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Abstract

We present the only proof of PIERRE FERMAT by descente infinie that is known to exist today.
As the text of its Latin original requires active mathematical interpretation, it is more a proof
sketch than a proper mathematical proof. We discuss descente infinie from the mathematical,
logical, historical, linguistic, and refined logic-historical points of view. We provide the
required preliminaries from number theory and develop a self-contained proof in a modern
form, which nevertheless is intended to follow FERMAT’s ideas closely. We then annotate an
English translation of FERMAT’s original proof with terms from the modern proof. Including
all important facts, we present a concise and self-contained discussion of FERMAT’s proof
sketch, which is easily accessible to laymen in number theory as well as to laymen in the
history of mathematics, and which provides new clarification of the Method of Descente

Infinie to the experts in these fields. Last but not least, this paper fills a gap regarding the easy
accessibility of the subject.
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Résumé

Nous présentons la seule preuve de Pierre Fermat par descente infinie qui est connue au-
jourd’hui. Car le texte de son origine latine exige une interprétation mathématique active,
il est plus un croquis de preuve qu’une preuve mathématique complète. Nous discutons la
descente infinie par les points de vues mathématique, logique, historique, linguistique et par
un point de vue logique-historique raffiné. Nous fournissons les préliminaires nécessaires à
partir de la théorie des nombres et nous développons une preuve en forme moderne, qui se
satisfait à elle-même et qui suit pourtant de près les idées de Fermat. Nous continuons par
annoter une traduction anglaise de la preuve originale de Fermat avec les termes de la preuve
moderne. Y compris tous les faits importants, nous présentons une discussion concise et co-
hérente du croquis de preuve de Fermat, qui est facilement compréhensible pour des profanes
en théorie des nombres ainsi pour des profanes en l’histoire des mathématiques, et qui offre
des explications nouvelles de la méthode de descente infinie aux experts dans ces domaines.
Finalement ce document comble une lacune en ce qui concerne la compréhensibilité du sujet.
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1 Introduction and Motivation

It seems that — for pedagogical as well as political reasons — myth has to surround the truly
paradigmatic figures in the history of science with fictitious association disconnected from the
historical facts. GALILEO GALILEI (1564–1642) is the primary example for this; cf. [FEYER-
ABEND, 1975], [PRAUSE, 1986b]. But also the most famous mathematician PIERRE FERMAT is
a subject of myth. For instance, on the one hand, one has tried to turn FERMAT into a model for
mankind, cf. [STEPHEN, 1960]. On the other hand, FERMAT was accused to be a rogue:

“Actions, however, speak louder than words. The fact that none of the many letters
of FERMAT which survive gives any real indication of his methods surely means that,
consciously or unconsciously, he was very jealous, secretive, and competitive about
his work, as were all of his contemporaries.” [EDWARDS, 1977, § 1.6, p.11]

The myth on FERMAT even continues with his name and his life time, for a funny collection
cf. [GOLDSTEIN, 1995], § 1. The most famous mathematician PIERRE FERMAT was born not
in 1601 as usually claimed, but either in 1607 or in January 1608. The PIERRE FERMAT born in
1601 died before his stepbrother, our most famous PIERRE FERMAT was born. Our FERMAT was
a competent lawyer and devoted judge of the parlement of Toulouse (conseilleur au parlement

de Toulouse), a position which he bought and by which he was admitted the title éculier. Thus,
PIERRE de FERMAT is the address to the noble judge.

The mathematician PIERRE FERMAT only existed in the very rare leisure time of this most busy
judge. What would mathematics be like today if this incredible genius would not have put mathe-
matics behind family, profession, social status, and commerce? For more up-to-date information
on FERMAT’s life we recommend [BARNER, 2001] instead of the better known [MAHONEY,
1994], as the latter provides reliable information only on the mathematics of FERMAT.

All what is important for us here, is that the field of number theory as we know it today, was ba-
sically created by the mathematician PIERRE FERMAT (1607?–1665). He built and improved on
DIOPHANTUS OF ALEXANDRIA (3rd century?), who had looked for rational solutions of a large
number of problems in number theory. In number theory, FERMAT left the classical association
to geometry behind (but was more ingenious than FRANÇOIS VIÈTE (1540–1603)) and insisted
on integer solutions for the problems. FERMAT’s mathematical work on number theory seems to
have taken place during his very rare leisure time in his easy chair, from which he avoided to get
up to fetch paper. Instead, he scribbled his ideas into his copy of DIOPHANTUS’ Arithmetic in the
commented bilingual Greek and Latin edition [DIOPHANTUS, 1621] of Claude Gaspard Bachet
de Méziriac (1581–1638). It is not surprising that these notes — intended for the most skilled
and ingenious problem-solver FERMAT himself to reconstruct his findings — are very short and
hard to understand. In his letters to contemporary mathematicians, however, he used to be just
as short or even shorter. The reason seems to be that FERMAT wanted his correspondents to do
number theory on their own and to find out how much fun it is, cf. [MAHONEY, 1994]. Reporting
piecemeal on his results and his methods, but hiding his theorems in their most general form and
his proofs, he became a most famous but lonely mathematician.
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The Method of Descente Infinie is the standard induction method of the working mathematician
from the ancient Greeks until today. It got lost in the Middle Ages and was reinvented and named
by FERMAT, cf. § 2.

FERMAT’s marginal notes in his copy of DIOPHANTUS’ Arithmetic were published in 1670 only
a few years after his death, and in this paper we will have a look at a text passage of Observa-
tion XLV of these Observations on DIOPHANTUS; cf. [DIOPHANTUS, 1670, Vol. VI, p. 338f.],
[FERMAT, 1891ff., Vol. I, p. 340f.]. This passage contains the only proof of FERMAT by the
Method of Descente Infinie explicitly known today. Already by this fact, Observation XLV is a
most important and precious piece of mathematics. It becomes even more important by the fact
that it paradigmatically exemplifies the Method of Descente Infinie and exhibits this method’s
conceptual aspects and technical problems in a multitude which is truly surprising for such a
short text. All in all, FERMAT’s Observation XLV is the primary example for the Method of
Descente Infinie, historically, conceptually, and pedagogically.

As FERMAT’s original proof is hard to understand, we first have to grasp the mathematical ideas
implicitly expressed in this proof. Note that this cognitive process is similar to the interpretation
of a music passage from its notes in the following sense: If we perceive a gestalt of the passage,
this gestalt will be meaningful, but not necessarily the original one of the author. After projecting
our image onto the original passage, we can then evaluate its adequacy. When we look at a
text of the 17th century today, we are very likely to interpret something into it, however, which
FERMAT’s contemporaries would not have done. Nevertheless, I may hope that this paper is not
infected by more modern number theory simply for the following reason: I did not do number
theory seriously the last twenty years. And I did not use any further material on number theory
beside EUCLID’s Elements, but did everything on my own without getting out of my easy chair.
It took me a couple of days, but it was an incredible lot of fun. This indicates that FERMAT was
right and his contemporaries should not have neglected his challenges; cf. [MAHONEY, 1994].

My mixed motivations for writing this paper were actually the following:

1. There was no concise presentation of the subjects including all important facts and being
easily accessible to laymen in the history of mathematics.

2. Regarding FERMAT’s proof, there was no easily comprehensible self-contained presenta-
tion suited for a student in computer science with a minor knowledge in number theory.
This paper should enable him to carry out a case study with our inductive theorem proving
software system QUODLIBET; cf. [AVENHAUS &AL., 2003], [SCHMIDT-SAMOA, 2006a;
2006b; 2006c], [WIRTH, 2004; 2005; 2010].

3. I wanted to have fun and to construct a naïve interpretation of FERMAT’s proof that has
a good chance to be more in the style of the 17th century than interpretations of modern
experts in number theory.

4. Moreover, with my expertise in logic and automated theorem proving, I had to clarify some
methodological aspects of Descente Infinie and to make some minor contributions to the
interpretation of FERMAT’s proof.
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2 Descente Infinie

2.1 Working Mathematician’s Point of View

In everyday mathematical practice of an advanced theoretical journal the frequent inductive ar-
guments are hardly ever carried out explicitly. Instead, the proof just reads something like “by
structural induction on n, q.e.d.” or “by induction on (x, y) over <, q.e.d.”, expecting that the
mathematically educated reader could easily expand the proof if in doubt. In contrast, very dif-
ficult inductive arguments, sometimes covering several pages, such as the proofs of HILBERT’s
1st ε-theorem, GENTZEN’s Hauptsatz, or confluence theorems such as the ones in [GRAMLICH

& WIRTH, 1996] and [WIRTH, 2009] still require considerable ingenuity and will be carried out!
The experienced mathematician engineers his proof roughly according to the following pattern:

He starts with the conjecture and simplifies it by case analysis. When he realizes
that the current goal becomes similar to an instance of the conjecture, he applies
the instantiated conjecture just like a lemma, but keeps in mind that he has actually
applied an induction hypothesis. Finally, he searches for some well-founded ordering
in which all the instances of the conjecture he has applied as induction hypotheses
are smaller than the original conjecture.

The hard tasks of proof by mathematical induction are

(Hypotheses Task)

to find the numerous induction hypotheses (as, e.g., in the proof of GENTZEN’s Hauptsatz
on Cut-elimination in [GENTZEN, 1935]) and

(Induction-Ordering Task)

to construct an induction ordering for the proof, i.e. a well-founded ordering that satisfies
the ordering constraints of all these induction hypotheses in parallel. (For instance, this
was the hard part in the elimination of the ε-formulas in the proof of the 1st ε-theorem in
[HILBERT & BERNAYS, 1968/70, Vol. II], and in the proof of the consistency of arithmetic
by the ε-substitution method in [ACKERMANN, 1940]).

