
Concolic Testing of Concurrent Programs

Azadeh Farzan1, Andreas Holzer2, Niloofar Razavi1, and Helmut Veith2

1 University of Toronto, CAN
2 Vienna University of Technology, AT

Abstract. We survey our research on concolic testing of concurrent programs. Based on concrete and

symbolic executions of a concurrent program, our testing techniques derive inputs and schedules such

that the execution space of the program under investigation is systematically explored. We will focus

on (con)2colic testing which introduces interference scenarios. Interference scenarios capture the flow of

data among different threads and enable a unified representation of path and interference constraints.

1 Overview

Bounded-Interference-based Sequentialization. In [1], we proposed an approach that is based on a program

transformation technique that takes a concurrent program P as an input and generates a sequential pro-

gram that simulates a subset of behaviors of P . It is then possible to use an available sequential testing

tool to test the resulting sequential program. We introduce a new interleaving selection technique, called

bounded-interference, which is based on the idea of limiting the degree of interference from other threads.

An interference occurs when a thread reads a value that is generated by another thread. Our sequentializa-

tion technique encodes all interleavings of P with a certain interference degree k in the resulting sequential

program P̂k. All input variables of P are retained as input variables of P̂k, and new input variables are

introduced that encode interleaving choices. It is then possible to use an available sequential testing tool

(in our case, PEX) to test the resulting sequential program P̂k, which through standard systematic input

generation for P̂k, performs both input generation and interleaving exploration for P . The transformation is

sound in the sense that any bug discovered by a sequential testing tool in the sequential program is a bug

in the original concurrent program yet it lacks completeness.

(Con)2colic Testing. To resolve the lack of completeness for bounded programs in [1], we introduced

(con)2colic testing [2], an approach that systematically explores both input and interleaving spaces of concur-

rent programs. (Con)2colic testing can provide meaningful coverage guarantees during and after the testing

process. (Con)2colic testing can be viewed as a generalization of sequential concolic (concrete and symbolic)

testing [3] to concurrent programs that aims to achieve maximal code coverage for the programs. Like [1],

(con)2colic testing also exploits interferences among threads: The central objects in (con)2colic testing are

interference scenarios. An interference scenario represents a set of interferences among threads. Conceptu-

ally, interference scenarios describe the prefix of a concurrent program run such that all program runs with

the same interference scenario follow the same control flow during execution of that prefix. By systematically

enumerating interference scenarios, (con)2colic testing explores the input and scheduling space of a concur-

rent program to generate tests (i.e., input values and a schedule) that cover a previously uncovered part of

the program. We first enumerate all feasible interference scenarios that involve no interference what amounts

to enumerating purely thread-local behaviors. After we have completed that, we continue with all feasible

interference scenarios that involve one interference, then two interferences, then three, and so forth. Not all



Path
Exploration

Interference
Scenarios

Interference
Exploration

Realizability
Check

Multi-threaded
Concolic

Execution

Symbolic
Trace

Yes: realizable

Schedule &
Inputs

No: not realizable

Fig. 1. Overview of (Con)2colic Testing.

interference scenarios that we consider for enumeration are feasible. The interference scenarios involving k+1

interferences are either observed during a concrete program execution or are constructed from an extension

of an infeasible interference scenario with an interference from a feasible interference scenario (both having

k or less interferences).

Figure 1 shows the four main components of our (con)2colic testing framework: (1) A concolic execution

engine executes the concurrent program according to a given input vector and schedule. The program is

instrumented such that, during the execution, all important events are recorded. This information is used

to generate further interference scenarios. (2) A path exploration component decides what new scenario to

try next, aiming at covering previously uncovered parts of the program. (3) A realizability checker checks

for the realizability of the interference scenario provided by the path exploration component. Based on this

interference scenario it extracts two constraint systems (one for the input values and one for the schedule)

and checks for the satisfiability of them. If both are satisfiable, then the generated input vector and the

schedule are used in the next round of concolic execution. (4) An interference exploration component extends

unrealizable interference scenarios by introducing new interferences. (Con)2colic testing can be instantiated

with different search strategies to explore the interference scenario space.

2 Related Work

White-box testing concurrent programs has been a very active area of research in recent years. To alleviate

the interleaving explosion problem that is inherent in the analysis of concurrent programs a wide range of

heuristic-based techniques have been developed. Most of these techniques [4–7] do not provide meaningful

coverage guarantees, i.e., a precise notion of what tests cover. Other such techniques [8] provide coverage

guarantees only over the space of interleavings by fixing the input values during the testing process.

