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Abstract
Many important performance and reliability measures can be formal-
ized as the accumulated values of weight functions. In this paper, we
introduce an extension of linear time logic including past (LTL) with
new operators that impose constraints on the accumulated weight
along path fragments. The fragments are characterized by regular
conditions formalized by deterministic finite automata (monitor
DFA). This new logic covers properties expressible by several re-
cently proposed formalisms. We study the model-checking problem
for weighted transition systems, Markov chains and Markov deci-
sion processes with rational weights. While the general problem is
undecidable, we provide algorithms and sharp complexity bounds
for several sublogics that arise by restricting the monitoring DFA.

Categories and Subject Descriptors F.4.1 [Mathematical logic
and formal languages]: Mathematical logic—Temporal logic

General Terms Theory

Keywords LTL, MDP, Markov chain, transition system, accumula-
tion, weights, rewards, model checking, finite automata, monitor

1. Introduction
In many application scenarios weight accumulation occurs rather
naturally. One example is the total win or loss of a share at the stock
market over one day. However, not only fixed periods of time are
of interest. Formalizing more general time spans is often necessary,
for example in between certain events, e.g., when considering the
average CPU load within a specific computation phase. Many
performance and reliability measures can be formalized using
automata models with weight functions for the states or transitions.
Resource requirements (e.g., bandwidth, energy consumption) and
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other quantitative system properties (e.g., the number of service-
level violations) are then formally modeled as accumulated weights
of path fragments.

Various models, logics and specification formalisms for weighted
structures and accumulated weights have been proposed in the
literature. For the analysis of Markovian models, the traditional
approaches mainly concentrate on branching time logics with cost-
or reward-bounded temporal modalities and state formulas for
reasoning about total expected costs or long-run averages, see
e.g. [2, 4, 17, 20]. This work has mainly focused on non-negative
weight functions, called reward functions. In the case of models with
two or more weight functions, the properties that can be specified
in such branching-time logics are mostly Boolean combinations
of formulas, each of them referring to a single reward function.
Although nested state formulas can impose constraints for different
weight functions, these logics are not adequate to express, e.g., a
reachability constraint with bounds for the accumulated value of
two reward functions. Approaches for multi-objective reasoning
in Markovian models with nondeterminism (MDPs) [12, 19, 20]
focus on the task to synthesize schedulers satisfying multiple
constraints on the probabilities of ω-regular events or expected
(total) accumulated rewards.

There is a recent trend to study logics and algorithms for
reasoning about properties on the accumulated values of multiple
weight function that might have both positive and negative values.
Such weight functions appear naturally when modeling, e.g., the
amount of available energy in a battery or the market trend of stocks
that might vary (increase or decrease) over time. Conditions on
the relation between the accumulated values of different weight
functions can be useful, e.g., for the analysis of load balancing
algorithms for multi-core systems that might trigger a migration in
case the load of one core is two times larger than the average load
of the cores. Another example is constraints on the cost/utility ratio.
Ratio objectives for weighted MDPs have been studied for example
in [28] where the goal is to synthesize a scheduler for a given
weighted MDP that maximizes or minimizes the average ratio payoff
of two integer weight functions. Quantitative objectives for efficient
synthesis have also been proposed in [7, 13]. An extension of linear
time and branching time logic with prefix-accumulation assertions,
which sum the weights from the start of the computation, is proposed
in [8]. Similarily, variants with assertions on the long-run (mean-
payoff) accumulation are considered in [8, 18, 26]. Decidability
results for special property types ψ ∧ ϕ where ψ is a condition
on the accumulated value of a single weight function and ϕ an
ω-regular path property have been established for various types of
weighted game structures, e.g., for energy and mean-payoff games
in [1, 10, 11].



We introduce a temporal logical framework based on linear temporal
logic (LTL) with the standard future and past temporal modalities
and two new operators A and A. The latter impose constraints on
the accumulated weight of path fragments π satisfying a given regu-
lar condition formalized by a deterministic finite automaton (DFA)
A, possibly under side constraints formalized by nested formulas
for the first and the last position of π. Formulas are interpreted over
the paths of weighted structures. We consider finite-state Markov
decision processes with multiple weight functions, briefly called
WMDPs. MDPs are a standard mathematical model with nondeter-
ministic and probabilistic choices. For linear-time specifications, the
probabilistic model-checking (PMC) problem for MDPs denotes the
task to compute the maximal or minimal probabilities of a specifica-
tion, where extrema are taken when ranging over all resolutions of
the nondeterministic choices. Weighted transition systems (WTSs)
and weighted Markov chains (WMCs) can be seen as degenerated
WMDPs without nondeterminism or probabilism, respectively.

Four different classes of automata are considered here. Window
DFA simply impose a restriction on the length of words. They can
be used to formalize, e.g., constraints on the load of a processor
in the past few clock cycles or the chart-development of a stock
within one day. The fixed window properties studied in [14] for
non-probabilistic game structures are expressible in our logic with
window DFA. More flexibility is provided by the class of acyclic
DFA. They can serve as monitors for the weights accumulated
along path fragments whose traces belong to a finite set of words,
e.g., formalizing finitely many request-response patterns between
processes. Obviously, the full class of DFA is even more expressive
and can express conditions on the total weight accumulated along
any regular pattern. As a special case we also consider DFA
formalizing reachability conditions. These can be used to reason
about the cost accumulated until a certain event occurs. The resulting
logic is indeed very expressive and covers the core features of several
other logics that have been studied in the literature [8, 26]. For a
detailed discussion on related formalisms we refer to Section 3.4.

Contribution. Besides the presentation of the syntax and semantics
of linear temporal logic with weight assertions, our main contribu-
tion is to study the impact of different types of weight assertions
and classes of DFA on the decidability of the PMC problem and to
provide sharp complexity bounds for decidable fragments.

For the class of acyclic (and window) DFA we show in Section
4 that the PMC problem for WMDPs is solvable using a reduction
to the standard PMC problem for unweighted MDPs. The reduction
is, however, exponential in the size of the acyclic DFA occurring
in the given formula. We then study the complexity of several
simple patterns of formulas with weight assertions and establish
NP- or coNP-hardness for the model-checking problem in WTSs
and WMCs.

The border between decidability and undecidability will be
addressed in Section 5. For the full class of DFA, we immediately get
undecidability of the model-checking problem by the undecidability
results presented in [8] for temporal logic with assertions on the
weights accumulated along prefixes of infinite paths. We strengthen
this result by proving that the model-checking problem is even
undecidable for propositional logic with weight assertions obtained
by DFA imposing reachability conditions. This is surprising given
that [8] proves decidability for Boolean combinations of the CTL-
modality ∃♦ and prefix-accumulation assertions. Furthermore, we
discuss the impact of weight functions versus non-negative reward
functions, multiple versus single weight functions and the type of
weight constraints. For omitted proofs and further technical details
see [5].

2. Preliminaries
Throughout the paper we assume the reader is familiar with temporal
logics, automata over finite and infinite words and Markovian
models. We provide a brief summary of the relevant concepts for
Markov decision processes. Further details can be found, e.g., in
[3, 15, 17, 24].

