
co
E
o)o

_=
YOF

F6 bse 5oo (Ets..o 6
= (uo) ..L.CYA B

ü'E: E
S 8Ea! >€r(J'= ü) (O

,r58ö

o(l)o
O'=

E g'E

= o-oäEi

A
F
G
rf
tL
UJ
G

o
{
E
-buJ
tn

Term Orderings With Status

Joachim Steinbach
SEKI Report SR-88-12

TERM ORDERINGS WITH STATUS

Joachim Steinbach

Universität Kaiserslautem
Fachbereich Informatik

Postfach 3049
D- 6750 Kai serslautern (FRG)

This research was supported by the Deutsche Forschungsgemeinschaft , SFB 3L4 @4)

t.

Abstract

The effective calculation with term rewriting systems presumes termination. Orderings on terms are

able to guarantee termination. This report deals with some of those term orderings : Several path and

decomposition orderings and the Knuth-Bendix ordering. We pursue three aims : Firstly, known

orderings will get new definitions. In the second place, new ordering methods will be introduced :

We will extend existing orderings by adding the principle of status ([KL80]). Thirdly, the

comparison of the power as well as the time behaviour of all orderings will be presented.

More precisely, after some preliminary remarks to termination of rewrite systems we present the

ordering methods. All orderings are connected by an essential characteristic : Each operator

has a status that determines the order according to which the subterms are compared. We

will present the following well-known orderings : The recursive path ordering with status (tKL80l),

the path of subterms ordering (tRu87l) and another path ordering with status (tKNSSsl). A new

recursive decomposition ordering with status will lead the catalogue of orderings introduced here. It
is different from that of [-e84]. Moreover, we give a new definition based on decompositions of the

path of subterms ordering (see [St88a]). An extension by incorporating status to this ordering as

well as to the improved recursive decomposition ordering (cf. [Ru87]) will be a part of the paper. All
orderings based on decompositions will be presented in a new and simple style : The decomposition

of a term consists of terms only. The original definitions take tuples composed of three (or even

four) components. Additionally to path and decomposition orderings, we deal with the weight
oriented ordering (tKB7Ol) and incorporate status. Finally, important properties (simplification

ordering, stability w.r.t. substitutions, etc.) of the newly introduced orderings will be listed.

Besides the introduction of new orderings, another main point of this report is the comparison of the

power of these orderings, i.e. we will compare the sets of comparable terms for each combination of
two orderings. It turned out that the new version with status of the improved recursive
decomposition ordering (equivalent to the path ordering with status of tKNSS5l) is the most
powerful ordering of the class of path and decomposition orderings presented. This ordering and the

Knuth-Bendix ordering with status overlap.

The orderings are implemented in our algebraic specification laboratory TRSPEC and the completion

system COMTES. A series of experiments has been conducted to study the time behaviour of the

orderings. An evaluation of these chronometries concludes the paper.

Keywords

Homeomorphic embedding, Incrementality, Knuth-Bendix ordering, Lexicographical ordering,
Multiset ordering, Path of subterms ordering, Recursive decomposition ordering, Recursive path

ordering, Simplification ordering, Status, Termination, Term rewriting system, Well-founded
ordering

1 Introduction and Notations 1

1 Introduction and Notations

Term rewriting systems gain more and more importance because they are a useful model for
non-deterministic computations (since they are based on directed equations with no explicit control),

with various applications in many areas of computer science and mathematics. Automatic theorem

proving and program verification, abstract data type specifications and algebraic simplification, to

name a few, have centred on this concept.

In order to emphasize definitions we will use italic type. A term rewriting system (ZR.S, for short)

9t over a set of terms I is a finite or countably infinite set of rules, each of the form I -* r,
where I and r are terrns in I, such that every variable that occurs in r also occurs in l. The set f of
all terms is constructed from elements of a set f of operators (or function symbols) and some

denumerably infinite set x of variables. The set of ground terms (terms without variables) is

denoted by f c. The leading function symbol and the tuple of the (direct) arguments of a term t are

referred toby top(t) and args(t), respectively.

ATRS 9t generatesabinaryrelation +n on I asfollows: s+st (term s rewrites ro termt) if
andonlyif s contains an instance o(l) of the left handside ofarule lrtrr andt is derived
from s by replacing the subterm o0) by o(r). A substitution o is defined as an

endomorphism on f with the finite domain {x I o(x) * x}, i.e. o simultaneously replaces all
variables of a term by terms. The structure of a term is partially altered by rule application.

Consequently, it is advantegeous to have a precise scheme for specifying how and what particular
part of it is to be changed. For this, we use the formalism of labelling terrns with positions which

are sequences of non-negative integers. The set of all positions of a term t is called the set of
occurrences and its abbreviation is O(t). Or(t) denotes the set of all terminnl occurrences

(occunences of the leaves) of the term t. We write tfu <- s] 1s denote the term that results

from t by replacing tlu (the subterm of t at occurrence u) by s at the occurrence u e O(t).

Furthermore, we write sfr/ to indicate that s contains the term t as a subterm. Analogous with
t[u <- s], t[r <- s] stands for the term that results from t by replacing its subterm r at a fixed
position by the terrn s.

A derivation in 9t is a sequence t0 +$ tr +x tz +x The simplicity of the semanric of a TRS is

guaranteed whenever the result of such a computation does not depend on the choice of the rules to

be applied. This property is called confluence and is related with the so.called Church-Rosser

property that justifies the possible solution of the word problem by checking the equality of normal

I Introduction and Notations 2

forms (irreducible terms). If a TRS is not confluent, it can sometimes be transformed into a

confluent one using the Knuth-Bendix completion procedure (cf. [KB70]) which adds new rules

(non-convergent critical pairs that are derived from the overlappings of two left members of rules)

to the initial rewrite system. Unfortunately, the successful use of this process crucially depends on

the ability of proving the termination of a TRS.

A TRS 9l over a set of terms f is ffinitely) terminating or noetherian if there exists no infinite

derivation in 9t. A trivial example of a terminating TRS is

-r-rx -fr
xAx -s

since the number of symbols is reduced by each application of a rule. But in general, the termination

of an arbitrary TRS is an undecidable property, even if the number of rules is bounded by 2

(tHL78l , [De85]). Thus, the best we can hope for are different strategies which are together able to

cope with many rewrite rule systems occurring in practice. These methods are based on verifying

that the rewrite relation +fi is included in an ordering on terms. Such an ordering must be

well-founded to forbid infinite derivations of terms. A (partial) ordering on Io is a transitive and

irreflexive binary relation > and it is called well-founded if there are no infinite descending

chains. To check the inclusion '=s s >' all (infinitely many) possible derivations must be

tested. The key idea is to restrict this infinite test to a finite one. For that purpose we have to require

a reduction ordering >.

A reduction ordering > is a well-founded partial ordering and compatible (or sometimes called

monotonous) with the stmcture of terms (the so-called replacement property), i.e. t, > t, implies

t[u <- trl > t[u <- t2l for any t,t1,t2e I and u e O(t). In other words, decreasing a subterm

decreases any superterm containing it. An example of a reduction ordering is the ordering on the size

of terms: s>t if andonlyif lsl >ltl where ltlisthe size of thetermt (i.e.thenumberof

function symbols and variables appearing in t) and > is the natural ordering on integers. The

well-foundedness of this ordering is a consequence of the ordering on integers being well-founded.

Its compatibility is obvious.

The notion of reduction orderings suggests the following meaning of proving termination of rewrite

systems:

Theorem (tLa77l): A rewrite system 9t over f terminates if and only if there exists a

reduction ordering > on I" such that o(l) > o(r) for each rule I -+* r and for any

substitution o of termsin f forthevariablesappearingin l.

x

x

1 Introduction and Notations 3

The demand for a reduction ordering for the theorem is necessary since a reduction step

t[o(l)] +* t[o(l) - o(r)] with an application of I +* r must be in decreasing order, i.e.

t[o(l)] > t[o(l) - o(r)], and we only have required I > r. This representation reveals another

dilemma which is universal quantification on substitutions or the so-called stability w.r.t.

substitutions (cf. theorem) :

s>t implies o(s)>o(0.

Summarizing is to remark that a termination proof of a TRS requires a reduction ordering stabilized

w.r.t. substitutions. Guaranteeing these properties is very difficult. This fact leads to the basic idea

of characteizing classes of orderings for which there is no need to prove the conditions. One

possible solution is represented by the class of simplification orderings ([De82]) which are at least

reduction orderings. A partial ordering is a simplification ordering if it has two characteristics : The

replacement property and the subterm property (any term is greater than any of its propor

subterms). The requirement of the subterm property is evident since it is closely connected with the

non-termination of rewrite systems.

It is obvious that a TRS 9t is not terminating if the same term repeatedly appears in a derivarion :

... +9t S +!ß ... =+$ t +91... and s = t. Generally speaking, a TRS fr is non-terminating if a

derivation contains two terms s and t where s is a subterm of t and t is derived from s. This property,

called looping,provides a sufficient but not necessary condition for S to be non-terminating.

Consider the system consisting of the single rule xxy -* (O+x)xy which produces the infinite

derivation x*y +s (O+x)*y =+* (0+(0+x))*y =+* (0+(0+(0+x)))*y +s ... Clearly, this

TRS neither terminates nor loops. To detect the non-termination of this kind of rewrite system a

weaker condition is needed. It is called homeomorphic embedding or plunging ordering. This is a

transitive and reflexive binary relation E on tenns. Embedding can be seen as a way to
map injectively the set of symbols of a term s into the set of symbols of a term t, having regard to

the topology (i.e. the structure) of s. But the mapping is not surjective in general : If it is surjective

then s and t are identical. Therefore, we write sE t if scan be obtainedfrom tby deletion of
selected symbols :

,/*\

a/@<;-.
We shall say that a derivation tl +$ h.+N... is self-embedding if t. c t* for some i < k (cf.

tPl85l). A rewrite system is self-embedding if it allows a self-embedding derivation. Note that

non-termination allows a self-embedding derivation ([De82]). Moreover, self-embedding does not

imply non-termination : The rewrite system (*2)z -N (-(*2))2 is self-embedding and, nevertheless,

E

I Introduction and Notations 4

terminates. But we can use the homeomorphic embedding to specify a sufficient condition for the

termination of rewrite systems : Simplification orderings. The close relationship of a simplification

ordering > to E is attested by the embedding lemma of Dershowiz :

Lemma ([De82]) : If s E t, then s (t in any simplification ordering >.

As usual,

fc and a ffansitive and reflexive binary relation

quasi-ordering defines an equivalence relation = as both

> as) but not <.

A great number of simplification orderings have been defined. Most of them are precedence

orderings using a special ordering on operators. More precisely, a precedence is apartially ordered

set (F, >) consisting of the set f of operators and an irreflexive and transitive binary relation r

definedonelementsoff.Therefore,weconsideranordering>
aparameter,writtenas>(p),Itthereisnoambiguity,wewil1usethenotation>
of >(p).

A partial ordering > on a set M may be extended: An ordering) on M is an extension of >
if andonlyif s>t implies s)t forall s,t€M.Wealsosay > is included (or contained) in

r and write > E >. A partial ordering

distinctelements S,t (of M), either s>t or t>s holds. If twoelementssandtof Mare

incomparable, we will write s # t. Let p, q be precedences. An ordering > is said to be

monotonous w.r.t. the precedence if p s q implies >(p) s >(q). In other words, if the

precedence is increased the ordering becomes stronger.

An extension of a precedence can often be used to enable the comparison of two terms which cannot

be compared with the original precedence. Thanks to the monotony (w.r.t. the precedence), the

comparisons without the extension are still valid. This process of 'correctly' increasing a

precedence is called incrementaliry. AII the orderings described in this paper will be simplification

orderings with this property.

Note that a paflial ordering > is used to compare elements of any set M. Since operators have terms

as arguments we define an extension of >, called lexicographicatly greater (>1"*), on tuples of

elements as follows :

(m1,m2,...,-o) tt"*
if either p>0

^
or ml)nl
Of Fl =ill

(n',,no,...,n^)
Y

Q=0

,r (m2,...,-o) >1"* {nr,...,nn).

1 Introduction and Notations 5

If there is no order among the elements of such tuples then the structures over N{l are called

multisets. Multisets are like sets, but allow multiple occurences of identical elements. The

extension of > on multisets of elements is defined as follows : A multiset M, is greater than a

multiset I\4, over M, denoted by

Mr" Mz

iff i)Mr+M, A

ii) (Vy e MrWIl) (3x e M,WI') x > y

i.e. Mr ,t Mz if M2 can be obtained from Ml by replacing one or more elements in M, by

any finite number of elements, each of which is smaller (with respect to > on M) than one of the

replaced elements.

For more details and, in particular, a more formal description of multisets and multiset orderings, see

[DM79], [St86], UL82l, tMS86l and [Fe88].

The main components of the next two chapters are the definitions of well-known and new

simplification orderings. All orderings are connected by an essential characteristic : Each operator

f e F has a status r(f) that determines the order according to which the subterms of f are

compared (tKL8Ol). Formally, status is a function which maps the set of operators into the set

{mult,left, right} :

T : f --> {mult , left, right}.

Therefore, a function symbol can have one of the following three statuses : Mult (the arguments

will be compared as multisets), Ieft (lexicographical comparison from left to right) and right (the

arguments will lexicographically be compared from right to left). The result of an application of
the function args to a term t = f(tr,...,tr) depends on the status of f : If t(0 = mult, then

args(t) is the multiset {tl,...,tn} and otherwise, args(t) delivers the tuple (t,,...,tr). Of course, it
is possible and correct to generalize the lexicographical status by fixing any order among the

immediate subterms. For simplicity only, we are satisfied with left, right and mult status. Obviously,

if the precedence is a quasi-ordering, two equivalent symbols w.r.t. the precedence are supposed to

have the same status. With this requirement ambiguities will be avoided.

Each definition of the orderings in chapter 2 (resp. 3) will be preceded by an abstract verbal

description of its operational method (the technique of comparing terms). Furthermore, some helpful

and interesting remarks are given. The list of orderings consists of the following well-known ones :

The recursive path ordering with status (RPOS) of KaminÄdvy and Dershowitz, the path of
subterms ordering (PSO) of Rusinowitch and Plaisted, the path ordering with status (KNSS) of
Kapur, Narendran and Sivakumar. A new recursive decomposition ordering with status (RDOS)

will lead the catalogue of orderings introduced in this paper. It is different from that of [Le84].

1 Introduction and Notations 6

[St88] contains an ordering on decompositions (called PSD) equivalent to the PSO. An extension by

incorporating status (PSDS) will be presented here. Finally, we have also added the principle of
status to the improved recursive decomposition ordering of Rusinowitch ([Ru87]) denoted by

/ADS. Concluding, important properties (simplification ordering, stability w.r.t. substitutions, etc.)

of the newly introduced orderings will be listed. The orderings based on decompositions (RDOS,

PSDS, IRDS) will be presented in a new and simple style : The decomposition of a term consists of
terms only. The original definitions take tuples composed of three (or even four) components.

