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Abstract. Optimization problems in Answer Set Programming (ASP)
are usually modeled by means of programs with weak constraints. These
programs can be handled by algorithms for solving Maximum Satisfia-
bility (MaxSAT) problems, if properly ported to the ASP framework.
This paper reports on the implementation of several of these algorithms
in the ASP solver WASP, whose empirical analysis highlights pros and
cons of different strategies for computing optimal answer sets.

1 Introduction

Answer Set Programming (ASP) [1] is a powerful language for knowledge rep-
resentation and declarative problem-solving, which has been developed in the
field of nonmonotonic reasoning and logic programming. The idea of ASP is to
represent a given computational problem by a logic program whose answer sets
correspond to solutions, and then use a solver to find such a solution [2]. The
core language of ASP, which features disjunction in rule heads and nonmono-
tonic negation in rule bodies, can express all problems in the second level of the
polynomial hierarchy [3]. Nonetheless, several extensions to the original language
were proposed over the years to further improve ASP modeling capabilities, such
as aggregates [4] for concise modeling of properties over sets of data, and weak
constraints [5] for modeling optimization problems.

Nowadays, ASP is considered a powerful tool for developing advanced appli-
cations because robust implementations are available [6]. ASP applications often
demand good performance in hard-to-solve problems, thus the development of
more effective and faster ASP systems is a crucial and challenging research topic.
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The improvements obtained in this respect are witnessed by the results of the
ASP Competition series (see e.g. [6, 7]).

As a matter of fact, the recent performance boost in ASP solving technologies
[8, 9] was obtained by adapting and properly modifying several techniques that
were originally introduced for SAT solving and Constraint Satisfaction, like the
DPLL backtracking search algorithm [10], clause learning [11], backjumping [12],
restarts [13], and conflict-driven heuristics [14]. Among the recently-introduced
ASP solvers that are based on the above-mentioned techniques is WASP [8].

An aspect that has received less attention in WASP up to now is the im-
plementation of weak constraints. Weak constraints can be handled by properly
porting to the ASP framework a number of algorithms [15–17] that were pro-
posed for solving Maximum Satisfiability (MaxSAT) problems.

In this paper we report on our recent experience in the implementation of
several algorithms for evaluating weak constraints in WASP. We considered both
the model-guided algorithm mgd [18], a technique inspired by optsat [17] that
we call opt, and core-guided algorithms bcd [15] and oll [19].

The paper reports also the results of a preliminary experiment that was
conceived to assess the behavior of the implementation of these algorithms in
WASP. Instances were taken from both the fourth ASP Competition [7], and
the 2008 MaxSAT competition. The empirical analysis highlights pros and cons
of the different strategies for computing optimal answer sets. On one hand the
better performance of core-guided algorithms in MaxSAT instances is confirmed,
on the other hand the model-guided algorithms behave well in specific problems.

It is worth observing that the first attempt of porting core-guided algorithms
to ASP was described in [19], in which the algorithm oll was proposed. Nonethe-
less, to the best of our knowledge, no previous attempt to porting bcd, mgd and
opt algorithms to the ASP framework is reported in the literature.

2 Preliminaries

Syntax and semantics of propositional ASP programs are briefly introduced in
this section. (For complementary introductory material on ASP see [1, 20, 21].)

Syntax. Let A be a fixed, countable set of propositional atoms. An aggregate
atom is of the following form:

{b1 = w1, . . . , bm = wm,∼bm+1 = wm+1, . . . ,∼bn = wn} ≥ lb (1)

where bi ∈ A (i = 1, . . . , n), lb and each wi (i = 1, . . . , n) are positive integers,
∼ denotes negation as failure, and n ≥ m ≥ 0. Integer lb is called lower bound,
while wi (i = 1, . . . , n) is the weight associated with the i-th literal in the
aggregate. An atom is either a propositional atom, or an aggregate atom. A
literal is either an atom (a positive literal), or an atom preceded by one or more
occurrences of ∼ (a negated literal).

