
An Algebraic Dexter-Based
Hypertext Reference Model

Volker Mattick, Claus-Peter Wirth

volker.mattick@cs.tu-dortmund.de,
wirth@logic.at

http://ls1-www.cs.uni-dortmund.de/cms/mattick.html
http://www.ags.uni-sb.de/ ˜ cp

Research Report 719/1999
http://www.ags.uni-sb.de/ cp/p/gr719

November 6, 1999

Universiẗat Dortmund
Fakulẗat für Informatik

44227 Dortmund
Germany

Abstract: We present the first formal algebraic specification of a hypertext reference model. It is based
on the well-known Dexter Hypertext Reference Model and includes modifications with respect to the
development of hypertext since the WWW came up. Our hypertext model was developed as a product
model with the aim to automatically support the design process and is extended to a model of hypertext-
systems in order to be able to describe the state transitionsin this process. While the specification should
be easy to read for non-experts in algebraic specification, it guarantees a unique understanding and enables
a close connection to logic-based development and verification.

Contents

1 Introduction 1

1.1 Product Models for Hyperdocuments 1

1.2 Semantics for Hyperdocument Models 2

2 The Information-Centered Model for Hypermedia 4

2.1 Algebraic Specifications for Describing Product Models. 4

2.2 The Object under Consideration: Hyperdocuments 7

2.3 Basis Documents . 8

2.4 Anchors . 8

2.5 Hyperlinks . 9

2.6 Addresses . 11

2.7 Hyperdocuments . 11

2.8 The Hierarchy of Hyperdocuments 12

3 Extending the Product Model 17

3.1 Observer Functions .17

3.2 Editing Functions .20

4 Conclusion and Outlook 24

A The Algebraic Specification 25

A.1 Basic Specifications .25

A.2 Parameter Specifications .. . 28

A.3 Anchors . 29

A.4 Links . 30

A.5 Hyperdocuments . 33

A.6 Media Objects . 37

A.7 Hypermedia Document Level .38

A.8 Frameset Document Level .45

A.9 Site Level . 46

1

1 Introduction

The number of hypertext applications is growing. What started as an idea of Vannevar Bush more
than half a century ago (cf. [Bus 45]) has now become one of themost rapidly growing fields in
software engineering. The reason for this rapid development is the World-Wide Web (WWW).

Nearly all of the web sites used nowadays are hypermedia applications and only a few are
mere hypertexts. In this paper we will refer the termhypermediato a combination ofhypertext
andmultimedia, as suggested e.g. in [HBR 94]. If the textual or multimedialnature is not relevant,
we will speak ofhyperdocuments. As hypermedia is an open approach, there are infinitely many
different types of media-objects in principle. In a closed reference model, these different types of
media-objects can only be modeled with an abstract interface. Therefore, it seems to be justified
to speak of ahypertextreference model even for models of hypermedia like the one weare going
to specify in this paper.

Our hypertext reference model isDexter-basedbecause it deviates from the Dexter Hypertext
Reference Model (cf. [HS 90]) only in some aspects that had tobe corrected in order to be com-
patible with the WWW. A detailed comparison with the Dexter model, however, is not subject of
this paper.

The hypertext model (cf.§ 2) was developed as a product model with the aim to support the
design of the product “hyperdocument” automatically. It isextended to a model of hypertext-
systems (cf.§ 3) in order to describe the state transitions of the design-process.

To our knowledge, our hypertext reference model is the first1formal algebraicmodeling ap-
proach for hypertexts, hypermedia, or hypertext-systems.Algebraic specification came up in the
seventies based on concepts of universal algebra and abstract datatypes. Due to the technical com-
plexity of the subject, it is still an area of ongoing research on the one hand. On the other hand,
there is still a gap between what practice demands and what theory delivers. One motivation for
our work is to make this gap a little smaller and we hope that our specification is quite readable
for non-experts in algebraic specification. Due to its origin, algebraic specification is superior to
other specification formalisms in its clear relation to logic and semantics that guarantees a unique
understanding and enables a close connection to logic-based development and verification.

1.1 Product Models for Hyperdocuments

In the domain of hyperdocuments there are three fundamentaldifferent kinds of product models
(cf. [LH 99, p. 221 ff.]). Programming language based, information-centered and screen-based
models. The programming language based approach, which applies any general purpose pro-
gramming language starting from scratch, was used in formerdays due to the lack of any other
sophisticated models, and has nearly no importance in the presence.

For a long time theinformation-centered modelhas dominated. The most popular product
model for hyperdocuments, the “Dexter Hypertext ReferenceModel” [HS 90], is information-
centered. Dexter or one of its modifications, e.g. [GT 94] or [OE 95], describe the structure of a
hyperdocument, divided into its logical structure, its linkage, and its style. A hyperdocument can
import components from a “within-component layer” via an anchor mechanism and specify how
the document should be presented in a “presentation specification”.

1Note that we do not consider Z to be a formal algebraic specification language.

2

Similar ideas are presented in an object-oriented style in the so-called “Tower Model”, cf.
[BH 92]. Additionally a hierarchization is added. It is described that components could include
other components. But no restrictions on how to compose hyperdocuments are mentioned. Thus,
you can produce a lot of components not used in any actual hypermedia system.

In both models there is no possibility to describe strategies how to navigate through a set
of hyperdocuments. But this is a design goal of increasing importance in the rapidly growing
world of hypermedia. The Dexter-based reference model for adaptive hypermedia(AHAM) (cf.
[BHW 99]) describes first steps towards this direction.

Even the wide-spread Hypertext Markup Language (HTML) has obviously its roots in the
information-centered paradigm, even though many designers use it in an other way, namely as a
screen-based design language. “Screen-based” means that the focus is not the logical structure
of the document, enriched with some display attributes, butthe display of the document itself.
With the upcoming of the WWW and the WYSIWYG-editors thescreen-based modelbecame
more important in hyperdocument design, because sometimesit is easier to think in terms of the
produced view on the screen. As far as we know, there are only two models for this approach:
The Document Object Model (DOM, cf. [W3C 98b]) and the Document Presentation Language
(P Language) ofTHOT ([Qui 97]). The goal of DOM is to define an application programming
interface for XML and HTML. Thus it is limited to the featuresused in that languages. The
P Language of THOT, used by the W3C-test-bed client browser Amaya ([GQV 98]), is more
general, but lacks device-independence; i.e. the presentation only describes a function of the
structure of the documents and the image that would be produced on an idealized device.

1.2 Semantics for Hyperdocument Models

All hyperdocument models have in common that no explicit semantics is given. Some information-
centered models try to treat the structural part of a hyperdocument as a data type and assign a
semantics, but no semantics for the attributes is given. E.g., DOM reduces the DOM-semantics to
the semantics of HTML, but up to now there is no unique semantics for HTML, but only device-
and browser-dependent semantics.

But there are two widely accepted device-independent description formalisms for documents:
The postscript- and the PDF-format ([BCM 96]). Postscript is very mighty but lacks the hyper-
links. Hence, we will use PDF as a screen-based model for hyperdocuments.

Both kinds of models, the screen-based and the information-centered, have in common that
they abstract from the contents to be displayed. In practicethe gap between both is bridged by
a user agent, often calledbrowser, cf. Fig. 1 on the facing page. A browser is a mapping be-
tween the syntax of the information-centered model of hyperdocuments and the semantics of the
screen-based model. It should be equal to the concatenationof the translation (alg2pdf) from the
algebraic signature of hyperdocuments into the language ofPDF and a display mapping ([]PDF)
assigning the semantics to the screen-based PDF-model. Thus, the semantics of an information-
centered description of hyperdocuments is defined in terms of the semantics of a well-known
description language for documents. Up to now it is an enormous problem both for browser
developers and for designers that there is no unique meaningfor a hyperdocument, but only
meanings together with particular browsers and output devices. Note that the lower left corner of
Fig. 1 on the next page denotes some model class providing thealgebraic or logic semantics of
the information-centered model.

3

Screen-based ModelInformation-centered Model

Semantics

Syntax

browser

PDF

[]
PDF

HD

[HD] [PDF]

ATT

Hyperdocument

+

[HD + ATT]

[]
HD

[]

alg2pdf

pdf2alg

Model Classes
Screen Display

Figure 1: Browser

Another problem with the existing models is that they do not reflect the actual state of hyper-
text technology. Two of the three information-centered models mentioned above come from the
“pre-WWW” times.

Therefore we will not formalize the models as they are, but use their crucial ideas, add some
new ones coming up with the WWW and structure a document in analogy to classical linear text.
We will describe all this in an algebraic specification language (cf. [Pad 2000]) enriched with a
modularity concept, cf. ASF+ ([LW 94]) or cTLA ([MK 95]).

This paper deals mainly with the upper left part of Figure 1 and the relation to its neighbors.
The formalization of the screen-based model as well as the formal description of the browser
defining mapping will be left to another paper. In§ 2 we start with the formal description of the
general hyperdocument data-structure and identify different hierarchy levels, similar to the levels
in linear texts. In§ 3 the extension to a model for hypertext-systems is presented.

4

2 The Information-Centered Model for Hypermedia

“It is essential to have a solid understanding of the kinds ofinformation present dur-
ing a design process before the design process itself can be studied.” [Sal 96].

Theproduct model(sometimes called “object model”) is a formal representation of exactly the
above-mentioned kinds of information. For our descriptionformalism we choose the constructor-
based algebraic approach (cf. [Pad 2000], [KW 96]). In section 2.1 we describe how that formal-
ism can be transferred to our domain. In section 2.2 we develop our product model for hypermedia
documents and compare it with existing reference models, like the Dexter Model [HS 90] or the
Tower Model [BH 92], and with certain standards as, e.g., those used by the World Wide Web
Consortium (W3C) for defining XML [W3C 98c].

2.1 Algebraic Specifications for Describing Product Models

In classical first-order algebraic specifications, the world is represented with the help of a sig-
nature. Asignaturesig = (F, α) consists of an (enumerable) set of function symbolsF and a
(computable) arity functionα : F → N, saying that each function symbolf ∈ F takesα(f) argu-
ments. A corresponding sig-algebra (or sig-structure) consists of a single homogeneous universe
(or carrier) and, for each function symbol inF, a total function on this universe.

Heterogeneous, however, is the world we have to model.2 We have at least three different sorts
of objects:anchors(cf. § 2.4), links (2.5) anddocuments(2.7). Therefore, an adequate structural
representation should contain different universes for different sorts. This leads us to the following
refinement of the notion of a signature.

Amany-sorted signaturesig = (S, F, α) consists of a (finite) set of sortsS, an (enumerable)
set of function symbolsF and a (computable) arity functionα : F → S+, saying that each function
symbolf ∈ F with α(f) = s1 . . . sns′ takesn arguments of the sortss1, . . . , sn and produces
a term of sorts′. A corresponding sig-algebraA consists of a separate universeAs for each
sort s ∈ S and, for each function symbolf ∈ F with α(f) = s1 . . . sns′, a total function
fA : As0

× . . .×Asn
→ As′ .

