
A Verified Generate-Test-Aggregate Coq Library
for Parallel Programs Extraction

Kento Emoto1, Frédéric Loulergue2, and Julien Tesson3

1 Kyushu Institute of Technology, Japan, emoto@ai.kyutech.ac.jp
2 Univ. Orléans, INSA Centre Val de Loire, LIFO EA 4022, France,

Frederic.Loulergue@univ-orleans.fr
3 Université Paris Est, LACL, UPEC, France, Julien.Tesson@univ-paris-est.fr

Abstract. The integration of the generate-and-test paradigm and semi-
rings for the aggregation of results provides a parallel programming
framework for large scale data-intensive applications. The so-called GTA
framework allows a user to define an inefficient specification of his/her
problem as a composition of a generator of all the candidate solutions,
a tester of valid solutions, and an aggregator to combine the solutions.
Through two calculation theorems a GTA specification is transformed
into a divide-and-conquer efficient program that can be implemented
in parallel. In this paper we present a verified implementation of this
framework in the Coq proof assistant: efficient bulk synchronous parallel
functional programs can be extracted from naive GTA specifications. We
show how to apply this framework on an example, including performance
experiments on parallel machines.
Keywords: List homomorphism, functional programming, automatic
program calculation, semi-ring computation, bulk synchronous paral-
lelism, Coq

1 Introduction

Nowadays parallel architectures are everywhere. However parallel programming
is still reserved to experienced programmers. There is an urgent need of pro-
gramming abstractions, programming methodologies as well as support for the
verification of parallel applications, in particular for distributed memory models.
Our goal is to provide a framework to ease the systematic development of cor-
rect parallel programs. We are particularly interested in large scale data-intensive
applications.

Such a framework should provide programming building blocks whose se-
mantics is easy to understand for users. These building blocks should come with
an equational theory that allows to transform programs towards more efficient
versions. These more efficient versions should be parallelisable in a transparent
way for the user.

GTA (generate-test-aggregate) [4,3] provides such a framework, integrating
the generate-and-test paradigm and semi-rings for the aggregation of results.
Through two calculation theorems a GTA specification is transformed into an

efficient program. It can then be implemented in parallel as a composition of al-
gorithmic skeletons [1] which can be seen as higher-order functions implemented
in parallel.

In this paper we present a verified implementation of the framework in the
Coq proof assistant. The contributions of this paper are:

– the formalisation of the GTA paradigm in the Coq proof assistant,
– the proof of correctness of the program transformations,
– an application of the framework to produce a parallel program for the knap-

sack problem and experiments with its execution on parallel machines.

We first present the generate-test-aggregate paradigm (Section 2), and its
formalisation in Coq including the proof of the calculation theorems (Section 3).
We then explain how to obtain a parallel code from the result of a program
calculation using Coq extraction mechanism (Section 4). In Section 5 we de-
scribe experiments performed on parallel machines. Comparison with related
work (Section 6) and conclusion (Section 7) follow.

2 GTA: Generate, Test and Aggregate

We briefly review the Generate-Test-and-Aggregate (GTA) paradigm [4,3]. It
has been proposed as an algorithmic way to synthesise efficient programs from
naive specifications (executable naive programs) in the following GTA form.

GTAspec = aggregate ◦ test ◦ generate

In this section we first give a simple example of how to specify naive algorithms
in the GTA form. We give a clear but inefficient specification of the knapsack
problem following this structure.

The knapsack problem is to fill a knapsack with items, each of certain non-
negative value and weight, such that the total value of packed items is maximal
while adhering to a weight restriction of the knapsack. For example, if the max-
imum total weight of our knapsack is 3kg and there are three items ($10, 1kg),
($20, 2kg), and ($30, 2kg) then the best we can do is to pick the selection ($10,
1kg), ($30, 2kg) with total value $40 and weight 3kg because all selections with
larger value exceed the weight restriction.

The function knapsack , which takes as input a list of value-weight pairs (both
positive integers) and computes the maximum total value of a selection of items
not heavier than a total weight W , can be written in the GTA form:

knapsack W = maxvalue ◦ validWeight W ◦ subs

The function subs is the generator. From the given list of pairs it computes all
possible selections of items, that is, all 2n sublists if the input list has length n.
The function validWeight W = filterB((<= W)◦weight) is the tester. It discards
all generated sublists whose total weight exceeds W and keeps the rest. The

function maxvalue is the aggregator. From the remaining sublists adhering to
the weight restriction it computes the maximum of all total values.

The function subs can be defined as follows:

subs = fold right (λ x s.(*[]+] *[x]+)×++ s) (*[]+)

The result of the generator subs is a bag of lists which we denote using * and
+. The symbol] denotes bag union, e.g., *[], [x]+ = *[]+] *[x]+, and ×++ the
lifting of list concatenation to bags, concatenating every list in one bag with
every list in the other. Here is an example application of subs: subs [1, 3, 3] =
[], [1]+×++[], [3]+×++*[], [3]+ = *[], [1], [1, 3], [1, 3], [1, 3, 3], [3], [3], [3, 3]+. We took
the liberty to reorder bag elements lexicographically because bags are unordered
collections. Note that elements may occur more than once as witnessed by [1, 3].

The function validWeight is filter operation filterB with a predicate to check
the weight restriction in which we use weight = fold right (λ(v, w)s.w + s) 0 to
find the total weight of a given item list:

validWeight = filterB ((<= w) ◦ weight)

Here, it is easily seen that weight satisfies the follwoing three equations:

weight [] = 0
weight [(v, w)] = w
weight (xs ++ ys) = weight xs + weight ys

It simply replaces list constructors [] and ++ with 0 and +. A function satisfy-
ing three equations of this form is called monoid homomorphism. Note that a
monoid is a mathematical structure made of an associative binary operator with
its identity element: The constructors and operators in the equations describe
monoids.

