An Algebraic Dexter-Based
Hypertext Reference Model

\Volker Mattick, Claus-Peter Wirth

volker.mattick@cs.tu-dortmund.de,
wirth@logic.at
http://Is1-www.cs.uni-dortmund.de/cms/mattick.html
http://www.ags.uni-sb.de/ ~Ccp

Research Report 719/1999
http://www.ags.uni-sb.de/ cp/p/gr719

November 6, 1999

Universitat Dortmund
Fakul@t fur Informatik
44227 Dortmund
Germany

Abstract: We present the first formal algebraic specification of a hygéreference model. It is based
on the well-known Dexter Hypertext Reference Model andudes modifications with respect to the
development of hypertext since the WWW came up. Our hypenmdel was developed as a product
model with the aim to automatically support the design pseand is extended to a model of hypertext-
systems in order to be able to describe the state transitidhss process. While the specification should
be easy to read for non-experts in algebraic specificatignarantees a unique understanding and enables
a close connection to logic-based development and verditat

Contents

1 Introduction 1
1.1 Product Models for Hyperdocuments
1.2 Semantics for HyperdocumentModels

2 The Information-Centered Model for Hypermedia 4
2.1 Algebraic Specifications for Describing Product Models 4
2.2 The Object under Consideration: Hyperdocuments 7
2.3 BasisDocuments 8
24 Anchors
25 Hyperlinks
2.6 Addresses e 11
2.7 Hyperdocuments 11
2.8 The Hierarchy of Hyperdocuments 12

3 Extending the Product Model 17
3.1 ObserverFunctions e 17
3.2 Editing Functions L 20

4 Conclusion and Outlook 24

A The Algebraic Specification 25
A.1 Basic Specifications 25
A.2 Parameter Specifications 28
A3 ANChOors e 29
A4 LiNKS . .. e 30
A5 Hyperdocuments 33
A6 MediaObjects 37
A.7 Hypermedia DocumentLevel 38
A.8 Frameset DocumentlLevel 45
A9 SitelLevel e 46

1 Introduction

The number of hypertext applications is growing. What sthes an idea of Vannevar Bush more
than half a century ago (cf. [Bus 45]) has now become one ofrtb&t rapidly growing fields in
software engineering. The reason for this rapid developmsahe World-Wide Web\WWW).

Nearly all of the web sites used nowadays are hypermediacagiphs and only a few are
mere hypertexts. In this paper we will refer the tbgpermediao a combination dfypertext
andnultimedia as suggested e.g. in [HBR 94]. If the textual or multimed&ture is not relevant,
we will speak ohyperdocumentsAs hypermedia is an open approach, there are infinitely many
different types of media-objects in principle. In a closefrence model, these different types of
media-objects can only be modeled with an abstract interf@iberefore, it seems to be justified
to speak of hypertextreference model even for models of hypermedia like the onaregoing
to specify in this paper.

Our hypertext reference modeDexter-basedecause it deviates from the Dexter Hypertext
Reference Model (cf. [HS 90]) only in some aspects that hdzktoorrected in order to be com-
patible with the WWW. A detailed comparison with the Dextavdel, however, is not subject of
this paper.

The hypertext model (c§ 2) was developed as a product model with the aim to support the
design of the product “hyperdocument” automatically. leidended to a model of hypertext-
systems (cf§ 3) in order to describe the state transitions of the desiguogss.

To our knowledge, our hypertext reference model is the'faahal algebraicmodeling ap-
proach for hypertexts, hypermedia, or hypertext-systekigebraic specification came up in the
seventies based on concepts of universal algebra andetloktatypes. Due to the technical com-
plexity of the subject, it is still an area of ongoing reséaoa the one hand. On the other hand,
there is still a gap between what practice demands and waatythlelivers. One motivation for
our work is to make this gap a little smaller and we hope thatspecification is quite readable
for non-experts in algebraic specification. Due to its erigilgebraic specification is superior to
other specification formalisms in its clear relation to tboghd semantics that guarantees a unique
understanding and enables a close connection to logidizheselopment and verification.

1.1 Product Models for Hyperdocuments

In the domain of hyperdocuments there are three fundameiffiaent kinds of product models
(cf. [LH 99, p.221ff.]). Programming language based, infation-centered and screen-based
models. The programming language based approach, whidlesgmy general purpose pro-
gramming language starting from scratch, was used in fodags due to the lack of any other
sophisticated models, and has nearly no importance in #s=pce.

For a long time thmformation-centered modéilas dominated. The most popular product
model for hyperdocuments, the “Dexter Hypertext Referavdoelel” [HS 90], is information-
centered. Dexter or one of its modifications, e.g. [GT 94]@E [95], describe the structure of a
hyperdocument, divided into its logical structure, itklge, and its style. A hyperdocument can
import components from a “within-component layer” via arclaor mechanism and specify how
the document should be presented in a “presentation simhic.

INote that we do not consider Z to be a formal algebraic spetidic language.

Similar ideas are presented in an object-oriented styl@éensb-called “Tower Model”, cf.
[BH 92]. Additionally a hierarchization is added. It is dabed that components could include
other components. But no restrictions on how to composerdgoements are mentioned. Thus,
you can produce a lot of components not used in any actuarimgzba system.

In both models there is no possibility to describe stratediew to navigate through a set
of hyperdocuments. But this is a design goal of increasingomance in the rapidly growing
world of hypermedia. The Dexter-based reference modeldaptive hypermed{&HAM) (cf.
[BHW 99]) describes first steps towards this direction.

Even the wide-spread Hypertext Markup Languag@&NIL) has obviously its roots in the
information-centered paradigm, even though many dessgmss it in an other way, namely as a
screen-based design language. “Screen-based” meankdhatts is not the logical structure
of the document, enriched with some display attributes,theitdisplay of the document itself.
With the upcoming of the WWW and the WYSIWYG-editors sieeeen-based modeecame
more important in hyperdocument design, because sometinsesasier to think in terms of the
produced view on the screen. As far as we know, there are wmyntodels for this approach:
The Document Object ModeDOM, cf. [W3C 98b]) and the Document Presentation Language
(P Language) afHOT ([Qui 97]). The goal of DOM is to define an application prograimg
interface for XML and HTML. Thus it is limited to the featuresed in that languages. The
P Language of THOT, used by the W3C-test-bed client browseaya ([GQV 98]), is more
general, but lacks device-independence; i.e. the prasamtanly describes a function of the
structure of the documents and the image that would be pesbloie an idealized device.

1.2 Semantics for Hyperdocument Models

All hyperdocument models have in common that no explicitaetics is given. Some information-
centered models try to treat the structural part of a hypmra@nt as a data type and assign a
semantics, but no semantics for the attributes is given, B@M reduces the DOM-semantics to
the semantics of HTML, but up to now there is no unique seroardr HTML, but only device-
and browser-dependent semantics.

But there are two widely accepted device-independent giéser formalisms for documents:
The postscript- and the PDF-format ([BCM 96]). Postscrgpieéry mighty but lacks the hyper-
links. Hence, we will use PDF as a screen-based model forrtigpaments.

Both kinds of models, the screen-based and the informatortered, have in common that
they abstract from the contents to be displayed. In prattieegap between both is bridged by
a user agent, often callerbwser cf. Fig. 1 on the facing page. A browser is a mapping be-
tween the syntax of the information-centered model of hgpemments and the semantics of the
screen-based model. It should be equal to the concaterddttbe translation (alg2pdf) from the
algebraic signature of hyperdocuments into the languadrbéf and a display mapping|fpr)
assigning the semantics to the screen-based PDF-moded, fhieusemantics of an information-
centered description of hyperdocuments is defined in terinitsensemantics of a well-known
description language for documents. Up to now it is an enasyroblem both for browser
developers and for designers that there is no unique medaing hyperdocument, but only
meanings together with particular browsers and outputcagsviNote that the lower left corner of
Fig. 1 on the next page denotes some model class providinglgleeraic or logic semantics of
the information-centered model.

Information-centered Model Screen-based Model

Hyperdocument /\
+

mpdeaIg

g HD [l l browser !

@ [HD + ATT]

Model Classes

Semantics
| [PDF]

Screen Display

Figure 1: Browser

Another problem with the existing models is that they do ediect the actual state of hyper-
text technology. Two of the three information-centered eisdnentioned above come from the
“pre-WWW” times.

Therefore we will not formalize the models as they are, bettheir crucial ideas, add some
new ones coming up with the WWW and structure a document itogpdo classical linear text.
We will describe all this in an algebraic specification laage (cf. [Pad 2000]) enriched with a
modularity concept, cf. ASF([LW 94]) or cTLA ([MK 95]).

This paper deals mainly with the upper left part of Figure d #re relation to its neighbors.
The formalization of the screen-based model as well as thmdodescription of the browser
defining mapping will be left to another paper. §& we start with the formal description of the
general hyperdocument data-structure and identify diffehierarchy levels, similar to the levels
in linear texts. I 3 the extension to a model for hypertext-systems is predente

2 The Information-Centered Model for Hypermedia

“It is essential to have a solid understanding of the kindisfafrmation present dur-
ing a design process before the design process itself candied.” [Sal 96].

Theproduct modelsometimes called “object model”) is a formal represeatabf exactly the
above-mentioned kinds of information. For our descripfanmalism we choose the constructor-
based algebraic approach (cf. [Pad 2000], [KW 96]). In sec?.1 we describe how that formal-
ism can be transferred to our domain. In section 2.2 we dpw@loproduct model for hypermedia
documents and compare it with existing reference modéis ttie Dexter Model [HS 90] or the
Tower Model [BH 92], and with certain standards as, e.g.s¢hosed by the World Wide Web
Consortium (W3C) for defining XML [W3C 98c].

2.1 Algebraic Specifications for Describing Product Models

In classical first-order algebraic specifications, the dasl represented with the help of a sig-
nature. Asignaturesig = (I, o) consists of an (enumerable) set of function symfibksnd a
(computable) arity function : F — N, saying that each function symbple F takesa(f) argu-
ments. A corresponding sig-algebra (or sig-structuressis of a single homogeneous universe
(or carrier) and, for each function symbollity a total function on this universe.

Heterogeneous, however, is the world we have to moiét have at least three different sorts
of objects:anchors(cf. § 2.4),links (2.5) anddocumentg2.7). Therefore, an adequate structural
representation should contain different universes fdecdht sorts. This leads us to the following
refinement of the notion of a signature.