The soundness of the above method for engineering hard induction proofs is easily seen when the
argument is structured as a proof by contradiction, assuming a counterexample. For FERMAT’s
historic reinvention of the method, it is thus just natural that he developed the method itself
in terms of assumed counterexamples. He called it “descente infinie ou indéfinie”. Here is this
Method of Descente Infinie in modern language, very roughly speaking: A proposition Γ can be
proved by descente infinie as follows:

Show that for each assumed counterexample of Γ there is a smaller counterexample

of Γ w.r.t. a well-founded ordering <, which does not depend on the counterexamples.
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2.2 Logical Point of View

At FERMAT’s time, natural language was still the predominant tool for expressing terms and
equations in mathematical writing, and it was too early for a formal axiomatization. Moreover,
note that an axiomatization captures only validity, but in general does neither induce a method
of proof search nor provide the data structures required to admit both a formal treatment and a
human-oriented proof search. The formalizable logic part, however, of descente infinie can be
expressed in what is called the (second-order) Theorem of NOETHERian Induction (N), after
EMMY NOETHER (1882–1935). This is not to be confused with the Axiom of Structural Induc-

tion, which is generically given for any inductively defined data structure, such as the Axiom (S)
of Structural Induction for the natural numbers inductively defined by the constructors zero 0 and

successor s. Moreover, we need the definition (Wellf(<)) of well-foundedness of a relation <.

(Wellf(<)) ∀Q.
(

∃x. Q(x) ⇒ ∃m.
(

Q(m) ∧ ¬∃w<m. Q(w)
)

)

(N) ∀P.

(

∀x. P (x) ⇐ ∃<.

(

∀v.
(

P (v) ⇐ ∀u<v. P (u)
)

∧ Wellf(<)

) )

(S) ∀P.
(

∀x. P (x) ⇐ P (0) ∧ ∀y.
(

P (s(y)) ⇐ P (y)
)

)

(nat1) ∀x.
(

x = 0 ∨ ∃y. x = s(y)
)

(nat2) ∀x. s(x) 6= 0

(nat3) ∀x, y.
(

s(x) = s(y) ⇒ x = y
)

Let Wellf(s) denote Wellf(λx, y. (s(x) = y)), which implies the well-foundedness of the order-
ing of the natural numbers. The natural numbers can be specified up to isomorphism either by
(S), (nat2), and (nat3), or else by Wellf(s) and (nat1). The first alternative follows RICHARD

DEDEKIND (1831–1916) and is named after GUISEPPE PEANO (1858–1932). The second fol-
lows MARIO PIERI (1860–1913). As the instances for P and < in (N) are often still easy to find
when the instances for P in (S) are not, the second alternative together with (N) is to be preferred
in theorem proving for its usefulness and elegance. Cf. [WIRTH, 2004] for more on this.

The proposition Γ of § 2.1 is represented in (N) by ∀x. P (x). Roughly speaking, a counterexample

for Γ is an instance a for which ¬P (a) holds, but we should be more careful here because this is
actually a semantical notion and not a syntactical one; cf. [WIRTH, 2004], § 2.3.2. To treat coun-
terexamples properly, we need a logic that actually models the mathematical process of proof
search by descente infinie itself and directly supports it with the data structures required for a
formal treatment, and thus requires a semantical treatment of free variables. The only such logic
can be found in [WIRTH, 2004].
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2.3 Historical Point of View

2.3.1 Early Greek History

Although we do not have any original Greek mathematical documents from the 5th century B.C.
and only fragments from the following millennium, the first known occurrence of descente infinie

in history seems to be the proof of the irrationality of the golden number 1
2
(1+

√
5) by the

Pythagorean mathematician HIPPASUS OF METAPONTUM (Italy) in the middle of the 5th century
B.C., cf. [FRITZ, 1945]. This proof is carried out geometrically in a pentagram, where the golden
number gives the proportion of the length of a line to the length of the side of the enclosing
pentagon:

Under the assumption that this proportion is given by m : n with natural numbers m
and n, it can be shown that the proportion of the length of a line of a new pentagram

drawn inside the inscribed pentagon to the length of the side of this pentagon is m−n : 2n−m,
with 0 ≺ m−n ≺ m, and so forth since the new inscribed pentagram is similar to the original
one. A myth says that the gods drowned HIPPASUS in the sea, as a punishment for destroying the
Pythagoreans’ belief that everything is given by positive rational numbers; and this even with the
pentagram, which was the Pythagoreans’ sign of recognition amongst themselves. The resulting
confusion seems to have been one of the reasons for the ancient Greek culture to shift interest in
mathematics from theorems to proofs.

2.3.2 EUCLID’s Elements

Proof by Generalizable Example In the famous collection “Elements” of EUCLID OF ALEXAN-
DRIA (ca. 300 B.C.), we find several occurrences of descente infinie. In the Elements, the verbal-
ization of a proof by descente infinie has the form of a generalizable example in the sense that a
special concrete counterexample is considered — instead of an arbitrary one — but the existence
of a smaller counterexample is actually shown independently of this special choice. Similarly,
the induction step of a structural induction may also be presented in the form of a generalizable
example. Such proofs via a generalizable example are called quasi-general in [FREUDENTHAL,
1953]. We would not accept a quasi-general proof as a proper proof from our students today be-
cause the explicit knowledge and the explicit verbalization of methods of mathematical induction
have become standard during the last centuries. And we may ask why the Elements proceed by
generalizable examples. For this question it is interesting to see that already in a text of PLATO

(427–347 B.C.) (Athens) we find a proof by structural induction with a proper verbalization of
a general induction step without resorting to generalizable examples, cf. [ACERBI, 2000]. As
the theorem of this proof is mathematically trivial (“n+1 terms in a list have n contacts”), the
intention of this proof seems to be the explicit demonstration of the activity of structural induc-
tion itself, though no instance of the Axiom of Structural Induction (S) is explicitly mentioned.
Moreover, the verbalization of a variable number and even the comprehension of a non-concrete
example and a general induction proof seems to have been a challenge for an ancient Greek stu-
dent; cf. [UNGURU, 1991, p. 279ff.]. Thus, the presentation of induction proofs via generalizable
examples in the Elements may well have had pedagogical reasons.
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Let us have a look at two proofs from the Elements.

Proof by Descente Infinie In [EUCLID, ca. 300 B.C., Vol. VII, Proposition 31], we find the
following proof by descente infinie:

Proposition VII.31: Any composite number is measured by some prime number.

Proof of Proposition VII.31: Let A be a composite number. I say that A is measured
by some prime number. Since A is composite, therefore some number B measures
it. Now, if B is prime, then that which was proposed is done. But if it is composite,
some number measures it. Let a number C measure it. Then, since C measures B,
and B measures A, therefore C also measures A. And, if C is prime, then that which
was proposed is done. But if it is composite, some number measures it. Thus, if the
investigation is continued in this way, then some prime number will be found which
measures the number before it, which also measures A. If it is not found, then an
infinite sequence of numbers measures the number A, each of which is less than the
other, which is impossible in numbers. Therefore some prime number will be found
which measures the one before it, which also measures A.

Q.e.d. (Proposition VII.31)

Proof by Structural Induction Taking into account that the ancient Greeks were not familiar
with an actually infinite set of natural numbers, in accordance with [FREUDENTHAL, 1953]
I consider the proof of Proposition IX.8 of the Elements to be obviously a proof by structural
induction, whereas [UNGURU, 1991] rejects this opinion and [ACERBI, 2000] even claims that
there are no proofs by structural induction in EUCLID’s Elements at all. Thus, let us have a look
at this proof to give the reader a chance to judge on his own.

Proposition IX.8: If as many numbers as we please beginning from a unit are in
continued proportion, then the third from the unit is square as are also all those which
successively leave out one, and the fourth is cubic as are also all those which leave
out two, and the seventh is both cubic and square as are also all those which leave out
five.

Proof of Proposition IX.8: Let there be as many numbers as we please, A, B, C, D,
E, and F , beginning from a unit and in continued proportion. I say that B, the third
from the unit, is square as are all those which leave out one; C, the fourth, is cubic
as are all those which leave out two; and F , the seventh, is both cubic and square as
are all those which leave out five. Since the unit is to A as A is to B, therefore the
unit measures the number A the same number of times that A measures B. But the
unit measures the number A according to the units in it, therefore A also measures
B according to the units in A. Therefore A multiplied by itself makes B, therefore
B is square. And, since B, C, and D are in continued proportion, and B is square,
therefore D is also square. For the same reason F is also square. Similarly we can
prove that all those which leave out one are square. I say next that C, the fourth from
the unit, is cubic as are also all those which leave out two. Since the unit is to A
as B is to C, therefore the unit measures the number A the same number of times
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that B measures C. But the unit measures the number A according to the units in A,
therefore B also measures C according to the units in A. Therefore A multiplied by B
makes C. Since then A multiplied by itself makes B, and multiplied by B makes C,
therefore C is cubic. And, since C, D, E, and F are in continued proportion, and C is
cubic, therefore F is also cubic. But it was also proved square, therefore the seventh
from the unit is both cubic and square. Similarly we can prove that all the numbers
which leave out five are also both cubic and square. Q.e.d. (Proposition IX.8)

2.3.3 Recovering from the Dark Middle Ages

After EUCLID, in the following eighteen centuries until FERMAT, I do not know of descente in-

finie (except that EUCLID’s Elements where copied again and again), but of structural induction

only. Structural induction was known to the Muslim mathematicians around the year 1000 and
occurs in a Hebrew book of LEVI BEN GERSON (1288–1344) (Orange and Avignon) in 1321,
cf. [KATZ, 1998]. BLAISE PASCAL (1623–1662) (Paris) knew structural induction from “Arith-

meticorum Libri Duo” of FRANCISCO MAUROLICO (MAUROLYCUS) (1494–1575) (Messina)
written in 1557 and published posthumously in 1575 in Venice, cf. [BUSSEY, 1917]. PASCAL

used structural induction for the proofs of his “Traité du Triangle Arithmétique” written in 1654
and published posthumously in 1665. While these induction proofs are still presented as “gen-
eralizable examples”, in the demonstration of “Conséquence XII” we find — for the first time
in known history — a correct verbalization of the related instance of the Axiom of Structural
Induction (S); cf. [PASCAL, 1954, p. 103], [ACERBI, 2000, p. 57].

