5.4 we get:

Corollary 5.7 If (P ′, N ′) is a consistent positive/negative variable-condition and
an [weak ] extension of (P,N), then (P,N) is a consistent positive/negative vari-
able-condition as well.

A σ-update is a special form of an extension:

Definition 5.8 (σ-Update, Dependence Relation)
Let (P,N) be a positive/negative variable-condition and σ be a substitution on V.
The dependence relation of σ is

D := { (zVA, xV) | xV ∈dom(σ) ∧ zVA ∈VA(σ(xV)) }.
The σ-update of (P,N) is (P ∪D,N). 5

Definition 5.9 ((P,N)-Substitution)
Let (P,N) be a positive/negative variable-condition. σ is a (P,N)-substitution if

σ is a substitution on V and the σ-update of (P,N) is consistent.

Syntactically, (xV, aA)∈N is to express that a (P,N)-substitution σ must not
replace xV with a term in which aA could ever occur; i.e. that aA is fresh for xV:
aA # xV. This is indeed guaranteed if any σ-update (P ′, N ′) of (P,N) is again

5Cf. § C.2.
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required to be consistent, and so on. We can see this as follows: For zV ∈ V(σ(xV)),
we get

zV P ′ xV N ′ aA.
If we now try to apply a second substitution σ′ with aA ∈ A(σ′(zV)) (so that
aA occurs in (xVσ)σ′, contrary to what we initially expressed as our freshness inten-
tion), then σ′ is not a (P ′, N ′)-substitution because, for the σ′-update (P ′′, N ′′)
of (P ′, N ′), we have

aA P ′′ zV P ′′ xV N ′′ aA ;
so (P ′′)+ ◦N ′′ is not irreflexive. All in all, the positive/negative variable-condition

• (P ′, N ′) blocks any instantiation of (xVσ) resulting in a term containing aA,
just as

• (P,N) blocked xV before the application of σ.

5.8 Semantic Presuppositions

Instead of defining truth from scratch, we require some abstract properties typically
holding in two-valued model semantics.

Truth is given relative to a Σ-structure S, which provides some non-empty set
as the universe (or “carrier”, “domain”) (for each type). Moreover, we assume that
every Σ-structure S is not only defined on the predicate and function symbols of the
signature Σ, but is defined also on the symbols ∀ and ∃ such that S(∃) serves as
a function-choice function for the universe function S(∀) in the sense that, for each
type α of Σ, the universe for the type α is denoted by S(∀)α and

S(∃)α ∈ S(∀)α .
For X ⊆ VAB, we denote the set of total S-valuations of X (i.e. functions mapping
atoms and variables in X to objects of the universe of S) with

X→ S ,
and the set of (possibly) partial S-valuations of X with

X ; S .
Here we expect types to be respected in the sense that, for each δ : X→ S and for
each xVAB ∈ X with xVAB : α (i.e. xVAB has type α), we have δ(xVAB) ∈ S(∀)α.

For δ : X→ S, we denote with “S]δ ” the extension of S to X. More precisely,
we assume some evaluation function “eval” such that eval(S]δ) maps every term
whose free-occurring symbols are from Σ]X into the universe of S (respecting types).
Moreover, eval(S]δ) maps every formula B whose free-occurring symbols are from
Σ]X to TRUE or FALSE, such that:

B is true in S]δ iff eval(S]δ)(B)=TRUE.
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We leave open what our formulas and what our Σ-structures exactly are. The latter
can range from first-order Σ-structures to higher-order modal Σ-models; provided
that the following three properties — which (explicitly or implicitly) belong to the
standard of most logic textbooks — hold for every term or formula B, every Σ-struc-
ture S, and every S-valuation δ : VAB ; S .
Explicitness Lemma
The value of the evaluation of B depends only on the valuation of those variables
and atoms that actually have free occurrences in B; i.e., for X := VAB(B), if
X ⊆ dom(δ), then:

eval(S ] δ)(B) = eval(S ] X�δ)(B).

Substitution [Value] Lemma
Let σ be a substitution on VAB. If VAB(Bσ) ⊆ dom(δ), then:
eval(S ] δ)(Bσ) = eval

(
S ]

(
( σ ] VAB\dom(σ)�id ) ◦ eval(S ] δ)

))(
B
)
.

Valuation Lemma
The evaluation function treats application terms from VAB straightforwardly in the
sense that for every vVAB

0 , . . . , vVAB
l−1, y

VAB ∈ dom(δ) with vVAB
0 : α0, . . . , vVAB

l−1 : αl−1,
yVAB : α0 → · · · → αl−1 → αl for some types α0, . . . , αl−1, αl, we have:

eval(S ] δ)(yVAB(vVAB
0 ) · · · (vVAB

l−1)) = δ(yVAB)(δ(vVAB
0 )) · · · (δ(vVAB

l−1)).

Note that we need the case of the Valuation Lemma where yVAB is a higher-order
symbol (i.e. the case of l� 0) only when higher-order choice-conditions are required.
Besides this, the basic language of the general reasoning framework, however, may
well be first-order and does not have to include function application.

Moreover, in the few cases where we explicitly refer to quantifiers, implication,
or negation, such as in our inference rules of §§ 3.2, 3.3, and 3.4. or in our version of
axiom (ε0) (cf. Definition 4.11), and in the lemmas and theorems that refer to these
(namely Lemmas 5.19 and 5.25, Theorem 5.27(6), and Theorem 5.28),6 we have to
know that the quantifiers, the implication, and the negation show the standard
semantic behavior of classical logic:
∀-Lemma
Assume VAB(∀xB. A) ⊆ dom(δ). The following two are equivalent:
• eval(S ] δ)(∀xB. A) = TRUE

• eval(S ] VAB\{xB}�δ ] χ)(A) = TRUE for every χ : {xB} → S
6Lemma 5.19 depends on the backward directions of the ∀-Lemma and the ⇒-Lemma, and on

the forward direction of the ∃-Lemma. Lemma 5.25 and Theorem 5.27(6) depend on the forward
directions of the ∀-Lemma and the ⇒-Lemma, and on the backward direction of the ∃-Lemma.
Theorem 5.28 depends on both directions of the ∀-Lemma, of the ∃-Lemma, and of the ¬-Lemma.
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∃-Lemma
Assume VAB(∃xB. A) ⊆ dom(δ). The following two are equivalent:
• eval(S ] δ)(∃xB. A) = TRUE,
• eval(S ] VAB\{xB}�δ ] χ)(A) = TRUE for some χ : {xB} → S

⇒-Lemma
Assume VAB(A⇒B) ⊆ dom(δ). The following two are equivalent:
• eval(S ] δ)(A⇒B) = TRUE

• eval(S ] δ)(A) = FALSE or eval(S ] δ)(B) = TRUE

¬-Lemma
Assume VAB(A) ⊆ dom(δ). The following two are equivalent:
• eval(S ] δ)(A) = TRUE

• eval(S ] δ)(¬A) = FALSE

5.9 Semantic Relations and S-Raising-Valuations
We now come to some technical definitions required for our semantic (model-
theoretic) counterparts of our syntactic (P,N)-substitutions.

Let S be a Σ-structure. An S-raising-valuation π plays the rôle of a raising
function, a dual of a Skolem function as defined in [75]. This means that π does
not simply map each variable directly to an object of S (of the same type), but may
additionally read the values of some atoms under an S-valuation τ : A→ S. More
precisely, we assume that π takes some restriction of τ as a second argument, say
τ ′ : A ; S with τ ′ ⊆ τ . In short:

π : V→ (A ; S) ; S.
Moreover, for each variable xV, we require that the set dom(τ ′) of atoms read
by π(xV) is identical for all τ . This identical set will be denoted with Sπ〈{xV}〉
below. Technically, we require that there is some “semantic relation” Sπ ⊆ A×V
such that for all xV ∈ V:

π(xV) : (Sπ〈{xV}〉 → S)→ S.
This means that π(xV) can read the τ -value of yA if and only if (yA, xV)∈Sπ. Note
that, for each π : V→ (A ; S) ; S, at most one such semantic relation exists,
namely the one of the following definition.

Definition 5.10 (Semantic Relation (Sπ))
The semantic relation for π is

Sπ := { (yA, xV) | xV ∈V ∧ yA ∈dom(
⋃
(dom(π(xV)))) }.
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Definition 5.11 (S-Raising-Valuation)
Let S be a Σ-structure. π is an S-raising-valuation if

π : V→ (A ; S) ; S
and, for all xV ∈ dom(π):

π(xV) : (Sπ〈{xV}〉 → S)→ S.

Finally, we need the technical means to turn an S-raising-valuation π together with
an S-valuation τ of the atoms into an S-valuation e(π)(τ) of the variables:

Definition 5.12 (e)
We define the function e : (V→ (A ; S) ; S) → (A→ S) → V ; S
for π : V→ (A ; S) ; S, τ : A→ S, xV ∈ V
by e(π)(τ)(xV) := π(xV)(Sπ〈{xV}〉�τ).

The “e” stands for “evaluation” and replaces an “ε” used in previous publications,
which was too easily confused with Hilbert’s ε.

5.10 Choice-Conditions and Compatibility
In the following definition, we define choice-conditions as syntactic objects. They
influence our semantics by a compatibility requirement, which will be described in
Definition 5.15.
Definition 5.13 (Choice-Condition, Return Type)
C is a (P,N)-choice-condition if
• (P,N) is a consistent positive/negative variable-condition and
• C is a partial function from V into the set of higher-order ε-terms

such that, for every yV ∈ dom(C), the following items hold for some types α0, . . . , αl:
1. The value C(yV) is of the form

λv B
0 . . . . λv B

l−1. εv
B
l . B

for some formula B and for some mutually distinct bound atoms v B
0 , . . . , v

B
l

∈ B with B(B) ⊆ {v B
0 , . . . , v

B
l } and v B

0 : α0, . . . , v B
l : αl.

2. yV : α0 → · · · → αl−1 → αl.
3. zVA P+ yV for all zVA ∈ VA(C(yV)).

In the situation described, αl is the return type of C(yV).
β is a return type of C if there is a zV ∈ dom(C) such that β is the return type
of C(zV).
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Example 5.14 (Choice-Condition) (continuing Example 4.10)
(a) If (P,N) is a consistent positive/negative variable-condition that satisfies

zV
a P yV

a P zV
b P xV

a P zV
c P yV

b P zV
d P wV

a P zV
e P yV

c P zV
f P xV

b P zV
g P yV

d P
zV
h,

then the C of Example 4.10 is a (P,N)-choice-condition, indeed.
(b) If some clever person tried to do the entire quantifier elimination of Exam-

ple 4.10 by
C ′(zV

h) := εz B
h . ¬P(wV

a, x
V
b , y

V
d, z

B
h)

C ′(yV
d) := εy B

d . P(w
V
a, x

V
b , y

B
d , z

V
h)

C ′(xV
b) := εxB

b . ¬P(wV
a, x

B
b , y

V
d, z

V
h)

C ′(wV
a) := εwB

a . P(w
B
a , x

V
b , y

V
d, z

V
h)

then he would — among other constraints — have to satisfy zV
h P+ yV

d P+ zV
h,

because of item 3 of Definition 5.13 and the values of C ′ at yV
d and zV

h. This
would make P non-well-founded. Thus, this C ′ cannot be a (P,N)-choice-
condition for any (P,N), because the consistency of (P,N) is required in Defi-
nition 5.13. Note that the choices required by C ′ for yV

d and zV
h are in an

unsolvable conflict, indeed.
(c) For a more elementary example, take

C ′′(xV) := εxB. (xB = yV) C ′′(yV) := εy B. (xV 6= y B)

Then xV and yV form a vicious circle of conflicting choices for which no valua-
tion can be found that is compatible with C ′′. But C ′′ is no choice-condition at
all because there is no consistent positive/negative variable-condition (P,N)
such that C ′′ is a (P,N)-choice-condition.

Definition 5.15 (Compatibility)
Let C be a (P,N)-choice-condition. Let S be a Σ-structure.
π is S-compatible with (C, (P,N)) if the following items hold:

1. π is an S-raising-valuation (cf. Definition 5.11) and
(P ∪ Sπ, N) is consistent (cf. Definitions 5.4 and 5.10).

2. For every yV ∈ dom(C) with C(yV) = λv B
0 . . . . λv B

l−1. εv
B
l . B for some formula

B, and for every τ : A→ S, and for every χ : {v B
0 , . . . , v

B
l } → S:

If B is true in S ] e(π)(τ) ] τ ] χ,
then B{v B

l 7→ yV(v B
0 ) · · · (v B

l−1)} is true in S ] e(π)(τ) ] τ ] χ as well.
(For e, see Definition 5.12.)
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To understand item 2 of Definition 5.15, let us consider a (P,N)-choice-condition
C := {(yV, λv B

0 . . . . λv B
l−1. εv

B
l . B)},

which restricts the value of yV according to the higher-order ε-term
λv B

0 . . . . λv B
l−1. εv

B
l . B. Then, roughly speaking, this choice-condition C requires

that whenever there is a χ-value of v B
l such that B is true in S ] e(π)(τ) ] τ ] χ,

the π-value of yV is chosen in such a way that B{v B
l 7→ yV(v B

0 ) · · · (v B
l−1)} be-

comes true in S ] e(π)(τ) ] τ ] χ as well. Note that the free variables of the
formula B{v B

l 7→ yV(v B
0 ) · · · (v B

l−1)} cannot read the χ-value of any of the bound
atoms v B

0 , . . . , v
B
l , because free variables can never depend on the value of any bound

atoms.
Moreover, item 2 of Definition 5.15 is closely related to Hilbert’s ε-operator in

the sense that — roughly speaking — yV must be given one of the values admissible
for

λv B
0 . . . . λv B

l−1. εv
B
l . B.

As the choice for yV depends on the symbols that have a free occurrence in that
higher-order ε-term, we included these dependencies into the positive relation P of
the consistent positive/negative variable-condition (P,N) in item 3 of Definition 5.13.
By this inclusion, conflicts like the one shown in Example 5.14(c) are obviated.

Let (P,N) be a consistent positive/negative variable-condition. Then the empty
function ∅ is a (P,N)-choice-condition. Moreover, each π : V→ {∅} → S is
S-compatible with (∅, (P,N)) because of Sπ = ∅. Furthermore, assuming an ade-
quate principle of choice on the meta level, a compatible π always exists according
to the following lemma. This existence relies on item 3 of Definition 5.13 and on the
well-foundedness of P.

Lemma 5.16 Let C be a (P,N)-choice-condition. Let S be a Σ-structure.
Assume that, for every return type α of C, there is a generalized choice function on
the power-set of S(∀)α.
[Let ρ be an S-raising-valuation with Sρ ⊆ P+.]
Then there is an S-raising-valuation π such that the following hold:
• π is S-compatible with (C, (P,N)).
• Sπ = A�(P+).

[• V\dom(C)�π = V\dom(C)�ρ. ]
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5.11 (C, (P,N))-Validity

Definition 5.17 ((C, (P,N))-Validity, K)
Let C be a (P,N)-choice-condition. Let G be a set of sequents.
Let S be a Σ-structure. Let δ : VA ; S be an S-valuation.
G is (C, (P,N))-valid in S if

G is (π,S)-valid for some π that is S-compatible with (C, (P,N)).
G is (π,S)-valid if G is true in S ] e(π)(τ) ] τ for every τ : A→ S.
G is true in S]δ if Γ is true in S]δ for all Γ ∈ G.
A sequent Γ is true in S]δ if there is some formula listed in Γ that is true in S]δ.
Validity in a class of Σ-structures is understood as validity in each of the Σ-struc-
tures of that class. If we omit the reference to a special Σ-structure we mean validity
in some fixed class K of Σ-structures, such as the class of all Σ-structures or the
class of Herbrand Σ-structures.

Example 5.18 ((∅, (P,N))-Validity)
For xV ∈ V, yA ∈ A, the single-formula sequent xV = yA is (∅, (∅, ∅))-valid in
any Σ-structure S because we can choose Sπ := A×V and π(xV)(τ) := τ(yA) for
τ : A→ S, resulting in

e(π)(τ)(xV) = π(xV)(Sπ〈{xV}〉�τ) = π(xV)(A�τ) = π(xV)(τ) = τ(yA).
This means that (∅, (∅, ∅))-validity of xV = yA is equivalent to validity of

∀y B
0 . ∃xB

0 . (x
B
0 = y B

0 ). (1)
Moreover, note that e(π)(τ) has access to the τ -value of yA just as a raising func-
tion xB

1 for xB
0 has access to y B

0 in the raised (i.e. dually Skolemized) form ∃xB
1 . ∀y B

0 .
(xB

1(y
B
0 )= y B

0 ) of (1).
Contrary to this, for P := ∅ and N := V×A, the same single-formula sequent

xV = yA is not (∅, (P,N))-valid in general, because then the required consistency
of (P ∪ Sπ, N) implies Sπ = ∅; otherwise P ∪Sπ∪N has a cycle of length 2 with
exactly one edge from N . Thus, the value of xV cannot depend on τ(yA) anymore:

π(xV)(Sπ〈{xV}〉�τ) = π(xV)(∅�τ) = π(xV)(∅).
This means that (∅, (∅,V×A))-validity of xV = yA is equivalent to validity of

∃xB
0 . ∀y B

0 . (x
B
0 = y B

0 ). (2)
Moreover, note that e(π)(τ) has no access to the τ -value of yA just as a raising
function xB

1 for xB
0 has no access to y B

0 in the raised form ∃xB
1 . ∀y B

0 . (x
B
1()= y B

0 )
of (2).
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For a more general example let G = { Ai,0 . . . Ai,ni−1 | i∈ I }, where, for i ∈ I
and j≺ni, the Ai,j are formulas with variables from v and atoms from a.
Then (∅, (∅,V×A))-validity of G means validity of

∃v. ∀a. ∀i∈ I. ∃j≺ni. Ai,j

whereas (∅, (∅, ∅))-validity of G means validity of
∀a. ∃v. ∀i∈ I. ∃j≺ni. Ai,j

Ignoring the question of γ-multiplicity, also any other sequence of universal and
existential quantifiers can be represented by a consistent positive/negative variable-
condition (P,N), simply by starting from the consistent positive/negative variable-
condition (∅, ∅) and applying the γ- and δ-rules from §§ 3.2, 3.3, and 3.4. A reverse
translation of a positive/negative variable-condition (P,N) into a sequence of quan-
tifiers, however, may require a strengthening of dependencies, in the sense that a
subsequent backward translation would result in a more restrictive consistent posi-
tive/negative variable-condition (P ′, N ′) with P ⊆ P ′ and N ⊆ N ′. This means
that our framework can express quantificational dependencies more fine-grained than
standard quantifiers; cf. Example 5.20.

As already noted in § 4.12, the single-formula sequent QC(y
V) of Definition 4.11 is

a formulation of axiom (ε0) of § 4.6 in our framework.

Lemma 5.19 ((C, (P,N))-Validity of QC(y
V))

Let C be a (P,N)-choice-condition. Let yV ∈ dom(C). Let S be a Σ-structure.
1. QC(y

V) is (π,S)-valid for every π that is S-compatible with (C, (P,N)).
2. QC(y

V) is (C, (P,N))-valid in S; provided that for every return type α of C
(cf. Definition 5.13), there is a generalized choice function on the power-set
of S(∀)α.

