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AbstratHerbrand's Fundamental Theorem provides a onstrutive haraterization of deriv-ability in �rst-order prediate logi by means of sentential logi.Sometimes it is simply alled �Herbrand's Theorem�, but the longer name ispreferable as there are other important �Herbrand theorems� and Herbrand him-self alled it �Théorème fondamental�.It was ranked by Bernays [1957℄ as follows: �In its proof-theoreti form, Her-brand's Theorem an be seen as the entral theorem of prediate logi. It ex-presses the relation of prediate logi to propositional logi in a onise and feliitousform.� And by Heijenoort [1967℄: �Let me say simply, in onlusion, that Begri�s-shrift [Frege, 1879℄, Löwenheim's paper [1915℄, and Chapter 5 of Herbrand'sthesis [1930℄ are the three ornerstones of modern logi.�Herbrand's Fundamental Theorem ours in Chapter 5 of his PhD thesis [1930℄� entitled Reherhes sur la théorie de la démonstration � submitted by JaquesHerbrand (1908�1931) in 1929 at the University of Paris.Herbrand's Fundamental Theorem is, together with Gödel's inompletenesstheorems and Gentzen's Hauptsatz, one of the most in�uential theorems of modernlogi.Beause of its omplexity, Herbrand's Fundamental Theorem is typially fouledup in textbooks beyond all reognition. As we are onvined that there is still muhmore to learn for the future from this theorem than many logiians know, we willfous on the true message and its pratial impat. This requires a ertain amount ofstreamlining of Herbrand's work, whih will be ompensated by some remarks onthe atual historial fats.
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1 Informal Introdution
1.1 Validity in Sentential and in First-Order LogiThe language of lassial (i.e. two-valued) sentential logi (also alled �propositional logi�)is formed by Boolean operator symbols� say onjuntion ∧, disjuntion ∨, negation ¬ �on sentential variables (i.e. nullary prediate symbols). For simpliity, but without lossof generality, we will onsider exatly the three mentioned operators symbols as part ofour language of sentential logi in this artile. Other operators will be onsidered just assyntatial sugar; for instane, material impliation A⇒B will be onsidered a meta-level notion de�ned as ¬A∨B. The interpretation of the Boolean operator symbols is�xed, whereas the sentential variables range over the Boolean values TRUE and FALSE.A sentential formula is valid if it evaluates to TRUE for all interpretations (i.e. mappingsto Boolean values) of the sentential variables.In a �rst step, let us now add non-nullary prediate symbols, whih take terms as argu-ments. Terms are formed from funtion symbols and variables over a non-empty domainof individuals, whih has to be hosen by any interpretation and is a assumed to be well-determined and �xed in advane, although it may be in�nite. Suh a quanti�er-free �rst-order formula is valid if it evaluates to TRUE for all interpretations of prediate symbolsas funtions from individuals to Boolean values, of funtion symbols as funtions fromindividuals to individuals, and of variables as individuals.Note that this extension is not a substantial one, however, beause the notion of validitydoes not hange when we interpret the quanti�er-free �rst-order formulas as sententialformulas, simply by onsidering the prediates together with their argument terms just asnames for atomi sentential variables.In a seond step, we an add quanti�ers suh as �∀ � (�for all . . . �) and �∃ � (�there isa . . . �) to bind variables. This means that formulas are now formed not only by applyingBoolean operators to formulas, but also the singulary operators �∀x.� and ∃x.�, bindingan arbitrary variable symbol x. Evaluation is now de�ned for these additional formulaformations in the obvious way: ∃x. A (or else: ∀x. A) evaluates to TRUE if the singleformula argument A (its sope) evaluates to TRUE for some interpretation of x (or else:for all interpretations of x); otherwise it evaluates to FALSE.With this seond step we arrive at �rst-order prediate logi (with funtion symbols).This logi is ruially di�erent from sentential logi, beause the testing of all domains ofindividuals beomes now unavoidable for determining validity of a formula in general. Eventhough it atually su�es to hek only one domain for eah ardinality (di�erent from 0,but inluding in�nite ones), this annot be exeuted e�etively in general. As noted above,however, the domains do not matter if no quanti�ers our in a �rst-order formula.De�nition 1.1 (Sentential Validity)A �rst-order formula is sententially valid if it is quanti�er-free and valid in sentential logi,provided that we onsider the prediates together with their argument terms just as namesfor atomi sentential variables. �
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Note that a formula does not hange its meaning if we replae a bound variable with a freshone. For instane, there is not di�erene in validity between
∀x.