Sequentialization techniques [9] translate a concurrent program to a sequential program that has the

same behavior (up to a certain context bound), and then perform a complete static symbolic exploration of

both input and interleaving spaces of the sequential program for the property of interest. Sequentialization

of concurrent executions based on linear interfaces [10] bounds the number of context switches that they

consider during state-space exploration. In contrast, (con)2colic testing does not put restrictions on the

number of context switches that occur when computing an input vector and an interleaving that realize

an interference scenario. In fact, an interference scenario with only one interference might require a huge



number of context switches due to synchronization. Note that interferences do not refer to locks, i.e., they

only refer to read and write accesses of data variables. Locks are handled in a separate constraint system

that expresses temporal constraints on the events of an execution. (Con)2colic testing instead puts a bound

on the number of interferences. On the other hand, sequentialization based on linear interfaces [10] does not

put any restriction on the number of interferences that may happen during an execution that covers a linear

interface. Both techniques therefore represent different strategies in exploring the state space of a concurrent

program.

Symbolic PathFinder is a test generator that combines symbolic execution, model checking, and constraint

solving3. It uses on-the-fly partial order reduction to limit the interleavings that have to be considered during

state-space exploration. In contrast, (con)2colic testing does not guide its exploration on interleavings but

rather enumerates interference scenarios. An interference scenario imposes constraints on the input space and

interleavings such that the scenario represents the set of combinations of input vectors and interleavings that

trigger executions that cause exactly the same flow of data and control as specified in the interference scenario.

For concrete execution, (con)2colic testing then obtains one combination of input vector and interleaving

from this set by solving the corresponding constraint systems.

3 Experiments

To evaluate (con)2colic testing we have implemented the tool ConCrest4 [2]. It supports multi-threaded

C programs and uses a search strategy that targets assertion violations and explores interference scenarios

according to the number of interferences in an ascending order. This exploration strategy is complete modulo

the explored interference bound and produces minimal error traces (wrt. the number of interferences). We

ran our experiments on a dual-core 64-bit Linux machine with 3.2GHz and 16GB RAM.

Benchmarks. bluetooth is a simplified version of the Bluetooth driver from [11]. sor is from Java Grande

multi-threaded benchmarks (which we translated to C). ctrace-a and ctrace-b are two test drivers for the

ctrace library. apache-a and apache-b are test drivers for APACHE FTP server from BugBench [12]. splay

and rbTree are test drivers for a C library implementing several types of trees. aget is a multi-threaded

download accelerator. pfscan is a multi-threaded file scanning program. Finally, art is an example designed

by us to evaluate the scalability of our approach when the number of threads increase. It has the property

that there is a new assertion in it every time we increase the number of threads by one.

Experimental Results. In our experiments we set kmax = 100 (at most 100 interferences) and a timeout of

2 hours. The results are presented in Table 1. We learned the following important facts: (i) ConCrest

is effective at finding bugs. All the known bugs were discovered. (ii) All bugs discovered by ConCrest

in benchmarks were the result of a branch which would not be covered sequentially. (iii) All bugs were

discovered under a relatively small number of interferences (max. 4). (iv) On average, a substantial number

of branches were not sequentially coverable and were only covered after interferences were introduced, e.g.,

for rbTree which has fixed input, branch coverage increases from 67 to 95 (maximum number of coverable

branches). In the lack of a bug found, reaching this maximum provides guarantees to the tester that, e.g., no

assertions in the code can be violated. (v) We set the maximum number of interferences to be 100, but the

actual bound explored by ConCrest is much smaller. This is because in most cases (with the exception of

3 http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc, accessed last on 2014-06-05.
4 http://forsyte.at/software/concrest/



Benchmark ]Ts ]Is ]Branches ]Branches Max k ]Branches Bug ]ISC t [s]
(total) k=0/1/2/3/4/... reached k=0 → Max k found (total) (total)

