
Calculemus 2005 Preliminary Version

An Even Closer Integration of Linear
Arithmetic into Inductive Theorem Proving

Tobias Schmidt-Samoa 1

FB Informatik, Tech. Univ. Kaiserslautern, Germany

Abstract

To broaden the scope of decision procedures for linear arithmetic, they have to be
integrated into theorem provers. Successful approaches e.g. in NQTHM or ACL2 sug-
gest a close integration scheme which augments the decision procedures with lemmas
about user-defined operators. We propose an even closer integration providing feed-
back about the state of the decision procedure in terms of entailed formulas for three
reasons: First, to provide detailed proof objects for proof checking and archiving.
Second, to analyze and improve the interaction between the decision procedure and
the theorem prover. Third, to investigate whether the communication of the state
of a failed proof attempt to the human user with the comprehensible standard GUI
mechanisms of the theorem prover can enhance the speculation of auxiliary lemmas.

Key words: Decision Procedures, Human-Oriented Theorem
Proving, Integration Scheme, Lemma Speculation, Linear
Arithmetic, Proof Objects

1 Introduction

In comparison to theorem provers based on heuristic search strategies, deci-
sion procedures are very efficient in deciding formulas over their dedicated
domain. But this domain is usually rather small. Many formulas just fall out-
side the theory of the decision procedure. Therefore, two different approaches
have been studied by many researchers for at least three decades to overcome
these limitations: First, the combination of different decision procedures over
disjunctive domains; second, the incorporation of decision procedures into
heuristic theorem provers using augmentation. Research about the first ap-
proach has been initiated by fundamental work from Nelson & Oppen [17]
and Shostak [19]. In this paper, we are concerned with the second approach.
Seminal work on this topic has been done by Boyer & Moore [7] integrating

1 Email: schmidt@informatik.uni-kl.de

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Schmidt-Samoa

a decision procedure for rational numbers based on Hodes [9] (credited to
Fourier in [14]) into their inductive theorem prover NQTHM [6].

By linear arithmetic we mean the universally quantified first-order theory
over predicate symbols <, ≤, =, 6=, ≥, > for order relations over numbers, and
function symbols 0, s and + for constant zero, unary successor function and
binary addition. 2 According to the underlying domain, these theories are
called Presburger rational arithmetic (PRA), Presburger integer arithmetic
(PIA), and Presburger natural arithmetic (PNA) in [10]. We are interested
in a semi-decision procedure for an extended theory of PNA containing addi-
tional predicate or function symbols. These symbols are uninterpreted for the
decision procedure but may be constrained by the theorem prover.

Hodes’ procedure can be used as a decision procedure for PRA and as a
semi-decision procedure for PIA and PNA. It checks for unsatisfiability of a
set of inequalities. The key idea is to “cross-multiply and add” [7] two inequal-
ities to eliminate a common variable. We call this a variable elimination step.
Variable elimination steps can be restricted to the heaviest variables in an
inequality w.r.t. a fixed wellfounded order. In previous work, the inequalities
are stored in an internal state of the decision procedure called linear arith-
metic data base in [7] or constraint store in [2,3]. If an unsatisfiable (ground)
inequality is derived, the original inequalities are unsatisfiable over rationals,
integers and naturals. Otherwise, if the set is closed under variable elimina-
tion steps, the original inequalities are satisfiable over the rationals but may
be unsatisfiable over integers or naturals.

If we try to prove theorems in a suitably extended theory, we have to use
additional facts about the extension provided by the theorem prover. These
facts are usually given in the form of (conditional) lemmas. The conclusion of
a lemma can be applied if the conditions of the lemma can be proved valid.
These proofs may be performed by the decision procedure or the theorem
prover. Thus, we get mutual dependencies. According to [13], the integration
of linear arithmetic into ACL2 leads to four dependencies between the sim-
plifier and the arithmetic package. Therefore, it is questionable whether the
integration of linear arithmetic as a separate module is sensible.

Following [15], we call a lemma a rewrite rule if the conclusion of the lemma
is an equation s=t; we call it a linear rule if the conclusion is an inequality
u≤v. The application of a rewrite rule replaces an instance of s with the
same instance of t. In contrast to this, the application of a linear rule adds an
instance of u≤v to the state of the decision procedure so that it can benefit
from the new inequality. This augmentation mechanism was introduced in [7].

The situation gets worse if the required lemmas are not present. To spec-
ulate rewrite rules automatically, successful approaches have been proposed
e.g. in [16,8]. But for the automatic speculation of linear rules no general

2 For ease of use, we will also consider constant symbols for all numbers, − for subtraction,
and · for multiplication with constants (n · x abbreviates the sum that contains n times x).

2

Schmidt-Samoa

approach has been proposed. There only exist approaches for nonlinear arith-
metic [12,1]. As a linear rule contains an estimate, it is more difficult than
for rewrite rules to speculate lemmas that are both—valid and useful. In our
opinion, lemma speculation is a very creative task that has to be done by
humans in most cases. But this task must be supported as far as possible.
Therefore, we require an appropriate interaction scheme providing the human
user with all the information needed. Previous approaches lack information
for two reasons: First of all, they do not explicitly present the state of the
decision procedure to the user. Instead, the information is hidden in the in-
ternal state of the decision procedure. Furthermore, the decision procedure
only eliminates the heaviest terms.

In this paper, we present a new approach to incorporate a decision pro-
cedure for PNA closely into our inductive theorem prover QuodLibet [4].
We strictly distinguish the logic part of the decision procedure from its con-
trol aspects: Each elementary step of the decision procedure is represented
by a new inference rule providing the state of the decision procedure explic-
itly in the clauses that result from its application. A variable elimination
step e.g. introduces one new literal that combines two inequalities eliminating
the considered variable. Local properties of the inference rules guarantee the
soundness of our approach. They may be automatically applied with tactics
written in an adapted imperative programming language QML.