A (disjunctive) rule is of the following form:

a1 ∨ · · · ∨ am ← `1, . . . , `n (2)



where ai ∈ A (i = 1, . . . ,m), `j (j = 1, . . . , n) is a literal, m ≥ 0 and n ≥ 0. For
a rule r of the form (2), disjunction a1 ∨ · · · ∨am is called the head of r, denoted
H(r); conjunction `1, . . . , `n is named the body of r, denoted B(r); positive and
negated literals in B(r) are denoted B+(r) and B−(r), respectively. A constraint
is a rule of the form (2) such that m = 0. A constraint is possibly associated with
a positive integer by the partial function weight. For a compact representation,
the weight will be sometimes indicated near the implication arrow, e.g.,←3 a,∼b
is a constraint of weight 3.

A propositional program ΠR is a set of rules. The set of constraints in ΠR

is denoted constraints(ΠR), while the remaining rules are denoted rules(ΠR).
A program with weak constraints Π is a pair (ΠR, ΠW), where ΠR is a propo-
sitional program and ΠW is a subset of constraints(ΠR). ΠW is the set of
weak constraints, while constraints(ΠR) \ΠW is the set of hard constraints. To
simplify the presentation, any program Π = (ΠR, ΠW) is assumed to obey the
following syntactic restriction, also known as stratification of aggregates: Let GΠ

be a graph having a node for each propositional atom in A and an arc connecting
a to b if there are a rule r ∈ ΠR and a literal ` ∈ B+(r) such that a ∈ H(r) and
either b = ` or ` is an aggregate of the form (1) and b = bi for some i ∈ [1..m].
For each aggregate ` of the form (1) occurring in Π, there is no rule r ∈ ΠR

such that bi (i ∈ [1..m]) and some a ∈ H(r) occurs in a cycle of GΠ .

Semantics. An interpretation I is a subset of A. Relation |= is defined as
follows: For a propositional atom a ∈ A, I |= a if a ∈ I. For an aggregate atom
a of the form (1), I |= a if the following inequality is satisfied:∑

i∈[1..m]:bi∈I

wi +
∑

j∈[m+1..n]:bj /∈I

wj ≥ lb.

For a negative literal ∼a, I |= ∼a if I 6|= a. For disjunctions and conjunctions,
I |= a1 ∨ · · · ∨ an if I |= ai for some i ∈ [1..n], and I |= a1, . . . , an if I |= ai for
each i ∈ [1..n]. For a rule r of the form (2), I |= r if I |= a1 ∨ · · · ∨ am whenever
I |= `1, . . . , `n. For a program Π = (ΠR, ΠW), I |= Π if I |= ΠR, where ΠR is
seen as a conjunction.

The definition of stable models is based on a notion of program reduct [1]: Let
ΠR be a propositional program, and I an interpretation. The reduct of ΠR w.r.t.
I, denoted ΠI

R, is obtained from ΠR by deleting each rule r such that I 6|= B−(r),
and removing negated literals in the remaining rules. An interpretation I is a
stable model of ΠR if I |= ΠI

R and there is no J ⊂ I such that J |= ΠI
R.

Let SM(ΠR) denote the set of stable models of Π. Program Π is coherent if
SM(ΠR) 6= ∅, otherwise it is incoherent.

For a program with weak constraints Π = (ΠR, ΠW), each interpretation I
is associated with a cost:

cost(ΠW, I) :=
∑

r∈ΠW:I 6|=r

weight(r).

A stable model I of ΠR \ΠW is optimal for Π if there is no J ∈ SM(ΠR \ΠW)
such that cost(ΠW, J) < cost(ΠW, I).