In [111, § 6.4.1], we showed that Henkin quantification was problematic for the vari-
able-conditions of that paper, which had only one component, namely the positive
one of our positive/negative variable-conditions here: Indeed, there the only way
to model an example of a Henkin quantification precisely was to increase the order
of some variables by raising. Let us consider the same example here again and
show that now we can model its Henkin quantification directly with a consistent
positive/negative variable-condition, but without raising.
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Example 5.20 (Henkin Quantification)
In Hintikka’s [63] of 1974, quantifiers in first-order logic were found insufficient to
give the precise semantics of some English sentences. In Hintikka’s [64] of 1974, IF
logic, i.e. Independence-Friendly logic — a first-order logic with more flexible quan-
tifiers — was presented to overcome this weakness. In [63], we find the following
sentence:

Some relative of each villager and
some relative of each townsman hate each other. (H0)

Let us first change to a lovelier subject:
Some loved one of each woman and
some loved one of each man love each other. (H1)

For our purposes here, we consider (H1) to be equivalent to the following sentence,
which may be more meaningful and easier to understand:

We can fix a loved one for each woman and a loved one for each man,
such that for every pair of woman and man, these loved ones could love
each other.

(H1) can be represented by the following Henkin-quantified IF-logic formula:

∀xB
0 . ∀y B

0 .



(

Female(xB
0)

∧ Male(y B
0 )

)
⇒ ∃y B

1/y
B
0 . ∃xB

1/x
B
0 .




Loves(xB
0 , y

B
1 )

∧ Loves(y B
0 , x

B
1)

∧ Loves(y B
1 , x

B
1)

∧ Loves(xB
1 , y

B
1 )





 (H2)

Let us refer to the standard game-theoretic semantics for quantifiers (cf. e.g. [64]),
which is defined as follows: Witnesses have to be picked for the quantified variables
outside-in. We have to pick the witnesses for the γ-quantifiers (i.e., in (H2), for
the existential quantifiers), and our opponent in the game picks the witnesses for
the δ-quantifiers (i.e. for the universal quantifiers in (H2)). We win if the resulting
quantifier-free formula evaluates to true. A formula is true if we have a winning
strategy.

Then an IF-logic quantifier such as “∃y B
1/y

B
0 .” in (H2) is a special quantifier,

which is a bit different from “∃y B
1 .”. Game-theoretically, it has the following

semantics: It asks us to pick the loved one y B
1 independently from the choice of the

man y B
0 (by our opponent in the game), although the IF-logic quantifier occurs in

the scope of the quantifier “∀y B
0 .”.

Note that Formula (H2) is already close to anti-prenex form. In fact, if we move
its quantifiers closer toward the leaves of the formula tree, this does not admit us to
reduce their dependencies. It is more interesting, however, to move the quantifiers
of (H2) out — to obtain prenex form — and then to simplify the prenex form by
using the equivalence of “∀y B

0 . ∃y B
1/y

B
0 .” and “∃y B

1 . ∀y B
0 .”, resulting in:
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∀xB
0 . ∃y B

1 . ∀y B
0 . ∃xB

1/x
B
0 .



(

Female(xB
0)

∧ Male(y B
0 )

)
⇒




Loves(xB
0 , y

B
1 )

∧ Loves(y B
0 , x

B
1)

∧ Loves(y B
1 , x

B
1)

∧ Loves(xB
1 , y

B
1 )





 (H2′)

Note that this formula has a semantics different from the following formula with
standard quantifiers:

∀xB
0 . ∃y B

1 . ∀y B
0 . ∃xB

1 .



(

Female(xB
0)

∧ Male(y B
0 )

)
⇒




Loves(xB
0 , y

B
1 )

∧ Loves(y B
0 , x

B
1)

∧ Loves(y B
1 , x

B
1)

∧ Loves(xB
1 , y

B
1 )





 (S2′)

An alternative way to define the semantics of IF-logic quantifiers is by describing
their effect on the equivalent raised forms of the formulas in which they occur.
Raising is a dual of Skolemization, cf. [75]. The raised form of (S2′) is the following:

∃y B
1 . ∃xB

1 . ∀xB
0 . ∀y B

0 .



(

Female(xB
0)

∧ Male(y B
0 )

)
⇒




Loves(xB
0 , y

B
1 (x

B
0))

∧ Loves(y B
0 , x

B
1(y

B
0 , x

B
0))

∧ Loves(y B
1 (x

B
0), x

B
1(y

B
0 , x

B
0))

∧ Loves(xB
1(y

B
0 , x

B
0), y

B
1 (x

B
0))





(S3)

For Henkin-quantified IF-logic formulas, the raised form is defined as usual, besides
that a γ-quantifier, say “∃xB

1 .”, followed by a slash as in “∃xB
1/x

B
0 .”, is raised such

that xB
0 does not appear as an argument to the raising function for xB

1 . Accordingly,
mutatis mutandis, (H2) as well as (H2′) are equivalent to their common raised
form (H3) below, where xB

0 does not occur as an argument to the raising function xB
1

— contrary to (S3), which is strictly implied by (H3) because we can choose the
loved one of the woman differently for different men.

∃y B
1 . ∃xB

1 . ∀xB
0 . ∀y B

0 .



(

Female(xB
0)

∧ Male(y B
0 )

)
⇒




Loves(xB
0 , y

B
1 (x

B
0))

∧ Loves(y B
0 , x

B
1(y

B
0 ))

∧ Loves(y B
1 (x

B
0), x

B
1(y

B
0 ))

∧ Loves(xB
1(y

B
0 ), y

B
1 (x

B
0))





 (H3)

Now, (H3) looks already very much like the following tentative representation of
(H1) in our framework of free atoms and variables:

(
Female(xA

0)
∧ Male(yA

0 )

)
⇒




Loves(xA
0 , y

V
1)

∧ Loves(yA
0 , x

V
1)

∧ Loves(yV
1 , x

V
1)

∧ Loves(xV
1, y

V
1)


 (H1′)

with choice-condition C given by
C(yV

1) := εy B
1 . (Female(xA

0) ⇒ Loves(xA
0 , y

B
1 ))

C(xV
1) := εxB

1 . (Male(yA
0 ) ⇒ Loves(yA

0 , x
B
1))

which requires our positive/negative variable-condition (P,N) to contain (xA
0 , y

V
1)

and (yA
0 , x

V
1) in the positive relation P (by item 3 of Definition 5.13).

The concrete form of this choice-condition C was chosen to mirror the structure
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of the natural language sentence (H1) as close as possible. Actually, however, we
do not need exactly this choice-condition here. Indeed, to find a representation in
our framework, we could also work with an empty choice-condition. Crucial for our
discussion, however, is that we can have

(xA
0 , y

V
1), (y

A
0 , x

V
1)∈P ;

otherwise the choice of the loved ones could not depend on their lovers.
In any case, we can add (yV

1 , y
A
0 ) to the negative relation N here, namely to

express that yV
1 must not read yA

0 . Then we obtain:

yV
1

N

))

xA
0

Poo

xV
1 yA

0
Poo

The same variable-condition is also obtained if we start from the empty variable-con-
dition (∅, ∅), remove all quantifiers with γ- and δ−-rules from (S2′), and then add
P := {(xA

0 , y
V
1), (y

A
0 , x

V
1)}. The corresponding procedure for (H2′), however, has to

add also (xV
1, x

A
0) to N as part of the last γ-step that removes the IF-logic quantifier

“∃xB
1/x

A
0 .” and replaces xB

1 with xV
1. After this procedure, our current positive/ne-

gative variable-condition is now given as (P,N) with P = {(xA
0 , y

V
1), (y

A
0 , x

V
1)} and

N = {(yV
1 , y

A
0 ), (x

V
1, x

A
0)}. Thus, we have a single cycle in the graph, namely the

following one:
yV
1

N

))

xA
0

Poo

xV
1

N

55

yA
0

Poo

But this cycle necessarily has two edges from the negative relation N . Thus, in
spite of this cycle, our positive/negative variable-condition (P,N) is consistent by
Corollary 5.5.

With the variable-conditions of [105; 106; 107; 108; 110; 111], however, this cycle
necessarily destroys the consistency, because they have no distinction between the
edges of N and P .

Therefore — if the discussion in [111, § 6.4.1] is sound — our new framework
of this paper with positive/negative variable-conditions is the only one among all
approaches suitable for describing the semantics of noun phrases in natural languages
that admits us to model IF logic and Henkin quantifiers without raising.
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5.12 Extended Extensions
Just like the positive/negative variable-condition (P,N), the (P,N)-choice-condition
C may be extended during proofs. This kind of extension together with a simple
soundness condition plays an important rôle in inference:

Definition 5.21 (Extended Extension)
(C ′, (P ′, N ′)) is an extended extension of (C, (P,N)) if
• C is a (P,N)-choice-condition (cf. Definition 5.13),
• C ′ is a (P ′, N ′)-choice-condition,
• (P ′, N ′) is an extension of (P,N) (cf. Definition 5.6), and
• C ⊆ C ′.

Lemma 5.22 (Extended Extension)
Let (C ′, (P ′, N ′)) be an extended extension of (C, (P,N)).
If π is S-compatible with (C ′, (P ′, N ′)), then π is S-compatible with (C, (P,N))
as well.

5.13 Extended σ-Updates

After global application of a (P,N)-substitution σ, we now have to update both
(P,N) and C:
Definition 5.23 (Extended σ-Update)
Let C be a (P,N)-choice-condition and let σ be a substitution on V.
The extended σ-update (C ′, (P ′, N ′)) of (C, (P,N)) is given as follows:

C ′ := { (xV, Bσ) | (xV, B)∈C ∧ xV 6∈dom(σ) },
(P ′, N ′) is the σ-update of (P,N) (cf. Definition 5.8).

Note that a σ-update (cf. Definition 5.8) is an extension (cf. Definition 5.6), whereas
an extended σ-update is not an extended extension in general, because entries of the
choice-condition may be modified or even deleted, such that we may have C * C ′.
The remaining properties of an extended extension, however, are satisfied:
Lemma 5.24 (Extended σ-Update) Let C be a (P,N)-choice-condition.
Let σ be a (P,N)-substitution.
Let (C ′, (P ′, N ′)) be the extended σ-update of (C, (P,N)).
Then C ′ is a (P ′, N ′)-choice-condition.
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5.14 The Main Lemma

Lemma 5.25 ((P,N)-Substitutions and (C, (P,N))-Validity)
Let (P,N) be a positive/negative variable-condition.
Let C be a (P,N)-choice-condition. Let σ be a (P,N)-substitution.
Let (C ′, (P ′, N ′)) be the extended σ-update of (C, (P,N)). Let S be a Σ-structure.
Let π′ be an S-raising-valuation that is S-compatible with (C ′, (P ′, N ′)).
Let O and O′ be two disjoint sets with O ⊆ dom(σ)∩dom(C) and O′ ⊆ dom(C)\O.
Moreover, assume that σ respects C on O in the given semantic context in the sense
that (〈O〉QC)σ is (π′,S)-valid (cf. Definition 4.11 for QC).
Furthermore, regarding the set O′ (where σ may disrespect C), assume the following
items to hold:

• O′ covers the variables in dom(σ) ∩ dom(C) besides O in the sense of

dom(σ) ∩ dom(C) ⊆ O′ ]O.

←−−−−−−−−−−−−−−−−−−−−−−−−−−V−−−−−−−−−−−−−−−−−−−−−−−−−−→
←−−−−−−−−−dom(C)−−−−−−−−−→

←−−−−−−−−−−dom(σ)−−−−−−−−−−→
←−−−−−O′−−−−−→←−O−→

• O′ satisfies the closure condition 〈O′〉P+ ∩ dom(C) ⊆ O′.

• For every yV ∈ O′, for α being the return type of C(yV) (cf. Definition 5.13),
there is a generalized choice function on the power-set of S(∀)α.

Then there is an S-raising-valuation π that is S-compatible with (C, (P,N)) and
that satisfies the following:

1. For every term or formula B with O′ ∩ V(B) = ∅ and possibly with some un-
bound occurrences of bound atoms from a set W ⊆ B, and for every τ : A→ S
and every χ : W → S:

eval(S ] e(π′)(τ) ] τ ] χ)(Bσ) = eval(S ] e(π)(τ) ] τ ] χ)(B).

2. For every set of sequents G with O′ ∩ V(G) = ∅ we have:

Gσ is (π′,S)-valid iff G is (π,S)-valid.
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In Lemma 5.25, we illustrate the subclass relation with a Lambert diagram [71, Di-
anoiologie, §§ 173–194], similar to a Venn diagram. In general, a Lambert diagram
expresses nothing but the following: If — in vertical projection — each point of the
overlap of the lines for classes A1, . . . , Am is covered by a line of the classes B1, . . . , Bn

then A1 ∩ · · · ∩Am ⊆ B1 ∪ · · · ∪Bn; moreover, the points not covered by a line
for A are consider to be covered by a line for the complement A .

Note that Lemma 5.25 gets a lot simpler when we require the entire (P,N)-
substitution σ to respect the (P,N)-choice-condition C by setting O := dom(σ) ∩
dom(C) and O′ := ∅; in particular all requirements on O′ are trivially satisfied
then. Moreover, note that the (still quite long) proof of Lemma 5.25 is more than
a factor of 2 shorter than the proof of the analogous Lemma B.5 in [106] (together
with Lemma B.1, its additionally required sub-lemma).

5.15 Reduction

Reduction is the reverse of consequence. It is the backbone of logical reasoning,
especially of abduction and goal-directed deduction.

In our case, a reduction step does not only reduce a set of problems to an-
other set of problems, but also guarantees that the solutions of the latter also solve
the former; here “solutions” means those S-raising-valuations of the (rigid) (free)
variables from V which are S-compatible with (C, (P,N)) for the positive/negative
variable-condition (P,N) and the (P,N)-choice-condition C given by the context of
the reduction step.

Definition 5.26 (Reduction)

Let (P,N) be a positive/negative variable-condition. Let C be a (P,N)-choice-
condition. Let G0 and G1 be sets of sequents. Let S be a Σ-structure.

G0 (C, (P,N))-reduces to G1 in S if for every π that is S-compatible with
(C, (P,N)):

If G1 is (π,S)-valid, then G0 is (π,S)-valid as well.
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Theorem 5.27 (Reduction)
Let (P,N) be a positive/negative variable-condition.
Let C be a (P,N)-choice-condition.
Let G0, G1, G2, and G3 be sets of sequents. Let S be a Σ-structure.

1. (Validity) If G0 (C, (P,N))-reduces to G1 in S
and G1 is (C, (P,N))-valid in S,
then G0 is (C, (P,N))-valid in S, too.

2. (Reflexivity) In case of G0⊆G1: G0 (C, (P,N))-reduces to G1 in S.

3. (Transitivity) If G0 (C, (P,N))-reduces to G1 in S
and G1 (C, (P,N))-reduces to G2 in S,
then G0 (C, (P,N))-reduces to G2 in S.

4. (Additivity) If G0 (C, (P,N))-reduces to G2 in S
and G1 (C, (P,N))-reduces to G3 in S,
then G0∪G1 (C, (P,N))-reduces to G2∪G3 in S.

5. (Monotonicity) For (C ′, (P ′, N ′)) being an extended extension of (C, (P,N)):

(a) If G0 is (C ′, (P ′, N ′))-valid in S, then G0 is also (C, (P,N))-valid in S.

(b) If G0 (C, (P,N))-reduces to G1 in S,
then G0 also (C ′, (P ′, N ′))-reduces to G1 in S.

6. (Instantiation of Free Variables) Let σ be a (P,N)-substitution.
Let (C ′, (P ′, N ′)) be the extended σ-update of (C, (P,N)).
Set M := dom(σ) ∩ dom(C). Choose some V ⊆ V with V(G0, G1) ⊆ V .
Set O := M ∩ P ∗〈V 〉. Set O′ := dom(C) ∩ 〈M\O〉P ∗.
Assume that for every yV ∈ O′, for α being the return type of C(yV)
there is a generalized choice function on the power-set of S(∀)α.

(a) If G0σ ∪ (〈O〉QC)σ is (C ′, (P ′, N ′))-valid in S,
then G0 is (C, (P,N))-valid in S.

(b) If G0 (C, (P,N))-reduces to G1 in S,
then G0σ (C ′, (P ′, N ′))-reduces to G1σ ∪ (〈O〉QC)σ in S.

7. (Instantiation of Free Atoms) Let ν be a substitution on A.
If V(G0)× dom(ν) ⊆ N , then G0ν (C, (P,N))-reduces to G0 in S.
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5.16 Soundness, Safeness, and Solution-Preservation
Soundness of inference rules has the global effect that if we reduce a set of sequents
to an empty set, then we know that the original set is valid. Soundness is an
essential property of inference rules.

Safeness of inference rules has the global effect that if we reduce a set of sequents
to an invalid set, then we know that already the original set was invalid. Safeness
is helpful in rejecting false assumptions and in patching failed proof attempts.

As explained before, for a reduction step in our framework, we are not contend
with soundness: We want solution-preservation in the sense that an S-raising-valu-
ation π that makes the set of sequents of the reduced proof state (π,S)-valid is
guaranteed to do the same for the original input proposition, provided that π is S-
compatible with (C, (P,N)) for the positive/negative variable-condition (P,N) and
the (P,N)-choice-condition C of the reduced proof state.

All our inference rules of § 3 have all of these properties. This is obvious for
the trivial α- and β-rules. For the inference rules where this is not obvious, i.e.
our γ- and δ−- and δ+-rules of §§ 3.2, 3.3, and 3.4, we state these properties in the
following theorem.

Theorem 5.28
Let (P,N) be a positive/negative variable-condition.
Let C be a (P,N)-choice-condition.
Let us consider any of the γ-, δ−-, and δ+-rules of §§ 3.2, 3.3, and 3.4.
Let G0 and G1 be the sets of the sequent above and of the sequents below the bar of
that rule, respectively.
Let C ′′ be the set of the pair indicated to the upper right of the bar if there is any
(which is the case only for the δ+-rules) or the empty set otherwise.
Let V be the relation indicated to the lower right of the bar if there is any (which is
the case only for the δ−- and δ+-rules) or the empty set otherwise.
Let us weaken the informal requirement “Let xA be a fresh free atom” of the δ−-rules
to its technical essence “xA ∈ A \

(
dom(P ) ∪ A(Γ,A,Π)

)
”.

Let us weaken the informal statement “Let xV be a fresh free variable” of the δ+-rules
to its technical essence “xV ∈ V \

(
dom(C ∪ P ∪N) ∪ V(A)

)
”.

