
Trade-off Analysis Meets Probabilistic Model Checking ∗

Christel Baier Clemens Dubslaff Sascha Klüppelholz

Institute for Theoretical Computer Science
Technische Universität Dresden, Germany

{baier,dubslaff,klueppel}@tcs.inf.tu-dresden.de

Abstract

Probabilistic model checking (PMC) is a well-established and pow-
erful method for the automated quantitative analysis of parallel dis-
tributed systems. Classical PMC-approaches focus on computing
probabilities and expectations in Markovian models annotated with
numerical values for costs and utility, such as energy and perfor-
mance. Usually, the utility gained and the costs invested are depen-
dent and a trade-off analysis is of utter interest.

In this paper, we provide an overview on various kinds of non-
standard multi-objective formalisms that enable to specify and rea-
son about the trade-off between costs and utility. In particular, we
present the concepts of quantiles, conditional probabilities and ex-
pectations as well as objectives on the ratio between accumulated
costs and utility. Such multi-objective properties have drawn very
few attention in the context of PMC and hence, there is hardly any
tool support in state-of-the-art model checkers. Furthermore, we
broaden our results towards combined quantile queries, computing
conditional probabilities those conditions are expressed as formu-
las in probabilistic computation tree logic, and the computation of
ratios which can be expected on the long-run.

1. Introduction

For the quantitative analysis of probabilistic systems, various kinds
of models and formal methods have been proposed in the litera-
ture. Probabilistic model-checking (PMC) is one very prominent
example, which has been successfully applied for the quantitative
analysis of hardware and software such as randomized distributed
systems and even in other research domains, e.g., for the reasoning
about quantitative phenomena within biological systems.

We focus here on PMC on Markovian models, which can be
seen as automata annotated with probabilistic distributions and
cost or reward functions modeling resource requirements. Whereas
Markov chains (MCs) are purely probabilistic, Markov decision
processes (MDPs) support both, nondeterministic and probabilistic

∗ The authors are supported by the DFG through the collaborative re-
search centre HAEC (SFB 912), the cluster of excellence cfAED, Deutsche
Telekom Stiftung, the ESF young researcher groups IMData (100098198)
and SREX (100111037), the Graduiertenkolleg QuantLA (1763) the
DFG/NWO-project ROCKS, and the EU-FP-7 grant MEALS (295261).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CSL-LICS 2014, July 14–18, 2014, Vienna, Austria.
Copyright c© 2014 ACM 978-1-4503-2886-9. . . $15.00.
http://dx.doi.org/10.1145/2603088.2603089

choices. The typical task of PMC on a given MDP is to compute
the maximal or minimal probabilities of path properties specified
by some formula of linear temporal logic (LTL) [21, 41], the path-
formula fragment of probabilistic computation tree logic (PCTL)
or its variant PRCTL with reward-bounded temporal modalities
[3, 13, 22, 31]. Algorithms for Markovian models and LTL- or
PRCTL-specifications were implemented in model checkers such
as PRISM [32] and MRMC [35].

In recent inter-disciplinary research projects we use PMC for
the analysis of (low-level) resource-management protocols to pro-
vide insights in the energy-utility, reliability and other performance
characteristics from a global and long-run perspective. With PMC
we are complementing the measurement-based and simulation-
based analysis conducted by our project partners. The results
of the quantitative analysis guide the optimization of resource-
management algorithms and can be very useful to predict the
performance of management algorithms that may not have been
implemented yet and aim to run on hardware that also may not yet
exist neither.

Within this process the application of PMC was, however, not
straightforward and we faced a number of expected challenges.
Besides the state-explosion problem, which becomes even more
evident in the context of (future) multi and many-core systems,
additional difficulties arose to find adequate models appropriate
for analyzing the properties to be investigated. A particular chal-
lenge was to find stochastic distributions modeling “realistic” work-
loads and complex hardware details such as cache effects. The
cooperation with partners from domains such as operating sys-
tems, data bases, electrical engineering, etc. revealed further, un-
expected challenges concerning the limitations of state-of-the-art
PMC-techniques for the quantitative analysis. For instance, sev-
eral highly relevant trade-off performance measures have been ne-
glected by the PMC-community so far.

In this paper, we deal with PMC-methods for computing per-
formance measures that provide insights in the trade-off between
multiple cost and reward functions, such as energy and utility or
system resiliency and its costs. Although there has been a recent
trend for computing multi-objective properties in MDPs (see, e.g.,
[19, 26]), where the task is to find schedules that allow satisfying
boolean combinations of constraints on probabilities and expecta-
tions, these approaches do not address the trade-off that typically
exists between cost and utility: usually, the gained utility increases
with the price to be payed. An example is the trade-off between en-
ergy consumption of a system and its performance. These kinds of
trade-off queries can easily be formalized in terms of quantiles, con-
ditional probabilities and (cost/utility) ratios, which are standard in
statistics and mathematics, but have drawn very few attention in
the context of PMC. Quantile queries ask, e.g., for the minimal en-
ergy required to gain a fixed minimal amount of utility. Likewise,
also the question of the maximal amount of utility gained within an
upper bound on the consumed energy can be formalized as a quan-

tile query. We presented methods for computing quantile queries in
[7, 40]. Differently, conditional probability queries allow, e.g., to
use upper or lower bounds on cost and utility measures as condi-
tions and perform an analysis based on this given assumption. This
is extremely helpful when analyzing exceptional system behavior
of systems assuming that some very rare failure event occurred. Re-
cently, it turned out that the computation of conditional probabil-
ity queries can be done efficiently [10]. Quantiles and conditional
probabilities can be combined very naturally. Then, the objective
is to find optimal bounds on costs or utility for very specific situ-
ations that are characterized by conditions given as temporal logic
constraints. Ratio objectives (on cost and utility) are a third impor-
tant class of non-standard multi-objective queries we investigated
and which allow to reason about quotients of, e.g., the accumulated
cost and the accumulated utility. The importance of ratios has been
realized by various other research groups. For instance, [2, 42] ad-
dressed expected ratios or [23] considered long-run ratios when the
denominator has the purpose of a counter. Recent undecidability
results on temporal logics extended by assertions on the accumu-
lated values of weight functions [11, 14] impose serious limita-
tions. These undecidability results are mainly due to the fact that
this problem is closely related to MDPs with integer weights rather
than non-negative rewards. Also the close relation between struc-
tures with two weight functions to two-counter machines shows
that these limitations arise naturally.

Outline and Contribution This article provides an overview of re-
cent work on the computation of quantiles, conditional probabilities
and ratios of accumulated rewards in finite-state discrete Marko-
vian models. Section 2 summarizes the preliminaries and provides a
high-level introduction to the relevant concepts for MCs and MDPs.
Quantiles are addressed in Section 3. We summarize our recent
results presented in [7, 40] and briefly discuss the extension of
quantiles towards conjunctive objectives. The transformation-based
approach of [10] for the computation of conditional probabilities
in Markovian models and the model-checking problem for condi-
tional PCTL is described in Section 4. Reasoning about constraints
on the ratio of the accumulated values of two reward functions and
its relation to algorithmic problems for structures with an integer-
valued weight function is discussed in Section 5.

2. Theoretical Foundations

Throughout the paper, we assume the reader to be familiar with
concepts of standard model checking, ω-automata and temporal
logics (see, e.g., [5, 20, 30]). We only provide a dense summary of
the main concepts of Markov decision processes (MDPs), see, e.g.,
[36, 37], and the quantitative analysis of MDPs against formulas of
linear temporal logic (LTL) [21, 41] and probabilistic computation
tree logic (PCTL) as well as reward-based extensions thereof [3, 6,
13, 31].

Distributions. For X being a nonempty countable set, a distribu-
tion on X is a function µ : X → [0, 1] with

∑

x∈X µ(x) = 1. We
write Distr(X) for the set of all distributions on X .

Markov Chains. A Markov chain M consists of a nonempty
countable state space S and a transition probability matrix P :
S×S → [0, 1], where P (s, ·) ∈ Distr(S) for all states s. The asso-
ciated probability space on the infinite sequences over S formalizes
the intuitive notion of probabilities of (measurable) sets of sample
runs in M. If π = s0 s1 . . . sn ∈ S∗, then the cylinder set of π, de-
noted by Cyl(π), consists of all infinite sequences over S having π
as a prefix. The cylinder sets constitute the basis of a sigma-algebra
on Sω . The probability measure PrMsinit for a given state sinit ∈ S
is the unique probability measure on this sigma-algebra, where
PrMsinit (Cyl(π)) equals P (s0, s1) · P (s1, s2) · . . . · P (sn−1, sn)

if s0 = sinit and PrMsinit (Cyl(π)) = 0 if sinit 6= s0. The existence
and uniqueness is ensured by Caratheodory’s measure extension
theorem.

Unless stated differently, we suppose that the state space S of a
Markov chain is finite and that the transition probabilities P (s, s′)
are rational for all s, s′ ∈ S. With abuse of notations, we will use
the term Markov chain as a special instance of a MDPs.