Amany-sorted signaturdg = (S, F,) consists of a (finite) set of sorf an (enumerable)
set of function symbolB and a (computable) arity functien: F — S*, saying that each function
symbol f € F with a(f) = s;...s,s takesn arguments of the sorts, ..., s, and produces
a term of sorts’. A corresponding sig-algebrd consists of a separate univerde for each
sorts € S and, for each function symbgl € F with a(f) = s;...s,s, a total function
fA Ay X .o x A, — Ag

Typically, certain function symbols are called “constarst because they construct the data
domains (or domains of discourse) of an algebra. More pegithe constructor (ground) terfs
are used for designating the data items of an algsnpletelyanduniquely the popular catch-
words beingo junkandho confusionresp.. E.g., zero ‘0’ and successor ‘s’ may construct the
sort of natural numbers ‘nat’, ‘nil’ and ‘cons’ the listsyue’ and ‘false’ the Boolean sort, &c..
For the sort ‘nat’ of natural numbers, each data item of thié‘sat’ is to be denoted by some
constructor term of the sort ‘nat’ (no junk), and two diffet&onstructor terms of the sort ‘nat’
describe two different data objects (no confusion). Nog the latter is special for constructor
terms: E.g., for a non-constructor function symbol ‘+’, teems s(0) +0, 0+s(0), and s(0)
may well denote the same data object, but only the last oneasstructor term.

Since we are strongly convinced that the notion of a “comstrufunction symbol” must
be based on the signature only (and not on the axioms of afig@adion), this leads us to the
following refinement of the notion of a many-sorted signatur

2For a more detailed discussion cf. [LP 92].
3].e. the well-sorted terms built-up solely from construdtaction symbols.

sig/ is asubsignatureof sig if sig’ and sig are many-sorted signatures and, for
(S',F' o) :=sig’ and (S,F,«) := sig, we have S'’CS, F'CF, and o’ Ca. Thesig'-reduct
of a sig-algebrad consists only of the universes for the sortsSbtind of the functions for the
symbols inF’. Formally, when a sig-algebtd is seen as a total function with doma&aiF,* the
sig’-reduct can be seen as the restrictiomda the domair§’'wIF’, which we generally denote in
the formg.r1.A. For a subse€ C F we denote withsig® the subsignaturéS, C, ¢ 1) of sig®
If the function B that differs from the sig-algebrd only in that the universe of each sare S
contains only the values of tlé-terms of the sort under the evaluation function of, is a sig-
algebra again, then we cdfl theC -generated subalgebraf .A. We callC a set otonstructors
forsig if C CF and the signatursig® issensiblegor “inhabited”), i.e., for each € S, there is
at least one constructor ground term of sort

Definition 2.1 (Data Reduct)
If C is a set of constructors for sig, then, for each sig-algehrthe C -generated subalgebra of
thesig® -reduct of A is asig® -algebra, which is called tiie-data reduct ofA.

Aconstructor-based specificatiospec = (sig, C,.AX) is composed of a set of constructdrs
of the signature sig and of a sdt¥’ of axioms (over sig).

Definition 2.2 (Data Model)

Let spec = (sig,C,.AX") be a constructor-based specification.

A is adata modelbf ‘spec’ if AX is valid in the sig-algebrad and theC -data reduct of4 is
isomorphic to the term algebra oveg® .

Note that the latter is just a formal way to express the cabctiwno confusion” from above.
The catchword “no junk” can formally be realized by variabtanging only over the constructor
ground terms or th€ -data reduct ofd. For technical details cf. [KW 96].

Let N := F\C denote the set abn-constructor(ordefined function symbols. Note that
by Definition 2.2, the data reduct of data models of a consistpecification ‘spec’ is uniquely
defined (up to isomorphism) as the constructor ground tegebah. Data models for ‘spec’ may
differ, however, in the way partially specified functionsrit N behave in the unspecified cases.
E.g., suppose that the operator ‘-’ is partially specifiedrat’ by the two equationst — 0 = x
and s(z) —s(y) = z—y. In this case, data models may differ on the evaluation of ¢ t
0 —s(0), which may evaluate to different values of tBedata reduct or even to different “junk”
or “error” values. Note that in this way we can model partiaidtions with total algebras.

This possibility to model partiality is also the reason whg prefer characteristic functions
(i.e. functions of Boolean sort) to predicates: the restlthe application of a characteristic
function can be true, false or possibility neither true ralsé (undefined, unspecified). With
predicates we do not have the latter possibility.

4We use &' for the disjoint union of classes.
SNote thatc |« denotes the restriction of the functiarnto the domairC .
6].e. isomorphic to the initiadig® -algebra.

The constructor ground terms of the sorts of some subset S will be used to describe the
fixed unchanging parts of a product. The constructor groaerds of the remaining sorts §\Sp
statically describe the dynamic states of the product witlts dynamic behavior. The dynamic
functions fromN will change the static description of the product w.r.t. toastructor ground
terms of these sorts. As we do not have final algebra domaisista sorts in our application by
now, we have not treated these subjects explicitly here.

It is useful to further classify the function symbols fra¥n E.g., functions that inspect a data
item may be called “selectors” or “observers”, functiorattimanipulate may be called “mutators”
or “editors”, &c.. More important here is the classificatioha function symbol as belonging to
the product of the design process; contrary to functiongHerdesign process itself, auxiliary
functions for the implementation, &c.. Thus, BtC N be a set gfroduct function symbols
(sig,C,Sp, P, AX) is gproduct specificationif (sig, C,.4X) is a constructor-based specifica-
tion, Sp C S is non-empty andPCN, for (S,F,«a) :=sig and N :=F\C.

Definition 2.3 (Product Model)

Letsig = (S, F, «) be a many-sorted signature.

Let spec = (sig,C,Sp,P, AX) be a product specification.

Let C' be the set of those function symbels C whose argument and result sortsifr) do all
belong toSp.

Astructural product modebf ‘spec’ is the(Sp, C, ¢1a)-reduct of theC -data reduct of a data
model of(sig, C , AX).

Abehavioral product modedf ‘spec’ is thesig® “F-reduct of a data model d@#ig, C , AX).

Note that by this definition, a structural product model ofoagistent specification is uniquely
defined (up to isomorphism). Behavioral product models,dv@r may differ in the way partially
specified functions fron® behave in the unspecified cases.

The present situation of our application is not very congiid because at first only the struc-
tural product model is of interest. Moreover, sif§e=S, the(Sp, C, o]«)-reduct of theC -data
reduct is theC -data reduct itself. Therefore, the whole universe of disse, namely all possible
descriptions of products, can and will be represented bgteoctor ground terms. To simplify
the description of the structural product model we use saomeégfined data types, like ‘nat’ and
‘bool’, some of them generic, like ‘set’, ‘function’, ‘listand ‘tree’. For the understanding of the
product model, it suffices to assume that these data typesdotieir mathematical counterparts
do. For a deeper understanding a detailed description cioubd in [Pad 2000]. For the presen-
tation of our specification we use the fairly intuitively dedole style from [Pad 200G]The only
further remark that may be necessary here is the way thesteacspecification is meant to be
put together: The union of two specifications is the elenw@se non-disjoint union of sort sym-
bols, function symbols, arity functions, constructors bpis, and axioms. When parameters of a
specification are bound to some actual name of a specificatienake the union of both speci-
fications and replace the parameter with the actual namgwkiere. Although this approach is
not perfec we have chosen it for its simplicity, power and conciseness.

"This style is constantly improved. Thus, there can be ldifeerences in the notation, which should not disturb
the understanding of the presented specifications.

8E.g., the approach is error-prone and does not provide apepmodularization, i.e. the specification can only
be checked or properly understood as a whole.

2.2 The Object under Consideration: Hyperdocuments

In the domain of hyperdocuments there are three fundamédiftatent kinds of product mod-
els (cf. [LH 99, p. 221 ff.])Programming language basgaformation-centeredndscreen-based
models. The programming language based approach, whidlesgmy general purpose pro-
gramming language starting from scratch, was used in fodags due to the lack of any other
sophisticated models, and has nearly no importance in trsepce.

For a long time thmformation-centered moddias dominated. The most popular model
for hyperdocuments, the “Dexter Hypertext Reference Mo 90], is information-centered.
Dexter or one of its modifications, e.g. [GT 94] or [OE 95], chiise the structure of a hyperdoc-
ument, divided into its logical structure, its linkage, atslstyle. A hyperdocument can import
components from a “within-component layer” via an anchorchamism and specify how the
document should be presented by a “presentation spemfi¢ati

Similar ideas are presented in an object-oriented styl&en“Tower Model”, cf. [BH 92].
Additionally a hierarchy is added. It is described that comgnts could include other compo-
nents. But there are not mentioned any restrictions how topose hyperdocuments. So you
can produce a lot of components not used in any actual hypkasgstem. In both models there
is no possibility to describe strategies how to navigateuph a set of hyperdocuments. But
this is a design goal of increasing importance in the rapgdbwing world of hypermedia. The
Dexter-based reference model for adaptive hypernfagiaM) (cf. [BHW 99]) describes first
steps toward this direction.

Even the wide-spread Hypertext Markup Languag&NIL) has obviously its roots in the
information-centered paradigm, even though many dessgmee it in another way, namely as a
screen-based design language. “Screen-based” meanisdliatts is not the logical structure of
the document, enriched with some display attributes, uttbplay of the document itself.

With the upcoming of the WWW and the WY SIWY G-editors sikeeen-based modeecame
more important in hyperdocument design, because sometinsesasier to think in terms of the
produced view on the screen.

A simple and common characterization of our object undesic@mation is:

Definition 2.4 (Informal Description of a Hyperdocument)

Ahyperdocuments a basis documentsometimes calletineardocumentconsisting of a fixed
set of basic contents, organized according tmedia structure enriched with a pointer con-
cept, calledanchors to access a specific content inside the document, and &me&iconcept,
callechyperlinks to access another document byatidress If the only medium in a hyperdocu-
ment is text, then we speak diypertext documenor else of Aypermedia document
Moreover, device independence is often formulated as arhgxdia requirement. This is only
possible if you disjoin the structural description and pihesentation attributesas e.g. in HTML

or TeX.

In the following sections, we will examine how the five crdi@iements of a hyperdocument,

e the basis document (2.3),

the set of anchors (2.4),

the set of links (2.5),

the presentation attributeand

the addresses (2.6)

can be specified.

2.3 Basis Documents

According to the Dexter Model the structure of the basis iskmown. It is only assumed, that
each basis element has a fixed set of properties (which cabdeewe@d by some special observer
functions, which are not part of the product model) and aiqaer structure, which can be
accessed by the anchor-mechanism Viacation Accordingly we model basis documents as a
parameter.

Definition 2.5 (Parameter “Basis Document”)

DOCUMENT_P[document,location] =
sorts document
location

Note that in the boxes like the one above we do not presentuthspkcification (cf§ A) but only
an essential part of it that should be easy to understand.