Function RelaxWeakConstraint(r: weak constraint, var R: set)

1 begin
2 Let aux be a fresh atom;
3 R := R ∪ {aux = weight(r)};
4 return ← B(r),∼aux;

3 Algorithms

Modern algorithms for MaxSAT are based on iterative invocations of a SAT
solver, some of which are adapted to ASP optimization problems in this sec-
tion. Intuitively, the adapted algorithms operate by iteratively calling an ASP
solver and by relaxing weak constraints. Roughly, a weak constraint is relaxed
by adding a fresh atom aux to its body. (We also assume that aux is irrele-
vant for the coherence of the processed program, e.g., by introducing a rule of
the form aux ← ∼∼aux.) Relaxed weak constraints can be disabled during the
stable model search if necessary. The algorithms considered in this section can
be classified in two categories, namely core-guided and model-guided algorithms.
Core-guided algorithms start by considering weak constraints as hard constraints
and then selectively relax some of them until an optimum cost is found. Model-
guided algorithms instead start by ignoring weak constraints and then enforce
an improvement on the cost of the computed stable models. In the following if
Π = (ΠR, ΠW) is an input program then ΠR \ΠW is assumed to be coherent.

Example 1. In the following we will use program Π = (ΠR, ΠW) to illustrate
the differences between the algorithms, where ΠR consists of the following rules:

r1 : a ∨ b← r3 :←1 a r5 : ←1 b
r2 : c ∨ d← r4 : ←2 c r6 :←2 d

and ΠW = {r3, r4, r5, r6}.

3.1 Core-guided Algorithms

Core-guided algorithms are based on the concept of unsatisfiable core first intro-
duced in the context of SAT solving [22]. According to the original definition, an
unsatisfiable core of an unsatisfiable CNF φ is a subset of φ that is also unsatisfi-
able. The analogous notion in ASP can be stated as follows: An unsatisfiable core
of an incoherent propositional program ΠR is a set Πcore ⊆ constraints(ΠR)
such that rules(ΠR) ∪Πcore is incoherent. For example, a core of ΠR in Exam-
ple 1 is {r3, r5}. In this section we describe two core-guided algorithms, namely
bcd [23] and oll [19]. The algorithms use function ASPSolver(Π,PrefChoices),
where Π is a program and PrefChoices is a set of literals, whose output is a
triple (res,Πcore, I), where res is a string, Πcore a set of rules and I an inter-
pretation. Intuitively, the function searches for a stable model of Π. If one is



Algorithm 1: bcd

Input : A program Π = (ΠR, ΠW)
Output: The optimum cost for Π

1 begin
2 (ΠS, Cores,OPT ) := (ΠW, ∅, 0);
3 repeat
4 Πaggr := ∅;
5 foreach C ∈ Cores do
6 if C.lb+ 1 = C.ub then C.mb := C.ub; else C.mb := bC.ub+C.lb

2
c;

7 Πaggr := Πaggr ∪ {← C.R ≥ C.mb+ 1};
8 (res,Πcore, I) := ASPSolver(ΠR ∪Πaggr, ∅);
9 if res 6= INCO then

10 OPT := cost(ΠW, I);
11 foreach C ∈ Cores do
12 C.ub :=

∑
aux=w∈C.R∧I|=aux w;

13 else
14 SubCores := {C ∈ Cores | C.core ∩Πcore 6= ∅};
15 if Πcore ∩ΠS = ∅ and |SubCores| = 1 then
16 Let SubCores = {C};
17 C.lb := C.mb;

18 else
19 Let C be a new structure;
20 (C.core, C.R) := (∅, ∅);
21 foreach r ∈ Πcore ∩ΠS do
22 r′ := RelaxWeakConstraint(r, C.R);
23 ΠS := ΠS \ {r};
24 ΠR := (ΠR \ {r}) ∪ {r′};
25 C.core := C.core ∪ {r′};
26 (C.lb, C.ub) := (0, 1 +

∑
aux=w∈C.R w);

27 foreach C′ ∈ SubCores do
28 (C.core, C.R) := (C.core ∪ C′.core, C.R ∪ C′.R) ;
29 (C.lb, C.ub) := (C.lb+ C′.lb, C.ub+ C′.ub);

30 Cores := (Cores \ SubCores) ∪ {C};

31 until ∀C ∈ Cores C.lb+ 1 ≥ C.ub;
32 return OPT ;

found, say I, the function returns (FOUND, ∅, I). Otherwise, the function re-
turns (INCO,Πcore, ∅), where Πcore is a core of Π. During the search, the first
choices are those specified by the input parameter PrefChoices.

