Abstract Notions and Inference Systems
for Proofs by Mathematical Induction

Claus-Peter Wirth* and Klaus Becker

Fb. Informatik, Universitit Kaiserslautern, D-67663, Germany
{wirth, klbecker}@informatik.uni-kl.de

Abstract. Soundness of inference systems for inductive proofs is sometimes
shown ad hoc and a posteriori, lacking modularization and interface notions. As
a consequence, these soundness proofs tend to be clumsy, difficult to understand
and maintain, and error prone with difficult to localize errors. Furthermore, com-
mon properties of the inference rules are often hidden, and the comparison with
similar systems is difficult. To overcome these problems we propose to develop
soundness proofs systematically by presenting an abstract frame inference sys-
tem a priori and then to design each concrete inference rule locally as a sub-rule
of some frame inference rule and to show its soundness by a small local proof
establishing this sub-rule relationship. We present a frame inference system and
two approaches to show its soundness, discuss an alternative, and briefly clas-
sify the literature. In an appendix we give an example and briefly discuss failure
recognition and refutational completeness.

1 Motivation

Given some set of first-order axioms ‘R’, one is often not only interested in those
properties ‘I which are logical consequences of ‘R’, i.e. which hold in all models
of ‘R’: “R [T 7; but also in properties which are only required to hold in some
specific sub-class of the class of models of ‘R’. Instead of restricting the class of mod-
els by some required property, one may also ask for those ‘I for which (instead of
“RET”) only “R[ETITt” must hold for all T taken from a specific set of (e.g.
ground) substitutions. Notions of validity resulting from combinations of possible re-
strictions of these two kinds are usually called inductive validity and the inductively
valid properties are called inductive theorems. In Wirth & Gramlich (1994) we dis-
cussed the most important of these notions in a unified framework on the basis of
positive/negative-conditional equational specifications as introduced in Wirth & Gram-
lich (1993). These theorems are called “inductive” since (finite) proofs for most of
them require mathematical induction. Inductive reasoning extends deductive reasoning
by capturing infinite deductive proofs in a finite cyclic representation, e.g. capturing

* supported by the Deutsche Forschungsgemeinschaft, SFB 314 (D4-Projekt)

['(xo) using “x;=0 V dxjy1. x;=s(x;11)” I'(xo)
0] Togayy o O B =sbin) ooy
I60) TGEE))
I'(s(s(0))) ... (back to top)

in something like

(where the formulas below each line imply the formula above). For this kind of cyclic
reasoning to be sound, the deductive reasoning must terminate for each instantiation of
the theorem. This can be guaranteed when one requires for each cyclic reasoning the
preconditions (usually called induction hypotheses) (e.g. “I'(x1)”) to be smaller than
the “induction” conclusion (e.g. “T'(s(x1))”) w.r.t. some wellfounded ordering, called
induction ordering.

In Walther (1994) we can read the following about proving inductive theorems:
“Research on automated induction these days is based on two competing paradigms:
Implicit induction (also termed inductive completion, inductionless induction, or, less
confusingly, proof by consistency) evolved from the Knuth-Bendix Completion Proce-
dure... The other research paradigm... is called explicit induction and resembles
the more familiar idea of induction theorem proving using induction axioms.”

While the two paradigms are not uniformly defined in the research community,
we call the latter paradigm “explicit” because in the underlying inference systems each
cyclic reasoning is made explicit in a single inference step which brings together induc-
tion hypotheses and conclusions in a set of induction base and induction step formulas
and explicitly guarantees the termination of their cycles with the help of a sub-proof or
-mechanism for the wellfoundedness of the induction ordering resulting from the step
formulas.

The inference systems for implicit induction, however, permit us to spread the
cyclic reasoning as well as the termination control over several inference steps. To re-
discover the inductive cycles in the reasoning we usually have to inspect several in-
ference steps instead of a single one that explicitly does the induction. Possibly since
this seemed to be somewhat difficult compared to the older and well-known explicit
induction, the paradox “inductionless induction” became a name for implicit induc-
tion. Another reason for this name might be the emphasis the researchers in the field of
implicit induction gave to the refutational completeness (cf. § B) of their inference sys-
tems: In general the set of inductively valid theorems is not enumerable for all reason-
able and interesting notions of inductive validity; therefore refutational completeness
is highly appreciated for an inference system for inductive theorem proving as it is an
optimal theoretical quality. Refutational completeness, however, does not help to find
finite proofs for inductively valid formulas (whereas the ability of an inductive theorem
prover to detect invalid formulas is most important under a practical aspect (cf. § A),
especially for inductive theorem proving because of the important role generalizations
play in it, where an invalid formula can result from a valid input theorem due to over-
generalization).

To succeed in proving an inductive theorem in finite time, implicit inductive the-
orem provers have to solve exactly the same problem as explicit inductive theorem
provers, namely to find a finite cyclic representation for an infinite deductive proof as
well as an induction ordering guaranteeing the termination of its cycles. Therefore, if

a theorem prover with sufficient deductive power fails to show an inductive theorem,
then either it fails to construct the proper reasoning cycles or its mechanisms for book-
keeping of ordering information (cf. §2) or for satisfying ordering constraints are too
weak. While inference systems for implicit induction usually have sufficient poten-
tiality to construct the proper reasoning cycles, their bookkeeping of relevant ordering
information may be insufficient for certain proofs (cf. § C for an example), even though
their powerful orderings for satisfying the ordering constraints partially compensate for
this insufficiency. Inference systems for explicit induction on the other hand do not re-
quire any bookkeeping of ordering information since the ordering information is only
of local importance within single explicit induction steps. Explicit inductive theorem
provers usually use rather simple semantic orderings which have turned out to be pow-
erful enough for almost all practical applications. These provers, however, usually do
not find more sophistically structured reasoning cycles, e.g. in mutually recursive do-
mains or in the case (which may be of more importance in practice) that the required
instantiations of the induction hypotheses are difficult to be guessed when the step for-
mulas are synthesized and do not become obvious before the induction hypotheses can
be applied to the induction conclusions (cf. Protzen (1994) for a simple example). From
an abstract point of view and beyond the technicalities usually involved, however, all
inductive proofs of our intuition can be formulated according to each of the two para-
digms without changing the reasoning cycles.

Note, however, that the scope of mathematical induction (i.e. reasoning in termi-
nating cycles) goes beyond inductive theorem proving (w.r.t. our definition above). A
field of application of mathematical induction which is very similar to inductive the-
orem proving w.r.t. data and problem structures is to prove (ground) confluence for
first-order clauses, cf. Becker (1993) and Becker (1994).

Therefore, in our opinion, while arguing for the one and against the other paradigm
should be overcome, a unifying representation of all these induction-based approaches
is not only theoretically possible, but also strongly required from a practical point of
view: The possible combination of insight, methods, techniques, and heuristics based
on results of research in all these fields will be beneficial for the search for proofs by
mathematical induction in practice.

