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Abstract. This paper describes a new architecture for first-order resolution and super-
position theorem provers called AVATAR (Advanced Vampire Architecture for Theories
and Resolution). Its original motivation comes from a problem well-studied in the past
— dealing with problems having clauses containing propositional variables and other
clauses that can be split into components with disjoint sets of variables. Such clauses
are common for problems coming from applications, for example in program verifica-
tion and program analysis, where many ground literals occur in the problems and even
more are generated during the proof-search.
This problem was previously studied by adding various versions of splitting. The ad-
dition of splitting resulted in some improvements in performance of theorem provers.
However, even with various versions of splitting, the performance of superposition the-
orem provers is nowhere near SMT solvers on variable-free problems or SAT solvers
on propositional problems.
This paper describes a new architecture for superposition theorem provers, where a
superposition theorem prover is tightly integrated with a SAT or an SMT solver. Its
implementation in our theorem prover Vampire resulted in drastic improvements over
all previous implementations of splitting. Over four hundred TPTP problems previously
unsolvable by any modern prover, including Vampire itself, have been proved, most
of them with short runtimes. Nearly all problems solved with one of 481 variants of
splitting previously implemented in Vampire can also be solved with AVATAR.
We also believe that AVATAR is an important step towards efficient reasoning with both
quantifiers and theories, which is one of the key areas in modern applications of theorem
provers in program analysis and verification.

Definitions of Avatar (from various dictionaries):

(Hindu Mythology) the descent of a deity to the earth in an incarnate form
or some manifest shape; the incarnation of a god

(Science Fiction) a hybrid creature, composed of human and alien DNA and
remotely controlled by the mind of a genetically matched human being

(Automated Reasoning) a first-order theorem prover, which embodies a
SAT solver controlling the prover’s behaviour

1 Introduction

The work described in this paper started with an attempt to make further improvement
in dealing with problems having clauses containing propositional variables and other
clauses that can be split into components with disjoint sets of variables. The problem
of dealing with such clauses started with splitting with backtracking, implemented in
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Spass [20] and splitting without backtracking [12] implemented in Vampire [9]. A very
extensive investigation of various ways of organising splitting in a theorem prover was
undertaken in [7], where both kinds of splitting were augmented with various options,
including the use of BDDs and SAT solvers. Though the use of splitting results in
the improvement of theorem provers performance, the methods used in them cannot
compete with the methods used in SAT solvers on propositional problems or methods
used in SMT solvers on ground problems with equality.

In first-order theorem proving, theorem provers based on variants of resolution and
superposition calculi (in the sequel simply called superposition provers) are predom-
inant. This is confirmed by the results of the last CASC competitions1, see [19] for a
description of CASC. The top three theorem provers Vampire [9], E-MaLeS and E [17]
are resolution and superposition-based, while the fourth one iProver [8] implements
both an instance-based calculus and resolution with superposition.

Superposition theorem provers use saturation algorithms. They deal with a search
space consisting of clauses. Inferences performed by saturation algoritms are of three
different kinds:

1. Generating inferences derive news clause from clauses in the search space. These
new clauses can then be immediately simplified and/or deleted by other kinds of
inference. Examples of generating inferences are binary resolution and superposi-
tion.

2. Simplifying inferences replace a clause by another clause that is simpler in some
strict sense. Examples of simplifying inferences are demodulation (rewriting by
ordered unit equalities) and subsumption resolution (binary resolution inference
whose conclusion subsumes one of the premises).

3. Deletion inferences delete clauses from the search space. Examples of deletion in-
ferences are subsumption and tautology deletion.

On hard problems the search space of superposition provers is often growing rapidly,
and simplifications and deletions consume considerable time. Performance of such
provers degrades especially fast when they generate many clauses having more than
one literal (multi-literal clauses for short) and heavy clauses (clauses of large sizes).
There are several reasons for this degradation of performance:

1. The complexity of algorithms implementing inference rules depends on the size of
clauses. For example, subsumption and subsumption resolution are known to be
NP-complete and algorithms implementing them are exponential in the number of
literals in clauses.

2. Storing heavy clauses requires more memory. Moreover, every literal in a clause
(and sometimes every term occurring in such a literal) are normally added to one
or more indexes. Index maintenance requires considerable space and time and op-
erations on these indexes slow down significantly when the indexes become large.