2.3.4 Revival

In the 1650s, BLAISE PASCAL (1623–1662) (Paris) exchanged letters on probability theory and
descente infinie with PIERRE FERMAT (1607?–1665) (Toulouse), who was the first to describe
the Method of Descente Infinie explicitly. FRANÇOIS VIÈTE (1540–1603) (Paris) had already
given a new meaning to the word analysis by extending the analysis of concrete mathematical
problems to the algebraic analysis of the process of their solution. FERMAT improved on VIÈTE:

Instead of a set of rules that sometimes did find a single solution to the “double equations” of
DIOPHANTUS OF ALEXANDRIA (3rd century?) and sometimes did not, he invented a method to
enumerate an infinite set of solutions, which is described in the “Inventum Novum” by the number
theoretician JACQUES DE BILLY (1602–1679); for a French translation cf. [FERMAT, 1891ff.,
Vol. III, pp. 325–398]; for a discussion see [MAHONEY, 1994, § VI.III.B].
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Much more than that, FERMAT was the first who — instead of just proving a theorem — analyzed
the method of proof search. This becomes obvious from the description of the Method of Des-

cente Infinie in a letter for CHRISTIAAN HUYGENS (1629–1695) (Den Haag) entitled “Relation

des nouvelles découvertes en la science des nombres ”; cf. [FERMAT, 1891ff., Vol. II, pp. 431–
436]. This letter, in which FERMAT also lists some theorems and claims to have proved them
by descente infinie, was sent to PIERRE DE CARCAVI in August 1659. Moreover, in his letter
for HUYGENS and in [DIOPHANTUS, 1670], FERMAT was also the first to provide a correct
verbalization of proofs by descente infinie and to overcome their presentation as “generalizable
examples”. Methodological considerations seem to have been FERMAT’s primary concern.

2.4 Linguistic and Refined Logic-Historical Points of View

The level of abstraction of our previous discussion of descente infinie is well-suited for the de-
scription of the structure of mathematical proof search in two-valued logics, where the difference
between a proof by contradiction and a positive proof of a given theorem is only a linguistic
one and completely disappears when we formalize these proofs in a state-of-the-art modern logic
calculus, such as the one of [WIRTH, 2004]. An investigation into the history of mathematics,
however, also has to consider the linguistic representation and the exact logical form of the pre-
sentation.

2.4.1 An Inappropriate Refinement by UNGURU and ACERBI

Such a linguistic and logic-historical refinement can easily go over the top. For instance, from the
above-mentioned fact that we find — for the first time in known history — a correct verbalization
of the related instance of the Axiom of Structural Induction (S) in PASCAL’s publications, it is not
sound to conclude that PASCAL was the first to do structural induction (as claimed in [UNGURU,
1991]) or the first to do it consciously (as claimed in [ACERBI, 2000]). These claims are just as
abstruse to most working mathematicians as the claim that FERMAT was the first to do descente

infinie. And [FOWLER, 1994] is perfectly right to object to this view on the basis of a deeper
understanding of the mathematical activity, although we have to be careful not to interpret modern
thinking into the historical texts.

Mathematics is mostly a top-down procedure and when we do not formalize and explicate every
bit of it, we may have good reasons and be well aware of what we do. Human mathematical
activity includes subconscious elements, but this does not mean that their application is uncon-
scious. Just as music is not captured by notes and not necessarily invented as notes, mathematical
activity cannot be captured by its formalization and is not necessarily well-expressed in natural
or formal language. (Actually, formalization is a dangerous step for a mathematician because
afterward there is hardly any way back to his original intuition.)
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2.4.2 Our Suggestion for an Unproblematic Classification Scheme

All in all, for our subject here there is actually no need to discuss the working mathematician’s
consciousness: It suffices to speak of

1. quasi-general proofs (i.e. proofs by generalizable examples),

2. general proofs (i.e. proofs we would accept from our students in an examination today),

3. proofs with an explicit statement of the related instance of an induction axiom or theorem,
and

4. proofs with an explicit statement of an induction axiom or theorem itself.

2.4.3 An Appropriate Refinement by PAOLO BUSSOTTI

There is evidence that such a linguistic and logic-historical refinement is necessary to understand
the fine structure of historical reasoning in mathematics. For instance, in EUCLID’s Elements,
Proposition VIII.7 is just the contrapositive of Proposition VIII.6, and this is just one of several
cases that we find a proposition with a proof in the Elements, where today we just see a corollary.
Moreover, even FERMAT reported in his letter for HUYGENS (cf. § 2.3.4) that he had had problems
to apply the Method of Descente Infinie to positive mathematical statements.

“Je fus longtemps sans pouvoir appliquer ma méthode aux questions affirmatives,
parce que le tour et le biais pour y venir est beaucoup plus malaisé que celui dont je
me sers aux négatives. De sorte que, lorsqu’il me fallut démontrer que tout nombre

premier, qui surpasse de l’unité un multiple de 4, est composé de deux quarrés, je me
trouvai en belle peine. Mais enfin une méditation diverses fois réitérée me donna les
lumières qui me manquoient, et les questions affirmatives passèrent par ma méthode,
à l’aide de quelques nouveaux principes qu’il y fallut joindre par nécessité.”

[FERMAT, 1891ff., Vol. II, p. 432]

“For a long time I was not able to apply my method to affirmative conjectures because
the ways and means of achieving this are much more complicated than the ones I am
used to for negative conjectures. Such that, when I had to show that any prime number
which exceeds 1 by a multiple of 4 is the sum of two squares, I found myself pretty
much in trouble. But finally oft-repeated meditation gave me the insight I lacked,
and affirmative questions yielded to my method with the aid of some new principles
which had to be added to it.”

Because of the work of FREGE and PEANO, these logical differences may be considered trivial
today. Nevertheless, they were not trivial before, and to understand the history of mathematics
and the fine structure in which mathematicians reasoned, the distinction between affirmative and
negative theorems and between direct and apagogic methods of demonstration is important.
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Therefore, it is well justified when in [BUSSOTTI, 2006], following the above statement of
FERMAT, the Method of Descente Infinie is subdivided into indefinite descent (ID) and reduction-

descent (RD):

(ID) ∀P.

(

∀x. P (x) ⇐ ∃<.

(

∀v.
(

¬P (v) ⇒ ∃u<v. ¬P (u)
)

∧ Wellf(<)

) )

(RD) ∀P.









∀x. P (x) ⇐ ∃<. ∃S.









∀u.
(

S(u) ⇒ P (u)
)

∧ ∀v.

(

¬S(v) ∧ ¬P (v)
⇒ ∃u<v. ¬P (u)

)

∧ Wellf(<)

















Actually, “Wellf(<)” does not occur in [BUSSOTTI, 2006] because for FERMAT the Method of
Descente infinie was actually restricted to the well-founded ordering of the natural numbers.

Although (N), (ID), and (RD) are logically equivalent in two-valued logics, according to [BUS-
SOTTI, 2006] descente infinie does not subsume proofs by NOETHERian or structural induction.
This is in opposition to our more coarse-grained discussion above. With this fine-grained distinc-
tion, on Page 2 of [BUSSOTTI, 2006], we find the surprising claim that there is only a single proof
by indefinite descent in the whole Elements, namely the before-cited Proof of Proposition VII.31.
Indeed, at least all those proofs in the Elements beside VII.31 which I reexamined and which pro-
ceed by mathematical induction, actually proceed by reduction-descent or structural induction,
but not by indefinite descent: The correctness proofs of the EUCLIDian Algorithm (Proposi-
tion VII.2 and Proposition X.3) are reduction-descents with a horrible linguistic surface structure.
Similarly, the proofs of Propositions IX.12 and IX.13 are reduction-descents with superfluous
sentences confusing the proof idea.

Note that, as already repeatedly expressed above, a logical formalization cannot capture a mathe-
matical method. Moreover, as also already expressed above, logical equivalence of formulas does
not imply the equivalence of the formalized methods. For an interesting discussion of this difficult
subject see [BUSSOTTI, 2006, Chapter 7].

Nevertheless, (N), (ID), and (RD) sketch methods of proof search equivalent for the working
mathematician of today. Indeed: (ID) — roughly speaking — is the contrapositive of (N), which
means that in two-valued logics the methods only differ in verbalization. Moreover, a proof by
(ID) is a proof by (RD) when we set S to the empty predicate. Finally, a proof by (RD) can be
transformed into a proof by (ID) as follows: Suppose we have proofs for the statements in the
conjunction of the premise of (RD). The proofs of ∀u.

(

S(u) ⇒ P (u)
)

and ∀v.

(

¬S(v) ∧ ¬P (v)
⇒ ∃u<v. ¬P (u)

)

give a proof of ∀v.

(

¬S(v) ∧ ¬P (v)
⇒ ∃u<v. (¬S(v) ∧ ¬P (u))

)

.

Instantiating the P in (ID) via {P 7→ λz. (S(z) ∨ P (z))}, the latter proof can be schemati-
cally transformed into a proof of ∀x. (S(x) ∨ P (x)) by (ID). And then from the proof of
∀u.

(

S(u) ⇒ P (u)
)

again, we get a proof of ∀x. P (x), as intended. Thus, in any case, the
resulting proof does not significantly differ in the mathematical structure from the original one.
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Note that this is contrary to the case of NOETHERian vs. structural induction, where the only
transformation I see from the former to the latter (the other direction is trivial, cf. [WIRTH,
2004], § 1.1.3) is to show that the axiom (S) implies Wellf(s), and then leave the application of
(N) unchanged. This transformation, however, is not complete because it does not remove the
application of (N), which is a theorem anyway.

All in all, this shows that — while structural and NOETHERian induction vastly differ in practical
applicability — for a working mathematician today it is not important for his proof search to
be aware of the differences between NOETHERian induction (N), indefinite descent (ID), and
reduction-descent (RD). And thus, we will continue to subsume all the three under the Method
of Descente Infinie.

2.4.4 A Further Refinement

For the soundness of WALSH’s interpretation of FERMAT’s proof in our § 4.7, we have to invent
the following further refinement to the logic-historical discussion of descente infinie.

The predicate P in the theorem (ID) of § 2.4.3 may actually vary in the indefinite descent, in the
sense that — for a function P from natural numbers to predicates — we have the following
theorem:

(ID′) ∀P.







∀x. P0(x)

⇐ ∃<.

(

∀i∈N. ∀v.
(

¬Pi(v) ⇒ ∃u<v. ¬Pi+1(u)
)

∧ Wellf(<)

)







For a sufficiently expressible logic, this again makes no difference: Indeed, to prove theorem (ID′)
and even to use theorem (ID) instead of it without a significant change of the structure of the proof,
it suffices to instantiate theorem (ID) according to

{

P 7→ λx. ∀i∈N. Pi(x)
}

.

Typically — as in the example of § 4.7 — the set { Pi | i∈N } is finite. In this case, the universal
quantification in ∀i∈N. Pi(x) can be replaced with a finite conjunction.
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3 Prerequisites from Number Theory

In this § 3, we list the propositions and the proofs that I found in my easy chair without any help
beside EUCLID’s Elements.