Algorithm bcd. Algorithm 1 is called core-guided binary search with disjoint
cores, in short bcd and implements a binary search of the optimal solution. In a
nutshell, all weak constraints are initially considered as hard constraints and a
stable model is searched. If the processed program is incoherent then an unsatis-



Algorithm 2: oll

Input : A program Π = (ΠR, ΠW)
Output: The optimum cost for Π

1 begin
2 (ΠS, Πaggr) := (ΠW, ∅);
3 (res,Πcore, I) := ASPSolver(ΠR ∪Πaggr, ∅);
4 if res 6= INCO then return cost(ΠW, I);
5 foreach ← R ≥ lb ∈ Πaggr ∩Πcore such that |R| > lb do
6 ΠS := ΠS ∪ {←1 R ≥ lb};
7 Πaggr := (Πaggr \ {← R ≥ lb}) ∪ {← R ≥ lb+ 1};
8 R := ∅;
9 foreach r ∈ Πcore ∩ΠS do

10 ΠS := ΠS \ {r};
11 ΠR := (ΠR \ {r}) ∪ {RelaxWeakConstraint(r,R)};
12 Πaggr := Πaggr ∪ {← R ≥ 2};
13 goto 3;

fiable core is computed and stored in a set Cores, which is initially empty. Weak
constraints in the computed core are relaxed and the new relaxing atoms are used
to build a constraint comprising a single aggregate atom aimed at performing a
binary search on the subsequent coherence tests. In fact, each unsatisfiable core
is associated with a lower and an upper bound, which are updated during the
computation. More in detail, whenever an incoherent program is processed, the
new unsatisfiable core Πcore is merged with each element in Cores intersecting
Πcore. In this way Cores is guaranteed to contain pairwise disjoint unsatisfiable
cores, which actually represent disjoint subproblems. When no weak constraint
needs to be relaxed, and Πcore intersects only one previously computed core C,
the lower bound of C is increased because the subproblem associated with C has
no solution of cost smaller than (C.lb + C.ub)/2. In fact, such a subproblem is
represented by a constraint added at line 7. Hence, the new lower bound of C
will force the algorithm to search for a solution of higher cost, actually resulting
in a binary search of the optimum cost. When instead a stable model I is found,
OPT as well as the upper bounds of the computed cores are updated according
to I. This process is repeated until Cores contains unsolved subproblems.

Example 2. Consider the program in Example 1. Initially, ΠS contains all weak
constraints, i.e., r3–r6, while Cores is empty (line 2). Program ΠR = {r1, . . . , r6}
is incoherent, and thus an unsatisfiable core Πcore is computed, say {r3, r5}.
Weak constraints r3 and r5 are thus relaxed (line 22), i.e., they are replaced by
the following constraints:

r′3 :← a,∼aux3 r′5 :← b,∼aux5

where aux3 and aux5 are fresh atoms. Rules r′3 and r′5 are stored in a new
structure C1 in Cores, whose lower and upper bounds are initially set to 0 and 3



(line 26). The subsequent coherence test must also satisfy a constraint obtained
from C1, that is, ← {aux3 = 1, aux5 = 1} ≥ 2. However, the processed program
is still incoherent and an unsatisfiable core {r4, r6} is returned. Weak constraints
r4 and r6 are thus relaxed, i.e., they are replaced by the following constraints:

r′4 :← a,∼aux4 r′6 :← b,∼aux6

where aux4 and aux6 are fresh atoms. Rules r′4 and r′6 are stored in a new
structure C2 in Cores, whose lower and upper bounds are initially set to 0 and 5,
so that the next coherence check must also satisfy ← {aux4 = 2, aux6 = 2} ≥ 3.
Actually, a stable model is found, say {a, c, aux3, aux4}, which means that the
current optimal solution has cost 3. Upper bounds of C1 and C2 are updated to 1
and 2, respectively. The next coherence check must thus satisfy r1, r2, r