Let us set C ′ := C ∪ C ′′, P ′ := P ∪ V �V, N ′ := N ∪ V �A.
Then (C ′, (P ′, N ′)) is an extended extension of (C, (P,N)) (cf. Definition 5.21).
Moreover, the considered inference rule is sound, safe, and solution-preserving in
the sense that G0 and G1 mutually (C ′, (P ′, N ′))-reduce to each other in every
Σ-structure S.
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6 Summary and Discussion

6.1 Positive/Negative Variable-Conditions

We take a sequent to be a list of formulas which denotes the disjunction of these
formulas. In addition to the standard frameworks of two-valued logics, our for-
mulas may contain free atoms and variables with a context-independent semantics:
While we admit explicit quantification to bind only bound atoms (written xB), our
free atoms (written xA) are implicitly universally quantified. Moreover, free vari-
ables (written xV) are implicitly existentially quantified. The structure of this
implicit form of quantification without quantifiers and without binders is represen-
ted globally in a positive/negative variable-condition (P,N), which can be seen as
a directed graph on free atoms and variables whose edges are elements of either P
or N.

Without loss of generality in practice, let us assume that P is finite. Then, a
positive/negative variable-condition (P,N) is consistent if each cycle of the directed
graph has more than one edge from N .

Roughly speaking, on the one hand, a free variable yV is put into the scope
of another free variable or atom xVA by an edge (xVA, yV) in P ; and, on the other
hand, a free atom yA is put into the scope of another free variable or atom xVA by
an edge (xVA, yA) in N.

On the one hand, an edge (xVA, yV) must be put into P

• if yV is introduced in a δ+-step where xVA occurs in the principal2 formula, and
also

• if yV is globally replaced with a term in which xVA occurs.

On the other hand, an edge (xVA, yA) must be put into N

• if xVA is actually a free variable, and yA is introduced in a δ−-step where xVA

occurs in the sequent (either in the principal formula or in the parametric
formulas).2

Furthermore, such edges may always be added to the positive/negative variable-con-
dition, as long as it remains consistent. Such an unforced addition of edges might
be appropriate especially in the formulation of a new proposition:

• partly, because we may need this for modeling the intended semantics by
representing the intended quantificational structure for the free variables and
atoms of the new proposition;
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• partly, because we may need this for enabling induction in the form of Fermat’s
descente infinie on the free atoms of the proposition; cf. [106, §§ 2.5.2
and 3.3]. (This is closely related to the satisfaction of the condition on N
in Theorem 5.27(7).)

6.2 Semantics of Positive/Negative Variable-Conditions

The value assigned to a free variable yV by an S-raising-valuation π may depend
on the value assigned to an atom xA by an S-valuation. In that case, the seman-
tic relation Sπ contains an edge (xA, yV). Moreover, π is enforced to obey the
quantificational structure by the requirement that (P ∪ Sπ, N) must be consistent;
cf. Definitions 5.10 and 5.15.

6.3 Replacing ε-Terms with Free Variables

Suppose that an ε-term εz B. B has free occurrences of exactly the bound atoms
v B
0 , . . . , v

B
l−1 which are not free atoms of our framework, but are actually bound in

the syntactic context in which this ε-term occurs. Then we can replace it in this
context with the application term zV(v B

0 ) · · · (v B
l−1) for a fresh free variable zV and

set the value of a global function C (called the choice-condition) at zV according to

C(zV) := λv B
0 . . . . λv B

l−1. εz
B. B,

and augment P with an edge (yVA, zV) for each free variable or free atom yVA occurring
in B.

6.4 Semantics of Choice-Conditions

A free variable zV in the domain of the global choice-condition C must take a value
that makes C(zV) true — if such a choice is possible. This can be formalized
as follows. Let “eval” be the standard evaluation function. Let S be any of
the semantic structures (or models) under consideration. Let δ be a valuation
of the free variables and free atoms (resulting from an S-raising-valuation of the
variables and an S-valuation of the atoms). Let χ be an arbitrary S-valuation of
the bound atoms v B

0 , . . . , v
B
l−1, z

B. Then δ(zV) must be a function that chooses a value
that makes B true whenever possible, in the sense that eval(S]δ]χ)(B) = TRUE
implies eval(S]δ]χ)(Bµ) = TRUE for

µ := {z B 7→ zV(v B
0 ) · · · (v B

l−1)}.
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6.5 Substitution of Free Variables (“ε-Substitution”)
The kind of logical inference we essentially need is (problem-) reduction, the back-
bone of abduction and goal-directed deduction; cf. § 5.15. In a tree of reduction
steps our free variables and free atoms show the following behavior with respect to
their instantiation:

Atoms behave as constant parameters. A free variable yV, however, may be
globally instantiated with any term by application of a substitution σ; unless, of
course, in case yV is in the domain of the global choice-condition C, in which case σ
must additionally satisfy C(yV), in a sense to be explained below.

In addition, the applied substitution σ must always be an (P,N)-substitution.
This means that the current positive/negative variable-condition (P,N) remains
consistent when we extend it to its so-called σ-update, which augments P with the
edges from the free variables and free atoms in σ(zV) to zV, for each free variable zV

in the domain dom(σ).
Moreover, the global choice-condition C must be updated by removing zV from

its domain dom(C) and by applying σ to the C-values of the free variables remaining
in dom(C).

Now, in case of a free variable zV ∈ dom(σ) ∩ dom(C), σ satisfies the current
choice-condition C if (QC(z

V))σ is valid in the context of the updated variable-
condition and choice-condition. Here, for a choice-condition C(zV) given as above,
QC(z

V) denotes the formula
∀v B

0 . . . .∀v B
l−1.

(
∃z B. B ⇒ Bµ

)
,

which is nothing but our version of Hilbert’s axiom (ε0); cf. Definition 4.11.
Under these conditions, the invariance of reduction under substitution is stated
in Theorem 5.27(6b).

Finally, note that QC(z
V) itself is always valid in our framework; cf. Lemma 5.19.

6.6 Where have all the ε-Terms gone?
After the replacement described in § 6.3 and, in more detail, in § 4.11, the ε-symbol
occurs neither in our terms, nor in our formulas, but only in the range of the cur-
rent choice-condition, where its occurrences are inessential, as explained at the end
of § 4.11.

As a consequence of this removal, our formulas are much more readable than in
the standard approach of in-line presentation of ε-terms, which always was nothing
but a theoretical presentation because in practical proofs the ε-terms would have
grown so large that the mere size of them made them inaccessible to human in-
spection. To see this, compare our presentation in Example 4.10 to the one in
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Example 4.8, and note that the latter is still hard to read although we have invested
some efforts in finding a readable form of presentation.

From a mathematical point of view, however, the original ε-terms are still present
in our approach; up to isomorphism and with the exception of some irrelevant term
sharing. To make these ε-terms explicit in a formula A for a given (P,N)-choice-
condition C, we just have to do the following:

Step 1: Let us consider the relation C not as a function, but as a ground term
rewriting system: This means that we read

(
zV, λv B

0 . . . . λv B
l−1. εz

B
. B

)
∈ C

as a rewrite rule saying that we may replace the free variable zV (the left-hand
side of the rule, which is not a variable but a constant w.r.t. the rewriting
system) with the right-hand side λv B

0 . . . . λv B
l−1. εz

B. B in any given context
as long as we want.

By Definition 5.13(3), we know that all variables in B are smaller than zV in P+.
By the consistency of our positive/negative variable-condition (P,N) (according to
Definition 5.13), we know that P+ is a well-founded ordering. Thus its multi-set
extension is a well-founded ordering as well. Moreover, the multi-set of the free
variable zV of the left-hand side is bigger than the multi-set of the free-variable
occurrences in the right-hand side in the well-founded multi-set extension of P+.
Thus, if we rewrite a formula, the multi-set of the free-variable occurrences in the
rewritten formula is smaller than the multi-set of the free-variable occurrences in
the original formula.

Therefore, normalization of any formula A with these rewrite rules terminates
with a formula A′.

Step 2: As typed λαβ-reduction is also terminating, we can apply it to remove the
λ-terms introduced to A′ by the rewriting of Step 1, resulting in a formula A′′.

Then — with the proper semantics for the ε-binder — the formulas A′ and A′′

are equivalent to A, but do not contain any free variables that are in the domain
of C. This means that A′′ is equivalent to A, but does not contain ε-constrained
free variables anymore.

Moreover, if the free variables in A resulted from the elimination of ε-terms as
described in §§ 4.11 and 6.3, then all λ-terms that were not already present in A are
provided with arguments and are removed by the rewriting of Step 2. Therefore,
no λ-symbol occurs in the formula A′′ if the formula A resulted from a first-order
formula.
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For example, if we normalize P(wV
a, x

V
b , y

V
d, z

V
h) with respect to the rewriting

system given by the (P,N)-choice-condition C of of Example 4.10, and then by
λαβ-reduction, we end up in a normal form which is the first-order formula (4.8.1)
of Example 4.8, with the exception of the renaming of some bound atoms that are
bound by ε.

If each element zV in the domain of C binds a unique bound atom z B by the ε
in the higher-order ε-term C(zV), then the normal form A′′ can even preserve our
information on committed choice when we consider any ε-term binding an occurrence
of a bound atom of the same name to be committed to the same choice. In this
sense, the representation given by the normal form is equivalent to our original one
given by P(wV

a, x
V
b , y

V
d, z

V
h) and C.

6.7 Breaking with the Traditional Treatment of Hilbert’s ε?

Our new semantic free-variable framework was actually developed to meet the re-
quirements analysis for the combination of mathematical induction in the liberal
style of Fermat’s descente infinie with state-of-the-art logical deduction. The frame-
work provides a formal system in which a working mathematician can straightfor-
wardly develop his proofs supported by powerful automation; cf. [106].

If traditionalism meant restriction to the expressional means of the past — say
the first half of the 20th century with its foundational crisis and special emphasis on
constructivism, intuitionism, and finitism — then our approach would not classify
as traditional. Although we offer the extras of non-committed choice and a model-
theoretic notion of validity, we nevertheless see our framework based on QC as a form
of (ε0) (cf. § 4.12) as an upward-compatible extension of Hilbert–Bernays’ original
framework with (ε0) as the only axiom for the ε. And with its equivalents for the
traditional ε-terms (cf. § 6.6) and with its support for the global proof transformation
given by the ε-substitution methods (cf. §§ 4.12, 5.15, and 6.5), our framework is
indeed deeply rooted in the Hilbert–Bernays tradition.

Note that the fear of inconsistency should have been soothed anyway in the
meantime by Wittgenstein, cf. e.g. [15]. The main disadvantage of an exclusively
axiomatic framework as compared to one that also offers a model-theoretic semantics
is the following: Constructive proofs of practically relevant theorems easily become
too huge and too tedious, whereas semantic proofs are of a better manageable size.
More important is the possibility to invent new and more suitable logics for new
applications with semantic means, whereas proof transformations can refer only to
already existing logics (cf. § 4.7).
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We intend to pass the heritage of Hilbert’s ε on to new generations interested in
computational linguistics, automated theorem proving, and mathematics assistance
systems; fields in which — with very few exceptions — the overall common opinion
still is (the wrong one) that the ε hardly can be of any practical benefit.

The differences, however, between our free-variable framework for the ε and
Hilbert’s original underspecified ε-operator, in the order of increasing importance,
are the following:

1. The term-sharing of ε-terms with the help of free variables improves the read-
ability of our formulas considerably.

2. We do not have the requirement of globally committed choice for any ε-term:
Different free variables with the same choice-condition may take different
values. Nevertheless, ε-substitution works at least as well as in the origi-
nal framework.

3. Opposed to all other classical validities for the ε (including the semantics
of Asser’s [4] of 1957, Hermes’ [34] of 1965, and Leisenring’s [72] of 1969),
the implicit quantification over the choice of our free variables is existential
instead of universal. This change simplifies formal reasoning in all relevant
contexts, because we have to consider only an arbitrary single solution (or
choice, substitution) instead of checking all of them.

7 Conclusion
Our more flexible semantics for Hilbert’s ε and our novel free-variable framework
presented in this paper were developed to solve the difficult soundness problems
arising in the combination of mathematical induction in the liberal style of Fermat’s
descente infinie with state-of-the-art deduction.7 Thereby, they had passed an
evaluation of their usefulness even before they were recognized as a candidate for the
semantics that Hilbert’s school in logic may have had in mind for their ε. While this
is a speculation, it is definite that the semantic framework for Hilbert’s ε proposed
in this paper has the following advantages:

7The well-foundedness required for the soundness of descente infinie gave rise to a notion of
reduction which preserves solutions, cf. Definition 5.26. The liberalized δ-rules as found in [21] do
not satisfy this notion. The addition of our choice-conditions finally turned out to be the only way
to repair this defect of the liberalized δ-rules. See [106] for more details.
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Indication of Commitment: The requirement of a commitment to a choice is
expressed syntactically and most clearly by the sharing of a free variable;
cf. § 4.11.

Semantics: The semantics of the ε is simple and straightforward in the sense that
the ε-operator becomes similar to the referential use of indefinite articles and
determiners in natural languages, cf. [111].

Our semantics for the ε is based on an abstract formal approach that extends a
semantics for closed formulas (satisfying only very weak requirements, cf. § 5.8)
to a semantics with existentially quantified “free variables” and universally
quantified “free atoms”, replacing the three kinds of free variables of [106; 107;
108; 110; 111], i.e. existential (free γ-variables), universal (free δ−-variables),
and ε-constrained (free δ+-variables). The simplification achieved by the re-
duction from three to two kinds of free variables results in a remarkable re-
duction of the complexity of our framework and will make its adaptation to
applications much easier.

In spite of this simplification, we have enhanced the expressiveness of our
framework by replacing the variable-conditions of [105; 106; 107; 108; 110; 111]
with our positive/negative variable-conditions here, such that our framework
now admits us to represent Henkin quantification directly; cf. Example 5.20.
From a philosophical point of view, this clearer differentiation also provides a
deep insight into the true nature and the relation of the δ−- and the δ+-rules.

Reasoning: Our representation of an ε-term εxB. A can be replaced with any
term t that satisfies the formula ∃xB. A ⇒ A{xB 7→t}, cf. § 4.12. Thus, the
correctness of such a replacement is likely to be expressible and verifiable in the
original calculus. Our free-variable framework for the ε is especially convenient
for developing proofs in the style of a working mathematician, cf. [106; 107;
110]. Indeed, our approach makes proof work most simple because we do
not have to consider all proper choices t for x (as in all other model-theoretic
approaches) but only a single arbitrary one, which is fixed in a global proof
transformation step.

Finally, we hope that our new semantic framework will help to solve further practical
and theoretical problems with the ε and improve the applicability of the ε as a logic
tool for description and reasoning. And already without the ε (i.e. for the case
that the choice-condition is empty, cf. e.g. [109; 112]), our free-variable framework
should find a multitude of applications in all areas of computer-supported reasoning.
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A Semantics for Hilbert’s ε in the Literature
Here in § A of the appendix, we will review the literature on the ε’s semantics with
an emphasis on practical adequacy and the intentions of the Hilbert school in logic.

A.1 Right-Unique Semantics
In contrast to the indefiniteness we suggested in § 4.8, nearly all semantics for
Hilbert’s ε found elsewhere in the literature are functional, i.e. [right-] unique;
cf. e.g. Leisenring’s [72] and the references there.

A.1.1 Extensionality:
Ackermann’s (II,4) = Bourbaki’s (S7) = Leisenring’s (E2)

In Ackermann’s [2] of 1938 under the label (II,4), in Bourbaki’s [11] of 1939ff.
under the label (S7) (where a τ is written for the ε, which must not be confused
with Hilbert’s τ -operator8), and in Leisenring’s [72] of 1969 under the label (E2),
we find the following axiom scheme, which we presented already in § 4.10:

∀xB. (A0 ⇔ A1) ⇒ εxB. A0 = εxB. A1 (E2)

This axiom (E2) must not be confused with the similar formula (E2′) from [108,
Lemma 31, § 5.6] and [111, Lemma 5.18, § 5.6], which reads in our new framework
here as follows:

8Adding the ε either with (ε0), with (ε1), or with the ε-formula (cf. § 4.6) to intuitionist first-
order logic is equivalent on the ε-free fragment to adding Plato’s Principle, i.e.
∃y B. (∃xB. A ⇒ A{xB 7→y B}) with y B not occurring in A, cf. Meyer-Viol’s [74, § 3.3] of 1995.
Moreover, the non-trivial direction of (ε2) is ∀xB. A ⇐ A{xB 7→ εxB. ¬A}.
Even intuitionistically, this entails its contrapositive ¬∀xB. A ⇒ ¬A{xB 7→ εxB. ¬A},
and then, e.g. by the trivial direction of (ε1) (when A is replaced with ¬A)

¬∀xB. A ⇒ ∃xB. ¬A (Q2)
which is not valid in intuitionist logic in general. Thus, in intuitionist logic, the universal quantifier
becomes strictly weaker by the inclusion of (ε2) or anything similar for the universal quantifier,
such as Hilbert’s τ -operator (cf. Hilbert’s [45] of 1923). More specifically, adding

∀xB. A ⇐ A{xB 7→ τxB. A} (τ0)
is equivalent on the τ -free theory to adding ∃y B. (∀xB. A ⇐ A{xB 7→y B}) with y B not occurring
in A, which again implies (Q2), cf. Meyer-Viol’s [74, § 3.4.2].
From a semantic point of view (cf. Gabbay’s [27] of 1981), the intuitionist ∀ may be eliminated,
however, by first applying the Gödel translation into the modal logic S4 with classical ∀ and ¬, cf.
e.g. [22], and then adding the ε conservatively, e.g. by avoiding substitutions via λ-abstraction as
in Fitting’s [19] of 1975.
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∀xB. (A0 ⇔ A1) ⇒ xV
0 = xV

1 (E2′)

for two different xV
0, x

V
1 ∈ V\V(A1, A2,dom(P∪N)) and for a (P,N)-choice-condition

C with C(xV
i ) = εxB. Ai for i ∈ {0, 1}. Our (E2′) can be shown to be (C, (P,N))-

valid by applying Theorem 5.27(1,5a,6a): Indeed, we can apply the substitution
{xV

1 7→yV} after an extended extension (C ′, (P ′, N)) for a fresh variable yV ∈ V \
V(A1, A2, x

V
0, x

V
1,dom(P∪N)) with9

C ′(yV) = εy B.

( (
∀xB. (A0 ⇔ A1) ⇒ y B =xV

0

)

∧
(
¬∀xB. (A0 ⇔ A1) ⇒ A1{xB 7→y B}

)
)

.

Contrary to the valid proposition (E2′), however, (E2) is an axiom that imposes
a right-unique behavior for the ε (in the standard framework), depending on the
extension of the formula forming the scope of an ε-binder on xB, seen as a predicate
on xB. Indeed — from a semantic point of view — the value of εxB. A in each
Σ-structure S is functionally dependent on the extension of the formula A, i.e. on
{ o | eval(S ] {xB 7→o})(A) }.

Therefore, axiomatizations that have (E2) as an axiom or as a consequence of
other axioms are called extensional.

9Let us give a formal proof of (E2′) in our framework on an abstract level by applying
Theorem 5.27. We will reduce the set containing the single-formula sequent of the formula (E2′)
to a valid set. Be aware of the requirements on occurrence of the variables as described in § A.1.1.
We start with an extended extension (C′, (P ′, N)) of the current (C, (P,N)) for a fresh variable yV

with C′(yV) as given § A.1.1. Of course, to satisfy Definition 5.13(3), here we set
P ′ := P ∪ VA(A0, A1, x

V
0)× {yV}.