If the reader is experienced in number theory or wants to have the pleasure of doing some ex-
ercises in elementary number theory on his own, he should skip this § 3 and continue directly
with § 4. Moreover, we generally recommend to skip this § 3 on a first reading.

We follow the Elements quite closely, but occasionally deviated from them if an alternative course
is more efficient. As we address modern readers, the language of our presentation, however, is
a modern one, most atypical for the 17th century. Furthermore, in this § 3, we follow the histor-
ical proof ideas only very roughly and are not seriously concerned with historical authenticity.
Nevertheless, as expressed already in § 1, we hope that our reconstruction of elementary number
theory in this § 3 does not essentially differ from what FERMAT’s contemporary mathematicians
could have achieved if FERMAT had been able to interest them in his new number theory. This
aspect becomes crucial, however, only for FERMAT’s proof in § 4.

The proofs missing here can be found § A of the appendix.

3.1 From the Elements, Vol. VII

Let all variables range over the set of natural numbers N (including 0), unless indicated otherwise.
Let ‘≺’ denote the (irreflexive) ordering and ‘�’ the reflexive ordering on N. Let N+ :=
{ n∈N | 0 6=n }.

Definition 3.1 (Divides)

x divides y (written: x | y) if there is a k such that kx = y.

Corollary 3.2 The binary relation | is a reflexive ordering on the natural numbers with minimum

1 and maximum 0. Moreover, (x | y) ∧ (y 6= 0) implies x� y.

Corollary 3.3 Let us assume x | y0. Then x | y1 iff x | y0+y1.

Corollary 3.4 (x = 0) ∨ (y | z) iff xy | xz.

Definition 3.5 (Coprime)

l1, . . . , ln are coprime if ∀x.
(

∀i∈{1, . . . , n}. (x | li) ⇒ x = 1
)

.

Corollary 3.6 If p, q are coprime and p� q, then p≻ q or p = q = 1.
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Lemma 3.7 (EUCLID’s Elements, Propositions VII.20 and VII.21, generalized)

Let x0y1 = y0x1 with x0, x1, y0, y1 ∈ N+.

Then the following holds:

(i) For every z0, z1, we have: y0z1 = z0y1 iff x0z1 = z0x1.

Moreover, the following two cases are equivalent:

(ii) y0, y1 are coprime.

(iii) y0 is �-minimal such that there is a y′
1 ∈ N+ with x0y

′
1 = y0x1.

Furthermore, in each of the two cases (ii) and (iii), the following holds:

(iv) There is a k ∈ N+ with kyi = xi for i∈{0, 1}.

Lemma 3.8 (EUCLID’s Elements, Proposition VII.23)

If y, z are coprime and x | y, then x, z are coprime, too.

Lemma 3.9 (EUCLID’s Elements, Proposition VII.24, generalized)

If xi, z are coprime for i ∈ {1, . . . ,m}, then
∏m

i=1 xi, z are coprime, too.

Lemma 3.10 (EUCLID’s Elements, Proposition VII.26, generalized)

If xi, yj are coprime for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, then
∏m

i=1 xi,
∏n

i=1 yi are coprime,

too.

Corollary 3.11 (EUCLID’s Elements, Proposition VII.27)

If y, z are coprime, then yn, zm are coprime, too.

Definition 3.12 (Prime)

A number p is prime if p 6= 1 and (x | p) ⇒ x∈{1, p} for all x.

Corollary 3.13 If p is prime, then 2� p.

Lemma 3.14 (EUCLID’s Elements, Proposition VII.29)

If p is prime and p ∤ x, then p, x are coprime.

The following lemma is popular today under the label of “EUCLID’s Lemma”:

Lemma 3.15 (EUCLID’s Elements, Proposition VII.30)

If p is prime and p | x1x2, then p | x1 or p | x2.

The following lemma will be applied exclusively in the proofs of Lemmas A.2, 3.22, and 3.24.

Lemma 3.16 (EUCLID’s Elements, Proposition VII.31)

For any x 6= 1, there is some prime p such that p | x.
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3.2 From the Elements, Vol. VIII

Definition 3.17 (Continued Proportion)

x0, . . . , xn+1 are in continued proportion if ∀i∈{0, . . . , n+1}. (xi ∈N+) and
∀i∈{1, . . . , n}. (xi−1xi+1 =x2

i ).

The following lemma will be applied exclusively in the proof of Lemma 3.19.

Lemma 3.18 (EUCLID’s Elements, Proposition VIII.1, generalized)

If x0, . . . , xn+1 and y0, . . . , yn+1 are in continued proportion, if x0y1 = y0x1, and if x0, xn+1 are

coprime, then there is some k ∈ N+ with kxi = yi for i ∈ {0, . . . , n+1}.

The following lemma will be applied exclusively in the proof of Lemma 3.21.

Lemma 3.19 (EUCLID’s Elements, Proposition VIII.2, generalized)

If x0, . . . , xn+1 are in continued proportion, then there are k ∈ N+ and coprime y, z ∈ N+ such

that yn+1z0, . . . , yn+1−izi, . . . , y0zn+1 are in continued proportion, too, x0(y
nz1) = (yn+1z0)x1,

kyn+1−izi =xi for i ∈ {0, . . . , n+1}, and, moreover, in case that x0, xn+1 are coprime, k = 1.

Lemma 3.20 (EUCLID’s Elements, Proposition VIII.14)

x | y iff x2 | y2.

3.3 Further Simple Lemmas for FERMAT’s Proof

Lemma 3.21 If a, b are coprime and ab = x2, then there are coprime y, z with a= y2, b =
z2, and x = yz.

Lemma 3.22 l1, . . . , ln are not coprime iff ∃p prime. ∀i∈{1, . . . , n}. (p | li).

Lemma 3.23 Let a, b be coprime. Let p be a prime number.

(1) Either pa, b are coprime or a, pb are coprime.

(2) If pab = v2 for some v, then there are m ∈ N and k ∈ N+

such that pm, k are coprime and {pm2, k2} = {a, b}.

Lemma 3.24 Suppose a� b, x | a−b, and x | a+b. Then we have:

(1) x | 2a and x | 2b.

(2) If a, b are coprime, then x� 2.

Lemma 3.25

If p, q are coprime with p� q, then pq, p2−q2 are coprime, and pq, p2+q2 are coprime.
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3.4 Roots of x2

0
+ x2

1
= x2

2

Lemma 3.26 x2
0 + x2

1 = x2
2 iff for some i∈{0, 1}, there are a, b such that a� b, xi = 2

√
ab,

x1−i = a−b, and x2 = a+b.

Proof of Lemma 3.26 The “if”-direction is trivial. Let us assume x2
0 + x2

1 = x2
2 to show the

“only if”-direction. Suppose xi = 2yi+1 for i∈{0, 1}. Then x2
0 +x2

1 = (2y0+1)2 +(2y1+1)2 =
4y2

0+4y0+1+4y2
1+4y1+1 = 2(2(y2

0+y0+y2
1+y1) + 1). As the square of an even number divides

by 4 and the square of an odd number is odd, this would mean that x2
0 +x2

1 is not a square. Thus,
there is some i ∈ {0, 1} and some c with xi = 2c. But then x2±x1−i must be even too,
because (x2+x1−i)(x2−x1−i) = x2

2 − x2
1−i = x2

i = 4c2 means that one of them must be even
by Lemma 3.15, and then the other is even, too. Thus, there are a, b such that x2+x1−i = 2a and
x2−x1−i = 2b. This implies 2x2 = 2a+2b, 2x1−i = 2a−2b, and 2a2b = 4c2, and then x2 =
a+b, x1−i = a−b, and ab = c2. Q.e.d. (Lemma 3.26)

Note that in Lemma 3.26 we cannot require any of a and b to be a square in general. For instance,
for x0 = 12 ∧ x1 = 9 ∧ x2 = 15, we have x2

0 + x2
1 = x2

2, but necessarily get
√

ab = 6 (as x1

is odd), and then, if any of a or b is a square, we have (a= 9 ∧ b = 4) ∨ (a= 36 ∧ b = 1), i.e.
(x2 = 13 ∧ x1 = 5) ∨ (x2 = 37 ∧ x1 = 35), which are PYTHAGOREAN triangles not similar to the
original x2 = 15 ∧ x1 = 9. But a= 12 ∧ b = 3 provide the generators for x0 = 12 ∧ x1 = 9 ∧
x2 = 15, whose existence is guaranteed by Lemma 3.26.

If x0, x1, x2 are coprime, however, then a, b must be coprime (as (y | a) ∧ (y | b) ⇒
∀i∈{0, 1, 2}. (y | xi)) and one even and one odd (as otherwise ∀i∈{0, 1, 2}. (2 | xi)). And
then they must be squares because of xi =2

√
ab and Lemma 3.21; say a= p2 and b = q2. Then

p, q are coprime and one even and one odd, too. All in all, we get as a corollary of Lemma 3.26:

Corollary 3.27 If x2
0 + x2

1 = x2
2 and x0, x1, x2 are coprime, then, for some i∈{0, 1}, there are

coprime p, q such that one of them is odd and one of them is even, p≻ q, xi = 2pq, x1−i =
p2−q2, and x2 = p2+q2.

Note that in Corollary 3.27 we cannot require q ∈N+ because for the case of (x0, x1, x2) =
(1, 0, 1) we have x2

0 + x2
1 = x2

2 and x0, x1, x2 are coprime, but i∈{0, 1}, p≻ q, xi = 2pq,
x1−i = p2−q2, and x2 = p2+q2 implies q = 0.

Lemma 3.28 ([FRÉNICLE, 1676, Proposition XXXVIII], generalized)

Let x2
0 + x2

1 = x2
2 and x0, x1, x2 be coprime. Then exactly one of x0, x1 is even, say xi.

If xi = v2 for some v, then there are m ∈ N and k ∈ N+ such that 2m, k are coprime,

(m = 0) ⇔ (x0 = 0), and (2m2)
2
+(k2)

2
= x2.