Markov Decision Processes. A Markov decision process (MDP)
can be seen as a probabilistic variant of a labeled transition sys-
tem, where being in a state s an action α is selected nondeter-
ministically from a set of enabled actions, followed by a proba-
bilistic choice of the successor state. Formally, an MDP is a tuple
M = (S,Act , P,AP, L), where S is a finite set of states, Act
a finite set of actions, AP a finite set of atomic propositions and
L : S → 2AP a labeling function. The transition probabilities and
enabled actions are specified by a function P : S×Act×S →
[0, 1] ∩ Q such that

∑

s′∈S P (s, α, s′) ∈ {0, 1} for all s ∈ S and

α ∈ Act . Triples (s, α, s′) where P (s, α, s′) > 0 are called tran-
sitions. We write Act(s) for the set of actions that are enabled in
s, i.e., P (s, α, ·) ∈ Distr(S) if α ∈ Act(s). For technical rea-
sons, we require that Act(s) 6= ∅ for all states s. Markov chains
can be seen as a special case of MDPs where Act is a singleton.
A pointed MDP means a pair (M, s) consisting of an MDP and a
distinguished initial state s = sinit ∈ S.

Infinite paths in M are infinite alternating sequences ζ =
s0 α0 s1 α1 s2 α2 . . . of states and actions built by consecutive tran-
sitions, i.e., P (si−1, αi−1, si) > 0 for all i > 1. If k, ℓ ∈ N and
ℓ 6 k, then ζ[ℓ . . . k] denotes the path fragment sℓ αℓ . . . αk−1 sk.
Hence, ζ[0 . . . k] = pref (ζ, k) is the prefix of ζ consisting of the
first k transitions and ζ[k . . . k] = ζ[k] = sk denotes the (k+1)-st
state in ζ. The trace of ζ is the infinite word

trace(ζ) = L(s0) L(s1) L(s2) . . . ∈
(

2AP
)ω

that is obtained by the projection to the atomic propositions the
states in ζ are labeled with. Finite paths are nonempty finite pre-
fixes of infinite paths. The length |π| of a finite path π denotes
the number of transitions in π. The notations trace(π), π[ℓ . . . k],
π[k] for 0 6 ℓ 6 k 6 |π| are defined as for infinite paths,
and last(π) = π[|π|] denotes the last state of π. FinPaths and
InfPaths stand for the set of all finite resp. infinite paths, whereas
FinPaths(s) and InfPaths(s) denote the corresponding sets of
paths starting in state s.

Schedulers and Probability Measure. Reasoning about probabil-
ities for path properties in an MDP M requires the selection of
an initial state and the resolution of the nondeterministic choices
between the possible transitions. This is formalized via schedulers,
which take as input the history, formalized by a finite path, and se-
lect an action to be executed next. Formally, a (randomized history-
dependent) scheduler for M is a function S : FinPaths →
Distr(Act) such that for all actions α ∈ Act and finite paths π
holds α ∈ Act(last(π)) if S(π)(α) > 0. An S-path is an infi-
nite path ζ = s0 α0 s1 α1 s2 α2 . . . in M that can arise following
S’s decisions, i.e., S(ζ[0 . . . k])(αk) > 0 for all k ∈ N. Sched-
uler S is said to be deterministic if for each finite path π there is
an action α with S(π)(α) = 1, in which case we regard S as a
function S : FinPaths → Act . Finite-memory schedulers operate
with a finite-state transducer to store the relevant information on
the history. A special case are memoryless schedulers whose deci-
sions only depend on the last state. Memoryless schedulers can be
formalized as functions S : S → Distr(Act) (randomized mem-
oryless schedulers) or S : S → Act (deterministic memoryless
schedulers).

The behavior of a pointed MDP (M, s) under S is purely
probabilistic and can be formalized by a tree-like infinite-state

Markov chain. This yields the probability for a measurable path
property ϕ (e.g., specified by an LTL or reward-bounded formula,
see below) under S starting in state s:

PrSs (ϕ) = PrSs
{

ζ ∈ InfPaths(s) : ζ |= ϕ
}

For a worst- or best-case analysis of a system modeled by a pointed
MDP (M, s), one ranges over all schedulers (i.e., all possible
resolutions of the nondeterminism) and considers the maximal or
minimal probabilities for satisfying ϕ:

Prmin
s (ϕ) = inf

S

PrSs (ϕ) and Prmax
s (ϕ) = sup

S

PrSs (ϕ)

For many relevant path properties ϕ, e.g., all ω-regular properties,
optimal finite-memory schedulers that maximize or minimize the
probability to satisfy ϕ do exist. Occasionally, we use M as an
additional subscript and write Prmax

M,s(ϕ) or Prmax
M,s(ϕ).

End Components. An MDP-analogue to ergodic subsets of finite-
state Markov chains [22] are provided by strongly connected sub-
MDPs called end components. Formally, an end component of M
is a pair E = (T,A) consisting of a nonempty subset T of S and a

function A : T → 2Act\{∅} such that:

• ∅ 6= A(t) ⊆ Act(t) for all states t ∈ T ,

• if t ∈ T , α ∈ A(t) and P (t, α, t′) > 0 then t′ ∈ T , and

• the underlying directed graph is strongly connected.

Here, the underlying graph of (T,A) has the node-set T and an
edge (t, t′) iff there exists α ∈ A(t) with P (t, α, t′) > 0. It is
well-known [22] that under each scheduler S, the limit of almost
all infinite paths constitutes an end component. In particular, the
limit of an infinite path ζ is the pair Limit(ζ) = (T,A), where
T = inf(ζ) is the set of states t that appear infinitely often in ζ and
for which A(t) is the set of actions that are taken infinitely often in
ζ from t. The computation of maximal end components, i.e., end
components that are not contained in any other end component, can
be computed using an iterative approach for computing strongly
connected components in subgraphs [18, 21, 22].

Linear Temporal Logic. The linear temporal logic LTL extends
propositional logic over AP by the temporal modalities © (next)
and U (until). Other temporal modalities can then be derived, e.g.,
♦ϕ = trueUϕ (eventually), �ϕ = ¬♦¬ϕ (always), ϕ1Rϕ2 =
¬(¬ϕ1U¬ϕ2) (release). LTL formulas are interpreted over pairs

(w, k) consisting of an infinite word w = A0 A1 A2 ∈ (2AP)ω and
a word position k ∈ N. For instance, if a ∈ AP then (w, k) |= a iff
a ∈ Ak, while the semantics of the temporal modalities © and U is
given by: (w, k) |= ©ϕ iff (w, k+1) |= ϕ and (w, k) |= ϕ1Uϕ2

iff there exists an ℓ ∈ N, where ℓ > k, (w, ℓ) |= ϕ2 and

(w, i) |= ϕ1 for all k 6 i < ℓ. An infinite word w ∈ (2AP)ω is
said to be a model for ϕ iff (w, 0) |= ϕ. If ϕ is an LTL formula and
ζ ∈ InfPaths , then ζ |= ϕ if trace(ζ) is a model for ϕ. Prmin

s (ϕ)
and Prmax

s (ϕ) refer to the minimal or maximal probabilities for the
set of infinite paths satisfying ϕ, ranging over all schedulers for M.

To specify properties for MDPs, we often use sets of states or
single states as atomic propositions with the obvious meaning.

Figure 1 sketches the main steps of the automata-based ap-
proach for probabilistic model checking (PMC) MDPs against LTL-
specifications. Maxima and minima are taken over all potential res-
olutions of the nondeterminism, formalized by schedulers. We sup-
pose here that the formula ϕ describes the undesired behaviors, i.e.,
the behaviors where the requirement does not hold. In this case, the
maximal probability for satisfying ϕ and corresponding schedulers
provide insights in the worst-case scenarios.

The idea is to apply at first known algorithms that transform the
given LTL-formula into a deterministic automaton A over infinite
words (see [30]) and then to compute the maximal probabilities for

requirementprobabilistic
system

LTL-formula ϕ for
the undesired behaviors

deterministic
automaton A

probabilistic model:
pointed MDP (M, sinit)

probabilistic model checker:
quantitative reachability analysis of M⊗A

maximal probability for “bad behaviors”

Figure 1. Automata-based PMC for LTL-specifications

the paths satisfying A’s acceptance condition in the product-MDP
M⊗A. The latter agrees with the maximal probability to reach an
end component of M ⊗ A that meets the acceptance condition of
A. Thus, the task to compute Prmax

s (ϕ) reduces to a probabilis-
tic reachability problem in the product-MDP and is solvable by
linear-programming techniques (as sketched for the PCTL model
checking procedure, see below). A worst-case analysis as in Fig. 1
is adequate if the choices between the nondeterministic alternatives
in the given MDP are uncontrollable, e.g., if they represent the pos-
sible interactions with an unknown or unpredictable environment.
If the given LTL-formula ϕ formalizes the desired behaviors, the
computation of the maximal probability for ϕ can be seen as a best-
case analysis. Then, a scheduler maximizing the probability for ϕ
serves as an optimal controller for the objective ϕ.