′
3, . . . , r

′
6,

and the additional constraints rC1
: ← {aux3 = 1, aux5 = 1} ≥ 2 and rC2

:
← {aux4 = 2, aux6 = 2} ≥ 2. However, the unsatisfiable core {r′4, r′6, rC2

}
is returned. In this case the lower bound of C2 is set to 1 and the algorithm
terminates returning 3, i.e., the optimal cost. In fact, the lower and the upper
bounds of C1 are 0 and 1, respectively, and the lower and the upper bounds of
C2 are 1 and 2, respectively. Hence, for each structure in Cores the lower bound
+ 1 is greater than the upper bound (line 31).

Algorithm oll. Algorithm 2 is called oll and is conceived for unweighted ASP
optimization problems, i.e., for programs in which all weak constraints have the
same weight. However, there are several possibilities for using the algorithm in
case of weighted ASP optimization problems [19]. The one we consider replaces
each weak constraint r by weight(r) copies of r of weight 1. (Intuitively, a literal
∼ai is added the i-th copy of r, where ai is a fresh propositional atom.) Roughly,
the algorithm initially considers all weak constraints of the input program Π =
(ΠR, ΠW) as hard constraints and searches for a stable model. If none is found
then some weak constraints are relaxed, which means that they can possibly
be violated during the search for a stable model. This process is iterated until a
stable model is found. The algorithm uses a setΠS for storing all weak constraints
of Π that are not relaxed, so that any weak constraint is relaxed at most once.
Initially, ΠS is equal to ΠW. The algorithm also uses a set Πaggr of constraints
created by the algorithm, which is initially empty and will store constraints
consisting of a unique aggregate atom. If a stable model I for ΠR∪Πaggr is found
then I is also an optimal solution of Π. Otherwise, an unsatisfiable core Πcore is
computed and used for relaxing ΠR. More in detail, constraints in Πaggr ∩Πcore

are moved into ΠS and replaced by copies with increased lower bounds, unless
the copies are trivially satisfied. Constraints in ΠS ∩ Πcore are then relaxed
by procedure RelaxWeakConstraint. Finally, an aggregate containing the new
relaxing atoms and unitary weights is added to Πaggr.

Example 3. Consider the program in Example 1, where for simplicity we consider
all weak constraint of weight 1. Initially,ΠS contains all weak constraints, i.e., r3–
r6. ProgramΠR = {r1, . . . , r6} is incoherent, and thus an unsatisfiable coreΠcore



Algorithm 3: mgd

Input : A program Π = (ΠR, ΠW)
Output: The optimum cost OPT for Π

1 begin
2 (ΠS, ΠR, R,OPT ) := (ΠW, ΠR \ΠW, ∅, 1 +

∑
r∈ΠW

weight(r));

3 (res,Πcore, I) := ASPSolver(ΠR ∪ {← R ≥ OPT}, ∅);
4 if res = INCO then return OPT;
5 OPT := min(cost(ΠW, I), OPT );
6 foreach r ∈ ΠS such that I 6|= r do
7 ΠS := ΠS \ {r};
8 ΠR := ΠR ∪ {RelaxWeakConstraint(r,R)};
9 goto 3;

is computed, say {r3, r4, r5, r6}. All weak constraints are thus relaxed, i.e., they
are replaced by constraints r′3, . . . , r