Finally, the aggregator maxvalue computes the maximum of summing up the
values of each list in a bag using the maximum operator ↑, which is defined as
a recursive function (natural fold operation) on bags:

maxvalue *+ = −∞
maxvalue *l+ = fold right (λ(v, w)s.v + s) 0 l
maxvalue (b] b′) = maxvalue b ↑ maxvalue b′

It is easily seen that maxvalue satisfies the following five equations; it simply
replaces constructors], ×++, *[]+ and *+ with ↑, +, 0 and −∞, respectively. A
function satisfying five equations of this form is called semiring homomorphism.
Note that a semiring is a mathematical structure of a monoid; a commutative
monoid and a distributivity law over the operators of those monoids. The con-
structors and operators in the following equations form a semiring.

maxvalue *+ = −∞
maxvalue *[]+ = 0
maxvalue *[(v, w)]+ = v
maxvalue (b] b′) = maxvalue b ↑ maxvalue b′

maxvalue (b×++ b
′) = maxvalue b+ maxvalue b′

Now, we have defined a naive program, i.e., a GTA specification of the problem.
Next, let us consider an efficient algorithm knapsack ′ to solve the problem.

The GTA provides two theorems to derive mechanically such an efficient program
from a GTA specification, but we start with the derived efficient program to
understand what the theorems do. We will see the theorems later.

We may use linear dynamic programming of the following form that repeat-
edly updates a map denoted by using { and }, in which each entry w 7→ v means
that there is a selection of items with the best total value v with the total weight
w:

knapsack ′ W = π ◦ fold right (λ(v, w)m.({0 7→ 0}⊕W {w 7→ v})⊗W m) {0 7→ 0}

Here, ⊕W merges two maps by taking the maximum value of two entries of the
same weight, while ⊗W makes every possible combination of entries of two maps
and merges the results by ⊕W . The post-process function π extracts the final
result from the final map.

For example, we have knapsack ′ 3 [] = π({0 7→ 0}) = 0. Here, the map
{0 7→ 0} means that we have one selection with the best total value 0 and the
total weight 0 since we have no item, and π extracts the only value 0 as the final
answer. Similarly, we have knapsack ′ 3 [(30, 2)] = π({0 7→ 0, 2 7→ 30}) = 30. The
map {0 7→ 0, 2 7→ 30} represents the selection possibilities about the item (30, 2):
either it is selected (entry 2 7→ 30 that results in the best value 30 with total
weight 2), or not (0 7→ 0). The work of ⊗3 can be seen clearly in the following
sub-computation in knapsack ′ 3 [(10, 1), (20, 2), (30, 2)] = π({0 7→ 0, 1 7→ 10, 2 7→
30, 3 7→ 40, 7→ 60}) = 40. Here, represents entries with “more than 3” to be
ignored by π, and thus a map has at most 5 entries.

{0 7→ 0, 1 7→ 10} ⊗3 ({0 7→ 0, 2 7→ 20} ⊗3 {0 7→ 0, 2 7→ 30})
= {0 7→ 0, 1 7→ 10} ⊗3 ({(0 + 0) 7→ (0 + 0)} ⊕3 {(2 + 0) 7→ (20 + 0)}

⊕3 {(0 + 2) 7→ (0 + 30)} ⊕3 {(2 + 2) 7→ (20 + 30))}
= {0 7→ 0, 1 7→ 10} ⊗3 ({0 7→ 0} ⊕3 {2 7→ 20} ⊕3 {2 7→ 30} ⊕3 { 7→ 50})
= {0 7→ 0, 1 7→ 10} ⊗3 {0 7→ 0, 2 7→ 30, 7→ 50}
= {(0+0) 7→ (0+0)} ⊕3 {(1+0) 7→ (10+0)} ⊕3 {(0+2) 7→ (0+30)} ⊕3 · · ·
= {0 7→ 0, 1 7→ 10, 2 7→ 30, 3 7→ 40, 7→ 60}

It should be noted that fold right used in knapsack ′ is parallelisable because of
the associativity of the operator ⊗W .

We have got two programs knapsack and knapsack ′ to solve the knapsack
problem. What is the relationship between these two? Comparing subs and
knapsack ′ we can find that both subs and knapsack ′ can be written with a
new function poly subs f (⊕) (⊗) ı⊕ ı⊗ = fold right (λxm.(ı⊗ ⊕ f x)⊗m) ı⊗:

subs = poly subs (λx.*[x]+) (]) (×++) (*+) (*[]+)
knapsack ′ W = π ◦ poly subs (λ(v, w).{w 7→ v}) (⊕W) (⊗W) ({}) ({0 7→ 0})

Here, poly subs is polymorphic over the result type of semiring operators ⊕ and
⊗, and subs is an instantiation of this polymorphic function with the constructors
] and ×++. Such a generator is called a polymorphic semiring generator.

Now, we are ready to see the fusion theorems for mechanical derivation of
knapsack ′ from knapsack . The GTA provides two theorems, namely, semiring-
fusion and filter-embedding. The filter-embedding gives a way to derive the op-
erators into ⊕W and ⊗W on maps, while the semiring-fusion gives a way to
substitute these operators into the generator.