Proof of Lemma 3.28 By Corollary 3.27, there are j ∈ {0, 1} and coprime p, q such that one of
them is odd and one of them is even, p≻ q, xj = 2pq, x1−j = p2−q2, and x2 = p2+q2. We
have assumed xi to be the even one in {x0, x1}, i.e. i = j. Thus, 2pq = v2 by assumption. By
Lemma 3.23(2), there are m ∈ N and k ∈ N+ such that 2m, k are coprime and {2m2, k2} =
{p, q}. Moreover the following are logically equivalent: x0 = 0, q = 0, m = 0. Finally,

(2m2)
2
+(k2)

2
= p2+q2 = x2. Q.e.d. (Lemma 3.28)
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3.5 Roots of x2

0
+ 2x2

1
= x2

2

Lemma 3.29

x2
0 + 2x2

1 = x2
2 iff there are a, b such that a� b, x0 = a−b, x1 =

√
2ab, and x2 = a+b.

Proof of Lemma 3.29 The “if”-direction is trivial. Let us assume x2
0 + 2x2

1 = x2
2 to show

the “only if”-direction. (x2+x0)(x2−x0) = x2
2 − x2

0 = 2x2
1 means that one of x2±x0 must be

even by Lemma 3.15, and then the other is even, too. Thus, there are a, b with x2+x0 = 2a, and
x2−x0 = 2b. But then 2x2 = 2a+2b, 2x0 = 2a−2b, and 2a2b = 2x2

1, i.e. x2 = a+b, x0 = a−b,
and 2ab = x2

1. Q.e.d. (Lemma 3.29)

If x0, x1, x2 are coprime, however, then a, b must be coprime. By Lemma 3.23(2), then there are
m ∈ N and k ∈ N+ such that 2m, k are coprime and {2m2, k2} = {a, b}. All in all, we get as a
corollary of Lemma 3.29:

Corollary 3.30 If x2
0 +2x2

1 = x2
2 and x0, x1, x2 are coprime, then there are m ∈ N and k ∈ N+

such that 2m, k are coprime, 2m2 6= k2, x0 = |2m2−k2| , x1 = 2mk, and x2 = 2m2+k2.

Note that in Corollary 3.30 we cannot require m∈N+ because for the case of (x0, x1, x2) =
(1, 0, 1) we have x2

0 + 2x2
1 = x2

2 and x0, x1, x2 are coprime, but x2 = 2m2+k2 implies m = 0.
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4 FERMAT’s Proof

In this § 4, we first state FERMAT’s theorem of Observation XLV in [DIOPHANTUS, 1670] in modern
notation (§ 4.1). Then, we present FERMAT’s original short French announcement of the theorem
(and the idea of proving it by descente infinie), and translate it into English (§ 4.2).

In § 4.3, we present FERMAT’s original Latin proof.

As this proof is hard to understand, we first have to grasp the mathematical ideas implicitly
expressed in this proof. Therefore, in § 4.4, we continue with a simple, self-contained, modern
English proof of the theorem. Afterward, in § 4.5, we present our translation of the Latin proof,
annotated with our interpretation, which is more or less standard.

Note that the cognitive process behind this annotation seems to be similar to the interpretation
of a music passage from its notes in the following sense: If we perceive a gestalt of the passage,
this gestalt will be meaningful, but not necessarily the original one of the author. After projecting
our image onto the original passage, we can then evaluate its adequacy. Therefore, we look at
interpretations of FERMAT’s proofs in the literature and discuss similar interpretations in § 4.6,
and WALSH’s alternative interpretation in § 4.7.

Finally, § 4 closes with FRÉNICLE’s more elegant proof of the theorem in § 4.8.

4.1 FERMAT’s Theorem of Observation XLV in [DIOPHANTUS, 1670]

FERMAT’s theorem simply says that the area of a PYTHAGOREAN triangle with positive integer
side lengths is not the square of an integer, or in modern formulation:

Theorem 4.1 If x0, x1 ∈N+ and x2, x3 ∈N and x2
0 + x2

1 = x2
2, then x0x1 6= 2x2

3.

Note that we cannot generalize Theorem 4.1 by admitting 0∈{x0, x1} because we have

(x0, x1, x2, x3) ∈ {(0, 0, 0, 0), (0, 1, 1, 0), (1, 0, 1, 0)} iff (x2
0 + x2

1 = x2
2) ∧ (x0x1 = 2x2

3).

4.2 French Abstract of the Theorem and its Proof Idea

FERMAT summarized his original proof (which we will quote in § 4.3) in his letter for HUYGENS

(which we have already discussed in § 2.3.4):

“S’il y avoit aucun triangle rectangle en nombres entiers qui eût son aire égale a un
quarré, il y auroit un autre triangle moindre que celui-là, qui auroit la même propriété.
S’il y en avoit un second, moindre que le premier, qui eût la même propriété, il y en
auroit, par un pareil raisonnement, un troisième, moindre que le second, qui auroit la
même propriété, et enfin un quatrième, un cinquième, &c. à l’infini en descendant.”

[FERMAT, 1891ff., Vol. 1, p. 431f.]
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“If there were any right-angled triangle in whole numbers that had its area equal to
a square, there would be another triangle smaller than that one, which would have
the same property. If there were a second, smaller than the first, which had the same
property, there would be, by a similar reasoning, a third, smaller than the second,
which would have the same property, and finally a fourth, a fifth, &c., descending to
infinity.”

4.3 FERMAT’s Original Latin Proof

FERMAT wrote in Observation XLV on DIOPHANTUS’ Problem XX of his Observations on DIO-
PHANTUS; cf. [DIOPHANTUS, 1670, Vol. VI, p. 339] (there is a manipulated facsimile in [WEIL,
1984, p. 78] and a true one in [GOLDSTEIN, 1995, p. 60]) and [FERMAT, 1891ff., Vol. I, p. 340f.]:

Si area trianguli esset quadratus, darentur duo quadratoquadrati quorum differentia

esset quadratus; unde sequitur dari duo quadratos quorum et summa et differentia

esset quadratus. Datur itaque numerus, compositus ex quadrato et duplo quadrati,

aequalis quadrato, ea conditione ut quadrati eum componentes faciant quadratum.

Sed, si numerus quadratus componitur ex quadrato et duplo alterius quadrati, eius la-

tus similiter componitur ex quadrato et duplo quadrati, ut facillime possumus demon-

strare.

Unde concludetur latus illud esse summam laterum circa rectum trianguli rectan-

guli, et unum ex quadratis illud componentibus efficere basem, et duplum quadratum

aequari perpendiculo.

Illud itaque triangulum rectangulum conficietur a duobus quadratis quorum

summa et differentia erunt quadrati. At isti duo quadrati minores probabuntur primis

quadratis primo suppositis, quorum tam summa quam differentia faciunt quadratum:

Ergo, si dentur duo quadrati quorum summa et differentia faciunt quadratum, dabitur

in integris summa duorum quadratorum eiusdem naturae, priore minor.

Eodem ratiocinio dabitur et minor ista inventa per viam prioris, et semper in infini-

tum minores invenientur numeri in integris idem praestantes: Quod impossibile est,

quia, dato numero quovis integro, non possunt dari infiniti in integris illo minores.

Demonstrationem integram et fusius explicatam inserere margini vetat ipsius exigui-

tas.

Note that the separation into paragraphs is not original, but intended to simplify the comparison
with the English translation in § 4.5, which follows the same separation into paragraphs. More-
over, we have omitted the beginning and the end of Observation XLV, which state the theorem
and that it is proved indeed, respectively.
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4.4 A Simple Self-Contained Modern Proof of Theorem 4.1

We show Theorem 4.1 by descente infinie, more precisely by indefinite descent (ID, cf. p.14).

Assuming the existence of x0, x1, x2, x3 with x0, x1 ∈ N+ and x2
0 + x2

1 = x2
2 and x0x1 = 2x2

3,
we will show the existence of y0, y1, y2, y3 with y0, y1 ∈ N+ and y2

0 + y2
1 = y2

2, y0y1 = 2y2
3, and

y2 ≺x2.

First, let us consider the case that there is some prime number z that divides x0, x1, i.e. that there
are yi with xi = zyi for i∈{0, 1}. Then we have z2(y2

0 + y2
1) = x2

2, i.e. z2 | x2
2. By Lem-

ma 3.20, we get z | x2. Thus, there is some y2 ∈ N+ with x2 = zy2. Then we also have
z2(y2

0 + y2
1) = z2y2

2 , i.e. y2
0 + y2

1 = y2
2 . Moreover, we have z2y0y1 = 2x2

3, i.e. z2 | 2x2
3. As z is

prime, from the latter we get z | 2 or z | x2
3 by Lemma 3.15. By Corollary 3.4, z = 2 and

z2 | 2x2
3 implies z | x2

3. Thus, we have z | x2
3 in both cases, and then z | x3 by Lemma 3.15

again. Thus, there is some y3 with x3 = zy3. Then z2y0y1 = 2x2
3 = z22y2

3, i.e. y0y1 = 2y2
3.

From x0, x1 ∈N+, we get x2 ∈N+. For each i∈{0, 1, 2}, we get yi ∈N+ from xi ∈N+.
Finally, we have y2 ≺x2 because of x2 = zy2. This completes this case by descente infinie.

Thus, we may assume x0, x1 to be coprime by Lemma 3.22, and — a fortiori — x0, x1, x2 to be
coprime, too.

Claim I: There are coprime p, q such that one of them is odd and one of them is even, p≻ q, and
there are some c, e, f with x2 ≻ e≻ f ≻ 0 such that

p = e2, q = f2, and p2−q2 = c2.

Proof of Claim I: By Corollary 3.27 there are coprime p and q such that one of them is odd and
one of them is even and, for some i∈{0, 1}, p≻ q, xi = 2pq, x1−i = p2−q2,

and x2 = p2+q2. Because of xi ∈N+, we have p, q ∈N+. From x0x1 = 2x2
3, we get

2pq(p2−q2) = 2x2
3, i.e. pq(p2−q2) = x2

3. By Lemma 3.25, we know that pq and p2−q2 are
coprime, too. Thus, by Lemma 3.21 there must be some coprime b, c ∈ N+ with x3 = bc, pq =
b2, and p2−q2 = c2. By the coprimality of p, q, because of pq = b2, by Lemma 3.21 there
must be some coprime e, f ∈ N+ with b = ef , p = e2, and q = f2. Moreover e≻ f ≻ 0, as
e� f would imply the contradictory p� q, and f = 0 would imply the contradictory xi = 0.
Furthermore, from q ∈N+, we get x2 = p2+q2 ≻ p2 = e4 � e. Q.e.d. (Claim I)

Claim II: There are coprime g, h ∈ N+ and some e, f with x2 ≻ e≻ f ≻ 0 such that

e2+f2 = g2 and e2−f2 = h2.