In chapter 3, we deal with the weight oriented ordering of Knuth and Bendix and incorporate status

(KBOS).

Besides the introduction of new orderings, the second main point of this paper is the comparison

of the power of these orderings, i.e. we will compare the sets of comparable tenns for each

combination of two orderings. This will be done w.r.t. an underlying fixed total precedence and

irrespective of the precedence.

An implementation of the orderings (except for the RDOS) is integrated into our rewrite rule

laboratories TRSPEC (a term rewriting based system for algebraic specifications) and COMTES

(completion of term rewriting systems). The TRSPEC-system (see [AGGMS87] , [ABGM86]) is

implemented in Common Lisp and is currently running on Apollo Domain systems. It provides tools

for specifying functions by term rewriting systems and for proving equational properties of these

functions in the initial algebra. It allows to compile function specifications into executable lisp

functions for computing normal forms of terms. The COMTES-system (see [Wa86] , [WS84] ,

tst86l) is part of the TRSPEC. It is a parametric completion system that is especially suited for

efficiency experiments. Various reduction srategies and a couple of different term ordering methods

can be used as well as different techniques for avoiding a failure of the completion process.

In the fifth chapter we enumerate a few aspects of the lisp code of the orderings. Only deviations

from the original definitions will be described. A series of experiments has been conducted to study

the time behaviour of the orderings. An evaluation of these results concludes the chapter.

The last chapter only contains the proofs of the previous lemmata.

2 Path orderings 7

2 Path orderings

All orderings described in this and the next section are recursively defined simplification orderings.

Most of them are well-known : A version with status exists for the recursive path ordering (RPO),

the recursive decomposition ordering (RDO, a new and more powerful version will be presented)

and the path ordering of Kapur, Narendran and Sivakumar (KNS). We have added the principle of
status to the others. The main point of the next two chapters is the description of all these orderings

with status. For a better understanding, these methods of comparing tenns will be demonstrated by

an example at the end of the chapter. The orderings described satisfy properties that qualify them for
proving termination of term rewriting systems : Well-foundedness, stability (w.r.t. substitutions)

and monotony (w.r.t. the precedence). Due to lack of space, we only give proofs of properties

which have not yet been proved.

To define the orderings, we need some kind of formalism. A path of a term is a sequence of terms

starting with the whole term followed by a path of one of its arguments :

- pathr(L)

- pathi.u(f(tr,...,t,.,))

A
f(tr,...,t,r) ; patho(ti)

sub(P,t) = {seP I (fu*e)t/u=s1
sup(P,t) = {se P I (3u+€)s/u=t}.

if A is a constant symbol or a variable,

if u e Or(ri).

and

Moreover, path((t'...,tr]) = { path"(t) lie [1,n],ue Ot(tr)] isthemultiset of allpaths of the

specified terms t1,...,t,r. A path will be enclosed in square brackets. For a path p = [tr;t2;...;tn] we

denote by set(p) the set {tr,...,tn} of all terrns in p. This set will also be called
path-decomposition and its abbreviation is decuft) (and is equal to set(pathu(t))).An elemenr

(i.e. a term) of apath-decomposition is called an elementary decomposition. Analogous with
paths, the decomposition dec([tr,...,tn])= { decu(t) lie [1,n],ue Ot(t,)] isthemultisetof all
path-decompositions of the tefins tl,...,tn. There are two operations on a path-decomposition P s I
to describe. The set of subterms and the set of superterrns of P relative to a term t are defined as

Analogous with decompositions we use sub and sup to denote subsequences of paths. Suppose

t=("*y)+(x*z), then path21(t) = [t;pathr(x*z)] = [t; x*z; parhr(x)] = [t;x* z;x],
path({t}) = {pathrr(t) , pathr2(t) , path21(t) ,path22Ol, set(path21(r)) = {t ,x*z , x} = dec21(t),

dec({t})= { {t,X*y,x}, {t,X*y,y}, {t,x*z,x}, {t,x*z,zll, sub(dec21(t),x)=ff,
sup(decrr(t) , x*z) = {t} and sup(path21(t) , x) = [t; x*z].

2 Path orderings 8

In the rest of this chapter, when writing s,t and > we will always assume that s and t are terrns over

I and u is a precedence on the set f of operators. Moreover, we synonymously use >oru with

ord to denote an ordering. The index t(0 of)ord,t(f) marks the extension of >ord w.r.t. the

status of the operator f :

(sr,...,srrr) >ord,t(l;

iff
lex

lex

or

or

t(0 = mult

t(0 = left

t(0 = right

(tr,... ,trr)

{tr,...,t,r}
(t, ,.. .,trr)

(tn,...,t,)

{ sr,...,s- } ,rord

(sr,...,s*))-d
(s-,...,s 1))o.d

Permitting variables, we have to consider each and every one of them as an additional constant

symbol uncomparable (w.r.t. >) to all the other operators in F.

All of the following orderings uniquely define a congruence * dependent on f and t via:

f(sr,...,s-) - g(tl,...,tn) iff f =g and m=n and i)t(0=mult andthere is a permutation

n ofthe set {1,...,n} such that sr- tr,,r, for all ie [1,n] or ii) t(f) + mult A si- ti, for

all i e [1,n].

Most of the orderings are based on the principle of root orderings, i.e. two terrns are compared

depending on their leading function symbols. This or other kinds of case distinctions will be

represented as the union of conditions that will be marked by Roman numerals i), ii), and so on.

The lexicographical performance of conditions will be indicated by hyphens, i.e.

s>
iff t

t

s >z t). Here, the equality sign =, is thestands for that s > t iff s)r t or (s =r t

congmence relation induced by the quasi-ordering

The comparison with respect to the recursive path ordering with status (RPOS, for short) is based on

the following idea : A term is decreased by replacing a subterm with any number of smaller terms

which are connected by any structure of operators smaller (w.r.t. >) than the leading function

symbol of the replaced subterm. The method of comparing two terrns depends on the leading

function symbols. The relationship between these operators w.r.t. D and the status t is

responsible for decreasing one of the (or both) terms in the recursive definition of the RPOS. If one

of the terrns is 'empty' (i.e. totally decreased) then the other one is greater.

t

-S

-s
>1

>2

>l'

o2 Path orderings _

2.1 Definition (tKL80l , [De82])
recursive path ordering with status : RPOS

s)Rpos t
iff i) top(s) r top(t) ,r {s} ,>Rpos args(t)

ii) top(s) = top(t) a t(top(s)) = mult

iii) top(s) = toP(t) r, t(top(s)) + mult
a {s} >>Rpos args(t)

iv) args(s) 2Rpos {t}

args(s) >>Rpos args(t)

args(s) >RpoS,t(top(sy; args(1)

2.2 Remarks

Therelation s 2RpoS t isvalidif s>*oort or s - r (seedefinitiononpage8).
The definition of the RPOS is non-deterministic because condition iv) could be used whenever
either i) or ii) or iii) is satisfied.

The multiset ordering and the simple path ordering ([Pl78b]) are special cases of the RpO, in
which the multiset constructor { ... } is greater than any of the other operators ([De85] ,

lDe82l).
One way of extending the RPO is to allow some component of a term f(tr,...,tn) to serve as

the operator f. For example, we can consider tu to be the operator and compare two terms by
first recursively comparing their k-th operands : To prove that s = if(if(x,y,z),u,v) -)
if(x,if(y,u,v),if(z,u,v)) = t terminates we consider the condition (the term if(x,y,z)) to be the
function symbol. The term if(x,y,z) of s is greater than the condition x of t. By definition
of the RPo, we need to show that {s} ,>Rpo {if(y,u,v) , if(z,u,v)}. Again, if(x,y,z) is greater
than y and z , and thus {s} ,rnpo {u , v} holds.

This kind of extension of the RPO represents a simplification ordering for the same reasons that
the original definition does ([De85] , [De82l).
A more general technique than the previous one of extending the RPO changes terms by
replacing their operators with the whole term itself ordered by some other well-founded ordering
(instead of the RPO itself). This method is called senwntic path ordering and was developed by
Kamin and L6vy (tKL80l , [De85] , [De83]).
Another extension of this ordering (from Forgaard, tFoSal) takes the monotony w.r.t the
precedence of the RPO into consideration. A terrn s will only be greater than a tenn t in this
'lifted'ordering if s is greater (relative to the RPO) than t with respect to all total extensions of
the given precedence. The so-called closure ordering in tl-e87l is a generalization of this method
because it lifts any term ordering. Note that the lifted ordering and its corresponding ordering will
be equivalent if the underlying precedence r is total. This statement holds since there is no other
extension of a total > than > itself.

2 Path orderinss 10

An algorithm that automatically proves the termination of rewrite rules is described in [DF85].

The incrementality procedure is implemented in REVE 2, arewite rule based theorem prover.

The strategy is based on the notion of 'minimal extenders', i.e. if the RPO cannot order its

arguments, it will return sets of minimal suggestions that cause them to be comparable

(see [Fo84] , [DF85]).
Given the equation s = t, the problem whether there exists a partial order I on the operators that

occur in s and t such that the equation can be oriented by the RPO is NP-complete ([KN85]).

The RPO has also been adapted to handling associative-commutative operators by flattening and

transforming tenns (distributing large operators over small ones) before comparing them (see

lDe85l , [De83]).
For more details about the RPOS (respectively the RPO), see [Ai85] , [De85] , [De83] ,

lDe8Ol, [DF85], [KNS85], [KN85], [Le86], [Le81a], [Ok86], [Pe81], [Ru87],
[St88] , [St86].

Plaisted's path of subterms ordering (PSO, for short) is a predecessor of the RPO and compares

two tenns by comparing all their paths. A slightly modified version (equivalent to the original) of

Rusinowitch is given next.

2.3 Definition ([Ru87] , [P178a] , [St88])
path of subterms ordering : PSO

S)pso t
iff path({s}) 'rpo path({t})

with p >po q

iff set(p) >r set(q)

with s >T t
iff -top(s) r top(t)

- path(args(s)) >)po path(args(t))

2.4 Remarks

- Terms are equivalent w.r.t the PSO if they are contained in the relation - (see definition on

page 8). This PSO-equivalence is a special case of - since the PSO does not compare

terms with lexicographical status. Therefore, s and t are equivalent if they are

permutatively congruent which means that s and t are syntactically equal if the permutations

of permutatively congruent subterms are ignored. Two zero-ary symbols (constants or

variables) are permutatively congruent if they arc syntactically equal.

2 Path orderings 11

More information about the PSO is available in [Pl78a] , [Pl78b] , [Ru87] , [St88] ,

lSt86l.

Like the PSO, the KNSS is an ordering which compares terrns using their paths. It has been

devised by Kapur, Narendran and Sivakumar. They have implemented the RPO within their rewrite

rule laboratory and have found it weak in handling terrns which should intuitively be comparable.

The KNSS is a consequence of these experiments and it extends the RPOS.

2.5 Definition (IKNS85l)

path ordering with status of Kapur, Narendran and Sivakumar : KNSS

s)xNss t

iff path({s}) "n path({t})

with p >LK q

iff (Vt'e q) (3s'e p) S')Lr r'

with pts >LT t€q
iff i) top(s) r top(t)

ii) top(s) = top(t) A t(top(s)) = mult

- sub(p , s) >r* sub(q , t)

- path(args(s)) rrn path(args(t))

- sup(p , s))Lr sup(q, 0
top(s)=top(t) ^ t(top(s))+mult
- args(s) >KNSS,t(top(syy args(t)

^
{s} nrNss args(t)

- sup(p , s))Lr sup(q ,0

2.6 Remarks

Like the previous orderings, the equivalence w.r.t the KNSS is included in - (cf. definition

on page 8).

The third part of >r, consists of a lexicographical test divided into two conditions. We

compromised in favour of the clearness and suffer the ambiguity of the definition. Therefore,

note that the second condition 'sup(p , s))Lr sup(q, t)' will be tested if only

args(s) =KNss args(t) holds (the other test '{s} =rNss args(t)' is redundant).

This path ordering can possibly be extended by way of allowing tenns from different paths to

take care of terms along a path. Thus we could remove the restriction that a path must be taken

care of by a sole path. Let s and t be the following terrns : s = 2 * 8 and t = 42

2 Path orderings 12

with2D4,8>2.Theterm 8 of thepath [s;8] takescareof thetermt of [t;a] and

2els;21 isgreaterthan 4elt;41. Note that this newschemehasnotbeen clearly defined

yet ([KNS85]).

- More information about the KNS(S) are given in [KNS85] , [Ru87] and [St86].

Like the KNSS, the recursive decomposition ordering with status (RDOS in short) has been

developed from the RPO. One of the important differences to the RPO is the fact that the RDOS

stops a comparison as soon as it has to compare incomparable operators. The RDOS defined in2.7

is different from that contained in [Le84] : Both orderings are based on [RI81] but the incorporations

of status are different. Moreover, our various decomposition orderings (see 2.7,2.9 and2.I1) are

founded on another decomposition : We use terrns (cf. the definitions on page 7) instead of triples or

even quadruplets (see 2.8, at the bottom of this page).

A term s is greater than a tenn t (w.r.t. RDOS) if the decomposition of s is greater than the

decomposition of t. The ordering on these multisets (""1o) is an extension of the basic ordering on

terms (tlo) to multisets of multisets.

2.7 Definition (based on [RJ81] , ULR82I , [Ru87])
recursivs decomposition ordering with status : RDOS

s)Rpos t
iff dec({s}) o,'ro dec({t})

with dec,r(s) l s')LD t'e decu(t)

iff i) top(s') > top(t')

ii) top(s') = top(t') n t(toP(s')) = mult

- sub(decu(s) , s') ,rLD sub(decu(t) , t')

- args(s') ,rRDos args(t')

iii) top(s') = top(t') ,r t(top(s')) + mult

{s'} >>RDos args(t')args(s') >RDos,t(top(s,)) args(t')

2.8 Remarks

- Terms are equal (s =noos t) w.r.t. the RDOS if they are equivalent w.r.t.)Rpos (s - t;
- is defined on page 8).

- The original decomposition ordering works on triples (so-called elementary decompositions)

instead of terms. An elementary decomposition divides a tenn into three parts : The leading

function symbol, any selected immediate subterm, the rest of the immediate subterms.

Obviously, an elementary decomposition can easily be constructed if the appropriate term is

2 Path orderings 13

given. Therefore, the information of an elementary decomposition can be put forward during the

definition of the ordering.

- An essential advantage of the RDOS is the possibility of strengthening the precedence during

the process of comparing. This method (without regard to status) is implemented in Lisp on the

Multics of INRIA and in Clu inside the REVE-system (tch84l , ULR82]).
- A more efficient RDO without a loss of power is presented in [JLR82] and [RJ81].

Originally, two terns s and t are compared w.r.t. the RDO by means of constructing the entire

dec({s}) and the entire dec({t}). It can be proved that selected subsets of path-decompositions

are sufficient. Moreover, a path-decomposition can be restricted to a part of itself (cf. [St86] for
an example).