The abstract notions and the frame inference system we present in this paper are
proposed as a top level step towards such a unification. This frame inference system
is necessarily more similar to inference systems for implicit than for explicit induc-
tion, since, from a top level view and according to our definition of the terms, explicit
induction is a form of implicit induction where the induction is restricted to be done
explicitly within single inference steps. The results of the field of explicit induction,
however, are most important for developing concrete inference systems consisting of
practically useful sub-rules of our frame inference rules. While the construction of such
concrete inference systems as well as a comparison and a combination of implicit and
explicit induction are supported by the abstract framework of this paper, a proper treat-
ment of these subjects cannot be given here but must be elaborated in several future
papers.

2 Prover States

Prover states are intended to represent the state of the prover, i.e. to record which sub-
tasks of a proof have been successfully established, which goals remain to be proved,
&c.. Technically, the prover states are the field of our inference relation ° |- ’. For de-
ductive reasoning we may start with a set ‘G’ of goals which contains the theorems we
want to prove, transform them and finally delete them after they have become trivial
tautologies. Such an inference relation, starting from the theorems to be proved and
reducing them until some termination criterion is satisfied, is called analytic, cf. e.g.
Bibel & Eder (1993). These theorems must belong to some set ‘Form’ which contains
the formulas the inference system can treat. If I’ permits only sound transformation
and deletion steps, then from “ GF 0 (where ‘F denotes the reflexive and transitive
closure of ‘) we may conclude that ‘G’ is valid. For practical reasons, we would like
to have a set ‘L’ of lemmas at hand. Into this ‘L’ inference steps can store axioms of
the specification, already proved lemmas or the results of any theorem prover called for
solving special tasks which might be helpful in our inference process. We can then use
‘L’ for transformations of ‘G’ that are only known to be sound relative to ‘L’. Thus our
prover states should be pairs of sets (L, G)’ such that “ (0, G)F (L,0) ” implies validity
of ‘G’ and ‘L’. For inductive reasoning, we additionally need a set ‘H’ of induction
hypotheses. Similar to ‘L’, the set ‘H’ may be built up during the inference process and
used for transformations of ‘G’ which are founded on ‘H’ in the sense that they are only
known to be sound relative to ‘H’. Similar to the treatment of lemmas, our prover states
should be triples of sets ‘(L,H,G)’ such that “ (0,0,G)+F (L,H,0) ” implies validity of
‘G’, ‘L’, and ‘H’. Unlike the lemmas in ‘L’, however, the hypotheses in ‘H’ are not
known to be valid before the whole induction proof is done (i.e. “ G = 0). Here we
are running the risk of being caught in a cyclic kind of reasoning like: “The goal can
be deleted, since it is valid due to the hypothesis, which is valid, if the goal can be
deleted, ...”. On the other hand, some kind of cyclic reasoning is really required for
successful inductive proofs of finite length. We only have to make sure that this cyclic
reasoning terminates. This can be achieved by equipping each formula in ‘H’ or ‘G’
with a weight and allowing a hypothesis to transform a goal only if the weight of the
hypothesis is smaller than the weight of the goal w.r.t. a wellfounded quasi-ordering
¢ <7 (i.e. some reflexive and transitive relation <, whose ordering < := <\ 2 does
not allow infinite descending sequences Jy>3;>3,> ...), which we will call the
induction ordering in what follows.

We would like to point out that we distinguish between the weight of a formula
and the actual formula itself: For explicit induction, weights are not needed on the in-
ference system level because each inductive reasoning cycle is encapsuled in a single
inference step which combines induction conclusions with induction hypotheses into
step formulas. For implicit induction, however, induction conclusions and hypotheses
are not joined from the beginning. Instead, the conclusions are taken as goals and trans-
formed until it becomes obvious which hypotheses will be useful for proving them;
an idea which is just now coming into view of the researchers in the field of explicit

induction, cf. Protzen (1994). At this point, when hypotheses are to be applied to the
transformed goals, their weights are needed to transfer ordering information from the
original goals that generated the hypotheses to the transformed goals. Roughly speak-
ing, the goals must store the weights of hypotheses for which they carry the proof work.
(This still permits mutual induction.) A possible weight for a formula, which is so natu-
ral that there are hardly any other weights in the literature on implicit induction, is (the
value of a measure applied to) the formula itself. However, if we require the weight of a
goal to be determined by the formula alone, then the chance to transform or delete this
goal by means of some fixed hypothesis (which must be smaller w.r.t. * <) gets smaller
with each transformation of the goal into other goals which are smaller w.r.t. ¢ <’. Such
transformation of goals is usually called simplification. While simplification of a goal is
an important! heuristic, the weight of the goal should not change during simplification.
This can be stated more generally: For concrete inference rules it is very important that
a goal can transmit its weight unchanged to the goals which it is transformed into. This
would be generally impossible if the weight of a formula were restricted to be the for-
mula itself. In our approach, therefore, each element ‘3* of “H UG is some syntactic
construct from a set ‘SynCons’. Besides its formula ‘form(3)’, ‘3’ may have some ad-
ditional contents describing its weight. Theoretically, one can consider each syntactic
construct to be a pair made up of a formula expressing some property and a weight
carrying the ordering information for avoiding non-terminating cycles in the use of in-
ductive arguments. For the description of concrete inference systems within our abstract
framework, however, it is more convenient not to restrict the syntactic constructs to this
form because in some of these inference systems the formulas share some structure
with the weights: E.g., in Bachmair (1988) the formulas are the weights, and in Becker
(1994) the weights restrict the semantics of the formulas by the so-called “reference
compatibility”. The distinction between formulas and syntactic constructs (i.e. formu-
las augmented with weights) has the following advantages compared to other inference
systems for implicit induction:

Easier Design of Inference Rules: The design of concrete inference rules
(e.g. as sub-rules of the abstract inference rules of §5 below) becomes simpler
because a transformation of the actual formula does not necessarily include an ap-
propriate transformation of its weight (into a smaller one) and is thus not restricted
by ordering constraints. For an illustrating example cf. § C.

No Global Ordering Restriction: The design of inference steps becomes possible which
transform the formula of a goal into another one which is bigger w.r.t. the induction
ordering, cf. Gramlich (1989).

High Quality of Ordering Information: The loss of ordering information during simpli-
fication of a goal (as described above) is avoided, which (as far as we know) was
first described in Wirth (1991), exemplified by a failure of a formal induction proof

! when the induction ordering contains the evaluation ordering of the functional definitions of
the specification, cf. Walther (1994)

just caused by this loss of ordering information. There it is also sketched how to
store the weight of the goal to avoid this information loss—an idea which is also to
be found in Becker (1993). For an illustrating example cf. § C.

Focus on Relevant Ordering Information: Some induction proofs are only possible
if we do not measure the whole formula (as often is the case when a clause is
measured as the multi-set of all its literals) but only some sub-formula, subterm or
variable of it. Focusing on certain variables is common for human beings (speaking
of “induction on variable x”, e.g.). While for the mechanisms usually applied inside
the induction rule of explicit induction focusing on certain variables (called “mea-
sured variables” in Boyer & Moore (1979) and Walther (1994)) is standard, for fo-
cusing in implicit induction a marking concept was introduced in Wirth (1991) due
to practical necessity, exhibited by an example. The more general focusing that can
be achieved with the syntactic constructs here, permits us not to measure those parts
of formulas which (due to unsatisfiable ordering constraints) block the application
of useful hypotheses, thereby permitting us to focus on the literals (or even terms,
variables) that do get smaller on their way from the induction conclusion to the
induction hypothesis. This permits additional applications of induction hypotheses.
For an illustrating example cf. § C.