Markov decision processes (MDPs). An MDP is a tupleM =
(S,Act , P,AP, L), where S is a finite set of states, Act a finite set
of actions, P : S × Act × S → [0, 1], AP is a finite set of atomic
propositions and L : S → 2AP a labeling function. We require that
the values P (s, act , s′) are rational and

∑
s′∈S P (s, act , s′) ∈

{0, 1} for all states s ∈ S and actions act ∈ Act. The triples
(s, act , s′) with P (s, act , s′) > 0 are called steps. Action act is
said to be enabled in state s if P (s, act , s′) > 0 for some state s′.
Act(s) denotes the set of actions that are enabled in s ∈ S. To avoid
terminal behaviors, we require that Act(s) 6= ∅ for all states s.

A pointed MDP is an MDP with a distinguished initial state sinit .
Intuitively, the computation starts in s0 = sinit . If after i steps the
current state is si thenM selects nondeterministically one of the
enabled actions act i ∈ Act(si), followed by an internal probabilis-
tic choice to move to one of the states si+1 where P (si, act i, si+1)
is positive.

Paths in an MDPM can be seen as sample runs that are obtained
in this way. Formally, the paths are finite or infinite sequences where
states and actions alternate:

ζ = s0 act0 s1 act1 . . . ∈ (S ×Act)∗S ∪ (S ×Act)ω

with act i ∈ Act(si) and P (si, act i, si+1) > 0 for all i. The trace
of ζ is obtained by ignoring the actions and taking the projection
to the state labels. If 0 6 h 6 k then ζ[h . . . k] denotes the path
fragment starting in the (h+1)-st state and ending in the (k+1)-st
state. Thus, if ζ is as above then:

trace(ζ) = L(s0) L(s1) L(s2) . . . ∈
(
2AP
)∗ ∪ (2AP

)ω
ζ[h . . . k] = sh acth sh+1 acth+1 . . . actk−1 sk

In particular, ζ[k] is the (k+1)-st state in ζ. We write first(ζ) to
denote the first state of ζ. If π is a finite path, then last(π) denotes
its last state and |π|, the length of π, stands for the number of steps
that are taken in π. IPaths and FPaths stand for the set of all
infinite resp. finite paths.

Schedulers and induced probability space. Reasoning about
probabilities for path properties in MDPs requires the selection
of an initial state and the resolution of the nondeterministic choices
between the possible transitions. The latter is formalized via sched-
ulers, also called policies or adversaries, which take as input a finite
path and select an action to be executed. A (deterministic) scheduler
is a function S : FPaths → Act such that S(π) ∈ Act

(
last(π)

)
for all finite paths π. Given an initial state s, the behavior ofM
under S is purely probabilistic. Standard concepts of measure and
probability theory can be applied to define a sigma-algebra and a
probability measure PrSM,s for measurable sets of the infinite paths,
also called (path) events or path properties. For further details, we
refer to standard text books such as [24].

Weighted MDPs (WMDP). A weight function forM is a function
wgt : S × Act → Q. We extend wgt to a function that assigns to
each finite path its accumulated weight.

wgt(s0 act0 s1 act2 . . . actn−1 sn) =
n−1∑
j=0

wgt(sj , actj)

The logic introduced in Section 3 will be interpreted over weighted
MDPs (WMDPs), i.e., tuples (S,Act , P,AP, L,wgt) consisting of
an MDP and a d-tuple wgt = (wgt1, . . . ,wgtd) of weight functions.
Non-negative weight functions wgt : S × Act → Q>0 are called



reward functions. wgt is called positive if wgt(s, act) > 0 for all
s ∈ S and act ∈ Act(s).

Weighted Markov chains (WMC). Markov chains (MC) can
be seen as special instances of MDPs where the action set is a
singleton. Thus, the behavior of MCs is purely probabilistic. The
action set will be dropped when talking about Markov chains. We
write MCs as tuples (S, P,AP, L) and P (s, s′) for the transition
probabilities. Paths in Markov chains are just state sequences and
weight functions are functions of the type wgt : S → Q. Intuitively,
wgt(s) stands for the costs resp. the reward earned when leaving
s. Thus, the weight of finite paths is given by wgt(s0 s1 . . . sn) =
wgt(s0)+wgt(s1)+. . .+wgt(sn−1). The concept of schedulers is
irrelevant for MCs and we write PrM,s for the probability measure
induced byM when s is viewed as the initial state.

Weighted transition systems (WTS). A WMDP where the values
of the transition probabilities are 0 or 1 can be seen as a weighted
transition system, briefly called WTS. We write s

act−→ s′ if
P (s, act , s′) = 1.

With abuse of notations, the abbreviations WMDP, WMC and
WTS are often used for pointed structures.

Deterministic finite automata (DFA). The logic introduced in the
next section will use DFA serving as monitors for the accumulated
weights in a WMDP. In this context, each DFA is given by a tuple
A = (Q, δ, qinit , F ) whereQ is a finite set of states, δ : Q×2AP →
Q a partial transition function, qinit ∈ Q the initial state and F ⊆ Q
a set of final states. We write L(A) for the accepted language.

If φ is a propositional formula over AP then A[. . . φ] denotes
the minimal DFA where L(A[. . . φ]) consists of all finite words
A1 A2 . . .An over 2AP with An |= φ. Similarly, A[φ . . .] and
A[φ1 . . . φ2] denote minimal DFA accepting precisely the words
A1 A2 . . .An with A1 |= φ and the words A1 A2 . . .An with
A1 |= φ1 and An |= φ2.

For ` ∈ N, ` > 1, letA6` andA=` denote minimal DFA for the
languages consisting of all words over the alphabet 2AP of length at
most `+1 resp. of length precisely `+1.

3. LTL with monitored weight assertions
Linear temporal logic with monitored weight assertions extends
standard LTL by two new modalities and that impose linear
constraints on the accumulated weights along finite paths that meet
a regular condition given by a DFA.

3.1 Syntax
A signature Sig for the linear temporal logic with monitored
weight constraints consists of finitely many weight symbols
wgt1, . . . ,wgtd, a finite set AP of atomic propositions and a class
AUT consisting of DFA over the alphabet 2AP. We consider here
the following classes AUT:

Window: the class of DFA A=` and A6` for ` > 1

Acyc: the class of acyclic DFA
Reach: the class of DFA of the form A[. . . φ]

All: the full class of DFA

For all classes, we require additionally that all DFA A ∈ AUT are
minimal and that the accepted language L(A) is nonempty and does
not contain the empty word ε. The assumption thatA is minimal and
L(A) is nonempty implies that all states q ∈ Q can reach F . The
requirement that A does not accept the empty word ε is equivalent
to the requirement that qinit /∈ F . For each DFA A ∈ Acyc its
language L(A) is finite and the length of the longest run is the
length of a longest word in L(A). The accepted language of each
DFA A[. . . φ] ∈ Reach can be seen as a reachability condition ♦φ.