Probabilistic Computation Tree Logic. A probabilistic variant
of CTL that replaces the path quantifiers ∃ and ∀ with a proba-
bilistic operator P that serves to assert bounds for the worst- or
best-case probabilities for simple path properties is given by prob-
abilistic computation tree logic (PCTL) [13, 31]. It can be used in
combination with existential or universal quantification over sched-
ulers. PCTL state formulas are Boolean combinations of atomic
propositions a, b, c, . . . ∈ AP and formulas of the type ∃P⊲⊳q(ϕ)
or ∀P⊲⊳q(ϕ), where ⊲⊳ is a comparison operator 6, <, > or >,
q ∈ [0, 1] ∩ Q a probability bound and ϕ a PCTL path formula,
i.e., a formula of the form ©Φ or ΦUΨ with PCTL state formulas
Φ and Ψ. As in LTL, © and U stand for the temporal modalities
“next” and “until”. We refer to the terms P⊲⊳q(ϕ) as probability
constraints. Thus, PCTL state formulas are Boolean combination
of existentially or universally quantified probability constraints.

The interpretation of PCTL path and state formulas over the
infinite paths resp. the states of an MDP M is defined by structural
induction. Satisfaction of a path formula or propositional logical
state formula is satisfied as for CTL, e.g., ζ |= ©Φ iff ζ[1] |= Φ
and s |= ¬Φ iff s 6|= Φ. The semantics of the probabilistic operator

is given by s |= ∀P⊲⊳q(ϕ) iff PrSs (ϕ) ⊲⊳ q for all schedulers S,
where (as before) ϕ is identified with the set of infinite paths ζ
such that ζ |= ϕ. Similarly, s |= ∃P⊲⊳q(ϕ) iff PrSs (ϕ) ⊲⊳ q for
some scheduler S. Other temporal modalities like ♦ (eventually),
� (always) and R (release) can be derived in a similar fashion. For

instance, ♦Φ
def
= trueUΦ and ∀P<q(�Φ)

def
= ¬∃P61−q(♦¬Φ) ≡

¬∃P>q(�Φ) where ≡ denotes the equivalence of formulas. For a
PCTL state formula Φ and a pointed MDP (M, sinit), the model-
checking problem for PCTL amounts of checking whether sinit |=
Φ. It is solvable by an inductive approach, where the satisfaction

sets Sat(Ψ) = {s ∈ S : s |= Ψ} of all state sub-formulas
Ψ of Φ are computed inductively. Obviously, then sinit |= Φ iff
sinit ∈ Sat(Φ). The treatment of the propositional logic fragment
is obvious as we have Sat(a) = {s ∈ S : a ∈ L(s)}, Sat(¬Ψ) =
S\Sat(Ψ) and Sat(Ψ1 ∧ Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2). For the
probabilistic operator, the computation of maximal or minimal
probabilities for PCTL path formulas is required:

Sat(∀PEq(ϕ)) =
{

s ∈ S : Prmax
s (ϕ) E q

}

Sat(∀PDq(ϕ)) =
{

s ∈ S : Prmin
s (ϕ) D q

}

,

where E ∈ {6, <} and D ∈ {>, >}. The satisfaction sets for
state formulas with existential scheduler quantification are obtained
in the same way, except that we replace Prmax

s with Prmin
s and

vice versa. Let us briefly explain the treatment of upper probability
bounds and universal scheduler quantification. If ϕ = ©Ψ, then
Prmax

s (ϕ) = max{P
(

s, α,Sat(Ψ)
)

: α ∈ Act(s)}. In case of
ϕ = Ψ1UΨ2, where A = Sat(Ψ1) and B = Sat(Ψ2), the vector
(ps)s∈S with ps = Prmax

s (AUB) constitutes the unique solution
of the following linear program with variables xs for s ∈ S:

minimize
∑

s∈S?
xs subject to

xs = 0 if s 6|= ∃(AUB)

xs = 1 if Prmax
s (AUB) = 1

xs >
∑

s′∈S

P (s, α, s′) · xs′ if s ∈ S?, α ∈ Act(s)

Here, S? denotes the set all states s with 0 < Prmax
s (AUB) < 1.

Containment of a state s in S? is efficiently decidable, since s 6|=
∃(AUB) and Prmax

s (AUB) = 1 can be also efficiently decided
using standard graph algorithms.

Since the concept of schedulers is irrelevant for Markov chains,
PCTL interpreted over the states and paths in Markov chains does
not require scheduler quantifiers. That is, PCTL formulas can then
be written as Boolean combinations of probability constraints. The
above linear program for the computation of the probabilities for
AUB can then be rephrased as a linear equation system.

Weight and Reward Functions. A weight function for M is a
function of the form wgt : S × Act → Z that assigns an integer
to all state-action pairs where wgt(s, α) = 0 if α /∈ Act(s).
When wgt is non-negative, i.e., wgt(s, s′) > 0 for all states s,
s′, then we refer to wgt as a reward function. We say wgt is
positive if wgt(s, α) > 0 for all state-action pairs (s, α) where α is
enabled in s. Occasionally, we also consider weight functions with
rational values, which we call rational-valued weight functions.
The accumulated weight of finite paths is defined by:

wgt(s0 α0 s1 α1 . . . αn−1 sn) =
∑

06i<n

wgt(si, αi)

Expected Accumulated Reward. Besides the computation of
extremal probabilities for path properties, probabilistic model-
checking techniques are also available for reasoning about ex-
pectations of random variables. We consider here the extremal
expected accumulated rewards for some given reward function
rew : S × Act → N until some event occurs.

The first instance concerns reachability events formalized by a
state predicate goal (i.e., Boolean combination of atomic proposi-
tions) that induces the random variable f [rew ↓goal] : InfPaths →
N ∪ {∞} with f [rew ↓ goal](ζ) = rew(ζ[0 . . . k]) and k =
min{ℓ ∈ N : ζ[ℓ] |= goal}. If ζ 6|= ♦goal , then f [rew ↓
goal](ζ) = ∞. Assuming that Prmin

s (♦goal) = 1, the expecta-
tion of f [rew ↓goal] exists and is finite for all schedulers S and so
are the maximal and minimal expected rewards:

Emax
s [rew ↓goal] = max

S

ES

s [rew ↓goal]

Emin
s [rew ↓goal] = min

S

ES

s [rew ↓goal]

The extremal expectations are computable using linear-programming
techniques and the existence of corresponding optimal determinis-
tic memoryless schedulers can be guaranteed [24, 37]. To study
the trade-off between two reward functions rew1 and rew2, we
deal with the random variable f [rew1 ↑ (rew26r)] : InfPaths →
N∪{∞} that assigns to each infinite path ζ the accumulated reward
with respect to rew as long as the accumulated reward with respect
to rew2 is bounded by r. More precisely, f [rew1 ↑ (rew26r)](ζ)
equals sup{rew1(ζ[0 . . . k]) : rew2(ζ[0 . . . k]) 6 r}. Then,
Emax
s [rew1 ↑ (rew26r)] and Emin

s [rew1 ↑ (rew26r)] are defined
as the maximal resp. minimal expectation of f [rew1 ↑ (rew26r)]
when ranging over all schedulers and assuming that almost all infi-
nite paths have a finite prefix π with rew2(π) > r. For example, if
rew1 = utility formalizes the gained utility and rew2 = energy
the consumed energy, then Emax

s [utility ↑ (energy 6 e)] stands
for the maximal expected utility that can be achieved under some
scheduler when only the energy budget e is available. Note that
f [rew ↓ goal] equals f [rew1 ↑ (rew260)] when rew1 = rew and
rew2 is a fresh reward function with rew2(s, α) = 1 if s |= goal
and α ∈ Act(s) and rew2(s, α) = 0 in all other cases.

PCTL with Rewards (PRCTL). For reasoning about reward-
based properties, PCTL can be extended to also support statements
about several reward functions in MDPs. In case of a single reward
function rew , PRCTL extends PCTL by state formulas of the form
∀P⊲⊳q(ϕ[r]) and ∀E≍ϑ(rew ↓ Φ) and analogous formulas with
existential scheduler quantification. Here, q ∈ [0, 1] ∩ Q is a
probability bound and ϑ is a non-negative rational threshold for the
extremal expected reward. Furthermore, ϕ[r] is a reward-bounded
path property depending on a reward bound r ∈ N. In this paper,
we only consider reward-bounded modalities in the form ΦU≍rΨ,
where r ∈ N is a reward bound, ≍ is a comparison operator in
{6, <,>, >,=} and Φ and Ψ are PRCTL state formulas. Given
an MDP with a reward function rew and an infinite path ζ in M,
then ζ |= ΦU≍rΨ iff there is some k ∈ N with ζ[k] |= Ψ,
ζ[i] |= Φ for all 0 6 i < k, and rew(ζ[0 . . . k]) ≍ r. The formula
∀E6r(rew ↓ Φ) asserts that under each scheduler the expected
accumulated reward until reaching a state s with s |= Φ is at
most r. (To ensure well-definedness of the semantics we require
that Prmin

s (♦Sat(Φ)) = 1.) The meaning of expectation operator
with lower bounds is analogous.