Typically, certain function symbols are called “constructors” because they construct the data
domains (or domains of discourse) of an algebra. More precisely, the constructor (ground) terms3

are used for designating the data items of an algebracompletelyanduniquely; the popular catch-
words beingno junkandno confusion, resp.. E.g., zero ‘0’ and successor ‘s’ may construct the
sort of natural numbers ‘nat’, ‘nil’ and ‘cons’ the lists, ‘true’ and ‘false’ the Boolean sort, &c..
For the sort ‘nat’ of natural numbers, each data item of the sort ‘nat’ is to be denoted by some
constructor term of the sort ‘nat’ (no junk), and two different constructor terms of the sort ‘nat’
describe two different data objects (no confusion). Note that the latter is special for constructor
terms: E.g., for a non-constructor function symbol ‘+’, theterms s(0)+ 0, 0 + s(0), and s(0)
may well denote the same data object, but only the last one is aconstructor term.

Since we are strongly convinced that the notion of a “constructor function symbol” must
be based on the signature only (and not on the axioms of a specification), this leads us to the
following refinement of the notion of a many-sorted signature.

2For a more detailed discussion cf. [LP 92].
3I.e. the well-sorted terms built-up solely from constructor function symbols.

5

sig′ is asubsignatureof sig if sig′ and sig are many-sorted signatures and, for
(S′, F′, α′) := sig′ and (S, F, α) := sig, we have S′⊆S, F′⊆F, and α′⊆α. Thesig′-reduct
of a sig-algebraA consists only of the universes for the sorts ofS′ and of the functions for the
symbols inF

′. Formally, when a sig-algebraA is seen as a total function with domainS⊎F,4 the
sig′-reduct can be seen as the restriction ofA to the domainS′⊎F

′, which we generally denote in
the formS′⊎F′↿A. For a subsetC ⊆ F we denote withsigC the subsignature(S, C , C ↿α) of sig.5

If the functionB that differs from the sig-algebraA only in that the universe of each sorts ∈ S

contains only the values of theC -terms of the sorts under the evaluation function ofA, is a sig-
algebra again, then we callB theC -generated subalgebraof A. We callC a set ofconstructors
for sig if C ⊆ F and the signaturesigC issensible(or “inhabited”), i.e., for eachs ∈ S, there is
at least one constructor ground term of sorts.

Definition 2.1 (Data Reduct)
If C is a set of constructors for sig, then, for each sig-algebraA, theC -generated subalgebra of
thesigC -reduct ofA is asigC -algebra, which is called theC -data reduct ofA.

Aconstructor-based specificationspec = (sig, C ,AX) is composed of a set of constructorsC

of the signature sig and of a setAX of axioms (over sig).

Definition 2.2 (Data Model)
Let spec = (sig, C ,AX) be a constructor-based specification.
A is adata modelof ‘spec’ if AX is valid in the sig-algebraA and theC -data reduct ofA is
isomorphic to the term algebra oversigC .6

Note that the latter is just a formal way to express the catchword “no confusion” from above.
The catchword “no junk” can formally be realized by variables ranging only over the constructor
ground terms or theC -data reduct ofA. For technical details cf. [KW 96].

Let N := F\C denote the set ofnon-constructor(ordefined) function symbols. Note that
by Definition 2.2, the data reduct of data models of a consistent specification ‘spec’ is uniquely
defined (up to isomorphism) as the constructor ground term algebra. Data models for ‘spec’ may
differ, however, in the way partially specified functions from N behave in the unspecified cases.
E.g., suppose that the operator ‘-’ is partially specified on‘nat’ by the two equationsx− 0 = x

and s(x)− s(y) = x− y. In this case, data models may differ on the evaluation of the term
0− s(0), which may evaluate to different values of theC -data reduct or even to different “junk”
or “error” values. Note that in this way we can model partial functions with total algebras.

This possibility to model partiality is also the reason why we prefer characteristic functions
(i.e. functions of Boolean sort) to predicates: the result of the application of a characteristic
function can be true, false or possibility neither true nor false (undefined, unspecified). With
predicates we do not have the latter possibility.

4We use ‘⊎’ for the disjoint union of classes.
5Note thatC ↿α denotes the restriction of the functionα to the domainC .
6I.e. isomorphic to the initialsigC -algebra.

6

The constructor ground terms of the sorts of some subsetSP ⊆ S will be used to describe the
fixed unchanging parts of a product. The constructor ground terms of the remaining sorts inS\SP

statically describe the dynamic states of the product without its dynamic behavior. The dynamic
functions fromN will change the static description of the product w.r.t. theconstructor ground
terms of these sorts. As we do not have final algebra domains orstate sorts in our application by
now, we have not treated these subjects explicitly here.

It is useful to further classify the function symbols fromN. E.g., functions that inspect a data
item may be called “selectors” or “observers”, functions that manipulate may be called “mutators”
or “editors”, &c.. More important here is the classificationof a function symbol as belonging to
the product of the design process; contrary to functions forthe design process itself, auxiliary
functions for the implementation, &c.. Thus, letP ⊆ N be a set ofproduct function symbols.
(sig, C , SP, P,AX) is aproduct specificationif (sig, C ,AX) is a constructor-based specifica-
tion, SP ⊆ S is non-empty andP⊆N, for (S, F, α) := sig and N := F\C .

Definition 2.3 (Product Model)
Let sig = (S, F, α) be a many-sorted signature.
Let spec = (sig, C , SP, P,AX) be a product specification.
Let C be the set of those function symbolsc ∈ C whose argument and result sorts inα(c) do all
belong toSP.
Astructural product modelof ‘spec’ is the(SP, C, C↿α)-reduct of theC -data reduct of a data
model of(sig, C ,AX).
Abehavioral product modelof ‘spec’ is thesigC∪P-reduct of a data model of(sig, C ,AX).

Note that by this definition, a structural product model of a consistent specification is uniquely
defined (up to isomorphism). Behavioral product models, however, may differ in the way partially
specified functions fromP behave in the unspecified cases.

The present situation of our application is not very complicated because at first only the struc-
tural product model is of interest. Moreover, sinceSP = S, the(SP, C, C↿α)-reduct of theC -data
reduct is theC -data reduct itself. Therefore, the whole universe of discourse, namely all possible
descriptions of products, can and will be represented by constructor ground terms. To simplify
the description of the structural product model we use some predefined data types, like ‘nat’ and
‘bool’, some of them generic, like ‘set’, ‘function’, ‘list’, and ‘tree’. For the understanding of the
product model, it suffices to assume that these data types do what their mathematical counterparts
do. For a deeper understanding a detailed description can befound in [Pad 2000]. For the presen-
tation of our specification we use the fairly intuitively readable style from [Pad 2000].7 The only
further remark that may be necessary here is the way the structured specification is meant to be
put together: The union of two specifications is the element-wise non-disjoint union of sort sym-
bols, function symbols, arity functions, constructors symbols, and axioms. When parameters of a
specification are bound to some actual name of a specification, we take the union of both speci-
fications and replace the parameter with the actual name everywhere. Although this approach is
not perfect,8 we have chosen it for its simplicity, power and conciseness.

7This style is constantly improved. Thus, there can be littledifferences in the notation, which should not disturb
the understanding of the presented specifications.

8E.g., the approach is error-prone and does not provide any proper modularization, i.e. the specification can only
be checked or properly understood as a whole.

7

2.2 The Object under Consideration: Hyperdocuments

In the domain of hyperdocuments there are three fundamentaldifferent kinds of product mod-
els (cf. [LH 99, p. 221 ff.]):Programming language based,information-centeredandscreen-based
models. The programming language based approach, which applies any general purpose pro-
gramming language starting from scratch, was used in formerdays due to the lack of any other
sophisticated models, and has nearly no importance in the presence.

For a long time theinformation-centered modelhas dominated. The most popular model
for hyperdocuments, the “Dexter Hypertext Reference Model” [HS 90], is information-centered.
Dexter or one of its modifications, e.g. [GT 94] or [OE 95], describe the structure of a hyperdoc-
ument, divided into its logical structure, its linkage, andits style. A hyperdocument can import
components from a “within-component layer” via an anchor mechanism and specify how the
document should be presented by a “presentation specification”.

Similar ideas are presented in an object-oriented style in the “Tower Model”, cf. [BH 92].
Additionally a hierarchy is added. It is described that components could include other compo-
nents. But there are not mentioned any restrictions how to compose hyperdocuments. So you
can produce a lot of components not used in any actual hypermedia system. In both models there
is no possibility to describe strategies how to navigate through a set of hyperdocuments. But
this is a design goal of increasing importance in the rapidlygrowing world of hypermedia. The
Dexter-based reference model for adaptive hypermedia(AHAM) (cf. [BHW 99]) describes first
steps toward this direction.

Even the wide-spread Hypertext Markup Language (HTML) has obviously its roots in the
information-centered paradigm, even though many designers use it in another way, namely as a
screen-based design language. “Screen-based” means that the focus is not the logical structure of
the document, enriched with some display attributes, but the display of the document itself.

With the upcoming of the WWW and the WYSIWYG-editors thescreen-based modelbecame
more important in hyperdocument design, because sometimesit is easier to think in terms of the
produced view on the screen.

A simple and common characterization of our object under consideration is:

Definition 2.4 (Informal Description of a Hyperdocument)
Ahyperdocumentis a basis document, sometimes calledlineardocument, consisting of a fixed
set of basic contents, organized according to amedia structure, enriched with a pointer con-
cept, calledanchors, to access a specific content inside the document, and a reference concept,
calledhyperlinks, to access another document by itsaddress. If the only medium in a hyperdocu-
ment is text, then we speak of ahypertext document, or else of ahypermedia document.
Moreover, device independence is often formulated as a hypermedia requirement. This is only
possible if you disjoin the structural description and thepresentation attributes, as e.g. in HTML
or TEX.

8

In the following sections, we will examine how the five crucial elements of a hyperdocument,

• the basis document (2.3),

• the set of anchors (2.4),

• the set of links (2.5),

• the presentation attributes9 and

• the addresses (2.6)

can be specified.

2.3 Basis Documents

According to the Dexter Model the structure of the basis is not known. It is only assumed, that
each basis element has a fixed set of properties (which can be observed by some special observer
functions, which are not part of the product model) and a particular structure, which can be
accessed by the anchor-mechanism via alocation. Accordingly we model basis documents as a
parameter.

Definition 2.5 (Parameter “Basis Document”)

DOCUMENT P[document,location] =
sorts document

location

Note that in the boxes like the one above we do not present the full specification (cf.§A) but only
an essential part of it that should be easy to understand.