- Additional remarks are given in [Ch84] , [De85] , [De83] , [JLR82] , [KNS85] , [Le87] ,

ll-e84l, [Le83a], [Le83b], [Le82], [Le81b], [Re81], [St88], [St86].

Another ordering based on decompositions results from the PSO. It is remarkable that the PSO is

an extremely recursive ordering which takes three suborderings ()p6, >, and >) into account. We

have succeeded in redefining this path ordering in such a way that the result, called PSD, provides a

much'simpler method of using decompositions (cf. tst88l). The PSD has another advantage

over the PSO : The combination with the concept of status is much easier. The PSD with status

(PSDS, for short) as well as the PSD depends on the fact that a path is an ordered

path-decomposition.

2.9 Definition (based on [St88]
path of subterms ordering on

s)psos t
iff dec({s}) n,r'.p dec({t})

with s)Lp t
iff i) top(s) > top(t)

ü) top(s) = top(t) a t(top(s)) = mult a dec(args(s))
')'>Lp dec(args(t))

iii) top(s) = top(t) ,r t(top(s)) + mult A

args(s) >psDS,r(top(.)) args(D " {s} >>psDS args(t)

2.L0 Remarks

- s =psDs t if and only if s - t (cf. definition of - on page 8).

- This relatively simple definition of the complicated PSO has two further advantages. In the first

place, we can comptre the implementations according to their efficiency (see chapter 5, on page

, [Ru87] , [Pl78a])
decompositions and with status : PSDS

2 Path orderings 14

29). Secondly, it is easy to compare the PSO with the decomposition orderings, e.g. with the

improvedrecursive decomposition ordering of Rusinowitch (so-called IRD, see 2.11). The

essential difference between the PSO (= PSD) and the IRD concerns the way by

which a comparison is processed. While the PSD works according to the principle of
'breadth-first' the IRD reveals the use of the principle of 'depth-first' : If the leading function

symbols of the tenns to compare are identical, the IRD chooses only one subterm. On the other

hand, the PSD proceeds by simultaneously considering the decomposition multiset of all

subterms.

In addition to the definition of Rusinowitch, we have incorporated status to the IRD (IRDS in

short), so that it is equivalent to the path ordering of Kapur, Narendran and Sivakumar (IRDS =

KNSS, see lemma 4.6 on page 25).

2.11 Definition (based on [Ru87])
improved recursive decomposition ordering with status : IRDS

s)nts t
iff dec({s}) 'r>EL dec([t])

with decu(s) > s')EL t' e decu(t)

iff i) top(s') > top(t')

ii) top(s') = top(t') ^ t(top(s')) = mult

- sub(decu(s) , s') >sL sub(dec,(t) , t')

-dec(args(s')) >>r, dec(args(t'))

iii) top(s') = top(t') a t(toP(s')) + mult

args(s') >rRDS,t(top(s,)) args(t') a {s'} >>IRDs args(t')

2.12 Remarks

- Therelation s)rRost istnreifandonlyif s)nost or s- t(-isdefinedonpageS).
- The IRDS is a proper extension of the RDOS, due to a slight change of the second part (ii) of

its definition : RDOS compares the arguments of two terms w.r.t. >RDo, while IRDS

compares the multiset sums of the decompositions of the arguments. For example,

and(not(not(x)),y,not(z)))rRos and(y,nand(x,z),x) with not I nand, but the terrns are not

comparable with the RDOS (see [St88]).

We will illustrate the definitions of the orderings by an example.

/\ l\
x+)npos**

/ \ /\ /\
yzxyxz

Since * t *, we must show that {s} ,rnpos args(t)

I 1 ,'Rpos f ,-. , /*\ 1
IL I

r\rvr
Lx y x zl

2 Path orderings 15

2.1,3 Example

We want to prove that the distributive law x * (y+z) - (x*y) + (x*z) terminates. We use the total

precedence *u+ and,the statuses t(+) =T(*) =left.

2.13.1
*D -
t + =f

The single term on the left side has to be greater than both terms on the right side : s is greater than

x*y, because we have to remove the leading function symbols and can show that

(x,y+z))Rpos,r"rr(x,y) a {s} nRpos {x,y}

because y + z >ppss y (by using the fourth condition of 2.1) and s)Rpos x, s)sps5 y.

s)Rpos x * z is proved in the same way.

2.13.2
s = * + =[

/\ /\
x + >Pso (KNss) * *

/ \ t\ /\
y z x yx z

We have to show ttrat path({s}) ,>po1x, path({t}) :

path({s}) = { [s; x] , [s;y+z; y] , [s ;y+z;zll and

path({t}) = { [t;x*y;x], [t;x*y;y], [t ix*z;x], [t ;x*z:zll.

2 Path orderings 16

In accordance with the extension of >oo (LK) to multisets the following has to be proved : For every

path in t we can find a path in s which is greater w.r.t. >p,o (LK).

- i) [s ; x] >po [t; x*y; x]

iff {s , x} ", {t, x*y, x} iff {s} ,r {t,x*y}
(the last equivalence is valid since the used multiset ordering is closed under differences,

i.e. M>N iff IAI{>I.NM)

- s)tt
because top(s)-* I +=top(t)

- S)tx*y
iff path({x ,y+zl) >po path({x ,y}) iff path({y+z}) 'rpo

path({y}) :

This can be verified because y is a proper subterm of y+2.

ii) [s ; x] >po ft ; xxz; xl,

[s ; y+z; y] >po [t ; x*y ; y],

ls ; y+z; zl >po [t ; x*z; zf :

The proofs of these three statements can easily be done with the considerations of i).

- i) [s ; x] >n [t; xxy; x] :

- s)Ltt
because toP(s)=* t *=top(t)

- S)Lt x*y
iff (x,y+z)trNss,r"r,(x,y) a {s} nrNss {x,y} :

This can be verified because y is a proper subterm of y+2, x and y are proper

subterms of s.

- [s;x]rx)LT xe [t;x*y;x]
i+ sub([s ; x] , x) =[]= sub(lt ; x*y ; x] , x) ,r path(args(xe s)) =6-- path(args(xet))

,f,) Wehaveto showthat sup([s ; x],x)= [s])Lr [t;x*y] =sup(lt; x*y; x],x) :

As S)LT t and s)LT x*y, the requirement holds.

ii) [s ; x])Lr [t; x*z; x],

[s ; y+z; y])Lr [t; x*y ; y],

[s ; y+z ; z])Lr ft; x*z; zl ;

This propositions are valid if we use the steps of the previous case.

2 Path orderings 17

2.I3.3
s - '* + =[

/\ /\
x +)nuos (PSDs, TRDS) * *

/ \ /r /\
y z x yx z

We have to prove dec({s}) ,)r>LD
1Lp, n1y dec({t}) ;

dec({s}) = {decr(s), decrr(s), decrr(s)},

dec({t}) = {decrr(t) , decrr(t), decrr(r) ,decr2&)|.

In accordance with the definition of the RDOS (PSDS , IRDS), for every dec,(t) we have to find a
decu(s) which is greater than decu(t) with respect to >>LD

Gp, nL;. Because of the demand for
stability w.r.t. substitutions our search for decu(s) is restricted to the leaves s/u and t/v,
respectively (it is important to observe this rule if t/v is a variable, i.e. s/u must be the same

variable).

We can verify

i) decr(s) - {s, x} ,)LD
1Lp, EL) {t , x*y , x} = decrl(t) iff {s} ,rlp (Lp, EL) {t , x*y} :

- S)Lp (r-p, pr-) t

because top(s)=* t *=top(t)

- s)Lo 1lr, Er-; x*Y

iff (x,y+z) tnpo, (psDs,rRDS),left (x, y),r {s} rrnoos (psDs,nosy {x, y} :

This can be verified since y is a proper subterm of y+2, x and y are proper

subterms of s.

ii) decr(s) = {s , x} >>LD
Gp, EL) {t , x*z , X} = decrr(t),

decrr(s) = {s, y+z,yl >>Lo1Ll,eL; {t, x*y, y} = decrr(t),

decrr(s) = {s , y*z , z} >Lo
1Ll, EL; {t , x*z , zl = decrr(t) :

It is easy to show these statements with the considerations of i).

For more examples, see [Ch84] (RDO), [De85] (RPO), [De83] (RPO, RDO), [De82] (RPO),

lJLR82l (RDo), [KL80] (RPOS), IKNS85] (KNS), II€s7l (lexicographic RDo), tle84l (RDo),

ll-eS3al (RDO), [Re81] (RDO), [RJ81] (RDO), [Ru87] (PSO, RDO, IRD), tStSSl (RpO, RDO,
IRD), [St86] (RPO,lexicographical RPO, RDO,IRD, KNS, PSO).

2 Path orderings 18

We continue with the enumeration of important properties of the IRDS (see chapter 6 for their

proofs). To guarantee termination of rewrite systems, the IRDS must be a simplification ordering

(irreflexivity, transitivity, subterm propefiy and replacement property) and stable w.r.t.
substitutions.

2.14 Lemma IRDS is a simplification ordering on Io.

Proof : see 6.1 - 6.4 (pp. 33 - 35)

2.15 Lemma IRDS is stable w.r.t. subsritutions.

Proof : see 6.5 (pp. 35 - 36)

Dershowitz gives a sufficient criterion for proving that a TRS terminates for every input ([De82]) :

ATRS 9t= {li4srilie [1,n]] over a set of terms f terminates if there exists a

simplification ordering

of terms of f for the variables of lr. The test whether o(lr) > o(r1) is ffue for all

substitutions does not stop. Therefore, if we are able to prove the stability w.r.t. substitutions of
the prescribed simplification ordering >, then showing l, > r, instead of o(1,) > o(r) will be

enough. Since the improved decomposition ordering with status is a simplification ordering (lemma

2.14> and closed under instanciation (lemma 2.15), it may be used in conjunction with

Dershowitz's termination theorem to prove the termination of a TRS in a relatively simple manner.

The main importance of simplification orderings is their well-foundedness. As well as the IRDS the

other orderings described here are well-founded, too. Instead of proving that they are simplifrcation

orderings it is sufficient to show that they are partial orderings and monotonic w.r.t. the precedence.

This reasoning will be justified by the following lemma and the fact that the IRDS is stronger than

all other orderings w.r.t. total precedences (see chapter 4).

2.16 Lemma A partial and monotonous (w.r.t. theprecedence) ordering > iswell-founded

if there exists a well-founded ordering r which contains > w.r.t. total precedences.

Proof : see 6.6 (on page 36)

To use this lemma we take the IRDS as r and show (in chapter 4) the inclusion of > in)nps.
Consequently, there only remains to prove that > is a partial ordering and monotonous w.r.t. the

precedence. The proof of the irreflexivity and the ransitivity of the RPOS is formulated in [KL80].

2 Path orderings 19

In [Pl78b], Plaisted shows that the PSO is a partial ordering. Analogous with the proof of the

IRDS, this property can be certified to the remaining orderings. Thus, all we need is the guarantee of
the monotony w.r.t. the precedence.

2.17 Lemma RPOS is monotonous w.r.t. the precedence.

Proof : see 6.7 (pp. 36 - 37)

2.18 Lemma RDOS is monotonous w.r.t. the precedence.

hoof : see 6.8 (on page 37)

2.19 Lemma PSO, PSDS and IRDS (KNSS) are monotonous w.r.t. the precedence.

Proof : The proof of the monotony of the PSO is given in [St86]. The proofs of the remaining

orderings PSDS and IRDS (= KNSS) areverysimilartothatof 2.18. tr

The applicability of the orderings for termination proofs of term rewriting systems is ensured only if,
additionally to the properties already proved, the stability w.r.t. substitutions is fulfilled. The

following affirmations serve this purpose.

2.20 Lemma RPOS is stable w.r.t. substitutions.

Proof : see 6.9 (on page 38)

2.21 Lemma RDO, RDOS, PSD and PSDS are stable w.r.t. substitutions.

Proof : The proofs of the stability w.r.t. substitutions of the decomposition orderings (RDO,

RDOS, PSD and PSDS) are very similar to that of the IRDS (see 2.15). Therefore, and due to

lack of space, we renounce to show the property for these orderings. tr

Since additionally the PSO is equivalent to the PSD, and the IRDS and the KNSS coincide (cf.

chapter 4), all orderings presented are stable w.r.t. substitutions.

Collecting all the previous lemmata, we may conclude this chapter with the remarkable result :

All orderings described in this chapter are well-founded and stable w.r.t. substitutions and therefore,

they are methods usable in practice for proving the termination of an arbitrary TRS.

3 Knuth-Bendix ordering 20

3 Knuth-Bendix ordering with status

To prove termination of term rewriting systems we can use the notion of a well-founded sef (S, >s)

which is a set S and a partial ordering >s on S such that any decreasing sequence

er)s ez)s . . . of elements of S only consists of a finite number of elements. To construct an

ordering we choose a well-founded set (S, >s) and a so-called terminationfunction which maps

the term algebra into S. S can be the term algebra itself : The path and decomposition orderings of
the previous chapter are based on this notion. The ordering of Knuth and Bendix (KBO, for short)

takes (lN, >) as the underlying well-founded set, i.e. it assigns natural (or possibly real) numbers

to the function symbols and then to terms by adding the numbers of the operators (called weight of a

term) they contain. Two terrns are compared by comparing their weights, and if the weights are

equal, by lexicographically comparing the subterms. Analogous with the path and decomposition

orderings, we succeeded in adding the idea of status and therefore, in extending the method of
comparing the arguments of two equivalent function symbols. To describe this strategy, called

Knuth-Bendix ordering with status (KBOS, for short), we need some prerequisites and helpful

definitions.

If Ä is a function symbol or a variable and t is a term we denote the number of occurrences of A in
t by #o(t). We assign a non-negative integer p(0 (the weight of fl to each operator in f and

a positive integer gs to each variable such that

g(c) > go if c isa constant and

g(0 > 0 if f has one argument.

Nowwe extend the weightfunction toterms. For any term t=f(tr,...,tr) let

p(t)=q(D+Lq(ti).

3.1 Definition (based on [Ma87] , [KB70])
Knuth-Bendix ordering with status : KBOS

S)xnos t

iff (Vx e 4 #*(s) > #*(r) A

- p(s) > p(t)

- top(s) r top(t)

- args(s) >KBoS,t(topG)) args(O

3 Knuth-Bendix ordering 21

3.2 Remarks

The definition is slightly different from that given in [KB70]. Knuth and Bendix require that the

precedence be total and that #*(s) = #*(t) if rp(s) = p(t).The version given here is from

[Ma87] and is an extension of the original definition. This claim can be substantiated with the

help of the rule (y t x) v x -+ (y " 0) = x which can only be oriented with the new definition
(#*(s) >#*(t)) if vr= ispresumed.

The variable condition (#*(s) > #*(t)) guaranteeing the stability certainly is a very sffong

resricdon. Note that, for example, the distibutive law cannot be oriented in the usual direction.