Likewise, we can attach reward bounds to the until operator for
the accumulated reward with respect to several reward functions.
In our examples, we only consider the case of MDPs with two re-
ward functions rew1 = utility with lower reward bounds (writ-
ten as lower subscripts) and rew2 = energy with upper reward

bounds (written as upper subscripts). Thus, U6e
>u denotes the un-

til operator with upper energy bound e and lower utility bound
u. This allows for reasoning about the trade-off between two re-
ward functions, such as energy and utility. Furthermore, we can
deal with universal or existential expectation constraints, such as
∀E≍ϑ(utility ↑ (energy 6 e)) stating that the expected utility ac-
cumulated as long as the consumed energy is at most e meets the
bound ≍ ϑ for each scheduler.

3. Quantiles

Quantiles are well-established in statistics (see, e.g., [38]), where
they are used to reason about the cumulative distribution function
of a random variableR. If q ∈]0, 1[, then the q-quantile is the max-
imal value r such that the probability for the eventR > r is at least
q. Although quantiles can provide very useful insights in the in-
terplay of various cost functions and other system properties, they

have been barely obtained attention in the model-checking com-
munity. Quantiles adapted to Markovian models serve to formalize
optimization problems where the task is to maximize or minimize
some reward parameter r subject to a parametrized probability or
expectation constraint [7, 40].

Quantiles Under Probability Constraints. Let us start with a sim-
ple example. Suppose we are given a pointed Markov chain with
two reward functions rew1 = utility and rew2 = energy , mod-
eling an energy-aware job scheduling protocol. The utility reward
function might stand for the profit in terms of money obtained for
the successfully completed tasks without violating the service level
agreement (SLA), whereas the energy reward function formalizes
the consumed energy. When goal represents some target, e.g., the
set of all states where each job is either completed or discarded if
its deadline has been expired, the double reward-bounded property

ϕe,u = ♦
6e
>u goal

asserts that the target will be reached while the consumed energy
is at most e and the gained utility is at least u. Formally, ζ |=
ϕe,u iff there is some k ∈ N with utility(ζ[0 . . . k]) > u and
energy(ζ[0 . . . k]) 6 e. Assuming some lower bound u on the
“acceptable” utility, then the probability for ϕe,u is increasing in
e and may define the quantile formalizing the minimal amount
emin of energy required to guarantee that the utility is at least u
with probability > 0.8. Likewise, when we fix the energy budget
e, then the probability for ϕe,u is decreasing in u and a quantile
can be used to define the maximal utility value umax that can
be achieved for the energy budget e with probability > 0.8. This
quantile example is illustrated in Figure 2.

Suppose now that the given model is an MDP and that the
accumulated rewards for all but one reward function are encoded
using program variables that serve as reward counters. For instance,
with a fixed energy budget e, we model the energy consumption by
a program variable, in which case the formula ϕe,u can be replaced
with ♦>u(goal ∧ (energy 6 e)). We now may require that the
probability constraint P>0.8(ϕe,u) holds for all schedulers or for
some scheduler. This leads to the general definition of quantiles in
MDPs with respect to probabilistic constraints for until properties
with upper or lower reward bounds and lower probability bounds
(where D ∈ {>, >} and q ∈ [0, 1] ∩Q):

universal quantiles:

min
{

r ∈ N : Prmin(AU6rB)D q
}

max
{

r ∈ N : Prmin(AU>rB)D q
}

existential quantiles:

min
{

r ∈ N : Prmax(AU6rB)D q
}

max
{

r ∈ N : Prmax(AU>rB)D q
}

Quantiles for upper-reward bounded until properties with quali-
tative probability constraints (i.e., probability bounds = 1, < 1,
= 0 or > 0), can be computed in polynomial time using a greedy
method that shares some ideas of Dijkstra’s shortest-path algorithm
[40] and relies on expansion laws for qualitative PRCTL properties
such as:

∀P=1(AU
6rB) ≡ B ∨

(

A ∧ ∀P=1(AU
=0∀P=1(AU

6rB))
)

For probability bounds q ∈]0, 1[, the schema for computing quan-
tiles is as follows. We explain here the case to find the minimal re-
ward bound r=rs such that the probabilistic constraint P<q(♦>rB)
holds for all schedulers, where 0 < q < 1 and B is a set of goal
states. That is, rs = min{r ∈ N : Prmax

s (♦>rB) < q}. Note that
then, rs−1 is the maximal reward bound such that the probabilistic
constraint P>q(♦>rB) holds for some scheduler.

1. We first apply standard PMC-techniques for LTL to compute
ps = Prmax

s (♦(C ∧♦B)) for all states s, where C is the set of
all states that belong to some end component containing at least
one state-action pair with positive reward. With X = {s ∈ S :
ps > q} we have rs = ∞ iff s ∈ X .

2. If S 6= X , then for r = 0, 1, 2, . . . we compute the values
ps,r = Prmax

s (♦>rB) for all s ∈ S and proceed with step 3 as
soon as ps,r < q for all states s ∈ S \X .

3. For each s ∈ S \X , return rs = min{r ∈ N : ps,r < q}.

The computation of the values ps,r in step 2 can be carried out
using linear-programming techniques, based on the fact that ps,0 =
Prmax

s (♦B) and that the vector (ps,r)s∈S for r > 0 is the unique
solution of the following linear program (see [7] for further details):

minimize
∑

s∈S?
xs subject to

xs = 0 if s 6|= ∃♦B

xs > 0 if s |= ∃♦B

if s |= ∃♦B, α ∈ Act(s) and ℓ = rew(s, α), then:

xs >
∑

s′∈S

P (s, α, s′) · xs′ if ℓ = 0

xs >
∑

s′∈S

P (s, α, s′) · ps′,r−ℓ if ℓ > 0

Quantiles Under Expectation Constraints. Expectation quan-
tiles serve to formalize optimization tasks, which aim towards mini-
mizing or maximizing the expected value of a parametrized random
variable. For instance, considering an MDP with two reward func-
tion rew1 = utility and rew2 = energy and a given utility value
u, we might ask for a scheduler that minimizes the expected energy
consumption required to ensure that the expected gained utility ex-
ceeds u. This corresponds to the query “synthesize a scheduler S
such that ES

s [utility ↑(energy 6 emin)] > u”, where

emin = min
{

e ∈ N : Emax
s [utility ↑(energy6e)] > u

}

.

The computation of expectation quantiles can follow an analogous
approach as for probability quantiles. The idea is to first identify the
states where the expectation quantile is infinite and then iteratively
compute the values us,e = Emax

s [utility ↑ (energy6e)] for e =
0, 1, . . . until us,e > u. Again, the latter step relies on the fact that
the vector (us,e)s∈S is the unique solution of the linear program:

minimize
∑

s∈S?
xs subject to xs > 0 and

if s ∈ S, α ∈ Act(s) and rew(s, α) = 0 then:

xs > utility(s, α) +
∑

s′∈S

P (s, α, s′) · xs′

if s ∈ S, α ∈ Act(s) and 0 < ℓ = rew(s, α) 6 e then:

xs > utility(s, α) +
∑

s′∈S

P (s, α, s′) · us′,e−ℓ

Quantiles Under Conjunctive Constraints. So far, we consid-
ered only quantiles that are defined as minima or maxima over re-
ward bounds such that a single probability or expectation constraint
holds. However, the linear-programming approach sketched above
is also applicable to compute quantiles with a conjunction of uni-
versal probability or expectation constraints. An example for such
a quantile is the minimal energy budget e required to ensure that

∀S. PrSs (♦
6egoal) > 0.8 ∧ ES

s [utility ↑(energy 6 e)] > u,

where u is a fixed non-negative rational utility threshold. This
is equivalent to the requirement that s |= ∀P>0.8(♦

6egoal) ∧
∀E>u(utility ↑(energy 6 e)). For computing the quantile

rs = min
{

r ∈ N : s |= ∀(C1[r] ∧ . . . ∧ Ck[r])
}

,

p
ro

b
ab

il
it

y

80%

emin

energy budget

p
ro

b
ab

il
it

y

80%

umax

gained utility

emin = min
{

e ∈ N : Prs(♦
6e
>u goal) > 0.8

}

umax = max
{

u ∈ N : Prs(♦
6e
>u goal) > 0.8

}

Figure 2. Quantiles for increasing and decreasing properties

where C1, . . . , Ck are probability or expectation constraints with
reward parameter r, we can treat the probability and expectation
constraints separately to compute the sets Ri = {r ∈ N : s |=
∀Ci[r]}. Then, rs is the minimal value in R1 ∩ . . . ∩ Rk. Note
that the universal conjunctive constraint ∀(C1[r] ∧ . . . ∧ Ck[r]) is
equivalent to the PRCTL formula ∀C1[r] ∧ . . . ∧ ∀Ck[r].