Set σ := {xV
1 7→ yV}. Let (C′′, (P ′′, N)) be the extended σ-update of (C′, (P ′, N)); then

{yV,xV
0 ,x

V
1}
�C′′ = {yV,xV

0}
�C′ and P ′′ = P ′ ∪ {(yV, xV

1)}.

Note that (P ′′, N) is consistent because every cycle not possible with (P,N) would have to run
through the set {yV, xV

1}, which, however, is disjoint from dom(N), closed under P ′′, and cycle-
free.
Now we apply Theorem 5.27(6a). According to settings for the meta-variables given there, we have
O = M = dom(C′) ∩ dom(σ) = {xV

1} and O′ = ∅. Consider the set with the two single-formula
sequents (E2)′σ and (QC′(xV

1))σ. The former sequent reads ∀xB. (A0⇔A1) ⇒ xV
0 = yV. According to

Definition 4.11, the latter sequent reads (∃xB. A1 ⇒ A1{xB 7→ xV
1})σ, i.e. ∃xB. A1 ⇒ A1{xB 7→ yV}.

Now a simple case analysis on ∀xB.(A0⇔A1) shows that this two-element set (C′′, (P ′′, N))-reduces to8>><>>: ∃xB. A0 ⇒ A0{xB 7→ xV
0};

0BB@ ∃y B.

„
(∀xB. (A0⇔A1) ⇒ y B =xV

0)
∧ (¬∀xB. (A0⇔A1) ⇒ A1{xB 7→ y B})

«
⇒

„
(∀xB. (A0⇔A1) ⇒ yV =xV

0)
∧ (¬∀xB. (A0⇔A1) ⇒ A1{xB 7→ yV})

«
1CCA

9>>=>>;,

i.e. to {QC′′(xV
0); QC′′(yV)}, which is (C′′, (P ′′, N))-valid by Lemma 5.19. Thus, (E2′)σ is

(C′, (P ′′, N))-valid. By (6a) this means that (E2′) is (C′, (P ′, N))-valid, and by (5a) also (C, (P,N))-
valid, as was to be shown.
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Note that (E2) has a disastrous effect in intuitionist logic: The contrapositive
of (E2) — together with (ε0) and say “0 6=1” — turns every classical validity into
an intuitionist one.10 For the strong consequences of the ε-formula in intuitionist
logic, see also Note 8.

A.1.2 Weaker than (E2), but still Right-Unique

To overcome this disastrous effect and to get more options for the definition of
a semantics of the ε in general, in [4], [74], and [32] the value of εxB. A may
additionally depend on the syntax besides the semantics of the formula in the scope
of the ε. The semantics of the ε is then given as a function depending on a Σ-struc-
ture and on the syntactic details of the term εxB. A.

In Giese & Ahrendt’s [32, p.177] we read: “This definition contains no restriction
whatsoever on the valuation of ε-terms.” This claim, however, is not justified in its
universality, because all considered options do still impose the restriction of a right-
unique behavior; thereby the claim denies the possibility of an indefinite behavior
as given in §§ 4.10 and 4.11. See also § A.2 for an alternative realization of an
indefinite semantics.

10Let us prove 0 6=1, εxB. A0 6= εxB. A1 ⇒ ¬(∀xB. A0 ∧ ∀xB. A1) ` B ∨ ¬B in intuitionist
logic. (For the proof of the slightly weaker result 0 6=1, (E2) ` B ∨ ¬B for any formula B, cf.
Bell’s [7, Proof of Theorem 6.4], which already occurs in more detail in Bell’s [5, § 3], and sketched
in Bell’s [6, § 7].)
Note that, for any implication A ⇒ B, its contrapositive ¬B ⇒ ¬A is a consequence of it, and
— in intuitionist logic — a proper consequence in general.
Let B be an arbitrary formula. By renaming we may w.l.o.g. assume that the free atom xA of the
ε-formula does not occur in B. We are going to show that ` B ∨ ¬B holds in intuitionist logic
under the assumptions of reflexivity, symmetry, and transitivity of “=”, the ε-formula (or (ε0)),
and of the formulas 0 6=1 and εxB. A0 6= εxB. A1 ⇒ ¬(∀xB. A0 ∧ ∀xB. A1).
Let xB be a bound atom not occurring in B. Set Ai := (B ∨ xB = i) for i ∈ {0, 1}.
Now all that we have to show is a trivial consequence of the following Claims 1 and 2,

εxB. A0 6= εxB. A1 ⇒ ¬(∀xB. A0 ∧ ∀xB. A1), and Claim 3.
Claim 1: 0=0, 1=1, (ε-formula){A7→A0}{xA 7→0}, (ε-formula){A7→A1}{xA 7→1}

` B ∨ (εxB. A0 = 0 ∧ εxB. A1 = 1).
Claim 2: εxB. A0 = 0 ∧ εxB. A1 = 1, 0 6=1, ∀xB, y B, z B. (y B =xB ∧ y B = z B ⇒ xB = z B)

` εxB. A0 6= εxB. A1.
Claim 3: ¬(∀xB. A0 ∧ ∀xB. A1) ` ¬B.
Proof of Claim 1: Because neither xA nor xB occur in B, and because xA does not occur in Ai,
the instances of the ε-formulas read (B ∨ i= i) ⇒ (B ∨ εxB. Ai = i). Thus, from i= i ,
we get B ∨ εxB. Ai = i. Thus, we get (B ∨ εxB. A0 = 0) ∧ (B ∨ εxB. A1 = 1), thus
B ∨ (εxB. A0 = 0 ∧ εxB. A1 = 1) by distributivity. Q.e.d. (Claim 1)
Proof of Claim 2: Trivial. Q.e.d. (Claim 2)
Proof of Claim 3: As xB does not occur in B, we get B ` ∀xB. Ai. The rest is trivial.

Q.e.d. (Claim 3)
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A.1.3 Overspecification even beyond (E2)

In Hermes’ [34, p.18] of 1965, the ε suffers further overspecification in addition
to (E2):

εx. false = εx. true (ε5)
Roughly speaking, this axiom sets the value of a generalized choice function on the
empty set to its value on the whole universe. For classical logic, we can combine
(E2) and (ε5) into the following axiom of DeVidi’s [14] of 1995 for “very extensional”
semantics:

∀x.
(

(∃y.A0{x7→y} ⇒ A0)
⇔ (∃y.A1{x7→y} ⇒ A1)

)
⇒ εx.A0 = εx.A1 (vext)

Indeed, (vext) implies (E2) and (ε5). The other direction, however, does not hold
for intuitionist logic, where, roughly speaking, (vext) additionally implies that if the
same elements make A0 and A1 as true as possible, then the ε-operator picks the
same element of this set, even if the suprema ∃y.A0{x7→y} and ∃y.A1{x7→y} (in
the complete Heyting algebra) are not equally true.

A.1.4 Strengthening Semantics to Turn Axiomatizations Complete

Although we have been concerned with soundness and safeness of our inference sys-
tems, we always accepted their incompleteness as the natural companion of semantics
that are sufficiently weak to be useful in practice. Of course, completeness is the
theoreticians’ favorite puzzle because — as a global property of inference systems —
it may be hard to prove, even for inconsistent systems. The objective of complete-
ness gets particularly detached from practical usefulness, if a useful semantics is
strengthened to obtain the completeness of a given inference system. Let us look at
two examples for this procedure, resulting in practically useless semantics for the ε.

Different possible choices for the value of the generalized choice function on the
empty set are discussed in Leisenring’s [72] of 1969. As the consequences of any
special choice are quite queer, the only solution that is found to be sufficiently
adequate in [72] is validity in all models given by all generalized choice functions on
the power-set of the universe. Note, however, that even in this case, in each model,
the value of εx.A is functionally dependent on the extension of A.

Roughly speaking, in Leisenring’s textbook [72], the axioms (ε1) and (ε2) from
§ 4.6 and (E2) from § 4.10 are shown to be complete w.r.t. this semantics of the ε in
first-order logic.

This completeness makes it unlikely that extensional semantics matches the in-
tentions of Hilbert’s school in logic. Indeed, if their intended semantics for the ε
could be completely captured by adding the single and straightforward axiom (E2),
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this axiom would not have been omitted in Hilbert–Bernays [58]; it would at least
be possible to derive (E2) from some axiomatization in Hilbert–Bernays [58].

What makes Leisenring’s notion of validity problematic for theorem proving is
that a proof has to consider all appropriate choice functions and cannot just pick an
advantageous single one of them. More specifically, when Leisenring does the step
from satisfiability to validity he does the double duality switch from existence of a
model and the existence of a choice function to all models and to all choice functions.
Our notion of validity in Definition 5.17 does not switch the second duality, but
stays with the existence of a choice function. Considering the influence that Leisen-
ring’s [72] of 1969 still has today, our avoidance of the universality requirement for
choice functions in the definition of validity may be considered our practically most
important conceptual contribution to the ε’s semantics. If we stuck to Leisenring’s
definition of validity, then we would either have to give up the hope of finding proofs
in practice, or have to avoid considering validity (beyond truth) in connection with
Hilbert’s ε, which is Hartley Slater’ solution, carefully observed in Slater’s [92; 93;
95; 96; 97].

This whole misleading procedure of strengthening semantics to obtain complete-
ness for axiomatizations of the ε actually originates in Asser’s [4] of 1957. The
main objective of [4], however, is to find a semantics such that the basic ε-calculus
of Hilbert–Bernays [58] — not containing (E2) — is sound and complete for it. This
semantics, however, has to depend on the details of the syntactic form of the ε-terms
and, moreover, turns out to be necessarily so artificial that Asser in [4] does not rec-
ommend it himself and admits that he thinks that it could not have been intended
in Hilbert–Bernays [58].

“Allerdings ist dieser Begriff von Auswahlfunktion so kompliziert, daß
sich seine Verwendung in der inhaltlichen Mathematik kaum empfiehlt.”

[4, p. 59]

“This notion of a choice function, however,” (i.e. the type-3 choice func-
tion, providing a semantics for the ε-operator) “is so intricate that its
application in contentual mathematics is hardly to be recommended.”

“Angesichts der Kompliziertheit des Begriffs der Auswahlfunktion drit-
ter Art ergibt sich die Frage, ob bei Hilbert–Bernays (” . . . “) wirk-
lich beabsichtigt war, diesen Begriff von Auswahlfunktion axiomatisch
zu beschreiben. Aus der Darstellung bei Hilbert–Bernays glaube ich ent-
nehmen zu können, daß das nicht der Fall ist,” [4, p. 65]
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“The intricacy of the notion of the type-3 choice function puts up the
question whether the intention in Hilbert–Bernays [58] (” . . . “) really
was to describe this notion of choice function axiomatically. I believe
I can draw from the presentation in Hilbert–Bernays [58] that that is
not the case,”

A.1.5 Roots of the Misunderstanding of Right-Uniqueness Requirement

The described prevalence of the right-uniqueness requirement may have its historical
justification in the fact that, if we expand the dots “. . . ” in the quotation preceding
Example 4.2 in § 4.6, the full quotation on p.12 of Hilbert–Bernays [58; 60] reads:

“Das ε-Symbol bildet somit eine Art der Verallgemeinerung des
µ-Symbols für einen beliebigen Individuenbereich. Der Form nach stellt
es eine Funktion eines variablen Prädikates dar, welches außer dem-
jenigen Argument, auf welches sich die zu dem ε-Symbol gehörige ge-
bundene Variable bezieht, noch freie Variable als Argumente (“Para-
meter”) enthalten kann. Der Wert dieser Funktion für ein bestimmtes
Prädikat A (bei Festlegung der Parameter) ist ein Ding des Individuen-
bereichs, und zwar ist dieses Ding gemäß der inhaltlichen Übersetzung
der Formel (ε0) ein solches, auf das jenes Prädikat A zutrifft, voraus-
gesetzt, daß es überhaupt auf ein Ding des Individuenbereichs zutrifft.”

“Thus, the ε-symbol forms a kind of generalization of the µ-symbol for
an arbitrary domain of individuals. According to its form, it constitues
a function of a variable predicate, which may contain free variables as
arguments (“parameters”) in addition to the argument to which the
bound variable of the ε-symbol refers. The value of this function for
a given predicate A (for fixed parameters) is a thing of the domain of
individuals for which — according to the contentual translation of the
formula (ε0) — the predicate A holds, provided that A holds for any thing
of the domain of individuals at all.”

Here the word “function” could be misunderstood in its narrower mathematical
sense, namely to denote a (right-) unique relation. It is stated to be a function,
however, only “according to its form”, which — in the vernacular that becomes
obvious from reading [62] — means nothing but “with respect to the process of
the formation of formulas”.
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Thus, Hilbert–Bernays’ notation of the ε takes the syntactic form of a function.
This syntactic weakness was not bothering the work of the Hilbert school in the field
of proof theory. With our more practical intentions, the ε’s form of a function turns
out as a problem even regarding syntax alone, cf. §§ 4.10 and 4.11. And we are not
the only ones who have seen this applicational problem: For instance, in Heusinger’s
[35] of 1997, an index was introduced to the ε to overcome right-uniqueness.

If we nevertheless read “function” as a right-unique relation in the above quo-
tation, what kind of function could be meant but a choice function, choosing an
element from the set of objects that satisfy A, i.e. from its extension

{ o | eval(S ] {xB 7→o})(A) }.
Accordingly, in Hilbert’s earlier publication [48], we read (p. 68):

“Darüber hinaus hat das ε die Rolle der Auswahlfunktion, d. h. im Falle,
wo Aa auf mehrere Dinge zutreffen kann, ist εA irgendeines von den
Dingen a, auf welche Aa zutrifft.”

“Beyond that, the ε has the rôle of the choice function, i.e., if Aa may
hold for several objects, εA is an arbitrary one of the things a for
which Aa holds.”

Regarding the notation in this quotation, the syntax of the ε is not that of a binder
here, but a functional ε : (i→ o)→ i, applied to A : i→ o.

The meaning of having “the rôle of the choice function” is defined by the text
that follows in the quotation. Thus, it is obvious that Hilbert wants to state the
arbitrariness of choice as given by an arbitrary choice function, and that the word
“function” does not refer to a requirement of right-uniqueness here.

Moreover, note that the definite article in “the choice function” (instead of the
indefinite one) is in conflict with an interpretation as a mathematical function in
the narrower sense as well.

Furthermore, David Hilbert was sometimes pretty sloppy with the usage of choice
functions in general: For instance, he may well have misinterpreted the consequences
of the ε on the Axiom of Choice (cf. [87], [65]) in the one but last paragraph of [45].
Let us therefore point out the following: Although the ε supplies us with a syntactic
means for expressing an indefinite universal (generalized) choice function (cf. § 5.2),
the axioms (E2), (ε0), (ε1), and (ε2) do not imply the Axiom of Choice in set
theories, unless the axiom schemes of Replacement (Collection) and Comprehension
(Separation, Subset) also range over expressions containing the ε; cf. [72, § IV 4.4].

Hilbert’s school in logic may well have wanted to express what we call “committed
choice” today, but they simply used the word “function” for the following three
reasons:
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1. They were not too much interested in semantics anyway.

2. The technical term “committed choice” did not exist at their time.

3. Last but not least, right-uniqueness conveniently serves as a global commit-
ment to any choice and thereby avoids the problem illustrated in Example 4.6
of § 4.8.

A.2 Indefinite Semantics in the Literature

The only occurrence of an indefinite semantics for Hilbert’s ε in the literature seems
to be Blass & Gurevich’s [10] of 2000 (and the references there), unless we count the
indexed ε of Heusinger’s [35] of 1997 for indefinite indices as such a semantics as well.
The right-uniqueness is actually so prevalent in the literature that a “δ” is written
instead of an “ε” in [10], because there the right-unique behavior is considered to
be essential for the ε.

Consider the formula εx. (x=x) = εx. (x=x) from [10] or the even simpler
εx. true = εx. true (discussed already in § 4.10), which may be valid or not, de-
pending on the question whether the same object is taken on both sides of the
equation or not. In natural language this like “Something is equal to something.”,
whose truth is indefinite. If you do not think so, consider εx. true 6= εx. true
in addition, i.e. “Something is unequal to something.”, and notice that the two
sentences seem to be contradictory.

In [10], Kleene’s strong three-valued logic is taken as a mathematically elegant
means to solve the problems with indefiniteness. In spite of the theoretical signifi-
cance of this solution, however, Kleene’s strong three-valued logic severely restricts
its applicability from a practical point of view: In applications, a logic is not an
object of investigation but a meta-logical tool, and logical arguments are never made
explicit because the presence of logic is either not realized at all or taken to be triv-
ial, even by academics (unless they are formalists); see, for instance, [83, p.14f.] for
Wizard of Oz studies with young students.

Therefore, regarding applications, we had better stick to our common meta-logic,
which in the western world is a subset of (modal) classical logic: A western court
may accept that Lee Harvey Oswald killed John F. Kennedy as well as that he did
not — but cannot accept a third possibility, a tertium, as required for Kleene’s
strong three-valued logic, and especially not the interpretation given in [10], namely
that he both did and did not kill him, which contradicts any common sense.
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B The Proofs
Proof of Lemma 5.16
Under the given assumptions, set � := P+ and Sπ := A��.
Claim A: � = P+ = (P ∪ Sπ)

+ is a well-founded ordering.
Claim B: (P ∪ Sπ, N) is a consistent positive/negative variable-condition.
Claim C: Sρ ⊆ A�� = Sπ ⊆ �.
Claim D: Sπ ◦� ⊆ Sπ.
Proof of Claims A, B, C, and D: (P,N) is consistent because C is a (P,N)-choice-
condition. Thus, P is well-founded and � = P+ = (P ∪ Sπ)

+ is a well-founded
ordering. Moreover, we have Sρ, Sπ, P ⊆ �. Thus, (P,N) is a weak extension
of (P ∪ Sπ, N). Thus, by Corollary 5.7, (P ∪Sπ, N) is a consistent positive/negative
variable-condition. Finally, Sπ ◦� = A�� ◦� ⊆ A�� = Sπ.