3. Generating inferences applied to heavy clauses usually generate heavy clauses.
Generating inferences applied to clauses with many literals usually generate clauses
with many literals. For example, resolution applied to two clauses containing n1
and n2 literals typically gives a clause with n1 + n2 − 2 literals.

1 http://www.cs.miami.edu/˜tptp/CASC/24/

http://www.cs.miami.edu/~tptp/CASC/24/
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To deal with multi-literal and heavy clauses, one can simply start discarding them af-
ter some time, thus losing completeness as in [14]. Alternatively, one can use splitting.
There are two kinds of splitting described in the literature: splitting with backtrack-
ing (originally introduced in SPASS [20]) or splitting without backtracking (originally
introduced in Vampire [13]).

In this paper we introduce a new way of splitting clauses, driven by a SAT or an
SMT solver. This results in a new architecture for first-order theorem proving, which
we call AVATAR. We show that the use of AVATAR instead of standard architectures
results in a considerable improvement in the performance of theorem provers. Hun-
dreds of problems unsolvable by any prover for years were solved when AVATAR was
implemented in Vampire. Moreover, we believe that AVATAR is a significant step to-
wards major improvements in one of the main problems in modern first-order theorem
proving: reasoning with both quantifiers and theories.

2 Preliminaries

We assume that the reader is familiar with SAT solving and has some knowledge of first-
order theorem provers. A deeper knowledge of superposition theorem proving, as well
as SMT solving, is useful, but not necessary, since we give some background material
on saturation algorithms implemented in superposition theorem provers.

Recall that a (first-order) clause is a disjunction L1 ∨ . . . ∨ Ln of literals, where
a literal is an atomic formula or a negation of an atomic formula. A literal or clause is
ground if it contains no occurrences of variables. In the context of splitting we some-
times consider a clause as a set of its literals. In other words, we assume that clauses
do not contain multiple occurrences of the same literal and clauses equal up to permu-
tation of literals are considered equal. We assume that all predicates and functions in
first-order logic are uninterpreted and that the language may contain (but not necessarily
contains) the equality predicate, denoted by =. The empty clause is denoted by 2.

Unlike SMT solving, clauses containing variables are considered implicitly univer-
sally quantified. Suppose that C is a clause with variables x1, . . . , xk. Then ∀C will
denote the formula (∀x1) . . . (∀xk)C, also called the universal closure of C. In first-
order theorem proving the semantics of a clause is its universal closure, so a set of
clauses C1, . . . , Cn is satisfiable if and only if so is the set of formulas ∀C1, . . . ,∀Cn.
Any clause obtained by applying a substitution to a clause C is called an instance of
C. If this instance is also a ground clause, it is called a ground instance of C. Satis-
fiability of a set of clauses in first-order predicate logic (in the SMT terminology it is
the logic of equality and uninterpreted predicates and functions) is characterised by the
Herbrand theorem: a set S of clauses is unsatisfiable if and only if some finite set of
ground instances of clauses in S in unsatisfiable.

Our next aim is to explain splitting. In very simple terms, splitting is based on the
following idea. Suppose that S is a set of (first-order) clauses and C1 ∨ C2 a clause
such that the variables of C1 and C2 are disjoint. Then ∀(C1 ∨ C2) is equivalent to
(∀C1)∨ (∀C2), which implies that the set S ∪ {C1 ∨ C2} is unsatisfiable if and only if
both S ∪ {C1} and S ∪ {C2} are unsatisfiable.
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Let C1, . . . , Cn be clauses such that n ≥ 2 and all the Ci’s have pairwise disjoint
sets of variables. Then we say that the clauseD def

= C1∨ . . .∨Cn is splittable into com-
ponents C1, . . . , Cn. We will also say that the set C1, . . . , Cn is a splitting ofD. For ex-
ample, every ground multi-literal clause is splittable. There may be more than one way
to split a clause, however there is always a unique splitting such that each component
Ci is non-splittable; we call this splitting maximal. It is easy to see that a maximal split-
ting has the largest number of components and every splitting with the largest number
of components is the maximal one. There is a simple algorithm for finding the maximal
splitting of a clause [12], which is, essentially, the union-find algorithm.

In the sequel, when we speak about a splitting of a clause we will only consider
maximal splittings and only deal with components that are non-splittable. We will de-
note arbitrary clauses by D and components by C, maybe with indexes.

Splittable clauses appear especially often when theorem provers are used for soft-
ware verification and static analysis. Problems used in these applications usually have
a large number of ground clauses (coming from program analysis) and a small number
of non-ground clauses (for example, axiomatisations of memory or objects).