The analogous problem for existential rather than universal
scheduler quantification asks to find a sharp reward bound rs =
min{r ∈ N : s |= ∃(C1[r] ∧ . . . ∧ Ck[r])} such that a conjunc-
tion of probability and/or expectation constraints holds under some
scheduler. For example, the task might be to find a scheduler S that
yields a witness for

∃S. PrSs (♦
6egoal) > 0.8 ∧ ES

s [utility ↑(energy 6 e)] > u

The computation of such quantiles can employ linear-programming
techniques that have been suggested for standard multi-objective
queries [26, 27]. In this case, the task is to find a scheduler such that
a conjunction of probability constraints holds for ω-regular proper-
ties and expectation constraints for the total accumulated reward
until reaching a goal. This approach can be adapted to the setting
of constraints with reward parameters. We briefly explain the case
where the Cj [r]’s are reward-bounded reachability constraints of

the form P>qj (♦
6rBj) and assume that B1, . . . , Bk are pairwise

disjoint sets of states with Act(s) = {τ} and P (s, τ, trap) = 1 for
all s ∈ B1∪ · · ·∪Bk and some trap state trap. For a distinguished
initial state sinit , the task then amounts of computing

min
{

r ∈ N : sinit |= ∃(P>q1(♦
6rB1) ∧ . . . ∧ P>qk (♦

6rBk))
}

To check the existence of such a value r, we can rely on the linear-
programming techniques presented in [26] and check the existence
of a scheduler S such that PrSsinit (♦Bj) > qj for all j = 1, . . . , k.
If so, we then consider r = 0, 1, 2, . . . until for some scheduler S
we have PrSsinit (♦

6rBj) > qj for j = 1, . . . , k. To check the latter
for given r ∈ N, we use a linear program with variables ys,α,i with
s ∈ S\{trap}, α ∈ Act(s) and i ∈ {0, 1, . . . , r}. These variables
represent the expected number of times that action α will be taken
in state swhen the accumulated reward is i under some randomized
scheduler. The decisions of this randomized scheduler may depend
on the current state s and the reward i that has been accumulated in
the past. The linear constraints consist of the requirements that the
variables ys,α,i are non-negative and satisfy the flow equation

init(s) +
∑

(s′,β)∈X(i)

P (s′, β, s) · ys′,β,i−rew(s′,β) =
∑

α∈Act(s)

ys,α,i,

where init(s) = 1 if s = sinit and init(s) = 0 otherwise and
X(i) denotes the set of all state-action pairs (s′, β) with s′ ∈ S,
β ∈ Act(s′), and rew(s′, β) 6 i. For s ∈ Bj we have the addi-
tional constraint ys,α,r > qj . The minimal values y∗s,α,i satisfying
these linear constraints indeed encode a randomized finite-memory
scheduler S with PrSsinit (♦Bj) > qj for j = 1, . . . , k. If the
current state s and the accumulated reward is i, then S picks ac-

tion α with probability y∗s,α,i/zs,i, provided that ys,α,i > 0 and
zs,i =

∑

α∈Act(s) y
∗
s,α,i.

4. Conditional Probabilities

Probabilities and expectations under the assumption that some ad-
ditional temporal condition holds are often needed within the quan-
titative analysis of protocols. They can provide useful insights con-
cerning the trade-off between different cost and reward functions.
For instance, reasoning about the probability of constraints on the
energy requirements for reaching a goal, under the condition that
the gained utility exceeds a given threshold. The concept of condi-
tional probabilities is also very useful for analyzing a system under
the assumption that exceptional events occur. An example is the
analysis of fault-tolerant systems, where the impact of failures and
the costs for repair mechanisms might be studied under the condi-
tion that failures of a certain type occur. For another example, the
analysis of a ressource management protocol could be carried out
by considering different conditions on the dynamics of the work-
load.

Conditional Probabilities in Markov Chains. For Markov
chains, conditional probabilities can be computed simply by def-
inition as the quotient of ordinary probabilities:

PrMs (ϕ | ψ) =
PrMs (ϕ ∧ ψ)

PrMs (ψ)

This clearly requires PrMs (ψ) > 0. In what follows, we refer to
ϕ as the objective and to ψ as the condition. This quotient method
has been presented in [4], where the condition and the objective
are specified as PCTL path properties. Recently, [28, 33] extended
this approach for discrete and continuous-time Markov chains and
patterns of path properties with multiple time- and cost-bounds. An
alternative approach relies on a transformation M Mψ such

that PrMs (ϕ|ψ) = Pr
Mψ
sψ (ϕ) for all measurable path properties

ϕ [10]. If, e.g., ψ = �B, then Mψ = (Sψ, Pψ) with Sψ = {s ∈
S : PrMs (�B) > 0}, sψ = s, and

Pψ(s, t) = P (s, t) ·
PrMt (�B)

PrMs (�B)

for all s, t ∈ Sψ . If ψ = ♦B, then Mψ extends M by copies

sψ = sbef of all states s where PrMs (♦B) > 0, with the intuitive
meaning “s before B” and the transition probabilities

Pψ(s
bef , tbef) = P (s, t) ·

PrMt (♦B)

PrMs (♦B)
if s /∈ B

Pψ(s
bef , t) = P (s, t) if s ∈ B

If ψ is an LTL formula, then we apply standard techniques to con-
struct a deterministic ω-automaton Aψ for ψ. Then, the transforma-
tion above can be applied for the product Markov chain M⊗Aψ

and the reachability condition ♦B, where B denotes the union of
all bottom strongly connected components of the product in which
the acceptance condition of Aψ holds. Besides the computation of

conditional probabilities for LTL objectives and LTL conditions,
this approach is also applicable to compute conditional expected
values of random variables in M. For instance, we could compute
the (unconditional) expectation of a corresponding random variable
in Mψ. Also conditional quantiles using the techniques sketched in
Section 3 such as

min
{

r ∈ N : PrMs (♦6rB | ψ)D q
}

= min
{

r ∈ N : Pr
Mψ
sψ (♦6rB)D q

}

could be computed easily by the presented approach. Returning to
our example, the maximal utility that can be gained with probability
0.8 until reaching a goal state under the condition that only a fixed
energy budget e is available is formalized by the quantile:

max
{

u ∈ N : PrMsinit (♦>ugoal |♦
6e

goal) > 0.8
}

Another example for a performance measure that can provide
useful insights for an energy-aware task-scheduling protocol is
EM
sinit

[energy ↓ goal |♦>ugoal], formalizing the conditional ex-
pected energy consumption for reaching the goal, assuming that
the achieved utility exceeds u.

Conditional Probabilities in MDPs. The task to reason about
extremal conditional probabilities in MDPs is far more challenging.
For instance, when S ranges over all schedulers with PrSs (ψ) > 0,
one could be interested in computing

Prmax
s

(

ϕ |ψ
)

= max
S

PrSs
(

ϕ |ψ
)

= max
S

PrSs
(

ϕ ∧ ψ
)

PrSs
(

ψ
)

The crux is that we cannot simply maximize the nominator and de-
nominator independently. This problem has been addressed first in
[4], where conditional PCTL has been introduced as an extension
of PCTL over MDPs by existentially or universally quantified con-
ditional probability constraints P⊲⊳q(ϕ |ψ) for conditional PCTL
path formulas ϕ and ψ. Conditional PCTL has a three-valued se-
mantics, for which we use |=, 6|=, and ?|= to denote the satisfaction
relation, the dissatisfaction relation, and the undefined satisfaction
relation, respectively. For instance, if C = P<q(ϕ |ψ):

• s |= ∃C if Prmax
s (ψ) > 0 and Prmin

s (ϕ |ψ) < q

• s 6|= ∃C if Prmax
s (ψ) > 0 and Prmin

s (ϕ |ψ) > q

• s ?|= ∃C if Prmax
s (ψ) = 0 or t ?|= Φ for some state t reachable

from s and some proper state subformula Φ of ϕ or ψ.