A basic weight constraint over Sig is a constraint of the form
expr ./ c. Here, ./ is one of the four comparison operators <,
>, 6 or >, c ∈ Q and expr is a weight expression of the form

expr =
d∑
i=1

ai · wgti with coefficients ai ∈ Q.

A weight constraint is a Boolean combination of basic weight
constraints. The class WC of weight constraints is closed under
negation, and so is the class of basic weight constraints as, e.g.,
¬(expr 6 c) is equivalent to expr > c.

A weight expression is called simple if it has the form wgti for
some i ∈ {1, . . . d}. Simple basic weight constraints have the form
wgti ./ c. A weight constraint constr is said to be simple if all
its weight expressions are simple. Obviously, for d=1 all weight
constraints are equivalent to simple ones.

The logic LTL[ , : AUT] extends LTL by two new modalities
and to formalize constraints on the accumulated weight of

path fragments. For the LTL fragment we use standard temporal
modalities U (until) and S (since). The previous and next operators
are omitted from the basis syntax since they are derivable (see
Remark 2). The abstract syntax of LTL[ , : AUT]-formulas is
defined as follows:

ϕ ::= tt | a | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 Sϕ2 | ϕ1 Uϕ2 |
A (ϕ1; constr;ϕ2) | A (ϕ1; constr;ϕ2)

where a ∈ AP, A ∈ AUT, constr ∈ WC and ϕ1 and ϕ2 are
again LTL[ , : AUT]-formulas. We refer to A (ϕ1; constr;ϕ2)
as (generalized) weight assertion. We simply write A constr for
A(tt; constr; tt) and refer to formulas of this type as pure weight

assertions. Formulas of the form A(expr ./ c), are called basic
weight assertions. Generalized, pure and basic weight assertions
using the -modality are defined accordingly.

While A is a past operator, A imposes a constraint on the
future behavior. Intuitively, A (ϕ1; constr;ϕ2) asserts that for the
current position k of a path ζ, there is a path fragment π = ζ[h . . . k]
ending in the current position accepted by A such that π satisfies
constr and the precondition ϕ1 holds in the h-th position of ζ
as well as the postcondition ϕ2 in its k-th position. Similarly,
A (ϕ1; constr;ϕ2) imposes a constraint on the weights that will

be accumulated along some path fragment that is accepted by A,
satisfying the precondition ϕ1 and the postcondition ϕ2 in the
position of their first and last state respectively. Thus, A can be
viewed as a monitor that observes the traces ofM. For example, A
can be used to formalize requirements on the accumulated weights
between sending a request and receiving a response.

Length of formulas. The length of an LTL[ , : AUT]-formula
ϕ is defined as the number of occurrences of logical operators
¬, ∧, S and U plus the length of all generalized weight as-
sertions that appear in ϕ. The length of A (ϕ1; constr;ϕ2) or
A (ϕ1; constr;ϕ2) is the number of states in A plus the sum of

the lengths of the precondition ϕ1, the postcondition ϕ2 and the
constraint constr. The latter is defined as the sum of the lengths of
the binary encodings of the coefficients a1, . . . , ad and the constant
c in the basic weight constraints (a1·wgt1 + . . . + ad·wgtd) ./ c
of constr.

Derived operators. As usual we can derive all operators from
propositional logic (disjunction ∨, implication→, etc.). The tem-
poral modalities ♦ (eventually), � (always) and R (release) can be
derived as in standard LTL by ♦ϕ def

= ttUϕ, �ϕ def
= ¬♦¬ϕ and

ϕ1 Rϕ2
def
= ¬(¬ϕ1 U¬ϕ2).



(ζ, k) |= a iff a ∈ L
(
ζ[k]

)
(ζ, k) |= tt

(ζ, k) |= ¬ϕ iff (ζ, k) 6|= ϕ

(ζ, k) |= ϕ1 ∧ ϕ2 iff (ζ, k) |= ϕ1 and (ζ, k) |= ϕ2

(ζ, k) |= ϕ1 Uϕ2 iff there exists h > k such that (ζ, h) |= ϕ2 and (ζ, i) |= ϕ1 for k 6 i < h

(ζ, k) |= ϕ1 Sϕ2 iff there exists h 6 k such that (ζ, h) |= ϕ2 and (ζ, i) |= ϕ1 for k > i > h

(ζ, k) |= A (ϕ1; constr;ϕ2) iff there exists h 6 k s.t. trace(ζ[h . . . k]) ∈ L(A), ζ[h . . . k] |= constr
and (ζ, h) |= ϕ1 and (ζ, k) |= ϕ2

(ζ, k) |= A (ϕ1; constr;ϕ2) iff there exists h > k s.t. trace(ζ[k . . . h]) ∈ L(A), ζ[k . . . h] |= constr
and (ζ, k) |= ϕ1 and (ζ, h) |= ϕ2

Figure 1. Semantics of LTL[ , : AUT] over infinite paths ζ and position k ∈ N

We can also ask whether all path fragments accepted by a monitor
automaton fulfill some weight constraint instead of just one. The
formula

�Aconstr
def
= ¬ A ¬constr

states that each suffix of the current system history accepted by A
fulfills constr. Similarly,

�Aconstr
def
= ¬ A ¬constr

asserts that each future behavior accepted by A satisfies constr.

Sublogics. We write PL[ : AUT] for propositional logic where
the atoms are future pure weight assertions, i.e., formulas of
PL[ : AUT] are Boolean combinations of formulas of the type
A constr. Note that the analogous logic PL[ : AUT] is pointless

as it is as expressive as propositional logic. LTLsimple[ , : AUT]
denotes LTL[ , : AUT] restricted to simple weight constraints.

3.2 Semantics
Formulas of the logic LTL[ , : AUT] can be interpreted over
structures consisting of directed graphs with a d-dimensional weight
function and node-labels in AP. Here, we deal with an MDP-
semantic of LTL[ , : AUT] and interpret formulas over the
infinite paths of a WMDP M = (S,Act , P,AP,L,wgt) with
wgt = (wgt1, . . . ,wgtd) as in Section 2. Weight expressions are
evaluated over the finite paths inM in the expected way. Given
a basic weight constraint expr ./ c and a finite path π inM we
define:

π |= expr ./ c iff Jexpr, πK ./ c

where Jexpr, πK denotes the value of the weight expression expr
when interpreting the weight symbols wgti with the accumulated
weight of π under weight function wgt i:

Jexpr, πK def
=

d∑
i=1

ai · wgt i(π) for expr =
d∑
i=1

ai · wgti

The satisfaction relation |= for finite paths and weight constraints
(i.e., Boolean combination of basic weight constraints) is now
defined in the obvious way. The interpretation of LTL[ , : AUT]-
formulas in the WMDP M is defined over pairs (ζ, k) where
ζ = s0 act0 s1 act1 s2 act2 . . . is an infinite path inM and k ∈ N
as shown in Figure 1. Thus, (ζ, k) |= A constr iff there exists
h 6 k with trace(ζ[h . . . k]) ∈ L(A) and ζ[h . . . k] |= constr.
Similarly, (ζ, k) |= �Aconstr iff for each h 6 k we have:
trace(ζ[h . . . k]) /∈ L(A) or ζ[h . . . k] |= constr. The semantics
of future pure weight assertions is analogous. To reason about the
probabilities for properties specified in LTL[ , : AUT] we lift the
semantics to infinite paths:

ζ |= ϕ iff (ζ, 0) |= ϕ

Remark 1 (Distributivity) Weight constraints can be arbitrary
Boolean combinations of basic weight constraints. For disjunc-
tive weight constraints we can rely on the distributivity law for
existential quantification and disjunction and obtain:

A(ϕ1; constr1 ∨ constr2;ϕ2

)
≡ A (ϕ1; constr1;ϕ2) ∨ A (ϕ1; constr2;ϕ2)

where ≡ denotes the equivalence of formulas. By duality, we
get the equivalence of the formulas �Aconstr1 ∧ constr2 and
�Aconstr1 ∧ �Aconstr2. The analogous statements hold for
and �. �

Remark 2 (Pre-/postconditions, past vs. future) The postcondi-
tion in past weight assertions and the precondition in future weight
assertions impose a constraint on the current position. Hence:

A (ϕ1; constr;ϕ2) ≡ A(ϕ1; constr; tt) ∧ ϕ2

A (ϕ1; constr;ϕ2) ≡ A(tt; constr;ϕ2) ∧ ϕ1

In combination with an eventually operator, the semantics of and
coincide. That is,

♦ A (ϕ1; constr;ϕ2) ≡ ♦ A (ϕ1; constr;ϕ2) .

Note that for each infinite path ζ:

ζ |= ♦ A (ϕ1; constr;ϕ2)

iff ζ |= ♦ A (ϕ1; constr;ϕ2)

iff there exists h, k ∈ N with h 6 k such that
(1) trace(ζ[h . . . k]) ∈ L(A)
(2) ζ[h . . . k] |= constr
(3) (ζ, h) |= ϕ1

(4) (ζ, k) |= ϕ2

By duality, ��A constr ≡ ��A constr. �

Remark 3 (Window weight assertions, next and previous) Step-
bounded properties can be expressed using the automata class
Window. The DFA A6` and A=` can be seen as monitors that
observe paths up to length ` or of length precisely `. In what follows,
6` and =` are used as brief notations for A6` and A=` respec-

tively, and called (past) window weight operators. Future window
weight operators are defined accordingly. The standard next and
previous operators are definable using generalized window weight
assertions:

©ϕ
def
= =1(tt; true;ϕ)

The previous operator	ϕ is obtained by =1(ϕ; true; tt). �

Remark 4 (Existential vs. universal window weight assertions)
Existential and universal pure future window weight assertions agree



for precise window length, i.e., =` constr ≡ �=`constr, as we
have for all path-position pairs (ζ, k):

(ζ, k) |= =` constr iff (ζ, k) |= �=`constr

iff ζ[k . . . k+`] |= constr

In contrast, the formulas =` constr and �=`constr are not equiv-
alent since for k < ` and each infinite path ζ we have (ζ, k) |=
�=`constr, while (ζ, k) 6|= =` constr.

However, if k > ` then for each infinite path ζ:

(ζ, k) |= =` constr iff (ζ, k) |= �=`constr

iff ζ[k−` . . . k] |= constr

In combination with prefix-independent temporal modalities the
effect of � and collapses, e.g.:

�♦ =` constr ≡ �♦ �=` constr

♦� =` constr ≡ ♦� �=` constr

�

Remark 5 (Step- and weight-bounded until and release) Inter-
preted over a structure with a single weight function wgt , the
formula aU6`

./c b is a variant of aU b with step bound ` and weight
constraint wgt ./ c. Formally, if ` > 1 then (ζ, k) |= aU6`

./c b iff
there exists k 6 h 6 k + l with wgt(ζ[k . . . h]) ./ c such that
b ∈ L(ζ[h]) and a ∈ L(ζ[i]) for k 6 i < h. LetA[aU6` b] ∈ Acyc
be a DFA for the language consisting of the words A1 A2 . . .An
over 2AP such that n 6 `+1, a ∈ Ai for 0 6 i < n and b ∈ An.
Then:

aU6`
./c b ≡ A[aU6` b](wgt ./ c)

and by duality we get:

aR6`
./c b ≡ �A[¬aU6` ¬b]¬(wgt ./ c).

�

Interpretation over WMDP, WMC, WTS. Our main inter-
est is in reasoning about the probabilities of LTL[ , : AUT]-
specifications ϕ in weighted Markovian models. If (M, s) is a
WMC then:

PrM,s(ϕ)
def
= PrM,s

{
ζ ∈ IPaths : ζ |= ϕ

}
Similarly, if (M, s) is a WMDP and S a scheduler for M then
PrSM,s(ϕ) denotes the probability for ϕ under scheduler S and for
starting state s. As usual, we define:

Prmax
M,s(ϕ)

def
= sup

S
PrSM,s(ϕ), Prmin

M,s(ϕ)
def
= inf

S
PrSM,s(ϕ)

where S ranges over all schedulers for M. When interpreting
LTL[ , : AUT]-formulas over WTS, we use CTL-like notations
such as s |= ∃ϕ to indicate the existence of an infinite path ζ starting
in state s with ζ |= ϕ.

Notation 6 (Model-checking problem) To discuss the complexity
and decidability we will study decision variants of the model-
checking problem for LTL[ , : AUT] interpreted over WMDP,
WMC or WTS. For WMDP the notion model-checking problem
will be used to refer to one of the four problems asking whether (a),
(b), (c) or (d) holds, where

(a) Prmax
M,sinit

(ϕ) > 0

(b) Prmax
M,sinit

(ϕ) = 1

(c) Prmin
M,sinit

(ϕ) > 0

(d) Prmin
M,sinit

(ϕ) = 1

(a) and (d) are trivially interreducible since

Prmin
M,sinit (ϕ) = 1− Prmax

M,sinit (¬ϕ).

The analogous statement holds for problems (b) and (c). We refer
to (a) as the positive model-checking problem and to (b) as the
almost-sure model-checking problem. For WMC all four problems
collapse from a computational point of view since the concept
of schedulers is irrelevant. For WTS, the task of the existential
model-checking problem is to decide whether sinit |= ∃ϕ for a
given formula ϕ, while the universal model-checking problem asks
whether sinit |= ∀ϕ. �

Remark 7 (Integer vs. rational weights) We introduced weight
functions in MDPs as functions of the type wgt : S × Act → Q.
When using LTL[ , : AUT] as a specification formalism for fi-
nite WMDPs, however, integer-valued weight functions are equally
expressive. �

Remark 8 (Transformations of weight functions) Using the idea
of [8], each basic weight constraints expr ./ c where expr =
a1 · wgt1 + . . . + ad · wgtd can be replaced with a simple basic
weight constraint wgt ./ c where wgt is a fresh weight symbol
representing a new weight function wgt : S × Act → Q where
wgt(s, act) =

∑d
i=1 aiwgt(s, act). �

3.3 Examples
To illustrate the expressiveness and usefulness of our formalism
we provide a number of examples from different domains. In what
follows, we use some shorthand notations for weight constraints with
obvious meanings. For instance, wgt = c is short for (wgt 6 c) ∧
(wgt > c) and c1 6 wgt 6 c2 means (wgt > c1) ∧ (wgt 6 c2).

