Dear Paolo! Diez, Sept. 19, 2007

Considering our pleasant meeting half a year ago in Miinchen and the privatissimum you
gave me there, and after re-reading the relevant sections in (Bussotti, 2006), I am still not
absolutely sure on what you exactly mean with indefinite descent and reduction-descent.
The weakness of (Bussotti, 2006) in this point of differentiation is the following. You give
only an extensional account of the two notions, but this account differs from page to page.
Moreover, you state that you have a clear intuition of the difference in intensional terms,
but you do not define the two notions intensionally. I cannot work with such notions. So I
will try to find an intensional definition here.

To make sure that we mean exactly the same with the two notions, I will describe my
view on induction here in very detail. I see no other way to become certain that the two
names denote the same notions for both of us.

I hope that you agree with the following or even consider it all to be trivial. Then we
could go on with our joint paper.

1 Logic

For me there is only one single general form of mathematical induction. I recognize its
applications at any times in the known history of mathematics, from Hippasus over Euclid
to Fermat.

Behind several lingual forms of presentation, there is a single logical basis to this, which is
the Theorem of Notherian Induction (N), based on the notion of well-foundedness Wellf(<).
A relation < is well-founded if any non-empty set has a minimal element, i.e. an element m
for which there is no other element w with w<m. Note that a total (i.e., linear) irreflexive
ordering < (on A) is well-founded iff it is a well-ordering (on A).
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It is important to note that (N) is a theorem and not an axiom. This means that there is
no reason at all to explain the justification for applying (N). This is different for the case
of an axiom, such as the Axiom of Structural Induction (S). There is no need to discuss
potential use of the actual infinite in this context. Assuming two-valued (i.e., classical)
logic, there is also no need to discuss apagogic vs. positive reasoning, or whether a reductio
ad absurdum may be useful in a proof.

I suggest that we restrict our discussion to two-valued logic because the topic is already
sufficiently complicated without other logics, such as intuitionistic logic; cf. Heyting (1930).
Moreover, for the relevant time until 1900, all logics in mathematics are two-valued.



For two-valued logic, the theorem (N) is indeed a trivial one, simply because Wellf(<) is
equivalent to its contrapositive, which is equivalent to Wellf(<)".

(Wellf(<)) VP. <Vx. Px) <« V¥m. (P(m) < Yw<m. P(w) ) )

The natural numbers are specified up to isomorphism by the axioms (natl) and Wellf(s),
for the successor function s given by s(z) := z+1.
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Using (natl), (nat2), and (nat3) this can be simplified to the following logically equivalent

formulas, which are variants of the Axiom of Structural Induction (S).
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Note that Wellf(<) and (natl) are similar to the axioms of Mario Pieri (1860 1913) (cf. Pieri
(1907)), with the exception that Pieri avoids a name for the 0.!

According to Lemma 2.1 of (Wirth, 2004), Wellf(s) implies Wellf( <) for the ordering
of the natural numbers <, i.e., the transitive closure of s. Thus, the natural numbers are
born with the following instance of Noétherian induction on <.
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Regarding logic and the justification and soundness of proofs, everything should be clear
now.

2 Methods

So let us come to proof methods. The most simple lingual representation is Fermat’s
descente infinie: For an assumed arbitrary counterexample, show the existence of another
counterexample which is smaller in <!

This is all what a working mathematician has to do. What he thinks when he does this
is irrelevant from a mathematical point of view. On the one hand, he might think about
an actual infinity of smaller counterexamples (indefinite descent), and see the proof as a
reductio ad absurdum. On the other hand, he might think about some small values for
which the theorem is true and into which the reductive process starting from an assumed
counterexample would have to crash, and see the proof as a form of apagogic reasoning. In
any case, the reasoning is merely hypothetical. The infinite is not involved.

Compared to all other forms of induction, descente infinie is more useful or at least just
as useful under practical methodological aspects.

'T was not able to understand the sentence “In order to infer the principle of complete induction from
Pieri’s axioms, it is necessary not only that a minimum exists, but also that such a minimum is unique.”
[Bussotti (2006), p.466f.] T was not able to read (Di Leonardo and Marino, 2001), simply because I am too
stupid to read any languages besides German, English, Latin, French, and Dutch.



Moreover, descente infinie typically offers some advantages for representation of proofs
in natural language.

Finally, descente infinie may be also superior under the aspect of non-two-valued logics,
but I am not interested in this topic here.

3 Foundations of Mathematics

From a foundational point of view, one should note that the infinitely descending sequences
may not exist, even if we take an ordering that is not well-founded. I will discuss this here
for the case of the natural numbers because it might have to do with the philosophical
differences between indefinite descent and reduction-descent.