For example, the formula ∀P>0.8(♦goal |♦failure) asserts that
even in the worst-case, a goal state will be reached with probability
0.8 under the assumption that a failure will occur. In the context of
resilient system analysis [9], the existence of a scheduler with an
80% chance to reach a goal state under the assumption that each
failure will eventually be repaired is formalized by the property

∃P>0.8(♦goal | �(failure → ∃P=1(♦repair)))

The model-checking algorithm presented in [4], relies on an ex-
haustive search (with heuristic bounding techniques) in some finite,
but potentially exponentially large class of finite-memory sched-
ulers. In [10], we improved this result by presenting a transforma-
tion M Mϕ|ψ such that

Prmax
M,sinit

(ϕ |ψ) = Prmax
Mϕ|ψ,sinit

(ϕ)

Note that in this approach, we fixed the initial state sinit of M.
The idea for the construction of the transformed MDP Mϕ|ψ is
to redistribute the probabilities of paths ζ with ζ 6|= ψ by adding
reset transitions to sinit from all states s where Prmin

s (ψ) = 0
(with some fresh action label τ). If ψ = �B is an invariance for
some B ⊆ S, the MDP Mϕ|ψ results from M by adding reset
transitions from all states s ∈ S\B to sinit . The MDP Mϕ|ψ then

does not rely on the objectiveϕ. The transformation for reachability
objectives ϕ = ♦A and reachability conditions ψ = ♦B is a bit
more involved. We first apply some normal-form transformation
that permits to assume that all states in A and B are trap states in
M. Then, Mϕ|ψ arises from M by adding reset transitions from

all states s with Prmin
s (♦B) = 0. To compute maximal conditional

probabilities for an LTL objective ϕ and an LTL condition ψ,
we can construct deterministic automata Aϕ and Aψ for ϕ and
ψ, respectively, and introduce appropriate reset transitions in the
product MDP M⊗Aϕ⊗Aψ to obtain Mϕ|ψ . Within this approach,
Prmax

M,sinit
(ϕ |ψ) equals the maximal (unconditional) probability

for the conjunction of the acceptance conditions of Aϕ and Aψ in
Mϕ|ψ. Minimal conditional probabilities can be computed using
the fact that Prmin

s (ϕ |ψ) equals 1− Prmax
s (¬ϕ |ψ).

In the worst case, the size of the constructed MDP Mϕ|ψ grows
double exponentially in the lengths of the objective ϕ and condition
ψ and polynomially in the size of M. However, if ϕ and ψ are
(conditional) PCTL formulas and the inner state subformulas of ϕ
and ψ are assumed to be already evaluated such that they can be
treated as atomic propositions, the size of Mϕ|ψ is polynomial in
the size of M. Hence, the computational complexity of the model-
checking problem for conditional probabilities is the same as in the
unconditional case [13, 21]:

Theorem 1 (Complexity) The model-checking problem for con-
ditional PCTL is in P. The threshold problems for LTL condi-

tions and objectives “does Prmin
s (ϕ |ψ) ⊲⊳ q hold?” or “does

Prmax
s (ϕ |ψ) ⊲⊳ q hold?” are EXPTIME-complete.

5. Ratio Objectives

Another important task for the trade-off analysis in probabilistic
systems is to establish conditions on the ratio of the accumulated
values of two reward functions:

ratio =
rew1

rew2
: FinPaths → Q, ratio(π) =

rew1(π)

rew2(π)
,

where rew1, rew2 : S × Act → N are reward functions for a
pointed MDP (M, sinit) and π ranges over all finite paths with
rew2(π) > 0. Examples are conditions on the cost-utility quotient,
the average recovery time per failure, or the average number of SLA
violations per day.

To formalize such ratio conditions within a temporal logical
framework, we may extend LTL or PCTL path formulas by atoms
of the form ratio ≍ ϑ, where ϑ ∈ Q is a rational threshold and ≍ is
one of the comparison operators6,<,>,> or =. The semantics of
these atoms is giveb by interpreting them over path-position pairs:

(ζ, k) |= ratio ≍ ϑ iff ratio(ζ[0 . . . k]) ≍ ϑ

To avoid technical problems with path fragments ζ[0 . . . k] where
the denominator rew2(ζ[0 . . . k]) equals 0, we suppose some de-
fault value ∆ ∈ Q for the quotient of the accumulated reward for
paths of length 0 and suppose that rew2(sinit , α) > 0 for all ac-
tions α ∈ Act(sinit).

We first observe that reasoning about thresholds for ratios of ac-
cumulated rewards is closely related to studying assertions wgt ≍ c
stating lower or upper bounds for the accumulated value under
weight functions. Recall that reward functions are supposed to be
non-negative, whereas weight functions can assign negative values
to state-action pairs.

Proposition 2 (Ratio vs Weight Constraints) Decision problems
for temporal logics extended by ratio constraints and for temporal
logics extended by weight constraints are interreducible.

Proof. If we are given an MDP with a weight function wgt :
S×Act → Z and an integer c ∈ Z, constraints of the form wgt ≍ c

are reducible to ratio constraints. For example, for the constraint
wgt > 0 we define two positive reward functions rew1, rew2 :
S × Act → N by

rew1(s, α) = max
{

+wgt(s, α), 0
}

+ 1

rew2(s, α) = max
{

−wgt(s, α), 0
}

+ 1

and obtain wgt = rew1 − rew2. Thus, wgt(π) > 0 iff rew1(π) >
rew2(π) iff ratio(π) > 1. Hence, weight constraints of the form
wgt > 0 can be rephrased as ratio constraints ratio > 1. The
treatment of other weight constraints is analogous.

That a transformation of ratio constraints into weight constraints
is possible has been already observed before (see, e.g., [14]). The
idea is to replace a given ratio constraint ratio ≍ ϑ with the
constraint wgt > 0 for the weight function wgt : S × Act → Z

defined by

wgt(s, α) = k · (rew1(s, α)− ϑ · rew2(s, α)),

where k ∈ Z is the least positive integer such that k · ϑ ·
rew2(s, α) ∈ N for all state-action pairs (s, α). Then, ratio(π) ≍
ϑ iff wgt(π) ≍ 0 for each finite path π of length at least 1. �

As a consequence of Proposition 2 and the undecidability results
for the model-checking problem for temporal logics extended by
assertions on the accumulated weights presented in [11, 14], we
get the undecidability of the model-checking problem for LTL ex-
tended by atoms of the form ratio ≍ ϑ interpreted over weighted
transition systems or weighted Markov chains. Nevertheless, there
are decidable algorithmic problems for several ratio constraint pat-
terns.

Probability Constraints on the Ratio. We first consider invari-
ances stating that the ratio of accumulated rewards always exceeds
a given rational threshold ϑ in combination with an ω-regular path
property. More precisely, we address the task to check whether
PrSM,sinit

(�(ratio > ϑ) ∧ ϕ) D q for some/all schedulers, where
q is a rational probability bound and ϕ is an LTL formula.

For instance, let us consider a server system where for a sched-
uler S we are interested in the probability that an availability of
99% is guaranteed and any failure is fixed within at most t seconds.
This probability can be expressed following the ratio objective pat-
tern stated above:

PrSM,sinit

(

� (rel_avail > 0.99) ∧�(failure =⇒ ♦≤trepair)
)

,

where the relative availability time of the server is the ratio

rel_avail =
total_time − failure_time

total_time

which employs the reward functions failure_time and total_time. A
similar pattern turned out to be important in the context of resilient
system analysis [9].

The transformation of ratio constraints into weight constraints
of the form wgt > 0 sketched in the proof of Proposition 2 can
be used to reduce several algorithmic problems for ratio constraints
into corresponding termination problems for pushdown automata
over a single stack symbol (also called one-counter machines). The
simple idea is to mimic each α-transition from a state s by k push
resp. pop operations, provided that k = |wgt(s, α)| > 0. Then,
the weight constraint wgt > 0 is equivalent to the requirement
that the stack is nonempty. This observation yields the decidabil-
ity of several algorithmic problems for ratio constraints [8]. For
example, if M is a Markov chain, then the task to check whether
PrMsinit (�(ratio > ϑ) ∧ ϕ) ⊲⊳ q is solvable using known algo-
rithms for probabilistic pushdown systems [15] if ϕ is an LTL for-
mula and q is a rational probability bound. Although this reduc-
tion causes an exponential blow-up when the size of the weights
is determined by the number of digits in their representation as

decimal or binary numbers, we cannot expect efficient algorithms.
This is due to the fact that even the problem to check whether
�(ratio ≍ ϑ) holds with positive probability depends on the pre-
cise transition probabilities in M, whereas, e.g., the problems to
check whether PrMs (ϕ) > 0 for some LTL formula ϕ or whether

PrMs (AU6rB) > 0 only depend on the graph structure of M, but
not on the concrete transition probabilities.