The following formula specifies global bounds on the load,
measured in the number of incoming requests to a system within a
given monitor A, is between cmin and cmax.

��A[begin...end] (cmin 6 load 6 cmax)

The property that whenever there is a request to the system, the
utility of the system exceeds a certain threshold c within monitor A
is asserted by the following formula.

�
(
request → �A(utility > c)

)
Similarly, the formula

�( request→ 6`(utility > c) )

can be used to specify that after each request a utility value of at
least c is guaranteed within ` or fewer steps.

The following example formalizes a resilience property, in
which we require that whenever in the last ten rounds of some
protocol, the accumulated number of errors a certain component
produced exceeded five, the component will receive no load until
the replacement procedure (formalized by A) is complete.

=10(error > 5)→ �A(load = 0)

Using two (or more) different weight functions allows, e.g., to reason
about the load balancing of two (or more) subsystems.

�
( A( |load1 − load2| 6 c )

)
The formula above states that globally, within a given monitor A
the load difference must not exceed a certain threshold c.

With two weight functions one can also express properties related
to the tradeoff between cost and utility. E.g., the following formula
might state that whenever the system consumes a certain amount
of energy ce for processing a query then the accumulated utility
exceeds some utility threshold cu:

�
( A(energy > ce)→ A(utility > cu)

)
Nesting of formulas allows, e.g., expressing properties of the
following type. For this, let Ainit formalize an initialization process
and Awork a working phase.



Then the formula:
Ainit (tt; energy < ce;

Awork (utility > cu))

stands for the requirements that there is an initialization process
which uses not more than ce energy and is followed by a working
phase which in turn gains at least utility cu.

Assertions on the ratio of two weight functions can be expressed
using weight expressions. For example, the following formula
expresses that the monitored ratio of utility and energy exceeds
some threshold c:

�
(
�A( utility

energy
> c)

)
where util

energy
> c is a short form notation for the weight expression

utility − c · energy > 0.

3.4 Variants and related logics
Average. Up to now the semantics of weight expressions over finite
paths is based on the accumulated weight given by the sum of all
state-action pairs along the given finite path. Alternatively one might
deal with the average defined by

avg[wgt ](π) = wgt(π)/|π|
if |π| > 0. Let LTLavg[ , : AUT] denote the extension of
LTL[ , : AUT] where basic weight constraints either have the
form expr ./ c as before or avgexpr ./ c where

avgexpr =
d∑
i=1

ai · avg[wgti] with ai ∈ Q

is an average weight expression. The symbol avg[wgti] indicates
that the weight function represented by wgti will be interpreted by
the average weight of finite paths. To ensure that the average weight
of all finite paths π with trace(π) ∈ L(A) is well-defined, we im-
pose the side constraint that for all subformulas A (ϕ1; constr;ϕ2)
and A (ϕ1; constr;ϕ2), where constr contains an average weight
constraint, the DFA A does not accept words of length 1. Following
the idea described in [8], average weight expressions can be trans-
formed into sum weight expressions of the form wgt ./ 0. This trans-
formation is applicable for our purposes as well. This yields that the
(probabilistic) model-checking problem for LTLavg[ , : AUT]-
formulas is reducible to the one for LTL[ , : AUT].

Indeed several authors considered logics or specific properties
that are in the spirit of or even expressible in LTLavg[ , : AUT]
for some automata class AUT.

Fixed window properties. The (direct) fixed window proper-
ties studied in [14] for non-probabilistic weighted game struc-
tures have the form 6`(avg[wgt] > c), � 6`(avg[wgt] >
c) and ♦� =`(avg[wgt] > c). Thus, they are expressible in
LTLavg[ , : Window].

Temporal logic with prefix accumulation. The concept of prefix-
accumulation assertions as introduced by Boker et al [8] for
weighted Kripke structures and branching-time and linear-time tem-
poral logics is very much in the spirit of the logic LTLavg[ , : All].
The differences between weighted Kripke structures and WTSs in
our sense are mostly of a syntactic nature. Rephrased for our no-
tations, prefix-accumulation assertions as in [8] can be defined as
LTLavg[ , : All]-formulas:

assert[constr]
def
= A[init...] constr

We suppose here that init is an atomic proposition that characterizes
the initial state. Thus, with this side assumption, LTL with prefix-
accumulation assertions as in [8] is a sublogic of LTLavg[ , : All].
Given a DFA A ∈ All imposing a regular constraint that is not
LTL-definable, we cannot expect to get an LTL formula with prefix-
accumulation assertions that is equivalent to A constr. However,

the LTL[ , : Reach]-formula A[...φ] constr is equivalent to the
formula ♦(φ ∧ assert[constr]). Thus, e.g., LTL[ , : Reach] can
be seen as a sublogic of LTL with prefix-accumulation assertions.
[8] also considers a variant of prefix accumulation “controlled” by
some regular expression. This approach, however, departs from the
regular conditions imposed by the DFA A in generalized or pure
weight assertions. The purpose of regular conditions in controlled
prefix accumulation as in [8] relies on an alternative definition of the
weight of finite paths (where the weights of certain transitions can be
ignored), while the operators A and A impose conditions on the
standard weight of finite paths satisfying a given regular constraint.

Mean-payoff, long-run averages. Several authors studied game
structures or logics with mean-payoff objectives. The latter are typi-
cally defined as requirements on the limit superior or limit inferior
of the accumulated weight along the prefixes of a given infinite
path. Such requirements can be formalized in LTLavg[ , : All]
by formulas of the form

♦� A[init...](avgexpr ./ c) or ♦� A[init...](avgexpr ./ c)

Again, up to some minor syntactic differences, this yields an embed-
ding of the extension of LTL with mean-payoff assertions of [8] into
LTLavg[ , : All]. [26] proposes a further extension where expres-
sions might be polynomial and might refer to so-called characteristic
properties. For the latter, our logic provides no corresponding con-
cept. However, the switch from (linear) weight expressions to poly-
nomial weight expressions would be possible for our framework as
well. The decidability results presented for LTL[ , : Acyc] in Sec-
tion 4 would not be affected as we just require that weight constraints
can be evaluated efficiently over a given d-tuple of values. Since
mean-payoff assertions are prefix-independent properties, the logic
presented in [26] is incomparable to our logic concerning expressive-
ness. Neither [8] nor [26] considers probabilistic structures. WMDPs
or weighted game structures with mean-payoff objectives have been
considered by several authors, see, e.g., [9, 10]. Extensions of tem-
poral logics with formulas for weight constraints in WMDPs are
mostly restricted to branching-time logics such as PRCTL with
reward-bounded until and release modalities (see Remark 5) or
state conditions on the expected total reward [2, 17, 20]. An excep-
tion is the logic introduced in [18] with state formulas asserting
that Prmin

M⊗A,sinit (ψ → ϕ) = 1 where ψ = �♦ =1(wgt2 > 0),
ϕ = ♦� A[init...](wgt1/wgt2 > c) and A is a DFA (so-called ex-
periment) that runs in parallel to the WMDPM. wgt1,wgt2 stand
for reward functions in A lifted to the productM⊗A. Intuitively,
wgt2 counts the number of successful experiments and wgt1 the
total outcome of successful experiments. This particular concept of
experiments is not expressible in our logic, but inspired our work.