Our approach provides the following advantages: The fragmentation of
the decision procedure into elementary steps—realized with inference rules—
provides us with detailed proof objects that can be easily checked with an
external proof checker. It also enables a uniform and flexible integration into
our simplification process. This allows us to evaluate different integration
schemes that are defined on a much more fine-grained level than in previous
approaches. It also gives us the opportunity to implement different strategies:
The integration into the simplification process simplify uses the heuristics
known from the literature to automate the decision procedure and to guide
the augmentation mechanism. Furthermore, we have implemented a special
purpose tactic leq-var-elim that performs all possible variable elimination
steps (but no other steps). We call this tactic only if the simplification process
fails and we need more information to speculate an auxiliary linear lemma.
Although this tactic may lead to an exponential blow-up of inequalities, this
does not seem to be a severe problem in practice. Firstly, we remove redundant
inequalities. Secondly, an experienced user often finds the required inequalities
soon concentrating on the simpler ones.

The rest of the paper is organized as follows: After a short overview over
QuodLibet in Section 2, we illustrate the augmentation mechanism as well as
our new integration scheme with a simple example in Section 3. We describe
our approach in Section 4 and evaluate it in Section 5 concentrating on its
ability to speculate new linear lemmas. After a survey of related work in
Section 6, we conclude with further work in Section 7.

3

Schmidt-Samoa

2 The Inductive Theorem Prover QuodLibet

QuodLibet [4] is an equality-based inductive theorem prover for clausal first-
order logic with implicitly universally quantified variables. It admits partial
definitions of operators over free constructors using (possibly non-terminating)
conditional equations as well as constructor, destructor, and mutual recursion.
Inductive validity is defined as validity in the class of so-called data models,
the models that do not equalize any different constructor ground terms.

More precisely, a specification spec = (Σ, E) is given by a signature Σ
and positive/negative-conditional equations E. A signature Σ = (S, C, F)
consists of a set of sorts S, a set of free constructors C ⊆ F , and a set of
function symbols F . Given a set of variables V , the set of terms Term(F, V)
is defined as usual. Let top(t) be the toplevel operator of term t. Atoms
are constructed using one of the predefined predicate symbols for equality
(symbol =), definedness (def) and order relations (< or ≤), respectively.

We use a sequent calculus to prove clauses—termed goals in QuodLibet.
A clause {l1, . . . , ln} consists of disjunctively combined literals li.

3 An in-
ference rule reduces a goal to a (possibly empty) sequence of new subgoals.
A proof is represented by a proof state tree consisting of goal and inference
nodes. The root goal node of a proof state tree consists of the clause to be
proved. An inference node represents the inference rule applied to its parent
which is a goal node. Its n children (n ≥ 0) are again goal nodes and represent
the new subgoals created by the inference rule. A proof state tree is closed if
all leaves are inference nodes. In this case, the clause of the root goal node is
inductively valid provided that this holds true for the applied lemmas.

3 A Simple Example

First, we illustrate Hodes’ procedure with a simple example.

Example 3.1 (derived from [7]) We want to prove the validity of Formula
(1) over the naturals. Therefore, we check its negation for unsatisfiability.

(1) ∀K,L,Max ,Min.(L ≤ Min ∧ 0 < K ∧ Min ≤ Max → L < Max + K)

After normalizing the negation of (1), we get the following conjunctively com-
bined inequalities. Note that we use the integral property of the naturals in
Inequality (3): The difference of two unequal naturals is at least one.

(2) L ≤ Min (3) 1 ≤ K (4) Min ≤ Max (5) Max + K ≤ L

We restrict variable elimination steps using an alphabetic order on variable
names. Thus, we derive the following inequalities with an unsatisfiable ground
Inequality (8):

3 More precisely, a clause is a list of literals. The order of the literals is relevant for the
automatic proof control. We write ∆ ∪ Γ to append the literals of clauses ∆ and Γ.

4

Schmidt-Samoa

(6) L ≤ Max from (2) and (4) eliminating Min

(7) K ≤ 0 from (6) and (5) eliminating Max

(8) 1 ≤ 0 from (3) and (7) eliminating K 2

Example 3.1 falls into the decidable theory of PNA. But if we replace variables
Min and Max with function calls MIN (A) and MAX (A) as well as the third
condition Min ≤ Max with A 6= nil , then the formula is no longer valid in
pure PNA. Therefore, we use the augmentation mechanism [7].

Example 3.2 (derived from [7]) We want to prove the validity of Formula
(9) over the naturals. We assume that (10) is valid in the extended theory.

(9) ∀A,K,L.(L ≤ MIN (A) ∧ 0 < K ∧ A 6= nil → L < MAX (A) + K)

(10) ∀A.(A 6= nil → MIN (A) ≤ MAX (A))

The decision procedure can make use of Inequalities (11)–(13) derived from
the negation of (9). We assume that the decision procedure handles terms
starting with uninterpreted function symbols just like variables over the natu-
rals. Therefore, we omit explicit generalizations.