Theorem 1 (Filter Embedding [4]). Given a monoid homomorphism mhom,
a semiring homomorphism agg, and a function ok, there exist a function π and
a semiring homomorphism agg ′ and the following equation holds:

agg ◦ filterB (ok ◦mhom) = π ◦ agg ′

Theorem 2 (Semiring Fusion [4]). Given a semiring homomorphism agg,
which replaces the constructors with f , ⊕, ⊗, ı⊕, and ı⊗, and a polymorphic
semiring generator gen, the following equation holds:

agg ◦ gen (λx→ *[x]+) (]) (×++) (*+) (*[]+) = gen f (⊕) (⊗) ı⊕ ı⊗

These two theorems derive knapsack ′ from knapsack as follows. Here, maxvalue ′

is a semiring homomorphism that replaces the constructors with λ(v, w).{w 7→
v}, ⊕W , ⊗W , {} and {0 7→ 0}, and is mechanically derived from maxvalue and
validWeight W by the filter-embedding.

knapsack W = maxvalue ◦ validWeight W ◦ subs
= { Filter-embedding }
π ◦maxvalue ′ ◦ subs

= { Semiring-fusion }
π ◦ poly subs (λ(v, w).{w 7→ v}) (⊕W) (⊗W) ({}) ({0 7→ 0})

= knapsack ′ W

It should be noted that by using GTA one can easily develop an efficient
parallel programs to solve many variants of problems such as a statistics probelm
to find a most likely sequence of hidden events [7], a combinatorial problem to
find the best period (contiguous subsequence) in a time series [2], and so on [3],
by simply defining testers to specify variant problems with additional conditions.

3 Verified GTA Library

In this section we introduce our verified GTA library with an automatic fusion
mechanism that allows a user to get an efficient Coq code freely from his/her
naive Coq code in the GTA form. The library mainly consists of three parts: user
interface, proof of the fusion theorems, and the automatic fusion mechanism.

3.1 User Interface: Writing Your Naive Code

This part defines a variety of items used to define a GTA specification as a Coq
program, which includes axiomatization of the bag (i.e., multi-set) data structure
and mathematical properties of components in a GTA specification.

Bag Axiomatisation. Since in a GTA specification a generator produces a bag
of lists, we need a bag data structure in Coq to define a GTA specification. We
axiomatised the bag data structure as a module type, and implemented a module
of this type by using the list data structure as its underlying structure. A bag
module has three constructors: empty for an empty bag, singleton to make a
singleton bag of the given element, and union (] in the mathematical notation)
to merge two bags. It is also equipped with a decidable equivalence relation,
under which the usual semantics of bags (multi-sets) holds, and the natural fold
operation homB respecting the equivalence relation. Interested readers may refer
to the source code [15]. We also defined a module that, using the constructors and
fold operation, implements computations on bags, such as map, filter, operator
×++ (mapB, filterB, and cross in Coq code), and function singleBag to make
a bag of a singleton list of the given element. In addition, we showed properties
of these operators, such as the semiring properties of the operators union and
cross with their identities empty and nilBag (a bag of nil).

Generators. The first component of a GTA specification is a generator that pro-
duces a bag of lists and has to be an instance with] and ×++ of a polymorphic
function over the result type of semiring operators ⊕ and ⊗. Figure 1 shows
Coq code related to generators. The polymorphism condition for each genera-
tor is captured by an instance of typeclass isSemiringPolymorphicGenerator,
which connects a generator gen and its polymorphic function pgen. The type-
class also has a field to show fusable property based on the polymorphism. We
omit the details here, but the concept is that a polymorphic function determines
computation structure independent of given arguments. This could be shown by
the free theorem [18] about Coq, but Coq cannot prove such a property about
himself. Thus, the library asks a user to show the property by hand. We may
provide tactics to support this part because such a proof can be systematic. It
is planed in our future work.

For example, the generator subs in Section 2 for the knapsack problem can
be defined as an instance of the polymorphic function poly_subs as follows. We
can show its fusable condition by a simple induction.

Fixpoint poly_subs

(V:Type) (f:T→V) (oplus otimes:V→V→V) (ep et :V) (l:list T) :=

match l with
| nil ⇒ et

| a::l’ ⇒ otimes (oplus (f a) et) (poly_subs f oplus otimes ep et l’)

end.
Definition subs := poly_subs singleBag union cross empty nilBag.

Global Program Instance subs_is_polymorphic_generator

: isSemiringPolymorphicGenerator subs (@poly_subs).

Next Obligation.

apply Build_isSemiringPolymorphicFunction.

induction l.

- unfold poly_subs. simpl. reflexivity.

- simpl. intros. rewrite IHl. reflexivity.

Defined.

Definition semiringPolymorphicType (B : Type) : Type
:= ∀{V:Type} (f : T →V) (oplus : V→V→V) (otimes : V→V→V) (ep et : V), list B →V.

Class isSemiringPolymorphicGenerator ‘{A : Type}
(gen : list A →bag (list T)) (pgen : semiringPolymorphicType A) := {
SemiringGenEquiv : ∀l, gen l = pgen (bag (list T)) singleBag union cross empty nilBag l;
isSemiringPolymorphicGenerator_Polymorphism : (∗ snip ∗)

}.

Fig. 1. Formalization of polymorphic semiring generators.

Testers. The second component is a tester to discard invalid lists in the bag
produced by a generator. Figure 2 shows Coq code related to testers. To be
successfully fused by the theorems, a tester has to be a filter and its predicate
is a composition (denoted by :o: in the code) of a simple decidable predicate
and a monoid homomorphism. These conditions are straightforwardly captured
by typeclasses isHomomorphicFilter and isMonoidHomomorphism.