4. Model checking against
LTL[ , : Acyc]-specifications

We now address the probabilistic model-checking (PMC) problem
for LTL[ , : Acyc], where we are given a LTL[ , : Acyc]-
formula ϕ, a WMDP M = (S,Act , P,AP,L,wgt) and a state
sinit ∈ S and the task is to compute Prmax

M,s(ϕ) or Prmin
M,s(ϕ).

We first present a general approach that relies on a reduction to
the task of computing extremal probabilities for LTL formulas in
(unweighted) MDPs (Section 4.1). This approach is computationally
expensive and relies on a product construction. It inherently uses
a refined powerset construction for the automata appearing in
subformulas A (ϕ1; constr;ϕ2) or A (ϕ1; constr;ϕ2) to store
the relevant information on the possible runs in A and the weight
for the suffixes of the current history in M. We then discuss in
Section 4.2 the time complexity of the model-checking problem
for LTL[ , : Acyc] and sublogics and show that no efficient



algorithms can be expected that run in time polynomial in the size
of the automata A. Efficient model-checking algorithms for special
patterns of LTL[ , : Acyc]-formulas are presented in Section 4.3.

4.1 Reduction to the LTL-PMC problem
The goal is to provide a reduction from the LTL[ , : Acyc]-PMC
problem to the LTL-PMC problem. Given an LTL[ , : Acyc]-
formula ϕ and a WMDP M = (S,Act , P,AP,L,wgt) where
wgt = (wgt1, . . . ,wgtd), the idea is to replace all weight assertions
A (ϕ1; constr;ϕ2) and A (ϕ1; constr;ϕ2) with an until or since

formula, while adding information on the possible runs in A for
the path fragments in M. This is done by enhancing each state
s with a partial function f for each occurring automaton A. The
function tracks all the states q the automaton A can possibly be in
after reading the trace of a path fragment ending in s, along with a
vector w̄ of the accumulated weights along this fragment.

Let A1, . . . ,Am be the DFA that occur as parameters of weight
assertions in ϕ. Recall that Ai are supposed to be minimal acyclic
DFA over the alphabet 2AP. Let `i be the number of states in a
longest run in Ai. Then, the length of each word accepted by Ai is
at most `i−1. In particular, the maximal length of a path π inM
where trace(π) is accepted by Ai is `i−2. (Recall that the length
|π| of a finite path π is the number of transitions taken in π. Thus,
trace(π) consists of |π|+1 symbols.) We are going to construct an
(unweighted) MDP

M̃ = Monitor(M,A1, . . . ,Am) = (S̃,Act , P̃ , ÃP, L̃)

whose states have the form s̃ = 〈s, f1, . . . , fm〉 where s ∈ S and
fi is a partial function from {0, 1, . . . , `i} to pairs (q, w) where q
is a state in Ai and w ∈ Qd such that fi(k) = ⊥ (undefined) for at
least one k. The set of all these tuples is, of course, infinite. Below
we provide the definition of the state space S̃ of M̃ which ensures
that M̃ has only finitely many states. See Remark 9.

The actions that are enabled in state s̃ = 〈s, f1, . . . , fm〉 of
M̃ are precisely the actions in Act(s). The transition probability
function P̃ of M̃ is defined as follows. Suppose that act ∈ Act(s).
Then:

P̃ (〈s, f1, . . . , fm〉, act , 〈s′, f ′1, . . . , f ′m〉) = P (s, act , s′)

where f ′i is the unique (act , s′)-successor of 〈s, fi〉 in Ai that
is defined as follows. Let us now fix some i ∈ {1, . . . ,m} and
supposeAi = (Q, δ, qinit , F ). Then, fi : {0, 1, . . . , `i} → Q×Qd
is a partial function such that fi(k) = ⊥ for at least one k.
The (act , s′)-successor of 〈s, fi〉 in Ai is the partial function
f ′i : {0, 1, . . . , `i} → Q×Qd where for 0 6 k 6 `i:

• If fi(k) = (q, w) where q ∈ Q and q 6= qinit then
f ′i(k) =

(
δ(q, L(s′)), w+wgt(s, act)

)
.

• If k is the smallest index such that fi(k) = ⊥ then
f ′i(k) =

(
δ(qinit , L(s′)), 0

)
.

• In all other cases: fi(k) = ⊥.

Here, we identify the tuples (⊥, w) with ⊥. Furthermore, we
define the initial function fsi by fsi (0) = (δ(qinit ,L(s)), 0) and
fsi (k) = ⊥ for k ∈ {1, . . . , `i}.

In all other cases, P̃ (·) = 0. The state space S̃ of M̃ is the
smallest set that contains the states s̃ def

= 〈s, fs1 , . . . , fsm〉 for all
s ∈ S and that is closed under the steps induced by the transition
probability function P̃ .

Remark 9 (Size of the state space) The set S̃ is indeed finite.
Specifically, for ` = max{`1, . . . , `m} we have∣∣ S̃ ∣∣ < |S|` · |Act |`−1 · 2m·(`+1)·log(`+1).

This bound is obtained by the observation that S̃ can be writ-
ten as the union of sets S̃π , where π is a path fragment of
length at most `−2 in M and all states in S̃π have the form
〈last(π), f1, . . . , fm〉 where {fi(0), . . . , fi(`i)} \ {⊥} consists
of the pairs (δ(qinit , trace(π′)), wgt(π)) for some prefix π′ of π.
This yields

|S̃π| 6 (`+1)! < 2m·(`+1)·log(`+1).

The factor |S|` · |Act |`−1 is an upper bound for the number of path
fragments of length `−2. �

The set ÃP of atomic propositions in M̃ consists of:

• the atomic propositions in AP that appear in ϕ,
• fresh symbols initi(k), runi(k) and goali(k) for
i = 1, . . . ,m and k ∈ {0, 1, . . . , `i}

The labeling function L̃ : S̃ → 2ÃP is then defined by the following
conditions. Let s̃ = 〈s, f1, . . . , fm〉 ∈ S̃. Then AP∩ L̃(s̃) = AP∩
L(s). For i ∈ {1, . . . ,m} the semantics of Ai(ϕ1; constr;ϕ2) or
Ai(ϕ1; constr;ϕ2) will be encoded using the atomic propositions

initi(k), runi(k) and goali(k). The requirements for the labeling
function is as follows where we suppose that Ai = (Q, δ, qinit , F ):

initi(k) ∈ L̃(s̃) iff fi(k) = (δ(qinit , L(s)), 0)

runi(k) ∈ L̃(s̃) iff fi(k) 6= ⊥

goali(k) ∈ L̃(s̃) iff fi(k) = (q, w) for some q ∈ F
and constr[wgt/w]

We use constr[wgt/w] to denote the variable-free arithmetic con-
dition resulting from constr by replacing the weight symbols
wgtk in the weight expressions of constr with the values wk for
k = 1, . . . , d. Thus, constr[wgt/w] can be treated as a truth value.