(

Human(x) ⇒ Mortal(x)
)and ∀y.

(

Human(y) ⇒ Mortal(y)
),both expressing that �all humans are mortal� � in a struture where the singulary prediates

Human and Mortal have the obviously intended interpretation. Note, however, that noneof these equivalent formulas is valid, beause we also have to onsider the struture where
Human is always TRUE and Mortal is FALSE, in whih ase the formula evaluates to FALSE.Just like Herbrand, we onsider equality of formulas only up to renaming of boundvariables. Thus, we onsider the two displayed formulas to be idential.A variable may also our free in a formula, i.e. not in the sope of any quanti�er bindingit. We will, however, taitly onsider only formulas where eah ourrenes of eah variableis either free or otherwise bound by a unique quanti�er. This exludes ugly formulas suh as
Human(x)∧∃x.Mortal(x), ∃x.Human(x)∧∃x.Mortal(x), or ∀x.

(

Human(x)∧∃x.Mortal(x)
).The bound variables of suh formulas an always be renamed to obtain nier formulasin our restrited sense, suh as Human(x) ∧ ∃z.Mortal(z), ∃x.Human(x) ∧ ∃z.Mortal(z),and ∀x.

(

Human(x) ∧ ∃z.Mortal(z)
). Both human omprehension and formal treatmentbeome less di�ult by this ommon syntatial restrition.

1.2 Caluli: Soundness, Completeness, DeidabilityTo get a more onstrutive aess to �rst-order prediate logi, validity has to be replaedwith derivability in a alulus. Suh a alulus is sound if we an derive only valid formulaswith it, and omplete if every valid formula an be derived with it. Lukily, there are soundand omplete aluli for �rst-order logi.Let us onsider formal derivation in a sound and omplete alulus for �rst-order logi.Then there are e�etive enumeration proedures that, in the limit, would produe an in�nitelist of all derivable onsequenes. This means that derivability in �rst-order logi is semi-deidable: If we want to �nd out whether a �rst-order formula is derivable, we an startsuh an enumeration proedure and say �yes� if our formula omes along.Non-derivability in �rst-order logi, however, is not semi-deidable: There annot bean enumeration proedure for those �rst-order formulas whih are not derivable. In otherwords, derivability is not o-semi-deidable.A problem is deidable if it is both semi- and o-semi-deidable. Therefore, the problemof derivability in �rst-order logi (historially alled the Entsheidungsproblem in engererBedeutung, i.e. the deision problem for �rst-order logi) is not deidable: There annot beany e�etive proedure that, for an arbitrary �rst-order formula as input, always returnsan answer �yes� or �no� that is orret w.r.t. its derivability.Sentential logi, however, is deidable.Therefore, it makes sense to haraterize derivability in �rst-order logi by a semi-deision proedure based on validity in sentential logi.
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Remark 1.2 (Historial Corretness)The notion of deidability was developed mainly after Herbrand's death. The Entshei-dungsproblem was an open problem during Herbrand's lifetime, beause the o-semi-undeidability was established only later by Churh [1936℄ and Turing [1936/7℄. �

1.3 First Major Aspet of Herbrand's Fundamental TheoremA major aspet of Herbrand's Fundamental Theorem is that it provides a semi-deisionproedure for �rst-order logi as follows: For a given �rst-order formula A, this proedureprodues a list of quanti�er-free �rst-order formulas
F T1(F ), F T2(F ), F T3(F ), . . .suh that A is derivable in �rst order-logi if and only if one of the formulas F Ti(F ) issententially valid. We say that A has Property C of order i if F Ti(F ) is sententially valid.