(11) L ≤ MIN (A) (12) 1 ≤ K (13) MAX (A) + K ≤ L

As the decision procedure only tries to eliminate the heaviest terms in an in-
equality, it does not perform a single step (assuming the same order on the
terms as in Example 3.1). But Lemma (10) may be applied as it contains addi-
tional information about the heaviest term of (11). The condition of the lemma
can be relieved because the same literal occurs in Formula (9). Therefore, we
can augment the data base of the decision procedure with the conclusion of
the lemma, namely MIN (A) ≤ MAX (A). Then we can replay the proof from
Example 3.1. 2

Example 3.2 can be complicated further by replacing the condition A 6= nil
in Formula (9) with length(A) > 0, introducing another uninterpreted func-
tion symbol. Then, the condition of Lemma (10) is not directly present in
Formula (9) but has to be relieved by recursively calling the simplifier of the
theorem prover and the decision procedure.

In the following example, we want to indicate how our integration scheme
supports the speculation of auxiliary lemmas required for the augmentation
mechanism if these lemmas are not present.

Example 3.3 We consider Formula (9) from Example 3.2 (in clausal form)
and want to derive Lemma (10). Figure 1 illustrates our derivation in form
of a proof state tree with the root goal node displayed at the top.

We first try to prove the clause automatically by calling tactic simplify.
This automatic proof attempt starts by normalizing all literals with inference
rule la-norm. The literals (or terms) that are used by an inference rule are
framed in Figure 1. Since tactic simplify uses the heuristics to eliminate only
heaviest terms, the proof attempt fails after the three normalization steps.

5

Schmidt-Samoa

{ L < +(MAX(A),K) , ¬(L ≤ MIN(A)), ¬(0 < K), A = nil }

la-norm

{ +(1,L) ≤ +(K , MAX(A)), ¬(L ≤ MIN(A)) , ¬(0 < K), A = nil }

la-norm

{ +(1,L) ≤ +(K , MAX(A)), +(1, MIN(A)) ≤ L, ¬(0 < K) , A = nil }

la-norm

{ +(1, L) ≤ +(K , MAX(A)), +(1, MIN(A)) ≤ L , K ≤ 0, A = nil }

≤-var-elim

{ +(1, MIN(A)) ≤ +(K , MAX(A)), +(1,L) ≤ +(K , MAX(A)), +(1, MIN(A)) ≤ L, K ≤ 0, A = nil }

≤-var-elim

{ MIN(A) ≤ MAX(A), +(1, MIN(A)) ≤ +(K , MAX(A)), +(1,L) ≤ +(K , MAX(A)), +(1, MIN(A)) ≤ L, K ≤ 0, A = nil }

≤-var-elim

{ L ≤ MAX(A), MIN(A) ≤ MAX(A) , +(1, MIN(A)) ≤ +(K , MAX(A)), +(1,L) ≤ +(K , MAX(A)), +(1, MIN(A)) ≤ L, K ≤ 0, A = nil }

Fig. 1. Derivation of Lemma (10) from Formula (9)

Calling the special purpose tactic leq-var-elim, all variable elimination
steps with inference rule ≤-var-elim are performed. This results in a last
goal node that contains the needed auxiliary lemma as subformula, marked with
frames in Figure 1. Therefore, we get a hypothesis for an auxiliary lemma. 2

4 Close Integration of Linear Arithmetic

In this section, we present a simplified version of our integration scheme for
PNA into the inductive theorem prover QuodLibet. Due to lack of space, we
have to leave out many technical details. These can be found in [18]. Instead,
we try to explain the basics of our approach intuitively.

To guarantee a consistent integration of PNA, we assume a base specifica-
tion spec0 that consists of a sort Nat with constructors 0 and s and defined
function symbols +, - and *. Constructor ground terms si(0) will be written
as i. The defined function symbols are specified by the axioms:

(14) { +(x , 0) = x } (15) { +(x , s(y)) = s(+(x , y)) }

(16) { -(x , 0) = x } (17) { -(0, s(y)) = 0 } (18) { -(s(x), s(y)) = -(x , y) }

(19) { *(x , 0) = 0 } (20) { *(x , s(y)) = +(*(x , y), x) }

QuodLibet’s admissibility condition guarantees that the class of data mod-
els DMod(spec) for each extended specification spec of spec0 is not empty.
Thus, the semantics is welldefined. The soundness proofs of our inference
rules for PNA are based on inductively valid lemmas for the base specification
spec0. Note that the naturals provide one of the data models for spec0.

6

Schmidt-Samoa

4.1 Inference Rules for PNA

A decision procedure for PNA can be divided into the following steps: normal-
ization, variable elimination and a check of ground instances. For the integra-
tion into QuodLibet, we transform the procedure sketched in Section 1 into
a semi-decision procedure for inductive validity using negation. The state of
the decision procedure is represented directly within the goal clauses in form
of new literals added by the inference rules. Note that we only have to add in-
ference rules for the decision procedure. The augmentation mechanism can be
realized by a lemma application mechanism already present in QuodLibet.

4.1.1 Inference Rule la-norm

To support the variable elimination steps, we have to determine the number
of occurrences of each term in an inequality. Therefore, we define polynomials
and normalized inequalities. We assume <Term to be a fixed, total, wellfounded
order on terms.

Definition 4.1 (Polynomials / Factors / Multiplicands / Constants)
p is a polynomial if p ≡ c +

∑n

i=1 citi and for all i, j ∈ {1, . . . , n}: c, ci ∈ N,
ci 6= 0, ti ∈ Term(F, V), top(ti) 6= + and ti <Term tj for i < j. ci is called
factor, ti multiplicand, and c constant of the polynomial p.

A polynomial can be easily represented as a term if we construct the sum with
operators + and * with parenthesis associating to the right. Additionally, we
eliminate factors with value 1 and constants with value 0. We identify polyno-
mials with their term representation. Thus, we can use them in (in)equalities.

Definition 4.2 (Normalized Inequalities) p1 ≤ p2 is a normalized in-
equality if p1 and p2 are polynomials that do not share any multiplicand, one
of the constants is equal to 0, and the set of factors of p1 and p2 is coprime.