Proof of Claim II: Note we will not use any information on the current proof state beside Claim I
here. By Claim I, p+q, p−q ∈N+. By Claim I and Lemma 3.24(2), the

only prime that may divide both p+q and p−q is 2; but this is not the case because one of
p, q is even and one is odd. Thus, by Lemma 3.22, p+q, p−q are coprime and because of
(p+q)(p−q) = p2−q2 = c2, by Lemma 3.21, there are coprime g, h ∈ N+ with c = gh, p+q = g2,
p−q = h2. Q.e.d. (Claim II)

As the induction hypothesis in FERMAT’s original proof does not seem to be Theorem 4.1, but
Claim II instead, let us forget anything about the current proof state here beside Claim II. The
following two claims are trivial in the context of Claim II:

Claim IIa: h2+2f2 = g2.

Claim IIb: h2+f2 = e2.



24

As g, h are coprime (according to Claim II), h, f, g are coprime, a fortiori. Thus, by Claim IIa
and Corollary 3.30, there are m, k such that 2m, k coprime, h= |2m2−k2| , f = 2mk, and
g = 2m2+k2. Set y0:=2m2, y1:=k2, y2:=e, y3:=mk. By Claim II we have x2 ≻ y2 ≻ 0.
As f ∈N+ by Claim II, we have m, k ∈N+, and y0, y1 ∈N+. Moreover, we have y0y1 = 2y2

3 ,
g = y0+y1, and f2 = 2y0y1. Finally, by Claim IIa and Claim IIb, we have y2

0+y2
1 = (y0+y1)

2−
2y0y1 = g2 − f2 =

(IIa)
h2 + 2f2 − f2 = h2 + f2 =

(IIb)
e2 = y2

2 . This completes also this

remaining case by descente infinie.

Q.e.d. (Theorem 4.1)
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4.5 An Annotated Translation of FERMAT’s Original Proof

The following English translation of FERMAT’s original proof (cf. § 4.3) roughly follows the
translation found in [MAHONEY, 1994, p. 352f.], but has several improvements. Moreover —
to refer to the proof of Theorem 4.1 in § 4.4 explicitly — we have added several annotations.
(Brackets [. . . ] enclose these annotations, which are typeset in italics.)

If the area of a [right-angled] triangle were a square, there would be given two
squares-of-squares [e4, f4] of which the difference would be a square [Claim I];
whence it follows that two squares [e2, f2] would be given, of which both the sum
and the difference would be squares [Claim II]. And thus a number would be given,
composed of a square and the double of a square, equal to a square [Claim IIa], under
the condition that the squares composing it make a square [Claim IIb].

However, if a square number is composed of a square and the double of another
square [g2 = h2+2f2], its side [i.e. its square root g] is similarly composed of a
square and the double of a square [g = k2+2m2], as we can most easily demonstrate
[Corollary 3.30 ].

Whence one concludes that this side [g] is the sum of the sides [y0, y1] about the
right angle of a right-angled triangle [g = y0+y1, y2

0+y2
1 = y2

2], and that one of the
squares composing it constitutes the base [k2 = y1], and the double square is equal
to the perpendicular [2m2 = y0].

[Instead of applying Theorem 4.1 as an induction hypothesis now (or, dually, using its

negation as the pattern for the descente infinie), FERMAT seems to descend the in-

ductive reasoning cycle until the negation of Claim II can be applied as an induction

hypothesis (or, dually, Claim II can be used as the pattern for the descente infinie).]
Hence, this right-angled triangle is generated [(in the sense of § 3.4)] by two squares,
of which the sum and difference are squares. These two squares, however, will be
proved to be smaller than the first squares initially posited, of which the sum as well
as the difference also made squares:

Therefore, if two squares [e2, f2] are given of which the sum and the difference are
squares [Claim II], there exists in integers the sum of two squares of the same nature,
less than the former [e2+f2].

[Finally FERMAT illustrates the Method of Descente Infinie.] By the same argument
there will be given in the prior manner another one less than this, and smaller numbers
will be found indefinitely having the same property. Which is impossible, because,
given any integer, one cannot give an infinite number of integers less than it.

The smallness of the margin forbids to insert the proof completely and with all detail.
[This is roughly the sentence following FERMAT’s Last Theorem in Observation II

([FERMAT, 1891ff., Vol. I, p. 291], cf. our § 6), which drove generations of mathe-

maticians crazy: “Hanc marginis exiguitas non caperet.” ]
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4.6 Similar Interpretations of the Proof in the Literature

My interpretation of FERMAT’s proof being completed, it is now time to have a look into the
literature of its interpretation. The interpretation of FERMAT’s proof in [DICKSON, 1919ff.,
Vol. 2, p. 615f.], (looked up only after my interpretation was already completed) is roughly
similar to my interpretation, but a little less structured and less similar to FERMAT’s original
proof. The interpretation of the proof in [EDWARDS, 1977, § 1.6], (looked up only after my
interpretation was already completed) claims to follow [DICKSON, 1919ff., Vol. 2, p. 615f.], but
makes things only worse and is not at all convincing.

“It is the next two sentences [our 2nd and 3rd paragraphs] that are the difficult ones to
follow [for Edwards].” [EDWARDS, 1977, § 1.6, p. 13]

The briefest interpretation of the proof in [WEIL, 1984, Chapter X] (looked up only after my
interpretation was already completed) is quite in accordance with my interpretation when we
apply the substitution {x 7→e, y 7→f, u7→g, v 7→h, z 7→c, r 7→k, s 7→m} to Weil’s interpretation.

The interpretation of the proof in [MAHONEY, 1994, Chapter VI.VI] is less brief, but mathe-
matically strange in the sense that there are some steps in it which I do not clearly understand
(such as “we may set f2 = 4k2m2.”). As [MAHONEY, 1994] is the standard work on the mathe-
matics of FERMAT, however, we have renamed our variables in accordance to it, such that the
proof of [MAHONEY, 1994] is already roughly in accordance with our presentation here, without
any renaming of variables.

The discussion of the proof in [BUSSOTTI, 2006, Chapter 2.2.3, pp. 39–46] follows the interpre-
tation of [MAHONEY, 1994], but elaborates the ways and means of the induction-hypothesis
application, or more precisely, the indefinite descent. We read:

“From this demonstration, it is possible to deduce one of the most important proper-
ties inherent in every argument by indefinite descent: there is an invariable form with
different orders of sizes [. . . ]. [BUSSOTTI, 2006, p. 45]

As we have already discussed in § 2.4.4, from a refined logic-historical point of view, this
“invariable form” may actually vary. This will become important in § 4.7 below, where we
will discuss the only interpretation of FERMAT’s original proof that significantly differs from my
presentation here, namely the one in [WALSH, 1928].
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4.7 WALSH’s Alternative Interpretation

The only interpretation of FERMAT’s original proof that significantly differs from our presentation
here is the one in [WALSH, 1928]. With the missing details added and the unconvincing parts
removed, we may describe WALSH’s interpretation roughly as follows.

Suppose that the clean-up of § 4.4 up to Claim I has been done. Then we continue as follows.

Claim III: There are some e, f, g, h ∈ N+ with g, h coprime and x2 � e≻ f ≻ 0 such that

e2+f2 = g2 and e2−f2 = h2.

Proof of Claim III: Set e := x2, f := 2x3, g := x0+x1, and h := |x0−x1| . Then we have
e2±f2 = x2

2±4x2
3 = x2

0+x2
1±2x0x1 = (x0±x1)

2. Moreover, we have e≻ f by the following
indirect proof: Otherwise, we would have 0� e2−f2 = (x0−x1)

2, i.e. x0 = x1, and as x0, x1

are coprime, we would get x0 = x1 = 1, i.e. the contradictory 2 = x2
2. Finally, to show that g, h

are coprime suppose z | x0+x1 and z | |x0−x1| . As x0, x1 are coprime, we get z � 2 by
Lemma 3.24(2). By Corollary 3.27 we know that x0+x1 is odd. Thus, we get z = 1, as was to
be shown. Q.e.d. (Claim III)

Compared to Claim II of § 4.4, the weakness of Claim III is that it only states x2 � e instead of
x2 ≻ e. This weaker statement, however, does not admit us to apply our induction hypothesis
as before. This is not by chance and another weight function cannot help us, because the new
triangle is actually the same as before: Indeed, we have x2 = e= y2 and {x0, x1} = { g±h

2
} =

{2m2, k2} = {y0, y1}. This means that — to arrive in proof state with a smaller weight —
we actually have to descend the inductive reasoning cycle by proving Claim I and Claim II. The
interesting aspect is that — as noted already in § 4.5 — this is exactly what FERMAT does in his
proof. While these steps are superfluous according to all other interpretations, they are necessary
according to the interpretation in [WALSH, 1928].

Note that, according to § 2.4.4, WALSH’s proof is actually sound w.r.t. the following instantiation:
In (ID′) of § 2.4.4, roughly speaking, we set P0 to Theorem 4.1, and Pi to Claim II for all i ∈ N+.
We measure P0 with the weight x2

2+(2x3)
2+1. And we measure Pi with the weight e2+f2 for

i ∈ N+, just as FERMAT has described the weight in his original proof, cf. the 4th paragraph of
our annotated translation in § 4.5. From P0 to P1 the weight decreases by 1. And from Pi to
Pi+1 the weight also decreases for i ∈ N+. A simpler way to see the soundness of this proof is
to model it as a deductive proof of Theorem 4.1 with Claim II as a lemma, plus an inductive proof
of Claim II.