There exists a slight improvement of the ordering that allows at most one unary operator f with
weight zero ([KB70]). To conserve the well-foundedness all other operators in f have to be

smaller than f (with respect to the precedence).

Using a quasi-ordering on the function symbols instead of a partial ordering, we may admit more

than one unary operator with weight zeto. On the premise that all these operators are equal

w.r.t. the precedence, the induced KBOS also is a simplification ordering stabilized w.r.t.

substitutions. For example, the termination of (x*y)2 - x2*(-y)2 can be shown with the

improved version but cannot be shown with the partial version of the KBOS.

[Ma87] contains a simple and practical decision procedure for determining whether or not a set of
rules can be ordered by a KBO. The basic idea of this algorithm is to transform the desired rules

to linear inequalities which the weights must satisfy. The solutions to these inequalities are

determined by using the simplex method (tMa87l).

Note that the terms of the following example a.re not comparable with the KBO (without status).

3.3 Example

Considertheterms s=x*((-y)*y) and t=(-y*y)*x andthefollowingfunctionsonthe
operators :

symbol x,y *

a 1 I 0

T(*) = mult

*D

Wewanttoprovethat S)rsos t.Since g(s)=g(*)+ g(x)+ p((-y)*y)=0+1+ g(*)+ p(-y)
+ q(y)=0+ 1+0+ g(-)+ p(y) +l=4 and g(t)areequaland top(s)=top(t)=x we have ro

apply the KBOS recursively on the multisets of arguments and have to verify

{x , (-y)*y} >>KBos {-y*y , x}. This is true because s'= (-y)*y)rsos -y*y = t', since
g(s') = 9(t') and top(s') - x< t - = top(t').

3 Knuth-Bendix ofdering 22

We want to use this new version of the well-known KBO as an ordering to prove the termination

of rewrite rules. Therefore, we conclude this section with the reference to some important properties.

We show that the KBOS is a simplification ordering (a partial ordering with the subterm and the

replacement property) and that it is stable w.r.t. substitutions.

3.4 Lemma KBOS is a simplification ordering on Io.

Proof : see 6.L0 - 6.13 (pp. 39 - 41)

3.5 Lemma KBOS is stable w.r.t. substitutions.

Proof : see 6.14 - 6.15 (pp. al - aZ)

4 Comparison 23

4 Comparison

In this chapter we compare the power of the presented orderings. For completeness, we are

additionally including the basic orderings restricted to multiset status. The power of an ordering is

represented by the set of comparable terms. We do not compare the size of these sets but examine the

relation between two sets. There are three possible relations : Two orderings can be equivalent

1> = >), one ordering can be properly included in the other (> c >) or they overlap (> # r).

The orderings

srl t, and sz, b a sz l tz. Consequently, the proof of such an overlapping is

composed by specifying two counter-examples. At the end of this chapter a synopsis of the

previous lemmata will be listed in the form of a diagram.

Note that the orderings described in this report depend on a parameter : The precedence. This

parameter may be either partial or total. For the following reason we are only interested in the latter :

Our results would be more general if we could give some information about the comparisons of
orderings separated from the precedence. The following proposition summarizes these reflections.

4.L Proposition Let > and r be orderings which are monotonous w.r.t. the precedence.

Furthermore, let > be included in) w.r.t. total precedences. Then, if s >(p) t holds for

some precedence p, there exists a precedence q (possibly different from p) so that s r(q) t.

Proof : We prove this proposition by specifying q. Let s >(p) t, then s >(p') t for every

extension p' of p, since

extensions : s >(q) t. With the additional premise > s) over any total precedence, the terms s

and t are ordered in the same direction under r. tr

This statement will be of practical importance if we consider it together with the relations between

orderings with an underlying total precedence (see figure 4.12 onpage2T): Only two (either IRDS

(KNSS) or KBOS) of the thirteen orderings collected in the diagram are needed to cover the

union of comparable terms of all the orderings presented here. In other words, if terms can be

oriented with any ordering (of the figure) there exists a precedence such that the terrns are also

comparable with either the IRDS (KNSS) or the KBOS. Consequently, if you are implementing a

system where the termination of a rewriting system must be guaranteed, only two of the thirteen

orderings will have to be made available for the user. The cause of it is that the IRDS (resp. the

KNSS) is stronger than all other path orderings irrespective of the precedence.

4 Comparison 24

The relatiors c, = and # w.r.t. a total precedence have the following meanings : Let p (resp. p'

and p") be a total precedence, t (resp. t' and t") a status, s and t terms.

i) >c>

ü) >=>
iii)>#>

iff s >(p,t) t ,4 s r(p,t)

(fp',t') (trp",1") s >(p',t') t

s>(p,t)t ++ sr(p,t)
(Ilp',t') 1trp",T") s >(p',t') t

Glp',t') 1lp",t") s >(p',t') t

iff
iff

s >(p",T") t

s >(p",t") t

s >(P",t") t

Proof : see 6.16 (pp.42 - a3)

4.2 Lemma

i) RPO

ü) PSD

üi) RDO

iv) IRD

v) KBO

4.3 Lemma

i) RPO

ii) PSo

iii) PSD

iv) IRD

v) IRD

vi) RDO

Let > be total
c RPOS

c PSDS

c RDOS

c IRDS
c KBOS

Let > be total

c PSO

= PSD

c IRD

= KNS
f RDO

r RPO

Proof: see 6.17 (on page 43)

4.4 Lemma Let > be total

Proof : see 6.18 (pp. a3 - a5)

4.5 Lemma Let r be total

RPOS c RDOS.

Proof : see 6.19 (pp. a5 - a6)

RDOS c IRDS.

4 Comoarison 25

4.6 Lemma IRDS = KNSS.

Proof: see 6.20 - 6.21 (pp. a6 - a8)

4.7 Lemma Let rbetotal: IRDS r PSDS.

Proof : see 6.22 - 6.24 (pp. a8 - 51)

4.8 Lemma Let r be total : PSDS r RPOS.

Proof : see 6.25 (on page 51)

4.9 Lemma Let > be total :

i) RDO , PSD ,IRD # RPOS

ii) PSD , PSDS # RDO, RDOS

iii) IRD # RDOS , PSDS

iv) KBOS, KBO # RpO, RPOS, pSD, PSDS, RDO, RDOS, IRD, IRDS

Proof : see 6.26 (on page 52)

In order to retain these relations and to find one of them easily we use a kind of Hasse diagrams.If
> c) then we arrange > above > joining them with a thick rurow :

The diagramof 4.12 on page 27 summarizes the previous lemmata. Arbitrary terms provided, we

have compared the orderings. It is a question now whether the relations among the orderings will
endure if this precondition is restricted. We have investigated the restrictions to ground terrns and to

monadic terms.

)

t

4 Comnarison 26

Ifweconsider fo (thesetof groundterms) insteadof I and take a totalprecedence r, thenthe

path and decomposition orderings are total on Io/-. The orderings with multiset status are

equivalent and included in the orderings on arbitrary status which themselves are equivalent. The

Knuth-Bendix ordering is also total on f d- (KBO. KBOS) and overlaps with the others.

f(g(a)) >oo S(f(f(a))) and g(f(f(a))) > f(g(a)) hold under the following presumptions :

g(0 =0, thetotal precedence f > g r a and > is any of the remaining orderings. The

graph of the results on ground terms can be found on the following page.

A monadic term only contains unary function symbols and either a constant or a variable. The

subset of the monadic terms without constants can unequivocally be transformed into strings and

vice versa. Therefore, the subsequent result refers to the corresponding orderings on string

rewriting systems. Note that, on monadic terms, an ordering with status and the version without

status coincide. On condition of a total precedence, all orderings with the exception of the

KBO(S) are the same. The counter-example taken from ground terms is responsible for the

overlapping of the KBO(S) with the others. Due to lack of space, the proofs cannot explicitly be

given here but may be found in [St86]. Analogous with arbitrary terms, a synopsis in the form of a

diagram is presented below.

It is mentionable that the class of path and decomposition orderings on monadic terms is equivalent

to the syllabled or collected ordering)co (see [Si87], [Wi88] or [Ba81]) on the reverse

wordsi u)npo,... v iff reverse(u) >"o reverse(v).

4.L0 Total precedence and monadic terms

RPO =
il

PSO = PSD - RDO =
Xza
il

Xz
(t)
a
il

KBOS - KBO

(t)

il

at
= sooä= SoSd= sodu

4 Companson 27

4.11 Total precedence and ground terms

RPOS = PSDS = = IRDS

RPO=PSO=PS - IRD

4.12 Total precedence and arbitrary terms

KNSS = IRDS

PSDS RDOS KBOS

KBOS

I
KBO

RDOS = KNSS

A

I
D=RDO=KNS

tt
RDO KBO

I
KNS = IRD

I
RPO

RPOS

tX
PSO = PSD

5 Implementation and Conclusion 28

5 Implementation and Conclusion

The TRSPEC is a system for algebraic specifications based on term rewriting techniques and

developed at the university of Kaiserslautern from the research group PROGRESS (Projektgruppe

Reduktionssysteme). It is implemented in Common Lisp and currently running on Apollo Domain

Systems as well as on SUN workstations. It consists of approximately 8000 lines of source code

(without documentation) corresponding to 400 KB of compiled code.

The kernel of the TRSPEC-system is COMTES, an extended Knuth-Bendix completion procedure.

Furthermore, the TRSPEC contains the following tools : A Ersef for transforming hierarchical

structured specifications into an internal representation and for checking the syntax of the

specification. A checker for testing the completeness and uniqueness of function definitions. A

compiler for transforming function definitions into executable lisp code. A Eaver for proving

inductive properties of the defined functions.

COMTES can be viewed as a parametric system that is particularly suited for efficiency

experiments. Beside different reduction strategies, the parameters also include various termination

methods.

The three main topics of this chapter are the following :

i) The comparison between the definition and the implementation of the orderings,

ii) The study of the time complexity of the orderings guided by a series of experiments and

iii) Concluding remarks.

5.1 Differences between the definitions and their implementations

The path orderings RPOS, PSO, KNSS, IRDS, PSDS and the Knuth-Bendix ordering are

implemented. Each technique only checks whether a term s is greater (w.r.t. the technique) than a

terrn t. Consequently, if the test s > t stops with negative result, we have to repeat it in reverse

order: t > s?

Before comparing the methods and their implementations let us note that we made a general multiset

ordering available. It depends on the following parameters : An equality relation (for example the

tenn congruence -), an ordering, a precedence, a status and a weight function (the latter is empty if
the second parameter is a path ordering).

5 Implementation and Conclusion 29

The implementation and the definition of the RPOS are essentially equal. Additionally, a

process will previously be performed which checks the subterm property. The

non-determinism in the definition will be evaded by testing the fourth condition only if the

three previous cases failed.

The PSO compares two terrns by comparing all their paths. Like the definition on page 7, a

path as well as the multiset of all paths of a term will be explicitly produced and composed of
terms. The implementation of the PSO is also identical to its definition.

We utilized some ideas of the KNSS given in [KNS85]. These notions are based on the

RPOS since KNSS originates from the RPOS. Before constructing the paths of two terms s

and t, case distinctions relative to the leading function symbols will be performed : If
top(s) I top(t), then {s} rrrNss args(t) must hold (therefore, we can renounce with the

consffuction of the paths). Only if top(s) = top(t) we use the demand (path({s}) nlr
path({t})) of the definition 2.5. Two additional checks are installed to enhance the efficiency :

i) The test of the subterm property (cf. RPOS). ii) Before comparing two paths their ends will
be checked (i.e. if the seemingly smaller path ends with a variable the other path must have the

same end).

The definition and the implementation of the IRDS coincide except for the data structure of an

elementary decomposition. A component of a path-decomposition used in the definition is a
term. Such an elementary decomposition is divided and implemented as a list. It has been

attunedtothedefinitionof the IRDS.Anelementarydecomposition(aterm)t consists of the

following elements (only important ones) :

dec(args(t) \ {t'})

Note that this is an extremely recursive structure (cf. the fourth ce11). The direct access to any

component used in the definition of the IRDS is its advantage.

The implementations of the PSDS and the IRDS only differ in the principle of comparing the

subterms of terms with equal top symbols : The PSDS works breadth-first while the IRDS

works depth-first.

The definition and the implementation of the KBOS coincide. As an additional trick, the

subterm property will previously be tested.

5.2 Time behaviour

We chose 18 pairs of terms. Each pair is comparable w.r.t. all orderings implemented. The

chronometries are entered in the table on page 31. The column at the left margin contains the sizes of
the terms s and t of a pair. More precisely, the flrst value denotes the addition of both sizes (lsl + ltl)

5 Implementation and Conclusion 30

while the second number (enclosed in parenthesis) stands for the size of the greater (w.r.t. the

ordering) term (lsl). The values of the other sections of the table have the following meanings :

A ir the mean (or average) of a series of four experiments (with the same pair) and a is the

corresponding standard deviation. The values refer to a positive test, i.e. we conjectured that

s > t, and really s > t holds. B and b are responsible for the negative test (the hypothesis

was incorrect). The values A, u, B and b represent internal run time measured in milliseconds.

The table is somewhat difficult to survey. But we would not renounce it since there are many details

which can explain the time complexity of an ordering. Nevertheless, we now want to summarize the

informations of the table into a lucid one :

RPOS PSO KNSS IRDS PSDS KBOS

average standard

deviation (in%o)
11,8 2,6 6,5 4,8 3,2 5,9

average time for the posi-
tive test divided by the
time for the negative test

0,6)) 1,6 1,2 1,6 0,9

total factors 1,0 19,0 4,r 8,1 16,0 L,7

The total factors are the average factors of all (positive and negative) tests related to the

RPOS.