1.4 Seond Major Aspet of Herbrand's Fundamental TheoremAnother major aspet of Herbrand's Fundamental Theorem is that in Herbrand'smodus ponens-free alulus for �rst-order logi there is a linear derivation of A from F Ti(F ),provided that A has Property C of order i. A derivation is linear if � seen as a tree �it has no branhing beause all inferene rules have exatly one premise. In addition,this derivation also has the so-alled �sub�-formula property w.r.t. A. Moreover, ontraryto all aluli that were invented before, and similar to the aluli of [Gentzen, 1935℄, Her-brand's modus ponens-free alulus gives humans a good hane to atually �nd this linearderivation based on an informal proof. Furthermore, Herbrand's modus ponens-free al-ulus shows a great similarity with today's approahes to automated theorem proving,greater even than that of the well-known aluli of [Gentzen, 1935℄.
1.5 Also a Completeness Theorem for First-Order Logi�Property C� is a name introdued in [Herbrand, 1930℄. Without a name, this propertyours already in [Löwenheim, 1915℄, where it is shown that a �rst-order formula A isvalid if and only if it has Property C of order i, for some positive natural number i � whihbeame famous as the Löwenheim�Skolem Theorem.In his PhD thesis, Herbrand also showed the equivalene of his own �rst-order al-uli with those of the Hilbert shool [Hilbert & Bernays, 2013b℄ and the PrinipiaMathematia [Whitehead & Russell, 1910�1913℄. Therefore, as a onsequene of theLöwenheim�Skolem Theorem, the ompleteness of all these aluli is an immediate o-rollary of Herbrand's Fundamental Theorem.Herbrand, however, did not trust the notion of �rst-order validity. As the �rst followerof Hilbert's �nitisti standpoint in proof theory in Frane, Herbrand was so radially�nitisti that � in the area of logi � he did not aept model theory or set theory at all.And so Gödel proved the ompleteness of �rst-order logi �rst when he submitted histhesis [Gödel, 1930℄ in 1929, in the same year as Herbrand, and the theorem is nowalled Gödel's Completeness Theorem in all textbooks on logi.
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Figure: The bridge of the Löwenheim�Skolem Theorem and Herbrand's FundamentalTheorem, based on the sentential Property C standing �rm in the river that divides the banksof valid and derivable formulas in the land of �rst-order prediate logi.
1.6 Construtiveness of Herbrand's Fundamental TheoremWhy was the di�erene between the model-theoreti notion of validity and the onstrutivenotion of derivability in a sound and omplete alulus so ruial for Herbrand? Thereason, of ourse, is the undeidability of �rst-order logi, whih essentially requires thenon-onstrutive use of atual in�nities in the de�nition of validity. Hilbert's programin logi � best desribed in [Hilbert & Bernays, 2013a℄ � was to show the onsistenyof suh non-onstrutive methods in mathematis by �nitisti methods, whih are even morerestritive than the intuitionisti methods in mathematis following L. E. J. Brouwer.Herbrand does not aept any model-theoreti semantis unless the models are �nite.In this respet, Herbrand is more �nitisti than Hilbert, who demanded �nitism onlyfor onsisteny proofs.�Herbrand's negative view of set theory leads him to take, on ertain ques-tions, a striter attitude than Hilbert and his ollaborators. He is moreroyalist than the king. Hilbert's metamathematis has as its main goal toestablish the onsisteny of ertain branhes of mathematis and thus to justifythem; there, one had to restrit himself to �nitisti methods. But in logialinvestigations other than the onsisteny problem of mathematial theories theHilbert shool was ready to work with set-theoreti notions.�[Heijenoort, 1986a, p.118℄As a onsequene of this �royalist� attitude, Herbrand was very proud on the fat thathis Fundamental Theorem is perfetly onstrutive in the sense that its proof shows howanything laimed an be onstruted from anything given: From A, we an onstrut anarbitrary large part of the sequene F T1(F ), F T2(F ), F T3(F ), . . . . From a derivation of A,we an ompute a number i suh that A has Property C of order i (i.e. suh that F Ti(F )is sententially valid). If A has Property C of order i, we an onstrut a linear derivationof A from F Ti(F ) � provided that we are expliitly given i as a de�nite number.
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2 Formal Presentation
2.1 Basi Notions and NotationBefore we an present Herbrand's Fundamental Theorem formally, we have to providesome further notions and notation on �rst-order formulas and several inferene rules for�rst-order logi. Note that we will partly use modern notions, whih did not exist atHerbrand's time.If we want to fous on a ertain position in a formula, we write this formula as A[B]. Thismeans that B is a formula that ours in the ontext A[. . .] as a sub-formula at a ertain�xed position, whih, however, is not expliitly given by the notation. Then we denotewith A[C] the formula that results from the formula A[B] by replaing the one ourreneof B at the �xed position with the formula C.We denote with A{x1 7→t1, . . . , xn 7→tn} the result of replaing all ourrenes of the dis-tint variables x0, . . . , xn in the formula A in parallel with the terms t1, . . . , tn, respetively.Here, {x1 7→t1, . . . , xn 7→tn} is atually a notation for a substitution, i.e. for a funtion fromvariables to terms.The ourrene of a quanti�er in a formula is aessible if it is not in the sope of anyother quanti�er. For instane, in the valid formula