3 Saturation Algorithms

In this section we briefly discuss saturation algorithms with redundancy elimination
used in superposition theorem provers. Essentially, a saturation algorithm works with a
set of clauses S (the current search space) and uses a collection of generating, simplify-
ing and deletion inferences. The theoretical basis of saturation algorithms is the notion
of redundancy given e.g., in [1]: a clauseD is redundant ifD is a logical consequence of
clauses in the search space, which are strictly smaller than D w.r.t. a simplification or-
dering � on clauses. Both simplifying and deletion inferences in saturation algorithms
are designed in such a way that they only remove redundant clauses.

There is more than one saturation algorithm. For illustration we will use the Otter
saturation algorithm [9], though AVATAR works equally well with other saturation
algorithms. For an overview of saturation algorithms we refer to [15,9].

A simplified description of the Otter saturation algorithm is shown in Figure 1. The
algorithms maintains three sets of clauses:

1. active: the set of clauses selected for generating inferences. The algorithm is de-
signed in such a way that all generating inferences among active clauses are applied.

2. passive: clauses that are waiting to be activated. The Otter saturation algorithm
uses passive clauses for simplifying and deletion inferences.

3. unprocessed : clauses that have been generated recently. Unprocessed clauses are
waiting in a queue for a retention test, which normally includes simplification and
deletion inferences applied to these clauses. If a clause C passes the retention test,
this clause (or a clause obtained by simplifying C) is added to passive clauses,
otherwise it is discarded.

At every step, the algorithm either processes a clause new , picked from unprocessed
clauses, or performs generating inferences with the so-called given clause, which is the
clause most recently added to active .
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input: init : set of clauses;
var active , passive , unprocessed : set of clauses;
var given , new : clause;
active := ∅;
unprocessed := init ;
loop

while unprocessed 6= ∅
new:=pop(unprocessed);
if new = 2 then return unsatisfiable;
if retained(new) then (* retention test *)

simplify new by clauses in active ∪ passive ; (* forward simplification *)
if new = 2 then return unsatisfiable;
if retained(new) then (* another retention test *)

delete and simplify clauses in active and (* backward simplification *)
passive using new ;

move the simplified clauses to unprocessed ;
add new to passive

if passive = ∅ then return satisfiable or unknown
given := select(passive); (* clause selection *)
move given from passive to active;
unprocessed:=forward infer(given, active); (* forward generating inferences *)
add backward infer(given, active) to unprocessed ;

(* backward generating inferences *)

Fig. 1. Otter Saturation Algorithm.

All operations performed by the saturation algorithm that may take considerable
time to execute, are normally implemented using term indexing, that is, building a spe-
cial purpose index data structure that makes the operation faster. For example, all the-
orem provers with built-in equality reasoning have an index for forward demodulation
(rewriting by ordered unit equalities from active ∪ passive).

4 AVATAR

In this section we describe AVATAR and how it handles splitting. AVATAR consists
of two components: a resolution (or resolution and superposition) theorem prover FO
and a SAT solver SAT. Later we will consider how an SMT solver can be used in
place of SAT. The SAT solver stores propositional clauses, which considered clause
components as propositional literals. To consider them as propositional literals, we will
use a mapping [·] from components to propositional literals. This mapping satisfies the
following properties:

1. [C] is a positive literal if and only if C is either a non-ground component or a
positive ground literal;

2. For a negative ground component ¬C we have [¬C] = ¬[C].
3. [C1] = [C2] if and only if C1 is equal to C2 up to variable renaming and symmetry

of equality.
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FO SAT

¬[C1] ∨ . . . ∨ ¬[Cm] ∨ [C′
1] ∨ . . . ∨ [C′

n] (split clause)

¬[C1] ∨ . . . ∨ ¬[Cm] (contradiction clause)

Solve!

C-interpretation

unsatisfiable

Fig. 2. Cooperation between the components of AVATAR,

To implement this mapping, Vampire uses a component index, which maps every com-
ponent C that is either positive or non-ground, into [C]. For every such component C
passed to this index, if C is equal to an already stored component C ′ up to variable
renaming and symmetry of equality, the index returns [C ′], otherwise it introduces a
new propositional variable [C] and stores the association between C and [C]. We call
a C-interpretation, or a component interpretation any set of propositional variables of
the form [C] or their negations, which does not contain both a variable and its negation.
The definition of a truth of a propositional variable literal in a C-interpretation is stan-
dard. If, for a component C, neither [C], not ¬[C] belongs to the interpretation, [C] is
considered undefined, that is, neither true nor false.