2.4 Anchors

Originally a hyperdocument used to have no layout at all.d$ween only as an arbitrary collec-
tion of atomic basis elements. Tdrechorwas the only possibility to get access to one of these
atoms. It had a name and a method which could be interpretdtehynderlying database. When
hypertext evolved, more complex construction mechanissmsecup and the need to control the
layout became more important. The anchor-method dependéahger only on the data base
but also on the document structure. This method to acceseimeet at a given position is a bit
confusingly namedbcation We adopt that name, because it is used in most hypermedialsaod

In contrast to Dexter, our anchors are enriched with an anigip@. So you may not only mark
a special element, but you also mark it as a possible stamt-fgmurce or end-point {arget) of
a link or both (abel). Note that in our specification the anchor-types are padarwhors and

9Because of the fact that presentation attributes are mgfamionly in connection with a screen-based-model,
we leave them undefined at the moment. They will be added later

thereforéocal to the hyperdocuments. In Dexter this feature is includéal ineglobal specifier-
mechanism of hyperlinks, however (§f2.5). In pre-WWW times, where hypertext was usually
a non-distributed system, this made no difference. But irs@ibuted system like the WWW it
becomes important that the anchor types can be found wigearching the whole WWW and
must therefore be stored local to the document they arescktat

Considering all these facts and adding the attributes,szsigsed previously, we come to the
following specification for anchors:

Definition 2.6 (Structural Product Model “Anchor”)

ANCHOR[location] = DOCUMENTP[document,locatiordnd ATT _ANCHORthen
vissorts

anchor_type

anchor = anchor(location)
constructs

Source, Target, Label : anchor_type
Mkanchor. location x anchor_type x att_anchor — anchor

2.5 Hyperlinks

A hyperlink(orlink for short) is a reference from a fixed set of contestsufce to a fixed set of
contents fargef). Each of these sets of contents are described by a sgtecifiers Our model
differs from the Dexter Model insofar as no links to links passible. But our view is compatible
to most other hypermedia models. A specifier consists oflaagladdress of sort ‘uri’ and a local
name of sort ‘anchaid’. ‘uri’ is the abbreviation for “Unified Resource Idengfi’:? [BFI 98].
The anchor-name is to be mapped to an anchor of the hyperadmtumder the global address.
This mapping is not global but part of the hyperdocumenthenDexter Model, specifiers have
also a direction. We split this direction into the anclype and the linktype. Hence we get uni-
and bi-directional links.

Moreover links are classified according their intended bema This idea goes back to
[Eng 83], whergump- andincludeiinks were introduced. Often the term “jump-link” is used
synonymous with link at all. It denotes that kind of link whethe system is waiting for a
user action (e.g. a mouse-click) and then the old sourcerdent is replaced by the new target-
document. The term “include-link” denotes a class of linkgchk are to be automatically eval-
uated and presented inside a previously defined locatioesd ttraditional” kinds of links do
not suffice since systems work with multiple windows. A thikidd of link is necessary, namely

one that can open new windows to present the target-docuanehlieave the source-document
untouched in its old place.

This kind of presentational behavior is represented ishbe/-typeas we will call it accord-
ing to [W3C 98d]. Links of show-type ‘Embed’ embed their targto the context of their source.
Links of show-type ‘Replace’ replace the hyperdocumenheirtsource with the hyperdocument

of their target. Finally, links of show-type ‘Newindow’ open a new window with the document
of their target.

10The well-known URLs in the WWW are a subset of URIs.

10

The second distinction is whether a user interaction isirequor not. This is represented
by theactuate-typeas we will call it according to [W3C 98d]. Links of actuatge ‘User’ are
followed upon user interaction. Links of actuate-type ‘@udre followed automatically.

If we combine all the named possibilities we get twelve défe types of links. But, what
sense makes e.g. a bi-directional link of show-type ‘EmBedi a bi-directional link of actuate-
type ‘Auto’? We think that the only meaningful bi-directianinks are of show-type ‘Replace’
and of actuate-type ‘User’. Therefore, uni-directionak (‘Uni(x, %)) are modeled with two
parameters (show-type, actuate-type), but no argumestg\an to the bi-directional links (‘Bi’).

The previously mentioned jump-link has the typei(Replace, User) and the include-link
Uni(Embed, Auto).

Definition 2.7 (Structural Product Model “Links”)

LINK = ANCHOR_ID and URI and ATT_LINK and SET[entry—specifierjthen
vissorts

link_type

show

actuate

specifier

link

constructs
Embed, Replace, New_window : show
User, Auto : actuate
Uni. show x actuate — link_type
Bi: link_type
Mkspecifier. uri x anchor_id — specifier
Mklink. set(specifierk set(specifierk link_type x att_link — link

The generic abstract data type ‘set’ in Definition 2.7 is asstito be predefined, cf. p. 25 for its
signature.

11

2.6 Addresses

In order to be referenced, each hyperdocument must havediasad In general, this address
space is described by the already described sort ‘uri’. Butwill allow to define special address
subspaces for local addresses where the type of a hyperdotwan be inferred from the type
of its address. Thus, we have a second parameter.

Definition 2.8 (Parameter “Addresses”)

ADDR _P[addr] =
sorts addr

2.7 Hyperdocuments

We have now modeled all parts of our product, but as oftenptbduct is more than the sum
of its parts. It is not very convenient to access specificspafthe basis via a possibly cryptic
location-description. That is the reason why hyperlinkal daly with anchor-names, instead of
their values. Therefore each anchor, if it is used in a docuymeust be combined with a name.
We model this by using a function, thereby ensuring that nchanname can be used twice
inside the same document. We get a product model for a cldggpefdocuments that vary in the
underlying documents and the address space. These opengbarswill be instantiated in the
following section.

Definition 2.9 (Structural Product Model “Hyperdocuments”)

HD[document,location,addr] = DOCUMENP[document,locatiorgnd
ADDR_P[addr]and
ANCHOR[location]and
LINK and
ATT_HD and
FUNCTION[domain—anchorid,range—~anchor]and
SET[entry—link]

then
vissorts
hd = hd(document, location, addr)
constructs
Mkhd. document x function(anchaorid,anchor)x set(link) x att_hd x addr — hd

12

2.8 The Hierarchy of Hyperdocuments

Most hypermedia models end here with the definition of hypeudhents. Some of these models
give no further information about the structuring of hypmrdments at all, others define new
kinds of objects, e.g. views. We suggest another approadgdoon the classical organization
of texts. They are structured by a hierarchy of at least theesls, shown in the left column of
Table 1.

Linear Text| Hyperdocument

Book Site (Section 2.8.2)
Chaptet! | Frameset-Document | (Section 2.8.3)
Page Hypermedia-Document (Section 2.8.4)

Table 1: The Levels of a Document

The only basic element of a linear text is the character. ffegevith the media-structures
like paragraphs, tables or lists, they build the structurasis for documents. Arranging these
structured elements sequentially leads to a page. Now yaitha possibility to combine pages
into a document of a higher level. We believe that this hi@mars a good strategy to organize
hyperdocuments as well, because these levels can also bé, fasren you examine the most
popular application for hyperdocuments, the WWW, and traevgipread Hypertext Markup Lan-
guage ([W3C 98a)) or some of its relatives out of the SGMLifgfi. The right column of
Table 1 shows the hypermedial counterpart in terms of thd prosninent hypertext application,
the WWW.

Thus, we will define three typical levels of hierarchy for gphydocument. These levels
belong to the “storage layer” in the Dexter Model, cf. TableThe media-objects belong to the
“within-component layer” of the Dexter-Model. This is nbetfocus of our work and it will not
be viewed in detail.

| Dexter Model | Our Product Model |
Run-time Layer —
Presentation SpecificationsAttributes

Site
Storage Layer Frameset-Document
Hypermedia-Documen

—

Anchoring Anchor

Within-Component Layer| | Media-Object|

Table 2. Comparison with the Dexter Model (Interfaces ihds&)

Lwall news sheetay be intuitionally closer to “frameset document” becamisescribes a multi-dimensional
combination of pages.
12SGML is the Structured Generalized Markup Language (IS@yN&779)

13

2.8.1 Media-Objects

Media-objects are not hyperdocuments. They only provide ititerface to the Within-
Component-Layer in the Dexter Model. As hypermedia is amaproach, there are infinitely
many different types of media-objects in principle.

Our interface to media-objects is quite simple because weaatrinterested in modeling their
internal behavior. The only thing we require is that theyenssme unified resource identifier of
sort ‘uri’ and a set of anchor identifiers to which links mafere Thus, a media-object basically
introduces a legal set of specifiers referring to it.

Definition 2.10 (Structural Product Model “Media-Objects”™)

MO = URI and ANCHORL.ID and SET[entry—anchorid] then
vissorts

mo = mo(uri, anchor_id)

constructs

Mkmo. uri x set(anchaid) — mo

2.8.2 Pages and Hypermedia-Documents

Pages are at the lowest level in the hierarchy. As mentior&d®the basic contents, represented
by the media-objects, is hierarchically structured. Sonoelets (cf. e.g. [Dob 96]) introduce a
sub-document relation for this purpose, which only dessivhich document is part of another.
The way in that they are related is left to the presentatitibates. This strategy is adequate to
examine the navigational structure of a document, but ibtssofficient to describe “real-world*
hyperdocuments. We believe that presentation attributest tme reserved for simple lay-out
purposes only, and that a change of presentation attrilbotess not change the document in a
fundamental way. E.g., if you re-arrange a table into a litieg you change the information. Of
course, the distinction between structural elements apduid attributes is not sharp in general.
To avoid a discussion about this topic here, we pragmayifalllow the HTML-definitions. Note
that our product model allows both, a description soleihwitte predefined structural elements
or solely with presentation attributes of an unstructueed. tWe think that our proposed mix of
both is the best way, but the model does not enforce this.

Pages are simple linear texts, with a fixed set of logicalcstining elements, such as para-
graphs, lists or tables. Of course, one can imagine morditurscthan we define here, but we
tried to model the minimal necessary set of functions.

Besides the basic elements, we introduce a set of levelrdepe symbols, which are simply
characters on the first level. We differentiate them for ficatreasons. Generally, symbols differ
from basic elements in that they do not have an individuatesi] but are immediately handled
by the browser.

14

Definition 2.11 (Structural Product Model “Page”)

PAGE = MOand PAGE SYMBOLS and ATT _PAGEand
TREE[entry—pagestruct]and
LIST[entry—page]and LIST[entry—nat]then

vissorts

page
page_struct
page_location = list(nat)
constructs
Basic, Symbol, Emptypage, Page_list, Table, Tableline, Headline, Minipage, Text,
Br, Footnote, Paragraph, Copyright : page_struct
[] : page
[-]. mo — page
" . page_symbols — page
Mkpage. page_struct x list(page)x att_page — page

To construct a hyperdocument of our first level we now onlyegiavcombine our product models
for page and the address space and instantiate the parande@rment’, ‘location’, and ‘addr’.

Definition 2.12 (Structural Product Model “Hypermedia-Documents”)

HMD = PAGEand HMD_ADDR and
HD[documemt—PAGE.page,
location—PAGE.pagdocation,
addr—HMD _ADDR.hmdaddr] then
vissorts
hmd = hd(PAGE.page, PAGE.page_location, HMD_ADDR.hmd_addr)

15

2.8.3 Chapters and Frameset Documents

The following specifications are essentially incomplete aave to be completed in the future!!!