We cannot decide whether the interpretation of WALSH [1928] for the first step of FERMAT’s
proof (i.e. the Proof of Claim III) reflects FERMAT’s intentions regarding his original proof bet-
ter than our presentation in §§ 4.4 and 4.5. The interpretation of the actual indefinite descent of
FERMAT, however, is superior in WALSH’s version. Moreover, note that — considering FERMAT’s extreme conciseness
it is very likely that FERMAT had believed the additional descent to be actually necessary. We
cannot decide, however, whether this belief, which he contradicts in his letter for HUYGENS

in 1659 (cf. § 4.2), means that WALSH’s interpretation is the correct one. This belief may be
simply based on FERMAT’s inexperience with descente infinie at the time when he wrote his
Observation XLV, more than 20 years before his death in 1665. The following dating of the
Observations very roughly agrees with [GOLDSTEIN, 1995, § 11]:
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“The dates of the various notes on DIOPHANTUS are not known; but it is probable
that this Note [Observation XLV] was written sometime between 1636 and 1641, or
at least, in round numbers twenty years before the Letter [for HUYGENS]. This is
important; for the Note and the Letter do not agree — at least in appearance [of the

induction-hypothesis application].” [WALSH, 1928, p. 412]

4.8 FRÉNICLE’s More Elegant Version of FERMAT’s Proof

Note that geometric illustration cannot help much to understand the Proof of Theorem 4.1 in § 4.4.
The following seems to be the best we can get:

x1−i =

c2 =

(p+q)(p−q)=

g2h2 =

(2m2+k2)
2
(2m2−k2)

2

x2 = y4

2
+(2mk)4 = p2+q2

c = gh =(2m2+k2) |2m2−k2|

p = e2

q =(2mk)2

y0 = 2m2y2 = e

pq
pq = y2

2
(2mk)2 y1 = k2

The leftmost triangle is the originally assumed one and the rightmost triangle is the one to which
the modern Proof of Theorem 4.1 in § 4.4 descends. Although the one in the middle is rectangular
by Claim I, it is not explicitly noted in FERMAT’s proof. In the proof of the same theorem in
[FRÉNICLE, 1676], however, BERNARD FRÉNICLE DE BESSY (1605?–1675) (Paris) descends to
the same rightmost triangle but completely avoids application of Corollary 3.30 by an application
of Lemma 3.28 to the rectangular triangle depicted in the middle. Omitting Claim II and all the
following, the proof of Proposition XXXIX in [FRÉNICLE, 1676] continues roughly as follows:
We have (Claim I) q2+c2 = p2, c is odd, p = e2, q = f2, x2 ≻ e≻ f ≻ 0, and p, q are coprime.

By Lemma 3.28, there are m, k ∈ N+ such that (2m2)
2
+(k2)

2
= p = e2. q.e.d. This is more

elegant than FERMAT’s proof with an obviously and definitely different lemmatization, which,
however, was sometimes neglected:

“FRÉNICLE follows this proof [of FERMAT ] faithfully, with little more than verbal
changes [. . . ]. [WEIL, 1984, § X, p. 77]

As we are already exceeding the scope of this little paper and our margins are too small, we ask
the reader who is interested in more information on the subject to have a look at [GOLDSTEIN,
1995], which is a whole book dedicated to the history of Theorem 4.1, including a discussion of
different interpretations of FERMAT’s Latin original and much more.
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5 Conclusion

FERMAT gave his readers a hard time with his notes. His proof sketch of his Observation XLV,
which we have studied in this paper in some detail, is hard to understand, interpret, and disam-
biguate; for the readers of the 21st century just as well as for readers of 17th century. Without
expertise in number theory, it takes some days to construct a consistent interpretation of this short
proof sketch.

FERMAT named the method of this proof descente infinie. This method and its variants are
of outstanding importance in mathematics.

In § 2, we have discussed the Method of Descente Infinie from the mathematical, logical,
historical, linguistic, and refined logic-historical points of view, and we have presented all its
aspects with novel clearness, precision, and detail.

As FERMAT wanted people to have fun with number theory, we have suggested that our § 3
could be skipped by the readers and have put its less interesting proofs into the appendix (§ A);
so a reader who is not an expert in number theory may choose between the fun of exercise or the
relief of solution.

Regarding the aspects of both pedagogical presentation and the interpretation of critical texts
in the history of mathematics, we consider it to be advantageous to present the following three in
the given order:

1. the Latin original proof (§ 4.3),

2. a modern self-contained proof (§ 4.4),

3. and an English translation of the Latin original (§ 4.5).

This paper is (to the best of our knowledge) unique already in presenting these three items.

Moreover, this paper is (again to the best of our knowledge) unique in annotating the English
translation with references to a more explicit modern proof and not vice versa. Although we have
been quite laconic with our comments in the translation, we are confident that the mathematical
gestalt of FERMAT’s proof sketch is perceivable with the help of the sparse annotations in the
translation in § 4.5, building on the detailed presentation of the modern proof in § 4.4. We
believe that this perception is easier and deeper than what can arise from the standard procedure
of presenting a modern proof with annotations from (a translation of) the original, and that the
usefulness of our procedure for interpreting critical texts in the history of mathematics is higher
than that of the standard procedure.

All in all, including all important facts, we have presented a concise and self-contained
discussion of FERMAT’s proof sketch, which is easily accessible to laymen in number theory
as well as to laymen in the history of mathematics, and which provides new clarification of the
Method of Descente Infinie to the experts in these fields. Last but not least, this paper fills a gap
regarding the easy accessibility of the subject.
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6 Aftermath

Finally, note that FERMAT’s proof sketch omits the little but important details of the proof, such
as being positive, being coprime, or 2 ∤ p−q, which are essential parts of our modern proof in
§ 4.4. Moreover, he does not at all explicate the underlying theory, which we tried to reconstruct
in § 3.

As he seems to have found his proofs without pen and paper just in his imagination, he may
have had some subconscious subroutines taking care of this. Such subroutines are error-prone and
would explain FERMAT’s only claim that we know to be wrong, namely to have proved ∀n∈N.
(22n

+1 prime), contradicted by 5 = µn. ¬(22n

+1 prime) because of 275+1 | 225

+1. This
claim of a proof occurs in that same letter for HUYGENS, which we quoted in § 4.2 and discussed
in § 2.3.4. Five years before, in a letter to PASCAL in August 1654, he had admitted that the proof
was still incomplete; cf. [FERMAT, 1891ff., Vol. II, p. 309f.].

Whether the proof FERMAT claimed to have found for “FERMAT’s Last Theorem”

∀n� 3. ∀x, y, z ∈N+. (xn+yn 6= zn)

was also faulty for bigger n, or whether FERMAT, the methodologist who after eighteen centuries
was the first to apply the Method of Descente infinie again, invented yet another method for this
proof, is still an open question.
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A Missing Proofs and Additional Lemmas

Proof of Lemma 3.7

Let us assume x0y1 = y0x1 with x0, x1, y0, y1 ∈ N+.

(i): We show the “only if”-direction, the “if”-direction is symmetric.
x0z1y0 = x0y0z1 = x0z0y1 = z0x0y1 = z0y0x1 = z0x1y0. Thus, dividing by y0, we get x0z1 =

z0x1.

(iii)⇒(ii): Assume (iii). If y0, y1 were not coprime, there would be some k� 2 and y′′
i ∈ N+

with ky′′
i = yi for i ∈ {0, 1}. Then we would have x0ky′′

1 = ky′′
0x1, and then x0y

′′
1 =

y′′
0x1. This would contradict the � -minimality of y0.

(iii)⇒(iv): Assume (iii). Dividing xi by yi, we get ki, ri ∈ N with xi = kiyi+ri and ri ≺ yi for
i ∈ {0, 1}. Then k0y0y1 + r0y1 = (k0y0 + r0)y1 = x0y1 = y0x1 = y0(k1y1 + r1) =

k1y0y1 + r1y0 with riy1−i ≺ y0y1 for i ∈ {0, 1}. Thus, dividing x0y1 by y0y1, we get k0

with remainder r0y1 as well as k1 with remainder r1y0. Thus, k0 = k1 and r0y1 = r1y0. Then
x0r1y0 = x0r0y1 = x0y1r0 = y0x1r0 = r0x1y0. Thus, we have x0r1 = r0x1. But as r0 ≺ y0 and
as y0 is the least number such that there is a y′

1 ∈ N+ with x0y
′
1 = y0x1, we have r0 = 0. This

implies r1 = 0. Thus, xi = k0yi for i ∈ {0, 1}.

(ii)⇒(iii): Assume (ii). As y0z1 = z0y1 has the solution (z0, z1) = (x0, x1)∈N+×N+, let z0

be � -minimal such that there is a y′
1 ∈ N+ with y0y

′
1 = z0y1. Then z0 ∈N+. Let

z1 ∈ N+ be given such that y0z1 = z0y1. Applying (iii)⇒(iv) to the sentence y0z1 = z0y1, we
infer that there is a k ∈ N+ such that kzi = yi for i ∈ {0, 1}. Thus, k | yi for i ∈ {0, 1}.
As y0, y1 are coprime, we have k = 1. Thus, z0 = y0. Thus, y0 is � -minimal such that there
is a y′

1 with y0y
′
1 = y0y1. By (i), y0 is � -minimal such that there is a y′

1 with x0y
′
1 = y0x1.

Q.e.d. (Lemma 3.7)

Proof of Lemma 3.8 Assume u | x and u | z. By transitivity of | according to Corollary 3.2,
from x | y we have u | y. From y, z being coprime we get u = 1. Q.e.d. (Lemma 3.8)

Proof of Lemma 3.9 For m = 0, the lemma holds as 1 is the minimal element of the reflex-
ive ordering | according to Corollary 3.2. Thus, let us show that the lemma holds for m+1
under the induction hypothesis that it holds for m. If there is some i ∈ {1, . . . ,m+1} with
xi = 0, then we have z = 1, and the lemma holds for m+1. In case of z = 0, we have xi =
1 for all i ∈ {1, . . . ,m+1}, and the lemma holds again for m+1. Thus we may assume
x0, . . . , xm+1, z ∈N+. Assume u |

∏m+1
i=1 xi and u | z. By the first there is some k′ with

xm+1

∏m

i=1 xi = k′u and k′, u∈N+. By the second, by xm+1, z being coprime, and by Lem-
ma 3.8, we get that xm+1, u are coprime. Thus, by Lemma 3.7, there is some k ∈ N+ with ku =
∏m

i=1 xi. But then u | ∏m

i=1 xi. By our induction hypothesis,
∏m

i=1 xi, z are coprime. Thus,
we get u = 1. Q.e.d. (Lemma 3.9)
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Proof of Lemma 3.10 For m+n= 0, the lemma holds as 1 is the minimal element of the reflexive
ordering | according to Corollary 3.2. Thus, suppose the lemma holds for arbitrary m+n to show
that it holds for m+n+1. By symmetry, we may assume that xi, yj are coprime for i ∈ {1, . . . ,m}
and j ∈ {1, . . . , n+1}. By Lemma 3.9 yn+1,

∏m

i=1 xi are coprime. By induction hypothesis,
∏n

i=1 yi,
∏m

i=1 xi are coprime. All in all, by Lemma 3.9 yn+1

∏n

i=1 yi,
∏m

i=1 xi are coprime,
i.e.