All in all, the inference relation ‘ -’ should operate on prover states which are triples
“(L,H,G) ” of finite sets such that ‘L’ contains formulas (from ‘Form’) and ‘H’ and
‘G’ contain syntactic constructs (from ‘SynCons’) whose formulas may be accessed via
the function “ form : SynCons — Form ”. While prover states being trees of syntactic
constructs may be more useful in practice, the simpler data structure presented here
suffices for the purposes of this paper.

3 Counterexamples and Validity

For powerful inductive reasoning we must be able to restrict the test for the weight of a
hypothesis to be smaller than the weight of a goal (which must be satisfied for the per-
mission to apply the hypothesis to the goal) to the special case semantically described by
their formulas. This can be achieved by considering only such instances of their weights
that result from ground substitutions describing invalid instances of their formulas. A
syntactic construct augmented with such a substitution providing extra information on
the invalidity of its formula is called a counterexample. A syntactic construct whose for-
mula is valid thus has no counterexamples. We assume the existence of some set ‘Info’
describing this extra information and require the induction ordering * <’ to be a well-
founded quasi-ordering not simply on “ SynCons ” but actually on “ SynConsx Info ™.
Furthermore, we require “being a counterexample” to be a well-defined basic property
which must be either true or false for each (3,J) € SynConsxInfo. Finally, in order to
formally express the relation between counterexamples and our abstract notion of va-
lidity, we require for each syntactic construct 3 € SynCons that ‘form(3)’ is valid iff
there is no J € Info such that (3,J) is a counterexample.

Let us consider this final requirement for two instantiations of our abstract notion
of validity of formulas:

For the case of inductive validity of a formula ‘I given as indicated in § 1 (i.e. iff
k=, I't for all “inductive substitutions” T and all algebras 4 belonging to the class ‘K’ of
those models which satisfy some additional property required for this kind of inductive
validity) an appropriate way of satisfying the requirement is to define a formula to be
a clause, to define a syntactic construct to be a pair (I, f) of a formula I" and a weight
f (described in terms of the variables of the formula), to define “ form((T, f)) :=T"",
to define the elements of ‘Info’ to be triples “(t,4,%)” with 2 €K and « valuating the
remaining free variables of “I't ” to elements of the universe (or carrier) of the algebra
4, and then to say that “ ((T', f), (1, 4,k)) € SynConsxInfo is a counterexample ” if
T is an inductive substitution and 4, evaluates “ I't ” to false.

For the case of ground joinability (as defined in Becker (1993) or Becker (1994)),
an appropriate way is to define a formula to be either a clause C (where validity means
joinability of all ground instances Ct) or a pair of clauses (C,D) (where validity means
joinability of all those ground instances Ct for which ((C,D),1) is reference com-
patible), to define syntactic constructs to be pairs of clauses, ‘form’ to be the iden-
tity function, ‘Info’ to be the set of substitutions, and then to say that “ ((C,D),t) €
SynConsxInfo is a counterexample ” if T is ground, ((C,D),T) is reference com-
patible, and “ Ct ” is not joinable.

Note that our notion of “counterexample” is a semantic one contrary to the no-
tion of “inconsistency proof” used in Bachmair (1988). Generally speaking, an abstract
frame inference system that is to be fixed prior to the design of concrete inference rules
has to be sufficiently stable and therefore its notions should not rely on our changeable
ideas on formal proofs.

Finally note that even with our emphasis here on proving valid formulas positively
(instead of being refutationally complete), the somewhat negative kind of argumenta-
tion with counterexamples is handier, somewhat less operationally restricted, and more
convenient for defining and proving properties of practically useful inference systems
than the less local formal proofs used in the positive proving approach of Gramlich
(1989) or Reddy (1990).

4 Foundedness

In this section we move from counterexamples to an even higher level of abstraction
which allows the reader to forget about * < ’°, ‘Info’, and counterexamples from § 5 on.
We use the notion of counterexamples to lift © <’ from “SynConsxInfo” to subsets of
‘SynCons’ by explaining what we mean by saying that a set H of hypotheses is founded
on a set G of goals (written HG) or by saying that a set G of goals is strictly founded
on a set H of hypotheses (written G\ H or H G). Roughly speaking, H G indicates
that the hypotheses are known to be valid if a final prover state (i.e. one with an empty
set of goals) can be entailed. H G indicates that the goals in G can be deleted by the
application of smaller hypotheses from H.

Definition 1 (Foundedness). Ler M,H,G C SynCons. Let ‘\,/~’ be a symbol for
a single relation. Now M is said to be strict/quasi-founded on (H,G) (denoted by
MN\J~ (H,G)) if
VX € M. VI € Info.
((X,I) is a counterexample)
((3,J) is a counterexample)
EDEH.EIJGInfo.(/\(N71)>(:J) >
((3,J) is a counterexample)
\/EDEG.EIJGInfo.(/\(NJ)Z(:J))
M is said to be strictly founded on H (denoted by MN\H) if M \,/~ (H,0).
M is said to be (quasi-) founded on G (denoted by M~G) if M \,/~ (0,G).
Note that (for X € SynCons) the expressive power of “ { X} \,/~ ... ” is higher than
that of “ {X}\,... 7 and “ {X}~...” together, since “ { X }\H V {X}~G ” implies
“{X} \,/~ (H,G) 7, but the converse does not hold in general.

=

Corollary 1. Let H C SynCons. Now each of the following seven properties is logi-
cally equivalent to validity of form[H|:

(1) H~O (4) VGCSynCons. HNG

(2) H\0 (5) YVGCSynCons. H\,G

(3) HNH (due to | (6) IGCSynCons. ((form[G] is valid) N H~G)
wellfoundedness of *>") |(7) 3GCSynCons. ((form[G] is valid) AN H\,G)

Corollary 2. Let H C G C SynCons. Now: ON\NHNG.

Corollary 3. The following inclusion-properties hold: "\, C . o C \,. no\, C
o

Corollary 4.

(1) Mi~Ny N Mo,~"N, = M{UMy, ~ N{UN,
(2) M N, N1 N Mo \\N, = M{UM; \, NJUN,
(3) M{UM> ~ Ny = M ~ NJUN,
(4) MiUM; \ N, = M\, N{\UN;
(5) G\ H = G\ H\G

Note that the last item of the previous as well as the first item of the following corollary
rely on the wellfoundedness of *>".

Corollary 5.
(1) MN\,/~(H,G) N HAGUM = M~G
(2) M\,/~(H,G) AN G\\N = M\ HUN

Corollary 6. ~ is a quasi-ordering.

Corollary 7.

\\ Is a transitive relation, which is neither irreflexive nor generally reflexive.