An amazing fact is that, in conffast to the other orderings, the RPOS needs more time for the

negative test (the cause of it could be the non-determinism of condition iv). Compared to the other

orderings, the RPOS and the KBOS come off well (see total factors) : The KBOS indeed is

slower than the RPOS by factor 1,7 but all other orderings are slower by minimum factor 4. The

probable reason is the time for constructing the paths and the decompositions, respectively. In

general, it is more expensive to build up a path-decomposition than the corresponding path (since the

data structure of a path-decomposition is more complex than that of a path, cf. 5.1). The time

difference between the KNSS and the IRDS confirms our observation. In contrast to that, the total

factors of the PSDS and the PSO do not agree with the previous evaluation (that the time for the

construction of a path is lower than that of the corresponding path-decomposition). This originates in

the fact that the average values distort the measurements : In 75Vo of the cases the PSDS is slower

A

B

a

b

5 Implementation and Conclusion 31

order
sr ze

RPOS PSO KNSS IRDS PSDS KBOS

3 (2) 102 10

720
2t0t 360

978 r39

t67 99

123 11

95 13

2475 573

91 1

2694 168 I

110

113

1l

s (2) 643 10

975 159

2270 505

3305 294

2538 587

2721 420

4466 14

4946 687

4463 97

4624 387

2329 3

3365 558

6 (s) 163 9

80 16

2850 '78

2282 'tt4
172 ll
118 9

156 ll
4699 448

166 23

4199 402

170 11

113 I

(3)6 1396 r23

3310 1320

8510 78

7722 648

7308 tr4
6853 542

10056 176

10135 44

9437 439

L0276 83

2547 12

2635 l3l
(2\6 695 2t

947 2

5936 r22

4699 1r9

2135 481

3463 20

8170 rO4

7939 567

7550 662

7554 494

2603 3

2539 8

7 (4) 1785 637

243L 580

16839 602

tt4t4 52

12517 98

7886 522

17338 1163

10475 897

17593 273

12915 570

2656 87

2603 29

7 (3) 2285 292

2768 252

5845 645

6875 875

60s1 888

2598 287

9544 811

8944 9r9

9459 847

9037 tffiZ
3252 5s0

3828 463

8 (4) 1073 t7

2921 57

18431 r7M

12752 148

12465 1652

3222 523

17954 1903

12634 90

20034 2143

15648 476

4553 753

3846 136

(4)8 1393 I
1571 238

5889 42

5682 454

4400 496

3479 505

9354 106

10144 1489

9093 568

8612 1406

4L26 635

3737 3

8 (4) 867 153

ll99 szs

5708 557

5819 874

2618 511

5314 1059

9243 1084

9222 802

9760 900

8705 653

3786 2

4921 111

(4)8 887 12

687 9

6644 545

5345 540

5078 638

4936 784

14075 184

8195 83

14067 52

8479 617

3802 13

3841 101

(4)8 1155 r44

958 9

7674 605

6934 1t7

4947 536

5486 r49

144L4 r574

9343 699

13762 1183

8960 305

4375 613

3788 I

8 (4) 1994 465

3553 7r3

17284 lzt
l7t3t 89

t2722 tlzt
ll43l 2&

23344 559

L9961 426

26882 180

19826 1923

4628 49t

3787 2

(6)10 2372 23

2105 503

66782 903

2691L 266

21450 1165

t3616 108

25992 r85

18488 t52

45005 460

24283 189

4813 653

5157 47r

(6)11 2419 442

3641 154

32300 2499

22359 364

14274 1321

6317 508

24581 2264

18441 434

29806 2671

20362 481

4350 82

5377 87

t2 (6) 3992 339

5792 513

60837 4M5

39555 3066

17560 402

6395 376

38248 534

34471 2326

768ee s?3

51600 2819

6028 585

s8ss 590

(6)12 5203 698

9ll4 525

196710 9998

106686 4934

66610 3768

26425 2601

61486 4812

39529 3696

168641 9808

74628 337

15115 454

14674 248

(s)17 3420 5A

14959 991

691861 3498

245187 3888

32844 l13

26548 1023

119854 534

98380 5351

422582 638

251430 6041

7306 678

7234 500

5 Implementation and Conclusion 32

than the PSO. Generally, the PSDS and the IRDS have approximately the same time behaviour.

The reason why the IRDS is much better than the PSDS in the last three experiments could be the

following : The selection of a direct subterm (second condition of 2.11) is directly successful.

Considering the remarks of this section we come to the conclusion that the implementation of the

RPOS, the KNSS and the KBOS is the most favourable solution. The RPOS seryes as a

pre-processor for the KNSS since the RPOS is faster than the KNSS.

5.3 Concluding remarks

Various methods for proving the termination of term rewriting systems have been suggested. Most

of them are based on the following notion of a simplification ordering : Any term that is syntactically

simpler than another is smaller than the other. In this paper, a collection of simplification orderings

has been pointed out, including the well-known recursive path and decomposition ordering, the

improved decomposition ordering of Rusinowitch, the path of subterms ordering (and an equivalent

version on decompositions), the path ordering of KapurNarendran/Sivakumar and the

Knuth-Bendix ordering. Most of the original definitions of those orderings cannot orient for example

the associative laws. However, this is possible by using the principle of status (cf. [KL80]) in

conjunction with the orderings. A variant with status exists as RPOS ([KL80]), RDOS (two

versions : [Le84] and [Ru87]) and KNSS ([KNS85]). A pan of our work consisted of adding the

principle of status to existing orderings and therefore, of creating the following new orderings : A
new RDOS , PSDS (PSO with status) , IRDS (IRD of Rusinowitch with status) and KBOS. It
turned out that the IRDS (= KNSS) is the most powerful ordering of the class of path and

decomposition orderings presented. Since the KBOS and the IRDS overlap only two (resp. three)

of the thirteen orderings must be exposed : IRDS = KNSS and KBOS. The definition of
the KNSS is more suitable for an implementation than the IRDS. On the contrary, we prefer the

IRDS to twig the technique of comparing terms. The cause of it is that the dehnitions of the various

orderings based on decompositions have a new outward : The used decompositions only contain

terrns instead of vectors with three (or even four) components.

This report extends the considerable set of different decomposition orderings. To preserve the

survey we finish with the comparison between the well-known and new decomposition orderings.

Due to lack of time, we can only conjecture the foliowing dependencies :

- The RDOS of [Le84] is included in our RDOS.

- The RDS of [Ru87] is a technique which connects the notions of the PSO (the principle

of breadth-first), the IRD (the principle of depth-first) and lexicographical status. We

suppose that the RDS and the IRDS overlap.

- The PSDS is included in the RDS of [Ru87].

A closer examination of these conjectures as well as the exact time complexities of the orderings will

be part of the future plans.

Ä D-^^f. 2?

6 Proofs

At the beginning we want to point to a general fact : The proof of a lemma based on an ordering with

status contains the proof of the same lemma relative to the corresponding ordering without status.

In this chapter, when writing a numeral in a circle (e.g. O, @,...) we will refer to a

counter-example. All examples are given on page 52.

6.I Lemma IRDS is irreflexive.

Proof : We must show that t lnos t. It obviously follows from the definition.

6.2 Lemma IRDS is transitive.

Proof : It is clear that if an ordering is transitive then its extension to multisets preserves this

propefry (*) (cf. [DM79]). Thus it is sufficienr ro show that >r, is transitive :

r)ELs)ELt *+ r)ELt.Weproveitbyinductionon lrl+lsl+ltl.
Let be r=f(rr,...,1), s=g(sr,...,s-) and t=h(tr,...,tr) with re dec,r(r'), s€decv(s') and

t e dec*(t'). We have to consider four cases :

D f > g v g> h

,. f r h because r isapartialordering and r)eL s)pL t
'+ r)pL t by definition of >r,l

ii)f=g=h A t(0=mult
^

[sub(deco(r') , r) >r, sub(decr,(s') , s) v sub(decn(s') , s) >r, sub(dec*(t') , t)l
Ef sub(decu(r') , r) >r, sub(dec*(t') , t)

by induction hypothesis (since (vT e sub(decr(a'), a)) I yl < I a I) and (*)
'x) r)sL t by definition of >pl

üi)f = g=1 ^ T(0 =mult ^ sub(decu(r'), r) = sub(decu(s'), s) = sub(dec*(t'), t)
^

dec(args(r)) nn* dec(args(s)) rrnE, dec(args(t))
i. - sub(dec,,(r'),r) = sub(decw(t'),t)

- dec(args(r)) >>r, dec(args(t))

by induction hypothesis (since (Vy e dec(args(Ä))) I yl < I A I) and (*)
'- r)EL t by definition of)sL

6 Proofs

iv)f=g=1 A t(f)+mult ^ args(r)>rRDS,t(fargs(s)>rRDS,t(eargs(t)
^

{r} nrnos args(s) ^ {s} nrnos args(t)

'n+ - args(r))lRos,"(' args(t)

because >rnps is equivalent with >>>>EL on decompositions, the lexicographical

extension of an ordering is transitive if the ordering is, and by induction hypothesis

since (Vy e dec(args(A))) lyl < I A I

- {r} nrRDS args(t)

because r)rRos s ("- {r} ,\nps {s} ,\nos args(t)) , by induction hypothesis and

(*). It remains to be shown that r)nos s. This is equivalent to

dec({r}) >>r'. dec({s}): dec({r}) = {d u {r} I de dec(args(r))} and dec({s}) =

{du {s} I de dec(args(s))}. Since dec({r}) >>r, dec(args(s)) (precondition), it
remains to be shown that r)EL s which is also a precondition. tr

6.3 Lemma IRDS has the subterm property.

Proof : We have to prove that e + u€ O(0 implies t)rRos t/u. Let ue O(t) and u + e.

Then, t)npos t/u (see tKL8Ol). This fact implies that t >r*o, Vu because RPOS c IRDS

(see 6.18 and 6.19). tr

6.4 Lemma IRDS has the replacement property.

Proof : The following has to be shown :

(Vi e [1,n]) s)nos s' r+ t := f(tr,...,ti[e +- s],...,tJ)tRos f(tr,...,t,[e - S'],...,t,r) =: t'.

Note that t)rRps t' iff dec([t]) >>r, dec({t'}).

dec({t}) = {du {t} I de dec(args(t)), je [1,n], j + i] u {du {t} I de dec({s})} and

dec({t'}) = {du {t'} I de dec(args(!)), je [1,n], j + i] u {du {t'} I de dec({s'})}.

Therefore, we have to prove

i) decu(t)) t >el t'e decu(t') ,Vu€ Ot(t)\{i.vlv e Ot(s)}

If this statement is valid the path-decompositions of {d u {t} I d e dec(args(t)), j e [1,n],
j + il are greater than those of {d u {t'} I de dec(args(t)),j e [1,n],j + i]

ii) dec({s}) o,rsL dec({s'}) :

This requirement directly follows from the precondition that S)rRDs s'.

The proof of i) is divided into two parts depending on the status of the leading function symbol f
of t and t':

34

6 Proofs

- t(0 = mult:

Obviously, sub(dec,,(t) , t) = sub(dec,,(t') , t') if u is restricted to the set of the precondition.

Therefore, the question is whether dec(args(t)) nnEL dec(args(t')) is tme which is equivalent

to the statement that dec({s}) >>r, dec({s'}) (which is proved in ii) since the remaining

arguments of t and t' are identical.

- r(0 = left
+ We must show that o) args(t) >rRDS,t(' args(t') and F) tt) >>r*o, args(t') :

ct) is true because args(t))tr=tre args(t'), for all j <i and args(t))ti=S)rRDs S'

= ti e args(t') which is the precondition.

B) is valid since args(t) >r*o, args(t') (cf. previous case), {t} "rnos args(t) (subterm

property of the IRDS, see 6.3), and the IRDS is transitive (6.2).

- t(0 = right :

analogous with the previous case

6.5 Lemma IRDS is stable w.r.t. substitutions.

Proof (cf. [RJ81]) : We have to show that s)rRps t implies o(s))lRos o(t), for any

substitution o. Strictly speaking, we must prove : Cdv e Ot(|) Qu e O(s)) decu(s) ,r* decu(t) E

Cy'v'e Ot(o(t))) (3u'e Ot(o(s))) decu,(o(s)) >r'- decu,(o(t)).

Let v'e Ot(o(t)), then (3i,v e lN*) v'= v.i A v e Ot(t)

Since s)rRos t there exists u e Ot(s) such that dec,,(s) >r, deco(t). To prove that

€V e Ot(o(s))) decr(o(s)) >r, decu,(o(t)) we have to distinguish two cases :

i) t/v4X n+ v'=v

- s/u{x
,". u € Ot(o(s))

'- decu(o(s)) ,>rl dec,(o(t))

since decrr(s) >n,- dec.'(t) '*
'* V=u

- s/u=x€X
". Cd'w e O(o(x))) decu.*(o(s)) "sl dec,(o(t))

because decu(s) >r, decn(t) r
'* V = u.w' with w'e Ot(o(x))

35

tr

6 Proofs 36

ii) t/v = x € X ',rf s/u = x (otherwise decu(s) |r,. dec"(t))

"- vt = v.i

'- decu.r(o(s)) ,re'- dec.,,.,(o(t)) ?
because decu(s) >r, decn(t) and o(s)/u = o(t)/v = o(x)

"- V=u'i

6.6 Lemma A partial and monotonous (w.r.t.theprecedence) ordering > iswell-founded

if there exists a well-founded ordering > which contains > w.r.t. total precedences.

Proof : Assume that p is a partial precedence and > is not well-founded
,{. f t, >(l) tz >(p) . . .

'tr+ 3 tt >(t)tz>(q)... with ps q and q istotal

because > is monotonous w.r.t. the precedence
tr') 3 tt)(q) tz t(q) . . .

because > g > w.r.t.totalprecedences

I to > is well-founded

6.7 Lemma RPOS is monotonous w.r.t. the precedence.

Proof : We show by induction on I s I + I t I that s >pe5(O t if s >tpss(p) t and p s q.

The requirements i), ii) and iii) of the definition of the RPOS (on page 9) are fulfilled by the

inductionhypothesisandthefactthat f>g (resp.f =g)e p implies f>g (resp.f =g)€q. The

only crucial case is iv) :

args(s) zppe5(p) {t}
'r+ - args(s) rrnpos(p) [r]

'-f args(s) "*ps5(g) {t}
by induction hypothesis

or

- args(s) = {s'} A s' -(p) t

". s' _(q) t
because f=g€p impiies f=g€g

:' args(s) zppe5(l) {t} _ (*)

Lets,tbes=f(sr,...,s_) and t=g(tr,...,t,r) with f#ge p and foge q (theothercases

fog, grfe p are very easy to prove). The definitionofthe RPOS musth unequivocaland

therefore, we have additionally to show that {s} "npos(g)
args(O.

tr

tr

6 Proofs 77

Assume that there exists a ti such that s l*n6s(q) t;.
i!. s l*nor(g) t

because the RPOS is transitive and possesses the subterm property (tKL8Ol)
tr- args(s) Lnpos(q) {t}
I to (*)

6.8 Lemma RDOS is monotonous w.r.t. the precedence.

Proof : Since)noos is equivalent to >>>>LD on elementary decompositions and >>>>ro is the

extension of)lp to multisets of multisets, it is sufficient to show that >LD is monotonous w.r.t.

theprecedence: s >1p(p) t "'+ s >1p(e) t if psq. The proof consists of the

induction on I s l+ I t I and of the case distinctions on the leading function symbols of s

and t. Let s=f(sr,...,s_), t=g(tr,...,tr) and se dec,r(s'), te dec,n(t').

i) f>g e p

".r f>g €e
because p E q

,',. s >LD(q) t

ii) f=gep A r(0=mult ^ sub(decu(s'),s)
"r_o(p; sub(dec,,(t'),t)

,* f=B€g ^ t(0=mult
because p E q

"- We have to show sub(decu(s') , s) olo(q) sub(decu(t') , t) : This is valid because of the

induction hypothesis (since (Vy e sub(decr(A'), A)) I yl < I A I) and because the

extension of)Lo to multisets preserves the required condition.