(reason) (k)

bluetooth 3 2 24 14/8/2 2 (FC) 14→24 yes(2) 282 0.5
sor 3 - 48 37/8/0/0/3 4 (FC) 37→48 yes(3) 145 0.6
ctrace-a 3 - 94 54/3 5 (MC) 54→57 yes(1) 28 0.7
apache-a 3 3 72 41/0/1 11 (MC) 41→42 yes(2) 392 1.0
splay 3 - 112 46/14/4 15 (MC) 46→64 no 3501 6.2
apache-b 3 3 48 35/3 11 (MC) 35→38 yes(1) 22150 15.4
aget 3 - 88 56/0/1 21 (MC) 56→57 yes(2) 23197 170.4
rbTree 3 - 146 67/22/4/2 24 (MC) 67→95 no 77037 296.3
pfscan 3 2 130 92/0/0/0/1 4 (TO) 92→93 yes(4) 3012548 7200.0
ctrace-b 3 - 128 75/5 2 (TO) 76→81 yes(1) 315639 7200.1

art2 3 2 8 7/1 1 (FC) 7→8 yes(1) 80 0.3
art3 4 3 12 10/1/1 2 (FC) 10→12 yes(2) 17942 21.8
art4 5 4 16 13/1/1/1 3 (FC) 13→16 yes(3) 2842066 197.1
art5 6 5 20 16/1/1/1/1 4 (FC) 16→20 yes(4) 10851573 741.1

]Ts: number of threads. ]Is: number of inputs. ]Branches: number of static branches, i.e. number of basic
code blocks. k: number of interferences. FC: all branches are covered. MC: all possible interference scenario
candidates are explored. TO: time out. ]ISC: number of explored interference scenario candidates. ”14/8/2”
means 14 branches covered at k = 0, 8 (new) branches at k = 1, and 2 (new) branches at k = 2. 14 → 24
indicates the difference between the number of branches covered sequentially (14) and the total number of
branches covered (24).

Table 1. Experimental Results.

2 timeout cases), we either achieved full branch coverage or explored all possible ISCs (i.e. no more branches

are coverable). (vi) Our approach scales well as the number of threads increase; see art.

There are cases where maximum branch coverage is achieved, but the number does not coincide with

the total number of static branches. These are due to (sanity-check type) assertions in the code which were

never meant to be violated.

Acknowledgements

This work was supported by the Canadian NSERC Discovery Grant, the Vienna Science and Technology

Fund (WWTF) grant PROSEED, and the Austrian National Research Network projects S11403, S11405,

S11402-N23 (RiSE) of the Austrian Science Fund (FWF).

References

1. Razavi, N., Farzan, A., Holzer, A.: Bounded-Interference Sequentialization for Testing Concurrent Programs. In:

ISoLA. (2012) 372–387

2. Farzan, A., Holzer, A., Razavi, N., Veith, H.: Con2colic testing. In: FSE. (2013) 37–47

3. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed Automated Random Testing. In: PLDI. (2005) 213–223

4. Wang, C., Kundu, S., Ganai, M.K., Gupta, A.: Symbolic Predictive Analysis for Concurrent Programs. In: FM.

(2009) 256–272

5. Sorrentino, F., Farzan, A., Madhusudan, P.: PENELOPE: Weaving Threads to Expose Atomicity Violations. In:

FSE. (2010) 37–46



6. Sen, K., Agha, G.: CUTE and jCUTE: concolic unit testing and explicit path model-checking tools. In: CAV.

(2006) 419–423

7. Razavi, N., Ivancic, F., Kahlon, V., Gupta, A.: Concurrent Test Generation Using Concolic Multi-trace Analysis.

In: APLAS. (2012) 239–255

8. Musuvathi, M., Qadeer, S., Ball, T.: CHESS: A Systematic Testing Tool for Concurrent Software (2007)

9. Lal, A., Reps, T.: Reducing Concurrent Analysis Under a Context Bound to Sequential Analysis. Formal Methods

in System Design 35 (2009) 73–97

10. La Torre, S., Madhusudan, P., Parlato, G.: Model-Checking Parameterized Concurrent Programs Using Linear

Interfaces. In: CAV. (2010) 629–644

11. Qadeer, S., Wu, D.: KISS: Keep It Simple and Sequential. In: PLDI. (2004) 14–24

12. Lu, S., Li, Z., Qin, F., Tan, L., Zhou, P., Zhou, Y.: BugBench: Benchmarks for Evaluating Bug Detection Tools.

In: Workshop on the Evaluation of Software Defect Detection Tools. (2005)