Let VieN.H;, G; C SynCons. Then (by the wellfoundedness of >)
VieN. H\H;i1 implies that form[H;] must be valid. More generally,
VieN. H; \/~ (Hit+1,Gi+1) implies HimUj>iGj. Moreover, the restriction

of \\ to those H C SynCons with invalid form[H| is a wellfounded ordering.

S The Frame Inference System

We now come to four abstract inference rules defining ‘ = . Thus, in this and the fol-
lowing three sections, ‘-’ will be restricted to application of one of the four following
inference rules.

In what follows, let I' € Form ; X,J € SynCons; L, L’ be finite subsets of ‘Form’;
and H, H', G, G', and M be finite subsets of ‘SynCons’:

Expansion: (L JH ,G
(L H ,GU{1})
Hypothesizing: (L JH ,G)
(L JHU{X},G)
if Lis invalid or {X} ~HUG
Acquisition: (L JH ,G)
(LU{Tl'} .H .G)
if L is invalid or I is valid.
Deletion: (L JH ,GU{3})
(L H .G)

if Lis invalid or {1} \ /~ (H,G)

The Expansion rule has two typical applications. The first introduces sub-goals for a
goal that is to be deleted, cf. the Transformation rule below. The second is the very diffi-
cult task of introducing new conjectures that are needed for the whole induction proof to
work. The Hypothesizing rule makes a new hypothesis ‘X’ available for the proof. Since
forward reasoning on hypotheses is hardly required, it can usually be restricted to the
following sub-rule (cf. Corollary 2) which just stores the goals. This storing is necessary
indeed because these goals
usually have been transformed when they become useful for inductive reasoning.

Memorizing: (L ,H ,GU{X})
(LLHU{X} ,GU{X})

The Acquisition rule makes a new lemma ‘L’ available for the proof. The rule may be
used to include axioms from the specification or formulas proved in other successful
runs of the inference system or by any other sound prover which seems appropriate for
some special purposes. The Deletion rule permits the deletion of a goal that is strictly
founded on some hypotheses. While we cannot to go into details on how to find this out,
the Deletion rule especially permits us to remove a goal if its formula is implied by the
formula of an instance of a hypothesis and this instance is smaller than the goal in our
induction ordering. More frequently, however, is the Deletion rule used in the following
combination with several preceding Expansion steps:

Transformation: (L ,H ,GU{1})
(L.H,GUM)
if Lis invalid or {J} \,/~ (H,GUM)

The Transformation rule replaces a goal ‘1’ with a (possibly empty) set ‘M’ of sub-goals
whose completeness may rely on hypotheses from ‘H’ or lemmas from ‘L’. It is the real
working rule of the frame inference system. The intended design of concrete inference
systems for specific kinds of validity mainly consists of finding corresponding sub-rules
of the Transformation rule.

In the following sections we will present two alternative approaches for explaining
why the above inference system implements the ideas presented in the beginning of § 2.
The first is called “analytic” because it is based on an invariance property that holds
for an initial state and is kept invariant by the analytic inference steps. The second is
called “backwards” because it is based solely on an invariance property which holds for
a final (i.e. successful) state and is kept invariant when one applies the inference rules
in backward direction.

6 The Analytic Approach

The analytic approach was first formalized in Wirth (1991). In § 2 we indicated that if
‘I * permits sound steps only, then from * (0,0, G)F (L,H,0) ™ we may conclude that
‘G’ is valid. This idea is formalized in:

Definition 2 (Soundness of Inference Step).
The inference step “ (L,H,G) ‘- (L' ,H',G") ” is called sound if validity of ‘form|[G’]’
implies validity of ‘form[G]’.

Corollary 8. Ifall inference stepsin “ (L,H,G)F (L' \H',0) ” are sound, then ‘form|[G)’
is valid.

Besides the soundness of an inference step described above, it is also useful to know
about invariant properties of a prover state because they can be used to justify why an
inference step must be sound. The following such property is most natural, stating that
all lemmas are valid and that the hypotheses are founded on the goals, i.e. that for each
counterexample for a hypothesis there is a smaller counterexample for a goal.

Definition 3 (Correctness of Prover State).
A prover state (L,H,G) is called correct if L is valid and H~G.

While the first part of this definition should be immediately clear, “ H~G ” states that
the goals carry the proof work (which has to be done for the hypotheses) in such a way
that the transformation of a goal may make use of hypotheses which are smaller (w.r.t.
our induction ordering <) than the goal itself since minimal counterexamples for goals
cannot be deleted that way. While “correctness of prover states” obviously formulates
this idea, it is not the only possible way to do it:

Definition 4 (Weak Correctness of Prover State).
A prover state (L,H,G) is called weakly correct if
Lisvalidand (H,/G = (form[H] is valid)) .

By Corollary 3 and 1(3) we get:
Corollary 9. If a prover state is correct, then it is weakly correct, too.

As announced above, correctness of prover states really permits us to conclude that the
inference steps of our frame inference system are sound:

Lemma 1 (Soundness of Inference Steps).
If (L H,G) is a [weakly] correct prover state, then an inference step
“(L,H,G)+ (L',H',G") " (with the above rules) is sound.

(For a proof cf. § D.) Furthermore, correctness holds indeed for an initial state and is
kept invariant by the frame inference system:

As a corollary of Corollaries 2 and 9 we get:

Corollary 10 (Initial State is Correct).
Let L be valid and H C G. Now (L,H,G) is [weakly] correct.

Lemma 2 (Invariance of Correctness of Prover States).
If “ (LLH,G)+- (L',H',G') 7 (with the above rules) and the prover state
(L,H,G) is [weakly] correct, then ‘(L' /H',G')’ is [weakly] correct, too.

(For a proof cf. § D.) Finally, “correctness of prover states” as an invariance property is
not only useful to conclude soundness of single steps, but also globally useful, which
can be seen in the following corollary stating that the lemmas and hypotheses gathered
in a final prover state are valid:

As a corollary of Corollary 2 and 1(1), and 9 we get:

Corollary 11 (For Final State: Correctness means Validity).
(L' H',0) is [weakly] correct iff “ L' Uform[H'] ” is valid.

7 The Backwards Approach
The backwards approach was first formalized in Becker (1994).

Definition 5 (Inductiveness and Inductive Soundness).

A prover state (L,H ,G) is called inductive if ((Lisvalid) = H/ G).

The inference step “ (L,H,G) (L' ,H',G') ” is called inductively sound® if induc-
tiveness of (L',H',G') implies inductiveness of (L,H,G).

2 In Becker (1994) this is called preservation of (inductive) counterexamples, but we cannot use
this name here because the notion of “counterexample” is different there.

Inductiveness is a technical notion abstracted from inference systems similar to the
frame inference system of § 5. Roughly speaking, inductiveness of a state means that an
inductive proof of it is possible in the sense that a final (i.e. successful) prover state can
be entailed. This is because the goals can be deleted, since there are either false lemmas
(ex falso quodlibet) or false hypotheses below all invalid goals.

