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Abstract. Many network design problems arising in areas as diverse as
VLSI circuit design, QoS routing, traffic engineering, and computational
sustainability require clients to be connected to a facility under path-
length constraints and budget limits. These problems can be modelled
as Rooted Distance-Constrained Minimum Spanning-Tree Problem (RD-
CMST), which is NP-hard. These networks are vulnerable to a failure.
Therefore, it is often important to ensure that all clients are connected
to two or more facilities via edge-disjoint paths. We call this problem the
Disjoint RDCMST (DRDCMST). We present a constraint-based paral-
lel local search algorithm for solving DRDCMST. A traditional way of
extending a sequential algorithm to run in parallel is to either perform
portfolio-based search in parallel or to perform parallel neighbourhood
search. We rather exploit the semantics of the constraints of the problem
to perform multiple moves in parallel by ensuring that they are mutu-
ally independent. The ideas presented in this paper are general and can
be adapted to any other problem. The effectiveness of our approach is
demonstrated by experimenting with a set of problem instances taken
from real-world passive optical network deployments in Ireland and the
UK. Results show that performing moves in parallel can significantly
reduce the time required by our local-search approach.

1 Introduction

Many network design problems arising in areas as diverse as VLSI circuit design,
QoS routing, traffic engineering, and computational sustainability require clients
to be connected to a facility under path-length constraints and budget limits.
Here the length of the path can be interpreted as distance, delay, signal loss,
etc. For example, in a multicast communication setting where a single node
is broadcasting to a set of clients, it is important to restrict the path delays
from the server to each client. In Long-Reach Passive Optical Networks (LR-
PON) a metro-node is connected to the set of exchange-sites via optical fibres,
the length of the fibre between an exchange-site and its metro-node is bounded
due to signal loss, and the goal is to minimise the cost resulting from the total
length of fibres [1]. In VLSI circuit design path delay is a function of maximum



interconnection path length while power consumption is a function of the total
interconnection length [2]. In package shipment service guarantee constraints are
expressed as restrictions on total travel time from an origin to a destination, and
the organisation wants to minimise the transportation costs [3].

Many of these network design problems can be modelled as Rooted Distance-
Constrained Minimum Spanning-Tree Problem (RDCMST) [2] which is NP-
hard. The objective is to find a minimum cost spanning tree with the additional
constraint that the length of the path from a specified root-node (or facility) to
any other node (client) must not exceed a given threshold. Many networks are
complex systems that are vulnerable to a failure. A major fault occurrence would
be a complete failure of the facility which would affect all the clients connected
to the facility. Therefore it is important to provide network resilience. We restrict
our attention to the networks where all clients are required to be connected to
two facilities via two edge disjoint paths so that whenever a single facility fails or
a single link fails all clients are still connected to at least one facility. We define
this problem as Disjoint Rooted Distance-Constrained Minimum Spanning-Trees
Problem (DRDCMST). Given a set of facilities and a set of clients such that each
client is associated with two facilities, the problem is to find a set of distance-
constrained spanning trees rooted from each facility with minimum total cost.
Additionally, each client is connected to its two facilities via two edge disjoint
paths. This would effectively mean that each pair of distance-bounded spanning
trees would be mutually disjoint in terms of edges.

Previous works on RDCMST [4, 5] have focused on dedicated algorithms
which are hard to extend with side constraints, and therefore these algorithms
cannot be extended for solving DRDCMST. We present a constraint-based local
search algorithm which can easily be extended to apply widely. We present two
efficient local move operators and an incremental way of maintaining objective
function which is often a key element for efficient local search algorithms. Our
local search algorithm is able to solve both RDCMST and DRDCMST problems.
We then extend our sequential algorithm to perform search in parallel. Tradi-
tional way of extending a sequential algorithm to run in parallel is to either
perform portfolio-based search in parallel or to perform parallel neighbourhood
search. We rather exploit the semantics of the constraints of the problem to per-
form multiple moves in parallel by ensuring that they are mutually independent.
The effectiveness of our approach is demonstrated by experimenting with a set
of problem instances taken from real-world passive optical network deployments
in Ireland and the UK. Results show that performing moves in parallel can sig-
nificantly reduce the time required to find a target solution and it improves the
anytime behaviour of our local search algorithm.