Q.e.d. (Claims A, B, C, and D)

By recursion on yV ∈ V in �, we can define π(yV) : (Sπ〈{yV}〉 → S)→ S as follows.
Let τ ′ : Sπ〈{yV}〉 → S be arbitrary.
yV ∈ V\dom(C): If an S-raising-valuation ρ is given, then we set

π(yV)(τ ′) := ρ(yV)(Sρ〈{yV}〉�τ ′);
which is well-defined according to Claim C. Otherwise, we choose an arbitrary
value for π(yV)(τ ′) from the universe of S (of the appropriate type). Note that
S is assumed to provide some choice function S(∃) for the universe function S(∀)
according to § 5.8.
yV ∈ dom(C): In this case, we have the following situation:

C(yV) = λv B
0 . . . . λv B

l−1. εv
B
l . B for some formula B and

some v B
0 , . . . , v

B
l ∈ B with v B

0 : α0, . . . , v B
l : αl, yV : α0 → . . .→ αl−1 → αl, and

zVA � yV for all zVA ∈ VA(B), because C is a (P,N)-choice-condition. In particular,
by Claim A, yV /∈ V(B).
In this case, with the help of the assumed generalized choice function on the power-
set of the universe of S of the sort αl, we let π(yV)(τ ′) be the function f that
for χ : {v B

0 , . . . , v
B
l−1} → S chooses a value from the universe of S of type αl for

f(χ(v B
0 )) · · · (χ(v B

l−1)), such that,
if possible, B is true in S ] δ′ ] χ′,

for δ′ := e(π)(τ ′ ] τ ′′) ] τ ′ ] τ ′′ ] χ for an arbitrary τ ′′ : (A\dom(τ ′))→ S, and
for χ′ := {v B

l 7→ f(χ(v B
0 )) · · · (χ(v B

l−1))}.
Note that the point-wise definition of f is correct: by the Explicitness Lemma
and because of yV /∈ V(B), the definition of the value of f(χ(v B

0 )) · · · (χ(v B
l−1))

does not depend on the values of f(χ′′(v B
0 )) · · · (χ′′(v B

l−1)) for a different
χ′′ : {v B

0 , . . . , v
B
l−1} → S. Therefore, the function f is well-defined, because it also
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does not depend on τ ′′ according to the Explicitness Lemma and Claim 1 below.
Finally, π is well-defined by induction on � according to Claim 2 below.
Claim 1: For zVA � yV, the application term (δ′ ] χ′)(zVA) has the the value τ ′(zVA)

in case of zVA ∈ A, and the value π(zVA)(Sπ〈{zVA}〉�τ ′) in case of zVA ∈ V.
Claim 2: The definition of π(yV)(τ ′) depends only on such values of π(vV) with

vV � yV, and does not depend on τ ′′ at all.
Proof of Claim 1: For zVA ∈ A the application term has the value τ ′(zVA) because
of zVA ∈Sπ〈{yV}〉. Moreover, for zVA ∈ V, we have Sπ〈{zVA}〉 ⊆ Sπ〈{yV}〉 by
Claim D, and therefore the applicative term has the value π(zVA)(Sπ〈{zVA}〉�(τ ′ ] τ ′′))
=π(zVA)(Sπ〈{zVA}〉�τ ′). Q.e.d. (Claim 1)
Proof of Claim 2: In case of yV 6∈dom(C), the definition of π(yV)(τ ′) is immediate
and independent. Otherwise, we have zVA � yV for all zVA ∈ VA(C(yV)). Thus,
Claim 2 follows from the Explicitness Lemma and Claim 1. Q.e.d. (Claim 2)
Moreover, π : V→ (A ; S) ; S is obviously an S-raising-valuation. Thus, item 1
of Definition 5.15 is satisfied for π by Claim B.
To show that also item 2 of Definition 5.15 is satisfied, let us assume yV ∈ dom(C)
and τ : A→ S to be arbitrary with C(yV) = λv B

0 . . . . λv B
l−1. εv

B
l . B, and let us

then assume to the contrary of item 2 that, for some χ : {v B
0 , . . . , v

B
l } → S and for

δ := e(π)(τ) ] τ ] χ and σ := {v B
l 7→ yV(v B

0 ) · · · (v B
l−1)}, we have eval(S ] δ)(B) =

TRUE and eval(S ] δ)(Bσ) = FALSE.
Set τ ′ := Sπ〈{yV}〉�τ and τ ′′ := A\dom(τ ′)�τ .
Set δ′ := VAB\{vB

l }�δ and f := π(yV)(τ ′).
Set χ′ := {v B

l 7→ f(χ(v B
0 )) · · · (χ(v B

l−1))} .
Then δ′ = e(π)(τ ′ ] τ ′′) ] τ ′ ] τ ′′ ] {v0,...,vl−1}�χ. Moreover, by the Explic-
itness Lemma, we have δ′ = VAB\{vB

l }�id ◦ eval(S ] δ).
By the Valuation Lemma we have

eval(S ] δ)(yV(v B
0 ) · · · (v B

l−1))

= δ(yV)(δ(v B
0 )) · · · (δ(v B

l−1))

= e(π)(τ)(yV)(χ(v B
0 )) · · · (χ(v B

l−1))

= π(yV)(τ ′)(χ(v B
0 )) · · · (χ(v B

l−1))

= f(χ(v B
0 )) · · · (χ(v B

l−1)).

Thus, χ′ = σ ◦ eval(S ] δ).
Thus, δ′ ] χ′ = (VAB\{vB

l }�id ] σ) ◦ eval(S ] δ).
Thus, we have, on the one hand,

eval(S ] δ′ ] χ′)(B)
= eval(S ] ((VAB\{vB

l }�id ] σ) ◦ eval(S ] δ)))(B)

= eval(S ] δ)(Bσ)
= FALSE,
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where the second equation holds by the Substitution [Value] Lemma.
Moreover, on the other hand, we have

eval(S ] δ′ ] {vB
l }�χ)(B)

= eval(S ] δ)(B)
= TRUE.

This means that a value (such as χ(v B
l )) could have been chosen

for f(χ(v B
0 )) · · · (χ(v B

l−1)) to make B true in S ] δ′ ] χ′, but it was not.
This contradicts the definition of f. Q.e.d. (Lemma 5.16)

Proof of Lemma 5.19
Let C(yV) = λv B

0 . . . . λv B
l−1. εv

B
l . B for a formula B. Set

σ := {v B
l 7→ yV(v B

0 ) · · · (v B
l−1)}. Then we have QC(y

V) = ∀v B
0 . . . .∀v B

l−1.(
∃v B

l . B ⇒ Bσ
)
. Let π be S-compatible with (C, (P,N)); namely, in the case

of item 1, the π mentioned in the lemma, or, in the case of item 2, the π that
exists according to Lemma 5.16. Let τ : A→ S be arbitrary. It now suffices to
show eval(S ] e(π)(τ) ] τ)(QC(y

V)) = TRUE. By the backward direction of the
∀-Lemma, it suffices to show eval(S ] δ)(∃v B

l . B ⇒ Bσ) = TRUE for an arbitrary
χ : {v B

0 , . . . , v
B
l−1} → S, setting δ := e(π)(τ) ] τ ] χ. By the backward direction of

the⇒-Lemma, it suffices to show eval(S ] δ)(Bσ) = TRUE under the assumption
of eval(S ] δ)(∃v B

l . B) = TRUE. From the latter, by the forward direction of the
∃-Lemma, there is a χ′ : {v B

l } → S such that eval(S ] δ ] χ′)(B) = TRUE. By
item 2 of Definition 5.15, we get eval(S ] δ ] χ′)(Bσ) = TRUE. By the Explicit-
ness Lemma, we get eval(S ] δ)(Bσ) = TRUE. Q.e.d. (Lemma 5.19)

Proof of Lemma 5.22
Let us assume that π is S-compatible with (C ′, (P ′, N ′)). Then, by item 1 of Defi-
nition 5.15, π : V→ (A ; S) ; S is an S-raising-valuation and (P ′ ∪ Sπ, N

′) is
consistent. As (P ′, N ′) is an extension of (P,N), we have P⊆P ′ and N⊆N ′.
Thus, (P ′ ∪ Sπ, N

′) is an extension of (P ∪ Sπ, N). Thus, (P ∪ Sπ, N) is consistent
by Corollary 5.7. For π to be S-compatible with (C, (P,N)), it now suffices to show
item 2 of Definition 5.15. As this property does not depend on the positive/nega-
tive variable-conditions anymore, it suffices to note that it actually holds because
it holds for C ′ by assumption and we also have C⊆C ′ by assumption.

Q.e.d. (Lemma 5.22)
Proof of Lemma 5.24
By assumption, (C ′, (P ′, N ′)) is the extended σ-update of (C, (P,N)). Thus,
(P ′, N ′) is the σ-update of (P,N). Thus, because σ is a (P,N)-substitution, (P ′, N ′)
is a consistent positive/negative variable-condition by Definition 5.9. Moreover, C
is a (P,N)-choice-condition. Thus, C is a partial function from V into the set of
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higher-order ε-terms, such that Items 1, 2, and 3 of Definition 5.13 hold. Thus, C ′

is a partial function from V into the set of higher-order ε-terms satisfying items 1
and 2 of Definition 5.13 as well. For C ′ to satisfy also item 3 of Definition 5.13, it
now suffices to show the following Claim 1.
Claim 1: Let yV ∈ dom(C ′) and zVA ∈ VA(C ′(yV)). Then we have zVA (P ′)+ yV.
Proof of Claim 1: By the definition of C ′, we have zVA ∈VA(C(yV)) or else there is
some xV ∈ dom(σ)∩V(C(yV)) with zVA ∈VA(σ(xV)). Thus, as C is a (P,N)-choice-
condition, we have either zVA P+ yV or else xV P+ yV and zVA ∈VA(σ(xV)). Then,
as (P ′, N ′) is the σ-update of (P,N), by Definition 5.8, we have either zVA (P ′)+ yV

or else xV (P ′)+ yV and zVA P ′ xV. Thus, in any case, zVA (P ′)+ yV. Q.e.d. (Claim 1)
Q.e.d. (Lemma 5.24)

Proof of Lemma 5.25
Let us assume the situation described in the lemma.
We set A := dom(σ) \ (O′]O). As σ is a substitution on V, we have
dom(σ) ⊆ O′]O]A ⊆ V.

←−−−−−−−−−−−−−−−−−−−−−−−−−−V−−−−−−−−−−−−−−−−−−−−−−−−−−→
←−−−−−−−−−dom(C)−−−−−−−−−→

←−−−−−−−−−−dom(σ)−−−−−−−−−−→
←−−−−−O′−−−−−→←−O−→←−−−−−A−−−−−→

Note that C ′ is a (P ′, N ′)-choice-condition by Lemma 5.24.
As π′ is S-compatible with (C ′, (P ′, N ′)), we know that (P ′∪Sπ′ , N ′) s a consistent
positive/negative variable-condition. Thus, � := (P ′ ∪ Sπ′)+ is a well-founded
ordering.
Let D be the dependence relation of σ. Set Sπ := A��.
Claim 1: We have P ′, Sπ′ , P,D, Sπ ⊆ � and

(P ′ ∪ Sπ′ , N ′) is a weak extension of (P ∪ Sπ, N) and of (�, N) (cf. Defi-
nition 5.6).
Proof of Claim 1: As (P ′, N ′) is the σ-update of (P,N), we have P ′=P ∪D and
N ′=N . Thus, P ′, Sπ′ , P,D, Sπ ⊆ (P ′ ∪ Sπ′)+ = �. Q.e.d. (Claim 1)
Claim 2: (P∪Sπ, N) and (�, N) are consistent positive/negative variable-conditions.
Proof of Claim 2: This follows from Claim 1 by Corollary 5.7. Q.e.d. (Claim 2)
Claim 3: O′�C is an (�, N)-choice-condition.
Proof of Claim 3: By Claims 1 and 2 and the assumption that C is a (P,N)-choice-
condition. Q.e.d. (Claim 3)
The plan for defining the S-raising-valuation π (which we have to find) is to give
π(yV)(Sπ〈{yV}〉�τ) a value as follows:
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(α) For yV ∈V\(O′]O]A), we take this value to be
π′(yV)(Sπ′ 〈{yV}〉�τ).

This is indeed possible because of Sπ′ ⊆ A�� = Sπ, so Sπ′ 〈{yV}〉�τ ⊆ Sπ〈{yV}〉�τ .

(β) For yV ∈O]A, we take this value to be
eval(S ] e(π′)(τ) ] τ)(σ(yV)).

Note that, in case of yV ∈O, we know that (QC(y
V))σ is (π′,S)-valid by

assumption of the lemma. Moreover, the case of yV ∈A is unproblematic
because of yV 6∈dom(C). Again, π is well-defined in this case because the
only part of τ that is accessed by the given value is Sπ〈{yV}〉�τ . Indeed, this
can be seen as follows: By Claim 1 and the transitivity of �, we have:
A�D ∪ Sπ′◦D ⊆ A�� = Sπ.

(γ) For yV ∈O′, however, we have to take care of S-compatibility with (C, (P,N))
explicitly in an �-recursive definition on the basis a function ρ implementing
(α) and (β). This disturbance does not interfere with the semantic invariance
stated in the lemma because occurrences of variables from O′ are explicitly
excluded in the relevant terms and formulas and, according to the statement
of lemma, O′ satisfies the appropriate closure condition.

Set Sρ := Sπ. Let ρ be defined by (yV ∈V, τ : A→ S)

ρ(yV)(Sπ〈{yV}〉�τ) :=
{

π′(yV)(Sπ′ 〈{yV}〉�τ) if yV ∈ V\(O]A)
eval(S ] e(π′)(τ) ] τ)(σ(yV)) if yV ∈O]A

Let π be the S-raising-valuation that exists according to Lemma 5.16 for the S-
raising-valuation ρ and the (�, N)-choice-condition O′�C (cf. Claim 3). Note that
the assumptions of Lemma 5.16 are indeed satisfied here and that the resulting
semantic relation Sπ of Lemma 5.16 is indeed identical to our pre-defined relation of
the same name, thereby justifying our abuse of notation: Indeed, by assumption of
Lemma 5.25, for every return type α of O′�C, there is a generalized choice function
on the power-set of the universe of S for the type α; and we have

Sρ = Sπ = A�� = A�(�+).
Because of dom(O′�C) = O′, according to Lemma 5.16, we then have

V\O′�π = V\O′�ρ
and π is S-compatible with (O′�C, (�, N)).
Claim 4: For all yV ∈ O]A and τ : A→ S, when we set δ′ := e(π′)(τ) ] τ :

e(π)(τ)(yV) = eval(S ] δ′)(σ(yV)).
Proof of Claim 4: We have O]A ⊆ V\O′. Thus, Claim 4 follows immediately from
the definition of ρ. Q.e.d. (Claim 4)
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Claim 5: For all yV ∈ V\(O′]O]A) and τ : A→ S: e(π)(τ)(yV) = e(π′)(τ)(yV).
Proof of Claim 5: For yV ∈ V\(O′]O]A), we have yV ∈ V\O′ and yV ∈ V\(O]A).
Thus, e(π)(τ)(yV) = π(yV)(Sπ〈{yV}〉�τ) = ρ(yV)(Sπ〈{yV}〉�τ) = π′(yV)(Sπ′ 〈{yV}〉�τ) =
e(π′)(τ)(yV). Q.e.d. (Claim 5)
Claim 6: For any term or formula B (possibly with some unbound occurrences of

bound atoms from the set W ⊆ B) with O′ ∩ V(B) = ∅, and for every
τ : A→ S and every χ : W → S, when we set δ := e(π)(τ)]τ and δ′ := e(π′)(τ)]τ ,
we have eval(S ] δ′ ] χ)(Bσ) = eval(S ] δ ] χ)(B).
Proof of Claim 6: eval(S ] δ′ ] χ)(Bσ) =

(by the Substitution [Value] Lemma)
eval(S ] (σ ] VAB\dom(σ)�id) ◦ eval(S ] δ′ ] χ))(B) =
(by the Explicitness Lemma and the Valuation Lemma (for the case of l=0))
eval(S ] (σ ◦ eval(S ] δ′)) ] VA\dom(σ)�δ′ ] χ)(B) =

(by O]A ⊆ dom(σ) ⊆ O′]O]A, O′∩V(B)= ∅, and the Explicitness Lemma)
eval(S ] O]A�σ ◦ eval(S ] δ′) ] VA\(O′]O]A)�δ′ ] χ)(B) =

(by Claim 4 and Claim 5)
eval(S ] O]A�δ ] VA\(O′]O]A)�δ ] χ)(B) =

(by O′∩V(B)= ∅ and the Explicitness Lemma)
eval(S ] δ ] χ)(B). Q.e.d. (Claim 6)
Claim 7: For every set of sequents G′ (possibly with some unbound

occurrences of bound atoms from the set W ⊆ B) with
O′ ∩ V(G′) = ∅, and for every τ : A→ S and for every χ : W → S:
Truth of G′ in S ] e(π)(τ) ] τ ] χ is equivalent to
truth of G′σ in S ] e(π′)(τ) ] τ ] χ.
Proof of Claim 7: This is a trivial consequence of Claim 6. Q.e.d. (Claim 7)
Claim 8: For yV ∈ dom(C) \O′, we have O′ ∩ V(C(yV)) = ∅.
Proof of Claim 8: Otherwise there is some yV ∈ dom(C) \ O′ and some zV ∈
O′ ∩ V(C(yV)). Then zVP+yV because C is a (P,N)-choice-condition, and then,
as 〈O′〉P+∩dom(C) ⊆ O′ by assumption of the lemma, we have the contradicting
yV ∈O′. Q.e.d. (Claim 8)

Claim 9: Let yV ∈ dom(C) and C(yV) = λv B
0 . . . . λv B

l−1. εv
B
l . B. Let τ : A→ S

and χ : {v B
0 , . . . , v

B
l } → S. Set δ := e(π)(τ) ] τ ] χ. Set µ := {v B

l 7→
yV(v B

0 ) · · · (v B
l−1)}. If B is true in S]δ, then Bµ is true in S]δ as well.

Proof of Claim 9: Set δ′ := e(π′)(τ) ] τ ] χ.
yV 6∈O′]O: In this case, because of dom(σ) ∩ dom(C) ⊆ O′]O, we have

yV 6∈dom(σ). Thus, as (C ′, (P ′, N ′)) is the extended σ-update of
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(C, (P,N)), we have C ′(yV) = (C(yV))σ. By Claim 8, we have O′ ∩ V(B) = ∅.
And then, by our case assumption, also O′ ∩ V(Bµ) = ∅.
By assumption of Claim 9, B is true in S]δ. Thus, by Claim 7, Bσ is true in S]δ′.
Thus, as π′ is S-compatible with (C ′, (P ′, N ′)), we know that (Bσ)µ is true in S]δ′.
Because of yV 6∈dom(σ), this means that (Bµ)σ is true in S]δ′. Thus, by Claim 7,
Bµ is true in S]δ.
yV ∈O: By Claim 8, we have O′ ∩ V(B) = ∅.

And then, by our case assumption, also O′ ∩ V(Bµ) = ∅.
Moreover, (QC(y

V))σ is equal to ∀v B
0 . . . .∀v B

l−1.
(
∃v B

l . B ⇒ Bµ
)
σ and (π′,S)-

valid by assumption of the lemma. Thus, by the forward direction of the ∀-Lemma,(
∃v B

l . B ⇒ Bµ
)
σ is true in S]δ′. Thus, by Claim 7, ∃v B

l . B ⇒ Bµ is true
in S]δ. As, by assumption of Claim 9, B is true in S]δ, by the backward direction
of the ∃-Lemma, ∃v B

l . B is true in S]δ as well. Thus, by the forward direction of
the ⇒-Lemma, Bµ is true in S]δ as well.
yV ∈O′: π is S-compatible with (O′�C, (�, N)) by definition, as explicitly stated

before Claim 4. Q.e.d. (Claim 9)

By Claims 2 and 9, π is S-compatible with (C, (P,N)). And then items 1 and 2 of
the lemma are trivial consequences of Claims 6 and 7, respectively.

Q.e.d. (Lemma 5.25)

Proof of Theorem 5.27
The first four items are trivial (Validity, Reflexivity, Transitivity, Additivity).