During the proof search, FO and SAT exchange information. The information ex-
change is described in Figure 2.

In a nutshell, AVATAR works as follows. The superposition prover FO works as
usual, using a saturation algorithm. The difference is in the treatment of splittable
clauses. If there is a splittable clause C1∨ . . .∨Cn with components C1, . . . , Cn, which
passed the retention test, it is not added to passive. Instead, [C1]∨ . . .∨ [Cn] it is passed
to the SAT solver. The SAT solver adds the new clause to existing clauses and checks
all clauses for satisfiability. If it is unsatisfiable, we are done. Otherwise, it computes
a C-interpretation I , which is a model of all clauses stored in it. For each literal in the
interpretation, if this literal has a form [C] for some component C, the component C
is passed to FO where it is used as an assertion. The exception are literals of the form
¬[C], where C is a non-ground component, since such a literal does not correspond to
any component.

To explain the cooperation in more detail, we should modify the superposition cal-
culus to deal with these assertions. The description is similar, but not the same as in
splitting with backtracking.

An assertion is a finite set of components. A clause with assertions, or simply an
A-clause is a pair, consisting of a clause D and an assertion A. Such a clause with
assertions will be denoted by (D ← A), or simply D when the assertion A is empty.
We will denote assertions by A and A-clauses as F . An A-clause (D ← C1, . . . , Cm)
is logically equivalent to ∀D ∨ ¬∀C1 ∨ . . . ∨ ¬∀Cm (or, equivalently, to ∀C1 ∧ . . . ∧
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∀Cm → ∀D). A standard clause D can be considered as an A-clause with the empty
set of assertions. We will extend the notation [·] to assertions: for an assertion A =
{C1, . . . , Cm}, we define [A] = {[C1], . . . , [Cm]}.

We call an A-clause (D ← A) splittable if the clause D is splittable. Likewise,
every A-clause of the form (2 ← A) is called an empty A-clause. We can change the
superposition calculus (or any other calculus on clauses) to a calculus on clauses with
assertions by turning any rule of the superposition calculus

D1 · · · Dk

D

into a set of rules
(D1 ← A1) · · · (Dk ← Ak)

(D ← A1 ∪ . . . ∪Ak)
,

where A1, . . . , Ak are assertions. Later we will explain how the addition of assertions
affects simplification and deletion rules.

AVATAR uses A-clauses instead of ordinary clauses. At each time moment, the
components used in assertions are those that are computed by the SAT solver as its last
model. Since this model changes over time, clauses with assertions can be added and
deleted.

We are now ready to describe the AVATAR algorithm. It is defined as a sequence of
steps performed by the superposition prover FO and the SAT solver SAT. These steps
are interleaved. Each step performed by the superposition prover is followed by a step
by the SAT solver and vice versa. After each step performed by FO, some information
is passed from it to SAT, as shown in Figure 2. Likewise, after each step performed by
SAT, some information is passed from it to FO. These steps are described in detail in
the next two sections.

5 The SAT Algorithm

We start with the SAT algorithm since it is simpler that the algorithm employed by
FO. Essentially, the SAT solver is behaving like a standard incremental SAT solver.
It receives, from time to time, new propositional clauses from FO and checks, upon a
“solve” request, satisfiability of the clauses it stores. If they are satisfiable, it passes back
to FO a C-interpretation satisfying all the propositional clauses. Otherwise, it returns
unsatisfiable.

6 The FO Algorithm

In a nutshell, the FO algorithm behaves like a standard saturation algorithm. The main
differences are that it operates on A-clauses and that splittable clauses are not stored.
Instead, for each splittable or empty A-clause (C1 ∨ . . . ∨ Cn ← C ′

1, . . . , C
′
m), FO

passes the propositional clause [C1] ∨ . . . ∨ [Cn] ∨ ¬[C ′
1] ∨ . . . ∨ ¬[C ′

m] to SAT.
In reality, the FO algorithm is more sophisticated than standard saturation algo-

rithms because of the way it treats simplified and deleted A-clauses. To illustrate the
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problem, consider an example. Suppose that we have two clauses D,D′ such that D
subsumes D′. If D and D′ occur in the search space of a standard saturation algorithm,
D′ will be treated as redundant and can be deleted. In AVATAR, we deal with A-clauses.
Suppose that A-clauses (D ← A) and (D′ ← A′) occur in the current search space and
D subsumes D′. If A ⊆ A′, then (D′ ← A′) can still be considered as redundant and
deleted. If not, we can only delete it temporarily, since the model computed by the SAT
solver can change and make a literal in [A] false, while all the literals in [A′] remain
true. In this case (D ← A) will later be removed from the search space and, to preserve
completeness, (D′ ← A′) must then be undeleted.