Inductive soundness can replace soundness of prover steps, by the following argu-
mentation, which (just like soundness) requires to think ‘ -’ backwards, starting from
a final prover state (L', H’,0), which must be inductive. Now, if the steps deriving a
final state are inductively sound, then all states involved must be inductive. Finally,
inductiveness of an initial state implies validity of the initial set of goals.

As a corollary of Corollary 2 we get:

Corollary 12 (Final State Must Be Inductive). (L',H’,0) is inductive.

By Corollary 1(5) for the forward and by Corollary?2, 3 and 1(3) for the backwards
direction we get:

Corollary 13 (For Initial State: Inductiveness means Validity of Goals). Ler L be
valid and H C G . Now, ‘form[G]’ is valid iff (L,H,G) is inductive.

By the Corollaries 12 and 13 we conclude:

Corollary 14. If all inference steps in “ (0,0,G) F (L' H',0) ” are inductively sound,
then ‘form[G]’ is valid.

Unlike soundness, inductive soundness also captures the basic idea of our frame infer-
ence system which for the analytic approach had to be expressed by some correctness
property, namely the idea that transformations of goals may make use of hypotheses
which are smaller than the goal itself since minimal counterexamples for goals can
never be deleted that way. Note, however, that “being not inductive” is no invariance
property of ‘ F’ (like correctness is) because one never knows whether it holds for
some state or not: If all steps are inductively sound, we only know that the property of
“being not inductive” is never removed by an inference step, but this does not mean that
it ever holds. Especially for successful proofs it never does, cf. Corollary 12. Instead,
inductiveness (i.e. “being inductive”) is an invariance property of ‘ —’.

Since inductive soundness captures the basic idea of our frame inference system,
we get (cf. § D for a proof):

Lemma 3 (Inductive Soundness of Inference Steps).

An inference step with the above rules is inductively sound.

8 Discussion of the Two Approaches

While the relation between the two approaches of the previous two sections is not sim-
ple, both seem to be equally useful in capturing the ideas presented in the beginning of

§2 as well as in explaining the soundness of our inference system: The following is a
corollary of 8, 1, 10, & 2, as well as a corollary of 14 & 3:

Corollary 15 (Soundness of “ (0,0,G)F (L', H',0)).
If “(0,0,G)F (L' ,H',0) ” (with the above rules), then “ form[G] ” is valid.

The analytic approach even permits a slightly stronger conclusion via Corollary 11:

Corollary 16. If “ (0,0,G)F (L',H',0) ” (with the above rules), then
“ form[G] UL Uform[H'] " is valid.

Considering the design of concrete inference systems by presenting sub-rules of the
frame inference rules, another advantage of the analytic approach could be that the
additional assumption of correctness of the states could be essential for the sub-rule
relationship.

Finally, we compare the analytic and the backwards approach independently of
our frame inference system. Here, we consider one approach to be superior to the other,
when it permits additional successful proofs, whereas we do not respect the fact that one
notion may be more appropriate for effective concretion than the other. Invariance of
correctness cannot be superior to invariance of weak correctness or to inductive sound-
ness, since a step with the former and without one of the latter properties starts from an
invalid set of goals and thus the required soundness of inference steps does not permit
additional proofs. Invariance of weak correctness cannot be superior to invariance of
correctness (or else to inductive soundness), since a step with the former and without
one of the latter properties leads to (or else starts from) an invalid set of goals and thus
the required soundness of inference steps does not permit additional proofs. Finally,
inductive soundness is very unlikely to be superior to invariance of [weak] correctness,
since a step with the former and without one of the latter properties leads to an invalid
set of lemmas or hypotheses. Moreover, if we do not consider all proofs but only the
existence of proofs, then (on our non-effective level!) all approaches are equivalent:
Using the Deletion rule |G|-times we get:

Corollary 17 (Completeness of “ (0,0,G)\- (L', H',0) »).
If “ form[G] ” is valid, then “ (0,0,G)F (0,0,0) ” (with the above rules).

Note, however, that (as far as we know) for the construction of effective concrete in-
ference systems based on rules which are no (effective) sub-rules of the rules of our
frame inference system, each of the three approaches (i.e.: soundness and invariance of
correctness; soundness and invariance of weak correctness; inductive soundness) may
be superior to each of the others. The same may hold for generalizing them to inference
systems on generalized prover states. E.g., for

(L,H,GUG")
L,HG) (LHG)

Parallelization: (

it is obvious how to generalize inductive soundness, whereas the two other approaches
do not seem to permit an appropriate generalization based on local properties of triples
(L,H,G).

9 The “Switched”” Frame Inference System

In §2 we pointed out that we have to avoid non-terminating reasoning cycles
between hypotheses and goals. In our formalization we achieved this by founding
a hypothesis ‘X’ on smaller or equal goals from ‘G’, i.e. “ { X} ~G ” (cf. the condition
of the Hypothesizing rule), and by applying to a goal ‘T only strictly
smaller hypotheses from ‘H’, i.e. “ {1} \.H ” (cf. the condition of the Deletion rule).
From a cyclic reasoning “ H~G\ H ” we immediately get “ H\ H ” and “ G\\G ” by
Corollary 3, and then ‘form[HUG]’ is valid by Corollary 1(3), which means that the rea-
soning cycle is sound. Now an alternative way to achieve this is the following: Instead of
doing our quasi-decreasing step ‘~’ from hypotheses to goals “ H~G ” and our strictly
decreasing step “\” from goals to hypotheses “ G\ H ”, we could go from hypotheses
to goals with a strict and from goals to hypotheses with a quasi step. More precisely:
The condition of the Hypothesizing rule would be changed into “ if L is invalid or
{X}\,/~ (G,H) 7, and the condition of the Deletion rule is changed into “if L is
invalid or {J}~GUH ”. The Expansion and the Acquisition rules remain unchanged.
A Memorizing sub-rule cannot exist and the Transformation rule must be composed of
several Expansions, an optional following Hypothesizing, and then a Deletion into one
of the following forms:

Memorizing Switched Transformation: (L ,H ,GU{X})
(LLHU{X} ,GUM)

if Lisinvalid or {X} \,/~ (GUM,H)
Simple Switched Transformation: (L,H ,GU{X})
(L,H ,GUM)

if L is invalid or {X} ~GUMUH

When we then also switch ‘~’ and N\ (i.e. replace one by the other) in the definitions
of “correctness” and “inductiveness” and when we require an initial state additionally
to have an empty set of hypotheses, then we get the analogous results for the soundness
of our switched frame inference system. The reasons why we prefer the non-switched
version presented here are the following:

From a user’s point of view, the non-switched version may be more convenient,
because hypotheses become available earlier and easier via the Memorizing rule, which
does not exist for the switched version.