For example, the tester validWeight in Section 2 for the knapsack problem
can be defined by using the filter filterB on bags as follows. Here, decidability
of its predicate (named weightOk) is also defined to be used by filterB.

Inductive Item := item : nat →nat →Item.

Definition getVal i := match i with item v _ ⇒ v end.
Definition getWeight i := match i with item _ w ⇒ w end.
Definition atmost (w:nat) := fun a ⇒ a <= w.

Definition weight (l:list Item):= fold_right (fun a w⇒ getWeight a+w) 0 l.

Definition weightOk (w:nat) := atmost w :o: weight.

Lemma atmost_dec (w:nat): ∀(a:nat), {atmost w a}+{∼atmost w a}.(∗ snip ∗)
Lemma weightOk_dec (w:nat):

∀(l:list Item), {weightOk w l}+{∼weightOk w l}.(∗ snip ∗)
Definition validWeight (w:nat) := filterB (weightOk w) (weightOk_dec w).

For successful fusion we also need an instance of isMonoidHomomorphism as
well as the Proper instance of atmost, while we do not need an instance of
isHomomorphicFilter because validWeight is directly defined by fitlerB:

Program Instance proper_atmost: Proper (eq=⇒ eq=⇒ iff) atmost.(∗ snip ∗)
Program Instance weightOk_monoidHom:

isMonoidHomomorphism (T:=Item) weight getWeight plus 0. (∗ snip ∗)

Note that for the performance of the final fused program it is better to
finitise the domain of the monoid homomorphism (e.g., to use the finite set
{n : N | n ≤ w} as the domain) before applying fusions. This can be done by
hand or even by an automatic mechanism in some cases. We omit this here for
the space limitation, but the experiment was conducted on the finitised version.
Interested readers may refer to papers [4,3] and the source code [15].

Aggregators. The final component is an aggregator to make a summary using
semiring operators from lists passing testers. Figure 3 shows Coq code related to
aggregators. To be fused by the semiring-fusion, an aggregator has to be a semir-
ing homomorphism. This is captured by typeclass isSemiringHomomorphism

Context ‘{eqDecT : @EqDec T eqT equivT} ‘{eqDecM : @EqDec M eqM equivM}.
(∗ Monoid is a class to hold a monoid operator with its identity ∗)

Class isMonoidHomomorphism (h : list T →M) (f : T →M) (oplus : M →M →M) (e : M) := {
isMH_Monoid : Monoid oplus e;
isMH_CondAppend : ∀x y, h (app x y) === oplus (h x) (h y);
isMH_CondSingle: ∀a, h (a::nil) === f a;
isMH_CondNil: h nil === e;
isMH_proper_oplus: Proper (eqM =⇒ eqM =⇒ eqM) oplus;
isMH_proper_f: Proper (eqT =⇒ eqM) f
}.
(∗ ‘‘dec comp f g dec f’’ derives decidability of (f :o: g) from that of f, namely, dec f . ∗)

Class isHomomorphicFilter (tes : bag (list T) →bag (list T)) (mhom : list T →M) (h : T →M)
(odot : M →M →M) (e : M) (ok : M →Prop) (dec : ∀m : M, {ok m} + {∼ ok m}) := {
isHF_isMonoidHomomorphism: isMonoidHomomorphism (eqT:=eqT) mhom h odot e;
isHF_spec: ∀b:bag(list T),tes b === filterB(ok:o:mhom)(dec_comp mhom ok dec)b;
isHF_proper_ok: Proper (eqM =⇒ iff) ok
}.

Fig. 2. Formalization of monoid homomorphisms and homomorphic filters.

saying that the given function agg is a semiring homomorphism made of the
function f , the operators oplus and otimes with ep as zero and et as one. The
library provides a simple way to make a semiring homomorphism: Given semiring
operators, nested fold operation semiringHom is the semiring homomorphism.

For example, the aggregator maxvalue in Section 2 to find the maximum sum
value can be defined by using the fold operation semiringHom with predefined
semiring semiring_max’_plus’ of the max and plus operators with the minus
infinity (i.e., the zero of the semiring):

Definition maxvalue

:= semiringHom (fun a:Item⇒ Num(getVal a)) semiring_max’_plus’.

Now, we have got a GTA specification as a naive Coq program, and we can
check its correctness by running it with a small example:

Definition knapsack (w : nat) := maxvalue :o: validWeight w :o: subs.

Definition items := [item 10 1; item 20 2; item 30 2].

Eval compute in (knapsack 3 items).

(∗ = Num 40 : nat minf ∗)

This is basically all that a user has to do in the GTA paradigm. The rest
is to call an interface function (a field of a specific class) to trigger automatic
fusion, which is shown later.

3.2 The Core: Proof of the GTA Fusion Theorems

The core of the library is proof of two fusion theorems, namely, the semiring-
fusion and filter-embedding (Theorems 2 and 1). These fusion theorems give
mechanical rules to transform a GTA specification (naive program) into an effi-
cient program, whose automatic mechanism will be shown later.