For this reason we introduce a special storage for A-clauses that can be temporarily
deleted and then undeleted. This storage will be denoted in the saturation algorithm as
locked . Elements of locked are pairs (F, λ), where F is an A-clause and λ a set of C-
literals. If (F, λ) ∈ locked , we will informally call λ a lock of F . The same A-clause F
can occur in locked with different locks.

We say that a C-interpretation I unlocks a pair ((C ← A), λ) if

1. all C-literals in [A] are true in I;
2. at least one C-literal in λ is either false or undefined in A.

When a pair (F, λ) is added to locked , all of the literals in λ are true in the current
model int computed by the SAT solver (this follows from a general invariant of the
AVATAR algorithm: for every A-clause (D ← A) in the search space, each literal in
[A] is true in this model). If one of the literals in λ later becomes false or undefined,
the A-clause F must be unlocked by removing it from locked and adding it to the set of
unprocessed clauses.

The FO algorithm is shown on Figure 3. Its parts that are specific to AVATAR are
marked by X. Simplifications will be explained separately.

The AVATAR algorithm maintains, in addition to the sets active , passive, and
unprocessed , the following collections.

• A C-interpretation int returned by the SAT solver. This interpretation makes the
assertions of all stored clauses, apart from locked ones, true. We store this inter-
pretation to maintain locking and unlocking operations. To check which clauses
should be locked or unlocked, we compute, at each step, the difference between the
current and the previous values of int .
• The set of A-clauses sat queue waiting to be passed to the SAT solver. We store

A-clauses in sat queue instead of passing them immediately to the SAT solver
because changes in the model found by the SAT solver can induce considerable
changes in A-clauses and other data structures used by the saturation algorithm, so
recomputing this model too often may result in the overall degradation of perfor-
mance. The only exception is made when an empty A-clause is derived. In this case
we recompute the interpretation immediately, since the new model int will make
the given clause (and potentially many other stored clauses) locked or even deleted.

• The set locked of locked A-clauses with locks. A-clauses in this set are temporar-
ily deleted, since for some components C in their assertions, [C] can be false or
undefined in the current C-interpretation int . However, they can be unlocked later.
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input: init : set of clauses;
var active , passive , unprocessed : sets of A-clauses, initially empty;
var given , new : A-clauses;

Xvar sat queue: set of A-clauses, initially empty;
Xvar locked : set of pairs (A-clause,lock), initially empty;
Xvar int : C-interpretation, initially empty;

forall D ∈ init
X if D is splittable or empty
X then move it to sat queue

else move it to unprocessed
loop (* main loop *)

X if sat queue 6= ∅ then
X forall A-clauses (C1 ∨ . . . ∨ Cn ← C′

1, . . . , C
′
m) ∈ sat queue

X pass the clause [C1] ∨ . . . ∨ [Cn] ∨ ¬[C′
1] ∨ . . . ∨ ¬[C′

m] to SAT
X sat queue:=∅;
X send the request “solve” to SAT;
X if SAT returns unsatisfiable, then return unsatisfiable;
X int := the the C-interpretation returned by SAT
X forall pairs ((C ← A), λ) ∈ locked unlocked by int
X remove this pair from locked and add (C ← A) it to unprocessed ;
X forall A-clauses (C ← A) in the set active , passive or unprocessed such that [A] 6⊆ int
X remove (C ← A) from this set and add ((C ← A),∅) to locked ;
X forall components [C] ∈ int such that (C ← C) 6∈ active ∪ passive ∪ unprocessed

add (C ← C) to unprocessed
forall new ∈ unprocessed

X if new is splittable or empty
X then add new to sat queue

else if retained(new) (* retention test *)
X then simplify new by clauses in active ∪ passive ; (* forward simplification *)
X if new was added to unprocessed
X (* backward simplification *)
X then simplify clauses in active ∪ passive by new
X if sat queue is non-empty, then start the main loop again;

if passive = ∅ then return satisfiable or unknown;
given := select(passive); (* clause selection *)
move given from passive to active;
unprocessed:=forward infer(given, active); (* forward generating inferences *)
add backward infer(given, active) to unprocessed ; (* backward generating inferences *)

Fig. 3. The FO Algorithm

7 Simplifications

We already gave a hint as to how simplifications are performed, when we discussed the
use of locking and treatment of subsumed clauses.