iü)f=gep A r(0=mult A sub(decu(s'),s) =(p) sub(decn(t'),r)
^

args(s)'rspe5(p) args(t)
tr.+ - f=g€g ^ r(0=mult ^ sub(dec,r(s'),s) =(q) sub(dec.'(t'),t)

because pEq and sub(decu(s'),s) = sub(decu(t'),t)
- args(s) ,rpps5(e) args(t)

because)>RDos is the extension of >noos to multisets and \.pos is equivalent to
>>>>ro and because of the induction hypothesis (since (Vy e args(A)) ly I < I A I)

iv)f =ge p ^ t(f) + mult ^ args(s) >RDes,r(o(p) args(O ^ {s} rnoos(p) args(t)

- args(s) >RDos,r('(q) args(t) ^ {s} ,rnoos(q) args(t)

with the help of the considerations of the previous cases tr

D

6 Proofs 38

6.9 Lemma RPOS is stable w.r.t. substitutions.

Proof : We have to prove that, for arbitrary terms s and t, s)Rpos t implies o(s) >*-, o(t)
forany substitution o. Weshowthis statement inductively on lsl+ltl.Let s=f(sr,...,s.)
and t = g(tr,...,trr).

i) f og A {s} rrnposargs(t)

'* {o(s)} >>Rpos args(o(t))

by induction hypothesis

'- o(s) >npos o(t)

because top(o(s))-f > g=top(o(t))

ii)f =g ^ r(fl=mult ^ args(s)>>Rposargs(t)

- args(o(s)) ,>npos args(o'(t))

by induction hypothesis

"- o(s) >npos o(0

because top(o'(s)) =top(o(t)) =f A r(0 =mult

üi)f =g ^ t(f1 +mult ^ args(s))npos,"('args(| A {s} rrnposargs(t)
E) - args(o(s)) >RpoS,t(r, args(o(t))

by induction hypothesis and since s - t implies o(s) o(0
- {o(s)} ,)Rr's args(o(t))

by induction hypothesis
,'- o(s) >npos o(0

because top(o(s)) =top(o(t)) =f ^ r(f1 + mult

iv) args(s) 2pp65 {t} :

- (li e [1,m]) si)npos t
r. Qie [1,m]) o(si) >npos o(t)

by induction hypothesis
tr* o(s) >*oo, o(t)

by definition of the RPOS

- (li e [1,m]) si =Rpos t

'F) Bi e [1,m]) o(si) =Rpos o(t)

because s=Rpost iff s - t and s - t implies o(s) - o(0
{'f o(s))Rpos o(0

by definition of the RPOS

6 Proofs 39

6.10 Lemma KBOS is irreflexive.

Proof : We must show that t lrnos t. This is easily proved by induction on the size of t. tr

6.11 Lemma KBOS is transitive.

Proof : We have to prove that r)KBos s)Ksos t "+ r >oo, t. It is clear that

(Vxe ,{ #*(r)>#*(t) if (Vxe 4 #*(r)>#*(s)>#*(t) because > on lN isa partial ordering.

We have to consider three cases which will be proved by induction on lrl + lsl + ltl.

i) q(r) > q(s) v q(s) > q(t)
tr" q(r) > q(0

because > is a partial ordering
(+ r)loos t

ii) g(r) = g(s) = g(t) ^ [top(r) > top(s) v top(s) > top(t)]

'. g(r) = g(t) ^ top(r) I top(t)

because r is a partial ordering
Ef r)XsOs t

iü) <p(r) = g(s) = g(0 A top(r) = top(s) = top(t) :

Let be r = f(rr,...,rrr), s = f(sr,...,srr) and t = f(tr,...,t,r).

- t(0 = left
i. Cji, j) (Vk < i) (Vl < j) rk- Sk ^ sl- tl A ri)rsos si ^ sj >KBoi tj

s) i+j
n f ri)xnos si =KBos ti v ri =KBoS si >rnos t
,r.r ri)rsos ti v 13 >rnos I

because si - ti (resp. r, - sr)

r) r)Keos t
by definition of the KBOS

p) i=j
t ri)KBos si)tcsos tr

+ ri)xgos ti

by induction hypothesis
..f r)xeos t

by definition of the KBOS

6 Proofs

- t(0 = right :

analogous with the case t(f; = lsfl

- t(f) = mult
m+ {rr,...,rrr} ttKBos {sr,...,s,r} ttKBos {tr,...,tr}
'ix. {rr,...,rrr} ntoo, {tr,...,t,r}

by induction hypothesis and since the extension of an ordering to multisets is transitive

(see [DM79])
'- r)xnos t

by definition of the KBOS tr

6.12 Lemma KBOS has the subterm properry.

Proof : We have to show that e + u e O(t) n- t)reos t/u. Let us consider a terrn t and an

occurrence ue O(t),top(t)=1 and top(t/u)=g.Itisclearthat (Vxe n #*O>#*(Vu).
We must distinguish two cases which will be proved by induction on I t I :

i) q(t) > q(t/u)
ilr+ t >*"o, Vu

ii) <p(t) = g(t/u)
E) 9(0=0 ^ f isaunaryfunctionsymbol

- f + g
*. f og

(see 3.2 on page 21)

'r. t >oo, t/u

by definition of the KBOS

- f = g:

lrt t=f(t'), Vu=f(t")
r+ t')KRos t"

by induction hypothesis since t' (resp t") is a proper subterm of t (resp. t')
E) t)xsos t/u

by definition of the KBOS tr

6.13 Lemma KBOS has the replacementproperty.

Proof : It is to show (Vi e [1,n]) s >KBos s' o t := f(tr,...,t1[e e- s],...,t,r))xgos

f(tr,...,trle e S'],...,t,r) =r t'.

40

6 Proofs

Clearly, (Vx € 4 #*(s) > #*(s') ,t (Vx e 4 #*(0 > #*(t').

We have to examine two cases :

i) 9(s) > q(s')
nf q(t) > q(t')
r+ t)xnos t'

ü) q(s) = q(s)
tr.f g(t) = g(t')
tr+ We have to show that args(t) >rnos,t(0 args(t') (because top(D = top(t')) :

Since the arguments of t and t' are equal except the t,'s, the requirement above is fulfilled
irrespective of the status of f.

With the help of the following lemma we will prove that the KBOS is stable w.r.r. subsritutions.

6.14 Lemma Let be s, t € f and (Vx e -t1 #*(s) > #*(t).

Then, (Vo) i) (Vx e 4 #.(o(s)) > #"(o(t))

ii) 9(s) > p(t) n' q(o(s)) > q(o(t))
iii) 9(s) = e(t) r. q(o(s)) > q(o(t))

Proof :

i) Ler xe x, we have to show that #*(o'(s)) - #*(o(D) > 0.

Note that #*(o(s)) = I #r(s) * #*(o(v))
yex

* #*(o(s)) - #*(o(t)) = X #r(s) * +*{o(l)) - I#y(t) * #*(o(v)) =
yex yex

= t J#r(s)-#y(01 * #,.(o'(y))
yex

which follows from the precondition (Vx e 4 #*(s) > #*(r)

ii) We must prove that q(o(s)) - rp(o(|) > 0 :

Note that q(o(s)) = g(s) + I #*(s) x [<p(o(x)) - go].
\ex

''+ rp(o(s))-q(o(0) = 9(s) + I#*(s)*[p(o(x))-90] - q(t) - x #*(t)*tq(o(*))-9sl =
xex xex

= 9(s) - q(t) + I t<p(o(x)) - gol * [#"(s) - #*(t)]
xeX

This expression is greater than zero because q(s) - q(t) > 0 (precondition), p(o(x)) - go > 0
since g(x) = gs, #*(s) - #*(t) r 0 (precondition).

tr

6 Proofs 4).

üi) This fact is proved the same way as before.

6.15 Lemma KBOS is stable w.r.t. substitutions.

Proof : We have to show that (Vo) s)trnos t ,- o(s) >rnos o(t).This will be accomplished

by induction on lsl + ltl. Let be s = f(sr,...,s-) and t = g(t1,...,tr,). Note that the variable

condition is fulfilled : #*(o(s)) > #*(o(t)) (see 6.14 i).

tr

i) q(s) > q(0

- q(o(s)) > q(o(t))
r. o(s) >xnos o(t)

(cf. 6.14 ii)

ii)<p(s)=g(t) ^ fog
tr- q(o'(s)) : q(o(t)) A top(o'(s))-f o g=top(o(t)) (cf.6.14iii)
'I+ o(s) >rnos o(t)

iü)g(s)=e(t) A f=g A r(0=mult
x+

{ sr,...,s-} nKBos {tr,...,trr}
d {o(sr),...,o(s,rr)} nKBos {o(tr),...,o(t,)}

by induction hypothesis and the fact that S :KBos t ..+ o(s) =*"o, o(t)

'{'. o(s) >rsos o(t)

iv)g(s)=q(t) ^ f=B A r(0=left
ü. (:i) (Vj < i) sj =KBos ! ^ si)rnos ti
nr+ (li) (Vj < i) o(s,) =*"o, o(1) A o(si) >xso, o(t1)

by induction hypothesis and the fact that S =KBos t "- o(s) =*"o, o(t)

'". o(s) >xsos o(t)

v)q(s)=g(t) A f=g ^ r(0=right:
This can be proved with the help of the considerations of the previous case.

6.16 Lemma Let > be total :

i) RPO c RPOS

ü) PSD c PSDS

üi) RDO c RDOS

iv) IRD c IRDS

v) KBO c KBOS

tr

6 Proofs 43

Proof : - (Vcord> e {RPO, PSD , RDO ,IRD , KBO}) <ord> c <ord>.S :

trivial, according to the definition of <ord>.S relative to <ord>

- (V<ord> e {RPO, PSD , RDO ,IRD}) <ord> + <ord>.S : @

- KBO+KBOS: @ tr

6.17 Lemma lrt r be total:

i) RPO c PSO

ü) PSO = PSD

iii) PSD c IRD

iv) IRD = KNS

v) IRD r RDO

vi) RDO = RPO

Proof : i) RPO s PSO

RPO + PSO

ii) PSO = PSD

iü) PSD s IRD

PSD + IRD

iv) IRD = KNS

v) IRD = RDO

IRD + RDO

vi) RDO = RPO

RDO + RPO

lRu87l
@

lSt88l

lSt88l
o
[Ru87]

trivial, according to the definition of the IRD (cf. 2.12 on page 14)

@

[RJ81]

o tr

6.18 Lemma Let r be total : RPOS c RDOS.

Proof : We have to show that s)Rpos t ,- s)Roos t. The proof is performed by using

inductionon lsl+ltl.Let s,t be s=f(sr,...,s*) and t=g(t1,...,tn).

i) fog ^ {s} ,>Rpos {tr,...,t,}
!. s)Roos ti, forall ie [1,n]

by induction hypothesis
il'+ dec({s}) >>ro dec({t1}), for all i e [1,n]

by definition of the RDOS

Notethat dec({t}) = {du {t} lde dec({tt}), ie [1,n]].

6 Proofs 44

'r) dec({s}) >>ro dec({t})

because top(s)=f t g=top(t) andtheredoesnotexista subtermof t equivalent to s

(otherwise s would not be greater than all the tr's).

'r+ s)Rpos t
by definition of the RDOS

ü)g>f n {sr,...,s,,r}2npos{t}
ö @i e [l,m]) si 2noos t

by induction hypothesis

,. @i e [1,m]; dec({s1}) >>ro dec({t})

by definition of the RDOS

'r') dec({s}) >>ro dec({t})

because (Vu e Ot(si)) decu(s1) . decr.,,(s)

i+ s)Rrr,cs t
by definition of the RDOS

üi)f=g A r(0=mult ^ {sr,...,s,r} ,rRpos {tr,...,tr}
tr+ {sr,...,s,r} r>RDos {tr,...,trr}

by induction hypothesis

'|r. Cdtxlsi) si >Roos t, ,r {s1,...,sr,} + {tr,...,tr}
by definition of multiset orderings

il'!. (V!)(3si) dec({si}) >>p dec({1}) (*)

by definition of the RDOS

Notethat dec({s}) = {du{s} ldedec({si}), ie [1,n]] and

dec({t}) = {d u {t} tde dec({t,}), ie It,n]].
',+ We have to show that (Vv e Ot(t)) (3u e Ot(s)) deco(s) r s)Lp t e decu(t)

since (*) holds

'{+ we have to prove that

sub(decu(s) , s) ,>LD sub(decu(t) , t) v [sub(decu(s) , s) =LD sub(decn(t) , t) A

args(s) nRDos args(t)l (by definition of >ro) ,

This can easily be shown with (*) and the fact that

args(s) = {s1,...,Sn} n*oo, {tr,...,trr} = args (t).

iv)f = g A t(f; + mult A args(s) >RpoS,t(r) args(| A {s} ,rnpos args(t)
,4 - args(s) >RDoS,t(t) args(t)

by induction hypothesis and S =Rpos t iff s - t iff s =RDos t
- {s} "RDos

args(t)

by induction hypothesis

6 Proofs 45

il') s)ROOS t

by definition of the RDOS

The RDOS and the RPOS are not equivalent : The termination of the rule O of the counter-

examples 6.27 (on page 52) can be proved with the RDOS but cannot be proved with the

RPOS. tr

6.19 Lemma Let r be total: RDOS c IRDS.

Proof : It is sufficient to show that s)Lo t implies s)nL t because)Roos (resp. >,*os) is

equivalentto >nro (resp.>>>EL) on elementary decompositions. Therefore, let s and t be

s=f(sr,...,s-) and t=g(t1,...,tn). Furthermore, se dec,,(s') and t€ decu(t'). The proof

will be performed by using induction on I s I + I t l.

i) fog
"- s)gLt

by definition of >r,

ii) f=g ^ t(0 =mult ^ sub(decu(s'),s) nLo sub(decu(t'),t)

'i+ sub(deco(s') , s) nsl sub(decu(t') , t)

byinductionhypothesis since (VT e sub(decr(A'),4)) lyl< lAl
'E) S)nL t

by definition of >r1

üi)f=g A t(0=mult ^ sub(decu(s'),s)=Losub(decn(t'),t) ^ args(s)>>RDosargs(t)
E - sub(dec,,(s') , s) =r'- sub(decu(t') , t)

because S=LDt iff s-t iff S=ELt

- args(s) >r*o, args(t)

by induction hypothesis and the fact that)nos is equivalent to >>>EL on elementary

decompositions
E) (Vje [1,n]) (3ie [1,m]) rt 2r^p, ! n args(s) + args(t)

by definition of multiset orderings
i+ (Vj e [1,n]) (3ie [1,m]) dec({si}) zz4 dec({ti})

by dehnition of the IRDS
,i dec(args(s)) rrrr* dec(args(t))

x'f S)gL t

by definition of >r,

6 Proofs 46

iv)f=g ^ t(fl=left ^ args(s))RDos,l"rrargs(t) ^ {s}nnposargs(t)
nr) - (3ie [1,n])(Vj<i) s, =noos t, ^ dec({si}) >>ro dec({t1})

- (3ie [1,n]) (Vj <i) si rnos t ^ dec({si}) >>r, dec({t,})

because S =RDos t iff s - t iff s -nos t andby induction hypothesis

D (3i e [1,n]) (Vj < i) si ='nos ! A si)rRos ti

by definition of the IRDS

'* args(s))rRDS,l"ft args(t)

- {s} >>rRDs args(t)

since)rRos (resp. >noos) is equivalent to ,rnr, (resp. onLD) on elementary

decompositions and by induction hypothesis
Ef S)ett

by definition of >r,

v) f = g A t(0 =right ^ args(s))noos,.ier,, args(t) ^ {s} ,rnoos args(t):

analogous with iv)

IRDS + RDOS : The termination of the rule @ in 6.27 (on page 52) can be proved with the

IRDS butnotwiththe RDOS. tr

With the help of the following lemma (the idea originates from [KNS85]) we will prove that the

IRDS and the KNSS are equivalent.