The filter-embedding fusion transforms a composition of a tester and an ag-
gregator into a new aggregator followed by a simple projection function. This
eliminates the tester from a GTA specification. Since the new aggregator uses a

Context ‘{S : Type} ‘{eqDecS : @EqDec S eqS equivS} ‘{eqDecT : @EqDec T eqT equivT}.
(∗ eqBag is the equivalence relation given in a Bag module, taking an equivalence relation on elements.∗)
(∗ Semiring is a typeclass to hold semiring operators with identities. ∗)
Class isSemiringHomomorphism (agg:bag(list T)→S)(f:T→S)(oplus otimes:S→S→S)(ep et:S):={
isSH_Semiring : Semiring oplus otimes ep et;
isSH_CondUnion : ∀x y, agg (union x y) === oplus (agg x) (agg y);
isSH_CondCross : ∀x y, agg (cross x y) === otimes (agg x) (agg y);
isSH_CondSingle : ∀a, agg (singleBag a) === f a;
isSH_CondEmpty : agg (empty) === ep;
isSH_CondNil : agg (nilBag) === et;
isSH_proper_f : Proper (eqT =⇒ eqS) f;
isSH_proper_oplus : Proper (eqS =⇒ eqS =⇒ eqS) oplus;
isSH_proper_otimes : Proper (eqS =⇒ eqS =⇒ eqS) otimes;
isSH_proper : Proper (eqBag (list T) =⇒ eqS) agg

}.

(∗ short−hand to make a semiring homomorphism, i.e., nested fold operations ∗)
Definition semiringHom (f : T →S) ‘(semiring : Semiring oplus otimes ep et)
:= homB oplus (fold_right (fun a r ⇒ otimes (f a) r) et) ep.

Global Program Instance semiringHom_is_semiringHomomorphism
‘{semiring : Semiring oplus otimes ep et}
‘{proper_oplus : Proper (eqS =⇒ eqS =⇒ eqS) oplus }
‘{proper_otimes : Proper (eqS =⇒ eqS =⇒ eqS) otimes }
‘{proper_f : Proper (eqT =⇒ eqS) f}
: isSemiringHomomorphism (semiringHom f oplus otimes ep et semiring) f oplus otimes ep et.

Fig. 3. Formalization of semiring homomorphisms.

semiring (so-called monoid semiring [12]) on finite maps, we need formalization
of finite maps to formalise this theorem. Coq’s standard library has formaliza-
tion of maps, but it requires a module for each key type to show its decidability,
which prevents us from an automatic optimisation mechanism that may change
the key type. Therefore, we reformalised maps as a module type, in which the
decidability of keys is given as an instance of a specific typeclass while functions
and properties are the same as the standard library except for additional in-
duction principles. The library also provides a list-based implementation of the
module type. Interested readers may refer to the source code [15].

On top of the map formalisation we proved properties of the semiring on
maps, which is the most crucial and difficult part of proving the filter-embedding.
We also introduced disjoint-sum version of maps whose semiring properties are
easily shown, and used an equivalence correspondence between the original and
disjoint maps to prove the difficult part clearly. Interested readers may find a
formalisation of the disjoint-sum maps in paper [12].

Once the properties of the semiring are shown, the filter-embedding the-
orem can be shown straightforwardly as the previous papers [4,3] did. The
proof of semiring fusion is also straightforward once we are given an instance
of isSemiringPolymorphicGenerator. Figure 4 shows the theorems proved in
Coq, in which postproc is a simple projection function to extract the final result
from a map and monoid_semiring_of is the semiring on maps built from the
semiring in the aggregator agg and the monoid in the tester tes.

Context ‘{S : Type} ‘{eqDecS : @EqDec S eqS equivS}.

Theorem filterEmbeddingFusion
‘(shomAgg : isSemiringHomomorphism agg f oplus otimes ep et)
‘(homFilter : isHomomorphicFilter tes mhom h odot e ok dec)

:∀ l,(agg:o:tes) l === (postproc ok dec ep oplus :o:
semiringHom(embed oplus h f)(monoid_semiring_of shomAgg homFilter))l.

Theorem semiringFusion
‘(polyGen : isSemiringPolymorphicGenerator A gen pgen)
‘(shomAgg : isSemiringHomomorphism agg f oplus otimes ep et)
: ∀l, (agg :o: gen) l === (pgen S f oplus otimes ep et) l.

Fig. 4. Two fusion theorems of the GTA.

3.3 Automatic Fusion Mechanism

To allow a user to get an efficient Coq code freely from his/her naive GTA
specification, the library implements an automatic fusion mechanism based on
the typeclass mechanism. He/she can get efficient code by calling the function
fuse on his/her specification as follows.

Definition knapsack’ (w : nat) := fused (f := knapsack w).

The automatic fusion mechanism is implemented by instances of two classes
Fusion and Fuser shown in Fig. 5. Instances of Fusion form knowledge database
of fusion, i.e., a set of function triples (consumer , producer , fused) such that
consumer ◦ producer is equivalent to fused , while the instance fuser of Fuser
triggers a search to find an instance of Fusion that gives the result fused of
fusing the given function composition f = consumer ◦ producer . Figure 5 shows
some of these instances, including fusion knowledge of the theorems in Fig. 4.

For example, the above call of fused on knapsack eventually finds the in-
stance comp_l_fuser. It first calls fused on maxvalue :o: validWeight to get
their fused result, and then calls another fused on the composition of the result
and subs. The first call finds the instance filterEmbeddingFusionInstance to
fuse maxvalue and validWeight, and returns a composition of postproc with
the new aggregator, namely, semiringHom with the semiring operators on maps.
The latter call finds the instance semiringFusionInstanceWithPP to get the
final fused result equivalent to the efficient program shown in Section 2. It is
worth noting that the mechanism works for multiple testers in a GTA specifica-
tion, although it may take longer time to finish the fusion.

4 Extraction of Certified Efficient Parallel Code

The result of the fusion mechanism described in the previous section, is an
instance of poly_subs. This function could actually be proven equivalent to
a composition of a map and a reduce on lists. These two combinators could
themselves be proven to correspond (in a sense we will describe later) to parallel
implementations of map and reduce on distributed lists. In this way we obtain a
parallel version of poly_subs and therefore of the knapsack’ function. In order
to do so, we need to be able to write (data) parallel programs in Coq.