2 Formal Specification and Complexity

Let M be the set of facilities. Let E be the set of clients. Let Ei ⊆ E be the
set of clients that are associated with facility mi ∈M . We use N to denote the
set of nodes, which is equal to M ∪ E. We use Ti to denote the tree network



associated with facility i. We also use Ni ⊆ N = Ei ∪ {mi} to denote the set
of nodes in Ti. Let λ be the maximum path-length from a facility to any of its
clients.

Rooted Distance-Constrained Minimum Spanning-Tree Problem (RDCMST). Given
a facility mi ∈M , the set of clients Ei, a set of feasible links Li ⊆ N2

i , two real
number, a cost cl and a distance dl for each link l ∈ Li, and a real number λ,
the RDCMST to find a spanning tree Ti with minimum total cost such that the
length of the path from the facility mi to any ej ∈ Ei is not greater than λ.

Disjoint Rooted Distance-Constrained Minimum Spanning-Trees Problem (DRD-
CMST). Given a set of facilities M , a set of clients E, a set of feasible links
L ⊆ N2, two real number, a cost cl and a distance dl for each link l ∈ L, an
association of clients with two facilities π : E → M2, and a real number λ, the
DRDCMST is to find a spanning tree Ti for each facility mi such that:

1. The length of the unique path from the facility mi to any other client is not
greater than λ.

2. For each client ek, the two paths connecting ek to mi and to mj , where
π(ek) = 〈mi,mj〉, are edge disjoint.

3. The sum of the costs of the edges in all the spanning trees is minimum.

Complexity. DRDCMST involves finding a rooted distance-bounded spanning
tree for every facility whose total cost minimum. This problem is known to be
NP-complete [2].

3 Iterated Constraint-based Local Search

The Iterated Constraint-based Local Search (ICBLS) [8, 9] framework depicted
in Algorithm 1 comprises two phases. First, in a local search phase, the algorithm
improves the current solution, little by little, by performing small changes. Gen-
erally speaking, it employs a move operator in order to move from one solution
to another in the hope of improving the value of the objective function. Second,
in the perturbation phase, the algorithm perturbs the incumbent solution (s∗) in
order to scape from difficult regions of the search (e.g., a local minima). Finally,
the acceptance criterion decides whether to update s∗ or not. To this end, with
a probability 5% s′∗ will be chosen, and the better one otherwise.

Our algorithm starts with a given initial solution where all clients are able to
reach their facilities while satisfying all constraints (i.e., the upper bound in the
length and disjointness). We switch from the local search phase to perturbation
when a local minima is observed; in the perturbation phase we perform a given
number of random moves (20 in this paper).

The stopping criteria is either a timeout or a given number of iterations.



Algorithm 1 Iterated Constraint-Based Local Search

1: s0 := Initial Solution
2: s∗ := ConstraintBasedLocalSearch(s0)
3: repeat
4: s′ := Perturbation(s∗)
5: s′∗ := ConstraintBasedLocalSearch(s′)
6: s∗ := AcceptanceCriterion(s∗, s′∗)
7: until No stopping criterion is met
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(d) Pham et al.’s arc operator

Fig. 1. Move operators

3.1 Move-Operators

In this section we propose two new move operators. We use Ti to denote the tree
associated with facility i. An edge between two clients ep and eq is denoted by
〈ep, eq〉.

Node operator (Figure 1(b)) moves a given node ei from the current location
to another in the tree. As a result of this, all successors of ei will be directly
connected to the predecessor node of ei. ei can be placed as a new successor for
another node or in the middle of an existing arc in the tree.

Subtree operator (Figure 1(c)) moves a given node ei and the subtree emanating
from ei from the current location to another in the tree. As a result of this, the
predecessor of ei is not connected to ei, and all successors of ei are still directly
connected to ei. ei can be placed as a new successor for another node or in the
middle of an existing arc.