6.20 Lemma Let be p, q and r (parts of) paths.

Then, p >n g iff p.r >LK q.r.

Proof :Let s beaterm.

- P >x Q ' P'r >LK q'r:
We show that p >lx g tr'f p.[s] >n q.[s]. This is true because p.[s] r s)Lr s e q.[s] :

i) t(top(s)) = mult
i{ sub(p.[s],s) = sub(q.[s],s)=[] n

path(args(s e p.[s])) = path(args(s e q.[s]))
^

p' := sup(p.[s] , s))Lr sup(q.[s] , s) =: q'

because p'= p , e'= e and p >n e

ü) t(top(s)) + mult
f,) args(s € p.[s]) = args(s € q.[s]) A

p' := sup(p.[s] , s))Lr sup(q.[s] , s) =: q'

because p'= p , e'= g and p >r_x g

6 Proofs

p.r >LK q.r + P >16 Q:

Analogous with the if-part we prove that p.[s] >r_r q.[s] implies p >s1 g, i.e.

(Vt'e q) Gs'e p) s')LT t' . Proving this statement by contradiction we assume that

(3f e q) (Xs'e p) S')LT t' .

"+ p.[s] r s)Lr t'€ q
because p.[s] >r_r g.[s] and therefore, p.[s] >'* g

rp.[s]rs)Lrs€q.[s] ()

because (trs'e p) S')LT se q.[s], otherwise s' >r, t'€ q since s')LT s)LT t'

and)Lr is transitive (r* is transitive since D,)LK and)xxss are transitive)

47

i) t(top(s)) = mult
tr.. sub(p.[s] , s)

path(args(s e p.Is]))

sup(p.[s] , s))Lr
because (*) holds

tr+ P>nQ

ii) t(top(s)) + mult
ü. args(s € p.[s]) =

sup(p.[s] , s))Lr
because (*) holds

r' P >r-x Q

analogous with 0

= sub(q.[s],s)=[] n

= path(args(s e q.[s])) A

sup(q.[s] , s)

args(s € q.[s])

sup(q.[s] , s)

because sup(p.[s] , s) = p and sup(q.[s] , s) = g

t to the assumption

tr

6.21 Lemma IRDS = KNSS.

Proof : The proof is divided into two parts. In the first one, we will give an alternative definition of
the KNSS denoted by KNSS*, using the previous lemma. Then, we will show the equivalence of
the IRDS and the KNSS*. Like Rusinowitch (cf. [Ru87]), we are able to make the check

'sup(p,s)>Lrsup(q,t)'in ii)andiii) of definition 2.5 (onpage11) redundant by requiring

that p and q have no common suffix. Thus, we need the denotation @ of removing equivalent

suffixes.@ is recursively definedas follows: p.[s] O q.ltl = p@q if s-t,and
p.[s] @ q.[t] = p.[s] otherwise. The lemma 6.20 now leads to another (but equivalent to the

original) definition of the KNSS :

6 Proofs 48

s >KNss* t
iff path({s}) >'o path({t})

with p >4 e
iff (Vt'€ q @ p) (3s'e p O q) S')LU t'

with p@qr s)Lu t e q@p

iff i) top(s) > top(t)

ii) top(s) = top(t) A t(top(s)) = mult

sub(p @ q, s) >1q sub(q@ p , t)

path(args(s)) "rO path(args(t))

iü) top(s) = top(t) ^ t(top(s)) + mult

args(s) >KNSS*,t(topG)) args($

{s} ,rrcvss* args(t)

The proof of the equivalence of both definitions (KNSS and KNSS*) follows directly from 6.20.

The equivalence of the KNSS* and the IRDS is based on the following two statements :

i) (Vt'e q @ p) (3s'e p @ q) S')LU t' iff set(p) >LU set(q)

ii) dec,,(t) = se(pat\(t)) (cf. definition of dec on page 7)

The proofof i) is easy because

set(p) >ur set(q) iff (Vf e set(q\et(p)) (3s'e set(p\et(q)) s' >ru t' n set(p) + set(q).

Furthermore, si - tj implies [sr;...;s-l O [tr;...;t,J = [sr;...;s'_1J and [tr;...;trrJ @ [sr;...;srrl =
[tr;...;ti_11. tr

With the help of the following two lemmata we will show that the PSDS is included in the IRDS.

6.22 Lemma Let > betotal, deco(t)= {tilie [0,n]], g,=top(t1), t,*ra directsubtermof t,

and k=min {ilgilg.;,je [O,nJ].Then, (Vie [0,n])i+k - tr)Lp ti if t(gr)=mult.

Proof : i) (trj e [0,n]) Br = Bj

- Cdie [0,n])i+k
because (Vi + k)

k

)Lp ti
and by def,rnition of)Lp

with j +

r' tk

8rt8r

ii) (3j e [0,n]) Br = Bj with j + k

'- We have to prove that dec(args(tu)) n,rlp dec(args(1)) @ecause t(gu) = mult) :

This is fulfilled since 1 is a subterm of t. (because k = min...) and therefore, for

each path-decomposition dec* of dec(args(1)) there exists a path-decomposition

decn (w is a suffix of v, i.e. w and v mark the same leaf) of dec(args(tr))

which is greater because dec* c decu :

6 Proofs 49

f-

: dec"

: dec*

: leaf

Remark: If g,, is a variable, the lemma does not hold. However, this does not bring discredit

since the variable case is irrelevant and willnot be considered (see6.24ii).The

following lemma must also be restricted in this way. tr

6.23 Lemma Let r be total, dec,,(| = {ti li e [0,n]1, gt = top(ti), t,*, a direct subterm of t,
and k=min{iIg1lB,,j€[0,nJ].Then, (Vie[0,n])i+k - tt)eLti if r(gr)=mult.

Proof : i) (Xj e [0,n]) Bt = Bj with j + k
* Cr'i e [0,n]) i + k i+ tr >rl ti

because (Vi + k) gr D gi and by definition of)Br-

ü) (lj e [0,n]) Br = Bj with j + k
*r We have to prove that sub(decu(t) , tk) rrEL sub(deco(t) , t;) (because T(gk) =

mult) : This is fulfilled since t, is a subterm of tk and therefore,

sub(decu(t) ,tr) t sub(decu(t) , !). (cf. proof of 6.22) tr

6.24 Lemma Let rbetotal: IRDS r PSDS.

Proof : We have to prove that s)psls t implies S)rRps t which is equivalent by definition of
PSDS and IRDS to d,iillttl >>>>Lp dec({t}) + dec({s}) ,',)EL dec({t}). W.l.o.g. let

dec({s}) n dec({t}) - g-. By definition of multiset orderings, dec({s}) >>ro dec({t}) if and

only if Cy'v e Ot(t)) Qu e Ot(s); decu(s) >rn dec,,(t). We show that dec,,(s) >rn decu(t) 'rf

€V e Ot(s)) decr(s) >>EL decu(t) by induction on max {ls'l ls'e decu(s)} +
max{lt'l lt'e decu(t)}=lsl + ltl whichimpliestheinclusion IRDS : PSDS.

lrtbedecu(s)= {stlie[0,m]] with s,*risadirectsubtermof s, and top(si)=f.. Furtherrnore,

let be dec.,(t) = {t, lie [0,n]] with t,*, isadirectsubtermof t, and top(ti)=gi.

L*) il^is *'4uc{ iotn c-otu be- 'datlc s.q(c }Fr' i-: *f ,o, *&'& r
!ieo>, i' ; J

lf # (" teslu ;a* fi'öQ- '* J' n,.rD" i 'tl?gs

('
"0

/. .\

6 Proofs

Note that - Gk e [0,m]) (Vi e [0,m]) fk I fi A

@le [0,n]) (Vi e [0,n]) g, L Bi

because > is total

-frt gr

otherwise decu(s))rn decn(t)

i) fk> Br

'tr+ decr(s) >rt decu(t) if ry = u

by definition of >r,

ii) fr = gr r.. t(f1) = mult :

Let l*,k* be k*=min{ilfk=f,,ie [0,m]] and l*=min{ilg,=gi,ie [0,n]].
'r+ S1*);p t1*

because >lp is transitive andlemma 6.22

''I+ dec(args(su*)) nnLpdec(args(q*))

because top(s1*) = top(tr*) = ft and by definition of >ro

'i) (Vw'e Ot(t)) (3w e Ot(s)) sub(dec.,"(s) , s1*) z1p sub(dec*,(r) , E*)
because dec(args(so*;; = {sub(dec*(s),h*) lwe Ot(s)} and

dec(args(q*)) = {sub(dec*(t),t,*) lwe O(t)}
'd (3w e Ot(s)) sub(dec*(s) , s1*) z1p sub(decn(t) , t1*)

because v e Ot(t)

- sub(dec,,n(s) , s1*) >rn sub(decu(t) , t1*)

{'. sub(dec*(s) , fu*) >r, sub(decu(r) , t1*)

by induction hypothesis

ö dec*(s)) 51* >tL t,* e decu(t) with V = w

by definition of >r'-

'+ dec*(s) >r,- dec.,,(t)

because >eL it transitive and lemma 6.23

- sub(dec*(s) , su*) =ro sub(decu(t) , t,*)

'r+ sub(dec*(s) , ss*) =r1 sub(dec"(t) , t,*)

because the argument of sk* which belongs to the path with the terminal occurence

w is equivalent to t1**1

rt We have to show (cf. definition of >rr) that dec(args(s**)) nrr'L dec(args(t,*)) :

This is valid because dec(args(sn*)) n,rLp dec(args(q*)) and by the induction

hypothesis and the dehnition of multiset orderings.

'!D dec*(s)) 51* >lL t,* e decu(t) with V = w

by definition of >r,
'i+ dec*(s) >r, dec.,r(t)

because tel ir transitive and lemma 6.23

50

6 Proofs 51

iü) f1 = 81 l. t(fn) = left

"+ (3k'e [0,m]) args(sk))psDs,l"rt args(q) ^ {sr'} ,tpsps args(q)

because decu(s) >r, decu(t) and by definition of >r_p

W.l.o.g let be k'= k. We have to show that there is an ty e Ot(s) with decr(s) ,r* decu(t).

We prove lV = u. If we could show that args(s1))rRDs,l"f, args(t1) and {sn} t>r*o, args(t1),

this would imply the desired aim since the other ti's are smaller (w.r.t. >B1) than su

(because top(s1) = fk D f. = top(ti)).

Let st, tt be s1 = g1(S1',...,S0') and tl = gl(t1',...,r0') . Then,

- (3i e [1,p]) (Vj < i) si' =psDs l' ^ si' >psos ti
because args(s1))psDs,l"f, args(tl)

,o (3ie [1,p]) C/j <i) sr' - t,' ^ dec({st'}) >>ro dec({tj})
since =psDs is equivalent to - and by definition of the PSDS

tr- (3ie [1,p]) (Vj <i) si' =rRos tj' ^ dec({sj}) >>r'. dec({t1'})

since ! is equivalent to -nos and by the induction hypothesis (s,' is a proper

subterm of s)

"+ args(sp))rRDs,l"f, args(q)

by definition of the lexicographical extension of the IRDS

- Cdie [1,p]) h >psns ti
because { sr} ,rpsos args(q) and by definition of multiset orderings

'n (Vie [1,p]) dec({sn}) 'ulr dec({t,'})

by definition of the PSDS

tr (Vi e [1,p]) dec({sr}) >>r, dec({t1'})

by induction hypothesis

,+ {sr} ,tnos args(tl)

by definition of the IRDS and its extension to multisets

iv) f1= 91 ^ t(f1) = right :

analogous with iii)

The IRDS and the PSDS are not equivalent : The termination of the rule O of the counter-

examples (on page 52) can be proved with the IRDS but cannot be proved with the PSDS. tr

6.25 Lemma Let > be total : PSDS r RPOS.

Proof : The proof of this statement is the same as that of lemma 6.18 except for

exchanging)Roos (resp. >1p) for)psos (resp. >pp). The inclusion is proper with the

counter-exampte @ (on the next page). tr

6 Proofs 52

6.26 Lemma Let r be total :

i) RDO , PSD ,IRD # RPOS

ü) PSD , PSDS # RDO, RDOS

iü) IRD # RDOS , PSDS

iv) KBOS, KBO # RpO, RPOS, pSD, PSDS, RDO, RDOS, IRD, IRDS

hoof : i) RDO , PSD , IRD + RPOS : @

RPOS * RDO, PSD ,IRD

ü) PSD , PSDS + RDO, RDOS

RDO, RDOS + PSD , PSDS

iü) rRD + RDOS

IRD + PSDS

RDOS,PSDS + IRD

@

@

o

@

o
@

iv) KBOS,KBO * RPO,RPOS,PSD,PSDS,RDO,RDOS,IRD,IRDS : @

RPO, RPOS , PSD , PSDS , RDO, RDOS ,IRD ,IRDS + KBOS , KBO :

x2 + x*x,with 2>*

6.27 Counter-examples

O (-x - (-x)) - (-y - Cv)) -' (x - y) - (x - y)

with t(-) = mult

@ x*(Cy)*y) + (-y*y)*x
with *p- and t(*)=mult

@ (x,ry),r2 + xa(y,rz)
with t(a) = 1sft

@ -x=(Yrz) -) Yr(xvz)
With -rlD Dv

@ (rx>y)vz -) (ytz)vx
with g(=) > 9(v)

@ and(not(not(x)),y,not(z)) -) and(y,nand(x,z),x)

with not r nand and t(and) = mult

Bibliography 53

Acknowledgement

There remains the pleasant duty to thank those

Jürgen Avenhaus , Werner Engeln, Roland

Madlener and Inger Sonntag.

who somehow co-operated in forming this paper:

Fettig, Manuela Gaß, Bernhard Gramlich, Klaus

Bibliography

[ABGM86] J. Avenhaus, B. Benninghofen, R. Göbel, K. Madlener: TRSPEC: A Term
Rewriting B ased System for AI gebraic Sp ecific atio ns
Proceedings of the 8th International Conference on Automated Deduction, LNCS 230, Oxford, England, July 1986,
pp.665 -667
A brief edition of [AGGMS87].