Every (in)equality l over terms of sort Nat can be transformed into an equiv-
alent formula containing only normalized inequalities: Both sides are trans-
formed into polynomials and common occurrences of multiplicands and con-
stants are canceled. Coprimality is achieved by dividing the inequality through
the greatest common divisor g of all factors. If g does not divide the constant
of p1 (resp. p2), the result can be rounded up (resp. down) without changing
the set of integer solutions. We assume a normalization function ‘norm’ that
performs the whole transformation. In fact, we use different implementations
obeying Definition 4.2. On the one hand, we want to simplify the multipli-
cands as far as possible; on the other hand, we want to reduce the number of
case splits (see Section 4.1.4). A normalization function may leave the toplevel
occurrences of operator ‘-’ untouched, or may eliminate them according to Ax-
ioms (16) to (18). In this case, the normalization function has to introduce a
case split w.r.t. the linearization hypothesis [7] whether the minuend is greater
or equal than the subtrahend. In general, a normalization function has the
form norm(l) = ((lh1, nf1), . . . , (lhk, nfk)) such that for each i ∈ {1, . . . , k}: lhi

7

Schmidt-Samoa

is a sequence of normalized inequalities, nfi is a normalized inequality and the
literal l is equivalent to (

∨
lh1 ∨ nf1)∧ · · · ∧ (

∨
lhk ∨ nfk). The sets lhi are the

linearization hypotheses and the inequalities nfi the normal forms of l. Our
concrete implementations can be found in [18] based on ideas from [7].

The application of the inference rule la-norm(j) creates one subgoal for
each normal form of literal lj: It replaces lj with its normal form nfi and adds
the linearization hypotheses lhi to the front of the subgoal.

la-norm(j):

{l1, . . . , lj−1, lj , lj+1, . . . , ln}

lh1 ∪ {l1, . . . , lj−1,nf1, lj+1, . . . , ln} . . . lhk ∪ {l1, . . . , lj−1,nfk, lj+1, . . . , ln}

where norm(lj) = ((lh1,nf1), . . . , (lhk,nfk)).

4.1.2 Inference Rule ≤-var-elim

Given two normalized inequalities lj1 ≡ p1 ≤ p2 and lj2 ≡ p3 ≤ p4 with

pk ≡ c(k) +
∑nk

i=1 c
(k)
i t

(k)
i , we want to eliminate a common term t ≡ t

(1)
u ≡ t

(4)
v .

First, we negate both inequalities. The result is 1 + p2 ≤ p1 and 1 + p4 ≤ p3,
respectively. Then, we multiply the first inequality with c

(4)
v and the second

one with c
(1)
u . Let p′1 ≡ c

(4)
v p1, p′2 ≡ c

(4)
v +c

(4)
v p2, p′3 ≡ c

(1)
u p3 and p′4 ≡ c

(1)
u +c

(1)
u p4.

The addition of the two inequalities results in p′

2 +p′4 ≤ p′1 +p′3. Thus, we may
add its negation 1 + p′1 + p′3 ≤ p′2 + p′4 preserving soundness. This inequality

contains c
(1)
u c

(4)
v t on both sides which will be eliminated by normalization.

The application of inference rule ≤-var-elim(j1, j2, t) adds the normal
forms of the negation of the last inequality to the front of the clause.

≤-var-elim(j1, j2, t):

{l1, . . . , lj1 , . . . , lj2 , . . . , ln}

lh1 ∪ {nf1, l1, . . . , lj1 , . . . , lj2 , . . . , ln} . . . lhk ∪ {nfk, l1, . . . , lj1 , . . . , lj2 , . . . , ln}

where norm(1 + p′1 + p′3 ≤ p′2 + p′4) = ((lh1,nf1), . . . , (lhk,nfk)), p′i defined as above.

Usually, the normalization of the sum of normalized inequalities results in one
normal form without linearization hypotheses. In this case, the application of
the inference rule just adds one new subgoal that contains one new literal.

Note that we do not restrict the inference rule to heaviest terms since this
is not important for its soundness. Instead, our inference rule is more general.
Its automatic application is restricted by heuristics implemented in tactics.

4.1.3 Inference Rule ≤-taut

As inequalities are only defined over terms of sort Nat, each normalized in-
equality 0 ≤ p is (inductively) valid. Thus, we get a simple tautological
inference rule that does not create any new subgoals.

≤-taut(j): {l1, . . . , lj , . . . , ln}

where lj ≡ 0 ≤ p.

8

Schmidt-Samoa

4.1.4 Further Refinements

Our current integration of a decision procedure for PNA consists of a couple
of further inference rules:

• ≤-case-split can be used to turn the semi-decision procedure for PNA
into a decision procedure, see Section 6.

• ≤-removal and ≤-subs-removal eliminate redundant literals that do not
contain additional information, i.e. inequalities of the form c + t ≤ 0 with
1 ≤ c; or c1 + t1 ≤ c2 + t2 if a stronger inequality d1 + t1 ≤ d2 + t2 is present
with c2 + d1 ≤ c1 + d2. This reduces the complexity of the goal clause.

• 6=-var-elim and la-const-rewrite allow one to directly eliminate one
variable in a negated equation with rewriting techniques [14].

• la-term-norm replaces a term of sort Nat with its polynomial w.r.t. Def. 4.1.

To reduce the number of case splits, we offer three different normalization
functions, resulting in three different normalization levels for literals. Only
the third level converts an equality into two inequalities. Only the second and
third level eliminate toplevel occurrences of the operator ‘-’ in multiplicands.
On the first level, we do not split at all w.r.t. equalities and operator ‘-’.