∀x. ∃y. (x≺ y) ∨ ∃m. ∀z. ¬(m≺ z)on the binary prediate symbol ≺ (with in�x notation), the ourrenes of the quanti�ers
∀x. and ∃m. are the only aessible ones. Note that we assume the sopes of our quanti�ersto be minimal in the sense that the sope of ∀x. in this formula does not inlude the sub-formula ∃m. ∀z. ¬(m≺ z) � ontrary to the formula

∀x.
(

∃y. (x≺ y) ∨ ∃m. ∀z. ¬(m≺ z)
),where only the ourrene of ∀x. is aessible.Smullyan [1968℄ lassi�ed redutive inferene rules � and the inferene rules of theHilbert aluli we will onsider here an all be seen as suh if we read them bottom up �into α (sentential+non-branhing), β (sentential+branhing), γ, and δ. Aording tothis lassi�ation, we introdue the following notion on quanti�ers, bearing in mind that

∧, ∨, and ¬ are our only Boolean operators.The ourrene of a quanti�er in formula is γ if it is of the form ∃x. and it is in thesope of an even number of negation symbols, or of the form ∀x. and in the sope of anodd number of negation symbols; otherwise the quanti�er is δ. (A γ-quanti�er turns upas ∃ in a prenex form of the formula, and a δ-quanti�er as ∀.)The ourrene of a variable in a formula is γ if it is bound by a γ-quanti�er; it is δif it is bound by a δ-quanti�er or free (i.e. not bound by any quanti�er).
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2.2 A Modern Version of Herbrand's Modus Ponens-Free CalulusNow we are prepared to understand the following three inferene rules whih onstitutea slightly improved version of Herbrand's modus ponens-free alulus in the style ofHeijenoort [1975; 1992; 1986a℄ and Wirth [2012; 2014℄.Note that we may rename bound variables to satisfy the side onditions of the inferenerules, beause we onsider equality of formulas only up to renaming of bound variables.
Generalized rule of γ-quanti�ation: A[H{x 7→ t}]

A[Qx. H]
where

1. Qx. is an aessible γ-quanti�er of A[Qx. H], and2. the free variables of the term t must not be bound by quanti�ers in H.

Example 2.1 (Appliation of the generalized rule of γ-quanti�ation)If the variable z does not our free in the term t, we get the following two inferene stepswith idential premises by appliation of the generalized rule of γ-quanti�ation at twodi�erent positions:
•

(t≺ t) ∨ ¬∀z. (t≺ z)
(t≺ t) ∨ ∃x. ¬∀z. (x≺ z)

via the meta-level substitution
{ A[. . .] 7→ (t≺ t) ∨ [. . .], H 7→ ¬∀z. (x≺ z), Q 7→ ∃ };

•
(t≺ t) ∨ ¬∀z. (t≺ z)
(t≺ t) ∨ ¬∀x. ∀z. (x≺ z)

via the meta-level substitution
{ A[. . .] 7→ (t≺ t) ∨ ¬[. . .], H 7→ ∀z. (x≺ z), Q 7→ ∀ }. �

Generalized rule of δ-quanti�ation: A[H]
A[Qy. H]

where
1. Qy. is an aessible δ-quanti�er of A[Qy. H], and2. the variable y must not our free in the ontext A[. . .].

Generalized rule of simpli�ation: A[H ◦ H ′]
A[H]

where
1. �◦� stands for �∨� if [. . .] ours in the sope of an even number of negation symbolsin A[. . .], and for �∧� otherwise, and2. H ′ is a variant of the sub-formula H (i.e., H ′ is H or an be obtained from H by therenaming of variables bound in H).

Moreover, the generalized rule of γ-simpli�ation is the sub-rule for the ase that H is ofthe form Qy. C and Qy. is a γ-quanti�er of A[Qy. C].8



Remark 2.2 (Histori Version of Herbrand's Modus Ponens-Free Calulus)The before-mentioned three rules are to be used for a modern presentation of Her-brand's modus ponens-free alulus. The historial modus ponens-free alulus of Her-brand atually had the generalized rule of simpli�ation, but only the shallow rules of�γ- and δ-quanti�ation�, ompensated by the addition of the rules of passage.Rules of γ- and δ-quanti�ation result from our formalization of the generalized rulesby restriting A[. . .] to the empty ontext (i.e. A[Qx. H], e.g., is just Qx. H).Rules of Passage: The following six logial equivalenes may be used for rewriting fromleft to right (prenex diretion) and from right to left (anti-prenex diretion), resulting intwelve deep inferene rules (where B is a formula in whih the variable x does not ourfree):
(1) ¬∀x. A ⇔ ∃x. ¬A