2.4 Anchors

Originally a hyperdocument used to have no layout at all. It was seen only as an arbitrary collec-
tion of atomic basis elements. Theanchorwas the only possibility to get access to one of these
atoms. It had a name and a method which could be interpreted bythe underlying database. When
hypertext evolved, more complex construction mechanisms came up and the need to control the
layout became more important. The anchor-method depended no longer only on the data base
but also on the document structure. This method to access an element at a given position is a bit
confusingly namedlocation. We adopt that name, because it is used in most hypermedia models.

In contrast to Dexter, our anchors are enriched with an anchor-type. So you may not only mark
a special element, but you also mark it as a possible start-point (source) or end-point (target) of
a link or both (label). Note that in our specification the anchor-types are part ofanchors and

9Because of the fact that presentation attributes are meaningful only in connection with a screen-based-model,
we leave them undefined at the moment. They will be added later.

9

thereforelocal to the hyperdocuments. In Dexter this feature is included into theglobal specifier-
mechanism of hyperlinks, however (cf.§ 2.5). In pre-WWW times, where hypertext was usually
a non-distributed system, this made no difference. But in a distributed system like the WWW it
becomes important that the anchor types can be found withoutsearching the whole WWW and
must therefore be stored local to the document they are related to.

Considering all these facts and adding the attributes, as discussed previously, we come to the
following specification for anchors:

Definition 2.6 (Structural Product Model “Anchor”)

ANCHOR[location] = DOCUMENTP[document,location]and ATT ANCHOR then
vissorts
anchor type
anchor = anchor(location)

constructs
Source,Target,Label : anchor type
Mkanchor. location × anchor type × att anchor → anchor

2.5 Hyperlinks

A hyperlink(orlink for short) is a reference from a fixed set of contents (source) to a fixed set of
contents (target). Each of these sets of contents are described by a set ofspecifiers. Our model
differs from the Dexter Model insofar as no links to links arepossible. But our view is compatible
to most other hypermedia models. A specifier consists of a global address of sort ‘uri’ and a local
name of sort ‘anchorid’. ‘uri’ is the abbreviation for “Unified Resource Identifier”10 [BFI 98].
The anchor-name is to be mapped to an anchor of the hyperdocument under the global address.
This mapping is not global but part of the hyperdocument. In the Dexter Model, specifiers have
also a direction. We split this direction into the anchortype and the linktype. Hence we get uni-
and bi-directional links.

Moreover links are classified according their intended behavior. This idea goes back to
[Eng 83], wherejump- and include-links were introduced. Often the term “jump-link” is used
synonymous with link at all. It denotes that kind of link where the system is waiting for a
user action (e.g. a mouse-click) and then the old source-document is replaced by the new target-
document. The term “include-link” denotes a class of links which are to be automatically eval-
uated and presented inside a previously defined location. These “traditional” kinds of links do
not suffice since systems work with multiple windows. A thirdkind of link is necessary, namely
one that can open new windows to present the target-documentand leave the source-document
untouched in its old place.

This kind of presentational behavior is represented in theshow-type, as we will call it accord-
ing to [W3C 98d]. Links of show-type ‘Embed’ embed their target into the context of their source.
Links of show-type ‘Replace’ replace the hyperdocument of their source with the hyperdocument
of their target. Finally, links of show-type ‘Newwindow’ open a new window with the document
of their target.

10The well-known URLs in the WWW are a subset of URIs.

10

The second distinction is whether a user interaction is required or not. This is represented
by theactuate-type, as we will call it according to [W3C 98d]. Links of actuate-type ‘User’ are
followed upon user interaction. Links of actuate-type ‘Auto’ are followed automatically.

If we combine all the named possibilities we get twelve different types of links. But, what
sense makes e.g. a bi-directional link of show-type ‘Embed’? Or a bi-directional link of actuate-
type ‘Auto’? We think that the only meaningful bi-directional links are of show-type ‘Replace’
and of actuate-type ‘User’. Therefore, uni-directional links (‘Uni(∗, ∗)’) are modeled with two
parameters (show-type, actuate-type), but no arguments are given to the bi-directional links (‘Bi’).

The previously mentioned jump-link has the typeUni(Replace, User) and the include-link
Uni(Embed, Auto).

Definition 2.7 (Structural Product Model “Links”)

LINK = ANCHOR ID and URI and ATT LINK and SET[entry7→specifier]then
vissorts
link type
show
actuate
specifier
link

constructs
Embed,Replace,New window : show
User,Auto : actuate
Uni. show × actuate → link type
Bi : link type
Mkspecifier. uri × anchor id → specifier
Mklink. set(specifier)× set(specifier)× link type × att link → link

The generic abstract data type ‘set’ in Definition 2.7 is assumed to be predefined, cf. p. 25 for its
signature.

11

2.6 Addresses

In order to be referenced, each hyperdocument must have an address. In general, this address
space is described by the already described sort ‘uri’. But we will allow to define special address
subspaces for local addresses where the type of a hyperdocument can be inferred from the type
of its address. Thus, we have a second parameter.

Definition 2.8 (Parameter “Addresses”)

ADDR P[addr] =
sorts addr

2.7 Hyperdocuments

We have now modeled all parts of our product, but as often, theproduct is more than the sum
of its parts. It is not very convenient to access specific parts of the basis via a possibly cryptic
location-description. That is the reason why hyperlinks deal only with anchor-names, instead of
their values. Therefore each anchor, if it is used in a document, must be combined with a name.
We model this by using a function, thereby ensuring that no anchor name can be used twice
inside the same document. We get a product model for a class ofhyperdocuments that vary in the
underlying documents and the address space. These open parameters will be instantiated in the
following section.

Definition 2.9 (Structural Product Model “Hyperdocuments”)

HD[document,location,addr] = DOCUMENTP[document,location]and
ADDR P[addr]and
ANCHOR[location]and
LINK and
ATT HD and
FUNCTION[domain7→anchorid,range7→anchor]and
SET[entry7→link]

then
vissorts
hd = hd(document, location, addr)

constructs
Mkhd. document × function(anchorid,anchor)× set(link)× att hd × addr → hd

12

2.8 The Hierarchy of Hyperdocuments

Most hypermedia models end here with the definition of hyperdocuments. Some of these models
give no further information about the structuring of hyperdocuments at all, others define new
kinds of objects, e.g. views. We suggest another approach, based on the classical organization
of texts. They are structured by a hierarchy of at least threelevels, shown in the left column of
Table 1.

Linear Text Hyperdocument
Book Site (Section 2.8.2)
Chapter11 Frameset-Document (Section 2.8.3)
Page Hypermedia-Document (Section 2.8.4)

Table 1: The Levels of a Document

The only basic element of a linear text is the character. Together with the media-structures
like paragraphs, tables or lists, they build the structuredbasis for documents. Arranging these
structured elements sequentially leads to a page. Now you have the possibility to combine pages
into a document of a higher level. We believe that this hierarchy is a good strategy to organize
hyperdocuments as well, because these levels can also be found, when you examine the most
popular application for hyperdocuments, the WWW, and the wide spread Hypertext Markup Lan-
guage ([W3C 98a]) or some of its relatives out of the SGML-family 12. The right column of
Table 1 shows the hypermedial counterpart in terms of the most prominent hypertext application,
the WWW.

Thus, we will define three typical levels of hierarchy for a hyperdocument. These levels
belong to the “storage layer” in the Dexter Model, cf. Table 2. The media-objects belong to the
“within-component layer” of the Dexter-Model. This is not the focus of our work and it will not
be viewed in detail.

Dexter Model Our Product Model
Run-time Layer —
Presentation SpecificationsAttributes

Storage Layer
Site
Frameset-Document
Hypermedia-Document

Anchoring Anchor

Within-Component Layer Media-Object

Table 2: Comparison with the Dexter Model (Interfaces in italics)

11Wall news sheetmay be intuitionally closer to “frameset document” becauseit describes a multi-dimensional
combination of pages.

12SGML is the Structured Generalized Markup Language (ISO-Norm 8779)

13

2.8.1 Media-Objects

Media-objects are not hyperdocuments. They only provide the interface to the Within-
Component-Layer in the Dexter Model. As hypermedia is an open approach, there are infinitely
many different types of media-objects in principle.

Our interface to media-objects is quite simple because we are not interested in modeling their
internal behavior. The only thing we require is that they have some unified resource identifier of
sort ‘uri’ and a set of anchor identifiers to which links may refer. Thus, a media-object basically
introduces a legal set of specifiers referring to it.

Definition 2.10 (Structural Product Model “Media-Objects”)

MO = URI and ANCHOR ID and SET[entry7→anchorid] then
vissorts
mo = mo(uri, anchor id)

constructs
Mkmo. uri × set(anchorid) → mo

2.8.2 Pages and Hypermedia-Documents

Pages are at the lowest level in the hierarchy. As mentioned before the basic contents, represented
by the media-objects, is hierarchically structured. Some models (cf. e.g. [Dob 96]) introduce a
sub-document relation for this purpose, which only describes which document is part of another.
The way in that they are related is left to the presentation attributes. This strategy is adequate to
examine the navigational structure of a document, but it is not sufficient to describe “real-world“
hyperdocuments. We believe that presentation attributes must be reserved for simple lay-out
purposes only, and that a change of presentation attributesmust not change the document in a
fundamental way. E.g., if you re-arrange a table into a linear list, you change the information. Of
course, the distinction between structural elements and lay-out attributes is not sharp in general.
To avoid a discussion about this topic here, we pragmatically follow the HTML-definitions. Note
that our product model allows both, a description solely with the predefined structural elements
or solely with presentation attributes of an unstructured text. We think that our proposed mix of
both is the best way, but the model does not enforce this.

Pages are simple linear texts, with a fixed set of logical structuring elements, such as para-
graphs, lists or tables. Of course, one can imagine more functions than we define here, but we
tried to model the minimal necessary set of functions.

Besides the basic elements, we introduce a set of level-dependent symbols, which are simply
characters on the first level. We differentiate them for practical reasons. Generally, symbols differ
from basic elements in that they do not have an individual address, but are immediately handled
by the browser.

14

Definition 2.11 (Structural Product Model “Page”)

PAGE = MOand PAGE SYMBOLSand ATT PAGEand
TREE[entry7→pagestruct]and
LIST[entry7→page]and LIST[entry7→nat] then

vissorts
page
page struct
page location = list(nat)

constructs
Basic, Symbol,Emptypage,Page list,Table,Tableline,Headline,Minipage,Text,
Br,Footnote,Paragraph,Copyright : page struct

[[]] : page
[[]]. mo → page
′′ ′′. page symbols → page
Mkpage. page struct × list(page)× att page → page

To construct a hyperdocument of our first level we now only have to combine our product models
for page and the address space and instantiate the parameters ‘document’, ‘location’, and ‘addr’.