Atthe second level, our basic elements are the structuneeripcuments (Definition 2.12). From
this point of view, the name “lineardocument”, mentioneeMpously, is not quite right. Though it
is organized without links on the discussed level (and hélimoear”), its basic documents might
obviously be hyperdocuments already. The symbols at thed lwe geometrical forms, such as
lines, rectangles or bars.

Definition 2.13 (Structural Product Model “Chapter”)

CHAPTER = HMDand CHAPTERSYMBOLSand ATT _CHAPTERand
TREE[entry—chapterstruct]and
LIST[entry—chapterfand LIST[entry—nat]then
vissorts
chapter
chapter_struct

fsd_location = list(nat)
constructs

Horiz_frameset, Vert_frameset, Alt_frameset : fsd_struct

Analogous to the previous section, we must instantiate énarpeters.

Definition 2.14 (Structural Product Model “Frameset Document”)

FSD = CHAPTERand FSD.ADDR and
HD[document-~CHAPTER.chapter,
location—CHAPTER.chaptetocation,
addr—FSD ADDR.fsd addr]

then
vissorts
fsd = hd(CHAPTER.chapter, CHAPTER.chapter_location, FSD_ADDR.fsd_addr)

16
2.8.4 Books and Sites

The following specifications are essentially incomplete aave to be completed in the future!!!

The third level is the aggregation of chapters to a book. Akmmmsists of “hyperchapters”.

Definition 2.15 (Structural Product Model “Book™)

BOOK = FSDand BOOK_SYMBOLS and ATT _BOOK and
TREE[entry—book struct]and
LIST[entry—book]and LIST[entry—nat]then

vissorts

book
book_struct

book_location = list(nat)
constructs

sitemap : book_struct

Definition 2.16 (Structural Product Model “Site”)

SITE = BOOKand SITE.ADDR and
HD[document-BOOK.book,
location—BOOK.booklocation,
addr—SITE_ ADDR.site addr]

then
vissorts
site = hd(BOOK.book, BOOK.book_location, SITE_ADDR.site_addr)

17

3 Extending the Product Model

In §2 we introduced an algebraic Dexter-based product modehyperdocuments. We now
extend this model with observer and editing functions to lgel@aic model fohyperdocument
systemsBYy “hyperdocument system” we mean, as suggested e.g. b@f]Hunctions of tools
used by a developer to create and modify a hyperdocun@dgerver functionsupply informa-
tion about the objects, e.g. which elements a document iconEaditing functionscan modify
a concrete object, but of course not the domain. The renmiininctions are merelguxiliary
functions They are not discussed in detail, but documented in theratppe

In the constructor-based algebraic approach the set ofifunscis divided into a set afon-
structors(cf. §2.1) and a set ofhon-constructorsor defined functions Defined Functions are
defined via axioms on the basis of the constructors. Obs&rmaetions and editing functions are
both represented by defined functions.

In our domain we have parameter specificatiatc(menyt, object-classesafichoranchyperdocumei),
and concrete objecttirfk, page hypermedia documenthapter frame book andsite). For each
of these we will explain at first the observer functiofi8 (1) and then the editing function$3.2).

3.1 Observer Functions

Objects are represented by tuples, build up with the helpetbnstructors. Observer functions
are characterized by their ability to extract informatiart of these tuples. Historically they are
sometimes calledestructorsbecause they can deconstruct objects. As the term “déstilnas
already been used with so many connotations and it is not wleather it includes the Boolean
functions, we prefer the term “observer functions” here.

Theobserver functiongiclude the following two special cases:

Boolean functions will be marked with a question mark ‘?” at the end of their name

Projections extract exactly one component of a composite object. Narhpsogections will be
prefixed with ‘get’.

Observer functions must not be mixed up wiisplay functionsEven though both help the user
or developer to observe an object, the latter transformsothieal description into a ‘physical’
and visible description, in our case a notation that can bplayed by a user agent or browser.
Display functions are much more sophisticated in theirlaigie representation and a part of our
ongoing work.

3.1.1 Document
The parameter specification fdocumentfias only one Boolean function, namely ‘embatk _ok?’.

It tests whether an embed link can be positioned at a giveatitotin the document. All other
observer and editing functions belong to the documents ®@odiresponding level.

18

3.1.2 Page

At the first level are thg@ages A page is either an empty page, some media object of lower
level, some page symbol of the corresponding level, or detgpnstructed by ‘Mkpage’ (cf.
§2.8.2) from a structure name (‘pagéruct’), a list of pages (‘list(page)’), and some attrimit
(‘att_page’).

Definition 3.1 (Observer Functions “Page”)
defuns
atomic?. page — bool
has_pnth?. nat x list(page)— bool
has_location?. page_location x page — bool
embed_link_page_ok?. page_location x page — bool
get_struct. page — tree(pagestruct)
get_pages. page — list(page)
get_att. page — att_page
locate. page_location X page — page
page_dimension. page — list(nat)

A page is calledtomic(‘atomic?’) iff it is empty, a media object, or a symbol.

‘has.location?’ is a partially defined boolean function, whickttewhether a location occurs
in a page. The empty location means the whole page and tiheie&xists in every page.

‘embedlink_pageok?’ returns ‘true’ if a given location exists in the page d@hd document
located there is an empty page. If the location does not,eisturns ‘false’.

As a page is a nested structure, the adequate result of teeveb$unction ‘getstruct’ is the
tree of structures in the page under consideration.

Similarly the result of ‘gefpages’ is the list of all pages that a given page includes pn to
level.

‘get_att’ returns merely the top level attributes of the page.
‘locate’ returns the sub-page located at a given positiangiven page.

‘pagedimension’ returns the list of natural numbers of the siZat® page in all its dimen-
sions. E.g., a two dimensional table withlines and a maximum ot columns in one of these
lines has a dimension d@fn,n). This means that the smallest two dimensional cube around it
will have hightm and breadt. A three dimensional table with dimensiém, n, p) will fill
a cube of depth. If the objects are not atomic, the element-wise maximumnmsoélimensions
will be appended at the end of the dimension list of the taBlenerally speaking, a page object
represented as an Mkpage-node tree of dépgtlas the dimensio(n,, ..., n,) wheren; is the
maximum number of children of a node at depth

19

3.1.3 Anchor

An anchoris a triple constructed by ‘Mkanchor’ (c§.2.4) from a location (‘location’), a type
(‘fanchortype’), and some attributes (‘asinchor’).

Definition 3.2 (Observer Functions “Anchor”)
defuns

get_location. anchor — location

get_type. anchor — anchor_type

get_att. anchor — att_anchor

suptype. anchor x anchor — anchor_type

We need a projection for each component, called Igeation’, ‘gettype’ and ‘getatt’.

The last observer function, ‘suptype’, returns the suptéype according toVz. = < Label’
because an anchor of type ‘Label’ can serve both as sourcasaiadget, while the types ‘Source’
and ‘Target’ are incomparable.

3.1.4 Link

A (hyper) linkis a quadruple constructed by ‘Mklink’ (c§.2.5) of a two sets of specifiers denot-
ing the source and target (‘set(specifier)’), a type ('ligke’), and some attributes (‘alink’).
Specifiers again are pairs consisting of a global addresy @md local name (‘fanchaid’).

Definition 3.3 (Observer Functions “Link”)
defuns
get_uri. specifier — uri
get_id. specifier — anchor_id
get_source. link — set(specifier)
get_target. link — set(specifier)
get_type. link — link_type
get_att. link — att_link
get_specifier. link — set(specifier)

We need projections, ‘getri’, ‘get_id’ for the specifiers and ‘gesource’, ‘gettarget’, ‘gettype’
and ‘getatt’ for the links.

‘get_specifier’ returns the set of all specifiers in the source haddrget of a link.

20

3.1.5 Hyperdocument

A hyperdocumenis a quintuple constructed by ‘Mkhd’ (cf2.7) from a document (‘docu-
ment’), a function mapping anchor names to anchors (‘fem¢dnchorid,anchor)’), a set of links

(‘set(link)"), some attributes (‘athd’), and an address (‘addr’).

Definition 3.4 (Observer Functions “Hyperdocument”)
defuns
|-||. hd — document
get_anchors. hd — function(anchaiid,anchor)
get_link. hd — set(link)
get_att. hd — att_hd
get_addr. hd — addr
get_anchor_id. anchor x function(anchaiid,anchor)— set(anchaid)
get_anchor. anchor_id x function(anchord,anchor)— anchor

Of course we get five projections, namély, getanchors, getink, getatt and getaddr. The
first one extracts the (linear) document from the hyperde@mimBecause this function will be

used very often, we use the short notatifr“instead of the name ‘gedocument’.
‘get.anchor’, returns the anchor to a given anchor name.
‘get.anchorid’ returns the set of all anchor names referring to a givezhan

3.2 Editing Functions

Theediting functionsare the most interesting functions for the user. With the loélthese func-

tions a hyperdocument can be designed and modified.

3.2.1 Page

We will start with the functions for working witpages

Definition 3.5 (Editing Functions “Page”)
defuns
ch_struct. page_struct x page — page
insert_at. page X page_location X page — page
place_at. page X page_location x page — page
add_attribute. att_page x page — page
del_attribute. att_page x page — page
mktable. nat x nat — page
mklist. nat — page

21

‘ch_struct’ is a kind of converter function. The components & fage are left untouched,
but arranged in another structure.

Inserting one page into another at a special place is the impsirtant editing action a de-
signer might need. We give two different functions to do tHatsert at’ and ‘placeat’. Both
replace a part of an existing page, residing at a given loeatvith a new page. A location is
represented by a node position. ‘insattmoreover extends the page with sufficiently many child
nodes, if this location does not yet exist. The type of théslkel codes may depend on the parent
node. E.g., if the parent node is a table then the child nodekenof type table-line. If no special
knowledge is given, the child nodes will be simply of type ¢éynpage.

‘add_attribute’ and ‘delattribute’ add or remove attributes resp.. Editing funasidor at-
tributes exist for every object and are not mentioned in titthér sections anymore.

A special kind of editing functions are ‘mklist’ and ‘mkta They are syntactic sugar for
very often used construction mechanisms. ‘mklist’ produedist with a given number of items,
containing an empty page in every item. ‘mktable’ produces a n-table, containing an empty
page in every cell.

3.2.2 Anchor

Anchor has only editing function that change the values eidlsation (‘chlocation’) or the type
(‘ch_type’) resp..

Definition 3.6 (Editing Functions “Anchor”)
defuns
ch_location. location x anchor — anchor
ch_type. anchor_type x anchor — anchor
add_attribute. att_anchor x anchor — anchor
del_attribute. att_anchor x anchor — anchor

3.2.3 Link

According to the construction of links, we have editing fios for specifiers and for links,
which are very simple functions for changing the value of mponent.