′
6 from Example 2. The subsequent coherence

test must also satisfy a constraint raggr of the form ← {aux3 = 1, aux4 =
1, aux5 = 1, aux6 = 1} ≥ 2. However, the processed program is still incoherent
and an unsatisfiable core {raggr, r′3, . . . , r′6} is returned. Constraint raggr is thus
added to ΠS in order to be relaxed, and its lower bound is increased by 1 in
the subsequent coherence check. The relaxed version of raggr is ← {aux3 =
1, aux4 = 1, aux5 = 1, aux6 = 1} ≥ 2,∼auxaggr, where auxaggr is a fresh atom.
(Actually, there is yet another trivial constraint, namely ← {auxaggr = 1} ≥ 2.)
The processed program is now coherent and a stable model is computed, say
{a, c, aux3, aux4} of cost 2, which is also optimal. (Recall that we are considering
the unweighted version of the program in Example 1.)

3.2 Model-guided Algorithms

Model-guided algorithms are aimed at producing solutions of improved cost,
until an optimal solution is found. In this section we consider mgd and opt.

Algorithm mgd. Algorithm 3 is called mgd. In a nutshell, weak constraints
are initially ignored and a stable model is found. Recall that if Π = (ΠR, ΠW)
is an input program then ΠR \ ΠW is assumed to be coherent. Violated weak
constraints are relaxed and considered as hard constraints in the subsequent
stable model searches. Moreover, the program is extended by a constraint of the
form ← R ≥ OPT , where R contains the relaxing atoms and the associated
weights, and OPT is the current optimal cost. This process is iterated until the
program becomes incoherent, which means that OPT is the optimal cost for the
original program.

Example 4. Consider the program in Example 1. Initially, ΠS contains all weak
constraints, i.e., r3–r6, which are instead removed from ΠR. The optimal value
OPT is initially set to 7, and set R is empty. A stable model for ΠR = {r1, r2}
is computed, say {a, c}, and stored in variable I. The cost of this solution is 3,



Algorithm 4: opt

Input : A program Π = (ΠR, ΠW)
Output: The optimum cost OPT for Π

1 begin
2 (R,OPT ) := (∅, 1 +

∑
r∈ΠW

weight(r)) ;

3 foreach r ∈ ΠW do
4 ΠR := (ΠR \ {r}) ∪ {RelaxWeakConstraint(r,R)};
5 PrefChoices := {∼aux | aux = w ∈ R};
6 (res,Πcore, I) := ASPSolver(ΠR ∪ {← R ≥ OPT},PrefChoices);
7 if res = INCO then return OPT;
8 OPT := cost(ΠW, I);
9 goto 6;

thus OPT is updated. Weak constraints r3 and r4 are then relaxed, i.e., they
are removed from ΠS, and ΠR is extended with the following constraints:

r′3 :← a,∼aux3 r′4 :← c,∼aux4

where aux3 and aux4 are fresh atoms. After this process, set R is {aux3 =
1, aux4 = 2}, and the subsequent coherence test must satisfy the constraint
← R ≥ 3. Let us assume that the returned stable model I is {a, d, aux3}, with
cost 3. Weak constraint r6 is then relaxed: Again, it is removed from ΠS and ΠR

is extended with r′6, i.e., ← d,∼aux6 where aux6 is a fresh atom. R is extended
with aux6 = 2 and a new stable model is searched. Say that I = {b, c, aux4} is
returned, again with cost 3. Weak constraint r5 is relaxed: It is removed from
ΠS and ΠR is extended with r′5, i.e., ← b,∼aux5. R is extended with aux5 = 1
and a new stable model is searched, but the program is now incoherent. The
algorithm thus terminates by returning 3, i.e., the optimal cost for the original
program.

Algorithm opt. Algorithm 4 is called opt. Concisely, all weak constraints
are relaxed and a stable model is found. During the stable model search, the
branching heuristic is forced to falsify relaxing atoms when possible. Moreover,
as in mgd, a constraint with an aggregate atom is used to force an improvement
of the solution within each stable model found.