∏m

i=1 xi,
∏n+1

i=1 yi are coprime. Q.e.d. (Lemma 3.10)

Proof of Lemma 3.14 Assume k | p and k | x. As p is prime, we have k∈{1, p}. As p ∤ x,
we have k 6= p. Thus, k = 1. Q.e.d. (Lemma 3.14)

Proof of Lemma 3.15 We may assume p ∤ x1 and x0, x1 ∈N+. Then p, x1 are coprime by
Lemma 3.14. Because of p | x1x2, there is some k with kp = x1x2. Then k ∈N+. By
Lemma 3.7, we get p | x2. Q.e.d. (Lemma 3.15)

Proof of Lemma 3.16

We show this by descente infinie, more precisely by indefinite descent (ID, cf. p.14).

Suppose that there is some x 6= 1 not divided by any prime. We look for an x′ 6= 1 not divided
by any prime with x′ ≺x. As the relation | is reflexive and has maximum 0 according to Co-
rollary 3.2, x is not prime and x� 2. Thus, there must be some x′ /∈ {1, x} with x′ | x. As the
relation | is transitive according to Corollary 3.2, x′ is not divided by any prime. Moreover, there
is a k such that kx′ =x. From x� 2 and x′ 6∈ {1, x}, we thus get k� 2 and x′ � 2. Thus,
x′ ≺x. Q.e.d. (Lemma 3.16)

Proof of Lemma 3.18

Claim 1: x0yi = y0xi and xi−1yi = yi−1xi for all i ∈ {1, . . . , n+1}.
Proof of Claim 1: For i =1 this holds by assumption of the lemma. Suppose it holds for i ∈
{1, . . . , n}. Then x0yi+1 =

x0y2

i

yi−1

= y0xiyi

yi−1

=
y0x2

i

xi−1

= y0xi+1 and xiyi+1 =
xiy

2

i

yi−1

=
x2

i
yi

xi−1

= yixi+1.
Q.e.d. (Claim 1)

From Claim 1 we get x0yn+1 = y0xn+1. As x0, xn+1 are coprime, by Lemma 3.7 there is some
k ∈ N+ with kxi = yi for i ∈ {0, n+1}. By Claim 1 this holds for all i ∈ {0, . . . , n+1} because
of kxi =

kx0yi

y0

= y0yi

y0

= yi. Q.e.d. (Lemma 3.18)

Proof of Lemma 3.19 Let y be minimal with x0z = yx1 for some z ∈ N+. By Lemma 3.7,
y ∈N+, y, z are coprime, and there is some k′ ∈ N+ with k′y = x0 and k′z = x1. Thus,
x0(y

nz1) = k′yn+1z1 = (yn+1z0)x1. Moreover, yn+1z0, . . . , yn+1−izi, . . . , y0zn+1 are in contin-
ued proportion. By Corollary 3.11, yn+1, zn+1 are coprime, too. Applying Lemma 3.18, we get
a k ∈ N+ with kyn+1−izi = xi for i ∈ {0, . . . , n+1}. In case that x0, xn+1 are coprime, we
get by Lemma 3.18 a k′′ ∈ N+ with k′′xi = yn+1−izi. This means xi � yn+1−izi, i.e. k = 1.

Q.e.d. (Lemma 3.19)



33

Below we will prove Proposition VIII.14 of EUCLID’s Elements, but we give a proof that is
shorter and more modern than the one in the Elements, which recursively requires a large number
of additional propositions. Instead we need the following two lemmas.

The following lemma will be applied exclusively in the proofs of Lemmas A.2 and 3.20.

Lemma A.1 If p is prime and pm | x0x1, then there are n0 and n1 such that m = n0+n1,

pn0 | x0, and pn1 | x1.

Proof of Lemma A.1

We show this by descente infinie, more precisely by indefinite descent (ID, cf. p.14).

Let p be prime. Suppose that pm | x1x2, but there are no n1 and n2 such that m = n1+n2,
pn1 | x1, and pn2 | x2. Then m,x0, x1 ∈N+. By Lemma 3.15, there is an i ∈ {0, 1} such that
p | xi. Thus, there is some x′

i ∈ N+ with x′
ip = xi. Set x′

1−i := x1−i. There is some k ∈ N+

with kpm = x0x1. Thus, kpm = x′
1−ix

′
ip. Thus, kpm−1 = x′

1−ix
′
i. But there cannot be any n′

1

and n′
2 such that m−1 = n′

1+n′
2, pn′

1 | x′
1, and pn′

2 | x′
2, because this leads to a contradiction

when we set ni := n′
i+1 and n1−i := n′

1−i. Q.e.d. (Lemma A.1)

The following lemma will be applied exclusively in the proof of Lemma 3.20.

Lemma A.2 x | y iff ∀p prime. ∀n∈N+.
(

(pn | x) ⇒ (pn | y)
)

.

Proof of Lemma A.2 The “only if”-direction follows directly from the transitivity according
to Corollary 3.2. We show the other direction by descente infinie, more precisely by indefinite
descent: Suppose that there are x, y such that ∀p prime. ∀n∈N+.

(

(pn | x) ⇒ (pn | y)
)

,
but x ∤ y. We find x′, y′ of the same kind with y′ ≺ y. According to Corollary 3.2, we have
x 6= 1 and y 6= 0. By Lemma 3.16, there is some prime p such that p | x. Then we have p | y
by our assumption (setting n := 1). Thus, we have y� 2. Moreover, there is some y′ ∈ N+

with y′p = y. Thus y′ ≺ y. Moreover, there is some x′ with x′p = x. Then x′ ∤ y′. It suffices
to show that for any prime number q and any n∈N+ with qn | x′ we have qn | y′.
q = p: From pn | x′ we get pn+1 | x, and then pn+1 | y, i.e. pn+1 | y′p. By Corollary 3.4, we
get pn | y′.
q 6= p: From qn | x′ we get qn | x, and then qn | y, i.e. qn | y′p. By Lemma A.1, we get
qn | y′. Q.e.d. (Lemma A.2)

Proof of Lemma 3.20 The “only if”-direction is trivial. For the “if”-direction, assume x2 | y2

and pn | x for arbitrary prime number p and n ∈ N+. By Lemma A.2 it suffices to show
pn | y. But from pn | x we get p2n | x2, and then p2n | y2. By Lemma A.1, we get pn | y.

Q.e.d. (Lemma 3.20)

Proof of Lemma 3.21 If any of a, b is equal to 0, then the other divides both and thus (as a, b are
coprime) must be equal to 1; and x = 0; in which case the lemma follows by y := a and z := b.
If none of a, b is equal to 0, then also x is not equal to 0 and a, x, b are in continued proportion;
so the lemma follows from Lemma 3.19 by setting its n := 1. Q.e.d. (Lemma 3.21)

Proof of Lemma 3.22 The “if”-direction is trivial. For the “only if”-direction let us assume that
l1, . . . , ln are not coprime. Then there is some x 6= 1 such that x | li for all i ∈ {1, . . . , n}.
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By Lemma 3.16 there is some prime number p with p | x. By transitivity of | according to
Corollary 3.2, we get p | li for all i ∈ {1, . . . , n}. Q.e.d. (Lemma 3.22)

Proof of Lemma 3.23

(1): Suppose neither pa, b nor a, pb coprime. By Lemma 3.22 there are two prime numbers x, y
with x | pa, x | b, y | a, y | pb. As a, b coprime, x ∤ a. As x is prime, by Lemma 3.15

we get x | p and thus x = p, as p is prime. Similarly we get y = p. Thus p | b and p | a,
contradicting being a, b being coprime.

(2): If pa, b are coprime, they must be squares by Lemma 3.21, say pa= l2 and b = k2. By
Lemma 3.15, there is some m with pm = l, i.e. a= pm2. By Lemma 3.8, pm, k are

coprime. Thus, k∈N+ because pm 6= 1. Moreover, {pm2, k2} = {a, b}. Similarly, if a, pb are
coprime, they must be squares by Lemma 3.21, say a= k2 and pb = l2. By Lemma 3.15, there
is some m with pm = l, i.e. b = pm2. Then again we have k ∈N+, pm, k are coprime, and
{pm2, k2} = {a, b}. Q.e.d. (Lemma 3.23)

Proof of Lemma 3.24

(1): By Corollary 3.3 we get x | (a+b) ± (a−b), i.e. x | 2a and x | 2b.

(2): By (1) we have x | 2a and x | 2b. Assume x≻ 2 to show a contradiction. If 2 | x, then
there is some k� 2 with 2k = x, and then we have k | a and k | b, contradicting a, b

being coprime. Otherwise, if 2 ∤ x, then by Lemma 3.16 there is some prime number p ≻ 2
with p | x. Then p | 2a. By Lemma 3.15 we get p | a. Similarly p | b. This again contradicts
a, b being coprime. Q.e.d. (Lemma 3.24)

The following lemma will be applied exclusively in the proof of Lemma 3.25.

Lemma A.3 If p� q and x | 2pq, then x | p2−q2 iff x | p2+q2.

Proof of Lemma A.3 As x2 | 4p2q2 by Lemma 3.20, the following are logically equi-
valent by Corollary 3.3 and Lemma 3.20: x | p2−q2; x2 | (p2−q2)

2; x2 | p4−2p2q2+q4;
x2 | p4+2p2q2+q4; x2 | (p2+q2)

2; x | p2+q2. Q.e.d. (Lemma A.3)

Proof of Lemma 3.25 Suppose the contrary. Then by Lemma 3.22 there is a prime number x
with x | pq and (x | p2+q2) ∨ (x | p2−q2). Then we have x | 2pq, and then, by Lemma A.3,
we have (x | p2+q2) ∧ (x | p2−q2). Moreover, by Lemma 3.24(1), we have x | 2p2 and x | 2q2.
As p, q are coprime, one of them is odd. Thus, one of pq and p2+q2 is odd. Thus, as x divides
both, x 6= 2. Thus, as x is prime, we have x ∤ 2. By Lemma 3.15, we get x | p2 and x | q2,
and then x | p and x | q, contradicting p, q being coprime. Q.e.d. (Lemma 3.25)
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