From the inference system designer’s point of view, the non-switched version is
more convenient, due to the following argumentation: With both the switched and the
non-switched version of the inference system, a proof can be thought to consist mainly
of steps of the kind that a goal ‘X’ may become available as a hypothesis and is then
transformed into sub-goals ‘M’. For the non-switched case this can be achieved by an
application of the Memorizing and then of the Transformation rule. For the switched
inference system this is just a Memorizing Switched Transformation. One shortcom-
ing of the switched version results from the fact that the transformation of a goal into

sub-goals has to be strictly decreasing instead of quasi-decreasing (as required for the
non-switched case). The design of quasi-decreasing transformations, however, is eas-
ier than that of strictly decreasing ones, for the same reason as exhibited in § 2 (“Easier
Design of Inference Rules”) and as illustrated in § C. Therefore, the non-switched infer-
ence system allows for small grain inference steps which in the switched system must
be replaced with a very big inference step bridging over all quasi-decreasing steps until
a strictly decreasing step is reached. Another shortcoming of the Memorizing Switched
Transformation is that each simplification step has to decrease the weight of the goal
strictly, i.e. that the possibility to apply some fixed smaller hypothesis gets more and
more unlikely with each simplification step, cf. §2 (“High Quality of Ordering Infor-
mation”). If we, however, use the Simple Switched Transformation instead, then the
goal is not made available as a hypothesis. Thus, in order not to lose the possibility to
apply hypotheses, simplification should not be done via inference steps of the switched
inference system, but incorporated into the hypotheses applicability test. With the non-
switched version, however, the full inference power of the whole inference system can
be homogeneously used for simplification.

On the other hand, the comparison of weights for an applicability test of a hypo-
thesis to a goal is simpler in the switched inference system because there the weight of
the hypothesis is often equal to the weight of the goal, in which case the test is success-
ful. While this does not allow for additional proofs with the switched inference system,
it may allow to avoid possibly complicated reasoning on ordering properties.

10 Classifying Other Work

In this section we give an incomplete sketch of the literature on inference systems for
implicit induction and briefly classify these inference systems according to our presen-
tation here.

In Bachmair (1988) our sets of hypotheses and goals are not separated yet. A disad-
vantage of this is that a success of a proof due to an empty set of goals is more difficult
to detect and that understanding the inference system gets more difficult without the
concepts of hypotheses and goals. The missing separation into hypotheses and goals
also requires both the foundedness step from hypotheses to goals (as in our switched
system of §9) and the step from goals to hypotheses (as in the non-switched system
of §5) to be strictly decreasing (i.e. “\,’), which means a combination of the disad-
vantages of both the switched and the non-switched approach. The soundness of a
proof in Bachmair’s inference system results from the fact that a fair derivation se-
quence M;F M;i; (i € N) always satisfies M;~M;;; and has a sub-sequence such
that VieN. M;\\ M, ,, which means that ‘form[M,]’ must be valid, cf. Corollary 7, 6,
and 1(6). The foundedness relations are defined by use of sizes of inconsistency proofs
for the equations in M; instead of the counterexamples themselves. As already men-
tioned in § 3, it is in general undesirable to base the notions of a frame inference system
on formal proofs instead of semantic notions because the latter impose no operational
restrictions and are likely to change less frequently. One of the operational restrictions

in Bachmair (1988) is the confluence requirement for the specifying set of rules. That
this restriction can be removed was noted in Gramlich (1989) by defining the founded-
ness relations by use of the sizes of positive proofs measured via the applications of
equations from M;.

The important separation between hypotheses and goals was introduced in Reddy
(1990), where a frame inference system similar to our switched one in § 9 is used, the ar-
gumentation for soundness follows the analytic approach using operationally restricted
versions of soundness and (switched) correctness, and the foundedness notions are still
the operationally restricted ones of Gramlich (1989). In Wirth (1991) this operational
restriction is overcome by using a semantic foundedness notion.

In Fraus (1993) we have found the first® argumentation for soundness following
the backwards approach. While the inference system already is of the (superior) non-
switched style, the foundedness relations are still operationally restricted (by measuring
positive proofs in the natural deduction calculus). In Becker (1994) we finally find the
backwards approach based on semantic foundedness notions as presented here.

11 Conclusion

We tried to give an intuitive understanding of proofs by mathematical induction, exhib-
ited the essential requirements, and provided a simple data structure for prover states.
To enable a clear understanding of the functions of inference systems for proofs by
mathematical induction, we introduced the concept of “foundedness” which also has
applications beyond this paper. We presented an abstract frame inference system, elab-
orated two approaches for explaining why this system is sound, and argued why we
prefer our frame inference system to the switched one. We classified argumentation for
soundness occurring in the literature according to our taxonomy. When practically ap-
propriate concrete inference systems are designed as systems of sub-rules of the rules of
the presented frame inference system, soundness of these systems is given immediately.
While we did not present a concrete inference system in this paper, the example in § C
should be sufficient to make our intention obvious.

A Safe Steps and Failure Recognition

As already mentioned in § 1, the ability of an inductive theorem prover to detect invalid
formulas is most important under a practical aspect, especially for inductive theorem
proving because of the important role generalizations play in it, where an invalid for-
mula can result from a valid input theorem due to over-generalization. Thus, suppose
we have some failure predicate ‘FAIL’ defined on sets of formulas which is correct in
the sense that VF € FAIL. (F is invalid). Note that this failure predicate is defined on
sets of formulas for operational reasons, namely in order to be able to recognize that

3 This actually goes back to an unpublished manuscript of Alfons Geser (1988) at the University
of Passau entitled “An inductive proof method based on narrowing”.

one formula contradicts another one; whereas for a theoretical treatment it would be

sufficient to define it on single formulas since one of those formulas must be invalid in

a consistent specification; but to find out which formula it is is undecidable in general.
We define a prover state (L, H,G) to be a failure state if

(LUform[H UG]) € FAIL.

Note that we have included L and H (instead of just testing G) because we want to be
able to detect an invalid lemma or hypothesis when it has just been generated and do not
want to have to wait until it will have been harmfully applied to a goal. One is tempted to
argue that, in case of [weak] correctness of a prover state, an invalid hypothesis implies
the existence of an invalid goal, but this argument again does not respect the operational
aspect.

Now, when an inductive theorem prover has realized to be in a failure state, the
following questions arise: How far do we have to backtrack to reach a state with valid
formulas? Have some of our original input formulas been invalid? For answering these
questions the following notion is useful:

An inference step “ (L,H,G) b (L',H',G’) ” is called safe if

validity of “ LU form[H U G] ” implies validity of “ L' Uform[H' UG'] ”.

It is not reasonable to require all possible steps of an inductive theorem prover to be
safe, since this property is undecidable for generalization steps which play a major role
in inductive theorem proving. For concrete inference systems, however, it is usually
possible to give interesting sufficient conditions for the application of an inference rule
to be safe. Now, when the prover has found out that a prover state (L”,H”,G") is a
failure state and all steps in (L',H’,G')F (L ,H",G") are known to be safe, then
(L',H',G’) must be a failure state, too. To recover from this failure we may iterate the
following:

If this (L',H’,G’) is the original input state (with L' known to be valid and H'CG’),
then we have refuted our original set of goals G’ and should stop proving. Otherwise the
step that yielded (L', H',G’), say (L,H,G) - (L' ,H',G’), must be carefully inspected: If
it is known to be safe we backtrack this step and reiterate. Otherwise it might be possible
to find a (minimal) subset of L” Uform[H"” UG"] for which the failure predicate FAIL is
still known to hold and which also is (implied by) a subset of LUform[H U G]; in which
case we also backtrack this step and reiterate. Otherwise, when (L,H,G) + (L',H',G')
is likely to be an unsafe step which might have caused the failure, we backtrack this
step and may try to go on with a hopefully safe inference step instead.