Definition 3.7 (Editing Functions “Specifier”)
defuns

ch_uri. uri x specifier — specifier

ch_id. anchor_id x specifier — specifier

22

Definition 3.8 (Editing Functions “Link”)
defuns

insert_source. set(specifierkx link — link
delete_source. set(specifierk link — link
insert_target. set(specifierx link — link
delete_target. set(specifierk link — link
ch_type. link type x link — link
add_attribute. att_link x link — link
del_attribute. att_link x link — link

3.2.4 Hyperdocument

At the first glimpse, things seem to be as easy with hyperdeaisras with the other objects. For
the most functions, ‘dednchor’, ‘dellink’, ‘add_attribute’, ‘delattribute’ and ‘chaddr’, this is
true. But ‘addanchor’ and ‘addink’ are much more sophisticated in their details.

Definition 3.9 (Editing Functions “Hyperdocument”)
defuns

add_anchor. anchor_id x anchor x hd — hd
del_anchor. anchor_id x hd — hd

add_link. link x hd — hd

del_link. link x hd — hd

add_attribute. att_hd x hd — hd

del_attribute. att_hd x hd — hd

ch_addr. addr x hd — hd

‘add_anchor’ produces a hyperdocument after a given anchor wimgname has been added
to the anchors of the original hyperdocument, provided #maanchor with this name does not
exist before. If an anchor with this name does exist in thgiwal document at the same location
itis updated to an anchor with supremal type and attrib@@diserwise the function is not defined.

‘add.link’ is the most complex editing function because we mustsider several differ-
ent cases in that the addition of a link can be accepted. Adinthe type Uni(Replace, *)’
or ‘Uni(New_window, %)’ may be added when its source contains a specifier that rejeas
anchor in the the given hyperdocument of type ‘Source’ orb#gla For a link of the type
‘Uni(Embed, User)’ we additionally require that this anchor must point to adtian that may
carry an embed link. For a link of the typ&ni(Embed, Auto)’ we additionally require that the
link has exactly one target. Finally, a link of the type ‘Biaybe added when its source contains
a specifier that refers to an anchor in the the given hyperdeatiof type ‘Label’.

23

3.2.5 Hypermedia Document

The hyperdocument at level 1 is callgghermedia documentt is an instantiation of the hyper-
document object-class and therefore it includes all femstigiven there. Besides that, it provides
the two insertion functions ‘placat’ and ‘insertat’.

Definition 3.10 (Editing Functions “Hypermedia Document”)
defuns

place_at. hmd x page_location x hmd x hmd_addr — hmd
insert_at. hmd x page_location x hmd x hmd_addr — hmd

‘insertat’ replaces the part of a given hyperdocument, located atea ®xisting location,
with a new hyperdocument. The replacement is only possiblenvihe names of the anchors in
the two hyperdocuments are disjoint and the replaced pag dot carry any anchors. The result
gets the address given in the last argument of the functidna#iinks referring to any of two
input hyperdocuments are changed in order to refer to theethdting hyperdocument.

‘place at’ has the same result as ‘insatt provided that the location actually exists in the
given hyperdocument. Otherwise, it generates this loggtist as ‘placeat’ from “Page”, cf.
§3.2.1.

24

4 Conclusion and Outlook

To our knowledge we have presented the fifetmal algebraichypertext reference model. It
guarantees a unique understanding and enables a closectionrte logic-based development
and verification. With the exception of some deviations ithenito be compatible with the WWW

it follows the Dexter Hypertext Reference Model (cf. [HS P@hd could be seen as an updated
formally algebraic version of it. Additionally, three diffent levels of hyperdocuments, namely
hypermedia documents, frameset documents, and sitestavduoed — although the specifica-
tion of the latter two is still essentially incomplete andha be completed in future work.

The hypertext model (ck 2) was developed as a product model with the aim to support the
design of the product “hyperdocument” automatically. leidended to a model of hypertext-
systems (cf.§3) in order to describe the state transitions of the desrgegss. The whole
specification is in the appendix and a prototypical impletagon in ML will be found under
http://www.ags.uni-sb.de/ cp/ml/come.html

In this paper we have algebraically specified the inforrmatentered model and the in-
terfaces to the screen-based model. Before we can starbtimalization of the screen-based
model, we need to study the numerous existing, non-forea)igcreen-based approaches. Up to
now the favorite idea is to use PDF as a reference model. Tippingbetween the formalized
information-centered model and the formalized screemdbasodel will then provide an abstract
kind of reference user agent (browser), cf. Fig. 1 on page 3.

13Note that we do not consider Z to be a formal algebraic spatidic language.

25

A The Algebraic Specification

A.1 Basic Specifications

The specifications for BOOL (for the Boolean functions), NEHAR, STRING, TREE, LIST,
LISTPAIR, SET, MAPSET, and FUNCTION are assumed to be gitemnwe will present some
of their signatures below.

The maximum operatomax(n,n’) must be defined in the module ‘NAT'. The standard
boolean functions_proper_prefix(l, (") and the functionsepeat(n, z) (which returns a list con-
tainingz n-times), andnap(f, /) must be defined in the module ‘LIST".

The following parameter specification provides only ongylgrsort. Note, however, that for
any specification we tacitly assume the inclusion of the ftBOOL and the existence of an
equality and an inequality predicate which exclude eackradind are total on objects described
by constructor ground terms (data objects).

ENTRY
sorts entry

Since SET is so fundamental, we present its signature here.

SET = ENTRYand NAT then
sorts set = set(entry)
funs

‘{}"is the empty set.
{}. —set

‘null’ test whether a set is empty.

null. set — bool

Is first argument contained in the second argument?

_€ _. entry X set — bool

" returns the cardinality (i.e. the number of elements) oéta s

|_|. set — nat

‘insert’ inserts its first argument as an element into itosecargument.

insert. entry x set — set

26

‘dl’ deletes its first argument as an element from its secogdraent.

dl. entry x set — set

‘_U ' returns the union of its arguments.

_U _. set X set — set

‘_N _returns the intersection of its arguments.

MN. set X set — set

‘exists’ tests whether its second argument contains anezlesatisfying its first ar-
gument.

exists. (entry — bool) x set — bool

MAPSET will be use to map sets to sets. Note that it cannot bertagh SET because it needs
two sort parameters (one for the domain and one for the rahtie anapping function) instead

of one.

MAPSET = SET[entry-entryl]land SET[entry—entry2]then
funs

‘map_set’ replaces all elements of its second argument by th&iesaunder its first
argument.

map_set. (entryl — entry2) x set(entryl) — set(entry2)

LISTPAIR provides operations on pairs of lists and is simitathe Standard ML Basis Library

module of the same name, but we need the following non-stdrfdaction:

LISTPAIR = LIST[entry—entryD1]and
LIST[entry—entryD2]and
LIST[entry—entryR]then

funs

‘map_default’ maps two input lists (fourth and fifth argument)ara new list by ap-
plying a binary function (third argument). In case one ofitiput lists is shorter than
the other, default values (first and second argument) areraggl to the shorter list.

map_default. entryD1x
entryD2x
(entryD1 x entryD2 — entryR) x
list(entryD1) x
list(entryD2)
— list(entryR)

Since FUNCTION is non-standard, we present its signature. he

FUNCTION = SET[entry~domain]and SET[entry—range]then

sorts function = function(domain, range)
funs

empty function is the function with empty domain.

empty_function. — function

‘upd’ returns its third argument but with its second arguir@ing the new value of

its first argument. UPDate.

upd. domain x range x function — function

‘apply’ applies its first argument to its second argumentianohdefined if the seconc
argument is not in the domain of the first argument.

)

apply. function x domain — range

‘rem’ returns its second argument but now undefined for it &rgument. REMove

from domain.

rem. domain X function — function

DOMain of a function.

dom. function — set(domain)

RANge of a function.

ran. function — set(range)

‘rev_apply’ applies the reverse relation of first argument to thglston set containing

its second argument. REVerse-APPLY.

rev_apply. function x range — set(domain)

‘union’ unites its first argument with its second argumensuth a way that first
argument wins in case of conflicts.

union. function X function — function

‘map_range’ replaces the range elements of its second argumémnttivair values
under its first argument.

map_range. (range — range) X function — function

27

28
A.2 Parameter Specifications

The specifications for URI, HMOADDR, FSD ADDR, SITE ADDR, ANCHOR.ID, as well as
for HMD _SYMBOLS, FSDSYMBOLS, SITESYMBOLS and ATTHMD, ATT _FSD, ATT_SITE
are left open and are subject of future work.

DOCUMENT_P below is merely a parameter specification. Intuitively yauld expect a rudi-
mentary structure here characterizing the genre “documéiar the first level, thpages this
structure is obvious, for the second level,ftaemes it seems to be very similar. For the third
level, thesites it is far from clear, however, whether this modeling is adiju adequate. We
therefore have chosen a parameter specification to endticeesu flexibility.

DOCUMENT_P = ENTRY[entry—documentjand
ENTRY[entry—location]then
sorts document

location
funs

embed_link_ok?(l, b) tests whether an embed link can be positioned at location
document.

embed_link_ok?. location x document — bool

The following parameter specification provides us with d 'saldr’ of addresses for local storage
of hyperdocuments.

ADDR_P = ENTRY|[entry—addr]

A.3 Anchors

ANCHOR[location] = DOCUMENTP[document,locatiordnd ATT _ANCHORthen

vissorts
anchor_type

anchor = anchor(location)
constructs

Source, Target, Label : anchor_type

Mkanchor. location x anchor_type x att_anchor — anchor
defuns

— — — Observer Functions — ——
get_location. anchor — location
get_type. anchor — anchor_type
get_att. anchor — att_anchor
suptype. anchor X anchor — anchor_type
— — — Editing Functions — ——
ch_location. location x anchor — anchor
ch_type. anchor_type x anchor — anchor
add_attribute. att_anchor x anchor — anchor
del_attribute. att_anchor x anchor — anchor
vars o,0'. location
t,t'. anchor_type
att, att’. att_anchor
¢, c . anchor
axioms
— — — Observer Functions — ——
get_location(Mkanchor(o, t, att)) = o
get_type(Mkanchor(o, ¢, att)) =t
get_att(Mkanchor(o, t, att)) = att

29

suptype(c,)

source and as target, while ‘Source’ and ‘Target’ are incaraiple.