Definition 2.12 (Structural Product Model “Hypermedia-Documents”)

HMD = PAGEand HMD ADDR and
HD[document7→PAGE.page,

location7→PAGE.pagelocation,
addr7→HMD ADDR.hmd addr] then

vissorts
hmd = hd(PAGE.page,PAGE.page location,HMD ADDR.hmd addr)

15

2.8.3 Chapters and Frameset Documents

The following specifications are essentially incomplete and have to be completed in the future!!!

At the second level, our basic elements are the structured hyperdocuments (Definition 2.12). From
this point of view, the name “lineardocument”, mentioned previously, is not quite right. Though it
is organized without links on the discussed level (and hence“linear”), its basic documents might
obviously be hyperdocuments already. The symbols at this level are geometrical forms, such as
lines, rectangles or bars.

Definition 2.13 (Structural Product Model “Chapter”)

CHAPTER = HMDand CHAPTERSYMBOLSand ATT CHAPTERand
TREE[entry7→chapterstruct]and
LIST[entry7→chapter]and LIST[entry7→nat] then

vissorts
chapter
chapter struct
fsd location = list(nat)

constructs
Horiz frameset,Vert frameset,Alt frameset : fsd struct

Analogous to the previous section, we must instantiate the parameters.

Definition 2.14 (Structural Product Model “Frameset Document”)

FSD = CHAPTERand FSD ADDR and
HD[document7→CHAPTER.chapter,

location7→CHAPTER.chapterlocation,
addr7→FSD ADDR.fsd addr]

then
vissorts
fsd = hd(CHAPTER.chapter,CHAPTER.chapter location,FSD ADDR.fsd addr)

16

2.8.4 Books and Sites

The following specifications are essentially incomplete and have to be completed in the future!!!

The third level is the aggregation of chapters to a book. A book consists of “hyperchapters”.

Definition 2.15 (Structural Product Model “Book”)

BOOK = FSDand BOOK SYMBOLSand ATT BOOK and
TREE[entry7→book struct]and
LIST[entry7→book]and LIST[entry7→nat] then

vissorts
book
book struct
book location = list(nat)

constructs
sitemap : book struct

Definition 2.16 (Structural Product Model “Site”)

SITE = BOOKand SITE ADDR and
HD[document7→BOOK.book,

location7→BOOK.booklocation,
addr7→SITE ADDR.site addr]

then
vissorts
site = hd(BOOK.book,BOOK.book location, SITE ADDR.site addr)

17

3 Extending the Product Model

In §2 we introduced an algebraic Dexter-based product model forhyperdocuments. We now
extend this model with observer and editing functions to an algebraic model forhyperdocument
systems. By “hyperdocument system” we mean, as suggested e.g. by [LH99], functions of tools
used by a developer to create and modify a hyperdocument.Observer functionssupply informa-
tion about the objects, e.g. which elements a document contain. Editing functionscan modify
a concrete object, but of course not the domain. The remaining functions are merelyauxiliary
functions. They are not discussed in detail, but documented in the appendix.

In the constructor-based algebraic approach the set of functions is divided into a set ofcon-
structors(cf. § 2.1) and a set ofnon-constructorsor defined functions. Defined Functions are
defined via axioms on the basis of the constructors. Observerfunctions and editing functions are
both represented by defined functions.

In our domain we have parameter specifications (document), object-classes (anchorandhyperdocument),
and concrete objects (link, page, hypermedia document, chapter, frame, book, andsite). For each
of these we will explain at first the observer functions (§ 3.1) and then the editing functions (§ 3.2).

3.1 Observer Functions

Objects are represented by tuples, build up with the help of the constructors. Observer functions
are characterized by their ability to extract information out of these tuples. Historically they are
sometimes calleddestructors, because they can deconstruct objects. As the term “destructor” has
already been used with so many connotations and it is not clear whether it includes the Boolean
functions, we prefer the term “observer functions” here.

Theobserver functionsinclude the following two special cases:

Boolean functions will be marked with a question mark ‘?’ at the end of their names.

Projections extract exactly one component of a composite object. Names of projections will be
prefixed with ‘get’.

Observer functions must not be mixed up withdisplay functions. Even though both help the user
or developer to observe an object, the latter transforms thelogical description into a ‘physical’
and visible description, in our case a notation that can be displayed by a user agent or browser.
Display functions are much more sophisticated in their algebraic representation and a part of our
ongoing work.

3.1.1 Document

The parameter specification fordocumentshas only one Boolean function, namely ‘embedlink ok?’.
It tests whether an embed link can be positioned at a given location in the document. All other
observer and editing functions belong to the documents on the corresponding level.

18

3.1.2 Page

At the first level are thepages. A page is either an empty page, some media object of lower
level, some page symbol of the corresponding level, or a triple constructed by ‘Mkpage’ (cf.
§ 2.8.2) from a structure name (‘pagestruct’), a list of pages (‘list(page)’), and some attributes
(‘att page’).

Definition 3.1 (Observer Functions “Page”)
defuns
atomic?. page → bool
has pnth?. nat × list(page)→ bool
has location?. page location × page → bool
embed link page ok?. page location × page → bool
get struct. page → tree(pagestruct)
get pages. page → list(page)
get att. page → att page
locate. page location × page → page
page dimension. page → list(nat)

A page is calledatomic(‘atomic?’) iff it is empty, a media object, or a symbol.

‘has location?’ is a partially defined boolean function, which tests whether a location occurs
in a page. The empty location means the whole page and therefore it exists in every page.

‘embedlink pageok?’ returns ‘true’ if a given location exists in the page andthe document
located there is an empty page. If the location does not exist, it returns ‘false’.

As a page is a nested structure, the adequate result of the observer function ‘getstruct’ is the
tree of structures in the page under consideration.

Similarly the result of ‘getpages’ is the list of all pages that a given page includes on top
level.

‘get att’ returns merely the top level attributes of the page.

‘locate’ returns the sub-page located at a given position ina given page.

‘pagedimension’ returns the list of natural numbers of the sizes of the page in all its dimen-
sions. E.g., a two dimensional table withm lines and a maximum ofn columns in one of these
lines has a dimension of(m,n). This means that the smallest two dimensional cube around it
will have hightm and breadthn. A three dimensional table with dimension(m,n, p) will fill
a cube of depthp. If the objects are not atomic, the element-wise maximum of its dimensions
will be appended at the end of the dimension list of the table.Generally speaking, a page object
represented as an Mkpage-node tree of depthd has the dimension(n1, . . . , nd) whereni is the
maximum number of children of a node at depthi.

19

3.1.3 Anchor

An anchor is a triple constructed by ‘Mkanchor’ (cf.§ 2.4) from a location (‘location’), a type
(‘anchor type’), and some attributes (‘attanchor’).

Definition 3.2 (Observer Functions “Anchor”)
defuns
get location. anchor → location
get type. anchor → anchor type
get att. anchor → att anchor
suptype. anchor × anchor → anchor type

We need a projection for each component, called ‘getlocation’, ‘get type’ and ‘getatt’.

The last observer function, ‘suptype’, returns the supremal type according to ‘∀x. x ≤ Label’
because an anchor of type ‘Label’ can serve both as source andas target, while the types ‘Source’
and ‘Target’ are incomparable.

3.1.4 Link

A (hyper) linkis a quadruple constructed by ‘Mklink’ (cf.§ 2.5) of a two sets of specifiers denot-
ing the source and target (‘set(specifier)’), a type (‘linktype’), and some attributes (‘attlink’).
Specifiers again are pairs consisting of a global address (‘uri’) and local name (‘anchorid’).

Definition 3.3 (Observer Functions “Link”)
defuns
get uri. specifier → uri
get id. specifier → anchor id
get source. link → set(specifier)
get target. link → set(specifier)
get type. link → link type
get att. link → att link
get specifier. link → set(specifier)

We need projections, ‘geturi’, ‘get id’ for the specifiers and ‘getsource’, ‘gettarget’, ‘get type’
and ‘getatt’ for the links.

‘get specifier’ returns the set of all specifiers in the source and the target of a link.

20

3.1.5 Hyperdocument

A hyperdocumentis a quintuple constructed by ‘Mkhd’ (cf.§ 2.7) from a document (‘docu-
ment’), a function mapping anchor names to anchors (‘function(anchorid,anchor)’), a set of links
(‘set(link)’), some attributes (‘atthd’), and an address (‘addr’).

Definition 3.4 (Observer Functions “Hyperdocument”)
defuns
|| ||. hd → document
get anchors. hd → function(anchorid,anchor)
get link. hd → set(link)
get att. hd → att hd
get addr. hd → addr
get anchor id. anchor × function(anchorid,anchor)→ set(anchorid)
get anchor. anchor id × function(anchorid,anchor)→ anchor

Of course we get five projections, namely|| ||, get anchors, getlink, get att and getaddr. The
first one extracts the (linear) document from the hyperdocument. Because this function will be
used very often, we use the short notation ‘|| ||’ instead of the name ‘getdocument’.

‘get anchor’, returns the anchor to a given anchor name.

‘get anchorid’ returns the set of all anchor names referring to a given anchor.

3.2 Editing Functions

Theediting functionsare the most interesting functions for the user. With the help of these func-
tions a hyperdocument can be designed and modified.

3.2.1 Page

We will start with the functions for working withpages.

Definition 3.5 (Editing Functions “Page”)
defuns
ch struct. page struct × page → page
insert at. page × page location × page → page
place at. page × page location × page → page
add attribute. att page × page → page
del attribute. att page × page → page
mktable. nat × nat → page
mklist. nat → page

21

‘ch struct’ is a kind of converter function. The components of the page are left untouched,
but arranged in another structure.

Inserting one page into another at a special place is the mostimportant editing action a de-
signer might need. We give two different functions to do that: ‘insert at’ and ‘placeat’. Both
replace a part of an existing page, residing at a given location, with a new page. A location is
represented by a node position. ‘insertat’ moreover extends the page with sufficiently many child
nodes, if this location does not yet exist. The type of these child nodes may depend on the parent
node. E.g., if the parent node is a table then the child nodes will be of type table-line. If no special
knowledge is given, the child nodes will be simply of type empty page.

‘add attribute’ and ‘delattribute’ add or remove attributes resp.. Editing functions for at-
tributes exist for every object and are not mentioned in the further sections anymore.

A special kind of editing functions are ‘mklist’ and ‘mktable’. They are syntactic sugar for
very often used construction mechanisms. ‘mklist’ produces a list with a given number of items,
containing an empty page in every item. ‘mktable’ produces am × n-table, containing an empty
page in every cell.

3.2.2 Anchor

Anchor has only editing function that change the values of the location (‘chlocation’) or the type
(‘ch type’) resp..

Definition 3.6 (Editing Functions “Anchor”)
defuns
ch location. location × anchor → anchor
ch type. anchor type × anchor → anchor
add attribute. att anchor × anchor → anchor
del attribute. att anchor × anchor → anchor

3.2.3 Link

According to the construction of links, we have editing functions for specifiers and for links,
which are very simple functions for changing the value of a component.