Consider now simplification rules. All simplification rules in Vampire and other
superposition provers have the following form:
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if new is unconditionally deleted by A-clauses in active ∪ passive
then do nothing

else if new is conditionally deleted by A-clauses in active ∪ passive with a lock λ
then add (new , λ) to locked

else if new is unconditionally simplified by A-clauses in active ∪ passive into new ′

then add new ′ to unprocessed
else if new is conditionally simplified by A-clauses in active ∪ passive into new ′

with a lock λ
then add new ′ to unprocessed ;

add (new , λ) to locked

Fig. 4. Forward Simplification

D1 · · · ��Dm

D
.

(1)

This means that D is a logical consequence of D1, . . . , Dm and addition of D to the
search space makesDm redundant. There are three commonly used simplification rules:
subsumption, subsumption resolution, and demodulation (rewriting by unit equalities).
A inference on A-clauses corresponding to (1) is

(D1 ← A1) · · · (Dm ← Am)

(D ← A)
,

where A = A1 ∪ . . . ∪ Am. If A = Am, then (Dm ← Am) can be safely deleted.
Otherwise, consider the assertion A′ = A − Am. At the moment this inference is
performed, all literals in [A] are true in the current C-interpretation int . However, there
may be a moment in the future, when [Am] is still true, while some literals in [A′]
false. In that case (Dm ← Am) must be put back in the search space. Thus, we lock
(Dm ← Am) with the lock A′. Any change to int , which makes a C-literal in [A′] false
will trigger unlocking of this A-clause.

To define simplifications formally, we introduce new notions. Suppose that a clause
C can be simplified into a clause C ′ using clauses C1, . . . , Cm. Consider A-clauses
(C ← A) and Fi = (Ci ← Ai) for i = 1, . . . ,m. Define A′ = A1 ∪ . . . ∪ Am.
If A′ ⊆ A, then we say that (C ← A) is unconditionally simplified by F1, . . . , Fm

into (C ← A). If A′ 6⊆ A, then we say that (C ← A) is conditionally simplified
by F1, . . . , Fm into (C ← A ∪ A′) with the lock A′ − A. In a similar way we can
define notions (C ← A) is unconditionally deleted by F1, . . . , Fm and (C ← A) is
conditionally deleted by F1, . . . , Fm with the lock A′ −A.

Forward simplification in AVATAR is shown in Figure 4. Backward simplification
is similar and not included in this paper.

To avoid excessive locking and unlocking, it is desirable to have a SAT solver, which
tries to return a model similar to the previously returned one. To this end, one can use
the following simple rule: if a new A-clause passed to the SAT solver contains a C-
literal [C] undefined in the previous C-interpretation, we satisfy this clause by making
[C] true. Such A-clauses are common and appear when a new component is found.
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Using this rule also helps the SAT solver, since it does not have to be run at all when all
recently added A-clauses have this property.

When all literals in a new A-clause passed to the SAT solver are false in the current
C-interpretation int , this interpretation must change. For example, this always happens
when we derive an empty A-clause (2← A). Phase saving in SAT solvers introduced
in [10] assigns to a propositional variable a value that was most recently assigned to it.
Although we did not make experiments with various strategies in a SAT solver, phase
saving seems to be useful for achieving a “small model difference” effect. We also use
a data structure allowing one to find locked and unlocked clauses upon changes in the
SAT solver model in time linear in the size of the number of found clauses plus the
number of variables that changed their values.

8 Term Indexing

When we discuss the use of splitting in superposition theorem provers, it is very impor-
tant to understand how the use of splitting affects other components of such provers.
The efficiency and power of modern superposition theorem provers comes from two
techniques: redundancy elimination (see [1] for the theory and [14] for the implemen-
tation aspects) and term indexing [18].