Arc Operator (Figure1(d)). In this paper we limit our attention to moving a
node or a complete subtree. [10] proposed to move arcs in the context of the
Constrained Optimum Path problems. Pham et al. move operator (Figure 1(d))
chooses an arc in the tree and finds another location for it without breaking the
flow.

3.2 Operations and Complexities

We first present node and subtree operators as they share similar features. For
an efficient implementation of the move operators, it is necessary to maintain f ij
(the length of the path from facility i to client j) and bij (length of the path from
ej down to the farthest leaf associated to it in tree Ti) for each client ei associated
with each facility mi. This information will be used to maintain the path-length
constraint. Let epj be the immediate predecessor of ej and let Sj be the set of
immediate successors of ej in Ti. Table 1 summarises the complexities of the
move operators, in this table n denotes the total number of clients associated to
one facility.

Table 1. Complexities of different operations

Node Subtree Arc

Delete O(n) O(n) O(1)
Feasibility O(1) O(1) O(n)
Move O(n) O(n) O(n)
Best move O(n) O(n) O(n3)

Delete. Deleting a node ej from Ti requires a linear complexity w.r.t. the number
of clients of mi. For both operators, it is necessary to update bij′ for all the
nodes j′ in the path from the facility mi to client epj

in Ti. In addition, the
node operator updates f ij′ for all the nodes j′ in the subtree emanating from ei.
After deleting a node ej or a subtree emanating from ej , the objective function
is updated as follows:

obj = obj − cj,pj

Furthermore, the node operator needs to add to the objective function the cost
of disconnecting each successor element of ej and reconnecting them to epj

.

obj = obj +
∑
k∈Sj

(ck,pj
− ckj)

Feasibility. Checking feasibility for a move can be performed in linear time by
using f ij and bij . If ej is inserted between an arc 〈ep, eq〉 then we check the
following:

f ip + cpj + cjq + biq < λ



If ep is a leaf-node in the tree and ej is placed as its successor then the following
is checked:

f ip + cpj + bij < λ (1)

Move. A move can be performed in linear time. We recall that this move operator
might replace an existing arc 〈ep, eq〉 with two new arcs 〈ep, ej〉 and 〈ej , eq〉. This
operation requires to update f ij for all nodes in the emanating tree of ej , and bij
in all nodes in the path from the facility acting as a root node down to the new
location of ej . The objective function must be updated as follows:

obj = obj + cpj + cjq − cpq

Best Move. Selecting the best move involves traversing all clients associated with
the facility and selecting the one with the maximum reduction in the objective
function.

Now we switch our attention to the arc operator. This operator does not
benefit by using bij . The reason is that moving a given arc from one location
to another requires changing the direction of a certain number of arcs in the
tree. Deleting an arc requires constant complexity, this operation generates two
separated subtrees and no data structures need to be updated. Checking the
feasibility of adding an arc 〈ep′ , eq′〉 to connect two subtress requires linear com-
plexity. It is necessary to actually traverse the new tree to obtain the distance
from eq′ to the farthest leaf in tree of facility i. Performing a move requires a
linear complexity, and it involves updating f ij for the new emanating tree of eq′ .
And performing the best move requires a cubic time complexity, the number
of possible moves is n2 (total number of possible arcs for connecting the two
subtree) and for each possible move it is necessary to check feasibility. Due to
the high complexity (O(n3)) of the arc operator to complete a move, hereafter
we limit our attention to the node and subtree operators.

Disjointness To ensure disjointness among spanning-trees we maintain a 2·|E|
Matrix, where |E| represents the number of clients. For every client, there are
two integers indicating the predecessor in the primary and secondary facilities,
these two numbers must always be different.