Definition 3.7 (Editing Functions “Specifier”)
defuns
ch uri. uri × specifier → specifier
ch id. anchor id × specifier → specifier

22

Definition 3.8 (Editing Functions “Link”)
defuns
insert source. set(specifier)× link → link
delete source. set(specifier)× link → link
insert target. set(specifier)× link → link
delete target. set(specifier)× link → link
ch type. link type × link → link
add attribute. att link × link → link
del attribute. att link × link → link

3.2.4 Hyperdocument

At the first glimpse, things seem to be as easy with hyperdocuments as with the other objects. For
the most functions, ‘delanchor’, ‘del link’, ‘add attribute’, ‘del attribute’ and ‘chaddr’, this is
true. But ‘addanchor’ and ‘addlink’ are much more sophisticated in their details.

Definition 3.9 (Editing Functions “Hyperdocument”)
defuns
add anchor. anchor id × anchor × hd → hd
del anchor. anchor id × hd → hd
add link. link × hd → hd
del link. link × hd → hd
add attribute. att hd × hd → hd
del attribute. att hd × hd → hd
ch addr. addr × hd → hd

‘add anchor’ produces a hyperdocument after a given anchor with given name has been added
to the anchors of the original hyperdocument, provided thatan anchor with this name does not
exist before. If an anchor with this name does exist in the original document at the same location
it is updated to an anchor with supremal type and attributes.Otherwise the function is not defined.

‘add link’ is the most complex editing function because we must consider several differ-
ent cases in that the addition of a link can be accepted. A linkof the type ‘Uni(Replace, ∗)’
or ‘Uni(New window, ∗)’ may be added when its source contains a specifier that refersto an
anchor in the the given hyperdocument of type ‘Source’ or ‘Label’. For a link of the type
‘Uni(Embed,User)’ we additionally require that this anchor must point to a location that may
carry an embed link. For a link of the type ‘Uni(Embed, Auto)’ we additionally require that the
link has exactly one target. Finally, a link of the type ‘Bi’ may be added when its source contains
a specifier that refers to an anchor in the the given hyperdocument of type ‘Label’.

23

3.2.5 Hypermedia Document

The hyperdocument at level 1 is calledhypermedia document. It is an instantiation of the hyper-
document object-class and therefore it includes all functions given there. Besides that, it provides
the two insertion functions ‘placeat’ and ‘insertat’.

Definition 3.10 (Editing Functions “Hypermedia Document”)
defuns
place at. hmd × page location × hmd × hmd addr → hmd
insert at. hmd × page location × hmd × hmd addr → hmd

‘insert at’ replaces the part of a given hyperdocument, located at a fixed existing location,
with a new hyperdocument. The replacement is only possible when the names of the anchors in
the two hyperdocuments are disjoint and the replaced part does not carry any anchors. The result
gets the address given in the last argument of the function and all links referring to any of two
input hyperdocuments are changed in order to refer to the theresulting hyperdocument.

‘place at’ has the same result as ‘insertat’ provided that the location actually exists in the
given hyperdocument. Otherwise, it generates this location just as ‘placeat’ from “Page”, cf.
§ 3.2.1.

24

4 Conclusion and Outlook

To our knowledge we have presented the first13formal algebraichypertext reference model. It
guarantees a unique understanding and enables a close connection to logic-based development
and verification. With the exception of some deviations in order to be compatible with the WWW
it follows the Dexter Hypertext Reference Model (cf. [HS 90]) and could be seen as an updated
formally algebraic version of it. Additionally, three different levels of hyperdocuments, namely
hypermedia documents, frameset documents, and sites are introduced — although the specifica-
tion of the latter two is still essentially incomplete and has to be completed in future work.

The hypertext model (cf.§ 2) was developed as a product model with the aim to support the
design of the product “hyperdocument” automatically. It isextended to a model of hypertext-
systems (cf.§3) in order to describe the state transitions of the design-process. The whole
specification is in the appendix and a prototypical implementation in ML will be found under
http://www.ags.uni-sb.de/ cp/ml/come.html .

In this paper we have algebraically specified the information-centered model and the in-
terfaces to the screen-based model. Before we can start the formalization of the screen-based
model, we need to study the numerous existing, non-formalized, screen-based approaches. Up to
now the favorite idea is to use PDF as a reference model. The mapping between the formalized
information-centered model and the formalized screen-based model will then provide an abstract
kind of reference user agent (browser), cf. Fig. 1 on page 3.

13Note that we do not consider Z to be a formal algebraic specification language.

25

A The Algebraic Specification

A.1 Basic Specifications

The specifications for BOOL (for the Boolean functions), NAT, CHAR, STRING, TREE, LIST,
LISTPAIR, SET, MAPSET, and FUNCTION are assumed to be given,but we will present some
of their signatures below.

The maximum operatormax(n, n′) must be defined in the module ‘NAT’. The standard
boolean functionis proper prefix(l, l′) and the functionsrepeat(n, x) (which returns a list con-
tainingx n-times), andmap(f, l) must be defined in the module ‘LIST’.

The following parameter specification provides only one single sort. Note, however, that for
any specification we tacitly assume the inclusion of the module ‘BOOL’ and the existence of an
equality and an inequality predicate which exclude each other and are total on objects described
by constructor ground terms (data objects).

ENTRY
sorts entry

Since SET is so fundamental, we present its signature here.

SET = ENTRYand NAT then
sorts set = set(entry)
funs

‘{}’ is the empty set.

{}. → set

‘null’ test whether a set is empty.

null. set → bool

Is first argument contained in the second argument?

∈ . entry × set → bool

‘ | |’ returns the cardinality (i.e. the number of elements) of a set.

| |. set → nat

‘insert’ inserts its first argument as an element into its second argument.

insert. entry × set → set

26

‘dl’ deletes its first argument as an element from its second argument.

dl. entry × set → set

‘ ∪ ’ returns the union of its arguments.

∪ . set × set → set

‘ ∩ ’ returns the intersection of its arguments.

∩ . set × set → set

‘exists’ tests whether its second argument contains an element satisfying its first ar-
gument.

exists. (entry → bool) × set → bool

MAPSET will be use to map sets to sets. Note that it cannot be a part of SET because it needs
two sort parameters (one for the domain and one for the range of the mapping function) instead
of one.

MAPSET = SET[entry7→entry1]and SET[entry7→entry2] then
funs

‘map set’ replaces all elements of its second argument by their values under its first
argument.

map set. (entry1 → entry2) × set(entry1) → set(entry2)

LISTPAIR provides operations on pairs of lists and is similar to the Standard ML Basis Library
module of the same name, but we need the following non-standard function:

LISTPAIR = LIST[entry7→entryD1]and
LIST[entry7→entryD2]and
LIST[entry7→entryR] then

funs

‘map default’ maps two input lists (fourth and fifth argument) into a new list by ap-
plying a binary function (third argument). In case one of theinput lists is shorter than
the other, default values (first and second argument) are appended to the shorter list.

map default. entryD1×
entryD2×
(entryD1 × entryD2 → entryR)×
list(entryD1)×
list(entryD2)
→ list(entryR)

27

Since FUNCTION is non-standard, we present its signature here.

FUNCTION = SET[entry7→domain]and SET[entry7→range]then
sorts function = function(domain, range)
funs

empty function is the function with empty domain.

empty function. → function

‘upd’ returns its third argument but with its second argument being the new value of
its first argument. UPDate.

upd. domain × range × function → function

‘apply’ applies its first argument to its second argument andis undefined if the second
argument is not in the domain of the first argument.

apply. function × domain → range

‘rem’ returns its second argument but now undefined for its first argument. REMove
from domain.

rem. domain × function → function

DOMain of a function.

dom. function → set(domain)

RANge of a function.

ran. function → set(range)

‘rev apply’ applies the reverse relation of first argument to the singleton set containing
its second argument. REVerse-APPLY.

rev apply. function × range → set(domain)

‘union’ unites its first argument with its second argument insuch a way that first
argument wins in case of conflicts.

union. function × function → function

‘map range’ replaces the range elements of its second argument with their values
under its first argument.

map range. (range → range) × function → function

28

A.2 Parameter Specifications

The specifications for URI, HMDADDR, FSD ADDR, SITE ADDR, ANCHOR ID, as well as
for HMD SYMBOLS, FSDSYMBOLS, SITESYMBOLS and ATTHMD, ATT FSD, ATT SITE
are left open and are subject of future work.

DOCUMENT P below is merely a parameter specification. Intuitively youwould expect a rudi-
mentary structure here characterizing the genre “document”. For the first level, thepages, this
structure is obvious, for the second level, theframes, it seems to be very similar. For the third
level, thesites, it is far from clear, however, whether this modeling is actually adequate. We
therefore have chosen a parameter specification to ensure sufficient flexibility.

DOCUMENT P = ENTRY[entry7→document]and
ENTRY[entry7→location] then

sorts document
location

funs

embed link ok?(l, b) tests whether an embed link can be positioned at locationl in
documentb.

embed link ok?. location × document → bool

The following parameter specification provides us with a sort ‘addr’ of addresses for local storage
of hyperdocuments.

ADDR P = ENTRY[entry7→addr]

29

A.3 Anchors

ANCHOR[location] = DOCUMENTP[document,location]and ATT ANCHOR then
vissorts
anchor type
anchor = anchor(location)

constructs
Source,Target,Label : anchor type
Mkanchor. location × anchor type × att anchor → anchor

defuns
−−− Observer Functions −−−
get location. anchor → location
get type. anchor → anchor type
get att. anchor → att anchor
suptype. anchor × anchor → anchor type
−−− Editing Functions −−−
ch location. location × anchor → anchor
ch type. anchor type × anchor → anchor
add attribute. att anchor × anchor → anchor
del attribute. att anchor × anchor → anchor

vars o, o′. location
t, t′. anchor type
att, att′. att anchor
c, c′. anchor

axioms
−−− Observer Functions −−−
get location(Mkanchor(o, t, att)) = o

get type(Mkanchor(o, t, att)) = t

get att(Mkanchor(o, t, att)) = att

suptype(c, c′)

Returns the supremal type according to ‘∀x. x ≤ Label’ because ‘Label’ can serve both as
source and as target, while ‘Source’ and ‘Target’ are incomparable.

suptype(Mkanchor(o,Label, att), c′) = Label
suptype(c, Mkanchor(o′, Label, att′)) = Label
suptype(Mkanchor(o, t, att),Mkanchor(o′, t′, att′)) = Label ⇐= t6=t′

suptype(Mkanchor(o, t, att),Mkanchor(o′, t′, att′)) = t ⇐= t=t′

−−− Editing Functions −−−
ch location(o′, Mkanchor(o, t, att)) = Mkanchor(o′, t, att)
ch type(t′,Mkanchor(o, t, att)) = Mkanchor(o, t′, att)
add attribute(att′,Mkanchor(o, t, att)) = Mkanchor(o, t, concat(att′, att))
del attribute(att′,Mkanchor(o, t, att)) = Mkanchor(o, t, remove(att′, att))

30

A.4 Links

LINK = ANCHOR ID and URI and ATT LINK and
MAPSET[entry17→specifier, entry27→specifier]then

vissorts
link type
show
actuate
specifier
link

constructs

Links of show-type ‘Embed’ embed their target into the context of their source. Links
of show-type ‘Replace’ replace the hyperdocument of their source with the hyperdoc-
ument of their target. Finally, links of show-type ‘Newwindow’ open a new window
with the document of their target.