Example 5. Consider again the program in Example 1. Initially, OPT is 7, and
ΠR contains r1, r2 and the relaxed constraints r′3–r′6 introduced in Example 4.
Moreover, R is {aux3 = 1, aux4 = 2, aux5 = 1, aux6 = 2} and PrefChoices
is {∼aux3,∼aux4,∼aux5,∼aux6}. Then, a stable model I for ΠR is found, say
{a, c, aux3, aux4} of cost 3. OPT is thus updated to 3 and a new stable model
is searched, with the additional constraint ← R ≥ 3. The resulting program is
actually incoherent, and the algorithm terminates.
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Fig. 1. Cactus plots



4 Experiments

In this section we report the results of an experiment carried out to analyze
the behavior of the four algorithms for computing optimal costs described in
Section 3.

Hardware Setting. The experiment was run on a four core Intel Xeon CPU
X3430 2.4 GHz, with 4 GB of physical RAM and running Linux Debian Lenny
(32bit). Only one core was enabled, and time and memory limits were set to 600
seconds and 3 GB, respectively. Execution times and memory consumption were
measured by the Benchmark Tool Run (http://fmv.jku.at/run/).

Implementation. The algorithms described in Section 3 were implemented
in an experimental variant of the ASP solver WASP. The version of WASP that
was used as base for the implementation is the one that participated in the
4th ASP Competition. The main algorithms were modified in order to allow
several invocations of the main model search procedure from an external control
procedure.

Benchmark setting. Tested instances were taken from the 4th ASP Competi-
tion [7] and from MaxSAT Competition 2008 (http://www.maxsat.udl.cat/08).
MaxSAT instances are randomly selected among industrial instances. These are
further divided into three sets, named MaxSAT, Partial-MaxSAT (some of the
clauses must be satisfied), and Weighted-Partial-MaxSAT (presence of weighted
clauses). ASP instances are from problems with weak constraints in the System
Track of the 4th ASP Competition. We considered four problems correspond-
ing to the following sets of instances: Abstract Dialectical Framework, Crossing
Minimization, Maximal Clique, and Still Life. Non ground input programs are
first processed by a version of the DLV grounder properly adapted to work with
WASP. (We did not include the ValvesLocation which is too resource demanding
already for the grounding phase.)

Results. The results are summarized in Table 1, Table 2 and Figure 1. Table 1
reports the number of solved instances and the percentage of solved instances

Table 1. Solved instances and percentage of solved instances

Problem bcd oll opt mgd #inst

AbstractDialectical 109 (90.8%) 64 (53.3%) 73 (60.8%) 120 (100.0%) 120
CrossingMinim. 0 (0.0%) 10 (11.8%) 0 (0.0%) 0 (0.0%) 85
MaximalClique 0 (0.0%) 0 (0.0%) 3 (6.0%) 0 (0.0%) 50
StillLife 2 (7.7%) 3 (11.6%) 4 (15.4%) 2 (7.7%) 26

MaxSAT 6 (33.3%) 8 (44.4%) 4 (22.2%) 0 (0.0%) 18
Partial MaxSAT 66 (39.8%) 119 (71.7%) 55 (33.1%) 66 (39.8%) 166
Wei. Part. MaxSAT 1 (8.3%) 1 (8.3%) 1 (8.3%) 1 (8.3%) 12

Total ASP 111 (39.5%) 77 (27.4%) 80 (28.5%) 122 (43.4%) 281
Total MAXSAT 73 (37.2%) 128 (65.3%) 60 (30.6%) 67 (34.2%) 196
Total 184 (38.6%) 205 (43.0%) 140 (29.3%) 189 (39.6%) 477



within parenthesis for each considered algorithm. The last column reports the
total number of instances for each set. Table 2 reports the number of wins of
an algorithm, in terms of the number of instances in which an algorithm is the
fastest, and the number of instances solved uniquely by one algorithm.