Returns the supremal type according ¥a:' * < Label’ because ‘Label’ can serve both Fs

suptype(Mkanchor (o, Label, att),) = Label
suptype(c, Mkanchor (o', Label, att’)) = Label
suptype(Mkanchor(o, ¢, att), Mkanchor (o', t', att’)) = Label <= t#t/
suptype(Mkanchor(o, ¢, att), Mkanchor (o', t', att')) = t — t=t'

— — — Editing Functions — ——

ch_location(o’, Mkanchor(o, t, att)) = Mkanchor(o', ¢, att)

ch_type(t', Mkanchor(o, t, att)) = Mkanchor (o, t', att)

add_attribute(att’, Mkanchor(o, t, att)) = Mkanchor(o, t, concat(att’, att))
del_attribute(att’, Mkanchor(o, t, att)) = Mkanchor(o, t, remove(att’, att))

30

A.4 Links

LINK = ANCHOR_ID and URI and ATT_LINK and
MAPSET[entryl-specifier, entry2-specifier]then

vissorts

link _type

show

actuate

specifier

link

constructs

Links of show-type ‘Embed’ embed their target into the cahtd their source. Links
of show-type ‘Replace’ replace the hyperdocument of thairse with the hyperdoc-
ument of their target. Finally, links of show-type ‘Nemindow’ open a new window
with the document of their target.

Embed, Replace, New_window : show

Links of actuate-type ‘User’ are followed upon user intéi@at Links of actuate-type
‘Auto’ are followed automatically.

User, Auto : actuate

Links may be uni-directional Uni(x,x)’) or bi-directional (‘Bi’). Since bi-
directional links are always of show-type ‘Replace’ and cfuate-type ‘User’, no
arguments are given to ‘Bi.

Uni. show x actuate — link_type
Bi : link_type

A specifier consists of a global address of sort ‘uri’ and alaame of sort ‘an-
chorid’ that is to be mapped to an anchor by the hyperdocumentruheéeglobal
address.

Mkspecifier. uri x anchor_id — specifier
Mklink. set(specifier) set(specifierx link_type x att_link — link

defuns
— — — Observer Functions — ——
get_uri. specifier — uri
get_id. specifier — anchor_id
get_source. link — set(specifier)
get_target. link — set(specifier)
get_specifier. link — set(specifier)
get_type. link — link_type
get_att. link — att_link
— — — Editing Functions for Specifier — ——
ch_uri. uri x specifier — specifier
ch_id. anchor_id x specifier — specifier
replace_uri_sp. uri x uri x specifier — specifier
— — — Editing Functions for Link — ——
insert_source. set(specifierx link — link
delete_source. set(specifierk link — link
insert_target. set(specifierx link — link
delete_target. set(specifierx link — link
ch_type. link_type x link — link
add_attribute. att_link x link — link
del_attribute. att_link x link — link
replace_uri_li. uri x uri x link — link
vars S,5', 5" 5. set(specifier)

s, s'. specifier

[,I'. link

L. set(link)

t,t'. link_type

n,n’. anchor_d

att, att’. att_link

a,a’,a”. uri

31

32

axioms
— — — Observer Functions — ——
get_uri(Mkspecifier(a,n)) = a
get_id(Mkspecifier(a,n)) = n
get_source(Mklink(S, S, t, att)) = S
get_target(MKklink(S, S’ t, att)) = S’
get_specifier(Mklink(S, 5, ¢, att)) = S U S’
get_type(Mklink (S, S’ t, att)) =t
get_att(Mklink(S, 5, t, att)) = att
— — — Editing Functions for Specifier — ——
ch_uri(a’, Mkspecifier(a, n)) = Mkspecifier(a’, n)
ch_id(n’, Mkspecifier(a, n)) = Mkspecifier(a, n’)
replace_uri_sp(a’, a”, Mkspecifier(a, n)) = Mkspecifier(a”,n) <= da'=a
replace_uri_sp(a’, a”, Mkspecifier(a, n)) = Mkspecifier(a,n) <= d'#a
— — — Editing Functions for Link — ——
insert_source(s, Mklink(S, S’, ¢, att)) = Mklink(insert(s, S), S, t, att)
delete_source(s, Mklink(S, ", ¢, att)) = Mklink(dl(s, S), S’, t, att)
insert_target (s, Mklink(S, S, ¢, att)) = Mklink(S, insert(s, S"), t, att)
delete_target(s, Mklink (S, S’, t, att)) = Mklink(S, dl(s, S"), t, att)
ch_type(t', Mklink(S, S’, t, att)) = Mklink(S, S’, ¢, att)
add_attribute(att’, Mklink (S, S’, ¢, att)) = Mklink(S, S’, t, concat(att’, att))
del_attribute(att’, Mklink(S, ', t, att)) = Mklink(S, S’, t, remove(att’, att))

replace_uri li(a’, a,l) =’

Replaces any reference to the URin the specifiers of the linkwith the URIa.
Note that we can use ‘replaagi_sp’ as a binary function in the definition because we consjider
all functions to be curried and argument tupling just to betagtic sugar.

Finally, note that ‘mapset’ is from MAPSET[entryd-specifier, entry2-specifier].

replace_uri_li(a’, a, Mklink(S, S’, ¢, att)

) =
Mklink (map_set(replace_uri_sp(a’, a), S), map_set(replace_uri_sp(a’, a), '), t, att)

A.5 Hyperdocuments

HD[document,location,addr] = DOCUMENP[document,locatiordnd
ADDR _P[addr]and
ANCHOR[location]and
LINK and
ATT_HD and
FUNCTION[domain—anchorid, range—~anchor]and
SET[entry—link]

then
vissorts
hd = hd(document, location, addr)
constructs
Mkhd. document x function(ancharid,anchor)x set(link) x att_hd x addr — hd
defuns
— — — Observer Functions — ——
|-||. hd — document
get_anchors. hd — function(ancharid,anchor)
get_link. hd — set(link)
get_att. hd — att_hd
get_addr. hd — addr
get_anchor. anchor_id x function(anchaid,anchor)— anchor
get_anchor_id. anchor x function(anchornd,anchor)— set(anchaid)
— — — Editing Functions — ——
add_anchor. anchor_id x anchor x hd — hd
del_anchor. anchor_id x hd — hd
add_link. link x hd — hd
del_link. link x hd — hd
add_attribute. att_hd x hd — hd
del_attribute. att_hd x hd — hd
ch_addr. addr x hd — hd
— — — Converter Functions — ——
embed. addr — uri
vars d,d'. document
L, L. set(link)
[. link
act. actuate
sp, sp. specifier
A, A'. function(ancharid,anchor)
¢, c . anchor
a,a’,a”. addr
att, att’. att_hd
n. anchor_id

33

34

axioms
— — — Observer Functions — ——
|IMkhd(d, A, L, att,a)| = d
get_anchors(Mkhd(d, A, L, att,a)) = A
get_link(Mkhd(d, A, L, att,a)) = L
get_att(Mkhd(d, A, L, att,a)) = att
get_addr(Mkhd(d, A, L, att,a)) = a

get_anchor(n, A)
Returns the anchor referred to by the nami®y calling the function ‘apply’ from FUNCTION

get_anchor(n, A) = apply (A4, n)

get_anchor_id(c, A)

Returns the set of all names referring to the anehloy calling the function ‘revapply’ from
FUNCTION.

get_anchor_id(c, A) = rev_apply (A4, ¢)

--- Editing Functions ---

add_anchor(n,c,h) = I/

h’ is the hyperdocument after the anchowith namen has been added to the anchors of
hyperdocument, provided that an anchor with this name does not exist before. If an
anchor with name: does exist in h at the same location as anchdnen?’ is updated to an
anchor with supremal type and attributes. Note that we ys@ fuom FUNCTION and write
long argument lists vertically instead of horizontally.

add_anchor(n, ¢, Mkhd(d, A, L, att, a)) = Mkhd(d, upd(n, ¢, A), L, att, a)
<= (n € dom(A)) = false
add_anchor(n, ¢, Mkhd(d, A, L, att,a)) =

Mkhd(d,
upd(n
Mkanchor(get_location(c),
suptype(c, ¢'),
concat(get_att(c), get_att(c))),
4),
L,
att,
a)

<= (n € dom(A)) = true A get_anchor(n, A) = ¢ A get_location(c) = get_location(c)

del_anchor(n, h) = R/

D
T

h' is the hyperdocument after the anchor with the nantes been removed from the hypg
documenth.

35

del_anchor(n, Mkhd(d, A, L, att,a)) = Mkhd(d, rem(n, A), L, att, a)

add_link({, h) = A’

h’ is the hyperdocument after the linkas been added to the set of linkshin

A link of the type ‘Uni(Replace,)’ or * Uni(New_window, x)’ may be added when its sourge

contains a specifiesp that refers to an anchar in the the given hyperdocument of tyy
‘Source’ or ‘Label’. This is expressed in the first four rules

For a link of the typeUni(Embed, User)’ we additionally require that this anchemust point
to a location that may carry an embed link. This is expresseda next two rules. Note tha
‘embedlink_ok?’ comes from DOCUMENTP.

For a link of the type Uni(Embed, Auto)’ we additionally require that the link has exactly

one target. This is expressed in the next two rules.
Finally, a link of the type ‘Bi’ may be added when its sourc@t@ins a specifiesp that refers
to an anchor in the the given hyperdocument of type ‘Label’.

add_link(I, Mkhd(d, A, L, att, a)) = Mkhd(d, A, insert(l, L), att, a)
<= get_type(l)=Uni(Replace, act) A sp € get_source(l) A
get_uri(sp)=embed(a) A get_anchor(get_id(sp), A)=c A get_type(c)=Source
add_link(l, Mkhd(d, A, L, att,a)) = Mkhd(d, A, insert(l, L), att, a)
< get_type(l)=Uni(Replace, act) A sp € get_source(l) A
get_uri(sp)=embed(a) A get_anchor(get_id(sp), A)=c A get_type(c)=Label
add_ link(l, Mkhd(d, A, L, att,a)) = Mkhd(d, A, insert(l, L), att, a)
<= get_type(l/)=Uni(New_window, act) A sp € get_source(l) A
get_uri(sp)=embed(a) A get_anchor(get_id(sp), A)=c A get_type(c)=Source
add_link(l, Mkhd(d, A, L, att,a)) = Mkhd(d, A, insert(l, L), att, a)
< get_type(l)=Uni(New_window, act) A sp € get_source(l) A
get_uri(sp)=embed(a) A get_anchor(get_id(sp), A)=c A get_type(c)=Label
add link(l, Mkhd(d, A, L, att,a)) = Mkhd(d, A, insert(l, L), att, a)
<= get_type(l)=Uni(Embed, User) A sp € get_source(l) A
get_uri(sp)=embed(a) A get_anchor(get_id(sp), A)=c A get_type(c)=Source A
embed_link_ok?(get_location(c), d)
add_ link(l, Mkhd(d, A, L, att,a)) = Mkhd(d, A, insert(l, L), att, a)
< get_type(l)=Uni(Embed, User) A sp € get_source(l) A
get_uri(sp)=embed(a) A get_anchor(get_id(sp), A)=c A get_type(c)=Label A
embed_link_ok?(get_location(c), d)
add_link (I, Mkhd(d, A, L, att, a)) = Mkhd(d, A, insert(l, L), att, a)
< get_type(l)=Uni(Embed, Auto) A sp € get_source(l) A
get_uri(sp)=embed(a) A get_anchor(get_id(sp), A)=c A get_type(c)=Source A
embed _link_ok?(get_location(c),d) A |get_target(l)|=1
add_link(l, Mkhd(d, A, L, att,a)) = Mkhd(d, A, insert(l, L), att, a)
< get_type(l)=Uni(Embed, Auto) A sp € get_source(l) A
get_uri(sp)=embed(a) A get_anchor(get_id(sp), A)=c A get_type(c)=Label A
embed_link_ok?(get_location(c), d) A |get_target(l)|=1
add_link({, Mkhd(d, A, L, att,a)) = Mkhd(d, A, insert(l, L), att, a)
< get_type(l)=Bi A sp € get_source(l) A
get_uri(sp)=embed(a) A get_anchor(get_id(sp), A)=c A get_type(c)=Label

he

36

del link(l, h) = 1/

L’ is the hyperdocument after the links removed from the hyperdocument

del_link(l, Mkhd(d, A, L, att, a)) = Mkhd(d, A, (1, L), att, a)

add_attribute(att, h) = b’

h’ is the hyperdocument after the hyperdocunteist enriched with the attributest.