Embed,Replace,New window : show

Links of actuate-type ‘User’ are followed upon user interaction. Links of actuate-type
‘Auto’ are followed automatically.

User,Auto : actuate

Links may be uni-directional (‘Uni(∗, ∗)’) or bi-directional (‘Bi’). Since bi-
directional links are always of show-type ‘Replace’ and of actuate-type ‘User’, no
arguments are given to ‘Bi’.

Uni. show × actuate → link type
Bi : link type

A specifier consists of a global address of sort ‘uri’ and a local name of sort ‘an-
chor id’ that is to be mapped to an anchor by the hyperdocument under the global
address.

Mkspecifier. uri × anchor id → specifier
Mklink. set(specifier)× set(specifier)× link type × att link → link

31

defuns
−−− Observer Functions −−−
get uri. specifier → uri
get id. specifier → anchor id
get source. link → set(specifier)
get target. link → set(specifier)
get specifier. link → set(specifier)
get type. link → link type
get att. link → att link
−−− Editing Functions for Specifier −−−
ch uri. uri × specifier → specifier
ch id. anchor id × specifier → specifier
replace uri sp. uri × uri × specifier → specifier
−−− Editing Functions for Link −−−
insert source. set(specifier)× link → link
delete source. set(specifier)× link → link
insert target. set(specifier)× link → link
delete target. set(specifier)× link → link
ch type. link type × link → link
add attribute. att link × link → link
del attribute. att link × link → link
replace uri li. uri × uri × link → link

vars S, S ′, S ′′, S ′′′. set(specifier)
s, s′. specifier
l, l′. link
L. set(link)
t, t′. link type
n, n′. anchor id
att, att′. att link
a, a′, a′′. uri

32

axioms
−−− Observer Functions −−−
get uri(Mkspecifier(a, n)) = a

get id(Mkspecifier(a, n)) = n

get source(Mklink(S, S ′, t, att)) = S

get target(Mklink(S, S ′, t, att)) = S ′

get specifier(Mklink(S, S ′, t, att)) = S ∪ S ′

get type(Mklink(S, S ′, t, att)) = t

get att(Mklink(S, S ′, t, att)) = att

−−− Editing Functions for Specifier −−−
ch uri(a′,Mkspecifier(a, n)) = Mkspecifier(a′, n)
ch id(n′,Mkspecifier(a, n)) = Mkspecifier(a, n′)
replace uri sp(a′, a′′,Mkspecifier(a, n)) = Mkspecifier(a′′, n) ⇐= a′=a

replace uri sp(a′, a′′,Mkspecifier(a, n)) = Mkspecifier(a, n) ⇐= a′ 6=a

−−− Editing Functions for Link −−−
insert source(s, Mklink(S, S ′, t, att)) = Mklink(insert(s, S), S ′, t, att)
delete source(s, Mklink(S, S ′, t, att)) = Mklink(dl(s, S), S ′, t, att)
insert target(s, Mklink(S, S ′, t, att)) = Mklink(S, insert(s, S ′), t, att)
delete target(s, Mklink(S, S ′, t, att)) = Mklink(S, dl(s, S ′), t, att)
ch type(t′, Mklink(S, S ′, t, att)) = Mklink(S, S ′, t′, att)
add attribute(att′, Mklink(S, S ′, t, att)) = Mklink(S, S ′, t, concat(att′, att))
del attribute(att′, Mklink(S, S ′, t, att)) = Mklink(S, S ′, t, remove(att′, att))

replace uri li(a′, a, l) = l′

Replaces any reference to the URIa′ in the specifiers of the linkl with the URIa.
Note that we can use ‘replaceuri sp’ as a binary function in the definition because we consider
all functions to be curried and argument tupling just to be syntactic sugar.
Finally, note that ‘mapset’ is from MAPSET[entry17→specifier, entry27→specifier].

replace uri li(a′, a,Mklink(S, S ′, t, att)) =
Mklink(map set(replace uri sp(a′, a), S),map set(replace uri sp(a′, a), S ′), t, att)

33

A.5 Hyperdocuments

HD[document,location,addr] = DOCUMENTP[document,location]and
ADDR P[addr]and
ANCHOR[location]and
LINK and
ATT HD and
FUNCTION[domain7→anchorid, range7→anchor]and
SET[entry7→link]

then
vissorts
hd = hd(document, location, addr)

constructs
Mkhd. document × function(anchorid,anchor)× set(link)× att hd × addr → hd

defuns
−−− Observer Functions −−−
|| ||. hd → document
get anchors. hd → function(anchorid,anchor)
get link. hd → set(link)
get att. hd → att hd
get addr. hd → addr
get anchor. anchor id × function(anchorid,anchor)→ anchor
get anchor id. anchor × function(anchorid,anchor)→ set(anchorid)
−−− Editing Functions −−−
add anchor. anchor id × anchor × hd → hd
del anchor. anchor id × hd → hd
add link. link × hd → hd
del link. link × hd → hd
add attribute. att hd × hd → hd
del attribute. att hd × hd → hd
ch addr. addr × hd → hd
−−− Converter Functions −−−
embed. addr → uri

vars d, d′. document
L,L′. set(link)
l. link
act. actuate
sp, sp′. specifier
A,A′. function(anchorid,anchor)
c, c′. anchor
a, a′, a′′. addr
att, att′. att hd
n. anchor id

34

axioms
−−− Observer Functions −−−
||Mkhd(d, A, L, att, a)|| = d

get anchors(Mkhd(d, A, L, att, a)) = A

get link(Mkhd(d, A, L, att, a)) = L

get att(Mkhd(d, A, L, att, a)) = att

get addr(Mkhd(d, A, L, att, a)) = a

get anchor(n, A)

Returns the anchor referred to by the namen by calling the function ‘apply’ from FUNCTION.

get anchor(n, A) = apply(A, n)

get anchor id(c, A)

Returns the set of all names referring to the anchorc by calling the function ‘revapply’ from
FUNCTION.

get anchor id(c, A) = rev apply(A, c)

--- Editing Functions ---

add anchor(n, c, h) = h′

h′ is the hyperdocument after the anchorc with namen has been added to the anchors of
hyperdocumenth, provided that an anchor with this name does not exist inh before. If an
anchor with namen does exist in h at the same location as anchorc, thenh′ is updated to an
anchor with supremal type and attributes. Note that we use ‘upd’ from FUNCTION and write
long argument lists vertically instead of horizontally.

add anchor(n, c, Mkhd(d, A, L, att, a)) = Mkhd(d, upd(n, c, A), L, att, a)
⇐= (n ∈ dom(A)) = false

add anchor(n, c, Mkhd(d, A, L, att, a)) =
Mkhd(d,

upd(n
Mkanchor(get location(c),

suptype(c, c′),
concat(get att(c), get att(c′))),

A),
L,

att,

a)
⇐= (n ∈ dom(A)) = true ∧ get anchor(n, A) = c′ ∧ get location(c) = get location(c′)

del anchor(n, h) = h′

h′ is the hyperdocument after the anchor with the namen has been removed from the hyper-
documenth.

35

del anchor(n, Mkhd(d,A, L, att, a)) = Mkhd(d, rem(n,A), L, att, a)

add link(l, h) = h′

h′ is the hyperdocument after the linkl has been added to the set of links inh.
A link of the type ‘Uni(Replace, ∗)’ or ‘ Uni(New window, ∗)’ may be added when its source
contains a specifiersp that refers to an anchorc in the the given hyperdocument of type
‘Source’ or ‘Label’. This is expressed in the first four rules.
For a link of the type ‘Uni(Embed,User)’ we additionally require that this anchorc must point
to a location that may carry an embed link. This is expressed in the next two rules. Note that
‘embedlink ok?’ comes from DOCUMENTP.
For a link of the type ‘Uni(Embed, Auto)’ we additionally require that the link has exactly
one target. This is expressed in the next two rules.
Finally, a link of the type ‘Bi’ may be added when its source contains a specifiersp that refers
to an anchorc in the the given hyperdocument of type ‘Label’.

add link(l, Mkhd(d, A, L, att, a)) = Mkhd(d,A, insert(l, L), att, a)
⇐= get type(l)=Uni(Replace, act) ∧ sp∈ get source(l) ∧

get uri(sp)=embed(a) ∧ get anchor(get id(sp), A)=c ∧ get type(c)=Source
add link(l, Mkhd(d, A, L, att, a)) = Mkhd(d,A, insert(l, L), att, a)

⇐= get type(l)=Uni(Replace, act) ∧ sp∈ get source(l) ∧
get uri(sp)=embed(a) ∧ get anchor(get id(sp), A)=c ∧ get type(c)=Label

add link(l, Mkhd(d, A, L, att, a)) = Mkhd(d,A, insert(l, L), att, a)
⇐= get type(l)=Uni(New window, act) ∧ sp∈ get source(l) ∧

get uri(sp)=embed(a) ∧ get anchor(get id(sp), A)=c ∧ get type(c)=Source
add link(l, Mkhd(d, A, L, att, a)) = Mkhd(d,A, insert(l, L), att, a)

⇐= get type(l)=Uni(New window, act) ∧ sp∈ get source(l) ∧
get uri(sp)=embed(a) ∧ get anchor(get id(sp), A)=c ∧ get type(c)=Label

add link(l, Mkhd(d, A, L, att, a)) = Mkhd(d,A, insert(l, L), att, a)
⇐= get type(l)=Uni(Embed, User) ∧ sp∈ get source(l) ∧

get uri(sp)=embed(a) ∧ get anchor(get id(sp), A)=c ∧ get type(c)=Source ∧
embed link ok?(get location(c), d)

add link(l, Mkhd(d, A, L, att, a)) = Mkhd(d,A, insert(l, L), att, a)
⇐= get type(l)=Uni(Embed, User) ∧ sp∈ get source(l) ∧

get uri(sp)=embed(a) ∧ get anchor(get id(sp), A)=c ∧ get type(c)=Label ∧
embed link ok?(get location(c), d)

add link(l, Mkhd(d, A, L, att, a)) = Mkhd(d,A, insert(l, L), att, a)
⇐= get type(l)=Uni(Embed, Auto) ∧ sp∈ get source(l) ∧

get uri(sp)=embed(a) ∧ get anchor(get id(sp), A)=c ∧ get type(c)=Source ∧
embed link ok?(get location(c), d) ∧ |get target(l)|=1

add link(l, Mkhd(d, A, L, att, a)) = Mkhd(d,A, insert(l, L), att, a)
⇐= get type(l)=Uni(Embed, Auto) ∧ sp∈ get source(l) ∧

get uri(sp)=embed(a) ∧ get anchor(get id(sp), A)=c ∧ get type(c)=Label ∧
embed link ok?(get location(c), d) ∧ |get target(l)|=1

add link(l, Mkhd(d, A, L, att, a)) = Mkhd(d,A, insert(l, L), att, a)
⇐= get type(l)=Bi ∧ sp∈ get source(l) ∧

get uri(sp)=embed(a) ∧ get anchor(get id(sp), A)=c ∧ get type(c)=Label

36

del link(l, h) = h′

h′ is the hyperdocument after the linkl is removed from the hyperdocumenth.