Class Fusion ‘{eqDec : EqDec D} ‘(producer : B →C) ‘(consumer : C →D) (fused : B →D)
:= { fusion_spec : ∀b, consumer (producer b) === fused b }.

Class Fuser ‘{eqDec : EqDec D} ‘(f : B →D) := { fused : B →D; fuser_spec : ∀
b, f b === fused b }.

(∗ An instance of Fuser to trigger a search for Fusion instances ∗)
Global Program Instance fuser ‘{fusion : Fusion producer consumer _fused}
: Fuser (consumer :o: producer) := { fused := _fused }.

(∗ A fuser for multiple compositions: fused ((f . g) . h) = fused (fused (f . g) . h) ∗)
Global Program Instance comp_l_fuser
‘{fusion_gf : @Fusion D R equiv0 eqDec B C g f fg}
‘{fusion_hgf : @Fusion D R equiv0 eqDec A B h fg fgh}
: Fusion h (f :o: g) fgh. (∗ snip proof. ∗)

Global Program Instance filterEmbeddingFusionInstance (∗ Knowledge of the filter−embedding ∗)
‘{shomAgg : isSemiringHomomorphism agg f oplus otimes ep et}
‘{homFilter : isHomomorphicFilter tes mhom h odot e ok dec}
: Fusion (bag (list T)) (bag (list T)) tes agg
((postproc ok dec ep oplus)
:o: (semiringHom (embed oplus h f) (monoid_semiring_of shomAgg homFilter))).

Global Program Instance semiringFusionInstanceWithPP (∗ A variant of the semiring−fusion ∗)
‘{polyGen : isSemiringPolymorphicGenerator A gen pgen}
‘{shomAgg : isSemiringHomomorphism agg f oplus otimes ep et}
‘{pp : S →X} (∗ projection function after an aggregator ∗)
: Fusion gen (pp :o: agg) (pp :o: pgen S f oplus otimes ep et).

Fig. 5. Instances for automatic fusion mechanism.

Bulk Synchronous Parallel ML or BSML is a purely functional programming
language [8]. It is currently implemented as a library for OCaml, on top of
any C MPI [13] implementation. It thus allows execution on a wide variety of
parallel architectures and is especially well suited as an extraction target for Coq
development.

In BSML, the underlying architecture is supposed to be a Bulk Synchronous
Parallel (BSP) [17] computer. It is an abstract architecture as, with the help
of a software layer, any general purpose parallel computer can be seen as a
BSP computer. Such a computer is a distributed memory architecture: a set of p
processor-memory pairs, connected through a network that allows point-to-point
communications, together with a global synchronisation unit. A BSP program
is executed as a sequence of super-steps, each one divided into (at most) three
successive and logically disjointed phases: (a) Each processor uses its local data
(only) to perform sequential computations and to request data transfers to/from
other nodes; (b) the network delivers the requested data transfers; (c) a global
synchronisation barrier occurs, making the transferred data available for the
next super-step.

BSML primitives are shallowly embedded in Coq. Their specifications are
given in a module type PRIMITIVES. In this module, a partial description of a
BSP architecture is as follows:

Section Processors.

Parameter bsp_p : nat. (∗ the number p of processors ∗)

Axiom bsp_pLtZero: 0 < bsp_p. (∗ we have at least one processor ∗)
Definition processor : Type := { pid: nat | pid < bsp_p }.

End Processors.

BSML is based on a distributed data structure, named parallel vector. In
OCaml its abstract type is ’a par, and in Coq we have par: Type →Type. We
write informally 〈 v0 , . . . , vp−1 〉 a value of this type. There is one value per
processor of the BSP computer, and nesting is not allowed: These values should
be “sequential”, i.e. they cannot be or contain parallel vectors. BSML offers a
global view of a parallel program: It looks like a sequential program but manip-
ulates parallel vectors. The implementation however is a parallel composition of
sequential communicating programs.

There are four primitives to deal with parallel vectors. Their signatures and
informal semantics follows:

mkpar:(processor→A)→par A

proj:par A→processor→A

apply:par(A→B)→ par A→par

put:par(processor→A)→par(processor→A)

mkpar f = 〈 f 0 , . . . , f (p− 1) 〉
apply 〈 f0 , . . . , fp−1 〉 〈 v0 , . . . , vp−1 〉 = 〈 f0 v0 , . . . , fp−1 vp−1 〉
proj 〈 v0 , . . . , vp−1 〉 = λi→ vi
put 〈 f0 , . . . , fp−1 〉 = 〈λj → fj 0 , . . . , λj → fj (p− 1) 〉

mkpar is used to create parallel vectors whose values are given by a function
f . The function f should be a sequential function, i.e. it should not call any of the
BSML primitives. proj is its inverse. apply denotes the pointwise application of
a parallel vector of functions to a parallel vector of values. put is used to exchange
data between processors. In the input parallel vector of functions, each function
encodes the messages to be sent to other processors. (fi j) is the message to be
sent by processor i to processor j. In BSML OCaml implementation the first
constant constructor of a type is considered as the “empty” message and incurs
no communication cost. The functions in the output vector encode received
messages. If the input and output vectors are thought as matrices (each of the p
functions can produce p values when applied to the p processor names), put is
matrix transposition. Note that at a given processor there is no way to directly
access the value held by another processor: put is needed. Both proj and put

require a full BSP super-step to be evaluated. mkpar and apply are evaluated
during the computation phase of a super-step.