(2) ¬∃x. A ⇔ ∀x. ¬A

(3) (∀x. A) ∨ B ⇔ ∀x. (A∨B)
(4) B ∨ ∀x. A ⇔ ∀x. (B∨A)
(5) (∃x. A) ∨ B ⇔ ∃x. (A∨B)
(6) B ∨ ∃x. A ⇔ ∃x. (B∨A)Note thatHerbrand did not need rules of passage for onjuntion (besides the rules of pas-sage for negation (1, 2) and for disjuntion (3, 4, 5, 6)), beause he onsidered onjuntion

A∧B a meta-level notion de�ned as ¬(¬A∨¬B).Herbrand needed his rules of passage (in anti-prenex diretion) for the omplete-ness of his histori modus ponens-free alulus beause the shallow rules of quanti�ation� ontrary to the generalized ones � annot introdue quanti�ers at non-top positions.Herbrand introdued these rules in � 2.2 of his PhD thesis [Herbrand, 1930℄. Henamed the rules of γ- and δ-quanti�ation �seond� and ��rst rule of generalization� [Her-brand, 1971, p. 74f.℄, respetively (�deuxième� and �première règle de généralisation� [Her-brand, 1968, p. 68f.℄). At the same plaes, we also �nd the �rules of passage� (�règles depassage� ). Finally, in � 5.6.A of his PhD Thesis, Herbrand also introdues the gener-alized rule of simpli�ation [Herbrand, 1971, p. 175℄ (�règle de simpli�ation généralisée�[Herbrand, 1968, p. 143℄). �
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2.3 Property C
De�nition 2.3 (Height of a Term, Champ Fini Tn(F ))We use |t| to denote the height of a term t, whih is given by

|f(t1, . . . , tm)| = 1 + max{0, |t1| , . . . , |tm| }.For a positive natural number n and a formula F , as a �nite substitute for a typiallyin�nite, full term universe, Herbrand uses what he alls a hamp �ni of order n, whihwe will denote with Tn(F ). The terms of Tn(F ) are onstruted from the symbols thatour free in F : the funtion symbols, the onstant symbols (whih we will taitly subsumeunder the funtion symbols in what follows), and the free variable symbols (whih an beseen as onstant symbols here). Suh a hamp �ni di�ers from a full term universe inontaining only the terms t with |t| ≺ n .So we have T1(F ) = ∅.To guarantee Tn(F ) 6= ∅ for n ≻ 1, in ase that neither onstants nor free variablesymbols our in F, we will assume that a fresh onstant symbol �•� (whih does not ourelsewhere) is inluded in the term onstrution in addition to the free symbols of F . �

Herbrand's de�nition of an expansion follows the traditional idea that � for a �nitedomain � universal (existential) quanti�ation an be seen as a �nite onjuntion (dis-juntion) over the elements of the domain:De�nition 2.4 (Expansion)Let T be a �nite set of terms. To simplify substitution, let A be a formula whose boundvariables do not our in T .The expansion AT of A w.r.t. T is the formula given by the following reursive de�nition.If A is quanti�er-free formula, then AT := A. Moreover: (¬A1)
T := ¬AT

1 ,
(A1 ∨ A2)

T := AT
1 ∨ AT

2 ,

(A1 ∧ A2)
T := AT

1 ∧ AT
2 ,

(∃x.A)T :=
∨

t∈T
AT {x 7→t},

(∀x.A)T :=
∧

t∈T
AT {x 7→t}. �

De�nition 2.5 (Outer Skolemized Form)The outer Skolemized form of a formula A results from A by removing every δ-quanti�erand replaing its bound variable x with xδ(y1, . . . , ym), where xδ is a fresh (�Skolem�)symbol and y1, . . . , ym, in this order, are the variables of the γ-quanti�ers in whose sopethe δ-quanti�er ours. �

De�nition 2.6 (Property C)Let A be a �rst-order formula. Let n be a positive natural number.Let F be the outer Skolemized form of A.