As QuodLibet can handle partially defined operators, the inference rules
may have to create additional definedness subgoals for terms starting with
a defined operator. Due to lack of space, we do not present further details
here. In our examples, we hide the definedness subgoals created. Nevertheless,
definedness subgoals are created in the case studies: They are responsible for
some of the inference rules applied as well as for a slice of the runtime needed.

4.1.5 Properties of the Inference Rules

The following lemma states two important local properties of our new inference
rules: soundness and safeness. The soundness of all inference rules guarantees
the inductive validity of a lemma with a closed proof state tree provided
that all non-inductively applied lemmas are inductively valid. Vice versa, if
a goal with a non-valid clause, like the empty clause, is derived in a proof
attempt of a lemma, then this lemma (or one of the applied lemmas) cannot
be inductively valid because of the safeness property of the inference rules. A
proof of Lemma 4.3 can be found in [18].

Lemma 4.3 All inference rules for PNA are sound and safe. 2

4.2 Automation

According to NQTHM [6] and ACL2 [15], we have implemented a waterfall model
that divides the simplification process into phases. The idea of a waterfall
model is to start with the cheapest phases that promise the highest profit.
The control of our waterfall is simple but flexible and can be configured dy-
namically. Its simplicity allows the easy integration of new operations to
handle additional proof patterns. Its flexibility is sufficient to fix the order for

9

Schmidt-Samoa

applying the inference rules in a suitable way with a table-based configuration.
Each operation can be additionally influenced by optional parameters.

Our implementation uses a separate tactic to control the recursive structure
of the waterfall. For each open goal, each phase is applied in succession until
the first phase succeeds. During the application of a phase, each literal in the
goal is handled in succession. A literal is handled by calling those operations
of the phase that are associated with the type of the literal. Thus, each
phase contains for each type of literal a list of operations to be checked for
applicability. The type of a literal consists of the predicate symbol of the
literal (=, def, <, ≤) and a flag whether the literal is negated.

An operation is called with the considered goal and literal as arguments.
It is intended to apply a number of inference rules to handle a certain proof
pattern. If the operation fails, it has to restore the former state before it was
called. Thus, it has to delete all proof steps applied by itself. If the operation
succeeds, it returns all open subgoals that should be handled by a recursive
call of the simplification process. The proof steps of a successful operation will
not be deleted anymore. Thus, the operation is responsible to check whether
the proof pattern applies. To achieve this, the operation may recursively call
the simplification process. But these calls should be restricted to perform
complete proofs of certain subgoals.

If an operation succeeds, the simplification process is usually started from
the beginning for the resulting subgoals. To provide more flexibility, we may
choose a different behavior. For each phase we may specify two lists of phases:
The phases of the first list are called for each new subgoal and the (rewritten)
literal for which the operation succeeded. The phases of the second list are
called for each new subgoal and the new literals that were added by the suc-
cessful operation. This allows us to define a specific behavior as response to a
successful operation. Furthermore, we may choose to complete the phase for
all the literals that were already present in the original goal, before we start
the simplification process from the beginning. In this way, we can realize a fair
handling of every literal in the goal clause. We may even choose to continue
the simplification process with the next phase. This is sensible if we know
that the first phases will fail anyway so that we do not have to check them
once again. This is the case e.g. for a phase that only removes literals.

Before we integrated a decision procedure for PNA, our waterfall consisted
of the following five phases: The first proved simple tautologies; the second
removed redundant literals; the third applied directly applicable lemmas (i.e.
lemmas whose condition literals are directly present in the goal clause); the
fourth decomposed literals and applied lemmas even if they were not directly
applicable; the fifth used equalities for cross-fertilization [6]. For the integra-
tion of the decision procedure, for each normalization level, we add one phase
to normalize (in)equalities over terms of sort Nat; one phase to eliminate vari-
ables in normalized negated equations and inequalities, respectively; one phase
to replace a term with its polynomial; for negated equations and inequalities,

10

Schmidt-Samoa

one phase to implement the augmentation mechanism; and one phase to in-
troduce a Cut with a tautological literal 0 ≤ v to allow the elimination of v

on the right-hand side of inequalities. Furthermore, we extend the first two
phases of the old waterfall to prove simple tautologies for inequalities and to
remove redundant inequalities. We also split the third and fourth phase into
two parts: Definedness atoms are handled before we normalize (in)equalities.
For the other types of literals, these phases are applied after the variable elim-
ination steps. The other new phases as well as the normalization of literals in
the third normalization level are inserted between the fourth and fifth phase
of the old waterfall. In this way, we realize in tactic simplify a simplification
process that interleaves the decision procedure with the previous phases of
the theorem prover on a fine-grained level. This interleaving is based on our
intuition as well as on the experiments we have performed. Nevertheless, our
integration is not optimal, yet. We will improve e.g. our heuristics to restrict
the augmentation mechanism furthermore. The flexibility of our integration
scheme supports us in this task.

Independently from our simplification process, we have implemented a spe-
cial purpose tactic leq-var-elim to facilitate the speculation of auxiliary lem-
mas for the augmentation mechanism. This tactic performs all variable elim-
ination steps possible, without considering the heuristics to eliminate only
heaviest terms. To guarantee termination, the tactic performs all variable
elimination steps for a term only once. It starts with the heaviest multipli-
cand w.r.t. <Term that occurs in an inequality. The soundness of the tactics is
guaranteed by Lemma 4.3.