Even when simplifications are used, the search space can quickly grow to hundreds
of thousands of clauses. To perform inferences on such a large search space efficiently,
theorem provers maintain several indexes storing information about terms and clauses.
These indexes make it easier to find candidates for inferences. In some cases inferences
can be performed only by using the relevant index, without retrieving clauses used
for these inferences. The number of different indexes in theorem provers varies and
can be as many as about 10. Frequent insertions and deletions in an index can affect
performance of a theorem prover. A typical example is when a theorem prover generates
an equality a = b between two constants and uses it to rewrite a into b. For nearly all
indexing techniques used in the superposition theorem provers, every term and clause
containing a must be removed from all indexes and a new term containing b inserted in
them again. Doing this single simplification step on an indexed set with 100,000 clauses
can take a very long time.

In AVATAR, clauses can be locked and then unlocked. This happens often when the
number of clauses stored by the SAT solver grows and it recomputes its C-model int .
Frequent deletions of a clause from all indexes it is stored in, followed by its insertion in
these indexes, can be very expensive. There is an alternative to deleting locked clauses
and information about them from indexes. If an A-clause is deleted or simplified con-
ditionally, we do not remove it from indexes at all. Instead, we change index retrieval
operations. For each successful retrieval operation we check if the result is a locked
clause. If it is locked, we ignore the retrieved clause and the corresponding inference.
This alternative is not yet implemented in Vampire and requires further experiments.
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9 Experiments

For our experiments we reproduced the experiments from [7], where various versions
of splitting were considered. In fact, AVATAR and some decisions made in it (such as
treatment of locked literals in indexes and addition of negations of ground components)
are due to what we learned from experiments [7]. We will not show all results from [7]
but only consider the most relevant part, where we compare the performance of differ-
ent versions of splitting. Note that such comparisons are very hard for the following
reasons:

1. One cannot simply compare AVATAR to, say, splitting with backtracking, since the
latter can be used with different options, giving very different results.

2. In general, a value of a strategy (a collection of parameter-value pairs) is hard to
understand. Some strategies perform very well on the average but cannot solve
problems unsolvable by other strategies. Modern theorem provers treat hard prob-
lems with a cocktail of strategies. For example, Vampire has a CASC mode [9]
doing exactly that. A collection of strategies, each of which is bad on the average,
can easily outperform a collection of strategies, each of which is good on the aver-
age. On the other hand, having too many strategies is not good, since running all of
them may consume a considerable time, so strategies that solve many problems are
useful as part of a collection: indeed, theorem provers are normally used with short
time limits, so that one cannot afford running too many strategies on a problem.

New strategies are most useful if they solve many new problems, and especially with
short running times. In this case they can be used to create more powerful cocktails than
those used before.

Our experiments have shown that AVATAR shows outstanding results both in terms
of its average performance and in the number of problems that it can solve and that
were previously unsolvable by any existing prover.

For benchmarking we used unsatisfiable TPTP problems having non-unit clauses
and rating greater than 0.2 and less than 1. Essentially, the rating is the percentage of
existing provers that cannot solve a problem. For example, rating greater than 0.2 means
that less than 80% of existing theorem provers can solve the problem. Likewise, rating
1 means that the problem cannot be solved by the existing provers. However, the rating
evaluation uses a single mode of every prover, so it is possible that the same prover
can solve a problem of rating 1 using a different mode. For this reason, we also added
problems of rating 1 that are solvable by some version of Vampire. We excluded very
large problems since for them it was preprocessing, but not other options, that affects
results the most. This resulted in selecting 6892 TPTP problems for our experiments.

To conduct our experiments, we took a Vampire strategy that is believed to be nearly
the best in the overall number of solved problems, and generated the 481 variations of
this strategy obtained by setting the splitting parameters to all possible values described
in [7], In addition, we used a single run of this strategy using AVATAR.

Only 5,273 (about 77% of all problems) were solved by at least one splitting strat-
egy. The results are summarised in Table 1. They show that AVATAR is very robust,
resulting in a considerable increase of the number of solved problems over the best
strategies using other versions of splitting.
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splitting strategies worst average best
off 25 3833 3869 3880
backtracking 64 2538 3889 4381
non-backtracking 416 2489 3595 4126
AVATAR 1 4716 4716 4716

Table 1. Problems solved by each setting of the splitting strategy.