(5a): If G0 is (C ′, (P ′, N ′))-valid in S, then there is some π that is S-compatible
with (C ′, (P ′, N ′)) such that G0 is (π,S)-valid. By Lemma 5.22, π is also

S-compatible with (C, (P,N)). Thus, G0 is (C, (P,N))-valid, in S.

(5b): Suppose that π is S-compatible with (C ′, (P ′, N ′)), and that G1 is (π,S)-
valid. By Lemma 5.22, π is also S-compatible with (C, (P,N)). Thus, since

G0 (C, (P,N))-reduces to G1, also G0 is (π,S)-valid as was to be shown.

(6): Assume the situation described in the lemma.

Claim 1: O′ ⊆ dom(C) \O.
Proof of Claim 1: By definition, O′ ⊆ dom(C). It remains to show O′ ∩ O= ∅.
To the contrary, suppose that there is some yV ∈ O′ ∩O. Then, by the definition
of O′, there is some zV ∈M\O with zV P ∗ yV. By definition of O, however, we have
yV ∈ P ∗〈V 〉. Thus, zV ∈ P ∗〈V 〉. Thus, zV ∈O, a contradiction. Q.e.d. (Claim 1)
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Claim 2: 〈O′〉P+ ∩ dom(C) ⊆ O′.
Proof of Claim 2: Assume yV ∈ O′ and zV ∈ dom(C) with yV P+ zV. It now
suffices to show zV ∈O′. Because of yV ∈ O′, there is some xV ∈ M\O with
xV P ∗ yV. Thus, xV P ∗ zV. Thus, zV ∈O′. Q.e.d. (Claim 2)
Claim 3: dom(σ) ∩ dom(C) ⊆ O′ ∪O.
Proof of Claim 3: dom(σ) ∩ dom(C) = dom(C) ∩M ⊆ O ∪ (dom(C) ∩ (M\O))
⊆ O ∪ (dom(C) ∩ 〈M\O〉P ∗) = O ∪O′. Q.e.d. (Claim 3)
Claim 4: O′ ∩ V(G0, G1) = O′ ∩ V = ∅.
Proof of Claim 4: Because of V(G0, G1) ⊆ V, it suffices to show the second equality.
To the contrary of the second equality, suppose that there is some yV ∈ O′∩V . Then,
by the definition of O′, there is some zV ∈M\O with zV P ∗ yV. By definition of O,
however, we have zV ∈O, a contradiction. Q.e.d. (Claim 4)
(6a): In case that G0σ∪ (〈O〉QC)σ is (C ′, (P ′, N ′))-valid in S, there is some π′ that

is S-compatible with (C ′, (P ′, N ′)) such that G0σ ∪ (〈O〉QC)σ is (π′,S)-valid.
Then both G0σ and (〈O〉QC)σ are (π′,S)-valid. By Claims 1, 2, 3, and 4, let π be
given as in Lemma 5.25. Then G0 is (π,S)-valid. Moreover, as π is S-compatible
with (C, (P,N)), G0 is (C, (P,N))-valid in S.
(6b): Let π′ be S-compatible with (C ′, (P ′, N ′)), and suppose that G1σ∪ (〈O〉QC)σ

is (π′,S)-valid. Then both G1σ and (〈O〉QC)σ are (π′,S)-valid. By
Claims 1, 2, 3, and 4, let π be given as in Lemma 5.25. Then π is S-compatible
with (C, (P,N)), and G1 is (π,S)-valid. By assumption, G0 (C, (P,N))-reduces
to G1. Thus, G0 is (π,S)-valid, too. Thus, by Lemma 5.25, G0σ is (π′,S)-valid as
was to be shown.

(7): Let π be S-compatible with (C, (P,N)), and suppose that G0 is (π,S)-valid.
Let τ : A→ S be an arbitrary S-valuation. Set δ := e(π)(τ) ] τ . It suffices

to show eval(S ] δ)(G0ν) = TRUE.

Define τ ′ : A→ S via τ ′(yA) :=

{
τ(yA) for yA ∈ A\dom(ν)
eval(S ] δ)(ν(yA)) for yA ∈ dom(ν)

}
.

Claim 5: For vV ∈ V(G0) we have e(π)(τ)(vV) = e(π)(τ ′)(vV).
Proof of Claim 5: Otherwise there must be some yA ∈ dom(ν) with yA Sπ vV.
Because of vV ∈V(G0) and V(G0) × dom(ν) ⊆ N , we have vV N yA. But
then (P ∪ Sπ, N) is not consistent, which contradicts π being S-compatible with
(C, (P,N)). Q.e.d. (Claim 5)
Then we get by the Substitution [Value] Lemma (1st equation), the Valuation
Lemma (for the case of l=0) (2nd equation), by definition of τ ′ and δ (3rd equation),
by the Explicitness Lemma and Claim 5 (4th equation), and by the (π,S)-validity
of G0 (5th equation):
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eval(S ] δ)(G0ν) = eval
(
S ]

(
( ν ] VA\dom(ν)�id ) ◦ eval(S ] δ)

))(
G0

)

= eval
(
S ]

(
ν ◦ eval(S ] δ)

)
] VA\dom(ν)�δ

)(
G0

)

= eval
(
S ] τ ′ ] e(π)(τ)

)(
G0

)

= eval
(
S ] τ ′ ] e(π)(τ ′)

)(
G0

)

= TRUE

Q.e.d. (Theorem 5.27)

Proof of Theorem 5.28

To illustrate our techniques, we only treat the first rule of each kind; the other rules
can be treated most similarly. In the situation described in the theorem, it suffices
to show that C ′ is a (P ′, N ′)-choice-condition (because the other properties of an
extended extension are trivial), and that, for every S-raising-valuation π that is S-
compatible with (C ′, (P ′, N ′)), the sets G0 and G1 of the upper and lower sequents
of the inference rule are equivalent w.r.t. their (π,S)-validity.

γ-rule: In this case we have (C ′, (P ′, N ′)) = (C, (P,N)). Thus, C ′ is a (P ′, N ′)-
choice-condition by assumption of the theorem. Moreover, for every

S-valuation τ : A→ S, and for δ := e(π)(τ) ] τ , the truths of
{Γ ∃y B. A Π} and {A{y B 7→t} Γ ∃y B. A Π}

in S]δ are indeed equivalent. The implication from left to right is trivial because
the former sequent is a sub-sequent of the latter.

For the other direction, assume that A{y B 7→t} is true in S]δ. Thus, by the Sub-
stitution [Value] Lemma (second equation) and the Valuation Lemma for l=
0 (third equation):

TRUE = eval(S ] δ)(A{y B 7→t})
= eval(S ] (({y B 7→t} ] VAB\{yB}�id) ◦ eval(S]δ)))(A)
= eval(S ] {y B 7→eval(S]δ)(t)} ] δ)(A)

Thus, by the backward direction of the ∃-Lemma, ∃y B. A is true in S]δ. Thus,
the upper sequent is true S]δ.

δ−-rule: In this case, we have xA ∈ A \ (dom(P ) ∪ A(Γ,A,Π)), C ′′ = ∅, and
V = V(Γ ∀xB. A Π)× {xA}. Thus, C ′ = C, P ′ = P , and N ′ = N∪V .
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Claim 1: C ′ is a (P ′, N ′)-choice-condition.
Proof of Claim 1: By assumption of the theorem, C is a (P,N)-choice-condition.
Thus, (P,N) is a consistent positive/negative variable-condition. By Definition 5.4,
P is well-founded and P+◦N is irreflexive. Since xA /∈ dom(P ), we have xA /∈
dom(P+). Thus, because of ran(V )= {xA}, also P+◦N ′ is irreflexive. Thus,
(P ′, N ′) is a consistent positive/negative variable-condition, and C ′ is a (P ′, N ′)-
choice-condition. Q.e.d. (Claim 1)
Now, for the soundness direction, it suffices to show the contrapositive, namely to
assume that there is an S-valuation τ : A→ S such that {Γ ∀xB. A Π} is false
in S]e(π)(τ) ] τ , and to show that there is an S-valuation τ ′ : A→ S such that
{A{xB 7→xA} Γ Π} is false in S ] e(π)(τ ′) ] τ ′. Under this assumption, the
sequent ΓΠ is false in S ] e(π)(τ)]τ .
Claim 2: ΓΠ is false in S]e(π)(τ ′)]τ ′ for all τ ′ : A→ S with A\{xA}�τ ′ = A\{xA}�τ .
Proof of Claim 2: Because of xA /∈ A(ΓΠ), by the Explicitness Lemma, if
Claim 2 did not hold, there would have to be some uV ∈ V(ΓΠ) with xA Sπ uV.
Then we have uV N ′ xA. Thus, we know that (P ′ ∪ Sπ)

+ ◦ N ′ is not irreflexive,
which contradicts π being S-compatible with (C ′, (P ′, N ′)). Q.e.d. (Claim 2)
Moreover, under the above assumption, also ∀xB. A is false in S]e(π)(τ)]τ . By the
backward direction of the ∀-Lemma, this means that there is some object o such that
A is false in S]{xB 7→o}]e(π)(τ)]τ . Set τ ′ := A\{xA}�τ ] {xA 7→o}. Then, by the
Substitution [Value] Lemma (1st equation), by the Valuation Lemma (for l=0)
(2nd equation), and by the Explicitness Lemma and xA /∈ A(A) (3rd equation), we
have: eval(S ] e(π)(τ) ] τ ′)(A{xB 7→xA}) =

eval(S ] (({xB 7→xA} ] VAB\{xB}�id) ◦ eval(S ] e(π)(τ) ] τ ′)))(A) =

eval(S ] {xB 7→o} ] e(π)(τ) ] τ ′)(A) =
eval(S ] {xB 7→o} ] e(π)(τ) ] τ)(A) = FALSE.

Claim 4: A{xB 7→xA} is false in S]e(π)(τ ′)]τ ′.
Proof of Claim 4: Otherwise, there must be some uV ∈ V(A{xB 7→xA}) with xA Sπ uV.
Then we have uV N ′ xA. Thus, we know that (P ′ ∪ Sπ)

+ ◦ N ′ is not irreflexive,
which contradicts π being S-compatible with (C ′, (P ′, N ′)). Q.e.d. (Claim 4)
By the Claims 4 and 2, {A{xB 7→xA} Γ Π} is false in S ] e(π)(τ ′)] τ ′, as was
to be show for the soundness direction of the proof.
Finally, for the safeness direction, assume that the sequent Γ ∀xB. A Π is
(π,S)-valid. For arbitrary τ : A→ S, we have to show that the lower sequent
A{xB 7→xA} Γ Π is true in S]δ for δ := e(π)(τ)] τ . If some formula in ΓΠ is true
in S]δ, then the lower sequent is true in S]δ as well. Otherwise, ∀xB. A is true
in S]δ. Then, by the forward direction of the ∀-Lemma, this means that A is true
in S]χ]δ for all S-valuations χ : {xB} → S. Then, by the Substitution [Value]
Lemma (1st equation), and by the Valuation Lemma (for l=0) (2nd equation),
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we have:
eval(S ] δ)(A{xB 7→xA}) =

eval(S ] (({xB 7→xA} ] VAB\{xB}�id) ◦ eval(S ] δ)))(A) =

eval(S ] {xB 7→δ(xA)} ] δ)(A) = TRUE.

δ+-rule: In this case, we have xV ∈ V \ (dom(C ∪ P ∪N) ∪ V(A)),
C ′′ = {(xV, εxB. ¬A)}, and V = VA(∀xB. A)× {xV} = VA(A)× {xV}.

Thus, C ′ = C ∪ {(xV, εxB. ¬A)}, P ′ = P ∪ V , and N ′ = N .
By assumption of the theorem, C is a (P,N)-choice-condition. Thus, (P,N) is a
consistent positive/negative variable-condition. Thus, by Definition 5.4, P is well-
founded and P+◦N is irreflexive.
Claim 5: P ′ is well-founded.
Proof of Claim 5: Let B be a non-empty class. We have to show that there is
a P ′-minimal element in B. Because P is well-founded, there is some P -minimal
element in B. If this element is V -minimal in B, then it is a P ′-minimal element in B.
Otherwise, this element must be xV and there is an element nVA ∈ B ∩ VA(A). Set
B′ := { bVA ∈B | bVA P ∗ nVA }. Because of nVA ∈B′, we know that B′ is a non-empty
subset of B. Because P is well-founded, there is some P -minimal element mVA in B′.
Then mVA is also a P -minimal element in B. Because of xV /∈ VA(A)∪dom(P ), we
know that xV /∈ B′. Thus, mVA 6=xV. Thus, mVA is also a V -minimal element of B.
Thus, mVA is also a P ′-minimal element of B. Q.e.d. (Claim 5)
Claim 6: (P ′)+ ◦N ′ is irreflexive.
Proof of Claim 6: Suppose the contrary. Because P+ ◦ N is irreflexive,
P ∗ ◦ (V ◦ P ∗)+ ◦ N must be reflexive. Because of ran(V )= {xV} and
{xV} ∩ dom(P ∪N)= ∅, we have V ◦P = ∅ and V ◦N = ∅. Thus, P ∗ ◦ (V ◦ P ∗)+ ◦
N = P ∗ ◦ V + ◦N = ∅. Q.e.d. (Claim 6)
Claim 7: C ′ is a (P ′, N ′)-choice-condition.
Proof of Claim 7: By Claims 5 and 6, (P ′, N ′) is a consistent positive/negative vari-
able-condition. As xV ∈ V\dom(C), we know that C ′ is a partial function on V
just as C. Moreover, for yV ∈ dom(C ′), we either have yV ∈dom(C) and then
VA(C ′(yV))× {yV} = VA(C(yV))× {yV} ⊆ P+ ⊆ (P ′)+, or yV =xV and then
VA(C ′(yV))× {yV} = VA(εxB. ¬A)× {xV} = V ⊆ P ′ ⊆ (P ′)+. Q.e.d. (Claim 7)
Now it suffices to show that, for each τ : A→ S, and for δ := e(π)(τ)] τ , the truth
of {Γ ∀xB. A Π} in S ] δ is equivalent that of {A{xB 7→xV} Γ Π}.
For the soundness direction, it suffices to show that the former sequent is true
in S]δ under the assumption that the latter is. If some formula in ΓΠ is true
in S]δ, then the former sequent is true in S]δ as well. Otherwise, this means
that A{xB 7→xV} is true in S]δ. Then, by the forward direction of the ¬-Lemma,
¬A{xB 7→xV} is false in S]δ. By the Explicitness Lemma, ¬A{xB 7→xV} is false
in S]δ]χ for all χ : {xB} → S. Because π is S-compatible with (C ′, (P ′, N ′)) and
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because of C ′(xV) = εxB. ¬A, by Item 2 of Definition 5.15, ¬A is false in S]δ]χ
for all χ : {xB} → S. Then, by the backward direction of the ¬-Lemma, A is true
in S]δ]χ for all χ : {xB} → S. Then, by the backward direction of the ∀-Lemma,
∀xB. A is true in S]δ.
The safeness direction is perfectly analogous to the case of the δ−-rule.

Q.e.d. (Theorem 5.28)

C Notes
Finally, in § C.1 and § C.2, come two notes that were to big to fit into the footnotes
3 and 5, respectively.

C.1 Are Liberalized δ-Rules Really More Liberal?

We could object with the following two points to the classification of the δ+-rules
as being more “liberal” than the δ−-rules:

• VA(∀xB. A) is not necessarily a subset of V(Γ ∀xB. A Π), because
VA(∀xB. A) may include some additional free atoms.
First note that δ−-rules and the free atoms did not occur in inference systems
with δ+-rules before the publication of [106]; so in the earlier systems with
free δ+-rules only, VA(∀xB. A) was indeed a subset of V(Γ ∀xB. A Π).
Moreover, the additional atoms blocked by the δ+-rules (as compared to the
δ−-rules) can hardly block any reductive proofs of formulas without free atoms
and variables. This has following reason.
If a proof uses only δ+-reductions, then there will be no (free) atoms around
and the critical subset relation holds anyway. So a critical variable-condition
can only arise if a δ+-step follows a δ−-step on the same branch. With a
reasonably minimal positive/negative variable-condition (P,N), the only ad-
ditional cycles that could occur by the δ+-rule as compared to the alternative
application of a δ−-rules are of the form

yV N zA P xV P ∗ wV P yV,
resulting from the following scenario: yV N zA results from a δ−-step, zA P xV

results from a subsequent δ+-step on the same branch, xV P ∗ wV results from
possible further δ+-steps (δ−-steps cannot produce a relevant cycle!) and in-
stantiations of free variables, and wV P yV finally results from an instantiation
of yV.
Let us now see what happens if we replace the δ+-step with a δ−-step with xA

replacing xV, ceteris paribus. Note that this is only possible if xV was never
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instantiated, which again explains why there must be at least one step of P
between xV and yV. If the free variable yV occurs in the upper sequent of this
changed step, then new proof immediately fails due to the new cycle

yV N xA P ∗ wV P yV.
Otherwise, yV was lost on this branch; but then we must ask ourselves why
we instantiated it with a term containing wV. If wV is essentially shared with
another branch, on which yV has survived, then it must occur in the sequent
before the original δ+-step, and so we get the cycle

wV N xA P ∗ wV.
Otherwise, if wV is not shared with another branch, we do not see any reason
to instantiate yV with a term containing wV. Indeed, if wV is only this branch,
then there is no reason; if wV occurs only on another branch, then a good
reason for xV P ∗ wV can be rejected just as for yV before.

• The δ+-rule may contribute an P -edge to a cycle with exactly one edge from N ,
whereas the analogous δ−-rule would contribute an N -edge instead, so the
analogous cycle would then not count as counterexample to the consistency of
the positive/negative variable-condition because it has two edges from N .
Also in this case we conjecture that δ−-rules do not admit any successful proofs
that are not possible with the analogous δ+-rules. A proof of this conjecture,
however, is not easy: First, it is a global property which requires us to consider
the entire inference system. Second, δ−-rules indeed admit some extra (P,N)-
substitutions, which have to be shown not to generate essentially additional
proofs. E.g., if we want to prove ∀y B. Q(aV, y B) ∧ ∀xB. Q(xB, bV), which is true
for a reflexive ordering Q with a minimal and a maximal element, β- and δ−-
rules reduce this to the two goals Q(aV, yA) and Q(xA, bV) with positive/nega-
tive variable-condition (P,N) given by P = ∅ and N = {(aV, yA), (bV, xA)}.
Then σA := {aV 7→xA, bV 7→yA} is a (P,N)-substitution. The analogous δ+-
rules would have resulted in the positive/negative variable-condition (P ′, N ′)
given by P ′ = {(aV, yV), (bV, xV)} and N ′ = ∅. But σV := {aV 7→xV, bV 7→yV}
is not a (P ′, N ′)-substitution!

C.2 σ-Updates Admitting Variable-Reuse and -Permutation

For a version of σ-updates that admits variable-reuse and -permutation as explained
in Note 10 of [106] and executed in Notes 26–30 of [106], the σ-update has to forget
about the old meaning of the variables in dom(σ). To this end — instead of the
simpler (P ∪ D,N) — we have to chose a σ-update admitting variable-reuse and
-permutation to be
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( (
VA\dom(σ)�P ∪ P ′ ◦ P

)
�V\dom(σ), V\dom(σ)�N ∪ V�P ′ ◦N

)

for P ′ := D ∪ VA\dom(σ)�(P �dom(σ))
+.