Let ϕ̃ be the LTL formula that results from ϕ by replac-
ing the subformulas ψ+ = Ai(ϕ1; constr;ϕ2) and ψ− =
Ai(ϕ1; constr;ϕ2) with:

ψ̃+
def
=
∨

06k6`i

(
ϕ1 ∧ initi(k) ∧ (runi(k) U(goali(k) ∧ ϕ2))

)
ψ̃−

def
=
∨

06k6`i

(
ϕ2 ∧ goali(k) ∧ (runi(k) S(initi(k) ∧ ϕ1))

)
Theorem 10 (Soundness) For each state s inM:

Prmin
M,s(ϕ) = Prmin

M̃,s̃
(ϕ̃) and Prmax

M,sinit
(ϕ) = Prmax

M̃,s̃
(ϕ̃)

where s̃ = 〈s, fs1 , . . . , fsm〉.

The proof of the soundness of the transformation can be found in
the technical report [5]. Thus, we can rely on well-known model-
checking techniques for MDPs and LTL. Most prominent is the
automata-based approach that transforms the LTL formula into a
deterministic ω-automatonD and then analyzes the end components
of the product of the given MDP andD (see, e.g., [3, 16]). The worst-
case time complexity of this approach is dominated by the generation
of a deterministic automaton for the LTL formula and runs in time
polynomial in the size of the MDP and double exponential in the
length of the LTL formula.

In our case, the size of the generated MDP M̃ is polynomial
in the size of M, but (single) exponential in the length of the
longest runs in the automata of subformulas A (ϕ1; constr;ϕ2) or
A (ϕ1; constr;ϕ2) (see Remark 9). Thus, the time complexity of

our algorithm is double exponential, too.



4.2 Complexity
We now discuss the complexity of the model-checking problem
for LTL[ , : Acyc] and its sublogic LTL[ , : Window] over
WMDPs, WMCs and WTSs (see Notation 6).

The model-checking problem for standard LTL is known to
be 2EXPTIME-complete for MDPs and PSPACE-complete for
Markov chains and transition systems [16, 25, 27]. Obviously, the
lower bounds carry over to any logic that extends LTL. Nonde-
terministic polynomially space-bounded algorithms for the model-
checking problem for LTL[ , : Acyc] in WMCs and WTSs arise
by adapting the approaches of [25] and [27]. Hence:

Theorem 11 The model-checking problem for LTL[ , : Acyc]
and LTL[ , : Window] is 2EXPTIME-complete for WMDPs
and PSPACE-complete for WMCs and WTSs.

With the reduction presented in the previous section, the prob-
abilistic analysis has to be carried out with the MDP M̃ =
Monitor(M, . . .) whose size grows exponentially in the sizes
of (more precisely, the length of longest runs in) the automata
A ∈ AUT that appear as parameters of the modalities A and
A. However, we cannot expect much more efficient algorithms for

the LTL[ , : Acyc]-PMC problem since even simple patterns of
PL[ : Window]-formulas interpreted over WTSs and WMCs can
encode NP-hard problems as shown in the proof of the following
theorem.

Theorem 12 (NP/coNP-completeness for WTSs) For WTSs the
problem “does sinit |= Φi hold?” is NP-complete for formulas of
the type Φ1, Φ2, Φ3 and coNP-complete for Φ4, Φ5 and Φ6 where:

Φ1 = ∃ =` constr Φ4 = ∀ =` constr

Φ2 = ∃♦ =` constr Φ5 = ∀♦ =` constr

Φ3 = ∃�♦ =` constr Φ6 = ∀�♦ =` constr

The same holds when =` is replaced with 6`.

The hardness results in Theorem 12 can be shown using reductions
from the subset sum problem and its complement. The coNP-
hardness proof for 6` uses two positive reward functions. In the
remaining cases, the hardness already holds for a WTS with a single
positive integer-valued reward function and when constr is a simple
basic weight constraint wgt = c or its negation. Analogous results
are obtained for Markov chains, extending the NP-hardness result of
[23] for the quantitative PMC decision problem and reward-bounded
reachability:

Theorem 13 (NP/coNP-completeness for WMCs) For WMCs the
problems to decide whether

PrM,sinit

(
=` constr

)
> 0

PrM,sinit

(
♦ =` constr

)
> 0 PrM,sinit

(
♦ =` constr

)
= 1

PrM,sinit

(
�♦ =` constr

)
> 0 PrM,sinit

(
�♦ =` constr

)
= 1

are NP-complete. NP-hardness even holds with a single positive
integer-valued reward function and if constr has the form wgt = c.
The problem “does PrM,sinit

(
=` constr

)
= 1 hold?” is coNP-

complete. The same holds when =` is replaced with 6`.

So far we presented hardness results for simple patterns of formulas
with monitors A ∈Window, partly with simple weight assertions
and single positive reward functions. But even for Boolean combi-
nations of simple window weight assertations, the model-checking
problem is computationally hard.

Theorem 14 For PL[ : Acyc] and PL[ : Window], the positive
model-checking problem for WMDPs and WMCs and the existential
model-checking problem for WTSs are NP-complete. Hardness
already holds for a single positive integer-valued reward function.

4.3 Special algorithms for selected formula patterns
As a consequence of Theorem 12, the task to compute
Prmax
M,sinit

(♦ A constr) for WMDPs with a single reward func-
tions is computationally hard if constr is a conjunctive weight
constraint wgt = c (which is (wgt 6 c) ∧ (wgt > c)). However,
the analogous problem for simple basic weight constraints wgt ./ c
can be solved efficiently, even for WMDP with a (possibly negative)
weight function.

Proposition 15 For WMDPs with a single weight function, the
problems

“does Prmax
M,sinit

(
♦ A(wgt ./ c)

)
> 0 hold?”

“does Prmin
M,sinit

(
��A (wgt ./ c)

)
= 1 hold?”

are in P.

Proof. It suffices to consider the problem to decide whether the
probability of ♦ A(wgt ./ c) is positive as:

Prmin
M,sinit

(
��A (wgt ./ c)

)
= 1−Prmax

M,sinit

(
♦ A(wgt 6./ c)

)
We define Graph[M⊗A] as a weighted directed graph with the
vertices 〈s, q〉 ∈ S ×Q and the following edge relation E:

(〈s, q〉, 〈s′, q′〉) ∈ E
iff P (s, act , s′) > 0 for some act ∈ Act(s)

and q′ = δ(q, s′) 6= ⊥

The weight of the edge from vertex 〈s, q〉 to vertex 〈s′, q′〉 is

min
{

wgt(s, act) : P (s, act , s′) > 0
}
.