del link(l,Mkhd(d, A, L, att, a)) = Mkhd(d, A, dl(l, L), att, a)

add attribute(att, h) = h′

h′ is the hyperdocument after the hyperdocumenth is enriched with the attributesatt.

add attribute(att′, Mkhd(l, A, L, att, a)) = Mkhd(l, A, L, concat(att′, att), a)

del attribute(att, h) = h′

h′ is the hyperdocument after the attributesatt are removed from the hyperdocumenth.

del attribute(att′, Mkhd(l, A, L, att, a)) = Mkhd(l, A, L, remove(att′, att), a)

ch addr(a′, h) = h′

h′ is the hyperdocument after the address ofh is replaced by addressa′.

ch addr(a′, Mkhd(d, A, L, att, a)) = Mkhd(d, A, L, att, a′)

37

A.6 Media Objects

MO = URI and ANCHOR ID and SET[entry7→anchorid] then
vissorts
mo = mo(uri, anchor id)

constructs

Our interface to media-objects is quite simple because we are not interested in mod-
eling their internal behavior. The only thing we require is that they have some unified
resource identifier of sort ‘uri’ and a set of anchor identifiers to which links may refer.
Thus, a media-object basically introduces a legal set of specifiers referring to it.

Mkmo. uri × set(anchorid) → mo

38

A.7 Hypermedia Document Level

A.7.1 Page

PAGE SYMBOLS = STRINGthen
vissorts
page symbols

PAGE = MOand PAGE SYMBOLSand ATT PAGEand
TREE[entry7→pagestruct]and
LIST[entry7→page]and
LISTPAIR[entryD17→nat, entryD27→nat, entryR7→nat] then

vissorts
page
page struct
page location = list(nat)

constructs
Basic, Symbol,Emptypage,Page list,Table,Tableline,Headline,Minipage,Text,
Br,Footnote,Paragraph,Copyright : page struct

[[]] : page
[[]]. mo → page
′′ ′′. page symbols → page
Mkpage. page struct × list(page)× att page → page

defuns
−−− Observer Functions −−−
atomic?. page → bool
has pnth?. nat × list(page)→ bool
has location?. page location × page → bool
embed link page ok?. page location × page → bool
get struct. page → tree(pagestruct)
get pages. page → list(page)
get att. page → att page
pnth. nat × list(page)→ page
locate. page location × page → page
page dimension. page → list(nat)
page list dimension. list(page)→ list(nat)
−−− Editing Functions −−−
ch struct. page struct × page → page
mklist. nat → page
mktable. nat × nat → page
mktableline. nat → page
place at. page × page location × page → page
place at help. page × nat × page location × list(page)× page → list(page)
insert at. page × page location × page → page
add attribute. att page × page → page
del attribute. att page × page → page

39

vars h. mo
symb. page symbols
p, p′, p′′, p′′′. page
s, s′. page struct
P. list(page)
n. nat
o. page location
att, att′. att page

axioms
−−− Observer Functions −−−
atomic?([[]]) = true
atomic?([[h]]) = true
atomic?(′′symb′′) = true
atomic?(Mkpage(s, P , att)) = false

has location?(o, p)

Tests whether locationo occurs in pagep. The empty location[] means the whole page and
therefore it exists in every page.has pnth?(o, P) is an auxiliary function for it.

has pnth?(s(0), []) = false
has pnth?(s(0), p :: P) = true
has pnth?(s(s(n)), p :: P) = has pnth?(s(n), P)
has location?([], p) = true
has location?(s(n) :: o, p) = false
⇐= atomic?(p) = true
has location?(s(n) :: o, p) = false
⇐= atomic?(p) = false ∧ p = Mkpage(s, P , att) ∧ has pnth?(s(n), P) = false
has location?(s(n) :: o, p) = has location?(o, pnth(s(n), P))
⇐= atomic?(p) = false ∧ p = Mkpage(s, P , att) ∧ has pnth?(s(n), P) = true

embed link page ok?(o, p)

Returns ‘true’ if the locationo exists in pagep and the document located ato is an empty page
[[]]. If location o does not exist in pagep it returns ‘false’.

embed link page ok?(o, p) = false ⇐= has location?(o, p)=false
embed link page ok?(o, p) = true ⇐= has location?(o, p)=true ∧ locate(o, p)=[[]]

40

get struct(p)

Returns the tree of structures in pagep. Notice that it uses the function ‘map’ from LIST that
runs the function in its first argument over the list in its second argument.

get struct([[]]) = Mktree(Emptypage, [])
get struct([[h]]) = Mktree(Basic, [])
get struct(′′symb′′) = Mktree(Symbol, [])
get struct(Mkpage(s, P , att)) = Mktree(s, map(get struct, P))

get pages(p) = P

P are the top level elements of pagep.

get att(Mkpage(s, P , att)) = P

get att(p) = att

att are the top level attributes of pagep.

get att(Mkpage(s, P , att)) = att

pnth(s(n), P)

Computes the nth element of the list P, but starts with 1 (instead of 0).

pnth(s(n), P) = nth(n, P)

locate(o, p) = p′

p′ is the the page located at positiono in pagep.

locate([], p) = p

locate(s(n) :: o,Mkpage(s, P , att)) = locate(o, pnth(s(n), P))

41

page dimension(p)

Returns the list of natural numbers of the sizes of the page objectp in all its dimensions. E.g.,
a two dimensional table withm lines and a maximum ofn columns in one of these lines has
a dimension of(m,n). This means that the smallest two dimensional cube around itwill have
hight m and breadthn. A three dimensional table with dimension(m,n, p) will fill a cube
of depthp. If the objects are not atomic, the element-wise maximum of its dimensions will
be appended at the end of the dimension list of the table. Generally speaking, a page object
represented as an Mkpage-node tree of depthd has the dimension(n1, . . . , nd) whereni is the
maximum number of children of a node at depthi. Note that it uses the function ‘mapdefault’
from LISTPAIR on page 26.

page dimension(p) = []
⇐= atomic?(p) = true

page dimension(p) = length(P) :: page list dimension(P)
⇐= atomic?(p) = false ∧ p = Mkpage(s, P , att)

page list dimension([]) = []
page list dimension(p :: P) =

map default(0, 0,max, page dimension(p), page list dimension(P))

--- Editing Functions ---

ch struct(s′, p) = p′

p′ is the page containing the same documents and attributes asp, but with a different structure
s′.

ch struct(s′,Mkpage(s, P , att)) = Mkpage(s′, P , att)

mklist(n) = p

p is a list withn items, containing an empty page[[]] in every item.

mklist(n) = Mkpage(Page list, repeat(n, [[]]), []Att)

mktable(m,n) = p

p is am × n-table, containing an empty page[[]] in every cell.mktableline(n) is an auxiliary
function for it.

mktable(m, n) = Mkpage(Table, repeat(m, mktableline(n)), []Att)
mktableline(n) = Mkpage(Tableline, repeat(n, [[]]), []Att)

42

place at(p′, o, p) = p′′

If the locationo occurs in the pagep, thenp′′ is the pagep with its part at locationo replaced
with the pagep′.
If o does not exist inp because a nodeν in p has not enough children, thenp is first extended
with sufficiently many child nodes forν. The type of these child nodes may depend on the
parent nodeν. E.g., if the parent node is a table then the child nodes will be of type table-line.
If no special knowledge is given, the child nodes will be simply of type empty page (‘[[]]’).
The default child node is the last argument of a helper function ‘placeat help’ that is very
similar to ‘placeat’ but works on children lists instead of single nodes.

place at(p′, [], p) = p′

place at(p′, n :: o,Mkpage(s, P , att))
= Mkpage(s, place at help(p′, n, o, P , mktableline(0)), att)
⇐= s = Table

place at(p′, n :: o,Mkpage(s, P , att))
= Mkpage(s, place at help(p′, n, o, P , [[]]), att)
⇐= s 6= Table

place at help(p′, s(0), o, p :: P , p′′) = place at(p′, o, p) :: P

place at help(p′, s(s(n)), o, p :: P , p′′) = p :: place at help(p′, s(n), o, P , p′′)
place at help(p′, s(0), o, [], p′′) = place at(p′, o, p′′) :: []
place at help(p′, s(s(n)), o, [], p′′) = p′′ :: place at help(p′, s(n), o, [], p′′)

insert at(p′, o, p) = p′′

p′′ is the page afterp′ has been inserted at locationo if o exists inp.

insert at(p′, o, p) = place at(p′, o, p) ⇐= has location?(o, p) = true

add attribute(att, p) = p′

p′ is the page afterp is enriched with the attributesatt.

add attribute(att′, Mkpage(s, P , att)) = Mkpage(s, P , concat(att′, att))

del attribute(att, p) = p′

p′ is the page after the attributesatt are removed fromp.

del attribute(att′, Mkpage(s, P , att)) = Mkpage(s, P , remove(att′, att))

43

A.7.2 HyperMedia Document

HMD ADDR = STRINGthen
vissorts
hmd addr

HMD = PAGEand HMD ADDR and
HD[document7→PAGE.page,

location7→PAGE.pagelocation,
embedlink ok?7→PAGE.embedlink pageok?,
addr7→HMD ADDR.hmd addr] and

MAPSET[entry17→anchor, entry27→PAGE.pagelocation]and
MAPSET[entry17→link, entry27→link]

then
vissorts
hmd = hd(PAGE.page,PAGE.page location,HMD ADDR.hmd addr)

defuns
−−− Editing Functions −−−
place at. hmd × page location × hmd × hmd addr → hmd
insert at. hmd × page location × hmd × hmd addr → hmd
combine link. hmd addr × hmd addr × hmd addr × set(link)× set(link)→ set(link)
sinkloc. page location × anchor → anchor

vars m,n. nat
p, p′. page
h, h′, h′′. hmd
o, o′. page location
A,A′. function(anchorid,anchor)
L,L′. set(link)
a, a′, a′′. hmd addr
t. anchor type
att. att anchor