Note that P ′ can be simplified to D here by taking as the σ-update admitting
Vγ-reuse and -permutation:(

A∪Vδ+∪(Vγ\dom(σ))�P ∪ D ◦ P ∪ D�Vδ+
,

Vδ+∪(Vγ\dom(σ))�N ∪ V�D�Vγ∩dom(σ) ◦N

)
,

provided that we partition V into two sets Vδ+]Vγ , use Vδ+ as the possible domain
of the choice-conditions, and admit variable-reuse and -permutation only on Vγ ,
similar to what we already did in Note 10 of [106]. (The crucial restriction becomes
here the following: For a (positive/negative) σ-update (P ′′, N ′′) admitting Vγ-reuse
and -permutation we have P ′′ ⊆ VA×Vδ+ and N ′′ ⊆ V× A ).
Note, however, that it is actually better to work with the more complicated P ′,
simply because it is more general and because the transitive closure will not be
computed in practice, but a graph will be updated just as exemplified in Note 10 of
[106].
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Abstract
We investigate the elimination of quantifiers in first-order formulas via Hilbert’s
epsilon-operator (or -binder), following Bernays’ explicit definitions of the
existential and the universal quantifier symbol by means of epsilon-terms.
This elimination has its first explicit occurrence in the proof of the first
epsilon-theorem in Hilbert–Bernays in 1939. We think that there is a lacuna
in this proof w.r.t. this elimination, related to the erroneous assumption
that explicit definitions always terminate. Surprisingly, to the best of our
knowledge, nobody ever published a confluence or termination proof for this
elimination procedure; and even myths on non-confluence and the openness of
the termination problem are circulating. We show confluence and termination
of this elimination procedure by means of a direct, straightforward, and easily
verifiable proof, based on a theorem on how to obtain termination from weak
normalization.

Keywords: Hilbert–Bernays Proof Theory, History of Proof Theory, Hilbert’s
epsilon, Quantifier Elimination, (Weak) Normalization, Termination, (Local)
Confluence.

1 Introduction

1.1 The Explicit Historical Source of the Problem

With “Hilbert–Bernays” we will designate the “bible of proof theory”, i.e. the two-
volume monograph Grundlagen der Mathematik (Foundations of Mathematics) in
its two editions [19; 20] and [21; 22].

On p. 19f. of the first edition [20], as well as on p. 20 of the second edition [22],
we read:
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“Unser zweiter vorbereitender Schritt besteht in der Ausschaltung der
All- und Seinszeichen. Wie im vorigen Abschnitt gezeigt wurde, können
wir die Anwendung der Grundformeln (a), (b) und der Schemata (α), (β)
des Prädikatenkalkuls mit Hilfe der ε-Formel und der expliziten Defini-
tionen (ε1), (ε2) entbehrlich machen1. Führen wir diese Ausschaltung
der Grundformeln und Schemata für die Quantoren an der zu betra-
chtenden Ableitung der Formel E aus und ersetzen wir hernach jeden
Ausdruck (v)A(v) durch A

(
εv A(v)

)
, jeden Ausdruck (E v)A(v) durch

A
(
εv A(v)

)
, so gehen die aus (ε1), (ε2) durch Einsetzung gewonnenen

Formeln in solche über, die durch Einsetzung aus der Formel A∼A
entstehen. Die Quantoren werden durch dieses Verfahren gänzlich aus-
geschaltet, so daß nunmehr gebundene Variablen ausschließlich in Ver-
bindung mit dem ε-Symbol auftreten, und der Beweiszusammenhang nur
durch Wiederholungen, Einsetzungen, Umbenennung gebundener Vari-
ablen und Schlußschemata stattfindet.”

“Our second preparatory step consists in the elimination of the univer-
sal and existential quantifier symbols. As shown in the previous sec-
tion, we can dispense with the application of Formulas (a), (b) and
Schemata (α), (β) of the predicate calculus if we use the ε-formula and
the explicit definitions (ε1), (ε2). If we apply this elimination of basic
formulas und schemata for the quantifiers to the formula E under consid-
eration, and afterwards replace every expression (v)A(v) with A

(
εv A(v)

)
,

every expression (E v)A(v) with A
(
εv A(v)

)
, then the formulas obtained

from (ε1), (ε2) by substitution are turned into formulas obtained by sub-
stitution from the formula A∼A. By this procedure, the quantifiers are
completely eliminated, so that bound variables may occur only in com-
bination with the ε-symbol, and the interconnections of the proof may
consist only of repetitions, substitutions, renaming of bound variables,
and inference schemata.”

Note that the “A” is not a meta-variable here (such as “A” is a meta-variable for
a formula, and “v” for a bound individual variable), but a concrete object-level
formula variable. In a proof step called substitution either such a formula variable
(which is always free) or a free individual variable is replaced everywhere in a formula
with an arbitrary formula or term, respectively. Furthermore, note that “Schluß-
schema” (“inference schema”) is nothing but a short name for the inference schema
of modus ponens.
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Moreover, note that Note 1 actually occurs only in the second edition and reads
“1Vgl. S.15.” (“1Cf. p.15.”). Neither on Page 15 — nor anywhere else in the vol-
umes — can we find any further information, however, regarding the following
immediate questions:
• In which order are the final replacements of the two explicitly mentioned forms

of expressions to be applied in the elimination of quantifiers?

• Or are such eliminations independent of the order of the replacements in the
sense that they always yield unique normal forms?

What we can actually find on Page 15 are the mentioned “explicit definitions (ε1),
(ε2)”, which describe the rewrite relation of these replacements. In the more
modern notation we prefer for this paper, these explicit definitions read:

∃x. A ⇔ A{x 7→ εx. A} (ε1)

∀x. A ⇔ A{x 7→ εx. ¬A} (ε2)

Note that x is a meta-variable for individual variables (in the original: a concrete
object-level, bound individual variable), and A is a meta-variable for formulas (in the
original: a concrete object-level, singulary formula variable). The original version
of (ε1) literally reads: (Ex)A(x) ∼ A

(
εxA(x)

)
.

Note that the formulas considered here and in what follows are always first-
order formulas, extended with ε-terms and possibly also with free (second-order)
formula variables. For our considerations in this paper, it does not matter whether
we include such formula variables into our first-order formulas or not.

1.2 Subject Matter
What we will study in this paper is the question how the elimination of first-order
quantifiers via their explicit definitions can take place.

Here we should recall that, in explicit definitions (contrary to recursive defini-
tions), the symbol to be defined (here: ∃ or ∀), occurring on the left-hand side of
an equation (the definiendum), must not re-occur in the term on the right-hand side
(definiens).

In this standard terminology, (ε1) and (ε2) classify as explicit definitions,
because ∃ and ∀ do not occur on the right-hand sides — at least not explicitly.

It is commonplace knowledge that (contrary to recursive or implicit definitions)
explicit definitions are analytic (i.e. not synthetic) in the sense that they cannot
contribute anything essential to our knowledge base — simply because any notion
introduced by an explicit definition can be eliminated from any language (at least
in principle) after replacing all definienda with their respective definientia.
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For first-order terms the eliminability is indeed trivial, even for non-right-linear
equations such as

russell(x) = mbp(x, x),
where the number of occurrences of defined symbols in x is doubled when rewriting
with this equation; i.e., if n(t) denotes the number of explicitly defined symbols in
the term t, then n(russell(t)) = n(t) + 1, whereas n(mbp(t, t)) ≥ 2 ∗ n(t).

The termination of a stepwise elimination by applying one equation after the
other — until no defined symbols remain — does not crucially depend on whether
we rewrite the defined symbols in t before we apply the equation for the defined
term russell(t) or after. Indeed, the difference this alternative can make is only a
duplication of the rewrite steps required for the normalization of t.

This argumentation, however, does not straightforwardly apply to our definitions
(ε1), (ε2). Indeed, the instance of the first occurrence of the meta-variable A on
the right-hand side is modified by a substitution that may introduce an arbitrarily
large number of copies of the instance of A.

We will show in this paper, however, that rewriting of an arbitrary formula F
with (ε1), (ε2) is always confluent and terminating. This means that, no matter
in which order we eliminate the quantifiers, a resulting quantifier-free formula will
always be obtained, and that this formula is a unique normal form for F .

1.3 A Lacuna in Hilbert–Bernays?

The fact that this rewriting is innermost terminating has been well known be-
fore, but none of the experts on Hilbert’s ε we consulted knew about the strong
termination (i.e. termination independent of any rewriting strategy), and one of
them even claimed that the rewriting would not be confluent.

As the proofs of the ε-theorems of [20] show, Paul Bernays (1888–1977) was well
aware of the influence of strategies on elimination procedures. The mathematical
technology of the 1930s, however, makes it most unlikely that he could easily show
the strong termination — let alone consider it to be trivial in the context of a
textbook (such as Hilbert–Bernays).

Moreover, the actual formula language of Hilbert–Bernays strongly suggests an
outermost strategy: A non-outermost rewriting typically requires the instantiation
of A to formulas containing variables that are bound by the outer quantifiers and ep-
silons. Such an instantiation is not permitted in Hilbert–Bernays, however, because
these additional variables must come from a set of variables different from the free
individual variables, which are called bound individual variables and which are not
permitted to occur free in a substitution for A. Thus, for an innermost rewriting
in the predicate calculus of Hilbert–Bernays, we have to resort to multiple tacit
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applications of Rule (δ′) for a complete reconstruction of the whole outer part of
the formula in each innermost rewrite step; for Rule (δ′) see e.g. Page 109 in [21;
24].

All in all, the fact that neither the innermost rewriting strategy nor Rule (δ′)
is mentioned in this context in [20] makes it most likely that Bernays just relied
here on his learning that explicit definitions always admit an elimination, which is
actually not the case in general for higher-order definitions.

1.4 Alternative Proofs by Applying Theories of First- or Higher-
Order Rewriting?

In this paper, we will approach our results directly, without applying the theory
of first- or higher-order rewrite systems. Other options for obtaining the crucial
termination result are:

Option 1: To map the first-order terms with quantifiers and epsilons to quantifier-
and epsilon-free first-order terms, to find a first-order term rewriting system
that admits the transitive reduction of the images of any original reduction,
and to prove the termination of the first-order term rewriting system, using
the powerful theorems and methods to establish termination of first-order term
rewriting systems (or even some of the software systems that may show first-
order termination automatically, cf. e.g. [40]).

Option 2: To apply some results on termination of higher-order rewriting systems.

Option 3: To map the first-order terms with quantifiers and epsilons to Church’s
simply-typed λ-calculus (which is known to be terminating), such that the
images of each original reduction admit the transitive reduction in simply-
typed λ-calculus.

Let us look at second-order formulations of (ε1), partly because the original formu-
lation of Hilbert’s ε as found in [1] and [14; 15] is already a second-order one without
binders, and partly to develop options 2 and 3 a bit further.

If we use i to designate the sort (basic type) of individuals and o to designate
the sort of formulas (as standard in Church’s simply-typed λ-calculus), then the ε
gets the typing of ε : (i→ o)→ i, and for a second-order variable A : i→ o and
the existential operator Σ : (i→ o)→ o, we get

ΣA = A(εA),
or in η-expanded form

Σλx.(Ax) = A(ελx.(Ax)).
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1.4.1 On Option 2

To implement these equations according to option 2, we have to pick one of the
three competing higher-order rewriting frameworks, namely combinatory reduction
systems (CRSs) [27], [28], higher-order rewrite systems [35], [36], and algebraic-
functional systems [25]. We pick the CRS framework because it is the oldest and
most popular one (also admitting extension to conditional rewriting straightfor-
wardly, cf. [43, Note 9]).

In CRS syntax (cf. e.g. [28, § 11]), the η-expanded rule reads

Σ[x](A(x)) = A(ε[x](A(x))),

where x is a variable, A is a singulary meta-variable (not only a top-level one,
but also w.r.t. the special technical terms used for CRSs, i.e. a meta-variable for
a special variable that must not occur in the terms in the range of the rewrite
relation), Σ and ε are singulary function symbols (i.e. 1-ary constant symbols), and
[x] is an abstraction operator, binding the variable x. In this notation, we indeed
have a CRS rewrite rule with the intended rewrite relation. We can formulate (ε2)
in a similar way, resulting in a two-rule CRS that is orthogonal (called “regular” in
[27]), i.e. non-overlapping (“non-ambiguous”) and left-linear. Thus, according to
[28, Corollary 13.6] ([27, Theorem II.3.11]), the rewrite relation is confluent.

As it is obvious that this rewrite relation is weakly normalizing (as it is innermost
terminating), its termination (strong normalization) follows from Theorem II.5.9.3 of
[27, p.168], provided that we can show our rewrite relation to be non-erasing. This
means that we have to show that the set of free variables is invariant under rewrite
steps. Note that the instance of A may contain free variables (such as y), but even
if the instance of A is, say, λ[x](y = y) (i.e. the quantifier is vacuous, binding a
variable that does not occur in its scope), it seems that the deletion of the second
occurrence of A in the right-hand side does not matter, because all occurrences of
free variables are preserved by the first occurrence of A in the right-hand side.

This argumentation, however, forgets that CRSs come without β-reduction. So
we may need the rule (λ[x](A(x)))B = A(B) in addition, which would render
the CRS erasing. On the other hand, λ is different from λ (although some crucial
underlining of λ is missing in [28]) and part and parcel of the substitution framework
for “meta-variables” in [28]; this means we should get along without the β-rule for λ,
provided that we write existential quantification in our formulas as, say, “Σ[x]”
instead of “Σλx.”.

If the latter is indeed the case, and if our understanding of [27] is the right one,
then confluence and termination can be established by applying the theory of CRSs.
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1.4.2 On Option 3

To implement option 3, however, we could to take ε as a constant with the above
typing and the mapping to Church’s simply-typed λ-calculus could replace the pre-
vious constant Σ with the λ-term λA. (A(εA)) of the same type as Σ before. Then
reduction by the first of the above equations could be done by a first β-reduction,
and a second β-reduction on the λ-term A could be used to reduce A(εA), such
that an original reduction step with (ε1) results in two β-reduction steps after the
mapping to simply-typed λ-calculus. Although this proof plan is most promising,
it is not easily accessible in the sense that a working mathematician could verify it
without a careful formalization of lots of technical and syntactic details. Moreover,
as Bernays in the 1930s could not have known about the termination of simply-
typed λ-calculus — first published in 1967 by Tait [39] — this is not a proof plan he
could have followed (though he was in correspondence with Church and visiting the
Institute for Advanced Study in Princeton during session 1935/36).

1.4.3 Conclusion

Option 1 did not seem to work. Moreover, the contacted experts on higher-order
rewriting did not want to help settling the questions arising via option 2 (and no
answer was found in [37], [26] either), and the effort to familiarize oneself with the
most fascinating and outstanding work documented in Klop’s PhD thesis [27] is
considerable and disproportionate for our subject matter. Finally, we became aware
of option 3 only after our proof was already completed.

Thus, we chose a direct proof, which we present in this paper. Note, that this
straightforward and efficiently verifiable proof of termination and confluence of the
reduction relation defined directly on first-order terms with quantifiers and epsilons
has considerable advantages for the historiographical questions of a possible lacuna
in Hilbert–Bernays (where none of the options 1–3 could help, cf. § 1.3), as well as
for the accessibility by the community working on Hilbert’s ε (where not everybody
is familiar with term-rewriting frameworks and higher-order logic).

Indeed, a direct proof is not only more informative on the concrete structure
of the particular subject matter than a proof applied after a transformation to a
different basic data structure via one of the options 1–3, but it provides also the
stronger, more concise, and historiographically more relevant evidence.
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2 Background and Tools

2.1 Basic Notions and Notation

We follow standard mathematical writing style, cf. [4].
We try to be self-contained in this this paper. In case we should omit some

required information, we refer the reader to the survey [27, § I.5] on abstract rewrite
systems.

Let ‘N’ denote the set of natural numbers, and ‘<’ the ordering on N. Let
N+ := { n∈N | 0 6=n }.
For classes R, A, and B we define:
dom(R) := { a | ∃b. (a, b)∈R } domain
A�R := { (a, b)∈R | a∈A } (domain-) restriction to A
〈A〉R := { b | ∃a∈A. (a, b)∈R } image of A, i.e. 〈A〉R = ran(A�R)

And the dual ones:
ran(R) := { b | ∃a. (a, b)∈R } range
R�B := { (a, b)∈R | b∈B } range-restriction to B
R〈B〉 := { a | ∃b∈B. (a, b)∈R } reverse-image of B, i.e. R〈B〉 = dom(R�B)

We use ‘id’ for the identity function, and ‘◦’ for the composition of binary relations.
Functions are (right-) unique relations, and so the meaning of “f◦g ” is extensionally
given by (f◦g)(x) = g(f(x)).

Let −→ be a binary relation. −→ is a relation on A if
dom(−→) ∪ ran(−→) ⊆ A.

−→ is irreflexive if id∩−→ = ∅. It is A-reflexive if A�id ⊆ −→. Speaking of a
reflexive relation we refer to the largest A that is appropriate in the local context,
and referring to this A we write 0−→ to ambiguously denote A�id. With 1−→ := −→,
and n+1−→ :=

n−→◦−→ for n ∈ N+, m−→ denotes the m-step relation for −→. The
transitive closure of −→ is +−→ :=

⋃
n∈N+

n−→. The reflexive closure of −→ is
=−→ :=

⋃
n∈{0,1}

n−→. The reflexive transitive closure of −→ is ∗−→ :=
⋃

n∈N
n−→.

The reverse of −→ is ←− := { (b, a) | (a, b)∈−→ }.
v and w are called joinable w.r.t. −→ if v↓w, i.e. if v

∗−→ ◦ ∗←−w. −→ is
locally confluent if v↓w for any v, w with v←−◦−→w; it is confluent if v↓w for
any v, w with v

∗←−◦ ∗−→w. a′ is an −→-normal form of a if a
∗−→a′ /∈ dom(−→).

A sequence (si)i∈N is non-terminating in −→ if si−→si+1 for all i ∈ N. −→ is
terminating if there are no non-terminating sequences in −→. A relation R (on A)
is well-founded if any non-empty class B (⊆A) has an R-minimal element, i.e.
∃a∈B. ¬∃a′ ∈B. a′Ra. Note that well-foundedness of ←− immediately entails
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termination of −→ (via the range of the non-terminating sequence), but the con-
verse requires a weak form of the Axiom of Choice to construct the non-terminating
sequence, cf. e.g. [32, § 4.1].
Corollary 2.1 If a binary relation is well-founded, so is its transitive closure.

2.2 A Generalized Theorem as the Main Tool

The following Theorem 2.2 is a generalization of Jan Willem Klop’s Theorem I.5.18
[27, p. 53], which can be obtained again from Theorem 2.2 by the specialization
−→0 := ∅.

Theorem 2.2
Let −→0 and −→1 be two binary relations.
Set −→2 :=

∗−→0 ◦ −→1 .
Set −→3 := −→0 ∪ −→1 .