3.3 Sequential Algorithm

The pseudo-code for constraint-based local search is depicted in Algorithm 2. It
starts by selecting a client ej of a facility mi randomly and performs a move by
using one of the move operators as described before. Here the move operator,
which is itself a function, is passed as a parameter. In each iteration of the
algorithm (Lines 9-19), we identify the best location for ej . A location in a tree
Ti is defined by (eq, S) where eq denotes the parent of ej and S denotes the
set of successors of ej after the move is performed. Broadly speaking, there are
two options for the new location: (1) Breaking an arc 〈ep, eq〉 and inserting ej in
between them such that the parent node of ej would be ep and the successor set



Algorithm 2 ConstraintBasedLocalSearch (move-op,sol)

1: {T1 . . . Tn} ← sol
2: list← {(mi, ej)|mi ∈M ∧ ej ∈ Ei}
3: fcg← {(mi,mj)||Ni ∩Nj | ≥ 2}
4: while list 6= ∅ do
5: Select (mi, ej) randomly from list
6: Best← {(epj , Sj)}
7: Delete ej from Ti and update Ti

8: cost←∞
9: for (eq, S) in Locations(move-op, Ti) do

10: if FeasibleMove(move-op, (eq, S), ej) then
11: cost′ ← CostMove( (eq, S), ei)
12: if cost′ = cost then
13: Best ← Best ∪{(eq, S)}
14: else if cost′ < cost then
15: Best ← {(eq, S)}
16: cost← cost′

17: end if
18: end if
19: end for
20: Select (eq′ , S

′) randomly from Best
21: if eq′ 6= epj ∨ S′ 6= Sj then
22: list← list ∪ {(mk, e)|(mi,mk) ∈ fcg ∧ e ∈ Nk}
23: end if
24: list← list− {(mi, ej)}
25: Ti ←Move( Ti,move-op, (eq′ , S

′), ej )
26: end while
27: return {T1 . . . Tn}

would be singleton, i.e., S = {eq}; (2) Adding a new arc 〈ep, ej〉 in the tree in
which case the parent of ej is ep and S = ∅. Locations returns all the locations
relevant w.r.t. a given move-operator. Line 10 verifies that the new move is not
breaking any constraint and CostMove returns the cost of applying such move
using a given move operator.

Instead of verifying that the local minima is reached by exhaustively checking
all moves for all clients of all facilities, we use a facility connectivity graph (fcg)
where the vertices represent trees (associated with facilities) and an edge between
them represent that a change in one tree can affect the change in another tree.
Notice that a change in a tree of a facility is restricted by another tree of another
facility if they share at least 2 clients because an edge between them can appear in
at most one tree. Consequently, an edge between two facilities is added (Line 25)
if they share at least two clients. Therefore, all affected facilities in the fcg will
be added in to list for testing them again in upcoming iterations. Otherwise,
when no improvement is observed, the current node is removed from list. A
local minima, i.e., no improvements in the objective can be obtained with the
current solution is reached once list is empty. This mechanism helps in reducing



the time significantly by reducing the number of useless moves. Algorithm 2 can
tackle both RDCMST and DRDCMST. For the former, there would be only one
facility. In addition, FeasibleMove will only check path-length constraint.

4 Parallel Algorithm

Parallelization has been widely studied to speed-up and improve performance of
local search algorithms to tackle a large variety of problems including: TSP [11],
Capacited Network Design [12], Steiner Tree [13], SAT [14], and CSPs [15] just to
name a few. These approaches employ the Multi-walk and/or Single-walk frame-
work [16] to devise the parallel algorithm. In particular we focus our attention
in the constraint-based local search solvers.

Multi-walk (also known as parallel portfolio) consists in executing several
algorithms (or different copies of the same one with different random seeds)
in parallel, with or without cooperation, until a solution is found or a given
timeout is reached. The implicit assumption is that different processes would
handle different parts of search space.

The multi-walk method has two important properties. First, no load balanc-
ing is required to parallelise the sequential algorithm. Second, in theory, it is
possible to reach linear and super-linear speedups [17], however, in practice the
speedup of traditional local search algorithm is far from linear and, it is usually
limited to a few number of cores [18].