B Refutational Completeness

For achieving refutational completeness we need a wellfounded ordering > . ~on fi-
nite sets of syntactic constructs. To be able to refute initial failure states we need the
following property.

Definition 6 (FAIL-Completeness).
The failure predicate FAIL is complete w.r.t. ‘& " and > .~ if for all finite sets

L C Form; H,G C SynCons; if form[G] is invalid, but (L,H,G) is not a failure state,

then there are finite sets L', H', G’ with (L,H,G)F (L',H',G') and G>_ G'.

refut

By wellfoundedness of ‘> . ° we immediately get:

refut
Corollary 18 (Refutational Completeness).

Let L C Form; H,G C SynCons be finite sets. Assume either that ‘+ ’ is sound or
that L is valid, HCG, and ‘&’ is inductively sound. Furthermore assume FAIL to be
complete w.rt. ‘" and > . °. Now, if form|G] is invalid, then there is some failure

refut

state (L', H',G') with (L,H,G)F (L',H',G').

Definition 7 (Fairness).

Let B be an ordinal number with P < ® . Let L; C Form; H;,G; C SynCons
for all i < 14P. Consider the derivation (Li,H;,G;)F (Liy1,Hit1,Giy1) (i < B).
It is called fair if B<o A (Lg,Hp,Gg)¢dom(F) (ie. no inference
rule can be applied to (Lg,Hp,Gg)) or Ji<I+B.G;=0 or Vi<I+P.
((form[G,] invalid A (L;,H;, G;) not a failure state) = 3j<1+B. G;>, .G}).

Corollary 19. Let B be an ordinal number with B < ® . Let L; C Form; H;,G;
C SynCons be finite sets for all i < 1+. Let (L;,H;,G;) = (Lit1,Hi+1,Git1) (i <PB)
be a fair derivation. Assume either that ‘= is sound or that Ly is valid, HyCGy, and
‘b 7 is inductively sound. Furthermore assume FAIL to be complete w.rt. ‘" and
> i - Now, if form[G] is invalid, there must exist some i < 1+ such that (L;,H;, G;)

is a failure state.

C An Example

In this section we give an example to illustrate our abstract argumentation on the ben-
efit of separating weights from formulas and of using non-switched inference systems.
Consider the following specification of a member-predicate “mbp(x,/)” testing for x
occurring in the list /, a delete-function “dl(x,/)” deleting all occurrences of x in the
list /, a remove-copies-function “rc(x,/)”” removing repeated occurrences of x in the list
1, and a brushing function “br(k,)”” removing repeated occurrences in the list / for all
elements of the list &:

mbp (x, nil) =false dl(x,cons(y,l)) =cons(y,dl(x,1)) if x£y
mbp(x, cons(y,l)) =true if x=y | rc(x,nil) =nil
mbp (x,cons(y,l)) =mbp(x,!) if x£y | rc(x,cons(y,l)) =cons(y,dl(x,1)) if x=y
dl(x, nil) =nil rc(x cons(y,l)) =cons(y,rc(x,1)) if x#£y
dl(x,cons(y,l)) =dl(x,I) if x=y | br(nil,]) =1
br(cons(x,k),l) =br(k,rc(x,1))
Suppose we want to show the following theorem (*, ” denotes “logical or”):

(0) br(k,cons(x,l))=cons(x,br(k,l)), mbp(x,l)=true

saying that either x occurs in / or the wave-front cons(x, ...) can be rippled out. Apply-
ing a covering set of substitutions to (0) we get a base case for {k — nil } (which is
trivial after two rewriting steps applying the first rule for br) and the following case for
{k > cons(y,k) }:

(1) br(cons(y,k),cons(x,1)) =cons(x, br(cons(y,k),1)), mbp(x,l)=true

After two rewriting steps applying the second rule for br we get:

(2) br(k,rc(y,cons(x,l)))=cons(x,br(k,rc(y,))), mbp(x,])=true

A rewriting step applying the third rule for rc in the left-hand side of the first equation
yields

(3) x=y, br(k,cons(x,rc(y,l))) =cons(x,br(k,rc(y,l))), mbp(x,l)=true
as well as the goal

(G) x#y, br(k,rc(y,cons(x,1)))=cons(x,br(k,rc(y,l))), mbp(x,/)=true
whose proof we do not treat here.

Applying our induction hypothesis (0) instantiated by {+ rc(y,) }, i.e.
(I) br(k,cons(x,rc(y,l)))=cons(x,br(k,rc(y,1))), mbp(x,rc(y,l))=true
to (3) we get:

(4) mbp(x,rc(y,l)) #true,

x=y, br(k,cons(x,rc(y,l))) =cons(x,br(k,rc(y,1))), mbp(x,I)=true
Rewriting with the lemma mbp(x, rc(y, 1)) =mbp(x,!) finally yields a tautology.

For this induction proof to be sound we have to find a wellfounded ordering in
which the instance () of our hypotheses is (strictly) smaller than the goal (3) to which
itis applied. When we consider the weight of a formula to be the formula itself (consid-
ered as the multi-set of (its literals considered as the multi-sets of) its terms), this cannot
be achieved with a simplification ordering, whereas the evaluation ordering of the speci-
fication is a sub-relation of a simplification ordering, namely the lexicographic path
ordering given by the following precedence on function symbols: mbp 77 true,false;
br 2~ rc 2Z dl > cons. The first thing we can do is to use weight pointers to avoid the
deterioration of ordering information on the way from (1) to (3): Initially the weight
pointer of (0) points to (0) itself, i.e. the weight of this formula is this formula itself.
The same holds for (1) because when applying the substitution the weight is instanti-
ated as well as the formula. During the simplification steps yielding (2) and then (3)
the weight remains unchanged, i.e. the weight of the formula (3) is still the formula (1).
Now (I) is indeed strictly smaller than (1) in the lexicographic path ordering given by:
br > cons; br - rc; br> mbp. Thus the high quality of ordering information preserved
by separating the formula from its weight when simplifying (1) into (3) now permits
us to justify the application of (1) to (3) with a simplification ordering, i.e. we can now
realize that our (partial) proof is sound. This success, however, is not very convincing
because the last pair in the above precedence (i.e. br > mbp) is not all motivated by the
evaluation ordering of our specification. After all, our example proof is nothing but a
structural induction and thus should work out without such a sophisticated ordering. If
we have a closer look on the derivation from (0) (or (1)) to (3), then we notice that
the first literal as usual does get smaller in the evaluation ordering on the way from our
original goal (over the goal the hypothesis is applied to) to the instantiated hypothesis
(1), but the second literal does not. Thus, if we focus on the first literal by setting our
weight to it, then we only have to show that the first literal of (1) is smaller than the first
literal of (1) which does not require the unmotivated precedence of br > mbp. Going
one step further, setting the weight of (0) to be the variable k, the weight of (1) and (3)
becomes cons(y, k) which is trivially greater than the weight k of ().