Let a ∈ dom(−→3). Let a′ be an −→3-normal form of a. Set A := 〈{a}〉 ∗−→3.
Set −→4 := A�−→3 . If

1. ←−0�A is well-founded;
2. there is an upper bound n ∈ N on the length of −→2-derivations starting

from a and reaching a′ by ∗−→0; more formally, this means that we have
m ≤ n for any m∈N and any sequence b0, . . . , bm with a= b0, bi−→2bi+1 for
each i ∈ {0, . . . ,m−1}, and bm

∗−→0a
′;

3. for all b1, b2 with b1←−4 ◦ −→1b2, we have b1
∗−→4 ◦

∗←−4b2; and
4. for all b1, b2 with b1←−4 ◦ −→0b2, we have b1

∗−→4 ◦
=←−4b2;

then ←−4 is well-founded.

Proof of Theorem 2.2
Claim 1: For all b1, b2 and n ∈ N with b1←−4 ◦

n−→0b2, we have b1
∗−→4 ◦

=←−4b2.
Proof of Claim 1: By induction on n. In case of b1←−4 ◦

0−→0b2, we have b1←−4b2.
In case of b1←−4 ◦

n−→0b2−→0b3, by induction hypothesis we have
b1

∗−→4b4
=←−4b2 for some b4 ∈ A. In case of b4= b2, we have b1

∗−→4b4−→0b3, and
thus b1

∗−→4b3. Otherwise, we have b4←−4b2, and thus b4
∗−→4b5

=←−4b3 for some
b5 by item 4, i.e. the desired b1

∗−→4b5
=←−4b3. Q.e.d. (Claim 1)

Set B := { b∈A | b ∗−→4a
′ }.

By item 2, we can define a function l : B → { m∈N | m ≤ n } via
l(b) := max { m ∈ N | b m−→2 ◦

∗−→0a
′ }.
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Claim 2: For all b ∈ B with b
∗−→4b

′, we have b′ ∈ B.

Proof of Claim 2: By induction on k := l(b) in <. The induction hypothesis is that
for all b′′ ∈ B with b′′ ∗−→4b

′′′ and l(b′′) < k, we have b′′′ ∈ B.
Note that (for b′′ ∈ B) b′′−→4b

′′′ implies l(b′′′) ≤ l(b′′). Thus, by another
induction on the length of derivations, the induction conclusion follows from the
induction hypothesis and the proposition that for all b′′ ∈ B with b′′−→4b

′′′ and
l(b′′) = k, we have b′′′ ∈ B.
So let us assume b ∈ B and b−→4b

′. Then, using the induction hypothesis, we
have to show b′ ∈B, for which it suffices to show b′ ∗−→4a

′.
By our assumption, we have b

∗−→4a
′, which falls into at least one of the following

two cases:

b
∗−→0a

′ : By Claim 1: b′ ∗−→4 ◦
=←−4a

′. Because a′ 6∈dom(−→3), and a fortiori also
a′ 6∈dom(−→4), we actually have b′ ∗−→4a

′.

b
∗−→0 b̂−→1b

′′′ ∗−→4a
′ for some b̂, b′′′ : Again by Claim 1, we get b′ ∗−→4b

′′′′ =←−4 b̂ for
some b′′′′ ∈ A.

In case of b′′′′= b̂, we have b′ ∗−→4b
′′′′−→1b

′′′ ∗−→4a
′, i.e. the desired

b′ ∗−→4b
′′′′−→4b

′′′ ∗−→4a
′.

Otherwise we have b′′′′←−4 b̂. Thus, by item 3, there is some b′′ with
b′′′′ ∗−→4b

′′ ∗←−4b
′′′. Because of b

∗−→0 b̂−→1b
′′′ ∗−→4a

′ we have b′′′ ∈B and l(b′′′) <
l(b). Thus, by the induction hypothesis, we get b′′ ∈B, and then the desired
b′ ∗−→4b

′′′′ ∗−→4b
′′ ∗−→4a

′. Q.e.d. (Claim 2)

Claim 3: A=B.

Proof of Claim 3: By a
∗−→3a

′, we also have a
∗−→4a

′, and so a∈B.
Thus, by Claim 2, we get 〈{a}〉 ∗−→4 ⊆ B.

All in all, we get: A = 〈{a}〉 ∗−→3 = 〈{a}〉 ∗−→4 ⊆ B ⊆ A. Q.e.d. (Claim 3)

By Claim 3, we get l : A→ { m∈N | m ≤ n }. Now for every b1, b2 with
b1←−4b2, we have b1, b2 ∈A and, moreover, (l(b1), b1) is strictly smaller than
(l(b2), b2) in the lexicographic combination of < and ←−0�A, which is well-founded
by item 1. Indeed, in case of b1←−0b2, we have l(b1) ≤ l(b2) and b1←−0�Ab2,
and in case of b1←−1b2, we have l(b1) < l(b2).

Q.e.d. (Theorem 2.2)
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2.3 Terms, Formulas, Substitutions, Contexts

A straightforward intuitive understanding of terms, formulas, substitutions, and
contexts will actually suffice for most working mathematicians to understand the
remainder of this paper. For the others, we give an example formalization of these
notions here.
Terms and formulas are defined inductively as follows:

• An individual variable is a term.

• If A is an n-ary formula variable (n∈N) and t1, . . . , tn are terms,
then A(t1, . . . , tn) is a formula.

• If f is an n-ary constant function or predicate symbol (n∈N) and t1, . . . , tn
are terms,
then f(t1, . . . , tn) is a term or formula, respectively.
In case of n=0, we simply write “f” instead of “f()”.

• If F is a formula, then ¬F is a formula. If F1 and F2 are formulas, then
(F1∨F2), (F1∧F2), (F1⇒F2), . . . are formulas.

• If x is an individual variable and F is a formula,
then εx. F is a term and ∃x. F and ∀x. F are formulas.
In these terms and formulas, all occurrences of x are bound ; non-bound occur-
rences of variables in terms and formulas are called free, such as each occur-
rence of any formula variable, and also of any individual variable y that is not
in the scope of a binder on y, such as “εy.”, “∃y.”, or “∀y.”.

In our definition of terms and formulas we deviate from Hilbert–Bernays in not
having an extra set of individual variables for bound occurrences, disjoint from the
set to be used for free occurrences. So we have only one set of individual variables,
but this does not really make any difference here, in particular because we ignore
the variable names in the bound occurrences by the following stipulation:

We equate formulas modulo the renaming of bound variables.
A substitution is a mapping of individual variables to terms and of n-ary formula

variables to expressions of the form λ(x1, · · · , xn). F , respectively, where x1, · · · , xn
are mutually distinct individual variables and F is a formula. For n=0, we just
write “F ” instead of “λ(). F ”.

Presupposing the above stipulation of considering formulas only up to renaming
of bound variables, we now define the result of an application of a substitution σ
to terms and formulas inductively as follows. We use postfix notation with highest
operator precedence.
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• Let x be an individual variable.
If x 6∈dom(σ), then xσ = x; otherwise xσ = σ(x), i.e. the value of x
under σ.

• Let A be an n-ary formula variable, and let t1, . . . , tn be terms. If A 6∈dom(σ),
then (A(t1, . . . , tn))σ = A(t1σ, . . . , tnσ). Otherwise (A(t1, . . . , tn))σ is the
result of the β-reduction of σ(A)(t1σ, . . . , tnσ), i.e., for σ(A) = λ(x1, · · · , xn).
F , the formula Fσ′, where σ′ is the substitution {x1 7→ t1σ, . . . , xn 7→ tnσ}.

• If f is an n-ary constant function or predicate symbol and t1, . . . , tn are terms,
then (f(t1, . . . , tn))σ = f(t1σ, . . . , tnσ).

• If F is a formula, then (¬F )σ = ¬Fσ. If F1 and F2 are formulas,
then (F1∨F2)σ = (F1σ∨F2σ), (F1∧F2)σ = (F1σ∧F2σ), (F1⇒F2)σ =
(F1σ⇒F2σ), . . . .
• If x is an individual variable

— w.l.o.g. neither an element of dom(σ), nor occurring free in ran(σ) —
and F is a formula,
then (εx. F )σ = εx. Fσ, (∃x. F )σ = ∃x. Fσ, (∀x. F )σ = ∀x. Fσ.

Corollary 2.3 If σ is a substitution, then, for any formula or term G whose
free variables are in the set A, the following syntactic equality holds:

Gσ = G(A�σ).

By induction on the construction of G1 we easily get:

Corollary 2.4 Let G1 be a formula or a term. Let X and G2 be either an
individual variable and a term, or a nullary formula variable and a formula. Then,
for any substitution σ where X 6∈dom(σ) and where X does not occur free in ran(σ),
the following syntactic equality holds:

(G1{X 7→G2})σ = (G1σ){X 7→G2σ}.

Finally, let H0, . . . ,Hn (n∈N) be mutually distinct, nullary formula variables,
reserved for the following definition: A context written “G[· · · ]” (a formula or
term with holes) is actually a formula or term G with one single (free) occurrence
of each of the formula variables H1, . . . ,Hn. Moreover, “G[F1, . . . , Fn]” denotes
G{H1 7→F1, . . . , Hn 7→Fn}, for formulas F1, . . . , Fn.

Corollary 2.5 For any context G[· · · ], any formula F, and any substitution σ,
the following syntactic equality holds:

(G[F ])σ = Gσ[Fσ].
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3 The Concrete Rewrite Relation

By writing “¬∀” for “¬” and “¬∃” for the empty string “ ”, we can unify the two
formulas (ε1) and (ε2) to the single formula

Qx. A ⇔ A{x 7→ εx. ¬QA} (εQ)

for Q ∈ {∃,∀}, and x a meta-variable for an individual variable, and A a meta-
variable for a formula.

Let −→ be the rewrite relation resulting from rewriting with the equivalence
(εQ) as a rewrite rule from left to right. Explicitly, this means that F1−→F2 if
there are a context G[· · · ], a quantifier symbol Q, an individual variable x, and a
formula A, such that F1 = G[Qx. A] and F2 = G[A{x 7→ εx. ¬QA}].

Let −→0 and −→1 be the partition of −→ for the case of a vacuous quantifier
(i.e. for the case that x does not occur in the formula A in (εQ)), and for the case
that the quantifier is not vacuous.

Let −→I be the innermost rewrite relation given by innermost rewriting with
the equivalence (εQ).

Let −→q be the version of −→ for the rewriting of parallel redexes. Explicitly,
this means that F1−→q F2 if there are a context G[· · · ] with n ∈ N holes, quantifier
symbols Q1, . . . , Qn, individual variables x1, . . . , xn, and formulas A1, . . . , An, such
that

F1 = G[Q1x1. A1, . . . , Qnxn. An],

F2 = G[A1{x1 7→ εx1. ¬Q1A1}, . . . , An{xn 7→ εxn. ¬QnAn}].
From these definitions, we immediately get the following corollaries.

Corollary 3.1 −→I ⊆ −→ and dom(−→I ) = dom(−→).

Corollary 3.2 −→q ⊆ ∗−→.

3.1 Local Confluence

Note that the technical terms of the following lemma are clarified and formalized in
its proof.
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Lemma 3.3 If we have a peak F1←−F0−→F2 of local divergence and the redex
of the rewrite step to F1 is properly inside the one of the rewrite step to F2, which
is on top of F0, then there are formulas F3, F4 satisfying all the following items:

1. F1−→F4←−F3←−q F2.

2. If the initial step to the left is actually applied to a non-vacuous quantifier
(i.e. if F1←−1F0), then we have F4←−1F3←−q 1F2.

3. If the initial step to the right is actually applied to a non-vacuous quantifier
(i.e. if F0−→1F2), then we have F1−→1F4.

4. If the initial step to the right is actually applied to a vacuous quantifier
(i.e. if F0−→0F2), then we have F3 = F2.

Proof of Lemma 3.3
Suppose we have a peak F1←−F0−→F2 of local divergence and the redex of the
rewrite step to F1 is properly inside the one of the rewrite step to F2, which is on
top of F0. Then F0 has the form

Q1x1. G1[Q2x2. G2]. (F0)

We may in particular assume here that x2 is different from x1 and does not occur
free in the context G1[· · · ] (if we consider the dots “· · ·” to be empty). Moreover
we may assume that the formulas F1 and F2 are the following:

Q1x1. G1[G2{x2 7→ εx2. ¬Q2G2}]. (F1)(
G1[Q2x2. G2]

){
x1 7→ εx1. ¬Q1G1[Q2x2. G2]

}
. (F2)

If we rewrite the outermost redex in F1, we obtain the formula(
G1[G2{x2 7→ εx2. ¬Q2G2}]

)
σ

written with the help of the substitution σ given as{
x1 7→ εx1. ¬Q1G1[G2{x2 7→ εx2. ¬Q2G2}]

}
. (σ)

If we propagate this substitution, by Corollary 2.5 we obtain a formula given by the
context

G1σ[· · · ] (C)
where we read the dots “· · ·” as

(G2{x2 7→ εx2. ¬Q2G2})σ.
Because x2 occurs free in none of dom(σ), G1[· · · ], G1[G2{x2 7→ εx2. ¬Q2G2}],
ran(σ), by Corollary 2.4 we can propagate σ further to write the inner formula as

G2σ{x2 7→ εx2. ¬Q2G2σ}. (I)

Putting (C) and (I) together again, we can choose formula F4 with the property
F1−→F4 as follows:

G1σ
[
G2σ{x2 7→ εx2. ¬Q2G2σ}

]
. (F4)
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If we now rewrite all occurrences of the redex mentioned at the end of the notation
of the formula F2 in parallel, then we obtain the formula(

G1[Q2x2. G2]
)
σ.

Before we can rewrite the remaining redex, we have to propagate σ to obtain a clear
description of it. By Corollary 2.5, this results again in a context as given in (C)
above, where, however, we now read the “· · ·” as

Q2x2. G2σ.
Note that, in this formula, the substitution σ has passed the quantifier “Q2x2.”
soundly. Indeed, as mentioned above, x1 is different from x2, and x2 cannot occur
free in ran(σ). Putting this formula and its context together again, we can choose
as F3 with the property F3←−q F2 as follows:

G1σ
[
Q2x2. G2σ

]
. (F3)

If we now rewrite the remaining redex, we again obtain the formula F4, as was to
be shown for item 1.
For item 2, it suffices to note that, if x2 occurs free in G2, then x2 also occurs free
in G2σ because x1 and x2 are different.
For item 3, it suffices to note that, if x1 occurs free in G1[Q2x2. G2], then x1 also
occurs free in G1[G2{x2 7→ εx2. ¬Q2G2}].
For item 4, it suffices to note that, if x1 does not occur free in G1[Q2x2. G2], then
both F2 and F3 are actually G1[Q2x2. G2]. Q.e.d. (Lemma 3.3)

As overlaps are trivial and as peaks of local divergence with parallel redexes are
joinable in one step at each side trivially, we get as corollaries of Lemma 3.3(1,4)
and Corollary 3.2:

Corollary 3.4 −→ is locally confluent.

Corollary 3.5 For all F1, F2 with F1←− ◦ −→0F2, we have F1
∗−→ ◦ =←−F2.

3.2 Well-Foundedness

As every −→0-step (vacuous quantifiers) and every −→I -step (innermost quantifiers)
reduces the number occurrences of quantifiers by 1, we have:

Corollary 3.6 ←−0 ∪←−I is well-founded.
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Theorem 3.7 ←− is well-founded.

Proof of Theorem 3.7
Assume that B is a non-empty class. Then there is some a ∈ B. We just have to
find an ←−-minimal element in B.

If a is ←−-minimal in B, then we have succeeded. Thus suppose that a is not
←−-minimal in B. Then a ∈ dom(−→).

Set A := 〈{a}〉 ∗−→. Set −→4 := A�−→. It now suffices to show that ←−4 is well-
founded (because an ←−4-minimal element of A∩B is also an ←−-minimal element
of B).
By Corollary 3.6, A has an ←−I -minimal element a′. As a′ 6∈dom(−→) by Corol-
lary 3.1, a′ is an −→-normal form of a. To obtain the well-foundedness of←−4 , we
are now going to apply Theorem 2.2.
Set −→2 :=

∗−→0 ◦ −→1 . Set −→3 := −→0 ∪ −→1 . Then −→ = −→3 .
It now suffices to show items 1 to 4 of Theorem 2.2. Item 1 holds by Corollary 3.6.
Item 3 holds by Corollary 3.4. Item 4 holds by Corollary 3.5. As the number of
occurrences of the ε is invariant under −→0 and is increased at least by 1 by every
−→1-step, it increases at least by 1 by every −→2-step. Thus, to satisfy item 2, we
can choose the upper bound n to be the number of occurrences of ε in a′ (minus the
number in a). Q.e.d. (Theorem 3.7)

3.3 Confluence

By the Newman Lemma (cf. [34] or, for a formal proof, [41, § 3.4]), we obtain from
Corollary 3.4 and Theorem 3.7:

Theorem 3.8 −→ is confluent.

3.4 On the Length of Derivations

By Theorems 3.7 and 3.8, we now know for certain that the rewrite relation is
confluent and terminating (as its reverse is even well-founded), which means that
we can eliminate the quantifiers in any order — but this does not mean that this is
efficient.
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Here is a serious warning to the contrary: The nesting depth of the occurrences
of the ε-symbols introduced by the normalization can be exponential in the number
of quantifiers in the input formula, and the number of steps of an outermost nor-
malization is even higher and seems to be non-elementary, cf. [44, Example 4.7], [42,
Example 8].

As any innermost rewrite step reduces the number of quantifiers exactly by 1,
and as no rewrite step can reduce the number of quantifiers by more than 1, we
immediately get:

Theorem 3.9
Let F be a formula with n quantifiers. Innermost rewriting of F by −→I obtains
the (unique) −→-normal form F ′ of F in exactly n steps, which is the minimal
number of steps to reach F ′ by −→ from F.

4 Conclusion

With Theorems 3.7 and 3.8, we have shown confluence and termination of the
elimination of quantifiers via their explicit definition by Hilbert’s ε. This means
in particular that any first-order term with quantifiers and epsilons (and formula
variables), has a unique normal form w.r.t. this elimination of quantifiers, which
has its first explicit occurrence in Hilbert–Bernays [20] in 1939, namely in the proof
of the 1st ε-theorem on Page 19f.

Moreover, the directness, self-containedness, and easy verifiability of the proofs
should settle the questions on confluence and termination here once and for all
— at least for working mathematicians. Formalists and rewriters, however, may
see the need to develop a more formal verification of our proof and write a short
paper that our results are all trivial in some higher-order rewriting theory. Writing
or helping to find a good textbook on higher-order rewriting, however, seems to be
in more urgent demand.

Furthermore, we hope that some philosophers will be stimulated by this paper
to pick up the subject of the non-triviality of higher-order explicit definition and
write or help to find a book on that subject.

Finally, the starting point of our interest in the subject, namely the question
whether there is a lacuna in Hilbert–Bernays as discussed in § 1.3, needs further
discussion by the experts on Hilbert’s ε and the history of mathematical logic in
the 20th century. On basis of our current knowledge, we would clearly answer this
question positively.
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