5 Case Studies

With our case studies, we want to demonstrate that our integration scheme is
sensible. Therefore, we evaluate it on five problems taken from the literature
[7,14]. These problems were used as benchmarks for the incorporation of the
extended proof method EPM into Clam [10], and constraint contextual rewriting
CCR(X) into RDL [2], respectively. Problem 6 is a little bit more challenging.
It entails that the square root of 2 is irrational. The proof is performed with
induction based on geometric ideas of Hippasos of Metapont. The induction
scheme that can hardly be guessed algebraically is supplied manually. The
rest of the proof is done automatically. Table 1 contains for each problem the
auxiliary lemmas L that are available to prove goal G. The last three columns
contain the runtime in seconds for the systems Clam, RDL and QuodLibet

(QL), respectively. An entry ‘—’ means that the test was not performed with
the system, ‘?’ means that the goal was not proved. Note that we did not
perform the experiments for Clam and RDL on our own. Instead we quote the
results mentioned for Clam in [10] and for RDL in [2]. The tests for Clam were
performed on a 433 Mhz PC, whereas the tests for RDL and QuodLibet were
made on a 1 Ghz PC. Note that our measurements contain the output of a

11

Schmidt-Samoa

Prob# Problem Clam RDL QL

1 [7] G { L < +(MAX(A),K), ¬(L ≤ MIN(A)), ¬(0 < K), A = nil } 0.14 — 0.02

L (i) { MIN(A) ≤ MAX(A), A = nil }

2 [7] G { +(I , DELTA1(PAT ,LP ,C)) ≤ MAXINT , ¬(+(LP ,LT) ≤ MAXINT), ¬(I ≤ LT) } 0.23 0.01 0.02

L (i) { DELTA1(PAT ,LP ,C) ≤ LP }

3 [7] G { +(W , LEN(DEL(Z ,A))) < +(K ,V), MEMB(Z ,A) 6= true, ¬(+(W , LEN(A)) ≤ K) } — 0.01 0.02

L (i) { LEN(DEL(X , S)) < LEN(S), MEMB(X , S) 6= true }

4 [7] G { +(+(MS(c), *(MS(a), MS(a))), *(MS(b), MS(b))) < +(+(+(MS(c), *(MS(b), MS(b))),

*(2, *(MS(a), *(MS(a), MS(b))))), *(MS(a), *(MS(a), *(MS(a), MS(a))))) }

5.73 0.03 0.52

L (i) { J ≤ *(I , J), ¬(0 < I) } (ii) { 0 < MS(x) }

5 [14] G { z < +(g(x), y), p(x) 6= true, ¬(z ≤ f(max(x , y))), ¬(0 < min(x , y)),

¬(x ≤ max(x , y)), ¬(max(x , y) ≤ x) }

? 0.06 0.10

L (i) { f(x) ≤ g(x), p(x) 6= true } (ii) { min(x , y) = y , max(x , y) 6= x }

6 G { *(2, *(y , y)) 6= *(x , x), y = 0 } — — 1.72

L (i) { *(w , x) ≤ *(y , z), +(1, y) ≤ w , +(1, z) ≤ x } (ii) { *(y , y) 6= 0, y = 0 }

Table 1
Benchmark Problems

P# T. Literals (Framed Literals are Important for Lemma Speculation) S.L.

1 S +(1,L) ≤ +(K , MAX(A)), +(1, MIN(A)) ≤ L, K ≤ 0, A = nil —

E L ≤ MAX(A), MIN(A) ≤ MAX(A) , +(1, MIN(A)) ≤ +(K , MAX(A)), . . . (i)

2 S +(I , DELTA1(PAT ,LP ,C)) ≤ MAXINT , +(1,MAXINT) ≤ +(LP ,LT), +(1,LT) ≤ I —

E +(LT , DELTA1(PAT ,LP ,C)) ≤ MAXINT , +(MAXINT , DELTA1(PAT ,LP ,C)) ≤ +(*(2,LP),LT),

+(1,MAXINT) ≤ +(I ,LP), DELTA1(PAT ,LP ,C) ≤ LP , +(I , DELTA1(PAT ,LP ,C)) ≤ +(LP ,LT), . . . (i)

3 S +(1, +(W , LEN(DEL(Z ,A)))) ≤ +(K ,V), MEMB(Z ,A) 6= true , +(1,K) ≤ +(W , LEN(A)) —

E +(1, LEN(DEL(Z ,A))) ≤ +(V , LEN(A)) , . . . (i)

4 S +(1, *(MS(a), MS(a))) ≤ +(*(2, *(MS(a), *(MS(a), MS(b)))), *(MS(a), *(MS(a), *(MS(a), MS(a))))) (i)

S *(MS(a), *(MS(a), MS(a))) 6= *(MS(a), MS(a)), *(MS(a), MS(b)) 6= 0 (ii)

5 S max(x , y) 6= x , +(1, z) ≤ +(y , g(x)), p(x) 6= true, +(1, f(x)) ≤ z , min(x , y) ≤ 0 (ii)

S max(x , y) 6= x , +(1, z) ≤ +(y , g(x)), p(x) 6= true , +(1, f(x)) ≤ z , y ≤ 0 —

E z ≤ g(x), f(x) ≤ g(x) , +(1, f(x)) ≤ +(y , g(x)), . . . (i)

6 S +(1, y) ≤ x , *(2, *(y , y)) 6= *(x , x) , y = 0 (i)

S *(y , y) 6= 0 , +(1, y) ≤ x , 0 6= *(x , x), y = 0 (ii)

Table 2
Speculation of Auxiliary Lemmas

detailed proof log. From the results in Table 1, we can see that our integration
scheme is competitive.