add_attribute(att’, Mkhd(l, A, L, att,a)) = Mkhd(l, A, L, concat(att’, att), a)

del_attribute(att, h) = b’

1’ is the hyperdocument after the attributeés are removed from the hyperdocumeént

del_attribute(att’, Mkhd(l, A, L, att,a)) = Mkhd(l, A, L, remove(att’, att), a)

ch_addr(a’,h) = 1/

1’ is the hyperdocument after the address @ replaced by address.

ch_addr(a’, Mkhd(d, A, L, att,a)) = Mkhd(d, A, L, att,a’)

A.6 Media Objects

MO = URI and ANCHOR.ID and SET[entry—anchorid] then
vissorts

mo = mo(uri, anchor_id)
constructs

Our interface to media-objects is quite simple because w@atrinterested in mod-

resource identifier of sort ‘uri’ and a set of anchor ident#fito which links may refer.
Thus, a media-object basically introduces a legal set afiBpes referring to it.

Mkmo. uri x set(anchaid) — mo

eling their internal behavior. The only thing we requirehattthey have some unified

37

38

A.7 Hypermedia Document Level
A.7.1 Page

PAGE.SYMBOLS = STRINGthen
vissorts
page_symbols

PAGE = MOand PAGE SYMBOLS and ATT_PAGEand
TREE[entry—pagestruct]and
LIST[entry—page]and
LISTPAIR[entryD1—nat, entryD2-nat, entryR-nat] then

vissorts

page

page_struct

page_location = list(nat)
constructs

Basic, Symbol, Emptypage, Page_list, Table, Tableline, Headline, Minipage, Text,

Br, Footnote, Paragraph, Copyright : page_struct

[] : page

[-]. mo — page

" ", page_symbols — page

Mkpage. page_struct x list(page)x att_page — page
defuns

— — — Observer Functions — ——

atomic?. page — bool

has_pnth?. nat x list(page)— bool

has_location?. page_location x page — bool

embed_link_page_ok?. page_location x page — bool

get_struct. page — tree(pagestruct)

get_pages. page — list(page)

get_att. page — att_page

pnth. nat x list(page)— page

locate. page_location x page — page

page_dimension. page — list(nat)

page_list_dimension. list(page)— list(nat)

— — — Editing Functions — ——

ch_struct. page_struct x page — page

mklist. nat — page

mktable. nat x nat — page

mktableline. nat — page

place_at. page x page_location x page — page

place_at_help. page x nat x page_location x list(page)x page — list(page)

insert_at. page x page_location x page — page

add_attribute. att_page x page — page

del_attribute. att_page X page — page

39

vars . mo
symb page _symbols

117

b, p p",p". page
s, s'. page_struct

P. list(page)

n. nat

0. page_location
att, att’. att_page

axioms

— — — Observer Functions — ——
atomic?([]) = true

atomic?([h]) = true
atomic?(”symb”) = true
atomic?(Mkpage(s, P, att)) = false

has_location?(o, p)

therefore it exists in every pagkas_pnth?(o, P) is an auxiliary function for it.

Tests whether location occurs in page. The empty locatiori means the whole page aTd

has_pnth?(s(0), []) = false
has_pnth?(s(0), p :: P) = true
has_pnth?(s(s(n)),p :: P)= has_pnth?(s(n), P)

(n

has_location?({], p) = true

has_location?(s(

<= atomic?(p) = true

has_location?(s(n) :: o, p) = false

<= atomic?(p) = false A p = Mkpage(s, P, att) A has_pnth?(s(n), P) = false
has_location?(s(n) :: 0,p) = has_ locat10n7(o pnth(s(n), P))

<= atomic?(p) = alse A p = Mkpage(s, P, att) A has_pnth?(s(n), P) = true

embed _link_page_ok? (o, p)

M. If location o does not exist in pageit returns ‘false’.

Returns ‘true’ if the locatiom exists in page and the document locatedais an empty pagT

embed_link_page_ok?(o,p) = false <= has_location?(o, p)=false
embed_link_page_ok?(o,p) = true <= has_location?(o, p)=true A locate(o, p)=[]

40

get_struct(p)

Returns the tree of structures in pageNotice that it uses the function ‘map’ from LIST th
runs the function in its first argument over the list in its@et argument.

get_struct([]) = Mktree(Emptypage, [])
get_struct([[A]) = Mktree(Basic, [])
get_struct(”symd”) = Mktree(Symbol, [])
get_struct(Mkpage(s, P, att)) = Mktree(s, map(get_struct, P))

get_pages(p) = P

P are the top level elements of page

get_att(Mkpage(s, P, att)) = P

get_att(p) = att

att are the top level attributes of page

get_att(Mkpage(s, P, att)) = att

pnth(s(n), P)

Computes themelement of the list P, but starts with 1 (instead of 0).

pnth(s(n), P) = nth(n, P)

/

locate(o,p) = p

p’ is the the page located at positioim pagep.

locate([],p) = p
locate(s(n) :: 0, Mkpage(s, P, att)) = locate(o, pnth(s(n), P))

41

page_dimension(p)

Returns the list of natural numbers of the sizes of the pagectbin all its dimensions. E.g.
a two dimensional table with: lines and a maximum at columns in one of these lines h
a dimension of m, n). This means that the smallest two dimensional cube aroumitl have

hight m and breadt. A three dimensional table with dimensiom, n, p) will fill a cube

of depthp. If the objects are not atomic, the element-wise maximunmséflimensions will
be appended at the end of the dimension list of the table. 1Ginepeaking, a page obje
represented as an Mkpage-node tree of déthas the dimensiofn, ..., n,) wheren;, is the
maximum number of children of a node at deptiNote that it uses the function ‘magefault’

from LISTPAIR on page 26.

page_dimension(p) = ||
<= atomic?(p) = true
page_dimension(p) = length(P) :: page_list_dimension(P)
<= atomic?(p) = false A p = Mkpage(s, P, att)
page_list_dimension([]) =]
page_list_dimension(p :: P) =
map_default(0, 0, max, page_dimension(p), page_list_dimension(P))

--- Editing Functions ---

ch_struct(s’,p) = p/

s’

p’ is the page containing the same documents and attribujeaswith a different structurT

ch_struct(s’, Mkpage(s, P, att)) = Mkpage(s’, P, att)

mklist(n) = p

pis a list withn items, containing an empty pagdfein every item.

mklist(n) = Mkpage(Page_list, repeat(n, []), [| att)

mktable(m,n) = p

pis am x n-table, containing an empty padkin every cell.mktableline(n) is an auxiliary
function for it.

mktable(m, n) = Mkpage(Table, repeat(m, mktableline(n)), [ast)
mktableline(n) = Mkpage(Tableline, repeat(n, []), | att)

42

place_at(p’, 0,p) = p”

If the locationo occurs in the pagg, thenp” is the page» with its part at locatior replaced
with the pagey’.

If o does not exist i because a nodein p has not enough children, theris first extended
with sufficiently many child nodes far. The type of these child nodes may depend on|the
parent node. E.g., if the parent node is a table then the child nodes wilbttype table-line
If no special knowledge is given, the child nodes will be dynpf type empty page (‘[1).
The default child node is the last argument of a helper fonctplaceat help’ that is very
similar to ‘placeat’ but works on children lists instead of single nodes.

/

place_at(p',], p) = p
place_at(p’, n :: o, Mkpage(s, P, att))
= Mkpage(s, place_at_help(p’, n, o, P, mktableline(0)), att)
<= s = Table
place_at(p’, n :: o, Mkpage(s, P, att))
= Mkpage(s, place_at_help(p’, n, 0, P, []), att)
<= s # Table

place_at_help(p’,s(0),0,p :: P,p") = place_at(p’,0,p) :: P
place_at_help(p’, s(s(n)), o p : P,p") = p :: place_at_help(p’,s(n), 0, P, p")
place_at_help(p’, s(0), 0, [], p") = place_at(p’, 0,p") :: []
place_at_help(p/, s(s(n)), o, [], ") = p” :: place_at_help(p/, s(n), o,], p")

/!

insert_at(p’,0,p) = p

p” is the page aftep’ has been inserted at locatioiif o exists inp.

insert_at(p’, 0, p) = place_at(p’, 0,p) <= has_location?(o,p) = true

add_attribute(att, p) = p

7' is the page aftep is enriched with the attributest.

add_attribute(att’, Mkpage(s, P, att)) = Mkpage(s, P, concat(att’, att))

del_attribute(att, p) = p’

p’ is the page after the attribute& are removed fromp.

del_attribute(att’, Mkpage(s, P, att)) = Mkpage(s, P, remove(att’, att))

A.7.2 HyperMedia Document

HMD _ADDR = STRINGthen
vissorts
hmd_addr

HMD = PAGEand HMD ADDR and
HD[document-PAGE.page,
location—PAGE.pagdocation,
embedlink_ok?—PAGE.embedink_pageok?,
addr—HMD ADDR.hmdaddr] and
MAPSET][entryl-anchor, entry2-PAGE.pagdocation]and
MAPSET[entryl-link, entry2—link]

then
vissorts
hmd = hd(PAGE.page, PAGE.page_location, HMD_ADDR.hmd _addr)
defuns
— — — Editing Functions — ——
place_at. hmd x page_location x hmd x hmd_addr — hmd
insert_at. hmd x page_location x hmd x hmd_addr — hmd
combine_link. hmd_addr x hmd_addr x hmd_addr x set(link) x set(link) — set(link)
sinkloc. page_location x anchor — anchor
vars m,n. nat
p,P'. page
h,h',h"”. hmd
0,0 . page_location
A, A'. function(ancharid,anchor)
L, L. set(link)
a,a’,a”. hmd_addr
t. anchor_type
att. att_anchor

43

44

axioms

--- Editing Functions ---

place_at(h,o,h';a") = h"

Replaces the part of hyperdocumeéhat locationo with hyperdocument, resulting in a new
hyperdocument” under address’. This is only possible when the names of the anchots
andh’ are disjoint and wheh’ does not have any anchors in the part replaced kith

sinkloc(o, ¢) is an auxiliary function that appendgo the front of the location of the anchar

definition of ‘placeat’ because we consider all functions to be curried and aegaitupling
just to be syntactic sugar.