Single-walk methods consist in using parallelism inside a single search pro-
cess. In this approach, a typical manner to develop the algorithm consists in
parallelising the exploration of the neighbourhood. For example dividing the
neighbourhood into several sub-neighbourhoods and searching them in parallel
for finding the best move.

In the context of SAT we observe two different levels of parallelism (see [19]
for a recent survey). On the one hand, multi-walk approaches execute multiple
algorithms at the same time with or without cooperation [18]. In the cooperative
framework processes exchange the best solution with other processes in order to
properly craft a new starting point. On the other hand, single-walk approaches
aim at flipping multiple variables at the same time [20]

In [15] the authors exploit the multi-walk framework to parallelize the Adap-
tive Search library, a constraint-based local search library. Experiments on a
set of academic benchmarks indicate that the speed-up varies from problem to
problem, and under some particular circumstances linear-speedups can be ob-
tained up to 8000 processes. [21] describes the parallel architecture of the comet
solver, a robust local search solver, the architecture involves abstractions for im-
plementing mutl-walk (with and without cooperation) and single-walk solvers.
And [22] studies the use of GPUs to speedup the resolution process of a generic
constraint-based local search algorithm in a GPU.



Algorithm 3 Random Independent set(fcg, maxElements)

1: S := { }
2: while fcg is not empty and |S| < maxElements do
3: v := random vertex in fcg
4: S := S ∪ v
5: Remove v and its neighbours from fcg
6: end while
7: return S

4.1 Constraint-based Parallel Local Search for DRDCMST

In this paper, we propose a novel approach to perform multiple moves in parallel
which can be applied both in single-walk and multi-walk settings. A move for
DRDCMST can defined as selecting and removing a node from a tree and adding
it back to the tree preferably to a different location in the tree. The general idea
is to partition the set of all moves in such a way that when multiple moves
are performed by selecting them from different elements of the partition no
constraints are violated. We use this approach to develop a parallel algorithm
for the DRDCMST problem.

Let Lij be the set of all locations for a node associated with client ej where
it can be moved in the tree Ti associated with the facility mi by using either
node or sub-tree move-operator. Ideally, we would like to find a set of nodes (or
clients) whose sets of locations are pair-wise mutually exclusive so that moving
all those nodes simultaneously in their trees is conflict-free. The advantage is
that finding a best location for all such nodes can be done in parallel without
restricting the access to the data-structures or creating duplicate copies of the
same data-structure.

Now finding a set of nodes from a same tree whose sets of locations are
pair-wise mutually exclusive is more difficult as there would be greater degree
of overlapping depending on the input graph. As the sets of locations for the
selected nodes must be independent in order to avoid the cost of communication
and sharing resources between parallel processes we select at most one node from
one tree. Therefore, the number of moves that can be performed simultaneously
is bounded by the number of facilities. Recall that changing the location of
a node within a tree is not only constrained by the other nodes of the same
tree but also by the nodes of other trees because of the disjoint constraint. In
order to determine the number of facilities, we use the previously defined facility
connectivity graph. In particular, we explore the following two mechanisms:

1. Independent set defines partitions by computing independent sets in fcg. In
this approach, as we know beforehand that each client would have at most
one predecessor, all elements in the set can be safely executed in parallel
without violating the disjoint constraint.

Algorithm 3 computes a random set of independent elements in fcg, these
elements will be then used in the parallel section of the algorithm to solve



the problem. The degree of parallelism obtained using this approach is dom-
inated by the cardinality of the maximum independent set in fcg, in practice
we expect sparse graphs in real networks, therefore the cardinality of inde-
pendent sets should be more than a few tens of elements.