In order to formalise this semantics in Coq, we need an “observer” function
that is able to get the values held in a parallel vector, for which extensional
equality implies equality:

Parameter get:∀ A: Type, par A→processor→A.

Axiom par_eq:∀(A:Type)(v w:par A),(∀(i:processor),get v i=get w i)→v=w.

It is then straightforward to formalise the semantics. For example:

Parameter put: ∀vf:par(processor→A),

{ X: par(processor→A) | ∀i j: processor, get X i j = get vf j i }.

Module List.
Include Coq.Lists.List.
Definition reduce ‘(op:A →A →A) ‘{m: Monoid A op e} := fun l ⇒ fold_left op l e.

End List.
Module MR (Import Bsml : PRIMITIVES).

Program Definition map ‘(f:A→B)‘(v:par(list A)) : par(list B) :=
apply (mkpar (fun _⇒ List.map f)) v.

Program Definition reduce ‘(op:A →A →A)‘{m: Monoid A op e}(v:par(list A)) : A :=
List.reduce op (List.map (proj (apply (mkpar (fun _⇒ List.reduce op)) v)) processors).

End MR.

Fig. 6. Parallel map and reduce

Verified algorithmic skeletons. If we think of a parallel vector of lists par(list A)

as a distributed list, a parallel BSML implementation of map and reduce is shown
in Figure 6, where Monoid is a type class for monoids, and processors is the
list of all the processors. We proved that these parallel implementations of map
and reduce are correct with respect to their sequential counter-parts, i.e:

list A

par(list A)

list B

par(list B)
map f

List.map f

join join

list A

par(list A)

A

reduce op

List.reduce op

join

where join transforms a distributed list to the sequential list it represents:

Definition join ‘(v:par(list A)):list A:= List.flat_map (get v) processors.

These correspondences are stored in instances of type classes, so that when
the user requires the parallelisation of a composition of sequential functions for
which there exist corresponding parallel implementations, it is done automat-
ically. We use this feature of our framework to parallelise the outcome of the
fusion mechanism.

Code extraction. Using the extraction mechanism of Coq, for example on the
module MR of Figure 6, we obtain an OCaml functor that need to be applied to
an implementation of the (extraction of the) module type PRIMITIVES. Actually,
the BSML library for OCaml provides several implementations of a module type
named BSML, including a MPI-based parallel one.

This module type almost contains the extracted module type PRIMITIVES.
The only difference is that in the extracted module, the type processor is nat

but in BSML it is int. We thus provide a wrapper module BsmlNat that per-
forms conversions between processor representations. This conversion is correct
as far as the processor name remains below 230 − 1 (1073741823) or 262 − 1
(4611686018427387903), depending on the architecture.

BSML implementations in OCaml and C are not formally verified yet. How-
ever we implemented a sequential version of the module type PRIMITIVES in Coq

 0

 5

 10

 15

 20

 25

 30

 35

 40

 100000 300000 500000 700000 900000

T
im

e(
se

c.
)

Number of elements

computation using 1 core
computation using 24 cores

(a) Execution Time

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

2 4 8 16 24 32 40 48

Number of cores

Speedup with 10,000,000 elements

(b) Speedup

Fig. 7. Execution Time and Speedup for the parallel execution of the extracted pro-
gram

(using Coq vectors for implementing par). After extraction this provides a veri-
fied reference sequential implementation. It could be used to test the unverified
implementations of BSML in OCaml.

5 Experiment results

The experiments were conducted on a shared memory machine containing 4
processors with 12 computer cores each (thus a total of 48 cores) and 64GB of
memory. On each processors, there is two NUMA nodes, each node connecting
6 cores. On this particular architecture, we noticed in other experiments that
there is a performance loss when there is active communication at the same time
on the two NUMA nodes of one processor. The operating system is Ubuntu, the
used languages and libraries are: Open MPI 1.5, BSML 0.5, and OCaml 3.12.1.

We extracted the parallel version of the knapsack’ program in Section 3.3.
We then measured the scalabity of this programs run in parallel. Figure 7(a)
shows timings for computations on different number of elements for a knapsack
with a capacity of 30. The list contains elements of random weight and value
(always lesser than 10). The computation time grows linearly with the number
of elements. In the sequential case (poly_subs implementation), for lists over
200,000 the program fails due to stack overflow, as poly_subs is non tail recur-
sive. For the parallel version however, the map we use is a tail recursive one. It
is therefore possible to consider much bigger input lists. Figure 7(b) shows the
mean (over 30 measures) relative (i.e. the reference implementation is the same
program but executed with only one core) speedup for a computation over a list
of 10,000,000 elements.

VerifiedGTA is one of the component of the SyDPaCC system. The full de-
velopment (version “ITP2014”) is available at the web [15].

6 Related Work

To our knowledge SyDPaCC [6], on which VerifiedGTA is based, is the only
framework, that makes possible the extraction of compilable and scalable parallel
programs from a development in a proof assistant.

Among the work on formal semantics for BSP computations, the only one
used to generate actual programs is LOGS [19]. In this approach, parallel pro-
grams are built by composing sequential programs in parallel whereas we adopt
a global view. The GTA specifications required from the user are much simpler
than LOGS specifications, but less general. To our knowledge no part of LOGS
is formally verified. BSP-Why [5] is an extension of Why2 for the verification of
imperative BSP programs but it does not support program derivation.