We observe that core-guided algorithms perform better in MaxSAT, where
oll solves 128 instances and bcd 73. On the other hand mgd is very effective in the
Abstract Dialectical Framework domain (100% of solved instances), and opt is
the best in Maximal Clique (where other algorithms cannot solve any instance)
and Still Life (where opt is always the fastest algorithm). The algorithm that
solves more instances overall is oll (205) followed by mgd (189).

Figure 1 reports three cactus plots respectively analyzing the behavior of the
algorithms in MaxSAT (a), ASP (b) and in the entire instance set (c). Recall that
in a cactus plot the x-axis reports the number of instances that are solved within
the time reported on the y-axis. By looking at the cactus plots we note that oll
gives advantages (and it is very fast) only in MaxSAT instances, whereas is the
worst algorithm in term of runtime performance and number of solved instances
in ASP. In contrast, mgd seems to be the best option for ASP instances both in
terms of number of solved instances and runtime performance. Nonetheless, it is
important to note that mgd is very effective in Abstract Dialectical Frameworks
only. Algorithm opt is effective in the remaining ASP domains but the number
of solved instances is small, thus, this advantage is not visible in the cactus
plots. In general the algorithm having the most uniform behavior overall is bcd.
In fact, even if it is third overall in terms of number of solved instances (184),
it performs similarly in ASP and MaxSAT and features several wins in both
Partial MaxSAT (6) and Abstract Dialectical Framwework (15). As a matter
of fact no algorithm outperforms all the others, or can be considered the best
solution overall. Instead, each algorithm has either a specific domain where it is
successful, or performs steadily in all the considered domains but not leading in
any.

It was expected to see core-guided algorithms to be more effective in MaxSAT,
since these algorithms were proposed in this area. We have to report the efficacy
of model-guided algorithms in ASP. One possible discriminator can be identi-

Table 2. Number of WINS and number of uniquely solved instances

Problem bcd oll opt mgd

AbstractDialectical 15 (0) 0 (0) 5 (0) 100 (10)
CrossingMinimi. 0 (0) 10 (10) 0 (0) 0 (0)
MaximalClique 0 (0) 0 (0) 3 (3) 0 (0)
StillLife 0 (0) 0 (0) 4 (1) 0 (0)

MaxSAT 0 (0) 5 (1) 3 (0) 0 (0)
Partial MaxSAT 6 (0) 85 (51) 18 (0) 10 (0)
Wei. Part. MaxSAT 0 (0) 0 (0) 0 (0) 1 (0)

Total ASP 15 (0) 10 (10) 12 (4) 100 (10)
Total MAXSAT 6 (0) 90 (52) 21 (0) 11 (0)
Total 21 (0) 100 (62) 33 (4) 111 (10)



fied by observing that ASP and MaxSAT instances have different densities of
(ground) weak constraints, and in particular ASP instances usually have more
hard constraints and rules than weak constraints. In fact, instances with rela-
tively few weak constraints, such as ASP and to some extent Partial MaxSAT
benchmarks, seem to be better handled by model-guided algorithms, whereas
industrial instances, which are dense of weak constraints, seem to be better ap-
proached by core-guided algorithms.

5 Conclusion

This paper reports on the implementation of several algorithms for evaluating
weak constraints in the ASP solver WASP. These algorithms are obtained by
porting to ASP several techniques for solving Maximum Satisfiability (MaxSAT)
problems. In particular, WASP implements the following four algorithms: mgd
[18], a variant of optsat [17], bcd [15] and oll [19].

WASP was run on instances from both ASP and MaxSAT competitions.
The results of this experiment showed pros and cons of the different strategies
for computing optimal answer sets. On the one hand the better performance of
core-guided algorithms in MaxSAT instances is confirmed, on the other hand
the remaining algorithms behave well in ASP problems. No algorithm outper-
forms the others in all the considered domains, and specific algorithms may be
more effective than others in specific domains. This paves the way for future
work, which includes the implementation of a new approach that combines the
advantages of the different algorithms, and a parallel implementation that runs
several algorithms concurrently.
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