2. Random conflict selects, uniformly at random, n facilities and resolve the
conflicts between clients apriori. It is recalled that two facilities can be in
conflict if and only if they share at lest two clients. Let us say that two
facilities mi and m′i are selected, and the clients ej and e′j are connected to
both facilities. Let C = Lij ∩Li′j′ be a non-empty set. This implies that Lij

and Li′j′ are not mutually exclusive. To resolve the conflict we modify the
sets Lij and Li′j′ such that they become mutually exclusive.
– If ek ∈ C is already connected to e′j in Ti then we remove ek from Li′j′ ,

or vice-versa.
– If ek ∈ C is not connected to any of ej or e′j in both trees Ti and T ′i then

we remove ek randomly from either Lij or Li′j′ .
Unlike independent set where the degree of parallelism is limited by the size
of the maximum independent set, random conflict allows as many processes
as the number of facilities in the problem, which in practice goes up to few
hundreds of cores.

Algorithm 4 Iterated Constraint-based Parallel Local Search(move-op)

1: s := Initial Solution
2: repeat
3: P := CreatePartition(s)
4: for each si ∈ P do in parallel
5: while local time limit t for parallelism has not been reached do
6: if si is internally in a local minima then
7: s∗i := Perturbation(si)
8: end if
9: s

′∗
i := ConstraintBasedLocalSearch(move-op,s∗i )

10: si := AcceptanceCriterion(s∗i , s
′∗
i )

11: end while
12: end parfor
13: until

The Iterated Constraint-based Parallel Local Search algorithm (ICPLS) works
in two phases. First, the algorithm selects a set of facilities, denoted by P . If
the set is independent then the locations of the clients of different facilities are
mutually exclusive. If the set is in conflict then the locations of the clients of
different facilities are modified by restricting their locations to resolve any con-
flicts. Second, for each facility pi ∈ P it performs, in parallel, the sequential
local search algorithm for a given amount of time t to explore the search space.
As the parallel algorithm invokes the constraint-based local search algorithm
depicted in the previous section, we would like to differentiate two plateaus. A



local minima of the problem, i.e., a state in which no neighbours solutions yield
to improvements in the objective (used in the sequential algorithm) and a local
minima in a tree, i.e., when a single tree is internally in a local minima but the
global picture of the whole problem is still unknown.

Informally speaking, the sequential algorithm scans the list of active clients
(list) and clients are deleted from the list whenever they cannot improve the
objective function. And perturbation starts when a local minima in the problem
is reached (i.e., list = { }). Maintaining the same scheme in the parallel al-
gorithm might introduce an important processors idle-time, in particular when
approaching to a local minima. Therefore, in order to minimise idle-time, we
start perturbation locally for each tree as soon as an internal local minima for
a given tree is reached. In addition, in order to reduce synchronisation among
processors, after applying a move in a tree only nodes of the same tree will be
added into list (line 22 in Algorithm 2). In this schema the global solution of
the problem is the aggregation of independent solutions obtained for individual
trees.

Algorithm 4 depicts the ICPLS proposed in this paper. Similarly to the se-
quential algorithm, the algorithm starts with an initial solution, then it computes
P using independent set or random conflict, notice that CreatePartitions receives
the current solution s in order to decide whether it is necessary to break conflicts
(e.g., when using independent set). In the parallel section of the algorithm, we
verify if the tree associated to pi is internally in a local minima to perturb the
solution (lines 6-8). Afterwards, the Constraint-based Local Search procedure is
invoked, and the same acceptance criterion as the sequential algorithm is also
invoked. It is worth noticing that unlike the sequential algorithm, where the a
local minima is strictly reached after invoking local search, in the parallel al-
gorithm it might be the case that due to the local time limit for each parallel
execution, the parallel algorithm has not reached the local minima.