Well, if anything needs discussion, then it is the second-order axiom Wellf(s), which is
equivalent to the second-order Axiom of Structural Induction (S).

We could say that every natural number has the form s(0) for a natural number n.
Then it is clear that we have to get to 0 after n steps of taking the predecessor. This
explanation, however, is of little epistemological value because it just applies the natural
number n from the meta level for the explanation the natural numbers of the object level.

If we suppose a non-well-founded successor relation s, surprisingly this does not mean
that we also have an infinitely descending s-chain, simply because we cannot name this
chain in any (formal) language. If we have the Axiom of Choice to our disposal, then the
infinitely descending s-chain must exist. Otherwise not.

So if you insist on the descending chains (for which there is no reason in mathematics,
but maybe in philosophy or history), then I can see the following difference w.r.t. the
foundations of mathematics between indefinite descent and reduction-descent. The origin
of this view of mine is based more on the Miinchen privatissimum than on (Bussotti, 2006).

For the existence of the infinitely descending chain required for indefinite descent you
need a weak form of the Axiom of Choice, namely the Principle of Dependent Choice,

cf. §2.1.2 of (Wirth, 2004).

For the existence of the arbitrarily long finite chain required for reduction-descent you
do not need (any weak forms of) the Axiom of Choice, provided that you can explicitly
describe the smaller counterexample in terms of the given one.

But then your classification lacks an important intermediate notion. Suppose that you
can show that the smaller counterexample cannot be named explicitly, but that it is possible
to show that there is a finite set of smaller counterexamples for any given one. This is
typically the case because a proof, say the only one explicitly given by Fermat as discussed
in (Wirth, 2006), exhibits a finite set of smaller counterexamples in a finite number of cases.
Then you need only Konig’s Lemma to construct the infinitely descending <-chain. Konig’s
Lemma is a strictly weaker form of the Axiom of Choice than the Principle of Dependent
Choice, i.e. if there are models of set theory where Konig’s Lemma holds, then there are
models of set theory where Konig's Lemma holds but the Principle of Dependent Choice
does not hold.



4 My Minchen View

Let us assume that you are right that we have to differentiate between indefinite descent
and reduction-descent, say for historiographical purposes.

The reduction-descent is a proper sub-method of the method of indefinite descent. This
means that, in any case, if the applicability conditions of the method of reduction-descent
are satisfied, then

1. the applicability conditions of the method of indefinite descent are satisfied, and

2. the sequence of proof steps of a proof by reduction-descent satisfies the requirements
of a proof by indefinite descent.

Indeed:

ad 1. The method of reduction-descent is applicable to all irreflexive orderings < for which
the set { a| a<b} has a finite cardinality for any b. By finitistic inspection of
this set we immediately can conclude that such an ordering is a well-founded relation.
Thus, the method of indefinite descent is applicable.

ad 2. If we name one unique smaller counterexample, then there exists a smaller counterex-
ample.

Abstracting from the concrete situation of the natural numbers, talking in terms of an
irreflexive ordering <, we thus get:
applicability

condition agenda

Give an algorithm to compute from an arbitrary
counterexample another counterexample that is
smaller in < w.r.t. a recursive weight function.

{a| a<b }is

Reduction-d t
CANCHIOLAESCEIE 1l fite for any b.

< 1s

well-founded. For an arbitrary counterexample, show the exis-

Or does this | tence of another counterexample that is smaller
Indefinite descent || have the same | in < wr.t. a weight function. Do we need an al-

restriction gorithm (i.e., computability) here? Do we need

as reduction-
descent here?

recursiveness of the weight function?

Descente infinie

According to his letter for Huygens (cf.

< is
well-founded

For an arbitrary counterexample, show the exis-
tence of another counterexample that is smaller
in < w.r.t. a weight function. Recursiveness
and constructiveness are nowhere required in this
process. The cardinality of the smaller coun-
terexamples used in the argumentation is not re-
quired to be finite.

Fermat (1891ff.), Vol.1, p.431f.) I think that the

name descente infinie is justified for the above method. The only difference of the method



that I call descente infinie to Fermat’s description is that he speaks of a sequence descending
to infinity instead of a non-well-founded set. But this difference, manifesting itself in the
Principle of Dependent Choice, was clearly not perceivable before 1900.

5 The Question

Do you agree with all of my points?

Are there still some minor differences in our views?
Which ones?

Please also do answer my open question in the above table!

Sincerely,

CP
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