Next, we want to investigate how our close integration into QuodLibet

supports the speculation of auxiliary lemmas. Thus, we consider the problems
from Table 1 once again but without any auxiliary lemmas. We sketch the
process of deriving these lemmas with QuodLibet in Table 2. For each
problem, we list the tactics (T.) we call: tactic simplify is represented with
S, tactic leq-var-elim with E. The literals of the resulting subgoal are given
in the next column. For tactic leq-var-elim we only display the new literals;

12

Schmidt-Samoa

the dots stand for the literals after the last execution of tactic simplify given
in the previous line. Literals that are used to speculate a lemma are framed.
The last column contains the speculated lemmas (S.L.) w.r.t. Table 1. The
number of literals measures the complexity of the goal: The more literals are
present, the more difficult it is to find the important literals, and thus an
auxiliary lemma. We believe that their identification has to be done with
human expertise. We assume that this task is rather easy if the auxiliary
lemma of the considered problem in Table 1 is a subformula of the resulting
subgoal clause in Table 2.

The first two problems do not cause any difficulties. After applying both
tactics, the auxiliary lemmas are subformulas of the resulting goal clauses.
This is, however, not the case if we only call tactic simplify. For Problem 1,
the derivation of the subgoal can be found in Figure 1 on Page 6. The first
important literal can be identified if we look for a literal that contains at least
one uninterpreted function symbol but as few extra variables as possible. In
this context, by an extra variable of a literal we mean a variable that does
not occur in a subterm of the literal with an uninterpreted function symbol as
toplevel symbol. The last goal node in Figure 1 contains the extra variable L
for the first and fifth literal; K for the third and sixth literal; L and K for the
fourth literal; and A for the seventh literal. But a lemma that only consists
of the second literal MIN(A) ≤ MAX(A) is not inductively valid. Instead, a
human expert has to add the last literal A = nil to get an inductively valid
lemma. For Problem 3, the resulting subgoal contains an additional variable
V . This can be eliminated if we use the fact that we only deal with naturals.
But at the moment, this is done automatically by tactic simplify only if this
seems to be advantageous. Nevertheless, if only one lemma is missing, our
close integration facilitates the speculation of auxiliary lemmas quite well.

For the remaining problems, two auxiliary lemmas are missing. For Prob-
lem 4 and 6, our tactics do not provide any additional information for the
first lemma. This is not very surprising since in these examples no variable
elimination steps can be performed at all. Note that the first important literal
for Problem 6 is introduced by the manual inductive case split. With these
two important literals for Problem 6, it is not difficult for a human user with
domain knowledge about multiplication to guess the required monotonicity
property as auxiliary lemma. To speculate the first auxiliary lemma for Prob-
lem 5, an experienced user only needs to know the first important literal and
the left-hand side of the second one. Then, the relationship between max and
min is obvious. Note that in the original goal clause presented in Table 1,
the first important literal is not present. This complicates the speculation of
the required auxiliary lemma for the original goal. Only for Problem 4, the
second auxiliary lemma is not a subformula of the considered subgoal clause.
But the important literal of this problem suggests an auxiliary lemma that
may be used as well.

To conclude, seven of nine lemmas can be speculated easily with our in-

13

Schmidt-Samoa

tegration scheme. Four of them require an additional call to leq-var-elim

because simplify does not provide enough information. 14 of 42 literals are
important for the speculation. In the presented case studies there is no expo-
nential blow-up of the inequalities.

6 Related Work

In the literature, there exist many other decision procedures for PRA (PIA
or PNA) besides that of Hodes [9]. But as explained in [7], the efficiency of
the decision procedure itself does not matter when using it in an extended
theory. In the cited case study with NQTHM, an instantaneous oracle for linear
inequalities would reduce the overall runtime by less than 3%. Instead, the
interaction between the decision procedure and the theorem prover is more
important. Therefore, we have not investigated other decision procedures.

Our work is essentially influenced by [7], where Boyer & Moore describe
many helpful heuristics to restrict the search space. But their description is
sometimes hard to read as they use internal data structures special to their
theorem prover NQTHM. Instead, we use inference rules for the incorporation.

In [14], Kapur & Nie extend the approach from [7] at least in two ways:
They do not convert equalities into two inequalities but use equalities directly
to eliminate variables. This handling of equality information is more efficient
than that in [7]. Furthermore, they extend the decision procedure for PRA
in such a way that it is also a decision procedure for PIA and PNA: At
first, the closure under the variable elimination steps is calculated. If no
unsatisfiable inequality can be found, then there exists a rational solution
which is determined by the inequalities. This solution has to be checked for
a solution over integers (or naturals). We have implemented three inference
rules to handle these improvements (see Section 4.1.4). Our automatic proof
control does not realize the whole decision procedure for PNA as this may
result in a huge case distinction. Instead, we use this method only if the
intervals that have to be checked are small. Otherwise, we have to use other
proof techniques e.g. induction.

Janicic, Bundy & Green [11] formalize and generalize the approach from
[7]. Their presentation is independent from the theory and the decision pro-
cedure to be used. Instead, they assume that the decision procedure can be
divided into two steps: the elimination of variables and a check on ground
instances. This approach is further developed in [10] taking into account the
combination of decision procedures. Our fragmentation of the decision pro-
cedure into inference rules is influenced by [11]. As a third major step of a
decision procedure, we identify the normalization of literals.

The approach proposed by Armando & Ranise [2] is similar to that in
[11]. But they combine the decision procedure more closely with rewriting.
They pose additional demands on the rewriting mechanism and the decision
procedure. This allows them to prove soundness and termination properties

14

Schmidt-Samoa

for their approach. The soundness of our approach is guaranteed by local
properties of our inference rules. Termination properties may be proved by
constraining the control in a similar way as in [2].