IAGGMSST] J. Avenhaus, R. Göbel, B. Gramlich, K. Madlener, J. Steinbach : TRSPEC: A
Term Rewriting Based Systemfor Algebralc Specfficatiorx
Proceedings of the lst International Workshop on Conditional Term Rewriting Systems, LNCS 308, Orsay @aris),
France, July 8 - 10, 1987, pp.245 -248
The essential features of the TRSPEC-system together with an overview of future extensions are
presented.

tAi8sl H. Ait-Kaci: An algorithmforfinding a minimal recursive path ordering
R.A.I.R.O. Theoretical Informatics, Vol. 19, No. 4, 1985, pp.359 - 382
Proposes an automatic inference method to compute a minimal precedence which induces a
recursive path ordering on a given set of rules.

[Ba81,l G. Bauer : Zur Darstellung von Monoiden durch konfluente Regelsysteme
Dissertation, Fachbereich Informatik, Universität Kaiserslautern, W. Germany, Februar 1981

On the representation of monoids with confluent rewrite systems. It contains an early version of the
syllabled ordering on an alphabet with two letters.

[8u85] B. Buchberger : Basic features and development of the critical-pairlcompletion procedure
hoceedings of the lst International Conference on Rewriting Techniques and Applications, LNCS 202,Dijon, France,
May 1985, pp. I - 45
Presents the history and basic features of the completion rnethod for various applications.

[Ch84] G. Choque : How to compute a complete set of minimal incrementations with the
recur siv e decompositton ordering ?

Internal Report 84-R-056, Centre de recherche en informatique de Nancy, France, 1984
Shows how to construct a precedence during the comparison of two terms according to the RDO.

[De85] N. Dershowitz: Termination
hoceedings of the lst International Conference on Rewriting Techniques and Applications, LNCS 202,Dijon, France,
May 1985, pp.180 - 224
Surveys methods for proving termination of term rewriting systems. Illustrations of the use of path
orderings and other simplification orderings are given.

[De83] N. Dershowitz: Well-founded orderings
Technical Report ATR-83(8478)-3, Information Sciences Research Office, The Aerospace Corporation, El Segundo,
Califomia, May 1983

Makes a set of rules available for building well-founded orderings. Gives some remarks on the
RPO, the RDO and polynomial orderings.

Bibliography 54

[De82] N. Dershowitz: Orderings for term rewriting systems
Journal of Theoretical Computer Science, Vol. 17, No. 3, March 1982, pp.279 - 30I
Contains the definition of simplification orderings and introduces the recursive path orderings.

[De80l N. Dershowitz: On representing ordinals up to f o
Unpublished note, Department of Computer Science, University of Illinois, Urbana, Illinois, 1980
Extends the RPO to function symbols that are themselves tenns and discusses the relation between
the ordering and ordinals.

[De79] N. Dershowitz: A note on simpliftcation orderings
Information Processing Letters, Vol. 9, No. 5, November 1979, pp. 212 - 215
The original definition of simplification orderings.

tDFSsl D. Detlefs, R. Forgaard,: A procedurefor automatically proving the termination of a set
of rewrite rules
Proceedings of the lst International Conference on Rewriting Techniques and Applications, LNCS 202,Dijon,France,
May 1985, pp.255 - 270
Presents an algorithm that can automatically prove the termination of sets of rewrite rules by
constructing the precedence over an RPO.

[DM79] N. Dershowitz,Z. Manna : Proving terminationwithmultiset orderings
Communications of the Association for Computing Machinery, Vol. 22, No. 8, August 1979,pp.465 - 476
Defines and elucidates multiset orderings.

[Fe88] R. Fenig : Dynamische Multisetordnungenfür Grundterme
Projektarbeit, Fachbereich Informatik, Universität Kaiserslautern, W. Germany, Mai 1988
Incorporates the new multiset orderings of [St86] and [MS86] to term orderings on ground tenns.

[Fo84] R. Forgaard : A programfor generating and analyzing term rewriting systems
Master's Thesis, Massachusetts Institute of Technology, Laboratory for Computer Science, MIT/LCS/IR-343,
September 1984
The design and implementation of REVE2 is described. It contains two important features :

Automatic orderings (RPOS and closure ordering) and failure-resistant Knuth-Bendix.

[HL78] G. Huet, D. S. Lankford : On the uniform halting problem for term rewriting systems
Rapport Laboria 283, IRIA, Paris, INRIA Rocquencourt, France, March 1978
Shows that the uniform halting problem for term rewriting systems is undecidable in general.

tHO8Ol G. Huet, D. Oppen : Equations and rewrite rules : A survey
Formal languages : Perspectives and open problems (R. Book, ed.), Academic Press, New York, 1980, pp. 349 - 405
Surveys applications of rewrite rules to equational reasoning and contains a section on termination.

ul87l J.-P. Jouannaud, P. Lescanne: Rewriting systems
Technology and Science of Informatics, Vol. 6, No. 3, 1987, pp. l8l - 199
Describes the main achievement and most active areas of research in rewriting systems.

lJL82l J.-P. Jouannaud, P. Lescanne: On multiset orderings
Information Processing letters l5(2), September 1982, pp. 57 - 63
Proposes two well-founded orderings on multisets that extend the Dershowitz-Manna ordering (cf.
tDM7gl). These orderings do not have the property of the monotony.

uLR82l J.-P. Jouannaud, P. Lescanne, F. Reinig : Recursive decomposition ordering
I.F.I.P. Working Conference on Formal Description of Programming Concepts II (D. Bj6rner, ed.), North Holland,
Garmisch Partenkirchen, W. Germany,1982, pp. 331 - 348
Contains the definition of the RDO and proves that it is stronger than the RPO.

Bibliography 55

[K870] D. E. Knuth, P. B. Bendix : Simple word problems in universal algebräs
Computational problems in abstract algcbra (J. Leech, ed.), Pergamon Press, 1970, pp. 263 - 297

Contains the completion procedure and the definition of the KBO.

tKL8Ol S. Kamin, J.-J. L6vy : Anempts for generalizing the recursive path orderings
Unpublished manuscript, Department of Computer Science, University of Illinois, Urbana, Illinois, February 1980

Defines the RPO with status and the semantic path orderings.

tKN8sl M. S. Krishnamoorthy, P. Narendran: Note on recursive path ordering
Theoretical Computer Science 40, 1985, pp.323 - 328
Proves that the problem of deciding whether a given pair of terms can be made RPO-comparable, by
choosing a partial ordering on their function symbls, is NP-complete.

tKNSSsl D. Kapur, P. Narendran, G. Sivakumar : A path ordering for proving termination of
term rewriting systems
Proceedings of the 10th Colloquium on Trees in Algebra and Programming, LNCS 185, 1985, pp. 173 - 187

Presents a new ordering scheme based on the RPO and shows that it strictly contains the RPO.

lLalTl D. S. Lankford : Some approaches to equality for computational logic : A survey and
CßSCSgNCNt

Report ATP-36, Automatic Theorem Proving Project, Deparfinents of Mathematics and Computer Science, University
ofTexas, Austin, Texas78712, Spring 1977

Reviews recent approaches to equality in computational logic. Particularly, it contains a section on
rewrite rules and general aspects of termination.

[Le87] P. Lescanne; On the recursive decomposition ordering with lexicographical status and
ot her rel ate d orderi ng s
preprint, December 1987

Defines the closure ordering and compares it with the RPO and RDO with lexicographical status.

[Le86] P. Lescanne: Divergence of the Knuth-Bendix completion procedure and termination
ordeings
Bulletin of the European Association for Theoretical Computer Science, No. 30, 1986, pp. 80 - 83
Illustrates the influence of a termination ordering (e.g. RPO) on the behaviour of the Knuth-Bendix
completion procedure.

[Le84] P. Lescanne : Uniform termination of term rewriting systems - the recursive
decomposition ordering with smrus
Proceedings of the 9th Colloquium on Trees in Algebra and Programming (B. Courcelle, ed.), Cambridge University
Press, Bordeaux, France, 1984, pp. 182 - 194
Presents a recursive decomposition ordering with status which is different from our RDOS.

[Le83a] P. Lescanne: How to prove termination? An approach to the implementation of a new
re c urs iv e dc c omp o s itio n or de r i n g
Proceedings of an NSF Workshop on the Rewrite Rule Laboratory (Guttag, Kapur, Musser, eds.), General Electric
Research and Development Center Report 84GEN008, September 1983, pp. lW - Lzl
It is an earlier version of [Le84].

[Le83b] P. Lescanne: Computer experiments with the REVE term rewriting system generator
Intemal Report 83-R-037, Centre de rrcherche en informatique de Nancy, France, 1983
Describes REVE, a terrn rewriting system generator. An incremental method for proving the
termination of rewrite systems is presented. It is based on the recursive decomposition ordering.

[Le82] P. Lescanne I Some properties of decomposition ordering, a simplffication ordering to
prove termination of rewriting systenß
R.A.I.R.O. Theoretical Informatics, Vol. 16, No. 4, 1982, pp.33I - 347
An earlier version of the RDO (based on the concepts of [r81a] and [Le81b]) is presented and
proved to be equivalent to the RPO.

Bibliography 56

[Le81a] P. Lescanne : Two implementations of the recursive path ordering on monadic terms
Proceedings of the 19th Allerton Conference on Communication, Control and Computing, Allerton House,
Monticello, Illinois, September 1981, pp. 634 - g3
Discusses an efficient implementation of the RPO on monadic terms. Contains the definition of the
RDO on monadic terms.

[Le81b] P. Lescanne: Decomposttion ordering as a tool to prove the termination of rewriting
systems
Proceedings of the Tth International Joint Conference on Artificial Intelligence, Vancouver, Canada, August 1981, pp.
548 - 550
Describes an earlier version of the RDO on left-weighted terms in case of total precedences.

[Ma87] U. Martin : How to choose the weights in the Knuth-Bendix ordering
Proceedings of the 2nd International Conference on Rewriting Techniques and Applications, LNCS 256, Bordeaux,
France, lluday 25 - 27 , 1987, pp. 42 - 53
Presents an algorithm based on the simplex algorithm, for determining whether or not a set of rules
can be ordered by a KBO.

lMS86l J. Müller, J. Steinbach: Topologische Multisetordnungen
Proceedings of the l0th German Workshop and 2nd Austrian Conference on Artificial Intelligence, Ottenstein, Austria,
Informatik Fachberichte 124, September 1986, pp.254 - 264
This paper introduces multiset orderings that are based on the ideas of tJL82l.

tok86l M. Okada : Ackermann's ordering and its relationship with ordering systems in term
rewriting tlaory
Gives an examplg of a link between a proof theoretic ordering in logic and term rewriting orderings.
It considers relationships with the RPO and the semantic path orderings.

[Pe81] A. Pettorossil. Comparing and putting together recursive path ordering, simplffication
orderings and non-ascending property for termination proofs of term rewriting systems
hoceedings of the 8th EATCS International Colloquium on Automata, Languages and Programming, LNCS 115,
Acre, Israel, July 1981, pp.432 - 447
Defines a sufficient condition for proving termination of rewrite rules and compares it with other
known methods (e.g. the RPO).

tPl85l D. A. Plaisted : The undecidability of self-embedding for rerm rewriting systems
Information Processing Letters 20, February 1985, pp. 6I - g
Proves that it is undecidable whether a terrn rewriting system is non-self-embedding.

[Pl78a] D. A. Plaisted : A recursively defined ordering for proving termination of term rewriting
systenß
Report UIUCDCS-R-78-943, Department of Computer Science, University of Illinois, Urbana, IL, September 1978
Defines the path of subterms ordering and proves that it is well-founded.

[PI78b] D. A. Plaisted : Well-founded orderings for proving termination of systems of rewrite
ruJes
RepoTtUIUCDCS-R-78-932,Departmentof ComputerScience,Universityof Illinois,Urbana,IL,July 1978
Defines the simple path ordering (an earlier version of [Pl78a]).

[Re81] F. Reinig : Les ordres de döcomposition : un outil incrömental pour prouver la termiraison
finie de sysftmes de rööcriture de termes
Thöse pr6sentee pour l'obtention du grade de docteur de 3öme cycle en informatique, Universitd de Nancy I & Centre de
recherche en informatique de Nancy, France, Oclobre 1981

Describes the RDO (generalized version of the'RDO'in ü-e81al and [.e81b]) and proves its well-
foundedness. Moreover, it shows that it is stronger than the RPO (in French).

Bibliography 57

lRJql_l F, Reinig, J.-P. Jouannaud : Decomposition orderings , a new family of recursive
simp lifi c atio n or deri n g s
Report CRIN 8l-R-040, centre de recherche en informatique de Nancy, France, June l98l
Contains the same results as [Re81] in English and is an earlier version of tJLR82l.

[Ru87] M. Rusinowitch : Path of subterms ordering and recursive decomposition ordering
revisited
Journal of Symbolic Computation 3 (l & 2), 1981, pp. I 17 - 131
Defines the IRD and compares it with the RPO, RDO and KNS relative to an underlying partial
precedence.

tsi87l C. C. Sims : Verifiing nilpotence
Journal of Symbolic Computation 3, 1987, pp.23t - 247
Describes.a new procedure based on string rewriting rules for verifying that a finitely presented
group is nilpotent. Contains the definition of the collected (or syllabled) oräering.

tst88l J. Steinbach: Comparison of simpliftcation orderings
SEKI REPORT SR-88-02, Artificial Intelligence Laboratories, Department of Computer Science, Universiry of
Kaiserslautem, W. Germany, February 1988
Defines the PSD and extends the comparison of [Ru87] to total precedences and to monadic terms.

[St86] J. Steinbach : O rdnung e n für Term- Er setzungssysteme
Diplomarbeit, Fachbereich Informatik, Universität Kaiserslautern, W. Germany, Juni 1986
Presents several new multiset orderings. Moreover, it illustrates some of the most popular
simplification orderings. Finally, the papel extends the comparison of tRu87l.

[Wa86] E. Wagner : Stategienfür den Knuth-Bendix Algorithmus
Diplomarbeit, Fachbereich Informatik, Universität Kaiserslautern, W. Germany, Juni 1986
Contains the description of the COMTES-system.

tWi88l D. Wissmann : Applying rewriting techniques to groups with power-commutation-
presentatiorx
to appear in Proceedings of the 1988 International Symposium on Symbolic and Algebraic Computation, Rome, July
4 - 8, 1988
A modified version of the Knuth-Bendix completion procedure is given which ffansforms string
rewriting systems. related.to sp-ecial gioups_-i1t9 equivalent canoniöal systems of the same typel
Contains the definition of the collected (or syllabled) ordering.

[WS84] E. Wagner, J. Steinbach : Implementierung einer Grundversion des Knuth-Bendix
Algorithmw
Projektarbeit, Fachbereich Informatik, Universität Kaiserslautern, W. Germany, Sommer 1984
Describes the theoretigalspgg!! q1{ the implementation of a straighforward completion algorithm (a
preliminary version of COMTES) for termrewriting systems.