The proof of (G) gets easier when we have the following lemma:
(L) di(x,l)=1, mbp(x,l)=true
We will now use this lemma to show why the design of inference rules gets easier when
we separate the weight of a formula from the formula itself and when we do not use the
switched inference system of §9 instead of the non-switched one of §5. Suppose we
want to apply (L) in the proof of a formula
(10) T[dl(x,1)] containing dl(x,/) as a subterm.
Rewriting with (L) yields the following two sub-goals:
(11) mbp(x,l)=true, I'[[] (12) mbp(x,!)#true, T'[dI(x,])]
When we restrict the weight of a formula to be the formula itself, then the sub-goals
(11) and (12) must be smaller than (10) (without focusing on I'[dI(x,)]). When we
choose the switched inference system and want to make (10) available as an induction
hypotheses, then the weights of the sub-goals (11) and (12) must be strictly smaller than
the weight (10) in a wellfounded ordering. For (11) this might be achieved again by the
unmotivated trick of extending the precedence on function symbols with dl > mbp (ad-
ditionally to mbp - true); for (12), however, this does not seem to be reasonably pos-
sible in general. Thus the design of an inference rule applying (L) in the intended form
to (10) must be very difficult to develop without separated weights or for a switched
frame inference system, because the step from (10) to (12) must be replaced with a
very big inference step bridging over all steps following in the proof of (12) until all
branches of this proof have reached a smaller weight. Separating weights from formu-
las and using a non-switched frame inference system, however, the design of such an
inference rule is very easy: One just sets the weight of (11) and (12) to the the original
weight of formula (10).

D The Proofs

Proof of Lemma 1: The only rule whose soundness is non-trivial is the Deletion rule
for form[G] being valid. By Corollary 1(2) we get G\,0. Thus by Corollary 5(2) and
the condition of the rule we get {1}\\H. By Corollary9 (L,H,GU{]}) is weakly
correct. Thus (since GU{J} \\H due to Corollary 4(2)) we can conclude that form[H]
must be valid. By Corollary 1(7) this means that form(J) is valid, i.e. that form[GU{J}]
is valid.

Proof of Lemma 2: Assume L to be valid. We show invariance of weak correctness first:
Expansion: Assume GU{J}\ H. By Corollary 4(4) we get G\ ,H. Now form[H] must
be valid due to weak correctness of (L,H,G). Hypothesizing: Assume G\ HU{¥X}.
By Lemma3 we get G\ H. By weak correctness of (L,H,G), form[H] must be valid,
which by Corollary 1(7) means that form[GUH] is valid. By the condition of the rule
and Corollary 1(6), we know that form(X) is valid. Therefore form[HU{¥X}] is valid,
too. Acquisition: Trivial. Deletion: Assume G\,H. By Lemma3 we get GU{I}\ H.
By weak correctness of (L,H,GU{1}), form[H]| must be valid.

Finally we show invariance of correctness: Expansion: By Corollary 4(3).
Hypothesizing: By Corollary 6 we get GAG. If we assume HNG, we get HUGNG

by Corollary 4(1). By the condition of the rule and Corollary 6 this means {X}~G.
By our assumption we now get HU{X}~G via Corollary 4(1). Acquisition: Trivial.
Deletion: Assume H~GU{J}. By Corollary 5(1) from the condition of the rule we get
{3}~G. By Corollary 6 we have GG and then by Corollary4(1) GU{I}~G. By
the assumption and Corollary 6 this means HNG.

Proof of Lemma 3: Expansion: By Corollary 4(4). Hypothesizing: By Corollary 6 we
get H~H and then from the condition of the rule HU{X } ~HUG by Corollary 4(1). If
we now assume GN\HU{X}, we get G\\HUG by Corollary 2, and then by corollaries
4(5) and 4(4) G\ H. Acquisition: Trivial. Deletion: Assume G\ H. By the condition
of the rule and Corollary 5(2) we get {J}\\H. Thus by our assumption and Corol-
lary 4(2) we get GU{I}\H.

Acknowledgements: We would like to thank Jiirgen Avenhaus, Alfons Geser, Bernhard
Gramlich, Ulrich Kiihler, and Martin Protzen for useful hints.

References

Leo Bachmair (1988). Proof by Consistency in Equational Theories. 3 IEEE Symposium on
Logic In Computer Sci., pp. 228-233, IEEE Press.

Klaus Becker (1993). Proving Ground Confluence and Inductive Validity in Constructor Based
Equational Specifications. TAPSOFT 1993, LNCS 668, pp. 46—60, Springer.

Klaus Becker (1994). Rewrite Operationalization of Clausal Specifications with Predefined
Structures. PhD thesis, Fachbereich Informatik, Universitit Kaiserslautern.

Wolfgang Bibel, E. Eder (1993). Methods and Calculi for Deduction. In: Dov M. Gabbay, C.
J. Hogger, J. A. Robinson (eds.). Handbook of Logic in Artificial Intelligence and Logic
Programming. Vol. 1, pp. 67-182, Clarendon.

Robert S. Boyer, J S. Moore (1979). A Computational Logic. Academic Press.

Ulrich Fraus (1993). A Calculus for Conditional Inductive Theorem Proving. 3<CTRS 1992,
LNCS 656, pp. 357-362, Springer.

Bernhard Gramlich (1989). Inductive Theorem Proving Using Refined Unfailing Completion
Techniques. SEKI-Report SR—89-14, FB Informatik, Univ. Kaiserslautern(SFB). Short ver-
sion in: 9" European Conf. on Artificial Intelligence (ECAI 1990), pp. 314-319, Pitman.

Martin Protzen (1994). Lazy Generation of Induction Hypotheses. 12" CADE 1994, LNAI 814,
pp. 42-56, Springer.

Uday S. Reddy (1990). Term Rewriting Induction. 10" CADE 1990, LNAI 449, pp. 162-177,
Springer.

Christoph Walther (1994). Mathematical Induction. In: Handbook of Logic in Artificial Intelli-
gence and Logic Programming. eds. cf. above. Vol. 2, pp. 127-228, Clarendon.

Claus-Peter Wirth (1991). Inductive Theorem Proving in Theories specified by Positive/Negative
Conditional Equations. Diplomarbeit, Fachbereich Informatik, Universitit Kaiserslautern.

Claus-Peter Wirth, Bernhard Gramlich (1993). A Constructor-Based Approach for
Positive/Negative-Conditional Equational Specifications. ~ 3¢ CTRS 1992, LNCS 656,
pp. 198-212, Springer. Revised and extended version in J. Symbolic Computation (1994)
17, pp. 51-90, Academic Press.

Claus-Peter Wirth, Bernhard Gramlich (1994). On Notions of Inductive Validity for First-Order
Equational Clauses. 12" CADE 1994, LNAI 814, pp. 162-176, Springer.