The functions ‘mapange’ and ‘union’ are from FUNCTION[domairanchorid,
range—anchor] from HD. Note that the application of ‘magange’ is unproblematic here b
cause the domains of and A’ are required to be disjoint.

‘combinelink’ is an auxiliary function that changes all referencéddiks to » andh’ to re-
fertoh”. It is defined via ‘mapset’ from MAPSET[entryt-link, entry2—link]. Moreover,
‘replaceuri_li’ from LINK is called (like ‘sinkloc’) with one argument Ies than defined, ir
order to yield a function of typdink — link’.

Finally, note that in the condition of the definition of ‘pmat the ‘mapset’ is
from MAPSET[entryl-anchor, entry2-PAGE.pagdocation] and the ‘exists’ is fromn
SET[entry—~PAGE.pagdocation], which again is part of MAPSET[entnAanchor,
entry2—PAGE.pagdocation].

in

i.e. it letsc sink below the locatiom. Note that we can use ‘sinkloc’ as a unary function in the

D
]

I

place_at(Mkhd(p, A, L, att, a), 0, Mkhd(p', A’, L', att’,; d’),a") =
Mkhd(place_at(p, o, p'),
union(map_range(sinkloc(o), A), A"),
combine_link(a,a’,a”, L, L),
concat(att, att’),
a//)
< dom(A) Ndom(A")={} A
exists(is_proper_prefix(0), map_set(get_location, ran(A)))=false

sinkloc(o, Mkanchor (o', t, att)) = Mkanchor(o@d', t, att)

combine_link(a,a’,a”, L, L") =
map_set(replace_uri_li(embed(a’), embed(a”)),
map_set(replace_uri_li(embed(a), embed(a”)),
LulrL))

insert_at(h,o,h',a”) = h”

h" is the hypermedia-document with addre$safter h has been inserted at locatierinto
hypermedia-documerit, provided thab exists inh.

insert_at(h, o, h',a") = place_at(h, o, h',a") <= has location?(o, ||h/|) = true

45

A.8 Frameset Document Level

The following specifications are essentially incomplete bave to be completed in the future!!!

A.8.1 Chapter

CHAPTERSYMBOLS =
vissorts
chapter_symbols

CHAPTER = HMDand CHAPTERSYMBOLSand ATT_CHAPTERand
TREE[entry—chapterstruct]and
LIST[entry—chapterjand
LIST[entry—nat] then
vissorts
chapter
chapter_struct

fsd_location = list(nat)
constructs

Horiz_frameset, Vert_frameset, Alt_frameset : fsd_struct

A.8.2 FrameSet Document

FSD ADDR = STRINGthen
vissorts
fsd_addr

FSD = CHAPTERand FSD.ADDR and
HD[documem—CHAPTER.chapter,
location—~CHAPTER.chaptefocation,
embedlink_ok?2—CHAPTER.includelink _chapterok?,
addr—FSD_ADDR.fsd addr]

then
vissorts
fsd = hd(CHAPTER.chapter, CHAPTER.chapter_location, FSD_ADDR.fsd_addr)

46

A.9 Site Level

The following specifications are essentially incomplete aave to be completed in the future!!!

A.9.1 Book

BOOK_SYMBOLS =
vissorts
book_symbols

BOOK = FSDand BOOK_SYMBOLS and ATT _BOOK and
TREE[entry—book struct]and
LIST[entry—book] and
LIST[entry—nat]then
vissorts
book
book_struct

book_location = list(nat)
constructs

sitemap : book_struct

A.9.2 Site

SITE.ADDR = STRINGthen
vissorts
site_addr

SITE = BOOKand SITE.ADDR and
HD[document-BOOK.book,
location—BOOK.booklocation,
embedlink_ok?—BOOK.includelink _book ok?,
addr—SITE_ ADDR:.site addr]

then
vissorts
site = hd(BOOK.book, BOOK.book_location, SITE_ADDR.site_addr)

a7

References

[BCM 96] T.Bienz, R. Cohn, J. Meehan (1998brtable Document Format Reference Manual.
Version 1.2, Adobe Systems Incorporatedittp://partners.adobe.com/
supportservice/devrelations/PDFS/TN/PDFSPEC.PDF (May 14,
1999)

[BFI 98] T. Berners-Lee, R. Fielding, U.C. Irvine, L. Masent(1998).Uniform Resource
Indentifiers (URI): Generic SyntaRFC 2396.

[BH 92] Paul de Bra, Geert-Jan Houben (199%i). Extensible Data Model for Hyperdocu-
mentsProc. ACM Conf. on Hypertext'92, pp. 222—-231http://wwwis.win.
tue.nl/ ~debra/echte92/final.ps (March 29, 1999).

[BHW 99] Paul de Bra, Geert-Jan Houben, H. Wu (199HAM: A Dexter-based Reference
Model for Adaptive Hypermedi&roc. ACM Conf. on Hypertext '99, pp. 147-156.

[Bus 45] Vannevar Bush (1945As we may think.The Atlantic 176(1) pp.101-108.
http://lwww.theatlantic.com/unbound/flashbks/compute r/
bushf.htm (March 30, 1999).

[Dob 96] E.-E. Doberkat (1996 A Language for Specifying Hyperdocumer8sftware —
Concepts and Tools7, pp. 163—-173, Springer.

[Eng 83] Douglas C. Engelbart (198#uthorship Provisions in AUGMENTOMPCON '84
Digest: Proceedings of the COMPCON Conference, San Francp. 465-472.
http://www.bootstrap.org/oad-2250.htm (Nov. 6 1999).

[GQV 98] R. Guetari, V. Quint, I. Vatton (1998Amaya: an Authoring Tool for the WeklC-
SEAI'98 International Conference.http://www.inrialpes.fr/opera/
people/Ramzi.Guetari/Papers/Amaya.html (May 17, 1999).

[GT 94] K. Grgnbaek, R. H. Trigg (1994pesign Issues for a Dexter-Based Hypermedia
SystemComm. ACM37(2), pp. 40-49, ACM Press.

[HBR 94] Lynda Hardman, Dick C.A. Bulterman, Guido van Rass{1994).The Amsterdam
Hypermedia ModelComm. ACM37(2), pp. 50-62, ACM Press.

[HS 90] F. Halasz, F. Schwartz (1990he Dexter Hypertext Reference Mod#&iloc. Hyper-
text Standardization Workshop, National Institute of Tealogy (NIST), pp. 95—
133.

[ISB95] T. Isakowitz, E. A. Stohr, P. Balasubramanian (10¥aVIM: A Methodology for
Structured Hypermedia Desiggomm. ACM38(8), pp. 34—44, ACM Press.

[KW 96] Ulrich Kuhler, Claus-Peter Wirth (1996Fonditional Equational Specifications of
Data Types with Partial Operations for Inductive Theorenowng. SEKI-Report
SR-96-11, FB Informatik, Univ. Kaiserslautern. Short i@rsn: 8r"RTA 1997,
LNCS 1232, pp.38-52, Springerhttp://www.ags.uni-sb.de/ ~cplp/
rta97 (Oct.13 1999)

48

[LH 99] David Lowe, Wendy Hall (1999Hypermedia & the Web. An engineering approach.
Wiley.

[LP 92] Mihaly Lenart, Ana Pasztor (199K nowledge Based Specifications of the Design
Process Using Many-Sorted Logidlam Quarterlyl(4). http://www.ulam.
usm.edu/VIEW1.4/pasztor.ps (May 17,1999).

[LW 94] Rudiger Lunde, Claus-Peter Wirth (1994)\SF" — eine ASFRahnliche Spezi-
fikationssprache. SEKI-Working-Paper SWP-94-05 (SFB), FB Informatik,
Univ. Kaiserslautern. http://www.ags.uni-sb.de/ ~ cp/p/swp9405
(Oct. 13 1999).

[MK95] A. Mester, H. Krumm (1995)Composition and Refinement Mapping based Con-
struction of Distributed AlgorithnProc. Workshop on Tools and Algorithms for the
Construction and Analysis of Systems, Aarhus.

[OE 95] J. van Ossenbruggen, A. Eliens (1998)e Dexter Hypertext Reference Model in
Object-Z.Unpublished Paper, Vrije Universiteit Amsterdanttp://www.cs.
vu.nl/ ~dejavu/papers/dexter-full.ps.gz (May 17, 1999).

[Pad 2000] Peter Padawitz (200@winging Types = Functions + Relations + Transition Sys-
tems.Theoretical Computer S@43 pp. 93-165, Elsevier.

[Qui97] V. Quint (1997). The Languages of ThoilNRIA 1996, Version April 1997.
http://www.eda.bg/docs/packages/amaya/languages.htm I
(May 17,1999).

[Sal 96] F.A. Salustri (1996)A formal theory for knowledge-based product model represen
tation.2nd IFIP WG 5.2 Workshop on Knowledge Intensive CAD, Caradgellon
Univ., pp.59-78, Chapman & Hall.http://salustri.esxf.uwindsor.
ca/ ~fil/Papers/kicll/reprint.ntml (May 17, 1999).

[W3C 98a] W3C (1998).HTML 4.0 Specification.W3C Recommendation, revised on
24-Apr-1998. http://www.w3.0rg/TR/1998/REC-html40-19980424
(May 17,1999).

[W3C 98b] W3C (1998). Document Object Model (DOM) Level 1 Specification.
W3C Recommendation 1 October, 1998.http://www.w3.0rg/TR/
REC-DOM-Level-1 (May 17, 1999).

[W3C 98c] W3C (1998)Extensible Markup Language (XML) 1\W.3C Recommendation 10-
February-1998. http://www.w3.0rg/TR/REC-xml (August1, 1999).

[W3C 98d] W3C (1998)XML Linking Language (XLinkMW3C Working Draft 3-March-1998.
http://www.w3.0rg/TR/WD-xlink-19980303 (August1, 1999)

[WD 99] Jorg Westbomke, Gisbert Dittrich (199%in Ansatz zur formalisierten Beschrei-
bung von Hypermediadokumenten in XMReport 708/1999, FB Informatik,
Univ. Dortmund. http://Irb.cs.uni-dortmund.de/ ~westbomk/
Homepage/Forschbericht HMD-XML.pdf (Oct. 14, 1999).