5 Long-Reach Passive Optical Networks

We now describe a real-world application whose instances are used for evaluat-
ing our approach. Long-Reach Passive Optical Networks (LR-PONs) provide an
economically viable solution for fibre-to-the-home network architectures [1]. In
LR-PON fibres are distributed from the Metro-Nodes (MNs) to the Exchange-
Sites (ESs) through cables that forms a tree distribution network. A major fault
occurrence in LR-PON would be a complete failure of the MN, which could af-
fect tens of thousands of customers. The dual homing protection mechanism for
LR-PON enables customers to be connected to two MNs, so that whenever a
single MN fails all customers are still connected to a back-up. Notice that the
paths from an ES to its two MNs cannot contain the same link. Otherwise, this
would void the purpose of having two MNs. Given as association of MNs with
ESs the problem is to determine the routes of cables such that there are two
edge-disjoint paths from an ES to its two MNs, the length of each path is below
threshold and the total cable length required for connecting each ES to two MNs



Fig. 2. Example of a LR-PON network for Ireland where each exchange-site is con-
nected to two metro-nodes through disjoint paths. In the plot the subnetwork of each
metro node is associated with a colour. Two subnetworks may have the same colour if
they do not share nodes.

is minimised. Notice that here metro-nodes are facilities and exchange-sites are
clients.

6 Empirical Evaluation

All the experiments were performed in a 4-node cluster, each node features 2
Intel Xeon E5-2640 processors at 2.5 Ghz, and 64 GB of RAM memory. Each
processor has 6 cores for a total of 12 cores per node. The local search algorithm
was implemented in C++ and used openMP to implement the parallel version
using shared memory.

To evaluate the performance of the proposed parallel local search algorithm,
we use two datasets corresponding to real networks from Ireland, with 1122 ex-
change sites and 18, 20, 22, 24 Metro Nodes; and the UK, with 5394 exchange
sites and 75, 80, 85, 90 Metro Nodes. In preliminary experiments we observed
that the subtree operator outperformed the node operator, for this reason here-
after we limit our attention to the subtree operator.

The goal of the parallel algorithm is twofold. First, decreasing the elapsed
time for finding a target solution (i.e., optimal or near-optimal solution). Second,
the quality of the solution might be better when increasing the processing power
(i.e., adding more cores and processors).

Table 2 shows the results of the empirical evaluation of the parallel algorithm.
In this table we present the cost of the solution for the sequential algorithm, the
parallel algorithms, and the lower bound (LB) of the solution obtained using
CPLEX. We use the multi-walk (MW), i.e., executing multiple copies of the
algorithm with different random seeds, framework as a baseline for comparison;
we also include the proposed parallel algorithms using both random conflict (RC)
and independent set (IS) for partitioning the problem. For each experiment we



report the median value across 11 executions with a time-limit of 10 minutes
for each experiment. Figure 3 (top) shows the evolution of the solution to solve
an instance form the Irish dataset (with 18 metro nodes) and another from the
UK dataset (with 75 metro nodes) for a typical execution1. The x-axis gives the
quality of the solution of the sequential and parallel algorithms.

Country |M | Seq LB
Number of Cores

4 8 12
MW RC IS MW RC IS MW RC IS

18 17255 14809 17263 17194 17208 17254 17193 17201 17254 17189 17182
Ireland 20 16987 14845 16976 16947 16958 16982 16926 16951 16981 16940 16922
|E|=1121 22 16835 14990 16799 16813 16812 16810 16819 16798 16810 16819 16785

24 16233 14570 16224 16257 16247 16235 16255 16251 16238 16280 16275
75 67085 54720 67135 65078 65075 67111 64992 64903 67135 64873 64890

UK 80 66178 54975 66254 64371 64305 66247 64211 64180 66247 64111 64147
|E|=5394 85 65096 55087 65094 63533 63517 65011 63425 63409 65011 63351 63381

90 63528 55035 63528 62310 62251 63535 62170 62149 63551 62150 62122
Table 2. Performance summary with a 10-minute time-out for each experiment for the sequential
algorithm (Seq), the lower bound (LB) obtained using CPLEX, and the parallel versions using
the Multi-walk (MW), Single-walk + random conflict (RC) and Single-walk + independent set
(MW+IS) architectures.