A has Property C of order 1 if F is a sentential tautology.For n > 1, the formula A has Property C of order n ifthe expansion F Tn(F ) is a sentential tautology. �
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2.4 The Theorem and its LemmasTheorem 2.7 (Herbrand's Fundamental Theorem à la Heijenoort)Let A be a �rst-order formula. The following two statements are logially equivalent. More-over, we an onstrut a witness for eah statement from a witness for the other one.1. There is a positive natural number n suh that A has Property C of order n.2. There is a sentential tautology B, andthere is a derivation of A from B that onsists in appliations of the generalized rules ofsimpli�ation, δ-quanti�ation, and γ-quanti�ation(and in the renaming of bound variables). �

As we an deide Property C of order n for n= 1, n= 2, n= 3, . . . , Theorem2.7 immediatelyprovides us with a semi-deision proedure for derivability (and, thus, by the Löwenheim�Skolem Theorem, also for validity) of any �rst-order formula A given as input.Note that the witnesses mentioned in Theorem2.7 are, of ourse, on the one hand,a onrete representation of the natural number n, and, on the other hand, onrete repre-sentations of the formula B and of the derivation of A from B.To get some more information on the onstrution of these witnesses, we have to de-ompose the equivalene of Theorem2.7 into the two impliations found in the followingtwo lemmas, whih onstitute the theorem.
Lemma 2.8 (From Property C to a Linear Derivation)Let A be a �rst-order formula. Let F be the outer Skolemized form of A. Let n be apositive natural number.If A has Property C of order n, then we an onstrut a derivation of A of the followingform, in whih we read any term starting with a Skolem funtion as an atomi variable:Step 1: We start with the sentential tautology F Tn(F ).Step 2: Then we may repeatedly apply the generalized rules of δ- and γ-quanti�ation.Step 3: Then we may repeatedly apply the generalized rule of γ-simpli�ation.Step 4: Then we rename all bound δ-variables to obtain A. �

The proof idea of Lemma2.8 is to transform the omputation of the expansion of the outerSkolemized form into a redution in Herbrand's modus ponens-free alulus. In thistransformation, Skolemization annot remove the δ-quanti�ers, but just renames boundvariables to Skolem terms onsidered as variable names. The remaining ritial task isthen to shedule the order of the expansion steps suh that the side onditions of theresulting redutive appliations of the inferene rules are met.Find an elaborate, but easily oneivable example for the atual onstrution of suha derivation � whih also shows how to deal with the problems of how to overome theine�ieny of this proedure and how to atually �nd a proof of a manageable size �in [Wirth, 2014, � 5℄.
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Lemma 2.9 (From a Linear Derivation to Property C)If there is a derivation of the �rst-order formula A from a sentential tautology byappliations of the generalized rules of simpli�ation, and of γ- and δ-quanti�ation(and renaming of bound variables),then A has Property C of order 1 +
m

∑

i=1

|ti| ,where t1, . . . , tm are the instanes for the meta-variable t of the generalized rule of
γ-quanti�ation in its m appliations in the derivation of A. �

Remark 2.10 (Historial Version of Herbrand's Fundamental Theorem)As already explained in Remark 2.2, Herbrand's atual alulus was a bit di�erent andhad to take the detour via adding quanti�ers on top level and then moving them in. Thisseemed to admit a minor simpli�ation by a detour via the prenex normal form. To reduea problem to problems of manageable size (divide et impera), the detour via prenex normalform was a leading standard at Herbrand's time. Meanwhile prenex normal form playsonly a minor r�le in the better logi ourses beause of its ruial e�ieny problems.In Herbrand's ase this problem turned out to be fatal for the orretness of his proof:Herbrand omputed the upper bound for the order of Property C after appliation of therules of passage muh lower than it atually is. This is well-doumented under the name ofHerbrand's �False Lemma�.One orretion of Herbrand's �False Lemma� is the one that we have presented in thisartile and that onsists in adding � to Herbrand's deep version of his inferene rule ofsimpli�ation � also the deep versions of his inferene rules of quanti�ation. Lookingat the style in whih the great mathematiian Jaques Herbrand organized his mostreative work in logi we may say that, if anybody had notied this bug in Herbrand'sproof during Herbrand's lifetime, this orretion would have been the most straightfor-ward bug �x for him. Moreover, this orretion still is the most straightforward and mostelegant one today. It was learly outlined by Jean van Heijenoort, but �rst skethedin publiation in [Wirth &al., 2009℄, and �rst published with an expliit presentation in[Wirth, 2012℄.
3 Conlusion
In this artile we have delivered that we onsider the very essentials that any logiian shouldknow on Herbrand's Fundamental Theorem, and we suggest [Wirth, 2014℄ and [Wirth&al., 2014℄ for further reading on Herbrand's Fundamental Theorem, Herbrand's fur-ther work in logi, and for a listing of further soures on the subjet.
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