44

axioms

--- Editing Functions ---

place at(h, o, h′, a′′) = h′′

Replaces the part of hyperdocumenth′ at locationo with hyperdocumenth, resulting in a new
hyperdocumenth′′ under addressa′′. This is only possible when the names of the anchors inh

andh′ are disjoint and whenh′ does not have any anchors in the part replaced withh.
sinkloc(o, c) is an auxiliary function that appendso to the front of the location of the anchorc,
i.e. it letsc sink below the locationo. Note that we can use ‘sinkloc’ as a unary function in the
definition of ‘placeat’ because we consider all functions to be curried and argument tupling
just to be syntactic sugar.
The functions ‘maprange’ and ‘union’ are from FUNCTION[domain7→anchorid,
range7→anchor] from HD. Note that the application of ‘maprange’ is unproblematic here be-
cause the domains ofA andA′ are required to be disjoint.
‘combine link’ is an auxiliary function that changes all references of links to h andh′ to re-
fer to h′′. It is defined via ‘mapset’ from MAPSET[entry17→link, entry27→link]. Moreover,
‘replaceuri li’ from LINK is called (like ‘sinkloc’) with one argument less than defined, in
order to yield a function of type ‘link → link’.
Finally, note that in the condition of the definition of ‘place at’ the ‘mapset’ is
from MAPSET[entry17→anchor, entry27→PAGE.pagelocation] and the ‘exists’ is from
SET[entry7→PAGE.pagelocation], which again is part of MAPSET[entry17→anchor,
entry27→PAGE.pagelocation].

place at(Mkhd(p,A, L, att, a), o, Mkhd(p′, A′, L′, att′, a′), a′′) =
Mkhd(place at(p, o, p′),

union(map range(sinkloc(o), A), A′),
combine link(a, a′, a′′, L, L′),
concat(att, att′),
a′′)

⇐= dom(A) ∩ dom(A′)={} ∧
exists(is proper prefix(o), map set(get location, ran(A)))=false

sinkloc(o,Mkanchor(o′, t, att)) = Mkanchor(o@o′, t, att)

combine link(a, a′, a′′, L, L′) =
map set(replace uri li(embed(a′), embed(a′′)),

map set(replace uri li(embed(a), embed(a′′)),
L ∪ L′))

insert at(h, o, h′, a′′) = h′′

h′′ is the hypermedia-document with addressa′′ after h has been inserted at locationo into
hypermedia-documenth′, provided thato exists inh.

insert at(h, o, h′, a′′) = place at(h, o, h′, a′′) ⇐= has location?(o, ||h′||) = true

45

A.8 Frameset Document Level

The following specifications are essentially incomplete and have to be completed in the future!!!

A.8.1 Chapter

CHAPTERSYMBOLS =
vissorts
chapter symbols

CHAPTER = HMDand CHAPTERSYMBOLSand ATT CHAPTERand
TREE[entry7→chapterstruct]and
LIST[entry7→chapter]and
LIST[entry7→nat] then

vissorts
chapter
chapter struct
fsd location = list(nat)

constructs
Horiz frameset,Vert frameset,Alt frameset : fsd struct

A.8.2 FrameSet Document

FSD ADDR = STRINGthen
vissorts
fsd addr

FSD = CHAPTERand FSD ADDR and
HD[document7→CHAPTER.chapter,

location7→CHAPTER.chapterlocation,
embedlink ok?7→CHAPTER.includelink chapterok?,
addr7→FSD ADDR.fsd addr]

then
vissorts
fsd = hd(CHAPTER.chapter,CHAPTER.chapter location,FSD ADDR.fsd addr)

46

A.9 Site Level

The following specifications are essentially incomplete and have to be completed in the future!!!

A.9.1 Book

BOOK SYMBOLS =
vissorts
book symbols

BOOK = FSDand BOOK SYMBOLSand ATT BOOK and
TREE[entry7→book struct]and
LIST[entry7→book]and
LIST[entry7→nat] then

vissorts
book
book struct
book location = list(nat)

constructs
sitemap : book struct

A.9.2 Site

SITE ADDR = STRINGthen
vissorts
site addr

SITE = BOOKand SITE ADDR and
HD[document7→BOOK.book,

location7→BOOK.booklocation,
embedlink ok?7→BOOK.includelink book ok?,
addr7→SITE ADDR.site addr]

then
vissorts
site = hd(BOOK.book,BOOK.book location, SITE ADDR.site addr)

47

References

[BCM 96] T. Bienz, R. Cohn, J. Meehan (1996).Portable Document Format Reference Manual.
Version 1.2, Adobe Systems Incorporated.http://partners.adobe.com/
supportservice/devrelations/PDFS/TN/PDFSPEC.PDF (May 14,
1999).

[BFI 98] T. Berners-Lee, R. Fielding, U.C. Irvine, L. Masinter (1998).Uniform Resource
Indentifiers (URI): Generic Syntax.RFC 2396.

[BH 92] Paul de Bra, Geert-Jan Houben (1992).An Extensible Data Model for Hyperdocu-
ments.Proc. ACM Conf. on Hypertext’92, pp. 222–231.http://wwwis.win.
tue.nl/ ˜ debra/echte92/final.ps (March 29, 1999).

[BHW 99] Paul de Bra, Geert-Jan Houben, H. Wu (1999).AHAM: A Dexter-based Reference
Model for Adaptive Hypermedia.Proc. ACM Conf. on Hypertext ’99, pp. 147–156.

[Bus 45] Vannevar Bush (1945).As we may think.The Atlantic 176(1), pp. 101–108.
http://www.theatlantic.com/unbound/flashbks/compute r/
bushf.htm (March 30, 1999).

[Dob 96] E.-E. Doberkat (1996).A Language for Specifying Hyperdocuments.Software —
Concepts and Tools17, pp. 163–173, Springer.

[Eng 83] Douglas C. Engelbart (1984).Authorship Provisions in AUGMENT.COMPCON ’84
Digest: Proceedings of the COMPCON Conference, San Francisco, pp. 465–472.
http://www.bootstrap.org/oad-2250.htm (Nov. 6, 1999).

[GQV 98] R. Guetari, V. Quint, I. Vatton (1998).Amaya: an Authoring Tool for the Web.MC-
SEAI’98 International Conference.http://www.inrialpes.fr/opera/
people/Ramzi.Guetari/Papers/Amaya.html (May 17, 1999).

[GT 94] K. Grønbaek, R. H. Trigg (1994).Design Issues for a Dexter-Based Hypermedia
System.Comm. ACM37(2), pp. 40–49, ACM Press.

[HBR 94] Lynda Hardman, Dick C.A. Bulterman, Guido van Rossum (1994).The Amsterdam
Hypermedia Model.Comm. ACM37(2), pp. 50–62, ACM Press.

[HS 90] F. Halasz, F. Schwartz (1990).The Dexter Hypertext Reference Model.Proc. Hyper-
text Standardization Workshop, National Institute of Technology (NIST), pp. 95–
133.

[ISB 95] T. Isakowitz, E. A. Stohr, P. Balasubramanian (1995). RMM: A Methodology for
Structured Hypermedia Design.Comm. ACM38(8), pp. 34–44, ACM Press.

[KW 96] Ulrich Kühler, Claus-Peter Wirth (1996).Conditional Equational Specifications of
Data Types with Partial Operations for Inductive Theorem Proving. SEKI-Report
SR–96–11, FB Informatik, Univ. Kaiserslautern. Short version in: 8th RTA 1997,
LNCS 1232, pp. 38–52, Springer.http://www.ags.uni-sb.de/ ˜ cp/p/
rta97 (Oct. 13, 1999).

48

[LH 99] David Lowe, Wendy Hall (1999).Hypermedia & the Web. An engineering approach.
Wiley.

[LP 92] Mihaly Lenart, Ana Pasztor (1992).Knowledge Based Specifications of the Design
Process Using Many-Sorted Logic.Ulam Quarterly1(4). http://www.ulam.
usm.edu/VIEW1.4/pasztor.ps (May 17, 1999).

[LW 94] Rüdiger Lunde, Claus-Peter Wirth (1994).ASF+ — eine ASF-̈ahnliche Spezi-
fikationssprache. SEKI-Working-Paper SWP–94–05 (SFB), FB Informatik,
Univ. Kaiserslautern. http://www.ags.uni-sb.de/ ˜ cp/p/swp9405
(Oct. 13, 1999).

[MK 95] A. Mester, H. Krumm (1995).Composition and Refinement Mapping based Con-
struction of Distributed Algorithm.Proc. Workshop on Tools and Algorithms for the
Construction and Analysis of Systems, Aarhus.

[OE 95] J. van Ossenbruggen, A. Eliens (1995).The Dexter Hypertext Reference Model in
Object-Z.Unpublished Paper, Vrije Universiteit Amsterdam.http://www.cs.
vu.nl/ ˜ dejavu/papers/dexter-full.ps.gz (May 17, 1999).

[Pad 2000] Peter Padawitz (2000).Swinging Types = Functions + Relations + Transition Sys-
tems.Theoretical Computer Sci.243, pp. 93–165, Elsevier.

[Qui 97] V. Quint (1997). The Languages of Thot.INRIA 1996, Version April 1997.
http://www.eda.bg/docs/packages/amaya/languages.htm l
(May 17, 1999).

[Sal 96] F.A. Salustri (1996).A formal theory for knowledge-based product model represen-
tation.2nd IFIP WG 5.2 Workshop on Knowledge Intensive CAD, Carnegie-Mellon
Univ., pp. 59–78, Chapman & Hall.http://salustri.esxf.uwindsor.
ca/ ˜ fil/Papers/kicII/reprint.html (May 17, 1999).

[W3C 98a] W3C (1998).HTML 4.0 Specification.W3C Recommendation, revised on
24-Apr-1998. http://www.w3.org/TR/1998/REC-html40-19980424
(May 17, 1999).

[W3C 98b] W3C (1998). Document Object Model (DOM) Level 1 Specification.
W3C Recommendation 1 October, 1998.http://www.w3.org/TR/
REC-DOM-Level-1 (May 17, 1999).

[W3C 98c] W3C (1998).Extensible Markup Language (XML) 1.0.W3C Recommendation 10-
February-1998. http://www.w3.org/TR/REC-xml (August 1, 1999).

[W3C 98d] W3C (1998).XML Linking Language (XLink).W3C Working Draft 3-March-1998.
http://www.w3.org/TR/WD-xlink-19980303 (August 1, 1999).

[WD 99] Jörg Westbomke, Gisbert Dittrich (1999).Ein Ansatz zur formalisierten Beschrei-
bung von Hypermediadokumenten in XML.Report 708/1999, FB Informatik,
Univ. Dortmund. http://lrb.cs.uni-dortmund.de/ ˜ westbomk/
Homepage/Forschbericht_HMD-XML.pdf (Oct. 14, 1999).