In [5], Berezin, Ganesh & Dill also propose an inference system for their
integration scheme. Our inference rules are on a higher level. Therefore, they
can be easier applied manually. Although their inference rules can be easier
checked with an external proof checker this is also possible for ours.

[16] and [8] contain proposals for the speculation of rewrite rules. For
nonlinear equalities, Armando, Rusinowitch & Stratulat propose the use of
Buchberger’s algorithm based on Gröbner basis in [3]. In [1] and [12], ap-
proaches are described to extend the integration of linear arithmetic to non-
linear arithmetic. These extensions almost only effect the heuristics to choose
or speculate lemmas for the augmentation mechanism. Therefore, their inte-
gration into our approach should be easy. This is subject of further research.

7 Conclusion

In this paper, we have presented a close integration scheme for the incor-
poration of a decision procedure for PNA into the inductive theorem prover
QuodLibet. Our approach strictly separates the logic engine given by an
inference system from its control. This allows us to easily prove the sound-
ness of our integration. Furthermore, it enables the creation of detailed proof
objects that can be easily checked by implementing a proof checker based on
our inference rules. In spite of these detailed proofs, our case studies illus-
trate that our integration scheme is competitive with other approaches as e.g.
EPM and CCR(X). We have also demonstrated how our approach can be used
to facilitate the speculation of auxiliary lemmas. For this, we use a special
purpose tactic that does not obey some of the heuristic restrictions inherently
used in other approaches. The evaluation and improvement of our heuristics
is ongoing work. Our flexible integration scheme supports us in this task.

Acknowledgement

I would like to thank R.Rondot for working out the technical details of the
inference rules in his diploma thesis [18]. In this paper, we present our ideas
underlying [18], and describe an improved control. Furthermore, I would like
to thank J.Avenhaus, B. Löchner, C.-P.Wirth, and the anonymous referees
for helpful comments on earlier drafts of this paper.

References

[1] A.Armando and S.Ranise. A Practical Extension Mechanism for Decision

Procedures: the Case Study of Universal Presburger Arithmetic. J.UCS,
7(2):124–140, February 2001.

15

Schmidt-Samoa

[2] A.Armando and S.Ranise. Constraint contextual rewriting. J. Symb. Comp.,
36(1–2):193–216, 2003.

[3] A.Armando, M.Rusinowitch, and S. Stratulat. Incorporating decision

procedures in implicit induction. J. Symb. Comput., 34(4):241–258, 2002.

[4] J. Avenhaus, U. Kühler, T. Schmidt-Samoa, and C.-P.Wirth. How to prove

inductive theorems? QuodLibet! 19th CADE, LNAI 2741, pp. 328–333, 2003.

[5] S. Berezin, V. Ganesh, and D. L.Dill. An online proof-producing decision

procedure for mixed-integer linear arithmetic. 9th TACAS, pp. 521–536, 2003.

[6] R. S. Boyer and J S.Moore. AComputational LogicHandbook. Acad. Press, 1988.

[7] R. S. Boyer and J S.Moore. Integrating decision procedures into heuristic

theorem provers: a case study of linear arithmetic. Machine intelligence 11,
pp. 83–124. Oxford University Press, 1988.

[8] J.Giesl and D. Kapur. Deciding inductive validity of equations. 19th CADE,
LNAI 2741, pp. 17–31. Springer, 2003.

[9] L.Hodes. Solving problems by formula manipulation in logic and linear

inequalities. 2nd IJCAI, pp. 553–559, London, 1971.

[10] P. Janicic and A.Bundy. A general setting for combining and integrating

decision procedures into theorem provers. J. Autom. Reas., 28:257–305, 2002.

[11] P. Janicic, A. Bundy, and I.Green. A framework for the flexible integration of

a class of decision procedures into theorem provers. 16th CADE, LNAI 1632,
pp. 127–141, 1999.

[12] W. A.Hunt Jr., R.B. Krug, and J S.Moore. Linear and nonlinear arithmetic in

ACL2. CHARME, LNCS 2860, pp. 319–333. Springer, 2003.

[13] W. A.Hunt Jr., R.B. Krug, and J S.Moore. Integrating nonlinear arithmetic

into ACL2. ACL2-2004.

[14] D. Kapur and X. Nie. Reasoning about numbers in Tecton. 8th ISMIS, LNCS
869, pp. 57–70. Springer, 1994.

[15] M. Kaufmann, and P.Manolios, J S.Moore. Computer-Aided Reasoning: An

Approach. Kluwer Academic Publishers, 2000.

[16] D. Kapur and M. Subramaniam. Automatic generation of simple lemmas from

recursive definitions using decision procedures - preliminary report. 8th ASIAN,
pp. 125–145, 2003.

[17] G. Nelson and D. C.Oppen. Simplification by cooperating decision procedures.
ACM Trans. Program. Lang. Syst., 1(2):245–257, 1979.

[18] R.Rondot. Integration von Entscheidungsverfahren in den induktiven

Theorembeweiser QuodLibet. Diploma thesis (in German), FB Informatik, TU
Kaiserslautern, Germany, 2004.
www-avenhaus.informatik.uni-kl.de/quodlibet/LADARondot.ps.gz

[19] R. E. Shostak. Deciding combinations of theories. J. ACM, 31(1):1–12, 1984.

16

http://www-avenhaus.informatik.uni-kl.de/quodlibet/LADARondot.ps.gz

	Introduction
	The Inductive Theorem Prover QuodLibet
	A Simple Example
	Close Integration of Linear Arithmetic
	Inference Rules for PNA
	Automation

	Case Studies
	Related Work
	Conclusion
	Acknowledgement
	References