The second series of experiments was run on our cluster of 45 servers. Each server
has 16G RAM and 4 cores. We used 3 cores on each server since we observed that
using all 4 often results in the operating system putting two instances of Vampire on
the same core. This results in 135 instances on Vampire running in parallel. The ex-
periments were run for over 6 months in 2012–2013. The aim of this series of exper-
iments was to solve as many TPTP problems overall as possible; and its results were
used to configure Vampire for the last CASC competition CASC-24. Eventually, Vam-
pire with AVATAR was able to solve 421 problems unsolvable by Vampire without
AVATAR and by any other prover. To get the results of other provers, we used the file
ProblemAndSolutionStatistics shipped with TPTP, which records results on
every TPTP problem by nearly all theorem provers in the recent history. On the con-
trary, Vampire using splitting with and without backtracking was able to solve only 17
problems unsolvable by any strategy using AVATAR. Solving over 400 previously un-
solvable problems is a remarkable result since such all these problems are very hard. In
the past, the implementation of various novelties in Vampire would normally result in
solving from a few to about 30 previously unsolvable problems.

The experimental results were so successful that all previously implemented code
for handling splitting was completely removed from the latest versions of Vampire,
resulting in considerable simplifications in its code and better maintainability.

10 Using an SMT Solver or Other Theory Solvers

Another interesting feature of AVATAR is that for a combination of first-order logic
with theories one can use any theory solver instead of a SAT solver. In particular, for
problems with equality one can use an SMT solver for logic with equality and uninter-
preted functions. Non-ground components are then treated in the SMT solver as before,
as propositional variables. Ground components can be used by the SMT solver as the-
ory literals. We added to Vampire a very simple SMT solver for logic with equality and
uninterpreted functions. This addition allowed us to solve some TPTP problems previ-
ously unsolved by any prover, including Vampire using AVATAR and a SAT solver.

The SAT and the SMT solvers implemented in Vampire are very simple and much
weaker than best SAT and SMT solvers. It will be interesting to see how the use of
better SAT and SMT solvers affects the performance of AVATAR.

There is an interesting option that can be used for logic with equality and maybe
other theories. Instead of passing back to FO a propositional model, an SMT solver can
pass some canonical representation of the congruence relation computed by it. Also,
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the SMT solver can use ground (and maybe also non-ground) unit equalities produced
by the superposition prover. We leave these extensions as future work.

11 Related Work

The author believes that proving theorems with both quantifiers and theories is the main
problem in modern first-order theorem proving. In particular, it is crucial for applica-
tions of theorem provers in program analysis and also in interactive theorem provers.
AVATAR offers an architecture different from those proposed in first-order theorem
provers able to handle theories, including SPASS+T [2,11], Z3 [5], CVC4 [3], Princess
[16] and Beagle [4].

This paper was motivated by our analysis of the results [7], which contains an ex-
tensive discussion of splitting in superposition theorem provers. In particular, it uses
splitting in various forms and SAT solvers, but not in the way discussed in this paper.
Earlier work on splitting includes [20] and [13].

Paper [6] describes a calculus DPLL(Γ) using a superposition prover together with
a SAT or an SMT solver (Z3) in a way similar to AVATAR. Ground literals decided and
implied by the SAT solver were used as hypotheses to first-order clauses. Our approach
is different in several aspects:

1. We use arbitrary components, while DPLL(Γ) uses only ground literals;
2. We consider the SAT solver as a black box producing models, while in DPLL(Γ)

the SAT solver and the superposition prover architectures and calculi are mutu-
ally dependent. The backjump rule and locking (disabling) first-order clauses in
DPLL(Γ) essentially uses decision levels of the SAT solvers. The use of decision
levels makes DPLL(Γ) is very similar to splitting with backtracking, though with
some improvements due to the use of a SAT solver.

Also, [6] discuss very different benchmarks, where theory reasoning and E-matching
are often required to solve problems.

12 Conclusion

We described a new architecture AVATAR for first-order theorem provers. In this archi-
tecture, splitting in a theorem prover is driven by a SAT (or an SMT) solver. When the
input problem is ground, AVATAR is as efficient as a SAT solver (or an SMT solver for
logic with equality). On non-ground problems, an implementation of AVATAR in Vam-
pire outperforms the previous versions of Vampire by a very large margin. In particular,
using AVATAR allowed us to solve 421 TPTP problems previously unsolvable by any
first-order theorem prover.

We believe that AVATAR will become a standard architecture for future first-order
theorem provers and can be especially successful in reasoning with both quantifiers and
theories. It turned out to be effective in passing information from a first-order theorem
prover to a SAT or an SMT solver. Nonetheless, AVATAR does not solve the reverse
problem: passing information from an SMT solver to the first-order prover, which is
currently done by other approaches, such as E-matching.
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