We may apply standard polynomial-time shortest path algorithms
(e.g., the algorithms by Bellman-Ford or Floyd) to compute the
lengths `min(s) and `max(s) of shortest and longest paths from
〈s, qinit〉 to some state 〈t, p〉 with p ∈ F in Graph[M⊗A]. Here,
the notion of length is to be understood in terms of accumulated
weight. (Longest paths are obtained by shortest path algorithms for
the weighted graph that results from Graph[M⊗A] by multiplying
all weights by −1.) Here, we deal with `min(s) = +∞ if no state
in S × F is reachable from 〈s, qinit〉 and `min(s) = −∞ if some
cycle with negative weight is reachable from 〈s, qinit〉. Similarly,
we have `max(s) ∈ Q ∪ {−∞,+∞} with the same conditions for
−∞ and +∞.

Let C ∈ {6, <} and B ∈ {>, >}. The statement fol-
lows from the fact that there is a scheduler S for M where
PrSM,sinit

(♦ A(wgtC c) ) is positive if and only if there exists a
state s inM that is reachable from sinit with `min(s)C c. Similarly,
there is a scheduler S forM where PrSM,sinit

(♦ A(wgtB c) ) is
positive if and only if there exists a state s inM that is reachable
from sinit with `max(s)B c. �

According to Theorem 13, the computation of
PrM,sinit (�♦

A constr ) is hard in WMCs, even in the 1-
dimensional case. The problem becomes considerably simpler
for basic weight constraints:

Proposition 16 For WMCs with a single weight function, the prob-
abilities

PrM,sinit (�♦
A(wgt ./ c) )

PrM,sinit (♦� �
A (wgt ./ c) )

can be computed in polynomial time.



General Non-negative weight functions,
simple weight constraints

PL[ : Acyc]
PL[ : Window]

NP-complete (Thm. 14)

LTL[ , : Acyc]
LTL[ , : Window]

WTS, WMC: PSPACE-complete (Thm. 11)
WMDP: 2EXPTIME-complete (Thm. 11)

PL[ : Reach]
PL[ : All]

undecidable (Thm. 17,20) decidable

LTL[ , : Reach]
LTL[ , : All]

undecidable decidable (Thm. 18)

Table 1. Decidability and complexity of the model-checking problem.

The proof relies on the computation of the bottom strongly con-
nected components that are good according to the weight constraint
wgt ./ c, i.e. those BSCCs T for which there is no finite path π in
T with trace(π) ∈ L(A) and wgt(π 6./ c). Checking whether a
BSCC is good can be done using shortest path algorithms. Details
can be found in the technical report [5].

5. Unbounded weight assertions
So far, we studied the model-checking problem for LTL[ , : Acyc]
where the operators A and A are parametrized by acyclic DFA,
i.e., their accepted languages are finite. Dropping this assumption
leads to undecidability. This is an immediate consequence of the
undecidability results by [8] for LTL with prefix-accumulation as-
sertions which can be seen as a sublogic of LTL[ , : All]; see
Section 3.4.

More interesting is the observation that undecidability even
holds for the logic PL[ : Reach], i.e., propositional logic where
the atoms are pure weight assertions A[...φ] constr where φ is
an ordinary propositional formula with atoms in AP. Recall that
the path conditions specified by the automata A[. . . φ] ∈ Reach
are reachability constraints ♦φ. Given the fact that Boker et al
[8] prove decidability for the branching-time logic obtained by
adding the CTL-modality ∃♦ and prefix-accumulation assertions
to propositional logic, this result appears surprising to us. Using a
reduction from the Post correspondence problem, we get:

Theorem 17 (Undecidability for PL[ : Reach]) The model-
checking problem for PL[ : Reach] over WTSs and WMCs is
undecidable.

A detailed proof can be found in the technical report [5]. By Theorem
17, there is no chance to design algorithms for the computation
of (maximal or minimal) probabilities for the events specified as
formulas of PL[ : Reach] (or more expressive logics such as
LTL[ , : Reach] and LTL[ , : All]) in WMCs and WMDPs.
We now discuss the case of non-negative structures where all weight
functions are non-negative.

Recall that simple weight constraints are Boolean combina-
tions of simple basic weight constraints wgti ./ c and that
LTLsimple[ , : All] is the sublogic of LTL[ , : All] where all
weight constraints are simple.

Theorem 18 The LTLsimple[ , : All]-PMC problem is decidable
for non-negative WMDPs.

The proof can be found in the technical report [5] and relies on an
adaption of the algorithm presented in Section 4.1 using a threshold
technique that avoids the expansion of pairs fi(k) = (q, w) where
the values of w are larger than the largest constant in the weight
constraints of the given formula. To treat 0-weight cycles we use

the fact that as soon as fi(k) = fi(k
′) then we can release one

argument k or k′ and reuse it for fresh runs.
For d = 1, all weight constraints are equivalent to simple ones:

Corollary 19 The LTL[ , : All]-PMC problem is decidable for
WMDPs with a single non-negative weight function.

In the multi-dimensional case the requirement that the basic weight
expressions are simple cannot be dropped as we have:

Theorem 20 The model-checking problem for PL[ : Reach] and
non-negative WTSs is undecidable. Likewise, the model-checking
problem for PL[ : Reach] and non-negative WMCs is undecidable.

The proof is by a reduction from the model-checking problem for
PL[ : Reach] (see Theorem 17). The idea of the proof is to split
each weight function wgt into two non-negative weight functions
wgt+ and wgt− with wgt+ − wgt− = wgt , i.e.,

wgt+(s, act) = max{wgt(s, act), 0}
wgt−(s, act) = −min{wgt(s, act), 0}

for each state s and action act of the WMDP. Then, each appearance
of wgt in a weight expression can be replaced by (wgt+ − wgt−).

6. Conclusions
We established sharp complexity bounds and investigated the border
of decidability for the model-checking problem of our new logics.
Our main results are depicted in table 4.2, where we distinguish
between the general case with arbitrary (rational) weight functions
and weight assertions and the case of simple weight assertions with
non-negative weight functions. Note that the second column is only
applicable if both of these restrictions apply. The given results refer
to the positive model-checking problem for WMCs and WMDPs and
the existential one for WTSs. The results for the automata class Acyc
also hold for the automata class Window. Similarly, the results for
Reach also hold for All. The decidability results in the table written
in italic are a direct consequence of some result in boldface.

Even though the stated complexity bounds seem to make a
practical application unfeasible, there are many techniques to make
LTL model checking for MDPs applicable to real-world scenarios.
An evaluation of the methods used in some popular model-checking
tools can be found, e.g., in [22] for PRISM, in [21] for MRMC and
in [6] for ProbDiVinE.
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