Consider for instance the Markov chain M = Mp depicted in
the following picture, where p ∈]0, 1[is a probability parameter.
Since action labels are irrelevant in Markov chains, we attach
weights to the states that, following the approach of Proposition
2, are obtained from the constraint ratio > 1 when rew1(s) = 2,
rew2(s) = 1 for s ∈ {sinit , s

+}, rew1(s0) = rew2(s0) = 1 and
rew1(s

−) = 1, rew2(s
−) = 2.

sinit

Mp :

s0

s+

s−

1
p

1

1−p

1

wgt(sinit) = +1

wgt(s0) = 0

wgt(s+) = +1

wgt(s−) = -1

By unfolding M from the initial state sinit into an infinite Markov
chain over the finite paths in M, we can obtain a Markov chain

M̂ constituting a biased random walk: The states of M̂ are pairs
(s, c), where s is a state of M and c ∈ Z is a weight, representing
all finite paths in the unfolding of M which end in s and have the
accumulated weight c.

sinit , 1M̂p :

s0, 0 s0, 1 s0, 2 s0, 3 · · ·

· · ·

s+, 2 s+, 3 s+, 4 · · ·

· · · s−, 0 s−, 1 s−, 2 · · ·

1p

1−p

p

1−p

1

1

p

1−p

1

1

p

1−p

1

1 1

For this biased random walk it is well-known that with p > 1
2

,
it drifts to the right and never reaches a state having a negative
accumulated weight assigned with positive probability, whereas for
p 6 1

2
, the states with negative accumulated weight will be visited

almost surely. Thus, PrMs0 (�(ratio > 1)) > 0 iff PrMs0 (�(wgt >
0)) > 0 iff p > 1

2
.

More efficient algorithms can be designed for almost-sure con-
straints. If M is an MDP, then the problem to find a scheduler S
with PrSs (�(ratio > ϑ) ∧ ϕ) = 1 is in NP ∩ coNP and solvable
via known algorithms for energy Büchi games [16, 17]. As shown
in [8], the universal problem that asks whether PrSs (�(ratio ≍
ϑ) ∧ ϕ) = 1 for all schedulers S is even simpler and solvable in P
as we have

Prmin
s (�(ratio ≍ ϑ) ∧ ϕ) = 1 iff s 6|= ∃♦(wgt 6 0),

where wgt is as in the proof of Theorem 2. The latter existential
formula can be checked efficiently by standard shortest-path algo-
rithms (e.g., the Bellman-Ford algorithm). Similarly, the almost-
sure ratio problem for some fixed window size ℓ∈N asking whether

Prmax
s

{

ζ : ratio(ζ[i . . . i+ℓ]) ≍ ϑ for all i ∈ N
}

= 1

is solvable in polynomial time by shortest-path algorithms [11].

Expected Long-run Ratio. The expected long-run ratio of two
reward functions rew1 and rew2 is defined as the expectation of
the random variable L[ratio] : InfPaths(sinit) → R given by:

L[ratio](ζ) = lim sup
n→∞

rew1(ζ[0 . . . n])

rew2(ζ[0 . . . n])

Let us first suppose that M is a Markov chain, in which case
rew1 and rew2 can be viewed as functions rew i : S → N. It is
well-known that almost all infinite paths eventually enter a bottom
strongly connected component (BSCC) C and visit all states of C
infinitely often. More precisely, for almost all infinite paths ζ with
ζ |= ♦C, the frequency of visiting state s ∈ C is the steady-state
probability SC(s) of state s inside C is

lim
n→∞

1

n+1

∣

∣ {k ∈ {0, 1, . . . , n} : ζ[k] = s}
∣

∣ = SC(s),

where the vector
(

SC(s)
)

s∈C
is the unique solution of the flow

equations
∑

s′∈C P (s′, s) · SC(s
′) = SC(s) with the side-

constraint
∑

s∈C SC(s) = 1. Then, almost all paths ζ with
ζ |= ♦C have the same long-run ratio, namely:

LC [ratio] =
LC [rew1]
LC [rew2]

, where LC [rew i] =
∑

s∈C

SC(s) · rew i(s),

provided that rew2(s) > 0 for at least one state s ∈ C. Then, the
expected long-run ratio in the pointed Markov chain (M, sinit) is:

EM
sinit

(L[ratio]) =
∑

C

PrMsinit (♦C) · LC [ratio],

where C ranges over all BSCCs of M.

Theorem 3 The expected long-run ratio of a Markov chain M can
be computed in time polynomial in the size of M.

Obviously, if M is strongly connected, then M consists of a sin-
gle BSCC, in which case the long-run expected ratio does not
depend on the initial state sinit . In this case, we simply write
EM(L[ratio]). Extremal expected long-run ratios in MDPs have
been addressed in [2, 42]. In what follows, we suppose that each
end component contains at least one state-action pair (s, α) with
rew2(s, α) > 0. This assumption ensures the existence of the ex-
pectation of the random variable L[ratio] under each scheduler. Us-
ing the results of [29], [42] proves the existence of a memoryless
deterministic scheduler that minimizes the expected long-run ratio.
Furthermore, [42] presents a characterization of the minimal ex-
pected long-run ratio as a linear fractional program as well as an
iterative linear-programming approximation scheme for unichain
MDPs, i.e., MDPs such that the induced (finite-state) Markov chain
of each memoryless scheduler is strongly connected. We suggest
here a variant of this approach to compute the maximal and mini-
mal expected long-run ratio for an arbitrary (possibly non-unichain)
MDP. Obviously, if E = (T,A) is an end component of M,
where A(t) = {αt} is a singleton for all states t ∈ T , then
ME = (T, PE) with PE(t, t

′) = P (t, αt, t
′) is a strongly con-

nected Markov chain. For Markov chains, we can apply the method
sketched above and compute the expected long-run ratio ri =
EMEi (L[ratio]) for i = 1, . . . , k. Let now E1, . . . ,Ek be an
enumeration of the end components E = (T,A), where |A(t)| = 1
for all states t ∈ T . We define M′ to be the MDP that results
from M by adding fresh action symbols τ, τ1, . . . , τk and a fresh
trap state goal with P ′(s, τi, goal) = 1 if s belongs to Ei and
P ′(s, τi, ·) = 0 in all other cases. The new MDP M′ is equipped
with the reward function rew ′ given by rew ′(s, τi) = ri if s be-
longs to Ei and rew ′(·) = 0 in all other cases. Using the result
of [42] stating the existence of optimal deterministic memoryless
schedulers for expected long-run ratio objectives, we obtain

Emax
M,sinit

(L[ratio]) = Emax
M′,sinit

[rew ′ ↓goal]

and the analogous statement for the minimal expected long-run
ratio. Although the latter can be computed by standard linear-
programming techniques in time polynomial in the size of M′,
the suggested approach is computationally expensive as the num-
ber of end component can grow exponentially. For the expected
long-run threshold problem

“is there a scheduler S with ES

sinit
(L[ratio]) ≍ ϑ?”,

where as before ϑ is some rational threshold and ≍∈ {6, <,>
, >,=}, we can guess nondeterministically a deterministic memo-
ryless scheduler S and check whether its expected long-run ratio
meets the bound ≍ ϑ. This yields:

Theorem 4 The expected long-run threshold problem is in NP.

To the best of our knowledge, the precise complexity of the ex-
pected long-run problem is an open question left for further work.

6. Conclusions

In this article, we reported on our current work on algorithmic prob-
lems for discrete Markovian models that appeared to us when apply-
ing probabilistic model-checking in inter-disciplinary projects. We
addressed quantiles, conditional probabilities and ratio constraints
for accumulated cost or reward functions for analyzing the interplay
between multiple objectives. For quantiles and conditional proba-
bilities, we already carried out prototype implementations [7, 10]
based on PRISM, which we could use in case studies from different
domains (e.g., [9, 25]). We are currently working on a prototype
implementation in the context of ratios, involving several heuris-
tics. Regarding the theory, there are still various interesting prob-
lems left open, including complexity-theoretic considerations and
extensions for continuous-time models and other probabilistic real-
time models such as probabilistic timed automata. Given the Turing
power of two-counter machines, undecidability results for algorith-
mic problems for structures with two weight functions are no sur-
prise. However, we found it remarkable that the switch from a sin-
gle (non-negative) reward functions to integer weight function has
a drastic effect. Even apparently simple problems, such as the task
to compute the probability for a weight invariance�(wgt > 0) in a
Markov chain, turn out to be hard. Our work on ratios in Markovian
models is in the line of a current research trend to extend temporal
logics, transition systems and game structures with weight func-
tions, see, e.g., [1, 11, 12, 14, 16, 17, 34, 39].

References

[1] P. A. Abdulla, R. Mayr, A. Sangnier, and J. Sproston. Solving parity
games on integer vectors. In 24th International Conference on Concur-

rency Theory (CONCUR), volume 8052 of Lecture Notes in Computer

Science, pages 106–120. Springer, 2013.

[2] V. Aggarwal, R. Chandrasekaran, and K. Nair. Markov ratio decision
processes. Journal of Optimization Theory and Application, 21(1),
1977.

[3] S. Andova, H. Hermanns, and J.-P. Katoen. Discrete-time rewards
model-checked. In First International Workshop on Formal Modeling

and Analysis of Timed Systems Workshop (FORMATS), volume 2791
of Lecture Notes in Computer Science, pages 88–104. Springer, 2003.

[4] M. Andrés and P. van Rossum. Conditional probabilities over prob-
abilistic and nondeterministic systems. In 14th International Confer-

ence on Tools and Algorithms for the Construction and Analysis of

Systems (TACAS), volume 4963 of Lecture Notes in Computer Science,
pages 157–172. Springer, 2008.