The sequential algorithm finds a very good quality solution within the time
limit for the instances of Ireland with a GAP of up to 10% with respect to the
lower bound. For this reason, when increasing the number of cores we observe
very little difference in the performance of the algorithms. Nevertheless, it can
be observed that the proposed parallel algorithms outperform the base line in
6, 7 and 7 instances using 4, 8, and 12 cores respectively out of 8 instances.
When analysing Figures 3(a) and 3(b) we observe an important GAP between
the parallel solvers and the sequential one in the progress of the solver. During
the first few seconds the sequential algorithm dominates the performance, that
is because, the parallel algorithm selects a subset of n metro nodes (where n is
the number of parallel processes) and only improves the solution for these metro
nodes for a given amount of time (see Algorithm 4). However, the parallel solvers
dominate performance after a few seconds. Moreover, using more cores reduces
the elapsed time to reach good quality solutions.

On the other hand, for UK instances, which are about four times bigger
(w.r.t. number of exchange sites), except for the multi-walk approach (where
no significance improvement is seen), we observe that the parallel algorithms
improve the quality of the solutions when increasing the number of cores. Sum-
ming up, the performance is improved by 2.99% (RC and IS 4 cores); 3.11% (RC
and 8 cores), 3.25% (IS 8 cores); and 3.29% (RC 12 cores), 3.27% (IS 12 cores).
Figures 3(a) and 3(b) also depict the power of the proposed parallel algorithm
where for a typical execution, the top performance of the sequential algorithm
with the 10-minute time limit is reached in 13 seconds for random conflict (4
cores) and 6.5 seconds for random conflict (12 cores) for this particular instance

1 We observed a similar behaviour in the remaining executions



of the Irish dataset. This super-linear speed-up can be explained by the fact that
the parallel algorithm applies as many moves as possible in parallel, while the
sequential algorithm is improving the quality of different metro nodes (one at
time). Although our evaluation has been limited to 12 cores, we would like to
remark that the parallelisation degree of the algorithm is limited to the num-
ber of metro cores of a given instance (up to 90 metro cores for the UK in our
experiments, and it might go up to few hundred metro nodes for countries like
Italy, France, and Germany). Moreover, in practice the fcg is a sparse graph and
therefore we foresee very good speedups up to an important number of cores,
e.g., 40 or 50 nodes in the case of UK.
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Fig. 3. Performance summary for a particular execution of an Irish instance (18 Metro
Nodes), and a UK instance (75 Metro Nodes).



Finally, we recall that even though after the 10-minute time limit random
conflict and independent set report a similar behaviour, random conflict usually
performs slightly better than independent set up to 100 seconds, and when the
degree of parallelism is high (12 cores in this paper). This can be explained in
Figures 3(c) and 3(d), where we depict the total number of times the metro nodes
are used in the parallel algorithm in a typical execution of the parallel algorithm.
As it can be observed, random conflict selects metro nodes uniformly. And the
nature of independent set (see Algorithm 3) bias the selection towards metro
nodes with small degree in fcg. For instances, the less used metro nodes in the
Irish dataset, i.e., metro nodes 5 and 17 in Figure 3(c), have the highest degree
in fcg, and the more used metro nodes, i.e., metro nodes 2, 3, 6, and 7 in Figure
3(c) have the smallest degree in the connectivity graph fcg.

7 Conclusions and Future Work

We have presented an efficient local search algorithm for solving Disjoint Rooted
Distance-Constrained Minimum Spanning-Trees problem. We presented two novel
move operators along with their complexities and an incremental evaluation of
the neighborhood and the objective function. Furthermore, we have proposed a
parallelisation scheme for the local search algorithm, which significantly reduces
the time required by sequential version to reach high quality solutions. Any prob-
lem involving tree structures could benefit from these ideas and the techniques
presented make sense for a constraint-based local search framework where this
type of incrementality is needed for network design problems. The effectiveness
of our approach is demonstrated by experimenting with a set of problem in-
stances taken from real-world long-reach passive optical network deployments in
Ireland, and the UK.

In future we would like to extend DRDCMST with the notion of optional
nodes, since this extension is a common requirement in several applications of
DRDCMST. Effectively this means that we would compute for every facility a
Minimum Steiner Tree where all clients are covered but the path to them may
follow some optional nodes.
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