The style of programming we follow is polymorphic. Mu et al. provides a
framework for polytypic programming and program transformation in Coq [11].
Expressiveness is very interesting but it would be a challenge to provide corre-
spondence between polytypic sequential functions and parallel ones.

Lupinski et al. [9] formalised the semantics of a skeletal parallel program-
ming language. This work is based on a deep embedding: one formalisation
provides the high-level semantics of the skeletons, another one provides a model
of the implementation in Join-calculus. From this model an implementation of
the skeletons in JoCaml is designed. The semantics of BSML being purely func-
tional, it is possible to have a shallow embedding in Coq, and then to write
BSML programs in Coq and finally extract OCaml/BSML programs. Neither
BSML, nor JoCaml implementations have been proved correct with respect to
their calculi.

Swierstra [14] formalised mutable arrays in Agda, and added explicit distri-
butions to these arrays. He can then write and reason on algorithms on these
distributed arrays. The two main examples are a distributed map, and a dis-
tributed sum. In BSML the distribution of parallel vectors is fixed. On the other
hand, it is possible to defined a higher-level data structure on top of parallel vec-
tor and consider various distributions of the data structure in parallel vectors.
BSML in Coq remains purely functional. It would be possible to consider parallel
vectors of mutable arrays, and even extract such BSML imperative programs to
OCaml as it was done for imperative programs by Malecha et al. [10].

7 Conclusion and Future Work

The verified GTA library in Coq allows to derive and extract an efficient Bulk
Synchronous Parallel ML program from a naive program definition (a specifica-
tion) as a composition of a generator, a tester and an aggregator. We experi-
mented an extracted application on two parallel architectures.

Future work includes a specialisation of the framework for the case where the
monoid of map keys is finite. This allows to replace the finite maps by tuples
(or arrays) for which we have direct access to elements. We are also interested
in extending the framework to handle GTA programs on other structures than
lists, such as trees and graphs.

Acknowledgements This work was partially supported by JSPS (KAKENHI
Grant Number 24700025), ANR (ANR-2010-INTB-0205-02) and JST (10102704).

References

1. Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computation.
MIT Press (1989), available at http://homepages.inf.ed.ac.uk/mic/Pubs

2. Corra, R.C., Farias, P.M., de Souza, C.P.: Insertion and sorting in a sequence of
numbers minimizing the maximum sum of a contiguous subsequence. Journal of
Discrete Algorithms 21, 1 – 10 (2013)

3. Emoto, K., Fischer, S., Hu, Z.: Filter-embedding semiring fusion for programming
with MapReduce. Formal Aspects of Computing 24(4-6), 623–645 (2012)

4. Emoto, K., Fischer, S., Hu, Z.: Generate, Test, and Aggregate – A Calculation-
based Framework for Systematic Parallel Programming with MapReduce. In:
ESOP. LNCS, vol. 7211, pp. 254–273. Springer (2012)

5. Gava, F., Fortin, J., Guedj, M.: Deductive Verification of State-Space Algorithms.
In: IFM. LNCS, vol. 7940, pp. 124–138. Springer (2013)

6. Gesbert, L., Hu, Z., Loulergue, F., Matsuzaki, K., Tesson, J.: Systematic Develop-
ment of Correct Bulk Synchronous Parallel Programs. In: International Conference
on Parallel and Distributed Computing, Applications and Technologies (PDCAT).
pp. 334–340. IEEE (2010)

7. Ho, T.J., Chen, B.S.: Novel extended viterbi-based multiple-model algorithms for
state estimation of discrete-time systems with markov jump parameters. IEEE
Transactions on Signal Processing 54(2), 393–404 (2006)

8. Loulergue, F., Hains, G., Foisy, C.: A Calculus of Functional BSP Programs. Sci-
ence of Computer Programming 37(1-3), 253–277 (2000)

9. Lupinski, N., Falcou, J., Paulin-Mohring, C.: Sémantique d’une langage de
squelettes. http://www.lri.fr/~paulin/Skel/article.pdf (2012)

10. Malecha, G., Morrisett, G., Wisnesky, R.: Trace-based verification of imperative
programs with i/o. J. Symb. Comput. 46(2), 95–118 (2011)

11. Mu, S.C., Ko, H.S., Jansson, P.: Algebra of programming using dependent types. In:
Audebaud, P., Paulin-Mohring, C. (eds.) Mathematics of Program Construction,
LNCS, vol. 5133, pp. 268–283. Springer Berlin / Heidelberg (2008)

12. Otto, F., Sokratova, O.: Reduction relations for monoid semirings. Journal of Sym-
bolic Computation 37(3), 343 – 376 (2004)

13. Snir, M., Gropp, W.: MPI the Complete Reference. MIT Press (1998)
14. Swierstra, W.: More dependent types for distributed arrays. Higher-Order and

Symbolic Computation 23(4), 489–506 (2010)
15. SyDPaCC Home Page. http://traclifo.univ-orleans.fr/SyDPaCC
16. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),

103 (1990)
17. Wadler, P.: Theorems for free! In: Proceedings of the fourth international confer-

ence on Functional programming languages and computer architecture. pp. 347–
359. ACM (1989)

18. Zhou, J., Chen, Y.: Generating C code from LOGS specifications. In: 2nd Interna-
tional Colloquium on Theoretical Aspects of Computing (ICTAC’05). pp. 195–210.
No. 3407 in LNCS, Springer (2005)

http://homepages.inf.ed.ac.uk/mic/Pubs
http://www.lri.fr/~paulin/Skel/article.pdf
http://traclifo.univ-orleans.fr/SyDPaCC

	A Verified Generate-Test-Aggregate Coq Library for Parallel Programs Extraction