[5] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press,
2008.

[6] C. Baier and M. Kwiatkoswka. Model checking for a probabilistic
branching time logic with fairness. Distributed Computing, 11(3):125–
155, 1998.

[7] C. Baier, M. Daum, C. Dubslaff, J. Klein, and S. Klüppelholz. Energy-
utility quantiles. In 6th NASA Formal Methods Symposium (NFM),
volume 8430 of Lecture Notes in Computer Science, pages 285–299.
Springer, 2014.

[8] C. Baier, C. Dubslaff, J. Klein, S. Klüppelholz, and S. Wunderlich.
Probabilistic model checking for energy-utility analysis. In Festschrift

for Prakash Panagaden’s 60th Birthday, volume 8464 of Lecture

Notes in Computer Science. Springer, 2014.

[9] C. Baier, C. Dubslaff, S. Klüppelholz, and L. Leuschner. Energy-
Utility Analysis for Resilient Systems Using Probabilistic Model
Checking. In Proceedings of the 35th International Conference

on Application and Theory of Petri Nets and Concurrency (PETRI

NETS’14), volume 8489 of Lecture Notes in Computer Science, pages
20–39. Springer, 2014.

[10] C. Baier, J. Klein, S. Klüppelholz, and S. Märcker. Computing condi-
tional probabilities in Markovian models efficiently. In 20th Interna-

tional Conference on Tools and Algorithms for the Construction and

Analysis of Systems (TACAS), volume 8413 of Lecture Notes in Com-

puter Science, pages 515–530. Springer, 2014.

[11] C. Baier, J. Klein, S. Klüppelholz, and S. Wunderlich. Weight mon-
itoring with linear temporal logic: Complexity and decidability. In
23rd EACSL Annual Conference on Computer Science Logic and 29th

Annual ACM/IEEE Symposium on Logic in Computer Science (LICS-

CSL). ACM, 2014.

[12] S. S. Bauer, L. Juhl, K. G. Larsen, J. Srba, and A. Legay. A logic
for accumulated-weight reasoning on multiweighted modal automata.
In Sixth International Symposium on Theoretical Aspects of Software

Engineering (TASE), pages 77–84. IEEE, 2012.

[13] A. Bianco and L. de Alfaro. Model checking of probabilistic and
non-deterministic systems. In Foundations of Software Technology

and Theoretical Computer Science (FSTTCS), volume 1026 of Lecture

Notes in Computer Science, pages 499–513. Springer, 1995.

[14] U. Boker, K. Chatterjee, T. A. Henzinger, and O. Kupferman. Tem-
poral specifications with accumulative values. In 26th Annual IEEE

Symposium on Logic in Computer Science (LICS), pages 43–52. IEEE
Computer Society, 2011.

[15] T. Brázdil, A. Kučera, and O. Stražovský. On the decidability of
temporal properties of probabilistic pushdown automata. In 22nd An-

nual Symposium on Theoretical Aspects of Computer Science (STACS),
volume 3404 of Lecture Notes in Computer Science, pages 145–157.
Springer, 2005.

[16] K. Chatterjee and L. Doyen. Energy and mean-payoff parity Markov
decision processes. In 36th International Symposium on Mathematical

Foundations of Computer Science (MFCS), volume 6907 of Lecture

Notes in Computer Science, pages 206–218. Springer, 2011.

[17] K. Chatterjee and L. Doyen. Energy parity games. Theoretical

Computer Science, 458:49–60, 2012.

[18] K. Chatterjee and M. Henzinger. Faster and dynamic algorithms for
maximal end-component decomposition and related graph problems
in probabilistic verification. In 22nd Annual ACM-SIAM Symposium

on Discrete Algorithms (SODA), pages 1318–1336. SIAM, 2011.

[19] K. Chatterjee, R. Majumdar, and T. Henzinger. Markov decision
processes with multiple objectives. In 23rd Annual Symposium on

Theoretical Aspects of Computer Science (STACS), volume 3884 of
Lecture Notes in Computer Science, pages 325–336. Springer, 2006.

[20] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,
2000.

[21] C. Courcoubetis and M. Yannakakis. The complexity of probabilistic
verification. Journal of the ACM, 42(4):857–907, 1995.

[22] L. de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis,
Stanford University, Department of Computer Science, 1997.

[23] L. de Alfaro. How to specify and verify the long-run average behavior
of probabilistic systems. In 13th Annual IEEE Symposium on Logic

in Computer Science (LICS), pages 454–465. IEEE Computer Society,
1998.

[24] L. de Alfaro. Computing minimum and maximum reachability times
in probabilistic systems. In 10th International Conference on Concur-

rency Theory (CONCUR), volume 1664 of Lecture Notes in Computer

Science, pages 66–81. Springer, 1999.

[25] C. Dubslaff, S. Klüppelholz, and C. Baier. Probabilistic Model Check-
ing for Energy Analysis in Software Product Lines. In Proceedings

of the 13th International Conference on Modularity, MODULARITY
’14, pages 169–180. ACM, 2014.

[26] K. Etessami, M. Kwiatkowska, M. Vardi, and M. Yannakakis. Multi-
objective model checking of Markov decision processes. Logical

Methods in Computer Science, 4(4), 2008.

[27] V. Forejt, M. Kwiatkowska, G. Norman, and D. Parker. Automated
verification techniques for probabilistic systems. In 11th International

School on Formal Methods for the Design of Computer, Communica-

tion and Software Systems (SFM), volume 6659 of Lecture Notes in

Computer Science, pages 53–113. Springer, 2011.

[28] Y. Gao, M. Xu, N. Zhan, and L. Zhang. Model checking conditional
CSL for continuous-time Markov chains. Information Processing

Letters, 113(1–2):44 – 50, 2013.

[29] H. Gimbert. Pure stationary optimal strategies in Markov decision
processes. In 24th Annual Symposium on Theoretical Aspects of Com-

puter Science (STACS), volume 4393 of Lecture Notes in Computer

Science, pages 200–211. Springer, 2007.

[30] E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and

Infinite Games: A Guide to Current Research, volume 2500 of Lecture

Notes in Computer Science, 2002. Springer.

[31] H. Hansson and B. Jonsson. A logic for reasoning about time and
reliability. Formal Aspects of Computing, 6:512–535, 1994.

[32] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A
tool for automatic verification of probabilistic systems. In 12th In-

ternational Conference on Tools and Algorithms for the Construction

and Analysis of Systems (TACAS), volume 3920 of Lecture Notes in

Computer Science, pages 441–444. Springer, 2006.

[33] M. Ji, D. Wu, and Z. Chen. Verification method of conditional prob-
ability based on automaton. Journal of Networks, 8(6):1329–1335,
2013.

[34] L. Juhl, K. G. Larsen, and J.-F. Raskin. Optimal bounds for multi-
weighted and parametrised energy games. In Theories of Program-

ming and Formal Methods - Essays Dedicated to Jifeng He on the

Occasion of His 70th Birthday, volume 8051 of Lecture Notes in Com-

puter Science, pages 244–255. Springer, 2013.

[35] J.-P. Katoen, I. Zapreev, E. Hahn, H. Hermanns, and D. Jansen. The
ins and outs of the probabilistic model checker MRMC. Performance

Evaluation, 68(2), 2011.

[36] V. Kulkarni. Modeling and Analysis of Stochastic Systems. Chapman
& Hall, 1995.

[37] M. Puterman. Markov Decision Processes: Discrete Stochastic Dy-

namic Programming. John Wiley & Sons, 1994.

[38] R. J. Serfling. Approximation Theorems of Mathematical Statistics.
John Wiley & Sons, 1980.

[39] T. Tomita, S. Hiura, S. Hagihara, and N. Yonezaki. A temporal logic
with mean-payoff constraints. In 14th International Conference on

Formal Engineering Methods. Formal Methods and Software Engi-

neering (ICFEM), volume 7635 of Lecture Notes in Computer Science,
pages 249–265. Springer, 2012.

[40] M. Ummels and C. Baier. Computing quantiles in Markov reward
models. In 16th International Conference on Foundations of Software

Science and Computation Structures (FOSSACS), volume 7794 of
Lecture Notes in Computer Science, pages 353–368. Springer, 2013.

[41] M. Vardi. Automatic verification of probabilistic concurrent finite-
state programs. In 26th IEEE Symposium on Foundations of Computer

Science (FOCS), pages 327–338. IEEE Computer Society, 1985.

[42] C. von Essen and B. Jobstmann. Synthesizing systems with optimal
average-case behavior for ratio objectives. In International Workshop

on Interactions, Games and Protocols (iWIGP), volume 50 of EPTCS,
pages 17–32, 2011.

	Introduction
	Theoretical Foundations
	Quantiles
	Conditional Probabilities
	Ratio Objectives
	Conclusions

